WO2019202834A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2019202834A1
WO2019202834A1 PCT/JP2019/005495 JP2019005495W WO2019202834A1 WO 2019202834 A1 WO2019202834 A1 WO 2019202834A1 JP 2019005495 W JP2019005495 W JP 2019005495W WO 2019202834 A1 WO2019202834 A1 WO 2019202834A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driver
control device
timing
initial braking
Prior art date
Application number
PCT/JP2019/005495
Other languages
English (en)
French (fr)
Inventor
亮介 清水
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112019001368.8T priority Critical patent/DE112019001368T5/de
Priority to US17/047,146 priority patent/US20210162967A1/en
Priority to CN201980020704.6A priority patent/CN111971211B/zh
Priority to JP2020513990A priority patent/JP6980100B2/ja
Publication of WO2019202834A1 publication Critical patent/WO2019202834A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/58Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to speed and another condition or to plural speed conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/32Vehicle surroundings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/02Vehicle mass

Definitions

  • the present invention relates to a vehicle control device, and more particularly to a vehicle control device that is mounted on a small-sized, medium-sized truck or bus and suppresses collision damage.
  • Patent Document 1 discloses a vehicle control device mounted on a passenger car.
  • the vehicle control device according to Patent Document 1 calculates the distance and relative speed between the obstacle ahead of the host vehicle and the host vehicle based on the image captured by the stereo camera, and the short distance is difficult for the driver to avoid. In this case, collision damage is avoided or reduced by operating the automatic brake.
  • small or medium trucks application of the above-described vehicle control device used for passenger cars to small and medium trucks or buses (hereinafter referred to as small or medium trucks) is considered, but small or medium trucks have a weight that is smaller than that of passenger cars. Therefore, if control is performed using a hydraulic brake similar to that of a passenger car, there is a problem that a sufficient deceleration amount cannot be secured for avoiding or reducing collision damage.
  • Hydraulic brakes used for small and medium trucks have a larger wheel cylinder diameter and slower brake boosting speed than hydraulic brakes used for passenger cars.
  • a small or medium truck or the like increases in weight compared with a passenger car, it is difficult to obtain a sufficient amount of deceleration, and there is a problem that the braking distance is more than double that of a passenger car.
  • the distance that is the condition for the intervention of automatic braking.
  • the driver's brake operation timing will be earlier and the driver will feel uncomfortable. End up.
  • there is a concern about the impact on the load target of small or medium trucks due to the occurrence of automatic braking for example, damage to the cargo if the load target is cargo, fall of the passenger if the load target is passenger).
  • the automatic brake device may be invalidated by a switch operation or the like, and collision damage may not be reduced or avoided.
  • the present invention has been made to solve such a technical problem, and provides a vehicle control device capable of reducing a sense of incongruity to a driver and an influence on a load target and suppressing collision damage.
  • the purpose is to do.
  • a vehicle control device of the present invention that solves the above-mentioned problems is a vehicle control device that performs deceleration control of the vehicle based on the distance and relative speed between the vehicle and an obstacle ahead of the vehicle, A control unit configured to perform initial braking and main braking in order, and the control unit controls the timing of the initial braking based on the estimated weight of the vehicle including the weight to be loaded without changing the timing of the main braking; It is characterized by doing.
  • the present invention it is possible to reduce the uncomfortable feeling to the driver and the influence on the loading target and to suppress the collision damage.
  • the block diagram which shows the structure of the vehicle provided with the vehicle control apparatus of embodiment.
  • the flowchart which shows the control processing of the control apparatus for vehicles.
  • the flowchart which shows acquisition of the brake operation timing of a driver.
  • the schematic diagram which shows an example of a driving
  • the flowchart which shows the production
  • the flowchart which shows acquisition of initial braking maximum deceleration.
  • the flowchart which shows the modification of acquisition of initial braking maximum deceleration.
  • FIG. 1 is a block diagram illustrating a configuration of a vehicle including the vehicle control device of the embodiment.
  • the vehicle control device 100 of the present embodiment is mounted on a vehicle 1 (hereinafter may be referred to as a host vehicle), and performs travel control including deceleration control of the vehicle 1.
  • a stereo camera 200, a brake control unit 300, an engine control unit 400, and a meter control unit 700 are connected to the vehicle control device 100 by communication (for example, CAN (Car-Area-Network)).
  • CAN Car-Area-Network
  • the vehicle control device 100 is configured as a microcomputer (hereinafter abbreviated as a microcomputer) including a CPU, ROM, RAM, and the like, and includes a control unit 101, a calculation unit 102, and a storage unit 103.
  • the control unit 101 realizes avoidance or reduction of collision damage by controlling a brake or the like, and sequentially performs initial braking and main braking on the vehicle 1.
  • the calculation unit 102 performs each calculation related to the control of the vehicle 1.
  • storage part 103 consists of non-volatile memories, and memorize
  • the vehicle control device 100 stops the operation of the microcomputer when the ignition voltage of the vehicle 1 is reduced, and starts the microcomputer when the ignition voltage of the vehicle 1 becomes equal to or higher than the activation voltage threshold value. I do. For this reason, the control process is not operated in a state where the ignition voltage is lowered, that is, in an engine stop state.
  • the stereo camera 200 is composed of a pair of left and right cameras using a solid-state imaging device such as a charge coupled device (CCD).
  • CCD charge coupled device
  • the stereo camera 200 is attached near the ceiling of the passenger compartment, captures images of roads and obstacles in front of the vehicle, and transmits the captured stereo image data to the vehicle control device 100 via the CAN.
  • the calculation unit 102 acquires parallax information from the stereo image, and the vehicle and the vehicle based on the acquired parallax information. The distance to the obstacle ahead of the vehicle is calculated, and the relative speed is calculated by differentiating the calculated distance according to the elapsed time. In addition, the calculation unit 102 calculates the lateral position of the captured obstacle with respect to the own vehicle, and further calculates the lateral speed by differentiating the lateral position according to the elapsed time.
  • the vehicle control device 100 performs pattern matching on the image data of the obstacle imaged by the stereo camera 200 and classifies the obstacle data into a pedestrian, a bicycle, a vehicle, and other stopping obstacles.
  • the brake control unit 300 generates friction with the wheel by generating pressure on the brake 600, brake pedal 610, disc brake, and drum brake connected thereto, and decelerates the vehicle 1.
  • the brake control unit 300 is connected to a wheel speed sensor 620, a front / rear G sensor 630, a yaw rate sensor 640, and a steering angle sensor 650, and measures the vehicle speed and the like.
  • Engine control unit 400 is connected to engine 500 and accelerator pedal 510, respectively, and controls the output of engine 500.
  • the controlled output transmits power to the wheel of the vehicle 1 through a transmission, a propeller shaft, and the like, thereby accelerating the vehicle 1.
  • the engine control unit 400 not only accelerates the vehicle 1 but also decelerates the vehicle 1 by generating an engine brake.
  • the meter control unit 700 is connected to the display device 710 and the buzzer 720, respectively, and performs notification, warning, etc. through the driver's vision and hearing.
  • control process of the vehicle control device 100 will be described with reference to FIG.
  • the control process described in the flowchart of FIG. 2 is repeatedly executed at a predetermined cycle (for example, 10 ms cycle).
  • step S101 the vehicle control apparatus 100 acquires each data from the stereo camera 200, the brake control unit 300, and the engine control unit 400, and performs conversion so that it can be used in subsequent processing.
  • step S102 the vehicle control device 100 acquires the brake operation timing of the driver.
  • the control process performed in step S102 is specifically the content shown in the flowchart of FIG.
  • the vehicle control device 100 determines whether or not the brake pedal 610 has started to be depressed based on the information transmitted from the brake control unit 300, i.e., depresses the brake pedal 610. It is judged whether it is in a stepped state from a stepless state. If it is determined that the step has started, the control process proceeds to S102b. On the other hand, if it is determined not to start stepping, the control process proceeds to step S102e.
  • this step S102a it is set so that it is not determined to be stepped when it is stepped again within 10 seconds after it is determined to be stepped once. In this way, it is possible to prevent erroneous determination at the start of stepping caused by a driving operation such as a pumping brake or a driving operation that temporarily loosens braking.
  • step S102b the vehicle control device 100 determines whether there is an obstacle on the traveling path of the own vehicle. Specifically, the vehicle control apparatus 100 acquires the yaw rate detected by the yaw rate sensor 640, the steering angle detected by the steering angle sensor 650, and the host vehicle speed detected by the wheel speed sensor 620. Next, the vehicle control device 100 creates a two-dimensional plane overlooking the host vehicle as shown in FIG. 4 using the shape of the roadway outer line imaged by the stereo camera 200, and the host vehicle in the two-dimensional plane is displayed. The estimated travel area 20 is estimated. Then, the calculation unit 102 calculates the distance and lateral position for each obstacle based on the data of the obstacle such as the preceding vehicle 30 and the pedestrian 40 captured by the stereo camera 200. The vehicle control device 100 determines whether a target obstacle exists in the planned travel area 20 based on the information calculated by the calculation unit 102.
  • the pedestrian 40 does not exist in the scheduled traveling area 20, but the preceding vehicle 30 exists in the scheduled traveling area 20, so that the vehicle control device 100 has an obstacle on its own traveling path. Judge that there is.
  • the vehicle control device 100 determines that there is no obstacle on the own vehicle traveling path.
  • the control process proceeds to step S102c.
  • the control process proceeds to step S102e.
  • step S102c the vehicle control device 100 determines whether or not to store the driver's brake operation information.
  • the brake operation information is stored only when all of the following five conditions are satisfied.
  • the first condition is that the distance between the vehicle and the nearest obstacle is 10m or more among the obstacles on the own vehicle traveling path. Therefore, for example, an obstacle enters the vicinity of the host vehicle, and information on the brake operation for the interruption is not stored. That is, only when the brake is applied stably is set as a storage target.
  • the second condition is that the stop line is not imaged by the stereo camera 200 between the vehicle and the nearest obstacle. This is for the purpose of distinguishing from braking with respect to the stop line.
  • the third condition is that the vehicle travels at a speed of 20 km / h or higher. Therefore, there is no problem even if there is no characteristic at low speed, so it is not stored.
  • the fourth condition is that the driver does not step on the accelerator pedal 510. This is because when an operation such as simultaneous depression of the accelerator pedal 510 and the brake pedal 601 is stored, a brake operation timing described later cannot be correctly estimated, and thus such an operation is excluded.
  • the fifth condition is that the road surface gradient is estimated based on the value detected by the front / rear G sensor 630 and the vehicle acceleration obtained from the time differential value of the vehicle speed, and the estimated ascending or descending gradient is 5 degrees or more, respectively. It is not. This is to prevent the correct brake operation timing from being estimated because the brake operation timing can be changed on a slope road.
  • step S102c If it is determined in step S102c that the brake operation information is stored, the control process proceeds to step S102d. On the other hand, if it is determined not to store, the control process proceeds to step S102e.
  • step S102d the vehicle control device 100 transmits a control signal to the storage unit 103 so as to store the following brake operation information.
  • Information stored in the storage unit 103 includes the distance to the nearest obstacle among the obstacles on the own vehicle traveling path, the relative speed with the nearest obstacle, and the type of the nearest obstacle (for example, pedestrian, vehicle, Bicycles, arbitrary solid objects, etc.), own vehicle speed, road surface gradient, road surface curvature, estimated weight of own vehicle, illuminance detected by stereo camera (eg night, noon), weather detected by stereo camera (eg rainy weather, snow) , Sunny).
  • stereo camera eg night, noon
  • weather detected by stereo camera eg rainy weather, snow
  • Sunny when the weather is fine, it means that the traveling road is a dry road.
  • the storage unit 103 has a storage area sufficient for estimating the brake operation timing of the driver, for example, an area for storing data for 250 times, and performs storage in a FIFO (first-in first-out) system.
  • the storage unit 103 is composed of a non-volatile memory and is initialized as no storage information when the vehicle 1 is manufactured, and the brake operation information stored after the manufacture is also turned off when the ignition of the vehicle 1 is turned off.
  • the brake information stored immediately after the engine is started can be prepared. Further, it is preferable that the storage unit 103 holds the stored brake operation information even after the power of the vehicle 1 is stopped, and does not store the brake operation information when the power of the vehicle 1 is stopped. is there.
  • step S102e the vehicle control device 100 determines whether or not the number of driver brake operation information stored in the storage unit 103 is greater than or equal to a sufficient number of times.
  • the sufficient number of times here is the number of times sufficient to estimate the brake operation timing of the driver, for example, 50 times or more. If it is determined that the number is sufficient, the control process proceeds to step S102f. On the other hand, if it is determined that the number is not sufficient, the control process proceeds to step S102g.
  • step S102f the control unit 101 estimates the brake operation timing of the driver based on the brake operation information stored in the storage unit 103.
  • the brake operation timing of the driver is estimated as a table value corresponding to the relative speed.
  • the table value is estimated according to the flowchart of FIG. Specifically, the brake operation timing estimation information is classified for each relative speed of 10 km / h, and the average distance when the brake operation is performed in each relative speed range is taken to estimate the driver's brake operation timing. Done.
  • the control unit 101 sets a timing later than the estimated brake operation timing as the initial braking timing. In FIG. 5, the brake operation timing of the driver is indicated by “BrkDist”.
  • step S102g the control unit 101 sets the brake operation timing of the driver to a standard value.
  • the standard value corresponds to “predetermined brake operation timing” described in the claims, and is, for example, a relative speed of the host vehicle and the obstacle ⁇ 5 seconds.
  • the vehicle control device 100 acquires the driver's arousal level.
  • the driver's arousal level is a parameter for estimation as an index for determining how much the driver can concentrate on driving or not falling asleep.
  • the driver's awakening level is estimated by the control unit 101 by detecting the following driving operation of the driver.
  • the direction of the own vehicle is periodically tilted to the left and right, the change in the amount of depression of the accelerator pedal is small, and the time when the shift change is not performed is a fixed time.
  • the steering angle vibration is detected, the steering torque is weak, and the frequency of sudden braking is high.
  • the driver's awakening level is set to a parameter that decreases according to the number of driving operations detected by the driver.
  • the amount of change and the threshold of time are set according to the vehicle, and weights are set for each condition to reflect the degree of arousal.
  • the condition when the steering torque is low is weight 3, and the degree of arousal is ⁇ 3 when the steering torque is low.
  • the condition that the fixed time elapses without the shift change is set to weight 1, and the awakening degree is set to -1 when the fixed time elapses without the shift change.
  • step S104 the vehicle control device 100 acquires the initial braking maximum deceleration.
  • the control process performed in step S104 is, for example, the content shown in the flowchart of FIG.
  • the vehicle control device 100 makes an initialization determination.
  • the initialization determination is made based on whether one of the following conditions is satisfied. That is, the vehicle speed is not 0 within 2 seconds after detecting the release of the seat belt, the vehicle speed is not 0 within 2 seconds after detecting the opening of the door switch including the rear gate, etc. That is, when the vehicle and the traffic light are not detected and the brake pedal is not depressed, the stop time elapses over a certain period, and the weight of the load target increases by 10 kg or more in 5 seconds. Examples of stopping in a situation where the preceding vehicle and the traffic light are not detected and the brake pedal is not depressed include, for example, stopping at a neutral range and a parking brake.
  • step S104b the control unit 101 sets the initial braking maximum deceleration to 0.2G.
  • step S104c the calculation unit 102 calculates the current acceleration absolute value of the vehicle.
  • step S104d the vehicle control device 100 compares the current acceleration absolute value of the host vehicle with the initial braking maximum deceleration of the previous cycle. When the initial braking maximum deceleration of the previous cycle is smaller than the current acceleration absolute value of the host vehicle, the control unit 101 sets the current acceleration absolute value of the host vehicle as the initial braking maximum deceleration of the current cycle. (Step S104e).
  • the driver is accelerating 0.2 G or more by driving operation, it can be judged that there is no problem even if an impact of 0.2 G or more is given to the load target, and only the acceleration generated by the deceleration can be obtained.
  • the maximum deceleration can be increased faster than the judgment, and safety is increased.
  • the acceleration detected by the wheel speed derivative of the own vehicle deviates from the acceleration estimated from the braking force of the own vehicle or the output of the power unit, the ratio of the weight to be used for the condition is given. This can be estimated.
  • a sensor for detecting the weight of the load target may be separately provided.
  • control unit 101 performs driver operation when acquiring the initial braking maximum deceleration, for example, focusing on a change in the weight of the load target and the change in the weight of the load target is within a predetermined range.
  • the maximum absolute acceleration / deceleration value that is sometimes generated may be used as the initial braking maximum deceleration.
  • the calculation unit 102 calculates the estimated weight of the host vehicle.
  • the estimated weight of the host vehicle is a total value of the weight of the vehicle and the weight of the load target.
  • the loading object refers to luggage or passengers.
  • the estimated weight of the host vehicle is obtained based on the engine torque, the transmission reduction ratio, the estimated value of running resistance, the tire moving radius, and the acceleration of the host vehicle.
  • the estimated weight of the host vehicle can be obtained by Expression (1).
  • Estimated vehicle weight engine torque x reduction ratio / acceleration / tire radius ... (1)
  • the estimated value of running resistance is the sum of the rolling resistance obtained from the vehicle speed and vehicle shape (air resistance characteristics) and the tire width, the slope resistance obtained from the road surface gradient, and the cornering resistance obtained from the occurrence of lateral acceleration. Can be calculated.
  • step S106 the calculation unit 102 calculates a basic value of the control working distance.
  • the calculation of the basic value of the control working distance is performed based on a table value prepared in advance from the relative speed.
  • the table value is set by performing a correction to increase the distance when the relative speed is large with a relative speed ⁇ TTC (Time To Collision) as a basic value. Since the basic value of the control working distance includes the basic value of the initial braking working distance and the basic value of the main braking working distance, the basic value of the initial braking working distance and the basic value of the main braking working distance are respectively calculated.
  • step S107 the calculation unit 102 calculates the actual braking deceleration amount.
  • the actual braking deceleration amount is calculated based on the formula (2) from the estimated weight of the host vehicle calculated in step S105.
  • Vehicle acceleration [m / ss] braking force [N] ⁇ Estimated weight of own vehicle [kg]
  • This braking deceleration amount [m / s] vehicle acceleration [m / ss] ⁇ time [s] (2)
  • Equation (2) Since the braking force of Equation (2) is determined by the braking performance of the vehicle 1, a constant is set as a control parameter for the mounted vehicle. Further, the time is set as a control parameter of the mounted vehicle by setting the time until collision avoidance as a threshold value.
  • step S108 the vehicle control device 100 determines an initial braking deceleration.
  • the vehicle control device 100 compares the initial braking maximum deceleration obtained in step S104 with the initial braking deceleration lower limit value, selects the one where deceleration more strongly occurs, and determines it as the initial braking deceleration.
  • the initial braking deceleration lower limit here is a deceleration that is so strong that the driver can perceive the occurrence of deceleration, but affects the load target (for example, damage to the cargo or causing the passenger to fall)
  • a constant such as 0.2G is set as the deceleration without worry.
  • step S109 the vehicle control device 100 determines an initial braking start inter-vehicle distance.
  • the control process performed in step S109 has the contents shown in the flowchart of FIG. 7, for example.
  • the calculation unit 102 gives the current relative speed to the brake operation timing information, which is table value information corresponding to the relative speed calculated in step S102.
  • the driver brake start distance corresponding to the driver brake operation timing is calculated.
  • the calculation unit 102 calculates an initial braking deceleration amount by subtracting the actual braking deceleration amount from the relative speed.
  • step S109b the calculation unit 102 calculates the initial braking operation time by dividing the initial braking deceleration amount by the initial braking deceleration.
  • step S109c the calculation unit 102 calculates the initial braking travel distance by multiplying the initial braking operation time by the value obtained by subtracting the initial braking deceleration amount from twice the relative speed and dividing by two.
  • step S109d the calculation unit 102 calculates the initial braking operation safety distance as a distance that allows collision avoidance when the brake is applied by adding the initial braking traveling distance and the main braking operation distance.
  • step S109e the vehicle control device 100 compares the initial braking operation safety distance and the driver brake start distance. If it is determined that the initial braking operation safety distance is smaller than the driver brake start distance, the control process proceeds to step S109f, and the initial braking operation basic distance and the initial braking operation safety distance are compared.
  • the control unit 101 sets the initial braking operation distance as the initial braking operation basic distance (step S109g).
  • the control unit 101 sets the initial braking operation distance as the initial braking operation safety distance (step S109h).
  • step S109e If it is determined in step S109e that the initial braking operation safety distance is equal to or greater than the driver brake start distance, the control process proceeds to step S109i, where the initial braking operation basic distance and the driver brake start distance are compared. .
  • the control unit 101 sets the initial braking operation distance as the driver brake start distance (step S109j).
  • the control unit 101 sets the initial braking operation distance as the initial braking operation basic distance (step S109k).
  • the initial braking is performed earlier than the driver's normal braking operation, so the start of the initial braking is less uncomfortable for the driver. It can be timing.
  • the minimum warning and damage-reducing brake The operation can be performed.
  • the vehicle control device 100 determines the initial braking operation distance obtained in the flowchart of FIG. 7 as the initial braking start inter-vehicle distance (that is, initial braking operation timing).
  • step S110 of the flowchart shown in FIG. 2 the vehicle control device 100 determines control deceleration.
  • the control process performed in step S110 has the contents shown in the flowchart of FIG. 8, for example.
  • the vehicle control device 100 compares the current inter-vehicle distance and the actual braking operation distance. When the current inter-vehicle distance is smaller than the actual braking operation distance, the vehicle control device 100 determines that the actual braking should be operated, and obtains the control deceleration by dividing the braking force by the estimated weight of the own vehicle. Control is performed at the maximum deceleration generated as a vehicle (step S110b).
  • step S110a if the current inter-vehicle distance is greater than or equal to the actual braking operation distance in step S110a, the control process proceeds to step S110c, and the current inter-vehicle distance is compared with the initial braking start inter-vehicle distance.
  • the vehicle control device 100 sets the control deceleration to the initial braking deceleration, thereby performing brake control with a deceleration amount that does not damage the load target. This is performed (step S110d).
  • the vehicle control device 100 When the current inter-vehicle distance is equal to or greater than the initial braking start inter-vehicle distance, the vehicle control device 100 does not require deceleration control and sets the control deceleration to zero so that control is not performed (step S110e). .
  • step S111 of the flowchart shown in FIG. 2 the vehicle control device 100 determines a driver notification.
  • the control process performed in step S111 has the contents shown in the flowchart of FIG. 9, for example.
  • the calculation unit 102 calculates a distance correction value according to the awakening degree.
  • the vehicle control device 100 compares the current inter-vehicle distance with the sum of the braking operation distance and the distance correction value. When the current inter-vehicle distance is smaller than the sum of the braking operation distance and the distance correction value, the vehicle control device 100 indicates a strong warning level to the driver with a loud warning sound, strong flashing, or the like (step S111c). Then, the driver can grasp a warning or the like via the display device 710 and the buzzer 720.
  • step S111d the current inter-vehicle distance and the initial braking start inter-vehicle distance and the sum of the distance correction values are Make a comparison.
  • the vehicle control device 100 indicates a weak warning level to the driver with a weak alarm sound or weak blinking than in step S111c (step S111e). In this way, the degree of danger can be more clearly communicated to the driver by using different levels of warning.
  • the vehicle control device 100 When the current inter-vehicle distance is equal to or greater than the sum of the initial braking start inter-vehicle distance and the distance correction value, the vehicle control device 100 does not warn the driver (step S111f).
  • step S112 of the flowchart shown in FIG. 2 the vehicle control device 100 outputs data based on the result processed in step S111.
  • the vehicle control device 100 transmits a control signal to the brake control unit 300 and the meter control unit 700 to execute deceleration by the brake, warning to the driver, and the like.
  • the control unit 101 controls the initial braking timing based on the estimated weight of the vehicle (including the weight of the load target) without changing the timing of the main braking. It is possible to reduce the uncomfortable feeling to the driver and the influence on the loading target, and to suppress the collision damage. In addition, by not changing the timing of the main braking in this way, it is possible to prevent malfunction due to, for example, making the main braking earlier, and it is possible to suppress damage to the load target due to malfunction.
  • the estimated vehicle weight (including the weight of the load target) has been described as an example calculated by the calculation unit 102. However, when the calculation unit 102 is not provided, the estimated vehicle weight is controlled. It may be calculated by the unit 101.
  • the brake operation timing and the like vary depending on the driver.
  • an area for storing brake operation information for each driver is provided in the storage unit 103, and the brake operation timing that matches the characteristics of each driver is set. It is preferable to be able to memorize.
  • the vehicle key is divided for each driver, and the vehicle control device 100 identifies the driver with the key and grasps the change of the driver. That is, in this case, the vehicle control device 100 functions as a driver identification unit that identifies a driver.
  • information that can identify the driver individual such as an IC card or fingerprint authentication is registered in advance, and the vehicle control device 100 identifies the driver using the IC card or fingerprint authentication, Operation timing information and the like are acquired from the storage unit 103.
  • the brake operation timing information for a large number of people can be stored or acquired by reading out information on a mobile terminal including a mobile phone or driver information registered in advance in the center server via communication. Furthermore, when the brake operation timing information of each driver is stored or read using the mobile terminal or the center server as described above, there is an advantage that the information can be shared by a plurality of vehicles.
  • step S104 can be replaced with the contents described below.
  • the initial braking maximum deceleration is set to the maximum allowable deceleration, for example, 0.4G.
  • the initial braking maximum deceleration is set to a deceleration that prevents the passenger from falling, for example, 0.15G.
  • the initial braking maximum deceleration is set to a deceleration at which the passenger sitting on the seat does not fall down, for example 0.3 G, even without a seat belt.
  • the vehicle control device 100 acquires information on the luggage to be placed on the own vehicle through communication with the center of the delivery system. And if it is grasped that the contents of the baggage are things that are likely to be damaged with respect to the occurrence of acceleration, such as precision equipment and fine art, the initial braking maximum deceleration is a deceleration that does not cause damage. For example, it is set to 0.2G. On the other hand, when it is grasped that the object is an impact-resistant transport such as clothing, the initial braking maximum deceleration is set to a maximum allowable deceleration, for example, 0.4G. In this case, the vehicle control device 100 switches the initial braking maximum deceleration according to the content of the luggage.
  • the vehicle control device 100 acquires the result by communication. Further, there is a method in which the content of the package is determined not by the center of the delivery system but by the driver directly selecting the type of the package and directly referring to the input operation using a switch or the package barcode.
  • the initialization determination condition in step S104 can be replaced with any of the following conditions. For example, when the value detected by the pressure sensor of the loading platform changes while the vehicle is stopped, or when a moving body is detected by a sensor such as a camera or radar that monitors the loading platform while the vehicle is stopped. By doing so, the cost of adding a sensor such as a camera arises, but the loading and unloading of the load can be confirmed with certainty.
  • step S104 illustrated in FIG. 6 can be changed to the flowchart illustrated in FIG. Specifically, as can be seen by comparing FIG. 6 and FIG. 10, a process (step S104f) for determining whether or not the product is empty is added before the initialization determination (step S104a).
  • step S104f If it is determined in step S104f that there is an empty product, the initialization control is not performed, and the vehicle control device 100 sets the initial braking maximum deceleration to a maximum allowable deceleration, for example, 0.4G ( Step S104g). In this way, it is possible to immediately determine that there is no risk of damage to the loading target, and the amount of collision damage reduction can be maximized. On the other hand, if it is determined that the product is not empty, the control process proceeds to step S104a and the above-described initialization determination may be performed.
  • a maximum allowable deceleration for example, 0.4G
  • ⁇ Modification 5> when the driver's awakening level is updated in step S103 described above, the vehicle control device 100 stores the updated data in the storage unit 103, holds the information on the driver's awakening level even after the engine is stopped, and the next engine The stored wakefulness value can be taken over when is turned on.
  • the driver's awakening level when memorizing the driver's awakening level, memorize the date and time at the same time, and when the engine is turned on, the time required for the driver to recover from the date and time when the current date and time was memorized (for example, when 3 hours or more elapses),
  • the current driver is identified by the method described in the first modification, and when a change in the driver is detected, the arousal level is reset so as not to give an excessive warning. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

ドライバへの違和感及び積載対象への影響を低減するとともに、衝突被害を抑止することができる車両用制御装置を提供する。 車両用制御装置100は、車両1と車両前方の障害物との距離及び相対速度に基づき、車両1の減速制御を行う。車両用制御装置100は、車両1に対して初期制動及び本制動を順に行う制御部101を備える。制御部101は、本制動のタイミングを変えずに積載対象の重量が含まれる車両の推定重量に基づいて初期制動のタイミングを制御する。

Description

車両用制御装置
 本発明は、車両用制御装置に関し、特に小型、中型トラック又はバスに搭載されて衝突被害を抑制する車両用制御装置に関する。
 近年、車両制御の自動化やセンサの低価格化に伴い、レーダーやカメラを用いて障害物を検知し、衝突の可能性があった場合に自動的にブレーキをかけることで衝突被害の回避または軽減する技術が進んでいる。例えば特許文献1には、乗用車に搭載される車両用制御装置が開示されている。この特許文献1に係る車両用制御装置は、ステレオカメラにより撮像された画像に基づき、自車前方の障害物と自車との距離及び相対速度を算出し、ドライバが回避困難のような近距離の場合に、自動ブレーキを作動させることで衝突被害の回避または軽減を行う。
 乗用車に使用された上述の車両用制御装置を小型、中型トラック又はバス(以下、小型又は中型トラック等という)に適用することが検討されるが、小型又は中型トラック等は乗用車と比べて重量が増えるので、乗用車と同様の油圧式ブレーキを用いて制御を行おうとすると、衝突被害の回避や軽減に十分な減速量を確保できない問題がある。
 この問題を解決するために、例えば特許文献2に記載のように、空気圧を用いたブレーキ(エアブレーキ)を用いる技術が挙げられる。このように油圧式ブレーキの代わりにエアブレーキを用いることで、十分な減速制御を行うことが可能となる。
特開2009-262698号公報 特開2007-320485号公報
 しかしながら、エアブレーキは扱いが難しく、普段油圧式ブレーキに慣れているドライバが操作した際に、想像以上のブレーキ力が出てしまい、急ブレーキとなってしまうことが多い。また、圧縮エアの残量がなくなると制動が効かなくなるため、エアメータを気にしなければならない等の問題点もある。更に、コンプレッサやエアタンク等の設備が必要になるので、装置自体が大型になってしまう問題も生じる。このため、小型又は中型トラック等では油圧式ブレーキを採用することが多い。
 小型又は中型トラック等に使用される油圧式ブレーキは、乗用車に使用される油圧式ブレーキと比較してホイールシリンダ径が大きくなり、ブレーキの昇圧速度が遅くなる。加えて、小型又は中型トラック等は乗用車と比べて重量が増えるので、減速量を十分に得ることが難しく、制動距離が乗用車の倍以上になる問題がある。
 この問題に対して、減速量を確保するために、自動ブレーキの介入する条件となる距離を伸ばすことが考えられるが、距離を伸ばすとドライバのブレーキ操作するタイミングより早くなり、ドライバに違和感を与えてしまう。更に、自動ブレーキの発生によって、小型又は中型トラック等の積載対象への影響(例えば、積載対象が貨物の場合は貨物の破損、積載対象が乗客の場合は乗客の転倒等)も懸念されるため、自動ブレーキ装置をスイッチ操作等で無効化されてしまい、衝突被害の軽減又は回避ができなくなるおそれがある。
 本発明は、このような技術課題を解決するためになされたものであって、ドライバへの違和感及び積載対象への影響を低減するとともに、衝突被害を抑止することができる車両用制御装置を提供することを目的とする。
 上記課題を解決する本発明の車両用制御装置は、車両と車両前方の障害物との距離及び相対速度に基づき、前記車両の減速制御を行う車両用制御装置であって、前記車両に対して初期制動及び本制動を順に行う制御部を備え、前記制御部は、前記本制動のタイミングを変えずに、積載対象の重量が含まれる前記車両の推定重量に基づいて前記初期制動のタイミングを制御することを特徴とする。
 本発明によれば、ドライバへの違和感及び積載対象への影響を低減するとともに、衝突被害を抑止することができる。
実施形態の車両用制御装置を備えた車両の構成を示すブロック図。 車両用制御装置の制御処理を示すフローチャート。 ドライバのブレーキ操作タイミングの取得を示すフローチャート。 走行シーンの一例を示す模式図。 相対速度に応じたブレーキ操作タイミングテーブルの生成を示すフローチャート。 初期制動最大減速度の取得を示すフローチャート。 初期制動開始車間距離の取得を示すフローチャート。 制御減速度の取得を示すフローチャート。 ドライバ通知の決定を示すフローチャート。 初期制動最大減速度の取得の変形例を示すフローチャート。
 以下、図面を参照して本発明に係る車両用制御装置の実施形態を説明する。
 図1は実施形態の車両用制御装置を備えた車両の構成を示すブロック図である。本実施形態の車両用制御装置100は、車両1(以下において、自車と呼ぶ場合がある)に搭載され、車両1の減速制御が含まれる走行制御を行う。車両用制御装置100には、ステレオカメラ200、ブレーキコントロールユニット300、エンジンコントロールユニット400及びメータコントロールユニット700が通信(例えばCAN(Car Area Network))によって接続されている。
 車両用制御装置100は、内部にCPU、ROM、RAM等を備えたマイクロコンピュータ(以下、マイコンと略する)として構成されており、制御部101、演算部102、及び記憶部103を備える。制御部101は、ブレーキ等を制御することにより衝突被害の回避又は軽減を実現するものであり、車両1に対して初期制動と本制動とを順に行う。演算部102は、車両1の制御に関連する各演算を行う。記憶部103は、不揮発性メモリからなり、ドライバのブレーキ操作情報が含まれる各情報を記憶する。
 車両用制御装置100は、車両1のイグニッション電圧が低下した場合に、マイコンの動作を停止させて、再度車両1のイグニッション電圧が起動電圧閾値以上となった場合にマイコンを起動させ、各制御処理を行う。このため、イグニッション電圧が低下する状態、すなわちエンジン停止状態では、制御処理が動作しないようにされている。
 ステレオカメラ200は、例えば電荷結合素子(CCD)等の固体撮像素子を用いた左右一対のカメラにより構成されている。ステレオカメラ200は、車室の天井付近に取り付けられており、車両前方の道路及び障害物の様子等を撮像し、撮像したステレオ画像データをCANを介して車両用制御装置100に送信する。
 例えば、ステレオカメラ200で撮像した障害物のステレオ画像データが車両用制御装置100に送信された場合、演算部102は、ステレオ画像から視差情報を取得し、取得した視差情報を基に自車と車両前方の障害物との距離を計算し、更に計算した距離を経過時間に応じて微分することで相対速度を算出する。また、この演算部102は、撮像された障害物の自車に対する横位置を計算し、更に横位置を経過時間に応じて微分することにより横速度を算出する。車両用制御装置100は、ステレオカメラ200で撮像した障害物の画像データに対してパターンマッチングを行い、歩行者、自転車、車両、その他停止障害物等に分類する。
 ブレーキコントロールユニット300は、それに接続されるブレーキ600、ブレーキペダル610、ディスクブレーキ、ドラムブレーキに対する圧力を発生させることにより、ホイールとの摩擦を発生させて車両1の減速を行う。また、このブレーキコントロールユニット300は、車輪速センサ620、前後Gセンサ630、ヨーレートセンサ640、操舵角センサ650にそれぞれ接続されており、自車速度等の計測を行う。
 エンジンコントロールユニット400は、エンジン500、アクセルペダル510にそれぞれ接続されており、エンジン500の出力を制御する。制御された出力は、トランスミッションやプロペラシャフト等を通じて車両1のホイールへ動力を伝達し、これによって車両1の加速が行われる。また、エンジンコントロールユニット400は、車両1の加速だけではなく、エンジンブレーキを発生させることにより車両1の減速も行う。
 メータコントロールユニット700は、表示装置710、ブザー720にそれぞれ接続され、ドライバの視覚や聴覚を通じて通知、警告等を行う。
 次に、図2に基づいて車両用制御装置100の制御処理を説明する。図2のフローチャートに記載の制御処理は、所定の周期(例えば10ms周期)で繰り返し実行される。
 まず、ステップS101では、車両用制御装置100は、ステレオカメラ200、ブレーキコントロールユニット300及びエンジンコントロールユニット400から各データを取得し、以降の処理で使用できるように変換を行う。
 次に、ステップS102では、車両用制御装置100は、ドライバのブレーキ操作タイミングの取得を行う。ステップS102で行われる制御処理は、具体的には図3のフローチャートに示す内容である。
 図3に示すように、最初のステップS102aでは、車両用制御装置100は、ブレーキコントロールユニット300から送信された情報に基づいて、ブレーキペダル610が踏み始めであるか否か、すなわちブレーキペダル610を踏んでいない状態から踏んだ状態になるかを判断する。踏み始めと判断された場合、制御処理はS102bに進む。一方、踏み始めでないと判断された場合、制御処理はステップS102eに進む。
 なお、このステップS102aでは、一度踏み始めと判断されてから10秒間の間に再度踏み直しがあった場合、踏み始めとは判断されないように設定されている。このようにすれば、例えばポンピングブレーキのような運転操作や、一時的にブレーキングを緩めるような運転操作に起因した踏み始めの誤判断を防止することができる。
 ステップS102bでは、車両用制御装置100は、自車の進行路上に障害物の有無を判断する。具体的には、車両用制御装置100は、ヨーレートセンサ640で検出したヨーレート、操舵角センサ650で検出した操舵角、車輪速センサ620で検出した自車速度を取得する。次に、車両用制御装置100は、ステレオカメラ200により撮像された車道外側線の形状を用いて図4に示すような自車を俯瞰した2次元平面を作成し、該2次元平面における自車の走行予定領域20を推定する。そして、演算部102は、ステレオカメラ200により撮像された先行車両30、歩行者40等の障害物のデータに基づいて、各障害物に対する距離、横位置を算出する。車両用制御装置100は、演算部102で算出した情報に基づき、対象とする障害物が走行予定領域20内に存在するかを判断する。
 図4に示す走行シーンでは、歩行者40は走行予定領域20内に存在しないが、先行車両30が走行予定領域20内に存在するため、車両用制御装置100は自車進行路上の障害物があると判断する。一方、例えば先行車両30も走行予定領域20内に存在しない場合、車両用制御装置100は自車進行路上の障害物がないと判断する。そして、自車進行路上に障害物があると判断された場合、制御処理はステップS102cに進み、自車進行路上に障害物がないと判断された場合、制御処理はステップS102eに進む。
 ステップS102cでは、車両用制御装置100は、ドライバのブレーキ操作情報を記憶するか否かを判断する。ここで、下記5つの条件を全て満たした場合のみ、ブレーキ操作情報を記憶すると判断される。
 条件の1つ目は、自車進行路上の障害物のうち、自車と最も近い障害物との距離が10m以上離れることである。従って、例えば自車の近くに障害物が割り込んで、その割り込みに対するブレーキ操作の情報を記憶しない。すなわち、安定してブレーキをかける時のみを記憶対象とする。
 条件の2つ目は、自車と最も近い障害物との間にステレオカメラ200で停止線が撮像されていないことである。これは、停止線に対するブレーキングとの区別を図るためである。
 条件の3つ目は、自車が20km/h以上の速度で走行することである。従って、低速時の特性はなくても問題にならないので記憶しない。
 条件の4つ目は、ドライバがアクセルペダル510を踏んでいないことである。これは、アクセルペダル510及びブレーキペダル601の同時踏みのような操作を記憶すると、後述するブレーキ操作タイミングを正しく推定できなくなるので、そのような操作を除外するためである。
 条件の5つ目は、前後Gセンサ630で検出した値と自車速度の時間微分値から得た自車加速度とに基づいて路面勾配を推定し、推定した上り勾配又は下り勾配がそれぞれ5deg以上になっていないことである。これは、勾配路ではブレーキの操作タイミングを変えられるので、正しいブレーキ操作タイミングを推定できなくなるのを防ぐためである。
 そして、ステップS102cでブレーキ操作情報を記憶すると判断された場合、制御処理はステップS102dに進む。一方、記憶しないと判断された場合、制御処理はステップS102eに進む。
 ステップS102dでは、車両用制御装置100は、記憶部103に対し、以下のブレーキ操作情報を記憶するように制御信号を送信する。記憶部103に記憶される情報としては、自車進行路上の障害物のうち最も近い障害物との距離、最も近い障害物との相対速度、最も近い障害物の種別(例えば歩行者、車両、自転車、任意立体物等)、自車速度、路面の勾配、路面の曲率、自車両の推定重量、ステレオカメラで検出した照度(例えば夜、昼)、ステレオカメラで検出した天気(例えば雨天、雪、晴れ)等である。ここで、天気が晴れの場合、走行路が乾燥路であることを意味する。
 記憶部103は、ドライバのブレーキ操作タイミングを推定するのに十分な回数の記憶領域、例えば250回分のデータを記憶する領域を有し、FIFO(先入れ先出し)の方式で記憶を行う。記憶部103は、上述したように不揮発性メモリからなり、車両1の製造時に全て記憶情報無しとして初期化されており、製造後に記憶されたブレーキ操作情報を車両1のイグニッションをオフにした場合も保持し続け、エンジン始動直後で記憶されたブレーキ情報を準備できる。また、この記憶部103は、車両1の動力が停止した後も記憶されたブレーキ操作情報を保持して、車両1の動力が停止している際にはブレーキ操作情報を記憶しないことが好適である。
 ステップS102eでは、車両用制御装置100は、記憶部103に記憶されたドライバのブレーキ操作情報の数が十分な回数以上か否かを判断する。ここでの十分な回数は、ドライバのブレーキ操作タイミングを推定するのに足りる回数、例えば50回以上のことである。十分な回数以上と判断された場合、制御処理はステップS102fに進む。一方、十分な回数以上でないと判断された場合、制御処理はステップS102gに進む。
 ステップS102fでは、制御部101は、記憶部103に記憶されたブレーキ操作情報に基づき、ドライバのブレーキ操作タイミングを推定する。ドライバのブレーキ操作タイミングは、相対速度に応じたテーブル値として推定される。テーブル値の推定は図5のフローチャートに従って行われる。具体的には、相対速度10km/h毎にブレーキ操作タイミング推定用情報を分類して、各相対速度域でのブレーキ操作を行った時の距離の平均を取り、ドライバのブレーキ操作タイミングの推定が行われる。そして、制御部101は、推定したブレーキ操作タイミングよりも遅いタイミングを初期制動のタイミングとする。なお、図5において、ドライバのブレーキ操作タイミングを「BrkDist」で示す。
 一方、ステップS102gでは、制御部101は、ドライバのブレーキ操作タイミングを標準値に設定する。標準値は、特許請求の範囲に記載の「所定のブレーキ操作タイミング」に相当しており、例えば自車と障害物との相対速度×5秒である。
 次に、図2に示すフローチャートのステップS103では、車両用制御装置100はドライバの覚醒度合いの取得を行う。ドライバの覚醒度合いは、ドライバが運転にどれだけ集中することができているか、または居眠り運転等になっていないかを判断する指標として推定を行うためのパラメータとなる。ドライバの覚醒度合いは、ドライバの以下の運転操作を検出することで制御部101により推定される。
 すなわち、ステレオカメラ200で検出した白線に対して、自車の向きが左右に周期的に傾いていること、アクセルペダルの踏みこみ量の変化が少ないこと、シフトチェンジをしていない時間が一定時間を経過すること、操舵角の振動が検出されること、ステアトルクが弱いこと、急ブレーキの頻度が高いことなどである。
 また、ドライバの覚醒度合いは、上記のドライバの運転操作が検出された数に応じて低くなるパラメータにする。変化量や時間の閾値は車両に応じて設定され、それぞれの条件に対して重みを設定して覚醒度合いに反映する。例えば、ステアトルクが低い場合の条件は、重み3にして、ステアトルクが低かった場合に覚醒度合いを-3とする。シフトチェンジをしていない時間が一定時間経過の条件は、重み1にして、シフトチェンジをしていない時間が一定時間経過した場合は覚醒度合いを-1とする。このように条件に応じて重みづけをすることにより、よりドライバの覚醒度合いに近いパラメータとして判断することができる。
 次に、ステップS104では、車両用制御装置100は、初期制動最大減速度の取得を行う。ステップS104で行われる制御処理は、例えば図6のフローチャートに示す内容である。
 図6に示すように、最初のステップS104aでは、車両用制御装置100は初期化判断を行う。初期化判断は、以下のいずれかの条件を満たすか否かで行われる。すなわち、シートベルトの解除検出後2秒以内に自車速度が0となっていないこと、リアゲート等を含めたドアスイッチオープンの検出後2秒以内に自車速度が0となっていないこと、先行車両及び信号機が不検出で且つブレーキペダルを踏んでいない状況で停車時間が一定以上経過すること、積載対象の重量が5秒間で10kg以上増えることである。上述の先行車両及び信号機が不検出で且つブレーキペダルを踏んでいない状況での停車は、例えばニュートラルレンジ且つパーキングブレーキでの停車等が挙げられる。
 初期化判断が成立した場合、制御処理はステップS104bに進む。ステップS104bでは、制御部101は初期制動最大減速度を0.2Gとする。
 一方、初期化判断が成立していない場合、制御処理はステップS104cに進む。ステップS104cでは、演算部102は、現在の自車の加速度絶対値を算出する。ステップS104cに次ぐステップS104dでは、車両用制御装置100は、現在の自車の加速度絶対値と、前周期の初期制動最大減速度とを比較する。そして、前周期の初期制動最大減速度が現在の自車の加速度絶対値がより小さいときに、制御部101は、現在の自車の加速度絶対値を今回の周期の初期制動最大減速度とする(ステップS104e)。
 このとき、ドライバが運転操作で0.2G以上の加速を行っている場合は、積載対象に対しても0.2G以上の衝撃を与えても問題ないと判断でき、減速で発生した加速度のみで判断するより最大減速度を早く大きくすることができ、安全性が高くなる。また、条件に使用する積載対象の重量は、自車のブレーキ力、またはパワーユニットの出力から推定した加速度に対して、自車の車輪速微分で検出した加速度がずれている場合、その比率を出すことで推定が可能である。なお、ここでは、積載対象の重量を検出するためのセンサを別途設けてもよい。
 なお、初期制動最大減速度の取得として、上述した内容のほか、例えば積載対象の重量の変化に着目し、該積載対象の重量の変化が所定の範囲内の場合に、制御部101はドライバ運転時に発生した加減速度絶対値の最大値を初期制動最大減速度としてもよい。
 次に、図2に示すフローチャートのステップS105では、演算部102は、自車の推定重量を計算する。自車の推定重量は、車両の重量と積載対象の重量との合計値である。積載対象は、荷物又は乗客などを指す。なお、自車の推定重量は、エンジントルク、トランスミッションの減速比、走行抵抗の推定値、タイヤ動半径、自車の加速度に基づいて求められる。例えば、自車の推定重量は式(1)で求められる。
 自車推定重量=エンジントルク×減速比÷加速度÷タイヤ動半径・・・(1)
 走行抵抗の推定値は、自車速度と車両形状(空気抵抗特性)、及びタイヤの幅から求められる空気転がり抵抗、路面勾配から求められる勾配抵抗、横加速度の発生により求められるコーナリング抵抗の総和によって算出することができる。
 次に、ステップS106では、演算部102は、制御作動距離の基本値を計算する。制御作動距離の基本値の計算は、相対速度からあらかじめ準備したテーブル値に基づいて行われる。テーブル値は、相対速度×TTC(Time To Collision)を基本の値として、相対速度が大きい場合は距離を長くするような補正を行って設定される。制御作動距離の基本値は、初期制動作動距離の基本値と本制動作動距離の基本値とを含むため、初期制動作動距離の基本値と本制動作動距離の基本値とがそれぞれ算出される。
 次に、ステップS107では、演算部102は、本制動減速量を計算する。本制動減速量は、ステップS105で算出した自車の推定重量から式(2)に基づいて計算される。
 車両加速度[m/ss]=ブレーキ力[N]÷自車の推定重量[kg]
 本制動減速量[m/s]=車両加速度[m/ss]×時間[s]・・・(2)
 式(2)のブレーキ力は車両1のブレーキ性能で決まるため、搭載車両の制御パラメータとして定数を設定する。また、時間は衝突回避までの時間を閾値として設定し、搭載車両の制御パラメータとして設定される。
 次に、ステップS108では、車両用制御装置100は初期制動減速度を決定する。車両用制御装置100は、ステップS104で求められた初期制動最大減速度と、初期制動減速度下限値とを比較し、減速がより強く発生する方を選択し、初期制動減速度として決定する。
 ここでの初期制動減速度下限値は、ドライバが減速の発生を知覚することができるほど強い減速でありつつ、積載対象に影響を与える(例えば貨物に損傷を与えたり、乗客の転倒を起こしたりする)ような心配のない減速度として定数、例えば0.2Gとして設定される。
 次に、ステップS109では、車両用制御装置100は、初期制動開始車間距離を決定する。ステップS109で行われる制御処理は、例えば図7のフローチャートに示す内容である。
 図7に示すように、最初のステップS109aでは、演算部102は、ステップS102で算出した相対速度に応じたテーブル値の情報であるブレーキ操作タイミングの情報に対して、現在の相対速度を与えてドライバのブレーキ操作タイミングに当たるドライバブレーキ開始距離を算出する。続いて、演算部102は、相対速度から本制動減速量を減算することで初期制動減速量を算出する。
 ステップS109bでは、演算部102は、初期制動減速量を初期制動減速度で除算することで初期制動作動時間を算出する。
 ステップS109cでは、演算部102は、相対速度の2倍から初期制動減速量を減算したものに、初期制動作動時間を乗算して2で割ることで、初期制動走行距離を算出する。
 ステップS109dでは、演算部102は、初期制動走行距離と本制動作動距離を足し合わせることで、ブレーキをかけた場合衝突回避が可能な距離として、初期制動作動安全距離を算出する。
 ステップS109eでは、車両用制御装置100は、初期制動作動安全距離とドライバブレーキ開始距離とを比較する。初期制動作動安全距離がドライバブレーキ開始距離より小さいと判断された場合、制御処理はステップS109fに進み、初期制動作動基本距離と初期制動作動安全距離との比較が行われる。そして、初期制動作動基本距離が初期制動作動安全距離より小さい場合、制御部101は、初期制動作動距離を初期制動作動基本距離とする(ステップS109g)。一方、初期制動作動基本距離が初期制動作動安全距離以上の場合、制御部101は、初期制動作動距離を初期制動作動安全距離とする(ステップS109h)。
 また、上述のステップS109eで初期制動作動安全距離がドライバブレーキ開始距離以上であると判断された場合、制御処理はステップS109iに進み、初期制動作動基本距離とドライバブレーキ開始距離との比較が行われる。そして、初期制動作動基本距離がドライバブレーキ開始距離より小さい場合、制御部101は、初期制動作動距離をドライバブレーキ開始距離とする(ステップS109j)。一方、初期制動作動基本距離がドライバブレーキ開始距離以上の場合、制御部101は、初期制動作動距離を初期制動作動基本距離とする(ステップS109k)。
 上述のステップS109eで初期制動作動安全距離とドライバブレーキ開始距離との比較を行うことで、ドライバの普段のブレーキ操作より早く初期制動が行われるので、初期制動の開始がドライバに対して違和感の少ないタイミングとすることができる。加えて、ステップS109e又はステップS109iで更に初期制動作動距離基本値との比較を行うことで一般的なドライバよりあまりにもブレーキタイミングが遅いようなドライバの場合でも、最低限の警告や被害軽減のブレーキ作動を行うことができるようになる。
 そして、車両用制御装置100は、図7のフローチャートで求められた初期制動作動距離を初期制動開始車間距離(すなわち、初期制動作動タイミング)として決定する。
 次に、図2に示すフローチャートのステップS110では、車両用制御装置100は制御減速度の決定を行う。このステップS110で行われる制御処理は、例えば図8のフローチャートに示す内容である。
 図8に示すように、最初のステップS110aでは、車両用制御装置100は、現在の車間距離と本制動作動距離との比較を行う。現在の車間距離が本制動作動距離より小さい場合、車両用制御装置100は、本制動を作動させるべきと判断して、ブレーキ力を自車の推定重量で除算することにより制御減速度を求め、車両として発生させられる最大減速度での制御を行う(ステップS110b)。
 一方、ステップS110aで現在の車間距離が本制動作動距離以上の場合、制御処理はステップS110cに進み、現在の車間距離と初期制動開始車間距離との比較を行う。現在の車間距離が初期制動開始車間距離より小さい場合、車両用制御装置100は、制御減速度を初期制動減速度とすることで、積載対象に被害を与えないような減速量でのブレーキ制御を行う(ステップS110d)。
 そして、現在の車間距離が初期制動開始車間距離以上の場合、車両用制御装置100は、減速制御を不要として、制御減速度をゼロにすることで、制御を行わないようにする(ステップS110e)。
 次に、図2に示すフローチャートのステップS111では、車両用制御装置100はドライバ通知の決定を行う。ステップS111で行われる制御処理は、例えば図9のフローチャートに示す内容である。
 図9に示すように、最初のステップS111aでは、演算部102は、覚醒度合いに応じた距離補正値の計算を行う。ステップS111bでは、車両用制御装置100は、現在の車間距離と、本制動作動距離及び距離補正値の和との比較を行う。現在の車間距離が本制動作動距離及び距離補正値の和より小さい場合、車両用制御装置100は、大きな警報音や強い点滅等でドライバに強い警告度合いを示す(ステップS111c)。そして、ドライバは、表示装置710及びブザー720を介して警告等を把握できる。
 一方、ステップS111bで現在の車間距離が本制動作動距離及び距離補正値の和以上の場合、制御処理はステップS111dに進み、現在の車間距離と、初期制動開始車間距離及び距離補正値の和との比較を行う。現在の車間距離が初期制動開始車間距離及び距離補正値の和より小さい場合、車両用制御装置100は、ステップS111cよりも弱い警報音や弱い点滅でドライバに弱い警告度合いを示す(ステップS111e)。このように警告度合いの強弱を使い分けることで、ドライバに危険の度合いをより明確に伝えることができる。
 そして、現在の車間距離が初期制動開始車間距離及び距離補正値の和以上の場合、車両用制御装置100は、ドライバへの警告を行わない(ステップS111f)。
 この処理を行うことで、覚醒度合いが低い状況下、つまり、ドライバが居眠り運転をしているような状況下やよそ見運転を行っている状況では、通常時より早めの警報を行うことでドライバの回避行動を促進させることができる。ただし、この際に減速制御は行わないようにすることで、制御開始の早期化により、積載対象に被害を与える問題、または交通流を乱して衝突事故を誘発させる問題を抑止し、事故につながるリスクを減らすことができる。
 次に、図2に示すフローチャートのステップS112では、車両用制御装置100は、ステップS111で処理した結果を基づきデータの出力を行う。また、車両用制御装置100は、ブレーキコントロールユニット300、メータコントロールユニット700へ制御信号を送信し、ブレーキによる減速及びドライバへの警告等を実行する。
 本実施形態の車両用制御装置100によれば、制御部101は、本制動のタイミングを変えずに、車両の推定重量(積載対象の重量を含む)に基づいて初期制動のタイミングを制御するので、ドライバへの違和感及び積載対象への影響を低減するとともに、衝突被害を抑止することができる。しかも、このように本制動のタイミングを変えないことによって、例えば本制動を早めにすることに起因した誤作動を防止でき、誤作動による積載対象への被害を抑制することができる。なお、本実施形態では、車両の推定重量(積載対象の重量を含む)は演算部102により算出される例を挙げて説明したが、演算部102を有さない場合、車両の推定重量は制御部101によって算出されてもよい。
 なお、本実施形態の車両用制御装置100については、様々な変形例が考えられる。
<変形例1>
 例えば、ブレーキ操作タイミング等は、ドライバによって異なる。1台の車両を多人数で共用することを想定した場合、上述のステップS102において、記憶部103にドライバ毎にブレーキ操作情報を記憶する領域を設け、各ドライバの特性に合ったブレーキ操作タイミングを記憶できるようにすることが好ましい。この場合、ドライバの識別方法として、例えばドライバ毎に車両の鍵を分けるようにして、車両用制御装置100は、鍵でドライバを識別してドライバの変更を把握する。すなわち、この場合、車両用制御装置100は、ドライバを識別するドライバ識別部として機能する。また、鍵のほかにICカードや指紋認証等のようにドライバ個人を特定できる情報を事前に登録して、車両用制御装置100は、ICカードや指紋認証でドライバを識別し、各ドライバのブレーキ操作タイミング情報等を記憶部103から取得する。
 また、多人数で1台の車両を共用する場合、記憶部103の容量が膨大になる問題が考えられる。この場合、例えば携帯電話を含む携帯端末、或いは通信を介して事前にセンターサーバに登録したドライバの情報を読み出すことで、多人数のブレーキ操作タイミング情報を記憶又は取得することができる。更に、このように携帯端末やセンターサーバを用いて各ドライバのブレーキ操作タイミング情報を記憶又は読み出す場合、複数台の車両で情報を共有することができる利点もある。
<変形例2>
 また、本発明を適用する車両が小型又は中型のバスであって積載対象が不特定の乗客であることが想定される。この場合、積載対象が美術品や精密機器等の場合と比べて破損のおそれがないので、ステップS104を以下に記載の内容に置き換えることが可能である。
 すなわち、車内監視カメラを設け、該車内監視カメラで車内に乗客が存在しないことを検出した場合は、初期制動最大減速度を許容される最大の減速度、例えば0.4Gとする。一方、乗客が存在し且つ立ち乗りの乗客を検出した場合、初期制動最大減速度を乗客が転倒したりしないような減速度、例えば0.15Gとする。また、乗客が存在し且つ立ち乗りの乗客が存在しない場合、初期制動最大減速度をシートベルトがなくても座席に座った乗客が転倒したりしないような減速度、例えば0.3Gとする。
 このようにすれば、急制動の発生により乗客が転倒する等、怪我をしてしまうことを防止した上で、衝突事故の被害を軽減することができる。ここで、車内監視カメラの代わりに感圧センサやレーダー等を用いて車内のどの位置に乗客が存在するかを判断する方法や、ドライバが車内の状況を監視して状況を通知するインターフェースを設けて判断する方法への置き換えも可能である。
 更に、高速バスのように、乗客が座席に座ってシートベルトをする場合は転倒によってけがをするおそれが少ないので、初期制動最大減速度を許容される最大の減速度、例えば0.4Gの固定としてもよい。
<変形例3>
 また、積載対象が配達業のようにバーコード等で管理される荷物(輸送物ともいう)の場合、上述のステップS104を以下の内容に変更することができる。
 車両用制御装置100は、配送システムのセンターとの通信で、自車に載せる荷物の情報を取得する。そして、荷物の内容が精密機器や美術品のように、加速度の発生に対して破損の可能性が高い物であるのを把握した場合、初期制動最大減速度を破損の発生しないような減速度、例えば0.2Gに設定する。一方、衣類等のような衝撃に強い輸送物であるのを把握した場合、初期制動最大減速度を許容される最大の減速度、例えば0.4Gに設定する。この場合、車両用制御装置100は荷物の内容に応じて初期制動最大減速度を切り替える。
 また、荷物の内容の把握は配送システムのセンターで行い、車両用制御装置100はその結果を通信で取得する方式もある。更に、荷物の内容の把握は配送システムのセンターではなく、ドライバが荷物の種別を直接選択し、スイッチ等による入力操作や荷物のバーコードを直接参照して判断する方式もある。
<変形例4>
 また、ステップS104の初期化判断条件は、以下の条件のいずれかへと置き換えすることができる。例えば、停車中に荷台の感圧センサで検出した値が変化した場合、或いは停車中に荷台を監視するカメラまたはレーダー等のセンサで移動体を検知した場合等が挙げられる。このようにすることで、カメラ等のセンサを追加するコストが生じるが、荷物の積み下ろしを確実に確認することができる。
 例えば、感圧センサやカメラ等を用いて荷物の積み下ろしを確認した場合、積載対象の有無或いは変化を容易に判断できる。この場合、図6に記載のステップS104の処理を図10に記載のフローチャートに変更することができる。具体的には、図6及び図10を比較して分かるように、初期化判断(ステップS104a)の前に空積であるか否かを判断する処理(ステップS104f)を加える。
 そして、ステップS104fで空積であると判断された場合、初期化判断を行わず、車両用制御装置100は初期制動最大減速度を許容される最大の減速度、例えば0.4Gと設定する(ステップS104g)。このようにすれば、積載対象破損の危険性がないことを即座に判断でき、衝突被害の軽減量を最大とすることができる。一方、空積でないと判断された場合、制御処理はステップS104aに進み、上述の初期化判断を行えばよい。
<変形例5>
 また、上述のステップS103におけるドライバの覚醒度合いを更新した場合、車両用制御装置100は、記憶部103に更新したデータを記憶させ、エンジン停止後もドライバの覚醒度合いの情報を保持し、次回エンジンをオンした場合に記憶された覚醒度合いの値を引き継ぐことができる。
 このようにすることで、短時間の間にエンジンをオフし、ドライバが回復して覚醒状態に戻る可能性の低いような場合でも覚醒度合いを正しく判断し、適切な警告を行うことができる。
 また、ドライバの覚醒度合いを記憶する際、日時を同時に記憶し、エンジンをオンした際に現在の日時が記憶した際の日時よりドライバが回復に必要な時間(例えば3時間以上経過する場合)、または、変形例1に記載のような方法で現在のドライバが誰であるかを識別し、ドライバの変更が検出された場合は覚醒度合いをリセットして、過剰な警告を行わないようにすることができる。
 以上、本発明の実施形態について詳述したが、本発明は、上記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。
1  車両
100  車両用制御装置
101  制御部
102  演算部
103  記憶部
200  ステレオカメラ
300  ブレーキコントロールユニット
400  エンジンコントロールユニット
500  エンジン
510  アクセルペダル
600  ブレーキ
610  ブレーキペダル
620  車輪速センサ
630  前後Gセンサ
640  ヨーレートセンサ
650  操舵角センサ
700  メータコントロールユニット
710  表示装置
720  ブザー

Claims (8)

  1.  車両と車両前方の障害物との距離及び相対速度に基づき、前記車両の減速制御を行う車両用制御装置であって、
     前記車両に対して初期制動及び本制動を順に行う制御部を備え、
     前記制御部は、前記本制動のタイミングを変えずに、積載対象の重量が含まれる前記車両の推定重量に基づいて前記初期制動のタイミングを制御することを特徴とする車両用制御装置。
  2.  前記制御部は、ドライバの運転操作に基づき該ドライバの覚醒度合いを推定し、推定した覚醒度合いに応じて前記初期制動のタイミングを制御する請求項1に記載の車両用制御装置。
  3.  ドライバのブレーキ操作情報を記憶する記憶部を更に備え、
     前記制御部は、前記記憶部に記憶されたドライバのブレーキ操作の回数が所定数以上の場合、該記憶部に記憶されたドライバのブレーキ操作情報に基づいてドライバのブレーキ操作タイミングを推定し、推定したブレーキ操作のタイミングよりも遅いタイミングを前記初期制動のタイミングとする請求項1又は2に記載の車両用制御装置。
  4.  ドライバのブレーキ操作情報を記憶する記憶部を更に備え、
     前記制御部は、前記記憶部に記憶されたドライバのブレーキ操作の回数が所定数より少ない場合、所定のブレーキ操作タイミングを前記初期制動のタイミングとする請求項1又は2に記載の車両用制御装置。
  5.  前記積載対象の重量が含まれる前記車両の推定重量を算出する演算部を更に備え、
     前記制御部は、前記演算部により算出された前記車両の推定重量に基づいて、前記初期制動のタイミングを制御する、請求項1~4のいずれか一項に記載の車両用制御装置。
  6.  前記制御部は、前記積載対象の重量の変化が所定の範囲内の場合、ドライバ運転時に発生した加減速度絶対値の最大値を初期制動最大減速度とする請求項1~5のいずれか一項に記載の車両用制御装置。
  7.  前記車両を運転するドライバを識別するドライバ識別部を更に備え、
     前記記憶部は、ドライバ毎にドライバのブレーキ操作情報を記憶する領域を有する請求項3又は4に記載の車両用制御装置。
  8.  前記記憶部は、前記車両の動力が停止した後も前記ブレーキ操作情報を保持して、前記車両の動力が停止している際には前記ブレーキ操作情報を記憶しない請求項7に記載の車両用制御装置。
PCT/JP2019/005495 2018-04-19 2019-02-15 車両用制御装置 WO2019202834A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112019001368.8T DE112019001368T5 (de) 2018-04-19 2019-02-15 Fahrzeugsteuervorrichtung
US17/047,146 US20210162967A1 (en) 2018-04-19 2019-02-15 Vehicle control device
CN201980020704.6A CN111971211B (zh) 2018-04-19 2019-02-15 车辆用控制装置
JP2020513990A JP6980100B2 (ja) 2018-04-19 2019-02-15 車両用制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018080508 2018-04-19
JP2018-080508 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019202834A1 true WO2019202834A1 (ja) 2019-10-24

Family

ID=68239491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005495 WO2019202834A1 (ja) 2018-04-19 2019-02-15 車両用制御装置

Country Status (5)

Country Link
US (1) US20210162967A1 (ja)
JP (1) JP6980100B2 (ja)
CN (1) CN111971211B (ja)
DE (1) DE112019001368T5 (ja)
WO (1) WO2019202834A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177522A (ja) * 2019-04-19 2020-10-29 株式会社Ihi 遠隔操作装置及び遠隔操作システム
CN113283014B (zh) * 2021-06-10 2022-11-25 深圳前海壹互联科技投资有限公司 新能源汽车运行数据分析处理方法、系统及存储介质
CN115662151B (zh) * 2022-12-13 2023-05-12 宜宾职业技术学院 一种重载车辆定位控制方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769188A (ja) * 1993-09-02 1995-03-14 Toyota Motor Corp 自動ブレーキ装置
JP2002302026A (ja) * 2001-04-03 2002-10-15 Mitsubishi Motors Corp 車両の運転支援装置
JP2006151126A (ja) * 2004-11-26 2006-06-15 Toyota Motor Corp 運転者の制御依存度検出装置、及びそれを備えた車両の減速制御装置
JP2007223582A (ja) * 2006-01-27 2007-09-06 Hino Motors Ltd 自動制動制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627510A (en) * 1994-09-12 1997-05-06 Yuan; Zhiping Vehicular safety distance alarm system
DE102006030686B4 (de) * 2006-07-04 2020-08-20 Volkswagen Ag Vorrichtung und Verfahren zur Bremskraftunterstützung für eine Not- oder Zielbremsung
JP2009126255A (ja) * 2007-11-21 2009-06-11 Aisin Aw Co Ltd 車両制御装置、車両制御方法及びコンピュータプログラム
CN101767535B (zh) * 2008-12-30 2013-08-21 比亚迪股份有限公司 独立四驱电动汽车的驱动/制动系统及方法
JP5780314B2 (ja) * 2011-12-14 2015-09-16 トヨタ自動車株式会社 車両の制御装置
CN104925042B (zh) * 2015-05-18 2018-11-30 北京新能源汽车股份有限公司 一种用于纯电动汽车的主动预制动方法
JP6258903B2 (ja) * 2015-09-18 2018-01-10 本田技研工業株式会社 運転者特性に応じた支援を行う運転支援装置
JP6443381B2 (ja) * 2015-09-30 2018-12-26 株式会社デンソー 運転支援装置
US10363910B2 (en) * 2016-12-07 2019-07-30 Horizon Global Americas Inc. Automated gain and boost for a brake controller
US10053088B1 (en) * 2017-02-21 2018-08-21 Zoox, Inc. Occupant aware braking system
JP2019171971A (ja) * 2018-03-27 2019-10-10 株式会社デンソー 車両制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769188A (ja) * 1993-09-02 1995-03-14 Toyota Motor Corp 自動ブレーキ装置
JP2002302026A (ja) * 2001-04-03 2002-10-15 Mitsubishi Motors Corp 車両の運転支援装置
JP2006151126A (ja) * 2004-11-26 2006-06-15 Toyota Motor Corp 運転者の制御依存度検出装置、及びそれを備えた車両の減速制御装置
JP2007223582A (ja) * 2006-01-27 2007-09-06 Hino Motors Ltd 自動制動制御装置

Also Published As

Publication number Publication date
DE112019001368T5 (de) 2020-12-10
JP6980100B2 (ja) 2021-12-15
US20210162967A1 (en) 2021-06-03
CN111971211A (zh) 2020-11-20
JPWO2019202834A1 (ja) 2021-04-22
CN111971211B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
US8078383B2 (en) Speed control system for vehicles
CN109478292B (zh) 车辆用装置以及车辆用系统
CN108116385B (zh) 车辆控制方法及车辆控制系统
US8396642B2 (en) Adaptive cruise control system
US20120119894A1 (en) Acb following distance alert and warning adjustment as a function of forward vehicle size and host vehicle mass
US20060195231A1 (en) Electronic control system for a vehicle and method for determining at least one driver-independent intervention in a vehicle system
WO2019202834A1 (ja) 車両用制御装置
JP2018524730A (ja) 能動的な安全メカニズムの作動を適応させるための前方を走行中の車両の制動灯検出
US11731595B2 (en) Emergency braking system of a single-track vehicle
WO2019106787A1 (ja) 車両制御装置、それを有する車両、および制御方法
CN111768651B (zh) 一种预防车辆碰撞的预警方法及装置
JP6959892B2 (ja) 車両制御システム
KR20150051548A (ko) 운전자의 성향을 반영하는 운전보조시스템 및 그 제어방법
KR20190017339A (ko) 자율 주행 차량의 정보 저장 장치 및 방법
US10864908B2 (en) Vehicle control device and vehicle control method
US11648937B2 (en) Driver assistance device
KR101511860B1 (ko) 운전보조시스템 및 그 제어방법
CN110920600A (zh) 四轮驱动车辆的控制系统以及四轮驱动车辆的控制方法
KR101511863B1 (ko) 타이어 공기압을 고려한 긴급제동 장치 및 그 제어방법
CN113386756A (zh) 车辆追随行驶系统、车辆控制装置、车辆及车辆控制方法
US20230182755A1 (en) System and method for providing longitudinal control by locking throttle pedal
US20240119762A1 (en) Information processing device, vehicle, information processing system, information processing method, and non-temporary storage medium
EP4170621A1 (en) Device and method for controlling platooning
US20230182735A1 (en) Method and control system for limiting a driver acceleration request
WO2024127538A1 (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513990

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19789131

Country of ref document: EP

Kind code of ref document: A1