WO2019205193A1 - 一种全纺织材料的柔性应力传感器 - Google Patents

一种全纺织材料的柔性应力传感器 Download PDF

Info

Publication number
WO2019205193A1
WO2019205193A1 PCT/CN2018/086214 CN2018086214W WO2019205193A1 WO 2019205193 A1 WO2019205193 A1 WO 2019205193A1 CN 2018086214 W CN2018086214 W CN 2018086214W WO 2019205193 A1 WO2019205193 A1 WO 2019205193A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
stress sensor
conductive fiber
conductive
textile material
Prior art date
Application number
PCT/CN2018/086214
Other languages
English (en)
French (fr)
Inventor
罗坚义
黄景诚
胡晓燕
梁宝文
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Priority to US16/461,143 priority Critical patent/US11454557B2/en
Publication of WO2019205193A1 publication Critical patent/WO2019205193A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0088Fabrics having an electronic function
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/004Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/04Silk
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/18Physical properties including electronic components

Definitions

  • the present invention relates to the field of sensor devices, and in particular to a flexible stress sensor for a full textile material.
  • wearable electronic products represented by products such as iwatch and millet bracelets are constantly emerging. These products not only change our way of life, but also our body and mind. Health is effectively monitored. In wearable devices, the most critical flexible stress sensor technology is often found in industrialized countries such as the United States, Japan, and Germany.
  • the photoelectric sensor when used, it is easy to cause measurement error due to environmental interference caused by light, wearer's skin color, sweat and fat thickness.
  • the wearable products currently on the market are mainly " Wear-oriented, such as bracelets, watches, glasses and other electronic products, can not really be able to wear, washable electronic products like clothes.
  • the key to solving this problem is to develop flexible electronic devices that are compatible with the fabric.
  • paper was used as the base material, and then the gold nanowires were modified on the substrate to coat the fiber filaments in the paper to solve the problem that the substrate was not electrically conductive. problem.
  • the modified paper-based material is overlaid on the interdigitated electrode and protected by a polydimethylsiloxane film to form a sandwich to improve its electrical stability and structural stability.
  • the stress sensor prepared by this method has good softness and electrical conductivity, and at the same time, the presence of the structure of the interdigital electrode makes the current under stress significantly increase. Liu Mengmeng et al.
  • the coating method is applied to the textile fabric by metal nickel coating to form a nickel-coated cloth fork finger electrode, and finally the same is assembled with the VHB tape produced by 3M Company to form a cloth substrate.
  • Stress sensor Compared with paper-based materials, the fabric substrate has excellent bending and tensile properties and is expected to be compatible with existing fabric processes. It can detect a stress of 60 Pa in performance and can increase the current to the initial current. 10 times.
  • the above-mentioned resistive stress sensor solves the problem that the photoelectric sensor is susceptible to interference by objective factors, it can be bent and deformed, and can be worn, but it is still difficult to be compatible with the conventional fabric, and in particular, it cannot be washed and reused as many times as clothes. If only the surface of the traditional fabric is modified by functional layers, such as spraying a layer of conductive material, although it can achieve flexible stress sensing performance, it can also be compatible with the fabric, but it often exists during use or in multiple cleanings. The process is prone to the problem of falling off the functional film layer.
  • the invention of a flexible stress sensor capable of cleaning, anti-motion interference and ensuring a good wearing experience is an urgent need for the development of smart wearable electronic products.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a flexible stress sensor for all-textile materials, which has the characteristics of being washable, not easy to fall off, anti-motion interference, high resolution, high sensitivity and existing textile technology.
  • the advantages of compatibility are to overcome the deficiencies of the prior art and provide a flexible stress sensor for all-textile materials, which has the characteristics of being washable, not easy to fall off, anti-motion interference, high resolution, high sensitivity and existing textile technology.
  • a flexible stress sensor for a full textile material comprising a flexible cloth substrate, a flexible stress sensor, and a textile knot for fixing a flexible stress sensor on a flexible cloth substrate;
  • the flexible stress sensor comprising two conductive fiber bundles, each of the conductive fiber bundles Both have a loose structure, and the loose structures of the two conductive fiber bundles contact each other and form a stress sensing unit.
  • the working principle of the invention is as follows: firstly, a plurality of conductive fiber wires are used to form a conductive fiber bundle having a loose structure, and a stress sensing unit is formed by providing two conductive fiber bundles in cross contact with each other, the stress sensing unit is in four textile wires. a flexible stress sensor is formed on the non-conductive flexible cloth substrate by a knot; secondly, the conductive fiber bundle is used as a lead to electrically connect with the peripheral circuit, so that current flows through the stress sensing unit having a loose structure; finally, Under the action of stress, the resistance of the stress sensing unit with loose structure will decrease, and the rate of change of the resistance corresponds to the magnitude of the external force. After the external force is removed, the stress sensing unit can return to the initial resistance value. .
  • the flexible stress sensor of the full textile material of the present invention has the following advantages:
  • a conductive fiber bundle having a loose structure is used to construct a stress sensor based on a conductive fiber cross junction.
  • the loose structure is compressed under the action of external stress, causing the resistance of the contact junction to decrease, and the magnitude of the induced force is measured by measuring the rate of change of the cross junction resistance, and also utilizing the conductivity of the conductive fiber itself, There is no need to add leads to the wires, which makes it possible to implement stress sensors for all textile materials.
  • the loose structure comprises a plurality of conductive filaments, a plurality of gaps between the plurality of conductive filaments; and conductive filaments in contact with each other in the stress sensing unit The number of conduction current channels formed therebetween and the gap between the conductive fiber filaments are correspondingly changed as the external force changes.
  • further technical improvements include that the stress sensing unit is fixed to the flexible cloth substrate by a textile knot, each textile knot having a center distance from the stress sensing unit of more than 1 mm.
  • conductive fiber filaments are carbon, metal or conductive polymer materials.
  • further technical improvements include that the flexible stress sensor is coupled to two outwardly extending wires.
  • the flexible cloth substrate is a non-conductive material, which may be hemp, mulberry silk, polyester, plain cloth, fine cloth, silk or flannel.
  • FIG. 1 is a schematic structural view of a flexible stress sensor of a full textile material of Embodiment 1;
  • FIG. 2 is another schematic view of a flexible stress sensor of the full textile material of Embodiment 1;
  • FIG. 3 is a schematic structural view of a flexible stress sensor of Embodiment 1;
  • FIG. 4 is a schematic structural view of a conductive fiber bundle of Embodiment 1;
  • Example 5 is a graph showing the stress response curve of the flexible stress sensor of the all-textile material of Example 1 after multiple ultrasonic cleaning and drying;
  • FIG. 6 is a schematic structural view of a flexible stress sensor of the full textile material of Embodiment 2;
  • FIG. 7 is a schematic structural view of a flexible stress sensor of the full textile material of Embodiment 3.
  • a flexible stress sensor for a full textile material of the present invention comprising a flexible cloth substrate 10, a flexible stress sensor, and a textile knot 30 that secures a flexible stress sensor on the flexible cloth substrate 10; wherein the flexible stress sensor and the external circuit are electrically connection.
  • the flexible cloth substrate 10 is a non-conductive material, which may be hemp, mulberry silk, polyester, plain cloth, fine cloth, silk or flannel.
  • the flexible stress sensor includes two conductive fiber bundles 20, each of which has a loose structure 21, and the loose structures 21 of the two conductive fiber bundles 20 are stacked on each other and form a stress sensing unit 22.
  • the number of conduction current paths formed between the conductive fiber filaments 211 in contact with each other in the stress sensing unit 22 and the gap between the conductive fiber filaments 211 are correspondingly changed as the external force changes.
  • the loose structure 21 includes a plurality of conductive fiber filaments 211, and a plurality of gaps exist between the plurality of conductive fiber filaments 211.
  • the loose structures 21 of the two conductive fiber bundles 20 are stacked with the stress sensing unit 22 stacked.
  • the two conductive fiber bundles 20 are stacked at an angle formed by an angle ⁇ of 2° to 178°.
  • the number of the plurality of conductive filaments 211 is more than ten; and the conductive filaments 211 are carbon, metal or conductive polymer materials.
  • the two conductive fiber bundles 20 are respectively connected to two outwardly extending wires 40.
  • the number of the textile knots 30 is four, and the flexible cloth substrate 10 is provided with a jacquard structure, and the stress sensing unit 22 is fixed on the jacquard structure of the flexible cloth substrate 10 by four textile knots 30. And the distance between the center of each textile knot 30 and the stress sensing unit 22 is greater than 1 mm.
  • the flexible stress sensor of the whole textile material of the present invention can maintain the stress response performance before cleaning after being subjected to ultrasonic cleaning and drying for 60 minutes, and the pressure response performance before cleaning can be maintained.
  • the solution proposed by the invention is practical and fully realizes the washable effect of the device.
  • F1, F2, and F3 are external force values of different values.
  • this embodiment is basically the same as Embodiment 1, except that the loose structure 21 of the two conductive fiber bundles 20 in the present embodiment may also be interpenetrated and form the stress sensing unit 22. It is to be noted that the number of conduction current paths formed between the conductive fiber filaments 211 in contact with each other in the stress sensing unit 22 and the gap between the conductive fiber filaments 211 are correspondingly changed as the external force changes.
  • the conductive fiber filaments 211 of the stress sensing unit 22 are evenly interspersed or non-uniformly interspersed, and a plurality of conductive channels that are turned on or off are formed.
  • the present embodiment is substantially the same as the first embodiment except that the loose structures 21 of the two conductive fiber bundles 20 in the present embodiment may also be butted to each other and form the stress sensing unit 22. It is to be noted that the number of conduction current paths formed between the conductive fiber filaments 211 in contact with each other in the stress sensing unit 22 and the gap between the conductive fiber filaments 211 are correspondingly changed as the external force changes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明涉及一种全纺织材料的柔性应力传感器,包括柔性布料基底、柔性应力传感器以及固定柔性应力传感器于柔性布料基底上的纺织线结;所述柔性应力传感器包括两根导电纤维束,每根导电纤维束均带有疏松结构,两根导电纤维束的疏松结构互相接触并形成应力传感单元。本发明具有可清洗、不易脱落、抗运动干扰、分辨率高、灵敏度高以及与现有纺织技术兼容的优点。

Description

一种全纺织材料的柔性应力传感器 技术领域
本发明涉及传感器设备技术领域,特别是涉及一种全纺织材料的柔性应力传感器。
背景技术
随着科学技术的发展和人们追求美好生活的需求,以iwatch和小米手环等产品为代表的可穿戴式电子产品开始不断涌现出来,这些产品不仅改变着我们的生活方式,也对我们的身心健康进行了有效的监护。而在穿戴式器件中,最为关键的柔性应力传感器的相关技术往往掌握在美国、日本和德国等工业发达国家。
目前,光电式传感器在使用时,会因为环境引起的光干扰、穿戴者的肤色、汗液以及脂肪厚度等因素,从而容易造成测量误差,另外一方面是目前市场上的穿戴式产品主要是以“戴”为主,如手环、手表、眼镜等电子产品,还无法真正做到像衣服一样可穿、可洗的电子产品。解决这个问题的关键是开发出与布料可以兼容的柔性电子器件。
为了解决传统应力传感器只能戴不能穿与信号较弱的问题,研究者们逐渐关注在类纺织材料上进行材料修饰,旨在实现真正的高灵敏度“穿戴式设备”。Yong Wei等人则通过在聚氨基甲酸酯纤维表面涂覆了一定量的银纳米线后,形成一种具有应力传感性能的特种纤维,这种纤维被拉伸时,电阻会产生相应的变化。同样地,该传感器也存在着灵敏度不足的问题,在弯曲手指时,对应的电阻变化率仅为0.02%。另外,器件在实际应用中还存在着银纳米线容易发生氧化和脱离的问题。Shu Gong等人则从基底材料和电极结构两方面开展研究工 作,首先采用纸作为基底材料,然后在基底上修饰金纳米线对纸中的纤维丝进行包覆处理,以解决衬底不导电的难题。另一方面,将修饰后的纸基材料覆盖在叉指电极上,并通过聚二甲基硅氧烷薄膜保护形成三文治,以提高其电学稳定性和结构稳定。通过这种方法所制备出来的应力传感器具有良好的柔软度和导电性,同时利用叉指电极的结构的存在,使得在应力作用下的电流显著增加。而Liu Mengmeng等人则基于Shu Gong等人工作上作进一步的优化和改进,将基底材料替换成普通的纺织布料,通过碳纳米管进行包覆处理,能够有效地降低成本和简化制备工艺。在电极方面,则采用喷涂的方法,对纺织布料进行金属镍的包覆处理,形成镍包覆的布料叉指电极,最后同样地与3M公司所生产VHB胶布进行三文治结构组装,形成布料基底的应力传感器。相比于纸基材料而言,布料基底更具有优异的弯曲和拉伸性能,并有望与现有布料工艺所兼容,而在性能方面最低可探测60Pa的应力,最高可使电流增强为初始电流的10倍。
虽然上述电阻式应力传感器解决光电式的传感器的易受客观因素干扰的问题,也可弯曲变形,可穿戴,但依然难以与传统的布料兼容,特别是无法像衣服一样可多次清洗循环使用。如果只是对传统布料的表面进行功能层的修饰,如喷镀导电材料层等方式,虽然能实现柔性应力传感性能,也可与布料兼容,但往往存在着在使用过程中或者在多次清洗过程容易发生功能薄膜层脱落的问题。
因此,发明一种能够可清洗、抗运动干扰且保证良好穿戴体验的全纺织材料的柔性应力传感器是智能可穿戴式电子产品发展的迫切需求。
发明内容
基于此,本发明的目的在于克服现有技术的不足,提供一种全纺织材料的柔性应力传感器,其具有可清洗、不易脱落、抗运动干扰、分辨率高、灵敏度 高以及与现有纺织技术兼容的优点。
为了实现上述目的,本发明采用的技术方案为:
一种全纺织材料的柔性应力传感器,包括柔性布料基底、柔性应力传感器以及固定柔性应力传感器于柔性布料基底上的纺织线结;所述柔性应力传感器包括两根导电纤维束,每根导电纤维束均带有疏松结构,两根导电纤维束的疏松结构互相接触并形成应力传感单元。
本发明的工作原理为:首先采用多根导电纤维丝组成具有疏松结构的导电纤维束,并通过设置两根导电纤维束彼此交叉接触形成应力传感单元,该应力传感单元在四个纺织线结的作用下固定在不导电的柔性布料基底上从而形成柔性应力传感器;其次,利用导电纤维束作为引线与外围电路实现电连接,使得电流流过具有疏松结构的应力传感单元;最后,在应力的作用下,具有疏松结构的应力传感单元的电阻会下降,并且电阻的变化率与所受外力的大小成对应关系,在撤外力后,该应力传感单元可恢复到初始的电阻值。
与现有技术相比,本发明所述的全纺织材料的柔性应力传感器具有以下优点:
(1)利用具有疏松结构的导电纤维束来构建基于导电纤维交叉结的应力传感器。在该传感器中,疏松结构在外应力的作用下会发生压缩,导致接触结的电阻下降,通过测量交叉结电阻的变化率从而感应力的大小,同时还利用了导电纤维本身的导电性,可充当导线无需要外加引线,从而为实现全纺织材料的应力传感器提供了可能。
(2)采用与纺织制造兼容的方法,把全纺织材料的柔性应力传感器编织到布料或纺织品中,无需添加其它材料,在不改变布料或纺织品本身的功能和属性,实现可穿戴、可清洗、可对人体心率和脉搏进行有效监测的柔性应力传感 器件。
为了取得更好的技术效果,进一步的技术改进还包括,所述疏松结构包括多根导电纤维丝,多根导电纤维丝之间存在多个空隙;应力传感单元中互相接触的导电纤维丝之间形成的导通电流通道的数量以及导电纤维丝之间的空隙随着外力的改变相应地发生改变。
为了取得更好的技术效果,进一步的技术改进还包括,所述两根导电纤维束的疏松结构互相交叉叠放或互相穿插或互相对接。
为了取得更好的技术效果,进一步的技术改进还包括,所述应力传感单元通过纺织线结固定在所述柔性布料基底上,每个纺织线结与应力传感单元的中心距离大于1mm。
为了取得更好的技术效果,进一步的技术改进还包括,所述导电纤维丝为碳、金属或导电高分子材料。
为了取得更好的技术效果,进一步的技术改进还包括,所述多根导电纤维丝的数量多于10根。
为了取得更好的技术效果,进一步的技术改进还包括,所述柔性应力传感器与两根向外延伸的导线连接。
为了取得更好的技术效果,进一步的技术改进还包括,所述柔性布料基底为不导电材料,其可以是麻、桑蚕丝、涤纶、平布、细布、丝绸或绒布。
附图说明
图1为实施例1的全纺织材料的柔性应力传感器的结构示意图;
图2为实施例1的全纺织材料的柔性应力传感器的另一示意图;
图3为实施例1的柔性应力传感器的结构示意图;
图4为实施例1的导电纤维束的结构示意图;
图5为实施例1的全纺织材料的柔性应力传感器经过多次超声清洗干燥后的应力响应曲线图;
图6为实施例2的全纺织材料的柔性应力传感器的结构示意图;
图7为实施例3的全纺织材料的柔性应力传感器的结构示意图。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域的普通技术人员应能理解其他可能得实施方式以及本发明的优点。
实施例1
请同时参阅图1至图4。
本发明的全纺织材料的柔性应力传感器,其包括柔性布料基底10、柔性应力传感器以及固定柔性应力传感器于柔性布料基底10上的纺织线结30;其中,所述柔性应力传感器与外电路实现电连接。
所述柔性布料基底10为不导电材料,其可以是麻、桑蚕丝、涤纶、平布、细布、丝绸或绒布。
具体地,所述柔性应力传感器包括两根导电纤维束20,每根导电纤维束20均带有疏松结构21,两根导电纤维束20的疏松结构21互相交叉叠放并形成应力传感单元22。需要说明的是,所述应力传感单元22中互相接触的导电纤维丝211之间形成的导通电流通道的数量以及导电纤维丝211之间的空隙随着外力的改变相应地发生改变。
其中,所述疏松结构21包括多根导电纤维丝211,多根导电纤维丝211之间存在多个空隙。所述两根导电纤维束20的疏松结构21交叉叠放的应力传感 单元22。
优选地,所述两根导电纤维束20交叉叠放形成的夹角θ为2°至178°。另外,多根导电纤维丝211的数量多于10根;并且,所述导电纤维丝211为碳、金属或导电高分子材料。
其中,所述两根导电纤维束20分别与两根向外延伸的导线40连接。
所述纺织线结30的数量为四个,所述柔性布料基底10上设有提花结构,所述应力传感单元22通过四个纺织线结30固定在所述柔性布料基底10的提花结构上,且每个纺织线结30与应力传感单元22的中心距离大于1mm。
另外,如图5所示,本发明的全纺织材料的柔性应力传感器在经历多次长达60分钟的超声清洗干燥后,在20mN的压力下,仍能保持清洗前的应力响应性能,充分证明本发明所提出的方案切实可行,而且完全实现了器件可洗的效果。
以下说明本发明的全纺织材料的柔性应力传感器的工作原理:
在外力F1的作用下,两个疏松结构21表面的互相接触的导电纤维丝211之间形成的导通电流通道的数量随着外力的增大而增加,使得柔性应力传感器的电阻值急剧减小;
当外力F1继续增大至F2时,两个疏松结构21表面的互相接触的导电纤维丝211之间形成的导通电流通道的数量达到最大值;随着F2进一步加大,每个疏松结构21的内部的导电纤维丝211之间的空隙大小逐渐减小,并且对接的导电纤维丝211之间形成的导通电流通道的数量的增速逐渐减少,使得柔性应力传感器的电阻值缓慢减小;
当外力F2继续增大至F3时,应力传感单元22的导电纤维丝211之间的空隙大小及其形成的导通电流通道的数量已经为饱和值;即使外力仍在不断增大, 但是柔性应力传感器的电阻已不再发生变化,达到饱和值;
当外力撤走时,柔性应力传感器的整体结构恢复至初始状态,电阻大小恢复至初始电阻值;
其中,F1、F2、F3均为不同数值的外力值。
实施例2
如图6所示,本实施例与实施例1基本相同,其区别在于本实施例中的两根导电纤维束20的疏松结构21还可以是互相穿插并形成应力传感单元22。需要说明的是,所述应力传感单元22中互相接触的导电纤维丝211之间形成的导通电流通道的数量以及导电纤维丝211之间的空隙随着外力的改变相应地发生改变。
其中,所述应力传感单元22的导电纤维丝211之间均匀穿插或非均匀穿插,且形成多个导通或未导通的电通道。
实施例3
如图7所示,本实施例与实施例1基本相同,其区别在于本实施例中的两根导电纤维束20的疏松结构21还可以是互相对接并形成应力传感单元22。需要说明的是,所述应力传感单元22中互相接触的导电纤维丝211之间形成的导通电流通道的数量以及导电纤维丝211之间的空隙随着外力的改变相应地发生改变。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明全纺织材料的柔性应力传感器范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (8)

  1. 一种全纺织材料的柔性应力传感器,其特征在于:包括柔性布料基底、柔性应力传感器以及固定柔性应力传感器于柔性布料基底上的纺织线结;所述柔性应力传感器包括两根导电纤维束,每根导电纤维束均带有疏松结构,两根导电纤维束的疏松结构互相接触并形成应力传感单元。
  2. 根据权利要求1所述的全纺织材料的柔性应力传感器,其特征在于:所述疏松结构包括多根导电纤维丝,多根导电纤维丝之间存在多个空隙;应力传感单元中互相接触的导电纤维丝之间形成的导通电流通道的数量以及导电纤维丝之间的空隙随着外力的改变相应地发生改变。
  3. 根据权利要求1所述的全纺织材料的柔性应力传感器,其特征在于:所述两根导电纤维束的疏松结构互相交叉叠放或互相穿插或互相对接。
  4. 根据权利要求1所述的全纺织材料的柔性应力传感器,其特征在于:所述应力传感单元通过纺织线结固定在所述柔性布料基底上,每个纺织线结与应力传感单元的中心距离大于1mm。
  5. 根据权利要求2所述的全纺织材料的柔性应力传感器,其特征在于:所述导电纤维丝为碳、金属或导电高分子材料。
  6. 根据权利要求5所述的全纺织材料的柔性应力传感器,其特征在于:所述多根导电纤维丝的数量多于10根。
  7. 根据权利要求1所述的全纺织材料的柔性应力传感器,其特征在于:所述柔性应力传感器与两根向外延伸的导线连接。
  8. 根据权利要求1所述的全纺织材料的柔性应力传感器,其特征在于:所述柔性布料基底为不导电材料,其可以是麻、桑蚕丝、涤纶、平布、细布、丝绸或绒布。
PCT/CN2018/086214 2018-04-28 2018-05-09 一种全纺织材料的柔性应力传感器 WO2019205193A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/461,143 US11454557B2 (en) 2018-04-28 2018-05-09 Flexible stress sensing device of full-textile materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810403135.0 2018-04-28
CN201810403135.0A CN110411622B (zh) 2018-04-28 2018-04-28 一种全纺织应力传感器

Publications (1)

Publication Number Publication Date
WO2019205193A1 true WO2019205193A1 (zh) 2019-10-31

Family

ID=68294365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086214 WO2019205193A1 (zh) 2018-04-28 2018-05-09 一种全纺织材料的柔性应力传感器

Country Status (3)

Country Link
US (1) US11454557B2 (zh)
CN (1) CN110411622B (zh)
WO (1) WO2019205193A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800007671A1 (it) * 2018-07-31 2020-01-31 Luca Maffeo Albertelli Sistema e metodo di monitoraggio di rischio idrogeologico
CN113073463A (zh) * 2021-03-15 2021-07-06 浙江理工大学 一种可用于人体温度信号实时监测的蚕丝基柔性传感器的制备方法
CN114370967B (zh) * 2021-12-16 2023-03-24 之江实验室 基于聚合物光纤结的三维力传感器和检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393058A (zh) * 2008-11-03 2009-03-25 东华大学 一种具有机织结构的柔性电阻式压力传感器及其应用
WO2016073655A2 (en) * 2014-11-04 2016-05-12 North Carolina State University Smart sensing systems and related methods
CN107271084A (zh) * 2017-06-22 2017-10-20 五邑大学 一种柔性应力传感器及其制备方法
CN208026404U (zh) * 2018-04-28 2018-10-30 五邑大学 一种全纺织应力传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914662A1 (de) * 1989-05-03 1990-11-08 Alt Eckhard Vorrichtung zum uebertragen elektrischer signale zwischen einem implantierbaren medizinischen geraet und elektrisch erregbarem menschlichen gewebe
JP2006064663A (ja) * 2004-08-30 2006-03-09 Keisoku Res Consultant:Kk 炭素繊維束、構造物の歪・応力検知方法等
US8083644B2 (en) * 2005-12-14 2011-12-27 Peter Purdy Resistance garments and active materials
BE1017472A5 (fr) * 2007-02-20 2008-10-07 Ct Scient Et Tech De L Ind Tex Textile detecteur de pression.
US20110259488A1 (en) * 2010-04-26 2011-10-27 Junling Zhao Carcass ply for a pneumatic tire
EP2708908A1 (en) * 2012-09-13 2014-03-19 Skope Magnetic Resonance Technologies GmbH Isolating MR magnetic field probes from external RF irradiation
EP3071939B1 (en) * 2013-11-18 2019-07-31 President and Fellows of Harvard College Printed stretchable strain sensor
CN106959071B (zh) * 2017-01-19 2019-04-26 吉林大学 一种仿生应变感知结构及其形成方法
CN107692376A (zh) * 2017-09-11 2018-02-16 东华大学 一种集成纺织基应力应变传感网络的手语识别智能手套
CN107928659A (zh) * 2017-12-12 2018-04-20 五邑大学 一种柔性创口贴式心率计

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393058A (zh) * 2008-11-03 2009-03-25 东华大学 一种具有机织结构的柔性电阻式压力传感器及其应用
WO2016073655A2 (en) * 2014-11-04 2016-05-12 North Carolina State University Smart sensing systems and related methods
CN107271084A (zh) * 2017-06-22 2017-10-20 五邑大学 一种柔性应力传感器及其制备方法
CN208026404U (zh) * 2018-04-28 2018-10-30 五邑大学 一种全纺织应力传感器

Also Published As

Publication number Publication date
CN110411622A (zh) 2019-11-05
CN110411622B (zh) 2024-07-16
US11454557B2 (en) 2022-09-27
US20200271532A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2019205193A1 (zh) 一种全纺织材料的柔性应力传感器
JP5186506B2 (ja) 電極シート及び電極シートの製造方法
CN1976804B (zh) 穿孔的功能性纺织结构
JP7460535B2 (ja) 電極配線付き布材
CN207703231U (zh) 柔性电容传感器
JP2024056756A (ja) 電極配線付き布材
CN208109300U (zh) 一种穿插式应力传感器
WO2017119489A1 (ja) 導電性伸縮糸、導電性伸縮布帛及び導電性伸縮編地
CN110440958A (zh) 一种基于经编间隔织物的电容式压力传感器
JP7068569B2 (ja) 引張センサ
CN208026404U (zh) 一种全纺织应力传感器
Fan et al. A Universal, Highly Sensitive and Seamlessly Integratable Textile Resistive Strain Sensor
JP2017125291A (ja) 導電性伸縮糸、導電性伸縮布帛及び導電性伸縮編地
CN110411625B (zh) 一种对接式应力传感器
CN208026409U (zh) 一种对接式应力传感器
CN110411621B (zh) 一种穿插式应力传感器
US20230148077A1 (en) Motion detection member
JP6168506B1 (ja) 導電性生地及びその製造方法
CN110477928B (zh) 拉伸型应力传感器和弯曲传感装置
KR102108643B1 (ko) 써모커플 실을 이용한 섬유제품
JPS62163904A (ja) 固定手段付伸長導電素子
CN110403589B (zh) 一种一次性心率贴
KR20190057811A (ko) 탄소나노튜브 시트를 이용한 신축성 온도 센서 및 그 제조방법
CN110403592B (zh) 一种腕带式心率计
JPS62163903A (ja) 対被検物絶縁型伸長導電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916770

Country of ref document: EP

Kind code of ref document: A1