WO2019203448A1 - 자석 모듈 제조 방법 - Google Patents

자석 모듈 제조 방법 Download PDF

Info

Publication number
WO2019203448A1
WO2019203448A1 PCT/KR2019/003008 KR2019003008W WO2019203448A1 WO 2019203448 A1 WO2019203448 A1 WO 2019203448A1 KR 2019003008 W KR2019003008 W KR 2019003008W WO 2019203448 A1 WO2019203448 A1 WO 2019203448A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
mold
frame
magnet module
module
Prior art date
Application number
PCT/KR2019/003008
Other languages
English (en)
French (fr)
Inventor
김홍중
Original Assignee
주식회사 코베리
김홍중
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코베리, 김홍중 filed Critical 주식회사 코베리
Priority to US16/980,251 priority Critical patent/US11735342B2/en
Priority to JP2021502676A priority patent/JP7149406B2/ja
Priority to EP19789366.2A priority patent/EP3783632A4/en
Priority to CN201980017600.XA priority patent/CN111819645B/zh
Publication of WO2019203448A1 publication Critical patent/WO2019203448A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the present invention relates to a method of manufacturing a magnet module, and more particularly, to a method of manufacturing a magnet module by injection molding, which is composed of a plurality of magnets used in a linear motor and arranged in a traveling direction.
  • the linear motor that is, the linear motor, has a structure in which thrust is generated between the mover and the stator facing in a straight line shape.
  • Permanent magnet type linear motors place permanent magnets on either the mover or stator and send alternating polyphase power to the other side so that electromagnetic forces act between them to generate thrust in a certain direction.
  • the core of the armature module on U / V / W is straight, so that the salient poles also project at right angles from the core and are arranged side by side with the neighboring salient poles.
  • the permanent magnet of the secondary member also projects toward the straight core between two side-by-side salient poles. Since the plurality of permanent magnets listed in the advancing direction can be fixed to the permanent magnet module, and two or more permanent magnet modules are arranged next to each other between the protrusions, the base serving as the supporting mechanism serves as a connection for connecting the plurality of permanent magnet modules. Thus, a plurality of permanent magnet modules may be fixed to the base.
  • the linear electric motor of FIG. 1 constitutes a magnetic closed circuit without the involvement of a magnetic core, that is, there is no magnetic core on the magnetic path, and a permanent magnet is directly disposed on the magnetic path to connect magnetic flux to form a magnetic closed circuit.
  • the permanent magnet module may be assembled by inserting the permanent magnet into a plurality of openings formed in the frame according to the shape of the permanent magnet. Since magnetic flux does not flow in the magnet module frame, the frame can be manufactured in an injection form using a nonmagnetic material.
  • the magnetization direction of the permanent magnet is checked individually, the opening to fix the permanent magnet whose magnetization direction is confirmed, the adhesive is applied to the permanent magnet rim or the opening, and the permanent The magnets should be glued into the openings.
  • an object of the present invention is to provide a method for easily manufacturing a magnet module composed of a plurality of magnets arranged in a traveling direction of a linear electric motor and without a magnetic core.
  • the step of ejecting comprises: mounting the magnetless magnet to a first portion forming a frame of the magnet module in a mold mold consisting of at least two molds molded inside to fit the external shape of the magnet module; ; Injecting a liquid resin into a mold mold; And when the resin is hardened, separating the mold mold.
  • the step of injecting further comprises the step of mounting a metal plate on a second portion forming a base of the magnet module in the mold mold prior to injecting the liquid resin into the mold mold.
  • a metal plate on a second portion forming a base of the magnet module in the mold mold prior to injecting the liquid resin into the mold mold.
  • the metal plate may be secured to the mold die by sandwiching a metal plate between the ends of the protrusions projecting to face each other in at least two dies to form a base hole in the base.
  • At least two frames may protrude pins for securing the magnetized magnet.
  • At least two fins contact the at least one pin to each of the other faces of the hexahedron. It may protrude from one or more of the following.
  • Magnetic module according to another embodiment of the present invention, a plurality of permanent magnets are arranged in a straight line in the first direction, the plurality of permanent magnets arranged so that the magnetic pole direction parallel to the second direction alternates while traveling in the first direction; And an injection molded base to form a plurality of base holes and an injection molded frame to fix the plurality of permanent magnets.
  • the magnet module may further include a metal plate embedded inside the base.
  • the metal plate has the longest shape in the first direction and the next longest shape in the second direction, and holes may be formed at positions corresponding to the plurality of base holes.
  • the base hole may be disposed at a corresponding position between two permanent magnets in the frame with respect to the first direction.
  • the permanent magnet is exposed outside of the frame, the frame protrudes beyond the surface of the permanent magnet in a direction away from the permanent magnet at a position corresponding to the edge of the permanent magnet of the cube in a second direction, the first direction and the first It may protrude in the direction toward the center of the permanent magnet at a position corresponding to the edge in a third direction and a first direction perpendicular to the two directions.
  • the manufacturing process of the magnet module can be simplified to increase manufacturing efficiency, and the magnet module can be structured so that the magnet is not exposed to the outside, and the magnet surface can be prevented from being damaged.
  • the long magnetic module can be prevented from bending in the direction in which the magnetic flux proceeds, and the magnetic flux can be minimized to the outside by minimizing the gap between the magnet and the armature.
  • Figure 2 illustrates a magnet module manufactured by an injection molding method according to an embodiment of the present invention
  • FIG. 3 illustrates a frame in which a permanent magnet is fixed in the magnet module of FIG. 2,
  • FIG. 4 is a flowchart illustrating a process of manufacturing a magnet module according to an embodiment of the present invention.
  • 5 and 6 illustrate a method of fixing a magnetized magnet to a mold frame to manufacture a magnet module by injection molding
  • FIG. 7 illustrates an example of a method of magnetizing a magnetized magnet included in a magnet module frame
  • FIG. 8 illustrates a magnet module manufactured by injection molding according to another embodiment of the present invention
  • FIG. 10 illustrates an embodiment in which a magnetized magnet and a metal plate are fixed to a mold mold in order to manufacture a magnet module by injection molding.
  • FIG. 2 illustrates a magnet module manufactured by injection molding according to an embodiment of the present invention
  • FIG. 3 illustrates a frame in which a permanent magnet is fixed in the magnet module of FIG. 2, wherein two or more magnet modules are movable. It can be arranged continuously in the direction of travel of the ruler.
  • the magnet module 10 may be composed of a frame 110 on which a plurality of permanent magnets 130 are mounted and a base 120 having a hole 121 formed therein for coupling with a stator.
  • the frame 110 and the base 120 Is formed into one body by injection molding.
  • a plurality of permanent magnets 130N and 130S are disposed in the frame 110, which is an injection molding such as plastic, alternately rotating magnetic poles in the horizontal direction (X direction), that is, the moving direction of the mover, so that the permanent magnets are not exposed to the outside.
  • Magnet module 10 may be manufactured.
  • a plurality of rectangular parallelepiped permanent magnets are disposed in a state in which the sides of the rectangular parallelepiped are slightly inclined without being aligned in parallel with the horizontal direction (X direction) to reduce the speed ripple.
  • the magnetization direction of the permanent magnet 130 is a direction perpendicular to the moving direction of the mover and protruding from or entering the XY plane, that is, the direction perpendicular to the XY plane.
  • FIG. 4 is a flowchart illustrating a process of manufacturing a magnet module according to an embodiment of the present invention.
  • the magnetless magnet is mounted on a mold mold for injection molding.
  • a non-magnetized person refers to a state in which there is no magnetic force, and means a state in which there is no magnetic force because the raw materials required for the magnet are mixed and the magnet state is not injected. Since the magnet is non-magnetized, it is possible to arbitrarily mount the non-magnetized magnet of the same size to the mold frame without considering the magnetization direction.
  • 5 and 6 illustrate a method of fixing a magnetless magnet to a mold frame to manufacture a magnet module by injection molding.
  • the fixing pins 216, 225, and 226 are formed in a mold frame composed of at least two parts, that is, the first mold 210 and the second mold 220, which are molded to fit the external shape of the magnet module 10. It is formed to protrude from the inner surface, which is the magnetless magnet 130 when hot liquid resin, such as plastic, is injected at a high pressure into the space between the first mold 210 and the second mold 220 during the injection molding process. ) To hold it in place.
  • the first fixing pin 216 vertically protrudes from the inner surface of the first mold 210 to support the magnet 130 in the -Z direction, and the second fixing pin 226 may be removed. Protruding vertically from the inner surface of the second frame 220 to support the magnet 130 in the + Z direction, the third fixing pin 225 protrudes from one of the first and second frame (210, 220) The 130 is supported in the X direction, the Y direction, or a combination direction of a predetermined ratio of the X direction component and the Y direction component.
  • the magnetless magnet 130 is in the form of a cuboid and is seated in the frame 110 with the first / second surfaces having the largest area (the first and second surfaces facing each other) parallel to the XY plane. . Since the magnetic flux flows in the Z direction when the magnet module 10 is mounted to the linear electric motor of FIG. 1, it is necessary to keep the first surface of the magnet 130 parallel to the XY plane or perpendicular to the Z direction.
  • first and second fixing pins 216 and 226 contact the first and second surfaces of the magnet 130, respectively, based on the Z direction.
  • the center of gravity of the plurality of first fixing pins 216 and the plurality of second fixing pins 226 based on the XY plane, respectively, in the center of the first or second surface of the magnet 130, It is advantageous to have it evenly disposed on the first or second surface of the magnet 130.
  • first fixing pins 216 and the second fixing pins 226 do not coincide with respect to the XY plane.
  • the first fixing pins 216 and the second fixing pins 226 may be disposed to be linearly symmetric with respect to a straight line passing through the center of the first or second plane.
  • the magnet 130 is a rectangular quadrangle having a longer side with respect to the XY plane, and each of the first and second fixing pins 216 and 226 is three for each magnet.
  • the fixing pins may be disposed in an isosceles triangle shape having a hypotenuse length longer than that of the base side, but an isosceles triangle formed by each of the first fixing pins 216 and the second fixing pins 226 may be alternately disposed.
  • the plurality of third fixing pins 225 may have different sides except for each side of the rectangular quadrangle formed by the first or second surface of each magnet 130 or the first and second surfaces based on the XY plane. It may be arranged to abut one or more sides.
  • the magnet 130 may not be a rectangular parallelepiped, but may be a hexahedron in which the first and second surfaces of the XY plane are parallelograms, and in this case, the embodiment related to the fixing pins of FIGS. .
  • the planar shape of the magnet 130 is not limited to a rectangle or a parallelogram, but also a rhombus, a circle, an ellipse, or the like,
  • the two molds 210 and 220 are coupled.
  • Inlet (not shown) for injecting the resin in the liquid state to form the frame 110 and the base 120 is provided on the mating end surface of one or two mold frame of the first and second mold (210, 220),
  • An air hole (not shown) is provided through which the air in the mold dies out so that the resin penetrates into every corner of the mold die.
  • the resin material of the hot liquid state is injected through the inlet provided in the mold mold to induce the frame of the magnet module 10 ( 110 and the base 120 is molded.
  • the mold molds 210 and 220 are separated to obtain a magnet module 10 having a plurality of non-magnetized magnets 130 mounted therein, and to remove unnecessary portions of the magnet module 10. And trim to final appearance.
  • the magnetized magnet 130 built into the frame 110 is magnetized by using the magnetizer.
  • FIG. 7 illustrates an example of a method of magnetizing a magnetized magnet included in a magnet module frame.
  • Magnetization is a process of applying a magnetic field induced to a magnetic material without magnetic force to change the magnetic material magnetically, applying magnetic flux as desired by setting the direction of the magnetic pole and the strength of the product to be obtained. It is called a permanent magnet.
  • the magnetization operation works with a magnetizer composed of a control unit, which is a current supply device, and a yoke unit for inducing a magnetic field.
  • each magnet 130 included in the frame 110 needs to be magnetized to generate a magnetic pole in the Z direction, and thus, a magnetic core having a shape corresponding to a magnet 130 included in the frame 110 may be formed.
  • 310 is disposed so as to face one side of each magnet 130 and each magnet 130 has a ferromagnetic material 330 electrically connected to the corresponding magnetic core 310 and having a shape corresponding to the magnet 130 at an end thereof.
  • the magnetic field is exposed to the magnet 130 by disposing the coil 320 on the magnetic core 310 and applying a current to the coil 320.
  • one end of the magnetic core 310 faces in parallel to the first surface of the magnet 130
  • the ferromagnetic material 330 faces in parallel to the second surface of the magnet 130
  • the 330 and the magnet 130 form a magnetic closed circuit, and a current flows in the coil 320 wound around the magnetic core 310 so that the flux (Flux) flows in the magnetic closed circuit.
  • the magnetic flux Flux which is directed toward the magnet 130 at one end of the magnetic core 310, passes through the magnet 130 and enters the ferromagnetic material 330, the magnet 130 is magnetized.
  • the coil 320 is wound around the first magnetic core 310 in a clockwise direction (CW) and neighbors.
  • the coil 320 may be wound around the second magnetic core 310 in a counter clock-wise (CCW) to reverse the magnetic pole directions of two neighboring magnets 130 in the frame 110.
  • all magnets 130 included in the frame 110 may be magnetized at once.
  • the magnet is not exposed to the outside to prevent damage to the magnet surface. Depending on the intended use, some or all of the magnet surface may be exposed.
  • FIG. 8 illustrates a magnet module manufactured by an injection molding method according to another embodiment of the present invention
  • FIG. 9 illustrates a metal plate inserted into a base of the magnet module, and the magnet module 10 of FIG. It is almost the same as the magnet module 10 of FIG. 2 except that the metal plate 140 is inserted into the 120 and the magnet 130 is exposed to the outside.
  • the magnet module 10 Since the magnet module 10 has a long length in the traveling direction of the linear motor (the X direction in FIG. 8) and the resin constituting the frame 110 in that direction is different from the density of the magnet 130 fitted to the frame 110. There is a possibility that warpage occurs in the Z direction after injection molding.
  • the magnet module 10 is injection molded while the metal plate 140 is inserted into the base 120 fixed to the stator.
  • the metal plate 140 By fixing the rectangular metal plate 140 having the longest in the X direction, forming a rectangular plane in the X direction and the Z direction, and a thin thickness in the Y direction, inside the base 120, the magnet module 10 may be prevented from bending.
  • the metal plate may have a hexahedral shape that forms a parallelogram plane in the X and Y directions.
  • a plurality of metal plate holes 141 are formed at the same position as the number of base holes 121 formed in the base 120.
  • the base hole 121 is a base corresponding to a position where the resin forming the frame 110 between the magnet 130 and the magnet 130 is formed long in the Y direction on the basis of the X direction, which is the advancing direction. It may be disposed at the position 120 because the position where the magnet 130 is disposed in the frame 110 has the weakest strength.
  • FIG. 10 illustrates an embodiment in which the magnetless magnet and the metal plate are fixed to the mold mold in order to manufacture the magnet module by injection molding.
  • FIG. 8 is a cross-sectional view of the magnet module 10 and the mold mold cut based on the YZ plane in FIG. 8. to be.
  • the third fixing pin 225 is formed in the mold frame including at least two parts, that is, the first mold 210 and the second mold 220, which are molded to fit the external shape of the magnet module 10. It is formed to protrude from the inner surface of the mold 210 or the second mold 220.
  • the magnet 130 is exposed to the outside, since the magnet 130 is exposed to the outside, the first fixing pin 216 or the second fixing pin for fixing the magnet 130 in the Z direction differently from FIGS. 5 and 6. Pin 226 is not necessary. Instead, the magnet 130 is fixed in the Z direction by providing a cross section corresponding to the first / second surface of the magnet 130 in the first mold 210 and the second mold 220.
  • At least one of the plurality of sides may contact one or more sides of the rectangular quadrangle formed by the first or second surfaces of the magnets 130 or other surfaces except for the first and second surfaces, based on the XY plane.
  • the magnet 130 may be fixed in the X and Y directions by disposing the third fixing pin 225.
  • the resin accommodating part 224 is formed in at least one or both (in the center of the cross section) of the cross section for fixing the magnet 130 in the Z direction to the first frame 210 and the second frame 220,
  • the resin accommodating part 224 is formed in at least one or both (in the center of the cross section) of the cross section for fixing the magnet 130 in the Z direction to the first frame 210 and the second frame 220,
  • the amount of resin to be injected is larger than necessary, it can be accommodated so that there is no abnormality in the shape of the magnet module 10. Since the resin entering the resin accommodating part 224 is separated without being connected to the part forming the frame 120 and is hardened at the center of the magnet 130, the first mold 210 does not form part of the frame 110. ) And the second mold 220 is separated from the magnet 120.
  • the magnet 130 since the magnet 130 is exposed to the outside in the magnet module 10 of FIG. 8, the magnet 130 may be separated from the frame 110.
  • the frame 110 is injected through the mold 110.
  • Silver protrudes more than the surface of the magnet 130 in the direction away from the magnet 120 in the Z direction at the corner or edge of the magnet 130, and also in the XY direction of the magnet 130 at the corner or edge of the magnet 130.
  • the magnet 130 may protrude in a direction toward the center to prevent the magnet 130 from being separated from the frame 110.
  • the metal plate 140 is embedded in the base 120 of the magnet module 10 of FIG. 8, the position of the metal plate 140 is fixed to the first mold 210 and the second mold 220, and the base ( In 120, a portion for forming a hole is provided.
  • a plurality of protrusions 211 and 221 protruding toward each other in the Y direction are provided in the first mold 210 and the second mold 220 in the X direction, respectively, and the base 120 has a plurality of base holes in the X direction. (121) can be formed.
  • the ends of the protrusions 211 and 221 of the first mold 210 and the second mold 220 do not touch each other, and the ends of the protrusions 211 and 221 may be positioned in the Y direction of the metal plate 140. .
  • the metal plate 140 also has a metal plate hole 141 formed at a position corresponding to the protrusions 211 and 221, and passes the bolt through the base hole 121 and the metal plate hole 141 to stator the magnet module 10. Mover).
  • a plurality of metal plate support parts 222 may be formed in the second frame 220 to be spaced apart from each other in the X direction, thereby determining the position of the metal plate 140 in the Z direction within the base 120.
  • support portions may be formed at both sides in the X direction to determine the position of the metal plate 140 in the X direction.
  • An injection part 212 may be formed to inject a resin forming an external appearance of the magnet module 10 at a position corresponding to the base 120 in the first mold 210.
  • the magnet module 10 having a long length in the X direction is prevented from bending in the Z direction, that is, the magnetic flux of the magnet 130 proceeds. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Linear Motors (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

본 발명은 자석 모듈 제조 방법에 관한 것이다. 본 발명의 일 실시예에 따른 자석 모듈 제조 방법은, 일직선으로 배치되는 무착자 자석 복수 개를 포함하는 자석 모듈을 사출하고, 사출된 자석 모듈에 장착된 무착자 자석을 착자할 수 있다. 사출하는 것은, 자석 모듈의 외관 모양에 맞도록 내부가 성형된 적어도 2개의 틀로 구성되는 금형 틀에서 자석 모듈의 프레임을 형성하는 제1 부분에 무착자 자석을 장착하고, 금형 틀 내에 액체 상태의 수지를 주입하고, 수지가 굳으면 금형 틀을 분리함으로써, 자석 모듈 프레임을 사출할 수 있다. 또한, 금형 틀 내에 액체 상태의 수지를 주입하기에 앞서, 금형 틀에서 자석 모듈의 베이스를 형성하는 제2 부분에 금속판을 장착할 수 있다. 적어도 2개의 틀에는 무착자 자석을 고정하기 위한 핀이 돌출할 수 있다. 따라서, 자석 모듈의 제조 공정을 간소화하여 제조 효율이 높아진다.

Description

자석 모듈 제조 방법
본 발명은 자석 모듈을 제조하는 방법에 관한 것으로, 보다 상세하게는 선형 전동기에 사용되고, 진행 방향으로 나열된 복수 개의 자석으로 구성되는, 자석 모듈을 사출 성형 방식으로 제조하는 방법에 관한 것이다.
선형 전동기, 즉 리니어 모터는 직선 모양으로 면하는 가동자 및 고정자 사이에 추력을 발생하는 구조로 되어 있다. 영구 자석형 리니어 모터는 가동자 및 고정자 중 어느 한 쪽에 영구 자석을 놓고 나머지 한 쪽에 교번하는 다상 전력을 보내 양자 사이에 전자력이 작용하여 일정 방향으로 추력이 발생하도록 한다.
종래 대부분의 리니어 모터는, 전기자 코어의 돌극에서 나온 자속이 영구 자석을 거쳐 자기 코어를 통해서 자기 폐회로를 구성하여 인력과 척력을 발생시켜 추력이 발생하는 구조를 취하므로, 영구 자석은 돌극과 자속 코어 사이에 놓이고 자속 코어에 부착되는 경우가 대부분이다.
도 1은 본 발명의 발명자에 의해 출원된 출원 번호 KR 10-2010-0081522과 KR 10-2010-0129947에 기재된 개방형 선형 전동기를 도시한 것이다.
도 1에서, U/V/W 상의 전기자 모듈의 코어가 직선 형태이고, 이에 따라 돌극도 코어에서 직각으로 돌출하고 이웃하는 돌극과 나란히 배치되어 있다. 또한, 2차 부재의 영구 자석도 나란히 놓인 두 돌극 사이로 직선 형태의 코어를 향해 돌출한다. 진행 방향으로 나열된 복수 개의 영구 자석은 영구 자석 모듈에 고정될 수 있고, 돌극 사이에 둘 이상의 영구 자석 모듈이 서로 나란히 배열되기 때문에, 지지 기구인 베이스가 복수 개의 영구 자석 모듈을 연결하기 위한 연결부 역할을 하여 복수 개의 영구 자석 모듈이 베이스에 고정될 수 있다.
도 1의 선형 전동기는 자기 코어의 개입 없이 자기 폐회로를 구성, 즉 자기 경로상에 자기 코어가 없고 영구 자석이 직접 자기 경로상에 배치되어 자속을 연결하여 자기 폐회로를 이룬다.
도 1의 선형 전동기에서 영구 자석이 직접 자기 폐회로를 연결하므로, 영구 자석 형상에 맞춰 프레임에 형성된 복수 개의 개구에 영구 자석을 끼워 영구 자석 모듈을 조립할 수 있다. 자석 모듈 프레임에는 자속이 흐르지 않기 때문에 프레임을 비자성체를 이용하여 사출 형태로 제작할 수 있다.
영구 자석을 프레임에 형성된 개구에 고정할 때, 영구 자석의 자화 방향을 일일이 확인하고 자화 방향이 확인된 영구 자석을 고정할 개구를 결정하고, 영구 자석 테두리 또는 개구의 내부에 접착제를 도포하고, 영구 자석을 개구에 맞춰 끼워 접착해야 한다.
하지만, 영구 자석의 자력이 매우 강해서 두 자석이 서로 붙을 수 있고 붙은 자석을 떼기가 매우 어려워서 자화 방향을 확인하는 과정이 상당히 번거롭고, 개구의 내부나 자석 테두리에 도포한 접착제가 삐져나와 조립된 자석 모듈 외관이 매끄럽지 않게 되는 등, 자석 모듈 조립과 관련된 작업 공정이 많아 번거롭고 작업 능률이 떨어진다.
따라서, 본 발명은 이러한 상황을 반영하여 창작된 것으로서, 본 발명의 목적은 선형 전동기의 진행 방향으로 나열된 복수 개의 자석으로 구성되고 자기 코어가 없는 자석 모듈을 용이하게 제조하는 방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 자석 모듈 제조 방법은, 일직선으로 배치되는 무착자 자석 복수 개를 포함하는 자석 모듈을 사출하는 단계; 및 사출된 자석 모듈에 장착된 무착자 자석을 착자하는 단계를 포함하여 이루어지는 것을 특징으로 한다.
일 실시예에서, 사출하는 단계는, 자석 모듈의 외관 모양에 맞도록 내부가 성형된 적어도 2개의 틀로 구성되는 금형 틀에서 상기 자석 모듈의 프레임을 형성하는 제1 부분에 무착자 자석을 장착하는 단계; 금형 틀 내에 액체 상태의 수지를 주입하는 단계; 및 수지가 굳으면 금형 틀을 분리하는 단계를 포함할 수 있다.
일 실시예에서, 사출하는 단계는, 상기 금형 틀 내에 액체 상태의 수지를 주입하는 단계에 앞서, 상기 금형 틀에서 상기 자석 모듈의 베이스를 형성하는 제2 부분에 금속판을 장착하는 단계를 더 포함할 수 있다.
일 실시예에서, 베이스에 베이스 홀을 형성하기 위해 적어도 2개의 틀에서 서로 마주보도록 돌출하는 돌출부들의 말단 사이에 금속판을 끼워 금속판을 금형 틀에 고정할 수 있다.
일 실시예에서, 적어도 2개의 틀에는 무착자 자석을 고정하기 위한 핀이 돌출할 수 있다.
일 실시예에서, 상기 무착자 자석이 착자될 자극 방향에 수직인 제1 면과 제2 면이 가장 넓은 육면체일 때, 육면체의 다른 면 각각에 적어도 하나의 핀이 접촉하도록 핀이 적어도 2개의 틀 중 하나 이상에서 돌출할 수 있다.
본 발명의 다른 실시예에 따른 자석 모듈은, 제1 방향으로 일직선으로 복수 개가 배치되되 제2 방향과 나란한 자극 방향이 제1 방향으로 진행하면서 번갈아 바뀌도록 배치되는 복수 개의 영구 자석; 및 복수 개의 영구 자석을 고정하도록 사출 성형된 프레임과 복수 개의 베이스 홀이 형성되도록 사출 성형된 베이스를 포함하여 구성되는 것을 특징으로 한다.
일 실시예에서, 자석 모듈은 베이스 내부에 내장된 금속판을 더 포함할 수 있다.
일 실시예에서, 금속판은 제1 방향으로 가장 길고 제2 방향으로 다음으로 긴 형상이고, 복수 개의 베이스 홀에 대응하는 위치에 홀이 형성될 수 있다.
일 실시예에서, 베이스 홀은 제1 방향을 기준으로 프레임에서 두 영구 자석 사이에 대응하는 위치에 배치될 수 있다.
일 실시예에서, 영구 자석은 프레임 외부에 노출되고, 프레임은 제2 방향으로 육면체의 영구 자석의 가장자리에 대응하는 위치에서 영구 자석에서 멀어지는 방향으로 영구 자석의 표면보다 돌출하고, 제1 방향과 제2 방향과 수직인 제3 방향 및 제1 방향으로 가장자리에 대응하는 위치에서 영구 자석의 가운데를 향하는 방향으로 돌출할 수 있다.
따라서, 자석 모듈의 제조 공정을 간소화하여 제조 효율이 높아지고, 자석 모듈에서 자석이 외부에 노출되지 않는 구조가 가능하며 자석 표면이 훼손되는 것을 막을 수 있게 된다.
또한, 길이가 긴 자석 모듈이 자속이 진행하는 방향으로 휘어지는 것을 막을 수 있고, 자석과 전기자 사이 간격을 최소화하여 자속이 외부로 누출되는 것을 최소화할 수 있다.
또한, 자석이 노출된 상태로 사출하더라도 자석이 프레임으로부터 이탈하는 것을 막을 수 있다.
도 1은 본 발명의 발명자에 의해 출원된 출원 번호 KR 10-2010-0081522과 KR 10-2010-0129947에 기재된 개방형 선형 전동기를 도시한 것이고,
도 2는 본 발명의 일 실시예에 따라 사출 성형 방식으로 제조된 자석 모듈을 도시한 것이고,
도 3은 도 2의 자석 모듈에서 영구 자석이 고정된 프레임을 도시한 것이고,
도 4는 본 발명의 일 실시예에 따른 자석 모듈을 제조하는 과정에 대한 작업 흐름도를 도시한 것이고,
도 5와 도 6은 사출 성형 방식으로 자석 모듈을 제조하기 위해 무착자 자석을 금형 틀에 고정하는 방법을 도시한 것이고,
도 7은 자석 모듈 프레임에 포함된 무착자 자석을 착자하는 방법의 한 예를 도시한 것이고,
도 8은 본 발명의 다른 실시예에 따라 사출 성형 방식으로 제조된 자석 모듈을 도시한 것이고,
도 9는 자석 모듈의 베이스에 삽입된 금속판을 도시한 것이고,
도 10은 사출 성형 방식으로 자석 모듈을 제조하기 위해 무착자 자석과 금속판을 금형 틀에 고정하는 실시예를 도시한 것이다.
이하, 본 발명에 따른 자석 모듈 제조 방법을 첨부하는 도면에 의거하여 상세히 설명한다.
본 발명에서는, 자화되지 않은 복수 개의 자석을 포함하는 자석 모듈을 사출 성형한 후 착자기로 자석 모듈에 장착된 자석들을 자화시켜, 도 1과 유사한 구조의 선형 전동기에 적용되는 자석 모듈을 제조할 수 있다.
도 2는 본 발명의 일 실시예에 따라 사출 성형 방식으로 제조된 자석 모듈을 도시한 것이고, 도 3은 도 2의 자석 모듈에서 영구 자석이 고정된 프레임을 도시한 것으로, 둘 이상의 자석 모듈이 가동자의 진행 방향으로 연속으로 배치될 수 있다.
자석 모듈(10)은 복수 개의 영구 자석(130)이 장착되는 프레임(110)과 고정자와 결합하기 위해 홀(121)이 형성된 베이스(120)로 구성될 수 있는데, 프레임(110)과 베이스(120)는 사출 성형으로 한 몸으로 형성된다. 예를 들어 플라스틱과 같은 사출물인 프레임(110) 안에 복수 개의 영구 자석(130N, 130S)이 가로 방향(X 방향), 즉 가동자 진행 방향으로 자극을 번갈아가면서 배치되어, 영구 자석이 바깥으로 노출되지 않는 자석 모듈(10)이 제조될 수 있다.
복수 개의 직육면체 영구 자석은 속도 리플 감소를 위해 직육면체의 변이 가로 방향(X 방향)과 평행하게 정렬되지 않고 약간 기울어진 상태로 배치된다. 영구 자석(130)의 자화 방향은, 가동자 진행 방향과 수직으로, XY 평면에서 튀어나오거나 들어가는 방향, 즉 XY 평면에 수직인 방향이다.
도 4는 본 발명의 일 실시예에 따른 자석 모듈을 제조하는 과정에 대한 작업 흐름도를 도시한 것이다.
먼저, 사출 성형을 위한 금형 틀에 무착자 자석을 장착한다. 무착자는 자력이 없는 상태를 말하고, 자석에 필요한 원료가 배합되어 자석의 상태이나 자력을 주입하지 않아 자력이 없는 상태를 뜻한다. 자석이 무착자이기 때문에, 자화 방향을 고려할 필요 없이 같은 크기의 무착자 자석을 임의로 금형 틀에 장착할 수 있다.
도 5와 도 6은 사출 성형 방식으로 자석 모듈을 제조하기 위해 무착자 자석을 금형 틀에 고정하는 방법을 도시한 것이다.
자석 모듈(10)의 외관 모양에 맞도록 내부가 성형된 적어도 2개의 부품, 즉 제1 틀(210)과 제2 틀(220)로 구성되는 금형 틀 내에 고정 핀(216, 225, 226)이 내부 표면에서 돌출된 상태로 형성되는데, 이는 사출 성형 과정에서 플라스틱과 같은 고온의 액체 수지가제1 틀(210)과 제2 틀(220) 사이 공간으로 높은 압력으로 주입될 때 무착자 자석(130)을 제자리에 고정하기 위한 것이다.
도 5와 도 6에서, 제1 고정 핀(216)은 제1 틀(210)의 내부 표면에서 수직으로 돌출하여 자석(130)을 -Z 방향으로 지지하고, 제2 고정 핀(226)은 제2 틀(220)의 내부 표면에서 수직으로 돌출하여 자석(130)을 +Z 방향으로 지지하고, 제3 고정 핀(225)은 제1 및 제2 틀(210, 220) 중 하나에서 돌출하여 자석(130)을 X 방향, Y 방향 또는 X 방향 성분과 Y 방향 성분의 소정 비율의 조합 방향으로 지지한다.
무착자 자석(130)은 직육면체 형태로, 가장 넓은 면적을 갖는 제1/제2 표면(제1 표면과 제2 표면은 서로 마주 봄)이 XY 평면과 평행한 상태로 프레임(110) 내에 안착된다. 자석 모듈(10)이 도 1 구조의 선형 전동기에 장착될 때, Z 방향으로 자속이 흐르기 때문에, 자석(130)의 제1 표면이 XY 평면과 평행 또는 Z 방향과 수직을 유지할 필요가 있다.
이를 위해, 도 5와 도 6과 같이, Z 방향을 기준으로 제1 및 제2 고정 핀(216, 226)들의 단부가 각각 자석(130)의 제1 표면과 제2 표면에 3개 이상이 접촉하도록 배치되고, XY 평면을 기준으로 복수 개의 제1 고정 핀(216)과 복수 개의 제2 고정 핀(226)의 무게 중심이 각각 자석(130)의 제1 또는 제2 표면의 중심에 배치되도록 하되 자석(130)의 제1 또는 제2 표면에 고르게 배치되도록 하는 것이 유리하다.
또한, 도 6과 같이, XY 평면을 기준으로 제1 고정 핀(216)과 제2 고정 핀(226)의 위치가 일치하지 않도록 배치하되, 제1 또는 제2 평면의 중심을 기준으로 점대칭 또는 제1 또는 제2 평면의 중심을 지나는 직선을 기준으로 선대칭이 되도록 제1 고정 핀(216)과 제2 고정 핀(226)들을 배치할 수 있다.
또한, 도 6과 같이, 자석(130)이 XY 평면을 기준으로 한 변의 길이가 더 긴 직각 사각형이고, 각 자석에 대해 제1 고정 핀(216)과 제2 고정 핀(226)을 각각 3개씩 사용하는 경우, 고정 핀을 빗변의 길이가 밑변의 길이보다 긴 이등변 삼각형 형태로 배치하되 제1 고정 핀(216)과 제2 고정 핀(226) 각각이 이루는 이등변 삼각형이 서로 엇갈리게 배치할 수 있다.
복수 개의 제3 고정 핀(225)은, 도 6과 같이, XY 평면을 기준으로 각 자석(130)의 제1 또는 제2 표면이 이루는 직각 사각형의 각 변 또는 제1 및 제2 표면을 제외한 다른 면에 하나 이상 접하도록 배치될 수 있다.
자석(130)이 직육면체가 아니고, XY 평면의 제1/제2 표면이 평행 사변형인 육면체일 수도 있고, 이 경우에도 도 5와 도 6의 고정 핀과 관련된 실시예는 큰 변형 없이 그대로 적용될 수 있다. 또한, 자석(130)의 평면 형상은, 직사각형이나 평행 사변형에 제한되지 않고, 마름모, 원형, 타원 등도 가능하고,
제1 및 제2 틀(210, 220) 중 하나에 무착자 자석(130)을 장착한 후, 두 틀(210, 220)을 결합한다. 제1 및 제2 틀(210, 220) 중 하나 또는 두 금형 틀의 결합 단면에 프레임(110)과 베이스(120)를 구성할 액체 상태의 수지를 주입할 투입구(미도시)가 마련되고, 또한 금형 틀 안의 공기가 빠져나갈 에어 홀(미도시)이 마련되어 수지가 금형 틀 내부 구석구석까지 스며들도록 한다.
무착자 자석(130)이 고정된 상태로 제1 및 제2 틀(210, 220)을 결합한 후, 금형 틀에 마련된 투입구를 통해 고온 액체 상태의 수지 재료를 주입하여 자석 모듈(10)의 프레임(110)과 베이스(120)를 성형한다.
수지 재료가 식어 고체 상태가 되면, 금형 틀(210, 220)을 분리하여 복수 개의 무착자 자석(130)이 내부에 장착된 자석 모듈(10)을 얻고, 자석 모듈(10)의 불필요한 부분을 제거하고 최종 외형으로 가다듬는다.
이후, 착자기를 이용하여 프레임(110)에 내장된 무착자 자석(130)을 착자한다.
도 7은 자석 모듈 프레임에 포함된 무착자 자석을 착자하는 방법의 한 예를 도시한 것이다.
착자화란 자력이 없는 자석 소재에 유도된 자계를 가하여 자석 소재에 자기적 변화를 주는 과정으로, 얻고자 하는 제품의 자극의 방향, 수 세기 등을 정하여 원하는 만큼 자속을 가하고, 이렇게 착자된 자석을 영구 자석이라고 한다. 착자화 작업은 전류 공급 장치인 제어부와 자계를 유도하는 요크(Yoke)부로 구성되는 착자기로 작업한다.
도 7에서, 프레임(110)에 포함된 각 자석(130)을 Z 방향으로 자극이 생기도록 착자해야 하므로, 말단이 프레임(110)에 포함된 자석(130)에 대응되는 형상을 갖는 자성체 코어(310)를 각 자석(130)의 한쪽 면에 대면하도록 배치하고, 대응하는 자성체 코어(310)에 전기적으로 연결되고 말단이 자석(130)에 대응되는 형상을 갖는 강자성체(330)를 각 자석(130)의 반대 면에 배치하고, 자성체 코어(310)에 코일(320)을 감고 코일(320)에 전류를 인가하여, 자계를 자석(130)에 노출시킨다.
즉, 자성체 코어(310)의 한쪽 말단을 자석(130)의 제1 표면에 평행하게 대면시키고 강자성체(330)를 자석(130)의 제2 표면에 평행하게 대면시키고, 자성체 코어(310), 강자성체(330) 및 자석(130)이 자기 폐회로를 이루도록 하고, 자성체 코어(310)에 감긴 코일(320)에 전류가 흐르게 하여 자속(Flux)이 자기 폐회로에 흐르도록 한다. 자성체 코어(310)의 한쪽 말단에서 자석(130)를 향해 나온 자속(Flux)이 자석(130)을 통과하여 강자성체(330)로 들어가면서, 자석(130)이 착자된다.
이웃하는 두 자성체 코어(310)에서 코일(320)을 감는 방향을 서로 반대로 하여, 예를 들어 제1 자성체 코어(310)에 코일(320)을 시계 방향(CW: Clock-Wise)으로 감고 이웃하는 제2 자성체 코어(310)에 코일(320)을 반시계 방향(CCW: Counter Clock-Wise)로 감아, 프레임(110)에서 이웃하는 두 자석(130)의 자극 방향을 반대로 할 수 있다.
프레임(110)에 포함된 자석(130)의 개수만큼의 자성체 코어(310)를 착자기에 마련하여, 프레임(110)에 포함된 모든 자석(130)을 한 번에 착자할 수 있다.
따라서, 자석 모듈 프레임에 영구 자석의 자극 방향을 일일이 확인하며 조립하는 수고를 덜 수 있고, 자석 모듈 프레임의 개구에 영구 자석을 고정할 때 접착 작업에 의한 불편함과 접착제가 번져 지저분하게 되는 것을 막을 수 있게 된다. 또한, 자석이 외부로 노출되지 않아 자석 표면이 훼손되는 것을 막을 수 있게 된다. 사용 용도에 따라서는 자석 표면 일부 또는 전부를 노출시킬 수도 있다.
도 8은 본 발명의 다른 실시예에 따라 사출 성형 방식으로 제조된 자석 모듈을 도시한 것이고, 도 9는 자석 모듈의 베이스에 삽입된 금속판을 도시한 것으로, 도 8의 자석 모듈(10)은 베이스(120) 내부에 금속판(140)이 삽입되고 자석(130)이 외부에 노출되는 것을 제외하고는 도 2의 자석 모듈(10)과 거의 같다.
자석 모듈(10)이 선형 모터의 진행 방향(도 8에서 X 방향)으로 그 길이가 길고 그 방향으로 프레임(110)을 구성하는 수지와 프레임(110)에 끼워진 자석(130)의 밀도가 다르기 때문에, 사출 성형 후에 Z 방향으로 휨이 발생할 가능성이 있다.
이러한 문제를 해결하기 위해, 본 발명의 다른 실시예에서는, 고정자에 고정되는 베이스(120) 내부에 금속판(140)을 삽입한 채로 자석 모듈(10)을 사출 성형한다. X 방향으로 가장 길고 X 방향과 Z 방향으로 직사각형 평면을 이루고 Y 방향으로 얇은 두께를 이루는 직육면체 형상의 금속판(140)을 베이스(120) 내부에 고정함으로써, 자석 모듈(10)이 휘는 것을 막을 수 있다. 금속판은 X 방향과 Y 방향으로 평행사변형 평면을 이루는 육면체 형상으로 할 수도 있다.
금속판(140)에는, 베이스(120)에 형성된 복수 개의 베이스 홀(121)과 같은 개수와 같은 위치에 복수 개의 금속판 홀(141)이 형성된다. 베이스 홀(121)은, 진행 방향인 X 방향 기준으로, 프레임(110)에서 자석(130)과 자석(130) 사이 프레임(110)을 형성하는 수지가 Y 방향으로 길게 형성되는 위치에 대응하는 베이스(120) 위치에 배치될 수 있는데, 이는 프레임(110)에서 자석(130)이 배치되는 위치가 강도가 가장 약하기 때문이다.
도 10은 사출 성형 방식으로 자석 모듈을 제조하기 위해 무착자 자석과 금속판을 금형 틀에 고정하는 실시예를 도시한 것으로, 도 8에서 YZ 평면을 기준으로 자석 모듈(10)과 금형 틀을 자른 단면이다.
자석 모듈(10)의 외관 모양에 맞도록 내부가 성형된 적어도 2개의 부품, 즉 제1 틀(210)과 제2 틀(220)로 구성되는 금형 틀 내에 제3 고정 핀(225)이 제1 틀(210) 또는 제2 틀(220)의 내부 표면에서 돌출된 상태로 형성된다.
도 8의 자석 모듈(10)은 자석(130)이 외부에 노출되기 때문에, 도 5나 도 6과는 다르게 자석(130)을 Z 방향으로 고정하기 위한 제1 고정 핀(216)이나 제2 고정 핀(226)은 필요하지 않다. 대신 제1 틀(210)과 제2 틀(220)에 자석(130)의 제1/제2 표면에 대응하는 단면을 마련하여 자석(130)을 Z 방향으로 고정한다.
하지만, 도 6을 참조하여, XY 평면을 기준으로 각 자석(130)의 제1 또는 제2 표면이 이루는 직각 사각형의 각 변 또는 제1 및 제2 표면을 제외한 다른 면에 하나 이상 접하도록 복수 개의 제3 고정 핀(225)을 배치하여 자석(130)을 X 방향과 Y 방향으로 고정할 수 있다.
제1 틀(210)과 제2 틀(220)에 자석(130)을 Z 방향으로 고정하는 단면 중에서 적어도 하나 또는 둘 모두에(단면의 중앙에) 수지 수용부(224)를 형성하여, 외부에서 주입되는 수지의 양이 필요 이상으로 많을 때 이를 수용하여 자석 모듈(10)의 형상에 이상이 없도록 할 수 있다. 수지 수용부(224)에 진입한 수지는 프레임(120)을 형성하는 부분과 연결되지 않고 분리되어 자석(130)의 중앙에서 굳기 때문에, 프레임(110)의 일부를 형성하지 않고 제1 틀(210)과 제2 틀(220)을 분리할 때 자석(120)으로부터 떨어진다.
또한, 도 8의 자석 모듈(10)에서는 자석(130)이 외부로 노출되므로, 자석(130)이 프레임(110)으로부터 분리될 가능성이 있다. 이를 막기 위해, 제1 틀(210)과 제2 틀(220)에서 자석(130)의 모서리 또는 가장자리에 대응되는 위치에 함몰부(213, 223)를 마련하면, 이를 통해 사출된 프레임(110)은, 자석(130)의 모서리나 가장자리에서 Z 방향으로 자석(120)에서 멀어지는 방향으로 자석(130)의 표면보다 돌출하고, 또한 XY 방향으로 자석(130)의 모서리나 가장자리에서 자석(130)의 가운데를 향하는 방향으로 돌출하여 자석(130)이 프레임(110)으로부터 이탈하는 것을 막을 수 있다.
한편, 도 8의 자석 모듈(10)의 베이스(120)에 금속판(140)이 내장되기 때문에, 제1 틀(210)과 제2 틀(220)에는 금속판(140)의 위치를 고정하고 베이스(120)에 구멍을 형성하기 위한 부분이 마련된다.
제1 틀(210)과 제2 틀(220)에 각각 Y 방향으로 서로를 향해 돌출하는 돌출부(211, 221)를 X 방향으로 복수 개 마련하여, 베이스(120)에 X 방향으로 복수 개의 베이스 홀(121)을 형성할 수 있다. 제1 틀(210)과 제2 틀(220)의 돌출부(211, 221)의 말단은 서로 닿지 않도록 하는데, 돌출부(211, 221)의 말단이 금속판(140)의 Y 방향으로 위치를 결정할 수 있다.
금속판(140)도 돌출부(211, 221)에 대응하는 위치에 금속판 홀(141)이 형성되어, 볼트를 베이스 홀(121)과 금속판 홀(141)을 통과시켜 자석 모듈(10)을 고정자(또는 이동자)에 고정시킬 수 있다.
제2 틀(220)에는 금속판 지지부(222)가 X 방향으로 복수 개가 서로 이격되어 형성될 수 있는데, 이를 통해 베이스(120) 내부에서 Z 방향으로 금속판(140)의 위치를 결정할 수 있다. 또한, 금속판(140)을 X 방향으로 위치를 결정하기 위해 X 방향으로 양쪽에 지지부가 형성될 수도 있다.
제1 틀(210)에서 베이스(120)에 해당하는 위치에 자석 모듈(10)의 외관을 형성하는 수지를 주입하기 위한 주입부(212)가 형성될 수 있다.
이와 같이 자석 모듈(10)의 베이스(120)에 금속판(140)을 내장시킴으로써 X 방향으로 길이가 긴 자석 모듈(10)이 Z 방향, 즉 자석(130)의 자속이 진행하는 방향으로 휘어지는 것을 막을 수 있다.
또한, 자석(130)을 프레임(120) 외부에 노출시킴으로써, 자석(130)과 전기자 사이 간격을 최소화하여 자속이 외부로 누출되는 것을 최소화할 수 있다.
이상 전술한 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것으로, 당업자라면 이하 첨부된 특허청구범위에 개시된 본 발명의 기술적 사상과 그 기술적 범위 내에서, 다양한 다른 실시예들을 개량, 변경, 대체 또는 부가 등이 가능할 것이다.

Claims (11)

  1. 일직선으로 배치되는 무착자 자석 복수 개를 포함하는 자석 모듈을 사출하는 단계; 및
    상기 사출된 자석 모듈에 장착된 무착자 자석을 착자하는 단계를 포함하여 이루어지는 자석 모듈 제조 방법.
  2. 제1 항에 있어서,
    상기 사출하는 단계는,
    상기 자석 모듈의 외관 모양에 맞도록 내부가 성형된 적어도 2개의 틀로 구성되는 금형 틀에서 상기 자석 모듈의 프레임을 형성하는 제1 부분에 상기 무착자 자석을 장착하는 단계;
    상기 금형 틀 내에 액체 상태의 수지를 주입하는 단계; 및
    상기 수지가 굳으면 상기 금형 틀을 분리하는 단계를 포함하는 것을 특징으로 하는 자석 모듈 제조 방법.
  3. 제2 항에 있어서,
    상기 적어도 2개의 틀에는 상기 무착자 자석을 고정하기 위한 핀이 돌출하는 것을 특징으로 하는 자석 모듈 제조 방법.
  4. 제3 항에 있어서,
    상기 무착자 자석이 착자될 자극 방향에 수직인 제1 면과 제2 면이 가장 넓은 육면체일 때, 상기 육면체의 다른 면 각각에 적어도 하나의 핀이 접촉하도록 상기 핀이 상기 적어도 2개의 틀 중 하나 이상에서 돌출하는 것을 특징으로 하는 자석 모듈 제조 방법.
  5. 제2 항에 있어서,
    상기 사출하는 단계는, 상기 금형 틀 내에 액체 상태의 수지를 주입하는 단계에 앞서, 상기 금형 틀에서 상기 자석 모듈의 베이스를 형성하는 제2 부분에 금속판을 장착하는 단계를 더 포함하는 것을 특징으로 하는 자석 모듈 제조 방법.
  6. 제5 항에 있어서,
    상기 베이스에 베이스 홀을 형성하기 위해 상기 적어도 2개의 틀에서 서로 마주보도록 돌출하는 돌출부들의 말단 사이에 상기 금속판을 끼워 상기 금속판을 상기 금형 틀에 고정하는 것을 특징으로 하는 자석 모듈 제조 방법.
  7. 제1 방향으로 일직선으로 복수 개가 배치되되 제2 방향과 나란한 자극 방향이 상기 제1 방향으로 진행하면서 번갈아 바뀌도록 배치되는 복수 개의 영구 자석; 및
    상기 복수 개의 영구 자석을 고정하도록 사출 성형된 프레임과 복수 개의 베이스 홀이 형성되도록 사출 성형된 베이스를 포함하여 구성되는 자석 모듈.
  8. 제7 항에 있어서,
    상기 베이스 내부에 내장된 금속판을 더 포함하는 것을 특징으로 하는 자석 모듈.
  9. 제8 항에 있어서,
    상기 금속판은, 상기 제1 방향으로 가장 길고 상기 제2 방향으로 다음으로 긴 형상이고, 상기 복수 개의 베이스 홀에 대응하는 위치에 홀이 형성되는 것을 특징으로 하는 자석 모듈.
  10. 제7 항에 있어서,
    상기 베이스 홀은, 상기 제1 방향을 기준으로, 상기 프레임에서 두 영구 자석 사이에 대응하는 위치에 배치되는 것을 특징으로 하는 자석 모듈.
  11. 제7 항에 있어서,
    상기 영구 자석은 상기 프레임 외부에 노출되고, 상기 프레임은, 상기 제2 방향으로 육면체의 영구 자석의 가장자리에 대응하는 위치에서 상기 영구 자석에서 멀어지는 방향으로 상기 영구 자석의 표면보다 돌출하고, 상기 제1 방향과 제2 방향과 수직인 제3 방향 및 상기 제1 방향으로 상기 가장자리에 대응하는 위치에서 상기 영구 자석의 가운데를 향하는 방향으로 돌출하는 것을 특징으로 하는 자석 모듈.
PCT/KR2019/003008 2018-04-16 2019-03-15 자석 모듈 제조 방법 WO2019203448A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/980,251 US11735342B2 (en) 2018-04-16 2019-03-15 Method for manufacturing magnet module
JP2021502676A JP7149406B2 (ja) 2018-04-16 2019-03-15 磁石モジュールの製造方法及び磁石モジュール
EP19789366.2A EP3783632A4 (en) 2018-04-16 2019-03-15 PROCESS FOR MANUFACTURING A MAGNETIC MODULE
CN201980017600.XA CN111819645B (zh) 2018-04-16 2019-03-15 磁铁模块制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180043840 2018-04-16
KR10-2018-0043840 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019203448A1 true WO2019203448A1 (ko) 2019-10-24

Family

ID=68239611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003008 WO2019203448A1 (ko) 2018-04-16 2019-03-15 자석 모듈 제조 방법

Country Status (6)

Country Link
US (1) US11735342B2 (ko)
EP (1) EP3783632A4 (ko)
JP (1) JP7149406B2 (ko)
KR (1) KR102571017B1 (ko)
CN (1) CN111819645B (ko)
WO (1) WO2019203448A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102606696B1 (ko) 2023-03-31 2023-11-29 형성산업(주) 자석모듈 및 그 제조 방법
CN117275870B (zh) * 2023-11-14 2024-03-08 博世汽车部件(苏州)有限公司 适配器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039898A (ja) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp リニアモータ用固定子およびリニアモータ
JP2006042485A (ja) * 2004-07-27 2006-02-09 Mitsubishi Electric Corp リニアモータの永久磁石ユニット及びリニアモータ
KR20100081522A (ko) 2009-01-06 2010-07-15 삼성전자주식회사 애플리케이션 간의 콘텐츠를 이동하는 장치 및 방법
KR20100129947A (ko) 2009-06-02 2010-12-10 엘지이노텍 주식회사 스핀들 모터의 클램핑 장치
KR20110084329A (ko) * 2008-11-18 2011-07-21 히다찌긴조꾸가부시끼가이사 가동자, 전기자 및 리니어모터
JP2012217269A (ja) * 2011-03-31 2012-11-08 Hitachi Appliances Inc 回転子、磁石モータおよび洗濯機
JP2013063011A (ja) * 2011-08-25 2013-04-04 Fanuc Ltd リニアモータ用磁石板の製造方法及びリニアモータ用磁石板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853250B4 (de) 1998-11-18 2012-02-02 Siemens Ag Sekundärteil für einen Linearmotor
JP3537719B2 (ja) 1999-12-07 2004-06-14 株式会社日立ハイテクインスツルメンツ 電子部品供給装置
JP4321033B2 (ja) 2002-10-08 2009-08-26 株式会社安川電機 リニアモータ装置
JP2004350419A (ja) * 2003-05-22 2004-12-09 Yaskawa Electric Corp リニアモータ
JP2006054972A (ja) 2004-08-13 2006-02-23 Shin Etsu Chem Co Ltd 工作機械用リニアモータ
US20090051227A1 (en) * 2006-03-31 2009-02-26 Houng Joong Kim Linear motor
ES2353910T3 (es) * 2007-05-09 2011-03-08 Siemens Aktiengesellschaft Procedimiento para la protección de imanes permanentes.
JP5484861B2 (ja) 2009-01-07 2014-05-07 山洋電気株式会社 リニアモータ
KR101732636B1 (ko) 2010-08-23 2017-05-24 주식회사 코베리 선형 전동기
JP5776275B2 (ja) 2011-03-31 2015-09-09 Tdk株式会社 複合磁石構造体
EP3032724B1 (de) 2014-12-11 2020-05-13 Siemens Aktiengesellschaft Sekundärteil mit Schablone

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039898A (ja) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp リニアモータ用固定子およびリニアモータ
JP2006042485A (ja) * 2004-07-27 2006-02-09 Mitsubishi Electric Corp リニアモータの永久磁石ユニット及びリニアモータ
KR20110084329A (ko) * 2008-11-18 2011-07-21 히다찌긴조꾸가부시끼가이사 가동자, 전기자 및 리니어모터
KR20100081522A (ko) 2009-01-06 2010-07-15 삼성전자주식회사 애플리케이션 간의 콘텐츠를 이동하는 장치 및 방법
KR20100129947A (ko) 2009-06-02 2010-12-10 엘지이노텍 주식회사 스핀들 모터의 클램핑 장치
JP2012217269A (ja) * 2011-03-31 2012-11-08 Hitachi Appliances Inc 回転子、磁石モータおよび洗濯機
JP2013063011A (ja) * 2011-08-25 2013-04-04 Fanuc Ltd リニアモータ用磁石板の製造方法及びリニアモータ用磁石板

Also Published As

Publication number Publication date
US11735342B2 (en) 2023-08-22
US20210035723A1 (en) 2021-02-04
CN111819645A (zh) 2020-10-23
EP3783632A1 (en) 2021-02-24
JP2021517742A (ja) 2021-07-26
JP7149406B2 (ja) 2022-10-06
CN111819645B (zh) 2022-06-28
KR102571017B1 (ko) 2023-08-28
KR20190120699A (ko) 2019-10-24
EP3783632A4 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
WO2019203448A1 (ko) 자석 모듈 제조 방법
US11894728B2 (en) Multi-lens camera system and driving mechanism thereof
US7696651B2 (en) Linear motor
JP3502591B2 (ja) アクチュエータ
US20180076675A1 (en) Armature core, armature, and linear motor
WO2014109499A1 (ko) 코어리스 리니어 모터의 전기자 및 이를 이용한 코어리스 리니어 모터
WO2021020827A1 (ko) 자장 조절 기능을 가진 마그네틱 리프트 장치
TWI713283B (zh) 線性馬達、線性馬達的製造方法
WO2020197138A1 (ko) 모터
CN211530987U (zh) 一种vcm马达的双层底座结构
WO2020230973A1 (ko) 자성유체를 이용한 코어 모듈, 모터 및 자성유체를 이용한 코어 모듈의 제조방법
JP5403007B2 (ja) リニアモータの電機子およびリニアモータ
JP5094740B2 (ja) プラスチック被覆磁極歯を有する電気機械と磁極歯の製造方法
JP3573410B2 (ja) 型吸着装置を備えた型締装置
CN109728667B (zh) 转子结构及具有其的电机
WO2022250214A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2022250216A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2022250217A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2023224296A1 (ko) 마그넷 제조방법, 이를 포함하는 전자부품 및 이의 제조방법
WO2013172583A1 (ko) 음향변환장치용 자속 형성 소자 및 이를 구비하는 음향변환장치
WO2002103885A1 (fr) Moteur lineaire
CN115065214A (zh) 一体式双镜头马达
WO2021029486A1 (ko) 고전도도의 도체바 삽입 및 엔드링 순차 성형 방식을 통한 이종소재 회전자 제작 방법 및 상기 이종소재 회전자 제작을 위한 고압 주조 금형
JPH0262010A (ja) 磁気回路の製造方法及びそれに用いる治具
KR20230116701A (ko) 로터 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019789366

Country of ref document: EP

Effective date: 20201116