WO2019202917A1 - 観測装置、観測方法及びプログラム - Google Patents

観測装置、観測方法及びプログラム Download PDF

Info

Publication number
WO2019202917A1
WO2019202917A1 PCT/JP2019/012401 JP2019012401W WO2019202917A1 WO 2019202917 A1 WO2019202917 A1 WO 2019202917A1 JP 2019012401 W JP2019012401 W JP 2019012401W WO 2019202917 A1 WO2019202917 A1 WO 2019202917A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbomachine
time
occurrence
unstable operation
detecting
Prior art date
Application number
PCT/JP2019/012401
Other languages
English (en)
French (fr)
Inventor
敏雄 西澤
順一 賀澤
浩 後藤田
大晃 小林
優人 林
貴誉 八條
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to CA3097323A priority Critical patent/CA3097323C/en
Priority to EP19788439.8A priority patent/EP3783202A4/en
Priority to US17/046,943 priority patent/US11629653B2/en
Publication of WO2019202917A1 publication Critical patent/WO2019202917A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/14Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to other specific conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/32Arrangement, mounting, or driving, of auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/334Vibration measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/808Strain gauges; Load cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means

Definitions

  • the present invention relates to an observation apparatus, an observation method, and a program applicable to various technical fields such as aircraft, marine or automobile gas turbine engines, power generation gas turbines, and steam turbines.
  • Turbomachines (fans, compressors, turbines) constituting aircraft engines and gas turbines have a function of compressing or expanding a working fluid (working air). Normally, it is composed of a combination of rotating blades and stationary blades, each of which has a large number of blades arranged on the circumference, and compressed by passing the working fluid through an annular channel between these blades. And can be inflated.
  • Turbomachines have been known for a long time to have hydrodynamically unstable operation (surge, stall) and unstable operation (flutter) due to fluid structure coupling. These unstable operations have occurred. In some cases, it may lead to serious accidents such as large engine vibrations, especially turbomachinery, damage to parts including rotor blades, and engine fires (including during flight) due to backflow from the combustor .
  • turbomachinery During the operation of turbomachinery, the above unstable operation often occurs suddenly, and the driver recognizes it for the first time after the occurrence and takes measures such as emergency stop of the engine etc. (including during the flight of the aircraft). The current situation is unavoidable. In general, when operating turbomachinery, the above risk is avoided by a method that controls the stable operation conditions on the design operation line set so that unstable operation is unlikely to occur and avoids the occurrence of unstable operation. is doing.
  • Patent Document 1 discloses that a pressure transducer detects a pressure fluctuation in a combustion chamber of a gas turbine model combustor, outputs the pressure fluctuation signal, and converts the waveform of the output pressure fluctuation signal into a trajectory in a phase space. Then, the translation error is calculated from the trajectory, the occurrence of blow-off is estimated by comparing the translation error with a threshold, the target value of the secondary fuel flow rate is set, and the secondary fuel is brought close to the obtained target value. A technique for controlling the combustion state by controlling the flow rate is described.
  • a detection unit for detecting a physical quantity of a physical phenomenon that changes over time a complex network in which a physical quantity at each detected time is set as a node, and a plurality of nodes are connected by an edge according to a certain condition.
  • An observation device includes a generation unit that generates over time, a calculation unit that calculates a predetermined feature amount (average order) in a complex network, and an estimation unit that estimates a state of a physical phenomenon based on the feature amount Yes.
  • the occurrence of unstable operation of the turbomachine may not be determined by a method using a translation error or an average order as a detection parameter.
  • an object of the present invention is to provide an observation apparatus, an observation method, and a program capable of observing a sign or occurrence of unstable operation of a turbomachine.
  • Another object of the present invention is to provide an observation apparatus, an observation method, and a program capable of observing the unstable operation of a turbomachine with physical quantities measured by as few sensors as possible.
  • Still another object of the present invention is to provide an observation apparatus, an observation method, and a program that can be applied to existing aircraft engines and power generation gas turbines.
  • an observation apparatus includes a detection unit that is disposed in a turbomachine and has one or more sensors that have high time response and observe unsteady fluctuations of the turbomachine.
  • a calculation unit that inputs an output signal from the one or more sensors every moment, accumulates time-series data for a predetermined period, and calculates parameters for detecting unstable operation of the turbomachine in real time;
  • a determination unit that compares a parameter for detecting unstable operation with a predetermined threshold value and outputs a determination result of the sign or occurrence of the unstable operation in real time;
  • a parameter for detecting unstable operation is included in time-series data obtained from output signals of one or more sensors that are arranged in a turbo machine and that have high time response and observe unsteady fluctuations. It is possible to calculate in real time a detection parameter applying an observation method based on complex systems science, and to determine a sign of an unstable operation (flutter, surge, stall) or a change immediately after the occurrence. That is, the present invention pays attention to the fact that fluctuations and vibrations that occur when an unstable operation (flutter, surge, stall) occurs in a turbomachine is a phenomenon that includes its own periodicity. The process of development is judged early by quantitatively evaluating the change in regressivity.
  • the observation device is preferably configured to output a signal for changing an operation condition to the operation control device of the turbomachine and / or the operation control device when the predictor or occurrence determination result of the unstable operation is output by the determination unit. It has a control part which outputs the signal for issuing a warning to the operation operation of a turbo machine.
  • a method for calculating the detection parameter it is effective to use a method for calculating the detection parameter using indices such as sample entropy, sample entropy taking into consideration multi-scale property, recurrence plot, and permutation entropy. .
  • the one or more sensors may be arranged on a rotating part, a stationary part, a flow path, or a wall surface in contact with the flow path of the turbomachine.
  • the observation apparatus may include two or more systems of the detection unit, the calculation unit, and the determination unit, or may include two or more types of the detection unit, the calculation unit, and the determination unit. Good.
  • one or more sensors for observing unsteady fluctuations in the turbomachine are attached to the turbomachine with high time response, and output signals from the one or more sensors are sometimes received. Input every moment, accumulate time series data for a predetermined period, calculate the parameter for detecting unstable operation of the turbomachine in real time, compare the parameter for detecting the unstable operation with a predetermined threshold, Output in real time the signs of unstable operation or determination of occurrence.
  • a program according to an embodiment of the present invention is arranged in a turbomachine, and inputs an output signal from one or more sensors that have high time responsiveness and observes unsteady fluctuations of the turbomachine from time to time. And calculating a parameter for detecting the unstable operation of the turbomachine in real time, comparing the parameter for detecting the unstable operation with a predetermined threshold, and And causing the computer to execute a step of outputting the determination result of occurrence in real time.
  • flutter which is one of the unstable operations, causes the vibration of the blade to remain at a small amplitude or to attenuate immediately in a normal operating state. This is a phenomenon in which the amplitude abruptly amplifies due to the coupling with the external force to be received, and there is a risk of breakage when the strength limit of the blade is exceeded.
  • the blades rotary blades and stationary blades
  • the blades arranged in a ring in the turbomachine vibrate at their natural frequencies, but have a substantially constant phase difference (including 0 degrees) with the adjacent blades.
  • the characteristic is that the vibration phase is amplified while being transmitted in the circumferential direction.
  • Flutter is likely to occur near the stable operation limit on the low flow rate side (high load side) in the compressor, and is likely to occur near the stable operation limit on the high flow rate side (high flow rate side) in the turbine.
  • Stall is a state in which the working fluid passing between the rotor blades and stationary blades cannot perform normal compression or expansion. Normally, the boundary layer flow along the wing surface is separated, resulting in a large energy loss, which does not result in the compression and expansion as designed. This is a phenomenon of hydrodynamically unstable operation not necessarily accompanied by blade vibration. Stalls are more likely to occur during the compression process of the compressor, and more likely to occur near the stable operating limit on the side with a lower flow rate (high load side). The feature is that the state of the flow around the blades is not the same (or not in the same phase) for all the blades in the circumferential direction, and varies periodically with a phase difference between adjacent blades.
  • phase of the flow fluctuation is transmitted in the circumferential direction and is transmitted in the rotational direction of the rotor blade at a speed slower than the rotational speed.
  • the fluctuation amplitude of the flow is amplified at the beginning of the occurrence of the stall, but usually reaches a limit cycle when reaching a certain amplitude.
  • Surge is characterized by the fact that the entire flow field passing through the turbomachine begins to fluctuate greatly in the axial direction, resulting in a large fluctuation in the flow rate of the turbomachine itself.
  • the fluctuation frequency is also characterized by being smaller (slower) than the flutter or stall frequency.
  • the present invention by observing a sensor signal, it becomes possible to determine in real time a sign that an unstable operation occurs and a change after the occurrence, so that the unstable operation can be avoided immediately after the sign is detected. It is possible to safely stop the operation before the occurrence of a serious situation after the occurrence is detected.
  • positioning of the time series data in case D 1 in sample entropy. It is a graph which shows the example of arrangement
  • positioning of the time series data in case D 2 in sample entropy. It is explanatory drawing of the method of obtaining the coarse-grained time series data in consideration of multi-scale property.
  • It is a graph which shows the result of having calculated using the distortion fluctuation of the blade of a turbomachine in the sample entropy which considered multi-scale property. It is a graph which shows an example of the time series data of the pressure fluctuation for demonstrating a recurrence plot. It is a graph which shows the example which embedded the time series data shown in FIG. 8 in the phase space. It is a graph which shows each point in phase space. It is the graph which recurrent-plotted the correlation of each point in the phase space shown in FIG. It is a graph which shows the relationship between each flow volume in this embodiment, and DET of a recurrence plot. It is a related figure of the recurrent plot in flow volume q 6kg / s.
  • FIG. 1 is a block diagram showing an observation apparatus according to an embodiment of the present invention.
  • the observation apparatus 1 includes a detection unit 10, a calculation unit 20, a determination unit 30, and a control unit 40.
  • the detection unit 10 is disposed in the turbo machine 2 and has one or more sensors that have high time response and observe unsteady fluctuations of the turbo machine 2.
  • the detection unit 10 includes a sensor 11 attached to a blade 2a that is a rotating unit of the turbo machine 2, a sensor 12 attached to a wall surface 2b as a stationary portion facing the tip of the blade 2a, and the like.
  • the sensor of such a detection part 10 may be arrange
  • the sensor 11 is composed of, for example, a strain gauge that detects the strain of the blade in real time
  • the sensor 12 is composed of, for example, an unsteady pressure sensor that detects the pressure of the fluid in real time.
  • these sensors 11, 12 are included. Is for observing flutter which is one of unstable operations.
  • the sensor 12 may be disposed in the flow path or on a wall surface in contact with the flow path. In order to observe an unstable operation such as a stall or surge, a sensor may be similarly arranged.
  • the calculation unit 20 inputs output signals from the sensor 11 and the sensor 12 every moment, accumulates time series data for a predetermined period, and quantitatively evaluates changes in randomness and regression from the time series data, Parameters for detecting unstable operation of the turbo machine 2 are calculated in real time. For example, the calculation unit 20 inputs an output signal from the sensor 11 every moment, accumulates time-series data for a predetermined period, and calculates parameters for detecting flutter in real time.
  • ⁇ Determining unit 30 compares a parameter for detecting unstable operation with a predetermined threshold value, and outputs an indication of occurrence of unstable operation or a result of occurrence in real time.
  • the control unit 40 outputs a signal for changing the operation condition to the operation control device 3 of the turbo machine 2 when the determination unit 30 outputs a sign of unstable operation or a determination result of occurrence. Further, the control unit 40 outputs a signal for issuing a warning to the operation operation of the turbo machine 2 to the notification unit 4 when the determination unit 30 outputs a sign of unstable operation or a determination result of occurrence.
  • the operation control device 3 receives the signal for changing the operation condition
  • the operation control device 3 controls the turbo machine 2 so as to stop the operation of the turbo machine 2, for example.
  • the notification unit 4 receives a warning signal, for example, in the case of an aircraft, the notification unit 4 transmits an alarm signal to be manually controlled to a pilot or a driver.
  • a method for calculating the detection parameter in the arithmetic unit 20 it is effective to use a method for calculating the detection parameter using indices such as sample entropy, sample entropy taking into consideration multi-scale property, recurrence plot, and permutation entropy. It is. Hereinafter, a method for calculating a detection parameter using these indices will be described.
  • Sample entropy taking multi-scale into consideration is an index using sample entropy after coarse-graining time-series data. Specifically, the time series data x (t i ) is time-averaged by the following non-overlapping average to obtain new time series data y (t j ) as shown in FIG.
  • sample entropy S E is calculated by substituting the new time series data into the definition formula.
  • sample entropy that takes multi-scale into consideration it is possible to know the influence of different time scales by coarse-graining.
  • the calculation is performed using the strain variation ⁇ in the circumferential direction of the blade 2a detected from the sensor 11 as x.
  • An example is shown in FIG.
  • the recurrence plot is an index visualizing the correlation between points in the phase space. For example, first, the time series of pressure fluctuation shown in FIG. 8 is embedded in the phase space as shown in FIG. Next, the correlation of each point in the phase space shown in FIG. 10 is calculated by the following equation and plotted as shown in FIG. here,
  • an index DET representing determinism is calculated by the following equation.
  • snake side function
  • threshold of distance between position vectors
  • N p Total number of data points in phase space
  • Delay time (determined from mutual information in this embodiment)
  • P (l) a frequency distribution function with diagonal lines of length l.
  • Stc0, Stc1, and Stc2 are strain gauge channel names that detect the strain of the blade 2a in real time.
  • Permutation entropy is an index that quantitatively evaluates the randomness of time-series data.
  • the time series data shown in FIG. 17 is classified into predetermined permutation patterns as shown in FIG. 18, and the existence probability p of each permutation pattern is obtained as shown in FIG.
  • permutation entropy h p is obtained by the following calculation.
  • FIG. 20 shows the processing results in Stc0 to Stc8.
  • Stc0 to Stc8 are channel names of strain gauges that detect the strain of the blade 2a in real time. From E and F of FIG. 20, the permutation entropy decreases because the periodicity of the waveform increases as q increases. By detecting this, it can be seen that the occurrence of flutter can be captured.
  • Fig. 21 shows the time variation of permutation entropy.
  • FIG. 21G shows that permutation entropy h p ⁇ 0.85 to 0.7 at t ⁇ 8.2 s before ⁇ rms suddenly increases. From H in FIG. 21, it can be seen that the permutation entropy h p ⁇ 0.85 to 0.45 rapidly decreases at t ⁇ 10 s when ⁇ rms increases rapidly.
  • the observation apparatus 100 may include two or more systems of the detection unit 10, the calculation unit 20, and the determination unit 30.
  • reliability can be improved by changing the observation of unstable operation to a redundant system.
  • the observation apparatus 100 may include two or more types of detection units 10a to 10d, calculation units 20a to 20d, and determination units 30a to 30d. Thereby, the kind of unstable operation which can be detected simultaneously can be increased, and reliability can be improved.
  • the type of unstable operation that occurs can be determined.
  • the calculation unit, determination unit, and control unit according to the present invention can be executed by a computer, and the calculation unit, determination unit, and control unit may be grasped as a program that can be executed by the computer.
  • the present invention can be applied to aircraft and marine gas turbine engines to improve safety during operation.
  • it can be applied to power generation gas turbines, steam turbines, and power generation wind turbines to monitor operational stability during operation and improve the reliability of power supply.

Abstract

【課題】ターボ機械の不安定作動の予兆又は発生を観測すること。 【解決手段】観測装置1は、ターボ機械2に配置され、時間応答性が高くターボ機械2の非定常変動を観測する1又は2以上のセンサ11、12を有する検出部10と、1又は2以上のセンサ11、12から出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、不安定作動を検知するパラメータをリアルタイムに算出する演算部20と、不安定作動を検知するパラメータを所定の閾値と比較し、不安定作動の予兆又は発生の判定結果をリアルタイムに出力する判定部30とを有する。

Description

観測装置、観測方法及びプログラム
 本発明は、航空機、船舶用又は自動車用ガスタービンエンジンや発電用ガスタービン、蒸気タービンなどの様々な技術分野に適用可能な観測装置、観測方法及びプログラムに関する。
 航空機用エンジンやガスタービンを構成するターボ機械(ファン、圧縮機、タービン)は作動流体(作動空気)を圧縮または膨張させる機能を有している。通常は、多数の翼が円周上に配置された回転翼と静止翼を交互に組み合わせた構成となっており、これらの翼の間の環状の流路に作動流体を通過させることにより、圧縮や膨張をさせることができる。 
 ターボ機械には、流体力学的な不安定作動(サージ、ストール)や流体構造連成による不安定作動(フラッタ)が発生することが古くから知られているが、これらの不安定作動が発生した場合、ターボ機械を中心とするエンジンの大きな振動や回転翼を含む部品の損傷、さらには、燃焼器からの逆流によるエンジン火災(航空機の飛行中を含む)などの重大な事故につながる場合がある。
 ターボ機械の運転時には、前記の不安定作動が突発的に発生する場合が多く、運転者は発生後に初めてそれを認知し、エンジン等の緊急停止(航空機の飛行中を含む)などの措置を取らざるを得ないのが現状である。 
 一般にターボ機械の運転時には、不安定作動が発生しにくいように設定された設計作動線上の安定作動条件に限定して運転し、不安定作動の発生を回避制御する手法により、前記のリスクを回避している。
 設計段階では、不安定作動による損傷を回避するため、翼の厚みや幅などを最適形状より増やしたり、圧縮性能や膨張性能をやや低くめに抑えたりする安全設計とすることにより、安全性を高める手法がとられている。 
 航空エンジンやガスタービンの高出力化および高効率化の要求を満足するため、ターボ機械(ファン、圧縮機、タービン)の翼として、長大(大口径)で薄型(低抵抗)の翼形状を用いることが必要となってきており、前記の安全設計や運転制御だけでは制約が厳しくなっている。 
 最近では、ターボ機械の不安定作動がいつどのような条件で発生するかについて、基礎実験や数値解析の応用により、設計段階での予測を可能にすべく基礎研究がなされているが、厳密な発生条件は解明できていない。
 例えば、運転中に取得した時系列データから位相空間上でアトラクタを描き、その並進誤差を演算することにより、燃焼器の不安定作動(吹き消え等)の発生をリアルタイムに観測および制御する手法について、基礎研究が進められている。 
 遠心圧縮機の不安定作動についても、同様なパラメータで観測および制御を試みる基礎研究が行われている(以上、非特許文献1~8を参照のこと)。
 また、特許文献1には、ガスタービンモデル燃焼器の燃焼室内の圧力変動を圧力トランスデューサが検出し、圧力変動信号として出力し、出力された圧力変動信号の波形を、位相空間上の軌道に変換し、軌道から並進誤差を演算し、並進誤差を閾値と比較することで吹き消えの発生を推定し、2次燃料流量の目標値を設定し、得られた目標値に近づけるように2次燃料流量を制御することで、燃焼状態を制御する技術が記載されている。 
 特許文献2には、時間的に変化する物理現象の物理量を検出する検出部と、検出した各時刻の物理量をノードとして設定し、複数のノードを一定の条件にしたがってエッジにより接続した複雑ネットワークを経時的に生成する生成部と、複雑ネットワークにおける所定の特徴量(平均次数)を求める演算部と、特徴量に基づいて物理現象の状態を推定する推定部とを備えた観測装置が記載されている。
 しかし、ターボ機械の不安定作動の発生について、検出パラメータとして並進誤差や平均次数を用いる方法では判定できない場合がある、と考えられる。
特開2013-238365号公報 特開2016-173211号公報
第49期定時社員総会および年会講演会講演集、(一社)日本航空宇宙学会、2018.4.19発行予定、「サポートベクトルマシンを用いた低圧タービン部における翼列フラッタの検知」、八條貴誉、小林大晃、林優人、後藤田浩、西澤敏雄、賀澤順一. 第47回燃焼シンポジウム講演論文集、日本燃焼学会、2009.12.2、希薄予混合ガスタービン燃焼の圧力変動の非線形時系列解析、後藤田浩、 宮野尚哉、 立花繁. 関西支部講演会講演論文集、No.1120、日本機械学会、2013.3、希薄予混合ガスタービンモデル燃焼器で発生する振動燃焼の検知手法の開発:力学系理論の導入、小林 将紀, 浮田 遼, 篠田 雄太, 奥野 佑太, 後藤田 浩, 立花 繁. 日本燃焼学会誌、第57巻181号、日本燃焼学会、2015.8、力学系理論を用いた燃焼不安定の非線形特性の解明と工学的応用、後藤田浩. 日本燃焼学会誌、第57巻181号、日本燃焼学会、2015.8、ガスタービンエンジンの燃焼不安定に関する研究、立花繁. Proceedings of the International Gas Turbine Congress 2003 Tokyo, TS-038、日本ガスタービン学会、2003.11.2、Prediction and Active Control of Surge Inception of a Centrifugal Compressor、Naoto HAGINO, Kazufumi UDA and Yasushige KASHIWABARA. Journal of Fluid Engineering, Transaction of the ASME, Vol.9, 米国機械学会、2007.6、Observation of Centrifugal Compressor Stall and Surge in Phase Portraits of Pressure Time Traces at Impeller and Diffuser Wall、Chunwei GU, Kazuo YAMAGUCHI, Toshio NAGASHIMA, Hirotaka HIGASHIMORI. RTO AVT Symposium on "Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles(RTO MP-051)、2000.5.8、PERSPECTIVES of PHASE-PORTRAITS in the DETECTION of COMPRESSOR INSTABILITIES - INCEPTION of STALL、M. D'ISCHIA, F.A.E. BREUGELMANS.
 以上のような事情に鑑み、本発明の目的は、ターボ機械の不安定作動の予兆又は発生を観測することができる観測装置、観測方法及びプログラムを提供することにある。
 本発明の別の目的は、できる限り少ない数のセンサで計測された物理量により、ターボ機械の不安定作動を観測することができる観測装置、観測方法及びプログラムを提供することにある。
 本発明の更に別の目的は、既存の航空機エンジンや発電用ガスタービンへ適用することができる観測装置、観測方法及びプログラムを提供することにある。
 上記目的を達成するため、本発明の一形態に係る観測装置は、ターボ機械に配置され、時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサを有する検出部と、前記1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出する演算部と、前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力する判定部とを具備する。
 本発明では、ターボ機械に配置され、時間応答性が高く非定常変動を観測する1又は2以上のセンサの出力信号から取得する時系列データに、不安定作動を検知するパラメータ、典型的には複雑系科学に基づく観測手法を適用した検知パラメータの演算をリアルタイムに行い、不安定作動(フラッタ、サージ、ストール)が発生する予兆又は発生直後の変化を判定することが可能となる。すなわち、本発明は、ターボ機械に発生する不安定作動(フラッタ、サージ、ストール)の発生時に生じる変動や振動が、独自の周期性を含む現象であることに着目し、時系列データから乱雑さと回帰性の変化を定量的に評価することにより、発生の過程を早期に判定する。本発明に係る観測装置は、好ましくは、前記判定部により前記不安定作動の予兆又は発生の判定結果が出力されたとき、前記ターボ機械の運転制御装置に作動条件を変更する信号及び/又は前記ターボ機械の運転操作に対して警告を発するための信号を出力する制御部を有する。
 ここで、前記の検知パラメータの算出法として、サンプルエントロピー、マルチスケール性を考慮に入れたサンプルエントロピー、リカレンスプロット、順列エントロピーという指標を用いて検知パラメータを算出する手法を用いることが有効である。
 前記1又は2以上のセンサは、前記ターボ機械の回転部、静止部、流路中又は流路に接する壁面に配置されていてもよい。
 本発明に係る観測装置は、前記検出部、前記演算部及び前記判定部を2系統以上有していてもよく、前記検出部、前記演算部及び前記判定部を2種類以上有していてもよい。
 本発明の一形態に係る観測方法は、ターボ機械に時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサを取り付け、前記1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出し、前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力する。
 本発明の一形態に係るプログラムは、ターボ機械に配置され、時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出するステップと、前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力するステップとをコンピュータに実行させる。
 ここで、不安定作動の一つであるフラッタは、正常な稼動状態では翼の振動は微小な振幅のままであったり、直ぐに減衰したりするのに対し、翼自体の固有振動数と流体から受ける外力とが連成することにより、振幅が急激に増幅し、翼の強度限界を超えると破損に至る危険のある現象である。フラッタ発生時には、ターボ機械において環状に配置された翼(回転翼、静止翼)はそれぞれ固有振動数で振動しつつ、隣接翼とほぼ一定の位相差(0度を含む)を持っており、翼振動の位相が円周方向に伝わりながら増幅するのが特徴である。翼取り付け部などによる構造的な減衰などを十分大きくできれば、フラッタの発生を防ぐことができる。一定の振幅で増幅が止まったリミットサイクルに至る場合もあるが、長時間の振動により翼が疲労破壊する危険性があるので、安全性の問題は解決されない。フラッタは、圧縮機では流量の少ない側(高負荷側)の安定作動限界付近で発生しやすく、タービンでは流量の多い側(高流量側)の安定作動限界付近で発生しやすい。
 ストールは、回転翼や静止翼の間を通過する作動流体が正常な圧縮や膨張が出来なくなる状態である。通常は、翼面に沿う境界層の流れが剥離し、大きなエネルギー損失を生じるようになり、このため設計通りの圧縮や膨張とならなくなる。翼の振動を必ずしも伴わない流体力学的な不安定作動の現象である。ストールは、圧縮機の圧縮過程のほうがより発生しやすく、流量の少ない側(高負荷側)の安定作動限界付近で発生しやすい。その特徴は、翼周辺の流れの状態は円周方向の全翼で同じでなく(あるいは同位相ではなく)、隣接翼との間に位相差を持った状態で周期的に変動する。流れの変動の位相が円周方向に伝わり、回転翼の回転方向に回転速度より遅い速度で伝わるのが特徴である。流れの変動振幅は、ストールの発生初期には増幅するが、一定の振幅に達するとリミットサイクルに至るのが通常である。
 サージは、ターボ機械を通過する流れ場全体が軸方向に大きく変動し始め、ターボ機械の流量そのものの大変動に至るのが特徴である。また、その変動周波数は、フラッタやストールの周波数に比べて小さい(遅い)のも特徴である。サージの発生時に、翼部のフラッタや流れのストールを同時または事前に併発したという報告もあるが、必ずしも併発するわけではなく、どういう条件で併発するかは解明されていない。
 ターボ機械に不安定作動現象が発生すると、大きな翼振動や流れ変動を伴うことになるが、その変動はいずれも一定の周期性を有しており、フラッタとストールでは環状方向に位相が伝播しつつ一定の時間後には元の状態に回帰するという特徴がある。正常作動時の翼振動や流れ変動は振幅が非常に小さいものであるが、それぞれはランダムな変動であり、一定の周期性や回帰性は見られない。このため、高応答の変動センサから得られる時系列データについて、ランダムか規則的かを明確に表す指標を演算することによって、不安定作動の予兆や発生を直ちに判定することが可能となる。
 本発明により、センサ信号の観測を行うことにより、不安定作動が発生する予兆や発生後の変化をリアルタイムに判別することができるようになるため、予兆を検知後直ちに不安定作動を回避したり、発生を検知後に重大な事態に至る前に安全に運転停止したりすることが可能となる。
 事前に発生条件が判明していない想定外の不安定作動が発生した場合にも検知が可能となるため、航空エンジンやガスタービンの安全性や信頼性を向上させる。
 必要以上に翼形状の厚みや幅を増やした安全設計を行うことが不要となるため、航空エンジンやガスタービンの高出力化や高効率化を更に進めることが可能となり、燃料にかかるコスト削減に資する効果は大きい。
 必要なセンサ信号は極少数に限られるため、既存の航空機エンジンや発電用ガスタービンに、追加的に装備することが容易である。そのため新製品に限らず広く普及させることが可能である。
 必要なセンサ信号は極少数に限られるため、少し増やすだけで冗長系を構築することができるので、観測装置の信頼性を高めることが容易である。
本発明の一実施形態に係る観測装置を示すブロック図である。 本発明の一実施形態に係るセンサがターボ機械に配置された例を示す概略図である。 サンプルエントロピーを説明するための時系列データの配置例を示すグラフである。 サンプルエントロピーにおいてD=1の場合の時系列データの配置例を示すグラである。 サンプルエントロピーにおいてD=2の場合の時系列データの配置例を示すグラである。 マルチスケール性を考慮に入れた粗視化した時系列データを得る方法の説明図である。 マルチスケール性を考慮に入れたサンプルエントロピーにおいてターボ機械の羽根のひずみ変動を用いて演算を行った結果を示すグラフである。 リカレンスプロットを説明するための圧力変動の時系列データの一例を示すグラフである。 図8に示す時系列データを位相空間に埋め込んだ例を示すグラフである。 位相空間内の各点を示すグラフである。 図10に示す位相空間内の各点の相関関係をリカレントプロットしたグラフである。 本実施形態における各流量とリカレンスプロットのDETとの関係を示すグラフである。 流量q=6kg/sにおけるリカレントプロットの関係図である。 流量q=8.5kg/sにおけるリカレントプロットの関係図である。 流量q=9.5kg/sにおけるリカレントプロットの関係図である。 本実施形態における各流量とリカレンスプロットのDETとの関係からフラッタを把握するための説明図である。 順列エントロピーを説明するための時系列データの一例を示すグラフである。 図17に示す時系列データを順列パターンに分類した図である。 図18に示す順列パターンの存在確率を示すグラフである。 順列エントロピーによりフラッタを把握するための説明図である。 順列エントロピーの時間的変化の一例を示すグラフである。 本発明の他の実施形態に係る観測装置を示すブロック図である。 本発明の更に別の実施形態に係る観測装置を示すブロック図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 <観測装置の構成>
 図1は、本発明の一実施形態に係る観測装置を示すブロック図である。
 図1に示すように観測装置1は、検出部10と、演算部20と、判定部30と、制御部40とを有する。
 検出部10は、ターボ機械2に配置され、時間応答性が高くターボ機械2の非定常変動を観測する1又は2以上のセンサを有する。
 検出部10は、図2に示すように、ターボ機械2の回転部である羽根2aに取り付けられたセンサ11や羽根2aの先端と対面する静止部としての壁面2bに取り付けられたセンサ12等を有する。このような検出部10のセンサは、流路中や流路に接する壁面に配置されていてもよい。 
 センサ11は、例えば羽根のひずみをリアルタイムに検出するひずみゲージからなり、センサ12は、例えば流体の圧力をリアルタイムに検出する非定常圧力センサからなり、この実施形態においては、これらのセンサ11、12は、不安定作動の一つであるフラッタを観測するためのものである。センサ12は例えば流路中や流路に接する壁面に配置してもよい。不安定作動であるストールやサージを観測するためには、同様にセンサを配置すればよい。
 演算部20は、センサ11やセンサ12から出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、時系列データから乱雑さと回帰性の変化を定量的に評価することにより、ターボ機械2の不安定作動を検知するパラメータをリアルタイムに算出する。
例えば、演算部20は、センサ11から出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、フラッタを検知するパラメータをリアルタイムに算出する。
 判定部30は、不安定作動を検知するパラメータを所定の閾値と比較し、不安定作動の予兆又は発生の判定結果をリアルタイムに出力する。
 制御部40は、判定部30により不安定作動の予兆又は発生の判定結果が出力されたとき、ターボ機械2の運転制御装置3に作動条件を変更する信号を出力する。また、制御部40は、判定部30により不安定作動の予兆又は発生の判定結果が出力されたとき、報知部4にターボ機械2の運転操作に対して警告を発するための信号を出力する。 
 運転制御装置3は、作動条件を変更する信号を受けると、例えばターボ機械2の運転を停止するようにターボ機械2を制御する。 
 報知部4は、警告に係る信号を受けると、例えば航空機の場合であれば、パイロットや運転操作員に手動制御を行うべきアラーム信号を発信する。
 ここで、演算部20における検知パラメータの算出法として、サンプルエントロピー、マルチスケール性を考慮に入れたサンプルエントロピー、リカレンスプロット、順列エントロピーという指標を用いて検知パラメータを算出する手法を用いることが有効である。以下、これらの指標を用いて検知パラメータを算出する手法を説明する。
 (サンプルエントロピー)
 サンプルエントロピーとは、時系列データの乱雑さを定量評価した指標である。具体的には、時系列データ{x(t)},i=1,2,・・・,NをDとD+1次元の位相空間に埋め込み、D次元で近傍であった点がD+1次元においても近傍である条件付確率を負の自然対数で定義する。
 サンプルエントロピーS
Figure JPOXMLDOC01-appb-I000001
 ここで、
Figure JPOXMLDOC01-appb-I000002
 そして、例えば図3に示すように、X(ti)を中心とするD次元立方体内にX(tj)が存在する場合には、Θ(・)=1とし、X(ti)を中心とするD次元立方体内にX(tj)が存在しない場合には、Θ(・)=0とする。
 ここで、例えば図4に示すように、D=1で◇点を基準とした場合、△点2点、▽点2点をカウントする。
 図5に示すように、D=2で◇点を基準とした場合、△点2点のみカウントする。▽点は次元を拡張することにより、D次元立方体の外に移動したため、D=2においてはカウントしない。
 同様な手順を時系列データの全離散点で行いサンプルエントロピーSを計算する。
 この実施形態では、閾値rは標準偏差の0.15倍とし、D=2とした。閾値を適宜設定することでターボ機械2の不安定作動現象の予兆や発生を捉えることが可能である。
 (マルチスケール性を考慮に入れたサンプルエントロピー)
 マルチスケール性を考慮に入れたサンプルエントロピーとは、時系列データを粗視化してサンプルエントロピーを用いた指標である。具体的には、下記の非重複平均によって時系列データx(t)の時間平均をとり、図6に示すような新たな時系列データy(t)を得る。
Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 そして、この新たな時系列データを前記の定義式に代入することよりサンプルエントロピーSを算出する。
 マルチスケール性を考慮に入れたサンプルエントロピーにおいては、粗視化することにより異なる時間スケールの影響を知ることが可能である。
 
 この実施形態では、xとして、センサ11から検出される羽根2aの周方向のひずみ変動εを用いて演算を行った。その例を図7に示す。
 図7のAに示すように、流量q=9.0kg/sにおいてS=15以降の低周波領域でSが減少している。S(=15)×(2次の固有振動数)はサンプリング周波数とほぼ一致し、2次の固有振動数の周波数特性を捉えている。従って、これを検出することでフラッタの予兆を捉えることが可能である。
 また、q=9.5kg/sにおいてSが全領域で低くなっている。従って、これを検出することでフラッタの発生を捉えることが可能である。
 (リカレンスプロット)
 リカレンスプロットとは、位相空間内の各点間の相関関係を視覚化した指標である。例えば、まず、図8に示す圧力変動の時系列を図9に示すように位相空間に埋め込んでいく。次に、図10に示す位相空間内の各点の相関関係を下記の式による演算を行い図11のようにプロットする。
 ここで、
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
リカレンスプロットにおいて、決定論性を表す指標DETは以下の式により算出される。
Figure JPOXMLDOC01-appb-I000007
 以上の式において、
Θ:ヘビサイド関数
ε:位置ベクトル間の距離の閾値
Np :位相空間内の総データ点数
D:位相空間の次元(本実施形態ではD = 5とする)
τ:遅れ時間(本実施形態では相互情報量より求める)
l:斜線の長さ
lmin:斜線と定義する最小長さ
P(l):長さlの斜線の度数分布関数
である。
 各流量におけるリカレンスプロット関係を図12~図15に示す。
 図13と図14とを比較すると、図14に示すq=8.5kg/sの場合の方が図13に示すq=6kg/sの場合に比べて回帰点が増加していることがわかる。また、図15に示すq=9.5kg/sの場合にはフラッタ発生に伴い強い周期性が見られる。従って、リカレントプロットによって、フラッタの予兆および発生を捉えることが可能であることがわかる。
 図16において、フラッタが発達しているStc0、Stc1、Stc2の結果を解析する。Stc0、Stc1、Stc2は羽根2aのひずみをリアルタイムに検出するひずみゲージのチャンネル名である。
 図16のCに示すように、フラッタ発生以前のq=8.5kg/sにおいて前記の指標DETが増加する。このような僅かなDETの増加を検出することでフラッタの予兆を検出することが可能である。また、この後のqの増加に伴い、波形の周期性が増加するためDETも増加している(図16のD)。これを検出することで、フラッタの発生を捉えることが可能である。
 (順列エントロピー)
 順列エントロピーとは、時系列データの乱雑さを定量評価する指標である。図17に示す時系列データを図18に示すように所定の順列パターンに分類し、図19に示すように各順列パターンの存在確率pを求める。pをシャノンの情報エントロピーに適用し、順列エントロピーを算出する。一般的に、シャノンの情報エントロピーは、事象の確率変数の離散確率分布pを用いて次式で表される。このとき、N=D!となる。
Figure JPOXMLDOC01-appb-I000008
 ここで、最大エントロピー(=logD!)により順列エントロピーを正規化する。つまり、順列エントロピーhは以下の演算で求める。
Figure JPOXMLDOC01-appb-I000009
 ここで、順列エントロピーhは1に近いほど乱雑で、0に近いほど周期性を有することとなる。
 Stc0~Stc8での処理結果を図20に示す。Stc0~Stc8とは、それぞれ羽根2aのひずみをリアルタイムに検出するひずみゲージのチャンネル名である。図20のE及びFから、qの増加に伴い波形の周期性が増加するため順列エントロピーは減少している。これを検出することで、フラッタの発生を捉えることが可能であることがわかる。
 図21に順列エントロピーの時間変化を示す。
図21において、
 Q:空気流量の時間変化
 ε:ひずみ変動の時間変化
 εrms:ひずみ変動の二乗平均平方根の時間変化
 である。
 図21のGから、εrmsが急激に増加する以前のt≒8.2sにおいて順列エントロピーh≒0.85~0.7に減少していることがわかる。図21のHから、εrmsが急激に増加するt≒10sにおいて順列エントロピーh≒0.85~0.45に急激に減少していることがわかる。
 よって、εrmsではフラッタの予兆および発生を捉えることが難しいが,順列エントロピーの変化を検知することで、フラッタの予兆および発生を捉えることが可能であることがわかる。
 <その他>
 本発明は、上記の実施形態に限定されず、本発明の技術思想の範囲において様々に変形して或いは応用して実施することが可能である。そのような実施の範囲も本発明の技術的範囲に属する。
 例えば、図22に示すように、観測装置100が、検出部10、演算部20及び判定部30を2系統以上有していてもよい。このように不安定作動の観測を冗長系に変更することで、信頼性を向上させることができる。
 また、図23に示すように、観測装置100が、検出部10a~10d、演算部20a~20d及び判定部30a~30dを2種類以上有していてもよい。これにより、同時に検知可能な不安定作動の種類を増やし、信頼性を向上させることができる。
 更に、2種類以上のセンサ、演算部及び判定部を用い、これをターボ機械における適切な円周方向の位置や軸方向の位置に取り付けることにより、発生する不安定作動の種類を判定できる。
 本発明に係る演算部、判定部及び制御部はコンピュータにより実行可能であり、これら演算部、判定部及び制御部をコンピュータにより実行可能なプログラムとして把握してもよい。
 本発明は、航空機用、船舶用のガスタービンエンジンに適用し、運航中の安全性を向上することができる。また、発電用ガスタービン、蒸気タービン、発電用風車に適用し、運転中の作動安定性を監視し、電力供給の信頼性向上をはかることができる。
1   :観測装置
2   :ターボ機械
2a  :羽根
2b  :壁面
3   :運転制御装置
4   :報知部
10  :検出部
11、12  :センサ
20  :演算部
30  :判定部
40  :制御部
100 :観測装置

Claims (8)

  1.  ターボ機械に配置され、時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサを有する検出部と、
     前記1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出する演算部と、
     前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力する判定部と
     を具備する観測装置。
  2.  請求項1に記載の観測装置であって、
     前記判定部により前記不安定作動の予兆又は発生の判定結果が出力されたとき、前記ターボ機械の運転制御装置に作動条件を変更する信号及び/又は前記ターボ機械の運転操作に対して警告を発するための信号を出力する制御部
     を更に具備する観測装置。
  3.  請求項1又は2に記載の観測装置であって、
     前記演算部は、前記不安定作動を検知するパラメータを、前記時系列データから乱雑さと回帰性の変化を定量的に評価することにより算出する
     観測装置。
  4.  請求項1~3のうちいずれか1項に記載の観測装置であって、
     前記1又は2以上のセンサは、前記ターボ機械の回転部、静止部、流路中又は流路に接する壁面に配置されている
     観測装置。
  5.  請求項1~4のうちいずれか1項に記載の観測装置であって、
     前記検出部、前記演算部及び前記判定部を2系統以上有する観測装置。
  6.  請求項1~4のうちいずれか1項に記載の観測装置であって、
     前記検出部、前記演算部及び前記判定部を2種類以上有する観測装置。
  7.  ターボ機械に時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサを取り付け、
     前記1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出し、
     前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力する
     を具備する観測方法。
  8.  ターボ機械に配置され、時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出するステップと、
     前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力するステップと
     をコンピュータに実行させるプログラム。
PCT/JP2019/012401 2018-04-17 2019-03-25 観測装置、観測方法及びプログラム WO2019202917A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3097323A CA3097323C (en) 2018-04-17 2019-03-25 Observation apparatus, observation method, and program
EP19788439.8A EP3783202A4 (en) 2018-04-17 2019-03-25 Observation device, observation method, and program
US17/046,943 US11629653B2 (en) 2018-04-17 2019-03-25 Observation apparatus, observation method, and non-transitory computer readable medium storing a program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018079096A JP7140323B2 (ja) 2018-04-17 2018-04-17 観測装置、観測方法及びプログラム
JP2018-079096 2018-04-17

Publications (1)

Publication Number Publication Date
WO2019202917A1 true WO2019202917A1 (ja) 2019-10-24

Family

ID=68239516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012401 WO2019202917A1 (ja) 2018-04-17 2019-03-25 観測装置、観測方法及びプログラム

Country Status (5)

Country Link
US (1) US11629653B2 (ja)
EP (1) EP3783202A4 (ja)
JP (1) JP7140323B2 (ja)
CA (1) CA3097323C (ja)
WO (1) WO2019202917A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3751360A1 (en) * 2019-06-11 2020-12-16 Siemens Gamesa Renewable Energy A/S Method for computer-implemented determination of a drag coefficient of a wind turbine
FR3099526B1 (fr) * 2019-07-29 2021-08-20 Airbus Procédé et système de contrôle de régime de ralenti et de prélèvement de puissance produite par un moteur d’aéronef.
JP7406382B2 (ja) 2020-01-16 2023-12-27 三菱重工業株式会社 予兆検知装置及び予兆検知方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507056A (ja) * 2001-10-23 2005-03-10 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー ターボ機械のサージング限界またはブレード損傷の警告
JP2007309250A (ja) * 2006-05-19 2007-11-29 Ihi Corp ストール予兆検知装置及び方法、並びにエンジン制御システム
JP2008014679A (ja) * 2006-07-03 2008-01-24 Ritsumeikan 設備診断方法、設備診断システム及びコンピュータプログラム
JP2013238365A (ja) 2012-05-16 2013-11-28 Ritsumeikan 観測装置及び観測方法
JP2016173211A (ja) 2015-03-17 2016-09-29 学校法人立命館 観測装置及び観測方法
WO2017142707A1 (en) * 2016-02-15 2017-08-24 General Electric Company Systems and methods for predicting an anomaly in a combustor
JP2018080621A (ja) * 2016-11-15 2018-05-24 大阪瓦斯株式会社 ガスタービンの異常状態検知装置、及び異常状態検知方法
JP2018197543A (ja) * 2017-03-30 2018-12-13 ゼネラル・エレクトリック・カンパニイ 圧縮機の異常を予測するためのシステムおよび方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364582A (ja) * 2001-06-11 2002-12-18 Ishikawajima Harima Heavy Ind Co Ltd 軸流圧縮機におけるストール予知方法
JP4973252B2 (ja) 2007-03-13 2012-07-11 株式会社Ihi ストール予兆検知方法及びエンジン制御システム
US9528913B2 (en) * 2014-07-24 2016-12-27 General Electric Company Method and systems for detection of compressor surge
RU2016112469A (ru) * 2016-04-01 2017-10-04 Фишер-Роузмаунт Системз, Инк. Способы и устройство для обнаружения и предотвращения помпажа компрессора
US10352825B2 (en) * 2017-05-11 2019-07-16 General Electric Company Systems and methods related to detecting blowout occurrences in gas turbines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507056A (ja) * 2001-10-23 2005-03-10 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー ターボ機械のサージング限界またはブレード損傷の警告
JP2007309250A (ja) * 2006-05-19 2007-11-29 Ihi Corp ストール予兆検知装置及び方法、並びにエンジン制御システム
JP2008014679A (ja) * 2006-07-03 2008-01-24 Ritsumeikan 設備診断方法、設備診断システム及びコンピュータプログラム
JP2013238365A (ja) 2012-05-16 2013-11-28 Ritsumeikan 観測装置及び観測方法
JP2016173211A (ja) 2015-03-17 2016-09-29 学校法人立命館 観測装置及び観測方法
WO2017142707A1 (en) * 2016-02-15 2017-08-24 General Electric Company Systems and methods for predicting an anomaly in a combustor
JP2018080621A (ja) * 2016-11-15 2018-05-24 大阪瓦斯株式会社 ガスタービンの異常状態検知装置、及び異常状態検知方法
JP2018197543A (ja) * 2017-03-30 2018-12-13 ゼネラル・エレクトリック・カンパニイ 圧縮機の異常を予測するためのシステムおよび方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHUNWEI GUKAZUO YAMAGUCHITOSHIO NAGASHIMAHIROTAKA HIGASHIMORI: "Journal of Fluid Engineering, Transaction of the ASME", vol. 9, June 2007, THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS, article "Observation of Centrifugal Compressor Stall and Surge in Phase Portraits of Pressure Time Traces at Impeller and Diffuser Wall"
HIROSHI GOTODATAKAYA MIYANOSHIGERU TACHIBANA: "Proceedings of the 47th Symposium (Japanese) on Combustion", 2 December 2009, THE COMBUSTION INSTITUTE, article "Nonlinear time series analysis on pressure fluctuations in a lean premixed gas turbine combustor"
M. D'ISCHIAF.A.E. BREUGELMANS: "PERSPECTIVES of PHASE-PORTRAITS in the DETECTION of COMPRESSOR INSTABILITIES-INCEPTION of STALL", RTO AVT SYMPOSIUM ON ''ACTIVE CONTROL TECHNOLOGY FOR ENHANCED PERFORMANCE OPERATIONAL CAPABILITIES OF MILITARY AIRCRAFT, LAND VEHICLES AND SEA VEHICLES (RTO MP-051, 8 May 2000 (2000-05-08)
MASAKI KOBAYASHIRYO UKITAYUTA SHINODAYUTA OKUNOHIROSHI GOTODASHIGERU TACHIBANA: "Proceedings of Conference of Kansai Branch", March 2013, THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, article "Early detection of thermoacoustic combustion oscillations in a laboratory-scale premixed gas-turbine model combustor using dynamical system theory"
NAOTO HAGINOKAZUFUMI UDAYASUSHIGE KASHIWABARA: "Proceedings of the International Gas Turbine Congress 2003 Tokyo, TS-038", 2 November 2003, GAS TURBINE SOCIETY OF JAPAN, article "Prediction and Active Control of Surge Inception of a Centrifugal Compressor"
SHIGERU TACHIBANA: "Journal of the Combustion Society of Japan", vol. 57, August 2015, THE COMBUSTION INSTITUTE, article "Nonlinear Properties of Combustion Instability Based on Dynamical Systems Theory"
TAKAYOSHI HACHIJOHIROAKI KOBAYASHIYUTO HAYASHIHIROSHI GOTODATOSHIO NISHIZAWAJUNICHI KAZAWA: "Proceedings of the 49th JSASS Annual Meeting", 19 April 2018, THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, article "Detection of Cascade Flutter in Low Pressure Turbine using a Support Vector Machine"

Also Published As

Publication number Publication date
EP3783202A4 (en) 2021-12-29
JP2019183810A (ja) 2019-10-24
CA3097323C (en) 2023-09-26
JP7140323B2 (ja) 2022-09-21
US20210164406A1 (en) 2021-06-03
EP3783202A1 (en) 2021-02-24
CA3097323A1 (en) 2019-10-24
US11629653B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2019202917A1 (ja) 観測装置、観測方法及びプログラム
EP0654163B1 (en) Process and device for monitoring vibrational excitation of an axial compressor
JP5898865B2 (ja) エアフォイルの健全性を監視するシステム及び方法
JP5879055B2 (ja) エアフォイルの健全性を監視するシステム及び方法
JP6081057B2 (ja) 圧縮機の健全性を監視するための方法及びシステム
JP4174031B2 (ja) ターボ機械のサージング限界またはブレード損傷の警告
US11378488B2 (en) System and method for optimizing passive control strategies of oscillatory instabilities in turbulent systems using finite-time Lyapunov exponents
Beselt et al. Influence of the clearance size on rotating instability in an axial compressor stator
JP2019183810A5 (ja)
Zhang et al. Aero-Engine Surge Fault Diagnosis Using Deep Neural Network.
Kulkarni et al. Vibratory response characterization of a radial turbine wheel for automotive turbocharger application
Zhao et al. Experimental investigation of transient characteristics of mild surge and diffuser rotating stall in a centrifugal compressor with vaned diffuser
Dong et al. Further investigation on acoustic stall-warning approach in compressors
Rolfes et al. Investigation of performance and rotor tip flow field in a low speed research compressor with circumferential groove casing treatment at varying tip clearance
JP4523826B2 (ja) ガスタービン監視装置及びガスタービン監視システム
Cao et al. Transition from Unsteady Flow Inception to Rotating Stall and Surge in a Transonic Compressor
CN114458611B (zh) 一种基于压气机出口压力的失速与喘振机载识别方法
Margalida et al. Detailed pressure measurements during the transition to rotating stall in an axial compressor: influence of the throttling process
Kang et al. Rig Testing of the Operability of a Transonic Compressor Blade of an Industrial Gas Turbine
Albeesh Stall Predication in Jet Compressor Blades Using Autocorrelation and ESD Model
KR100543674B1 (ko) 회전하는 파의 에너지를 이용한 압축기 선회 실속 경고 장치 및 방법
Chana Combined Blade Vibration and Surge/Stall Sensor for Gas Turbine Blade Health Management
Kumar et al. Identification and classification of operating flow regimes and prediction of stall in a contra-rotating axial fan using machine learning
Jaiswal et al. Inlet Distortion Studies on a Centrifugal Compressor
Babu et al. Detection of Incipient Stall in the Axial Compressor of a Gas Turbine Engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3097323

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019788439

Country of ref document: EP

Effective date: 20201117