WO2019205680A1 - 一种网络控制系统 - Google Patents

一种网络控制系统 Download PDF

Info

Publication number
WO2019205680A1
WO2019205680A1 PCT/CN2018/122268 CN2018122268W WO2019205680A1 WO 2019205680 A1 WO2019205680 A1 WO 2019205680A1 CN 2018122268 W CN2018122268 W CN 2018122268W WO 2019205680 A1 WO2019205680 A1 WO 2019205680A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
bus
network communication
trackless
network
Prior art date
Application number
PCT/CN2018/122268
Other languages
English (en)
French (fr)
Inventor
杨颖�
陈三猛
周安德
李耘茏
谢红兵
孟令锋
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2019205680A1 publication Critical patent/WO2019205680A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • H04L12/40189Flexible bus arrangements involving redundancy by using a plurality of bus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • H04L12/40195Flexible bus arrangements involving redundancy by using a plurality of nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40293Bus for use in transportation systems the transportation system being a train

Definitions

  • the invention relates to the technical field of rail vehicles and trackless vehicles, and in particular to a network control system.
  • the Networked Control System for Vehicles in Transit is called the "brain" of rail vehicles or trackless vehicles, controlling the normal operation of the entire rail vehicle or trackless vehicle, but with the digital information technology and network technology. Rapid development, the degree of intelligence of rail vehicles or trackless vehicles is also getting higher and higher, and the amount of transmitted data is multiplied.
  • the network bus of rail vehicles or trackless vehicles is TCN, MVB, Arcnet, LonWorks, WTB, World FIP, LonWorks, CAN, etc.
  • this kind of network bus can not meet the requirements of real-time transmission of network information, and the topology diagram of the network control system of rail vehicles or trackless vehicles is single, and the security and usability are not high enough.
  • a network control system for a rail vehicle or a trackless vehicle comprising:
  • the vehicle bus includes an Ethernet bus and/or an MVB bus and/or an RS485 bus and/or a CAN bus; N ⁇ 1;
  • the first network communication node and the second network communication node that are mutually redundant are connected by the vehicle bus, and the N first network communication nodes are connected by the train bus, and the N second network communication nodes are connected.
  • the first pair of mutually redundant first network communication nodes and the second network communication node are respectively connected to the first central control unit through the vehicle bus, and the Nth pair is redundant with each other.
  • the first network communication node and the second network communication node are respectively connected to the second central control unit via the vehicle bus.
  • the first central control unit and/or the second central control unit are used to control, diagnose and record the operating conditions of the rail vehicle or the trackless vehicle.
  • the method further includes:
  • a VDU display for displaying operational information of the rail vehicle or the trackless vehicle.
  • the method further includes:
  • the event recorder ER is used to record safe operation information and operation operation information of the rail vehicle or the trackless vehicle.
  • the method further includes:
  • a traction brake train control device for providing power and/or braking force and/or control and protection functions to the rail vehicle or trackless vehicle.
  • the method further includes:
  • An alarm device for prompting fault information and/or status abnormality information of the rail vehicle or the trackless vehicle.
  • the alarm device is a buzzer and/or an alarm light.
  • the method further includes:
  • An input output module for collecting information of the rail vehicle or the trackless vehicle and/or controlling operation of the rail vehicle or the trackless vehicle executing component.
  • a network control system is applied to a rail vehicle or a trackless vehicle, the system comprising: N pairs of mutually redundant first network communication nodes and second network communication nodes, mutually redundant first central control units and second Central control unit, vehicle bus, train bus, train bus includes Ethernet bus, vehicle bus includes Ethernet bus and / or MVB bus and / or RS485 bus and / or CAN bus; N ⁇ 1;
  • each pair of mutually redundant first network communication node and second network communication node are connected by a vehicle bus
  • N first network communication nodes are connected by a train bus
  • N second network communication nodes are connected by a train bus
  • the first pair of mutually redundant first network communication nodes and the second network communication node are respectively connected to the first central control unit through the vehicle bus
  • the Nth pair is mutually redundant first network communication node and the second network communication
  • the nodes are each connected to the second central control unit via a vehicle bus.
  • a single network communication node in a rail vehicle or a trackless vehicle is replaced with a first network communication node and a second network communication node which are mutually redundant, and secondly, N first network communication nodes are used.
  • the N second network communication nodes are connected by the train bus, thereby forming a two-way ring network communication network, and again, the first pair of mutually redundant first network communication nodes and the second network communication node Connecting to the first central control unit via the vehicle bus, and connecting the Nth pair of mutually redundant first network communication nodes and the second network communication node to the second central control unit through the vehicle bus, thereby forming two virtual LAN, so when one loop in the network control system fails, another redundant loop can realize automatic control of the network control system, so as not to affect the normal operation of the entire network control system, which is extremely Improve the security of network control system operation.
  • the Ethernet bus can be used to have a high network communication rate, thereby greatly increasing the data transmission speed of the network control system, and setting the vehicle bus to the Ethernet bus and/or MVB.
  • Bus and / or RS485 bus and / or CAN bus to meet the application needs of different network control systems.
  • FIG. 1 is a schematic diagram of a network control system for a rail vehicle or a trackless vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another network control system for a rail vehicle or a trackless vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a network control system in which a network communication node in a single track or a trackless vehicle fails in a rail vehicle or a trackless vehicle according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a network control system in which a single train bus fails in a rail vehicle or a trackless vehicle according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a network control system in which a single central control unit of a rail vehicle or a trackless vehicle fails in accordance with an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a network control system in which a single vehicle bus of a network control system in a rail vehicle or a trackless vehicle fails in accordance with an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a network control system in which a single vehicle bus connected to a terminal device fails in another rail vehicle or a trackless vehicle according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a network control system in which a single vehicle bus connected to a display unit fails in a rail vehicle or a trackless vehicle according to an embodiment of the present invention.
  • Embodiment 1 of the present invention discloses a network control system applied to a rail vehicle or a trackless vehicle. As shown in FIG. 1, the system includes:
  • each pair of mutually redundant first network communication node CN1 and second network communication node CN2 are connected by a vehicle bus, N first network communication nodes CN1 are connected by a train bus, and N second network communication nodes CN2 Connected by the train bus, the first pair of mutually redundant first network communication node CN1 and the second network communication node CN2 are respectively connected to the first central control unit CCU1 through the vehicle bus, and the Nth pair is mutually redundant first network
  • the communication node CN1 and the second network communication node CN2 are respectively connected to the second central control unit CCU2 via the vehicle bus.
  • FIG. 1 is a topological structural diagram of a network control system according to this embodiment. Specifically, each network communication node in the network control system is replaced with a first network communication node that is redundant. CN1 and the second network communication node CN2, secondly, the N first network communication nodes CN1 are connected by the train bus, and the N second network communication nodes CN2 are connected by the train bus, so that the network control system forms a bidirectional ring network structure. Communication network. Then, the first pair of mutually redundant first network communication node CN1 and the second network communication node CN2 are respectively connected to the first central control unit CCU1 through the vehicle bus, and the Nth pair is mutually redundant first network communication node.
  • the CN1 and the second network communication node CN2 are respectively connected to the second central control unit CCU2 via the vehicle bus, thereby forming two virtual local area networks. This is beneficial to the interconnection and interconnection between various network communication nodes in the network control system, and the data transmission control mechanism is simple and real-time.
  • a topology diagram of a network control system of a rail vehicle or a trackless vehicle is provided.
  • the network control system can be integrated on a rail vehicle or a trackless vehicle, and the rail vehicle or the trackless vehicle herein may be composed of one vehicle or a plurality of vehicles, which is not limited herein.
  • the rail vehicle is taken as an example, and the network control system in this embodiment is applied to the rail train for specific description.
  • the network communication node in each rail vehicle on the rail vehicle is replaced with the first network communication node CN1 and the second network communication node CN2 which are mutually redundant; secondly, each pair on the rail vehicle is mutually redundant.
  • the first network communication node CN1 and the second network communication node CN2 are connected by the vehicle bus, and all the first network communication nodes CN1 on the rail train are connected by the vehicle bus, and the second network communication node CN2 on the rail train is passed.
  • the vehicle bus is connected such that the network control system of the rail vehicle forms a two-way ring network communication network.
  • the first central control unit CCU1 of the rail vehicle head is connected to the first network communication node CN1 and the second network communication node CN2 in the rail vehicle via the vehicle bus, and the second central control unit CCU2 of the rail vehicle tail is connected.
  • the first network communication node CN1 and the second network communication node CN2 in the rail vehicle are connected through the vehicle bus, thereby forming two virtual local area networks, thereby implementing interconnection and interconnection between the network communication nodes in the network control system.
  • the transmission control mechanism is simple and real-time.
  • the central control unit is usually disposed at the head and tail of the rail vehicle, that is, in the cab of the rail train, so that the rail vehicle can use the central control unit to align the rail vehicle.
  • Monitoring and control if the safety of the network control system is further improved, a central control unit can be provided in each rail vehicle, which is not specifically limited herein.
  • the rail vehicle is taken as an example for specific explanation.
  • the network control system can also be set on the trackless vehicle to ensure the normal operation of the trackless vehicle, and details are not described herein.
  • FIG. 2 is a topological structural diagram of a specific rail vehicle or trackless vehicle network control system provided by this embodiment.
  • CN1 is the first network communication node
  • CN2 is the second network communication node
  • ER is the event recorder
  • VDU is the display screen
  • END1 and END2 are the extended subsystems
  • I/O1 and I/O2 are the input and output modules.
  • the first network communication node CN1 in the network control system of the rail vehicle or the trackless vehicle fails, the first network communication node CN1 that has failed will utilize the second network communication node that is redundant with each other.
  • CN2 communicates with the entire network control system. In this case, the consequence is that only the first network communication node CN1 that fails can communicate with the entire network control system without affecting the normality of the entire network control system. run.
  • the network control system uses another train bus to perform data interaction with the network control system.
  • the other network communication nodes in the road control system will not have an impact, and the entire network control system will also operate normally.
  • the influence on the network control system of the rail vehicle or the trackless vehicle is only the first central control unit that has failed.
  • the CCU1 cannot be the master unit of the network control system of the rail vehicle or the trackless vehicle without any impact on the entire network control system.
  • FIG. 6 is a topological structural diagram when a single vehicle bus connected to the first central control unit CCU1 fails.
  • the first central control Unit CCU1 will use another train bus to communicate with the entire network control system, without affecting the normal operation of the entire network control system.
  • Fig. 7 is a topological structural view when a single vehicle bus of the connection subsystem fails
  • Fig. 8 is a topological structural view when a single vehicle bus connected to the VDU display fails.
  • the subsystem and the VDU display also communicate with the entire network control system using another vehicle bus connected to it, and it does not affect the entire The normal operation of the network control system.
  • the network control system of the rail vehicle or the trackless vehicle in the embodiment can ensure that the rail vehicle or the trackless vehicle can ensure the entire network control system in the rail vehicle or the trackless vehicle regardless of the fault condition.
  • the normal operation ensures the availability, reliability and safety of the rail vehicle or the trackless vehicle, and the network control system can also solve the problem of the signal acquisition or the loss of the output signal of the network control system of the rail vehicle or the trackless vehicle.
  • the integrity and reliability of data transmission in the network control system are guaranteed.
  • the train bus includes an Ethernet bus
  • the vehicle bus includes an Ethernet bus and/or an MVB bus and/or an RS485 bus and/or a CAN bus;
  • the train bus is set as an Ethernet bus. It can be understood that the Ethernet bus is several times faster than the traditional field bus data transmission. Therefore, in this embodiment, the data can be transmitted by using the Ethernet.
  • the advantage of higher efficiency is to improve the data transmission efficiency between rail vehicles or trackless vehicles, and it is also easy to realize the expansion and reconnection of each rail vehicle or trackless vehicle through Ethernet to meet the large capacity of rail or trackless vehicles. Data transmission and high real-time requirements.
  • Ethernet bus is an open network transmission line, and different types of vehicle control devices are also easy to interconnect. Moreover, the Ethernet bus is cheap, which can greatly reduce the engineering cost of the rail vehicle or trackless vehicle network control architecture. cost.
  • the vehicle bus can realize the interconnection of various components and subsystems in each vehicle through the vehicle bus. Compared with the transmission data on the train bus, the vehicle bus transmits less data. Therefore, in the embodiment, the vehicle bus can be set as an Ethernet bus and/or an MVB bus and/or an RS485 bus and/or a CAN bus to meet the application requirements of different network control systems.
  • the vehicle bus is set as an Ethernet bus, and the efficiency of the transmission efficiency of the Ethernet bus can be utilized to improve the data transmission efficiency between the rail vehicle or the trackless vehicle.
  • This part can be referred to the above disclosure, and no longer here. Narration.
  • the vehicle bus can be set as the MVB bus, because the MVB bus is very mature in the prior art, so when the train bus is set to the MVB bus, the staff has low cost in the field troubleshooting.
  • the vehicle bus is set to RS485 bus, it is conceivable that because the 485 bus wiring is simple and the technology is mature, the subsystems and equipments with small data transmission and low real-time requirements can fully satisfy Requirements; of course, the vehicle bus can also be set to CAN bus.
  • the CAN bus data communication has outstanding reliability, real-time and flexibility, and it is a string that effectively supports distributed control or real-time control.
  • the CAN bus has obvious advantages, such as: short development cycle, strong real-time data communication between nodes in the network, etc.
  • the vehicle bus can be set as a CAN line, of course, the vehicle bus can also be set to other types of buses, such as: Arcnet, LonWorks, WT B and Word FIP are currently widely used buses on trains, as long as they can meet the intelligence of normal communication and vehicles.
  • the type of vehicle bus is not specifically limited here.
  • the first network communication node in the rail vehicle or the trackless vehicle is replaced by the first network communication node and the second network communication node which are mutually redundant, and secondly, the first network communication is performed.
  • the nodes are connected by the train bus, and the N second network communication nodes are connected by the train bus, thereby forming a two-way ring network communication network, and again, the first pair of mutually redundant first network communication nodes and the second network communication
  • the node is connected to the first central control unit through the vehicle bus, and connects the Nth pair of mutually redundant first network communication nodes and the second network communication node to the second central control unit through the vehicle bus, thereby forming two virtual LAN, so when one loop in the network control system fails, another redundant loop can realize automatic control of the network control system, so as not to affect the normal operation of the entire network control system, Improve the security of network control system operation.
  • the Ethernet bus can be used to have a high network communication rate, thereby greatly increasing the data transmission speed of the network control system, and setting the vehicle bus to the Ethernet bus and/or MVB.
  • Bus and / or RS485 bus and / or CAN bus to meet the application needs of different network control systems.
  • the present embodiment specifically describes the previous embodiment.
  • the first central control unit CCU and/or the second central control unit are used to control, diagnose and record the operating conditions of the rail vehicle or the trackless vehicle.
  • a central control unit is generally installed, that is, a central control unit is installed in the cab of the rail vehicle to record the running state of the entire rail vehicle or the trackless vehicle. Therefore, the operation and diagnosis of the entire rail vehicle or the trackless vehicle are controlled.
  • the first central control unit CCU1 or the second central control unit CCU2 uses the input/output module RIO and the network communication node CN to collect data information from each in-vehicle device in the network control system through the train bus and the vehicle bus, so that the network control is performed.
  • the vehicle-mounted components in the system control store the operating state of the entire network control system, so that the staff can use the event recorder to record the running status information of the rail vehicle or the trackless vehicle, and quickly find the faulty child in the network control system.
  • this embodiment specifically describes the previous embodiment, and the network control system further includes:
  • VDU display for displaying operational information of rail vehicles or trackless vehicles.
  • VDU display as a staff and network
  • the staff can monitor the running status of the rail vehicle or the trackless vehicle in real time through the running information or fault information of the rail vehicle or trackless vehicle displayed on the VDU display, thereby ensuring the staff's operation. Work efficiency.
  • this embodiment specifically describes the previous embodiment, and the network control system further includes:
  • the event recorder ER is used to record safe operation information and operation operation information of the rail vehicle or the trackless vehicle.
  • this embodiment specifically describes the previous embodiment, and the network control system further includes:
  • Traction brake train control device for power and/or braking and/or control and protection functions for rail vehicles or trackless vehicles.
  • the traction brake train control device is an important component of a rail vehicle or a trackless vehicle, and can provide running power for a rail vehicle or a trackless vehicle, or a braking force for stopping a rail vehicle or a trackless vehicle. It is conceivable that during the operation of a rail vehicle or a trackless vehicle, many unexpected situations will be encountered. At this time, the running speed of the rail vehicle or the trackless vehicle can be adjusted in real time by the traction brake train control device, thereby ensuring Safety of operation of rail or trackless vehicles.
  • this embodiment specifically describes the previous embodiment, and the network control system further includes:
  • An alarm device for prompting fault information and/or status abnormality information of the rail vehicle or the trackless vehicle.
  • the fault information or abnormality on the rail vehicle or the trackless vehicle can be performed by the alarm device provided in the network control system.
  • An alarm is given to alert the worker that the rail vehicle or the trackless vehicle is malfunctioning or abnormal, so that the worker can use the alarm information to perform real-time maintenance on the rail vehicle or the trackless vehicle.
  • the status abnormality information herein refers to all abnormal information that the running state of the rail vehicle or the trackless vehicle is different from the normal running state.
  • the alarm device is a buzzer and/or an alarm light.
  • the alarm device can be set as a buzzer and/or an alarm light.
  • the buzzer can be set to beep according to the fault level that affects the normal operation of the train. Fault prompt. Or use the warning light to emit different colors of light to remind the staff of the degree of fault level of the train, all for the purpose of achieving the actual situation, here is not specifically limited.
  • this embodiment specifically describes the previous embodiment, and the network control system further includes:
  • An input output module for collecting information of a rail vehicle or a trackless vehicle and/or controlling the operation of a rail vehicle or a trackless vehicle execution component.
  • the rail vehicle or the trackless vehicle is a highly integrated intelligent system.
  • the control of various running states of the rail vehicle or the trackless vehicle is realized by the input and output modules, and the input and output modules, that is, the I/O. Module.
  • the input module is configured to collect and receive an external input signal, and send the information processed by the first control unit and/or the second control unit to each execution component of the rail vehicle or the trackless vehicle through the output module to ensure the rail vehicle or the trackless vehicle The normal operation of the vehicle.
  • an optical isolation device may be provided in the input and output modules to further ensure the accuracy of the input and output signals, which is not specifically limited herein.

Abstract

一种网络控制系统,应用于轨道车辆或无轨车辆,该系统包括:N对互为冗余的第一网络通讯节点和第二网络通讯节点、互为冗余的第一中央控制单元和第二中央控制单元、车辆总线、列车总线;其中,每一对互为冗余的第一网络通讯节点和第二网络通讯节点均通过车辆总线连接,N个第一网络通讯节点通过列车总线相连,N个第二网络通讯节点通过列车总线相连,第一对互为冗余的第一网络通讯节点和第二网络通讯节点通过车辆总线分别与第一中央控制单元连接,第N对互为冗余的第一网络通讯节点和第二网络通讯节点通过车辆总线分别与第二中央控制单元连接。可见,通过本发明中的网络控制系统能够大大提高轨道车辆或无轨车辆运行的安全性。

Description

一种网络控制系统
本申请要求于2018年04月24日提交中国专利局、申请号为201810371902.4、发明名称为“一种网络控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道车辆与无轨车辆技术领域,特别涉及一种网络控制系统。
背景技术
随着经济的发展,人们的出行变得越来越多,轨道车辆或无轨车辆以其方便快速成为人们出行的首选。而网络控制系统(Networked control System for Vehicles in Transit)被称之为轨道车辆或无轨车辆的“大脑”,控制着整个轨道车辆或无轨车辆的正常运行,但是,随着数字信息技术与网络技术的快速发展,轨道车辆或无轨车辆的智能化程度也越来越高,随之而来的传输数据量的倍增,而目前轨道车辆或无轨车辆的网络总线为TCN、MVB、Arcnet、LonWorks、WTB、World FIP、LonWorks、CAN等,但是该类网络总线已经无法满足网络信息实时传输的要求,同时轨道车辆或无轨车辆的网络控制系统的拓扑图结构单一,安全性与可用性不够高。针对这些技术问题,目前还没有较为有效的解决办法,所以,如何提供一种更好的网络控制系统构架来控制轨道车辆或无轨车辆的安全运行,是本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种网络控制系统,以满足车辆高智能化的要求,同时提高车辆的安全性、可靠性和可用性。其具体方案如下:
一种网络控制系统,应用于轨道车辆或无轨车辆,该系统包括:
N对互为冗余的第一网络通讯节点和第二网络通讯节点、互为冗余的第一中央控制单元和第二中央控制单元、车辆总线、列车总线,所述列车总线包括以太网总线,所述车辆总线包括以太网总线和/或MVB总线和/或RS485总线和/或CAN总线;N≥1;
其中,每一对互为冗余的第一网络通讯节点和第二网络通讯节点均通过所述车辆总线连接,N个第一网络通讯节点通过所述列车总线相连,N个第二网络通讯节点通过所述列车总线相连,第一对互为冗余的第一网络通讯节点和第二网络通讯节点通过所述车辆总线分别与所述第一中央控制单元连接,第N对互为冗余的第一网络通讯节点和第二网络通讯节点通过所述车辆总线分别与所述第二中央控制单元连接。
优选的,所述第一中央控制单元和/或所述第二中央控制单元,用于控制、诊断与记录所述轨道车辆或无轨车辆的运行状况。
优选的,还包括:
VDU显示屏,用于显示所述轨道车辆或无轨车辆的运行信息。
优选的,还包括:
事件记录仪ER,用于记录所述轨道车辆或无轨车辆的安全运行信息和运行操作信息。
优选的,还包括:
牵引制动列控设备,用于为所述轨道车辆或无轨车辆提供动力和/或制动力和/或控制与保护功能。
优选的,还包括:
报警装置,用于提示所述轨道车辆或无轨车辆的故障信息和/或状态异常信息。
优选的,所述报警装置为蜂鸣器和/或报警灯。
优选的,还包括:
输入输出模块,用于采集所述轨道车辆或无轨车辆的信息和/或控制所述轨道车辆或无轨车辆执行部件的运行。
一种网络控制系统,应用于轨道车辆或无轨车辆,该系统包括:N对互为冗余的第一网络通讯节点和第二网络通讯节点、互为冗余的第一中央 控制单元和第二中央控制单元、车辆总线、列车总线,列车总线包括以太网总线,车辆总线包括以太网总线和/或MVB总线和/或RS485总线和/或CAN总线;N≥1;
其中,每一对互为冗余的第一网络通讯节点和第二网络通讯节点均通过车辆总线连接,N个第一网络通讯节点通过列车总线相连,N个第二网络通讯节点通过列车总线相连,第一对互为冗余的第一网络通讯节点和第二网络通讯节点通过车辆总线分别与第一中央控制单元连接,第N对互为冗余的第一网络通讯节点和第二网络通讯节点通过车辆总线分别与第二中央控制单元连接。
可见,在本发明中,首先是将轨道车辆或无轨车辆中单个的网络通讯节点替换为互为冗余的第一网络通讯节点和第二网络通讯节点,其次,将N个第一网络通讯节点通过列车总线相连、N个第二网络通讯节点通过列车总线相连,从而形成一个双向环网结构的通讯网络,再次,将第一对互为冗余的第一网络通讯节点和第二网络通讯节点通过车辆总线与第一中央控制单元连接,并将第N对互为冗余的第一网络通讯节点和第二网络通讯节点通过车辆总线分别与第二中央控制单元连接,从而形成两个虚拟的局域网,所以,当网络控制系统中的某一个环路出现故障时,另一个冗余的环路能够实现对网络控制系统的自动控制,从而不会影响整个网络控制系统的正常工作,极大的提高了网络控制系统运行的安全性。然后,将车辆总线设置为以太网总线,可以利用以太网总线具有很高的网络通信速率,从而大幅度提高网络控制系统的数据传输速度,并且,将车辆总线设置为以太网总线和/或MVB总线和/或RS485总线和/或CAN总线,以满足不同网络控制系统的应用需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种轨道车辆或无轨车辆的网络控制系统 的示意图;
图2为本发明实施例提供的另一种轨道车辆或无轨车辆的网络控制系统的示意图;
图3为本发明实施例提供的轨道车辆或无轨车辆中单个轨道或无轨车辆中的网络通讯节点出现故障的网络控制系统的示意图;
图4为本发明实施例提供的一种轨道车辆或无轨车辆中单根列车总线出现故障的网络控制系统的示意图;
图5为本发明实施例提供的一种轨道车辆或无轨车辆单个中央控制单元出现故障的网络控制系统的示意图;
图6为本发明实施例提供的一种轨道车辆或无轨车辆中网络控制系统的单根车辆总线出现故障的网络控制系统的示意图;
图7为本发明实施例提供的另一种轨道车辆或无轨车辆中与终端设备相连的单根车辆总线出现故障的网络控制系统的示意图;
图8为本发明实施例提供的又一种轨道车辆或无轨车辆中与显示单元相连的单根车辆总线出现故障的网络控制系统的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例一公开了一种网络控制系统,应用于轨道车辆或无轨车辆,如图1所示,该系统包括:
N对互为冗余的第一网络通讯节点CN1和第二网络通讯节点CN2、互为冗余的第一中央控制单元CCU1和第二中央控制单元CCU2、车辆总线、列车总线,列车总线包括以太网总线,车辆总线包括以太网总线和/或MVB总线和/或RS485总线和/或CAN总线;N≥1;
其中,每一对互为冗余的第一网络通讯节点CN1和第二网络通讯节点CN2均通过车辆总线连接,N个第一网络通讯节点CN1通过列车总线相连,N个第二网络通讯节点CN2通过列车总线相连,第一对互为冗余的第一网络通讯节点CN1和第二网络通讯节点CN2通过车辆总线分别与第一中央控制单元CCU1连接,第N对互为冗余的第一网络通讯节点CN1和第二网络通讯节点CN2通过车辆总线分别与第二中央控制单元CCU2连接。
如图1所示,图1是本实施例提供的一种网络控制系统的拓扑结构图,具体的,将网络控制系统中的每一个网络通讯节点替换为互为冗余的第一网络通讯节点CN1和第二网路通讯节点CN2,其次,将N个第一网络通讯节点CN1通过列车总线相连,N个第二网络通讯节点CN2通过列车总线相连,从而使得网络控制系统形成一个双向环网结构的通讯网络。然后,将第一对互为冗余的第一网络通讯节点CN1和第二网络通讯节点CN2通过车辆总线分别与第一中央控制单元CCU1连接,第N对互为冗余的第一网络通讯节点CN1和第二网络通讯节点CN2通过车辆总线分别与第二中央控制单元CCU2连接,从而形成两个虚拟局域网。这样有利于网络控制系统中各个网络通讯节点之间的互通互联,数据传输控制机制简单、实时性强。
可以理解的是,在本实施例中是提供了一种轨道车辆或无轨车辆的网络控制系统拓扑图。在实际应用当中,可以将该网络控制系统集成在轨道车辆或无轨车辆上,而此处的轨道车辆或无轨车辆可以是由一节车辆组成,也可以是由多节车辆组成,此处不作限定,而且,此处只是提供了一个整体的网络控制系统架构,在此基础上,还可以在该网络控制系统架构上拓展其他的子系统END,如空调、车门、乘客系统、牵引系统和辅助系统等等,一切以达到实际应用为目的,此处不作具体的限定。
此处以轨道车辆为例,将本实施例中的网络控制系统应用在轨道列车上进行具体的说明。首先,将轨道车辆上每一个轨道车辆中的网络通讯节点替换为互为冗余的第一网络通讯节点CN1和第二网络通讯节点CN2;其次,将轨道车辆上每一对互为冗余的第一网络通讯节点CN1和第二网络通讯节点CN2通过车辆总线进行连接,并且,将轨道列车上所有的第一网络 通讯节点CN1通过车辆总线连接,将轨道列车上的第二网络通讯节点CN2通过车辆总线连接,从而使得轨道车辆的网络控制系统形成一个双向环网结构的通讯网络。然后,将轨道车辆头部的第一中央控制单元CCU1与该轨道车辆中的第一网络通讯节点CN1和第二网络通讯节点CN2通过车辆总线进行连接,将轨道车辆尾部的第二中央控制单元CCU2与该轨道车辆中的第一网络通讯节点CN1与第二网络通讯节点CN2通过车辆总线进行连接,从而形成两个虚拟的局域网,进而实现网络控制系统中各个网络通讯节点之间的互通互联,数据传输控制机制简单、实时性强。
可以理解的是,在实际应用中,中央控制单元通常是设置在轨道车辆的头部和尾部,也即,设置在轨道列车的司机室当中,从而使得轨道车辆可以利用中央控制单元来对轨道车辆进行监控与控制;当然,如果为了进一步的提高网络控制系统的安全性,还可以在每一个轨道车辆中都设置中央控制单元,此处不作具体的限定。当然,此处只是以轨道车辆为例进行具体的说明,同理,在无轨车辆上也可以设置该网络控制系统,来保证无轨车辆的正常运行,此处不再赘述。
如图2所示,图2是本实施例提供的一种具体的轨道车辆或无轨车辆网络控制系统的拓扑结构图。其中,CN1为第一网络通讯节点,CN2为第二网络通讯节点,ER为事件记录仪、VDU为显示屏、END1和END2为拓展的子系统、I/O1和I/O2为输入输出模块。当轨道车辆或无轨车辆网络控制系统中的某一个环路出现故障时,另一个环路或另一冗余设备都能够自动切换到对网络控制系统的控制,完全不会影响整个网络控制系统的正常工作。下面根据网络控制系统所遇到的故障情况进行具体的说明。
如图3所示,当轨道车辆或无轨车辆的网络控制系统中的第一网络通讯节点CN1出现故障时,出现故障的第一网络通讯节点CN1会利用与其互为冗余的第二网络通讯节点CN2来与整个网络控制系统进行数据传输,在此种情况下,导致的后果仅仅是发生故障的第一网络通讯节点CN1不能与整个网络控制系统进行通讯,而不会影响整个网络控制系统的正常运行。
如图4所示,当轨道车辆或无轨车辆的网络控制系统的单根列车总线发生故障时,此种情况下,网络控制系统会利用另外一条列车总线来与网 络控制系统进行数据交互,对网路控制系统中的其它网络通讯节点都不会产生影响,而且,整个网络控制系统也会正常运行。
如图5所示,当轨道车辆或无轨车辆的网络控制系统的第一中央控制单元CCU1出现故障时,对轨道车辆或无轨车辆的网络控制系统造成的影响仅仅是发生故障的第一中央控制单元CCU1不能成为该轨道车辆或无轨车辆的网络控制系统的主控单元,而不会对整个网络控制系统产生任何影响。
当轨道车辆或无轨车辆的网络控制系统中的单个车辆总线发生故障时,此种情况下,对网络控制系统造成的影响仅仅是与该根失效的车辆总线相连的子系统与整个网络控制系统不能进行通信,而不会对整个的网络控制系统中产生任何影响,下面进行具体的说明。
如图6所示,图6是连接第一中央控制单元CCU1的单根车辆总线发生故障时的拓扑结构图,当连接第一中央控制单元CCU1的单根车辆总线发生故障时,第一中央控制单元CCU1会利用另一根列车总线来与整个网络控制系统进行通信,完全不会影响整个网络控制系统的正常运行。
图7是连接子系统的单根车辆总线发生故障时的拓扑结构图,图8是连接VDU显示屏的单根车辆总线发生故障时的拓扑结构图。显然,图7和图8中的单根车辆总线发生故障时,子系统和VDU显示屏也会利用与其连接的另一根车辆总线来与整个网络控制系统进行通信,而且,也不会影响整个网络控制系统的正常运行。
综上可以看出,利用本实施例中的轨道车辆或无轨车辆的网络控制系统,可以保证轨道车辆或无轨车辆无论在何种故障情况下,都可以保证轨道车辆或无轨车辆中整个网络控制系统的正常运行,确保了轨道车辆或无轨车辆的可用性、可靠性及安全性,而且利用此种网络控制系统也能够解决轨道车辆或无轨车辆的网络控制系统采集信号或者是输出信号出现丢失的问题,保证了网络控制系统数据传输的完整性和可靠性。
而且,在本实施例中,列车总线包括以太网总线,车辆总线包括以太网总线和/或MVB总线和/或RS485总线和/或CAN总线;
能够想到的是,随着列车车载设备的增多,尤其是列车视频监控和多 媒体业务的应用,轨道车辆或无轨车辆需要车辆总线来进行传输的数据也越来越多,而列车总线作为轨道列车的主干通信线路,它可以实现不同轨道列车之间数据的传输,相比于车辆总线需要传输的数据,列车总线上需要传输的数据会更多,传统的列车总线已经不能支持如此大容量的数据传输要求。
在本实施例中将列车总线设置为以太网总线,可以理解的是,以太网总线相比于传统的现场总线数据传输效率要快数倍,所以在本实施例中,可以利用以太网传输数据效率较高的优点,来提高轨道车辆或无轨车辆之间的数据传输效率,而且通过以太网也很容易实现各个轨道车辆或无轨车辆的扩展与重联,以此来满足轨道或无轨车辆大容量的数据传输以及高实时性的要求。
而且,以太网总线作为一种开放式的网络传输线路,不同种类的车辆控制设备也很容易实现互联互通,并且,以太网总线价格便宜,可以大大减少轨道车辆或无轨车辆网络控制架构的工程造价成本。
而车辆总线作为轨道车辆或无轨车辆的重要网络通讯线路,通过车辆总线能够实现各车辆中各个部件与各子系统的互通互联,相较于列车总线上的传输数据,车辆总线传输的数据较少,所以,在本实施例中可以将车辆总线设置为以太网总线和/或MVB总线和/或RS485总线和/或CAN总线,以满足不同网络控制系统的应用需求。
其中,将车辆总线设置为以太网总线,可以利用以太网总线传输效率较高的优点,来提高轨道车辆或无轨车辆之间的数据传输效率,此部分可参见上述公开的内容,此处不再赘述。并且,在本实施例中,可以将车辆总线设置为MVB总线,因为,MVB总线在现有技术当中应用非常成熟,所以,将列车总线设置为MVB总线时,工作人员在现场故障排查成本较低;亦或者是将车辆总线设置为RS485总线,能够想到的是,由于485总线布线简单、技术也很成熟,所以,对于数据传输量小、实时性要求不高的子系统及设备,完全能够满足要求;当然,还可以将车辆总线设置为CAN总线,可以理解的是,CAN总线的数据通信具有突出的可靠性、实时性和灵活性,它是一种有效支持分布式控制或实时控制的串行通信网络,在分布式控制 系统当中,CAN总线具有明显优势,比如:开发周期短、网络各节点之间的数据通信实时性强等,所以,可以将车辆总线设置为CAN线,当然,在实际应用当中,还可以将车辆总线设置为其他类型的总线,比如:Arcnet、LonWorks、WTB和Word FIP等目前列车上广为应用的总线,只要是能够满足正常通信与车辆的智能化即可,此处对车辆总线的类型不作具体的限定。
可见,在本实施例中,首先是将轨道车辆或无轨车辆中单个的网络通讯节点替换为互为冗余的第一网络通讯节点和第二网络通讯节点,其次,将N个第一网络通讯节点通过列车总线相连、N个第二网络通讯节点通过列车总线相连,从而形成一个双向环网结构的通讯网络,再次,将第一对互为冗余的第一网络通讯节点和第二网络通讯节点通过车辆总线与第一中央控制单元连接,并将第N对互为冗余的第一网络通讯节点和第二网络通讯节点通过车辆总线分别与第二中央控制单元连接,从而形成两个虚拟的局域网,所以,当网络控制系统中的某一个环路出现故障时,另一个冗余的环路能够实现对网络控制系统的自动控制,从而不会影响整个网络控制系统的正常工作,极大的提高了网络控制系统运行的安全性。然后,将车辆总线设置为以太网总线,可以利用以太网总线具有很高的网络通信速率,从而大幅度提高网络控制系统的数据传输速度,并且,将车辆总线设置为以太网总线和/或MVB总线和/或RS485总线和/或CAN总线,以满足不同网络控制系统的应用需求。
在上述实施例的基础之上,作为一种优选的实施方式,本实施例对上一实施例进行具体的说明。
具体的,第一中央控制单元CCU和/或第二中央控制单元,用于控制、诊断与记录轨道车辆或无轨车辆的运行状况。
可以理解的是,在轨道车辆中头部和尾部的轨道车辆,一般会安装中央控制单元,也即,在轨道车辆中的司机室中安装中央控制单元来记录整个轨道车辆或无轨车辆的运行状态,从而对整个轨道车辆或无轨车辆的运行状况进行控制、诊断。具体的,第一中央控制单元CCU1或第二中央控 制单元CCU2会利用输入输出模块RIO、网络通讯节点CN通过列车总线和车辆总线收集来自网络控制系统中各个车载设备的数据信息,以使得网络控制系统中的车载执行部件对整个网络控制系统的运行状态进行控制与存储,以供工作人员能够利用事件记录仪记录轨道车辆或无轨车辆的运行状态信息,快速查找到网络控制系统中发生故障的子部件,进行应急处理或事后维修,从而保证整个网络控制系统的正常安全运行,大大提高了工作人员的工作效率。
在上述实施例的基础之上,作为一种优选的实施方式,本实施例对上一实施例进行具体的说明,该网络控制系统还包括:
VDU显示屏,用于显示轨道车辆或无轨车辆的运行信息。
能够想到的是,随着轨道车辆或无轨车辆网络应用的不断扩展,车辆监控和多媒体等业务的广泛应用,轨道车辆或无轨车辆上的运行信息越来越多,VDU显示屏作为工作人员与网络控制系统最为直观的人机交互接口,工作人员可以通过VDU显示屏显示的轨道车辆或无轨车辆的运行信息或者是故障信息,来实时监控轨道车辆或无轨车辆的运行状态,从而来保证工作人员的工作效率。
在上述实施例的基础之上,作为一种优选的实施方式,本实施例对上一实施例进行具体的说明,该网络控制系统还包括:
事件记录仪ER,用于记录轨道车辆或无轨车辆的安全运行信息和运行操作信息。
能够想到的是,在轨道车辆或无轨车辆的控制系统中,将轨道车辆或无轨车辆收集到的与行车安全相关的信息存储在事件记录仪当中,当轨道车辆或无轨车辆发生事故时,就能够利用事件记录仪记录到的轨道车辆或无轨车辆的运行信息和运行操作信息,快速判定事故责任。
在上述实施例的基础之上,作为一种优选的实施方式,本实施例对上一实施例进行具体的说明,该网络控制系统还包括:
牵引制动列控设备,用于为轨道车辆或无轨车辆提供动力和/或制动力和/或控制与保护功能。
可以理解的是,牵引制动列控设备作为轨道车辆或无轨车辆的重要组成部分,可以为轨道车辆或无轨车辆提供运行的动力,或者是使轨道车辆或无轨车辆停止运行的制动力。能够想到的是,在轨道车辆或无轨车辆运行的过程中,会遇到很多突发状况,此时还可以通过牵引制动列控设备来实时调整轨道车辆或无轨车辆的运行速度,从而来保证轨道或无轨车辆运行的安全性。
在上述实施例的基础之上,作为一种优选的实施方式,本实施例对上一实施例进行具体的说明,该网络控制系统还包括:
报警装置,用于提示轨道车辆或无轨车辆的故障信息和/或状态异常信息。
能够想到的是,当轨道车辆或无轨车辆的网络控制系统发生故障或者是出现异常情况时,可以通过设置在网络控制系统中的报警装置对轨道车辆或无轨车辆上的故障信息或者是异常情况进行报警,以提示工作人员轨道车辆或无轨车辆出现故障或异常,从而使得工作人员能够利用报警信息对轨道车辆或无轨车辆进行实时的检修。需要说明的是,此处的状态异常信息是指轨道车辆或无轨车辆运行状态异于正常运行状态的所有异常信息。
具体的,报警装置为蜂鸣器和/或报警灯。
在本实施例中,可以将报警装置设置为蜂鸣器和/或报警灯,在实际应用当中,可以按照影响列车正常运行的故障等级,设置蜂鸣器发出蜂鸣的长短来对工作人员进行故障提示。或者是利用报警灯发出不同颜色的灯光来提示工作人员列车的故障等级程度,一切以达到实际情况为目的,此处不作具体的限定。
在上述实施例的基础之上,作为一种优选的实施方式,本实施例对上一实施例进行具体的说明,该网络控制系统还包括:
输入输出模块,用于采集轨道车辆或无轨车辆的信息和/或控制轨道车辆或无轨车辆执行部件的运行。
可以理解的是,轨道车辆或无轨车辆是一个高度集成的智能化系统,轨道车辆或无轨车辆各种运行状态的控制都是通过输入输出模块来实现的,输入输出模块,也即,I/O模块。输入模块用来采集和接收外部的输入信号,并通过输出模块将第一控制单元和/或第二控制单元处理过的信息发送至轨道车辆或无轨车辆的各个执行部件,以保证轨道车辆或无轨车辆的正常运行。当然,在实际应用当中,为了提高输入输出模块的抗干扰能力,还可以在输入输出模块中设置光电隔离装置,来进一步保证输入输出信号的准确性,此处不作具体的限定。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种网络控制系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

  1. 一种网络控制系统,其特征在于,应用于轨道车辆或无轨车辆,该系统包括:
    N对互为冗余的第一网络通讯节点和第二网络通讯节点、互为冗余的第一中央控制单元和第二中央控制单元、车辆总线、列车总线,所述列车总线包括以太网总线,所述车辆总线包括以太网总线和/或MVB总线和/或RS485总线和/或CAN总线;N≥1;
    其中,每一对互为冗余的第一网络通讯节点和第二网络通讯节点均通过所述车辆总线连接,N个第一网络通讯节点通过所述列车总线相连,N个第二网络通讯节点通过所述列车总线相连,第一对互为冗余的第一网络通讯节点和第二网络通讯节点通过所述车辆总线分别与所述第一中央控制单元连接,第N对互为冗余的第一网络通讯节点和第二网络通讯节点通过所述车辆总线分别与所述第二中央控制单元连接。
  2. 根据权利要求1所述的系统,其特征在于,所述第一中央控制单元和/或所述第二中央控制单元,用于控制、诊断与记录所述轨道车辆或无轨车辆的运行状况。
  3. 根据权利要求1所述的系统,其特征在于,还包括:
    VDU显示屏,用于显示所述轨道车辆或无轨车辆的运行信息。
  4. 根据权利要求1所述的系统,其特征在于,还包括:
    事件记录仪ER,用于记录所述轨道车辆或无轨车辆的安全运行信息和运行操作信息。
  5. 根据权利要求1所述的系统,其特征在于,还包括:
    牵引制动列控设备,用于为所述轨道车辆或无轨车辆提供动力和/或制动力和/或控制与保护功能。
  6. 根据权利要求1所述的系统,其特征在于,还包括:
    报警装置,用于提示所述轨道车辆或无轨车辆的故障信息和/或状态异常信息。
  7. 根据权利要求6所述的系统,其特征在于,所述报警装置为蜂鸣器和/或报警灯。
  8. 根据权利要求1所述的系统,其特征在于,还包括:
    输入输出模块,用于采集所述轨道车辆或无轨车辆的信息和/或控制所述轨道车辆或无轨车辆执行部件的运行。
PCT/CN2018/122268 2018-04-24 2018-12-20 一种网络控制系统 WO2019205680A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810371902.4 2018-04-24
CN201810371902.4A CN108521361A (zh) 2018-04-24 2018-04-24 一种网络控制系统

Publications (1)

Publication Number Publication Date
WO2019205680A1 true WO2019205680A1 (zh) 2019-10-31

Family

ID=63429092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122268 WO2019205680A1 (zh) 2018-04-24 2018-12-20 一种网络控制系统

Country Status (2)

Country Link
CN (1) CN108521361A (zh)
WO (1) WO2019205680A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521361A (zh) * 2018-04-24 2018-09-11 中车株洲电力机车有限公司 一种网络控制系统
CN111071297B (zh) * 2018-10-19 2022-04-19 中车唐山机车车辆有限公司 列车网络控制系统及列车
CN111098888A (zh) * 2018-10-25 2020-05-05 中车株洲电力机车研究所有限公司 车辆级控制网络、列车车厢、列车级控制网络和列车
CN109889383A (zh) * 2019-02-22 2019-06-14 中车青岛四方机车车辆股份有限公司 一种列车网络控制系统、方法和装置、以及列车
WO2021092895A1 (zh) * 2019-11-15 2021-05-20 株洲中车时代电气股份有限公司 一种列车、列车通信网络及其动态构建方法
CN111891181B (zh) * 2020-06-23 2022-06-24 株洲中车时代电气股份有限公司 基于以太网的列车网络控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102991536A (zh) * 2012-12-13 2013-03-27 唐山轨道客车有限责任公司 时速250km/h动车组列车网络控制系统
US20140149547A1 (en) * 2012-11-28 2014-05-29 Nomad Spectrum Limited Communication Method
CN204258834U (zh) * 2014-10-31 2015-04-08 中国神华能源股份有限公司 机车管理网络系统
CN105262651A (zh) * 2015-09-06 2016-01-20 长春轨道客车股份有限公司 基于tcn和工业以太网的动车组新型通信网络拓扑结构
CN206374741U (zh) * 2016-12-21 2017-08-04 比亚迪股份有限公司 列车网络控制系统
CN108521361A (zh) * 2018-04-24 2018-09-11 中车株洲电力机车有限公司 一种网络控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140149547A1 (en) * 2012-11-28 2014-05-29 Nomad Spectrum Limited Communication Method
CN102991536A (zh) * 2012-12-13 2013-03-27 唐山轨道客车有限责任公司 时速250km/h动车组列车网络控制系统
CN204258834U (zh) * 2014-10-31 2015-04-08 中国神华能源股份有限公司 机车管理网络系统
CN105262651A (zh) * 2015-09-06 2016-01-20 长春轨道客车股份有限公司 基于tcn和工业以太网的动车组新型通信网络拓扑结构
CN206374741U (zh) * 2016-12-21 2017-08-04 比亚迪股份有限公司 列车网络控制系统
CN108521361A (zh) * 2018-04-24 2018-09-11 中车株洲电力机车有限公司 一种网络控制系统

Also Published As

Publication number Publication date
CN108521361A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2019205680A1 (zh) 一种网络控制系统
CN201193041Y (zh) 基于tcn网络的牵引控制系统
CN109693690B (zh) 磁浮运行控制系统
CN105365850B (zh) 一种有轨电车网络控制系统
CN209064113U (zh) 可变编组动车组网络系统
WO2021110012A1 (zh) 一种高速智能网络控制系统
WO2020133723A1 (zh) 一种基于二乘二取二架构的站台门控制装置
CN109747615A (zh) 自动驾驶车辆制动系统及控制方法
CN108205305B (zh) 基于can的列车网络控制系统和方法
CN100592997C (zh) 用于轨道车辆的制动装置
CN109040249B (zh) 一种车载网络系统及其通信方法
CN205632524U (zh) 一种有轨电车网络控制系统
CN108263442A (zh) 列车制动系统、动车组及制动控制方法
CN111806484A (zh) 列车门及站台门故障隔离控制方法、装置及系统
PT2133254E (pt) Processo para um veiculo ferroviário para solitação de reações de segurança
CN113353128B (zh) 一种高速磁浮运行控制系统
CN114523992B (zh) 基于车车通信的智能站台门控制系统
CN103345147B (zh) 基于投票机制的动车组警惕装置
CN111098888A (zh) 车辆级控制网络、列车车厢、列车级控制网络和列车
CN207867279U (zh) 一种胶轮无轨列车整车网络系统
CN113839988A (zh) 一种列车多网融合网络控制系统和控制方法
CN112901010B (zh) 一种列车车门控制网络通讯系统
JPS5995748A (ja) デ−タ伝送方式
CN113415264A (zh) 一种轨道车辆制动系统和轨道车辆制动系统的监控方法
CN202541531U (zh) 基于mvb总线的一级网络列车控制监控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916557

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18916557

Country of ref document: EP

Kind code of ref document: A1