WO2019202789A1 - アンテナ装置、アンテナ制御方法、およびプログラム - Google Patents
アンテナ装置、アンテナ制御方法、およびプログラム Download PDFInfo
- Publication number
- WO2019202789A1 WO2019202789A1 PCT/JP2019/000932 JP2019000932W WO2019202789A1 WO 2019202789 A1 WO2019202789 A1 WO 2019202789A1 JP 2019000932 W JP2019000932 W JP 2019000932W WO 2019202789 A1 WO2019202789 A1 WO 2019202789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- control unit
- target
- scanning
- planar antenna
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/286—Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/02—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
- H01Q3/08—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
- H01Q3/2611—Means for null steering; Adaptive interference nulling
- H01Q3/2617—Array of identical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
- H01Q3/2611—Means for null steering; Adaptive interference nulling
- H01Q3/2629—Combination of a main antenna unit with an auxiliary antenna unit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
- H01Q3/36—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
- H01Q3/38—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
- H01Q3/385—Scan control logics
Definitions
- the present invention relates to an antenna device, an antenna control method, and a program.
- the aircraft is equipped with an antenna for satellite communications. Since the relative positions of aircraft and communication satellites change, the satellite communication antennas onboard aircraft include antennas such as mechanical drive antennas, beam scanning antennas, and beam scanning antennas that can be mechanically driven. Those having the function of adjusting the directivity direction are mainly used.
- An example of this type of satellite communication antenna is disclosed in Patent Document 1.
- the satellite communication antenna disclosed in Patent Document 1 is a phased array antenna mounted on a moving body, and has a configuration capable of scanning the antenna beam direction and controlling the antenna angle by a plurality of actuators. Have.
- Satellite communication antennas are required to have high gain, low power consumption, and low cost. Therefore, it is conceivable to reduce the number of antenna elements of the satellite communication antenna.
- the spacing between the elements increases as the number of antenna elements decreases.
- a sub beam called a grating lobe may be included in the visible region of the antenna.
- the same problem is not limited to airplanes, but also occurs in satellite communication antennas composed of phased array antennas mounted on other moving bodies such as vehicles and ships.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an antenna device capable of performing beam scanning while suppressing the number of antenna elements and suppressing generation of the grating lobes described above. To do.
- an antenna device includes a planar antenna, an attitude control unit, an antenna control unit, and a scanning control unit.
- the planar antenna has a plurality of antenna elements and transmits / receives radio waves to / from the target.
- the attitude control unit is attached to the planar antenna and mechanically controls the attitude of the planar antenna.
- the antenna control unit controls the attitude control unit so that the planar antenna faces a predetermined direction with respect to the target.
- the scanning control unit controls the beam scanning by the planar antenna, and adjusts the excitation phase of the plurality of antenna elements according to the signal level of the reception signal generated from the radio wave received from the target when the beam scanning is performed.
- the beam of the planar antenna is directed to the target.
- the scanning control unit limits the beam scanning range to a range in which no grating lobe is generated, which is determined according to the interval between the plurality of antenna elements.
- the antenna device beam scanning is performed after mechanically controlling the attitude of the planar antenna.
- the antenna device limits the beam scanning range to a range in which no grating lobe is generated according to the interval between the antenna elements. As a result, it is possible to provide an antenna device that performs beam scanning while suppressing the generation of grating lobes while suppressing the number of antenna elements.
- FIG. 3 is a block diagram illustrating a configuration of the antenna device according to the first embodiment.
- the figure which shows the scanning angle in Embodiment 1 The figure which shows the example of the main beam in Embodiment 1, and a grating lobe
- the figure which shows the position of the grating lobe with respect to the visible region in Embodiment 1 The flowchart which shows an example of the beam scanning process which the antenna apparatus which concerns on Embodiment 1 performs.
- Front view of antenna apparatus according to Embodiment 1 Front view of antenna apparatus according to Embodiment 1 Front view of an antenna device according to Embodiment 2 of the present invention
- Front view of antenna apparatus according to Embodiment 2 Hardware configuration diagram of a scanning control unit according to an embodiment
- Embodiment 1 The antenna device according to Embodiment 1 is described as an example of an antenna device that is mounted on an aircraft that is an example of a moving body and performs communication with a communication satellite that is an example of a target.
- an aircraft coordinate system having an X axis, a Y axis, and a Z axis is set and appropriately referred to.
- the Y axis indicates the traveling direction of the aircraft 2
- the Z axis indicates a direction orthogonal to the bottom surface of the aircraft
- the X axis is orthogonal to the Y axis and the Z axis.
- the bottom surface of the aircraft is a horizontal surface when the aircraft is stopped at a flat place on the ground.
- FIG. 1 is a view of the antenna device 1 as viewed from the rear in the traveling direction of the aircraft 2 toward the front in the traveling direction.
- the antenna device 1 is provided in a recess 2b formed on the outer surface 2a of the aircraft 2. Since the aircraft 2 and the communication satellite each move, the position of the communication satellite viewed from the aircraft 2 changes. Therefore, the antenna device 1 performs beam scanning, controls to direct the beam toward the communication satellite, and communicates with the communication satellite.
- the antenna device 1 includes a beam scanning type planar antenna 11 that transmits and receives radio waves to and from a communication satellite.
- An attitude control unit 12 is attached to the planar antenna 11.
- the attitude control unit 12 is fixed to the bottom surface 2c of the recess 2b. Specifically, the attitude control unit 12 includes at least three support units that support the planar antenna 11 in the Z-axis direction.
- the planar antenna 11 can be inclined at an arbitrary angle in an arbitrary direction with respect to the bottom surface 2c, as shown in FIG. In FIG. 2, the planar antenna 11 is inclined from the bottom surface 2c by an angle ⁇ counterclockwise.
- the bottom surface 2c is a horizontal surface when the aircraft is stopped at a flat place on the ground.
- the antenna device 1 generates a reception signal from the radio wave received from the communication satellite and sends the reception signal to the communication device 3.
- the communication device 3 includes an amplifier, a filter, a mixer, and the like, processes a received signal, generates a desired signal, and outputs it to the external device 4. Further, the communication device 3 processes the signal acquired from the external device 4 to generate a transmission signal and sends it to the antenna device 1.
- the antenna device 1 transmits a radio wave generated from a transmission signal.
- the antenna device 1 electrically communicates the beam of the planar antenna 11 and the antenna control unit 13 that controls the attitude control unit 12 in addition to the planar antenna 11 and the attitude control unit 12 described above.
- a scanning control unit 14 that faces the satellite and a target direction calculation unit 15 that calculates the direction of the communication satellite are provided.
- the antenna control unit 13, the scanning control unit 14, and the target direction calculation unit 15 are accommodated inside the aircraft 2.
- the antenna control unit 13 controls the attitude control unit 12 so that the planar antenna 11 faces the direction of the communication satellite calculated by the target direction calculation unit 15. In other words, the antenna control unit 13 controls the attitude control unit 12 so that the planar antenna 11 faces the direction of the communication satellite.
- the scanning control unit 14 controls beam scanning by the planar antenna 11.
- the scanning control unit 14 adjusts the excitation phase of the antenna element included in the planar antenna 11 according to the signal level of the received signal when beam scanning is performed, and directs the beam of the planar antenna 11 toward the communication satellite.
- the scanning control unit 14 limits the beam scanning range to a range where a grating lobe described later does not occur. Details of each part of the antenna device 1 will be described below.
- the planar antenna 11 is composed of a phased array antenna having a plurality of antenna elements 11a as shown in FIG.
- a linear antenna, a slot antenna, a microstrip antenna, or the like is used as the antenna element 11a included in the planar antenna 11.
- the antenna elements 11 a are arranged in a triangular arrangement on the main surface of the planar antenna 11.
- the coordinate system of FIG. 4 is an antenna coordinate system that rotates according to the inclination of the planar antenna 11 with respect to the horizontal plane.
- the Z ′ axis is an axis orthogonal to the antenna surface on which the antenna element 11 a is disposed.
- the X ′ axis and the Y ′ axis are the arrangement directions of the antenna elements 11 a.
- the X ′ axis and the Y ′ axis are orthogonal to each other and orthogonal to the Z ′ axis.
- the antenna elements 11a are arranged at an interval of 2dx in the X'-axis direction and 2dy in the Y'-axis direction. Further, the antenna elements 11a are arranged at intervals of dx in the X′-axis direction and dy in the Y′-axis direction from each antenna element 11a arranged as described above.
- the beam direction of the planar antenna 11 is represented by a scanning angle ( ⁇ , ⁇ ) as shown in FIG.
- the angle ⁇ represents an angle formed by the beam direction and the Z ′ axis.
- the angle ⁇ indicates an angle formed by the X ′ axis and the plane including the beam direction and the Z ′ axis.
- the angle formed by the plane including the beam direction and the Z ′ axis and the Y ′ axis is represented by (90 ° ⁇ ).
- the range that the scanning angle ⁇ can take is a range of ⁇ / 2 ⁇ ⁇ ⁇ ⁇ / 2. This range is called the visible region.
- the gain of the antenna pattern increases periodically, and there is a peak value called a grating lobe other than the main beam.
- the attitude control unit 12 is attached between the back surface and the bottom surface 2c of the planar antenna 11, and mechanically controls the attitude of the planar antenna 11.
- the antenna control unit 13 controls the attitude control unit 12 to direct the planar antenna 11 in a predetermined direction with respect to the communication satellite.
- the antenna control unit 13 acquires the direction of the communication satellite viewed from the aircraft 2 from the target direction calculation unit 15 described later, and performs attitude control in order to extend the Z ′ axis in the direction of the communication satellite.
- the unit 12 is controlled. As a result, the Z ′ axis extends in the direction of the communication satellite.
- the scanning control unit 14 includes a phase shifter 141 and a distribution / synthesis circuit 142 provided for each antenna element 11a.
- the radio waves received by the antenna element 11a are synthesized by the distribution / synthesis circuit 142, and a reception signal is generated.
- the scanning control unit 14 sends a reception signal to the communication device 3. Further, the scanning control unit 14 acquires a transmission signal from the communication device 3.
- the transmission signal is distributed by the distribution / synthesis circuit 142 and output to each phase shifter 141.
- the scanning control unit 14 controls the beam direction of the planar antenna 11 by adjusting the excitation phase with each phase shifter 141.
- the scanning control unit 14 acquires the direction of the communication satellite viewed from the aircraft 2 from the target direction calculation unit 15 described later.
- the scanning control unit 14 controls beam scanning by the planar antenna 11 based on the direction of the communication satellite viewed from the aircraft 2. Furthermore, the scanning control unit 14 determines the direction in which the signal level becomes the highest, that is, the communication based on the step track method according to the signal level of the reception signal generated from the radio wave received from the communication satellite when the beam scanning is performed. Search for satellite direction. When the direction of the communication satellite is searched, the scanning control unit 14 adjusts the excitation phase of the antenna element 11a and directs the beam of the planar antenna 11 toward the communication satellite.
- the visible region of the planar antenna 11 may include not only a main beam having a gain peak but also a grating lobe.
- FIG. 6 shows an example of the main beam and the grating lobe. In the example of FIG. 6, the main beam exists in the direction of 45 °, but there is also a grating lobe having a gain peak similar to that of the main beam in the direction of ⁇ 45 °.
- FIG. 7 is a grating lobe diagram showing the position of the grating lobe with respect to the visible region.
- the Tx axis in FIG. 7 represents sin ⁇ cos ⁇
- the Ty axis represents sin ⁇ sin ⁇ .
- the visible region is indicated by a circle with a radius of 1 centered on the origin.
- the direction of the target that is, the arrival direction of the radio wave is indicated by a black circle
- the grating lobe is indicated by a white circle.
- the grating lobe is located in the visible region, that is, a grating lobe is generated.
- the grating lobe spacing in the grating lobe diagram is the value obtained by dividing the free space wavelength ⁇ by dx shown in FIG. 4 or the free space wavelength ⁇ divided by dy shown in FIG. Represented by value.
- the distance between the antenna elements 11a increases, that is, when dx and dy increase, the distance between the grating lobes on the grating lobe diagram decreases. As a result, the range of scanning angles where no grating lobe occurs is narrowed.
- the condition for generating the grating lobe is determined according to the interval between the antenna elements 11a.
- the range of the scanning angles ⁇ and ⁇ in which no grating lobe is generated is determined in advance according to the interval between the antenna elements 11a. Therefore, the scanning control unit 14 limits the beam scanning range of the planar antenna 11 to a range in which no grating lobe is included in the visible region, that is, a grating lobe determined by a combination of ⁇ and ⁇ does not occur.
- the scanning control unit 14 restricts the scanning angles ⁇ and ⁇ of the planar antenna 11 to ranges below the maximum scanning angles ⁇ LMT and ⁇ LMT determined by the distances dx and dy of the antenna element 11a, and the beam Scan.
- the scanning control unit 14 holds in advance a maximum scanning angle ⁇ LMT of ⁇ and a maximum scanning angle ⁇ LMT of ⁇ .
- ⁇ LMT and ⁇ LMT can be determined in the design stage of the planar antenna 11. Then, the scanning control unit 14 performs beam scanning while maintaining the scanning angle of the planar antenna 11 in the range of ⁇ LMT ⁇ ⁇ ⁇ ⁇ LMT and in the range of ⁇ LMT ⁇ ⁇ ⁇ LMT .
- the scanning control unit 14 determines whether the scanning angle ⁇ is in the range of ⁇ LMT ⁇ ⁇ ⁇ ⁇ LMT , and the scanning angle ⁇ is in the range of ⁇ LMT ⁇ ⁇ ⁇ ⁇ LMT .
- the target direction calculation unit 15 acquires the position information of the communication satellite and the predicted position information of the aircraft 2 from an inertial navigation device that is an external device (not shown). Then, the target direction calculation unit 15 calculates the direction of the communication satellite viewed from the aircraft 2 based on the position information of the communication satellite and the predicted position information of the aircraft 2.
- the position information of the communication satellite includes the latitude, longitude, and altitude of the communication satellite.
- the position information of the aircraft 2 includes the latitude, longitude, and altitude of the aircraft 2.
- the antenna device 1 having the above-described configuration performs beam scanning while maintaining the beam scanning range of the planar antenna 11 within a range in which no grating lobe occurs with the Z ′ axis directed to the communication satellite.
- the operation of the antenna device 1 will be described with reference to FIG.
- the target direction calculation unit 15 calculates the direction of the communication satellite as viewed from the aircraft 2 at regular time intervals (step S11). Specifically, the target direction calculation unit 15 calculates the direction of the communication satellite viewed from the aircraft 2 based on the position information of the communication satellite and the predicted position information of the aircraft 2. Then, the target direction calculation unit 15 sends the calculated direction of the communication satellite to the antenna control unit 13 and the scanning control unit 14.
- the direction of the communication satellite is represented by an azimuth angle and an elevation angle.
- the antenna control unit 13 When the antenna control unit 13 acquires the direction of the communication satellite viewed from the aircraft 2 from the target direction calculation unit 15, the antenna control unit 13 sets the attitude control unit 12 to direct the Z ′ axis toward the communication satellite according to the direction of the communication satellite. Control (step S12). Specifically, the antenna control unit 13 adjusts the length of the support unit included in the attitude control unit 12 in the Z-axis direction, thereby tilting the planar antenna 11 and directing the Z ′ axis toward the communication satellite.
- the scanning control unit 14 acquires information indicating the signal level of the received signal from the communication device 3.
- the scanning control unit 14 performs beam scanning while changing the beam direction of the planar antenna 11, and searches for a direction in which the signal level of the received signal becomes the highest when beam scanning is performed (step S13).
- the scanning control unit 14 limits the range of beam scanning to a range in which no grating lobe is generated.
- the scanning control unit 14 directs the beam in the direction of the searched communication satellite and communicates with the communication satellite. (Step S14).
- step S14 when the signal level of the received signal is reduced to, for example, a threshold level or lower, the process returns to step S11 and the above-described processing is repeated.
- FIGS. 10 and 11 are obtained by adding the beam directions to FIGS. 1 and 2, respectively.
- the beam scanning range without generating a grating lobe is from D2 in FIG. It is limited to the range up to D3.
- the planar antenna 11 is tilted with respect to the horizontal plane, and then beam scanning is performed in a range of ⁇ LMT ⁇ ⁇ ⁇ ⁇ LMT .
- the planar antenna 11 is tilted counterclockwise around the Y axis, but the planar antenna 11 can also be tilted clockwise around the Y axis.
- the antenna according to the first embodiment is obtained by combining the scanning range when the planar antenna 11 is tilted counterclockwise around the Y axis and the scanning range when the planar antenna 11 is tilted clockwise around the Y axis.
- the apparatus 1 can perform beam scanning over a wider range without generating a grating lobe. Further, as shown in FIG. 11, when the planar antenna 11 is tilted with respect to the bottom surface 2c, a part of the planar antenna 11 is located inside the recess 2b, thereby reducing the influence on the aerodynamic characteristics of the aircraft 2. It is possible.
- the beam scanning range is a range in which no grating lobe occurs when beam scanning is performed by mechanically controlling the attitude of the planar antenna 11. It is possible to limit to. As a result, it is possible to suppress the generation of grating lobes. Since the generation of grating lobes can be suppressed, the interval between the antenna elements 11a can be increased. Further, the antenna controller 13 mechanically controls the attitude of the planar antenna 11 to perform beam scanning, so that it is possible to perform beam scanning in a region closer to the horizontal plane while suppressing generation of grading lobes.
- the planar antenna 11 can be downsized because the orientation of the planar antenna 11 is mechanically controlled and the Z ′ axis is directed to the target.
- the antenna control unit 13 mechanically controls the attitude of the planar antenna 11 so that the beams of some of the antenna elements 11a are communication satellites as indicated by solid arrows in FIG. However, as indicated by a dotted arrow, the beam of another part of the antenna element 11a may be blocked by the edge of the recess 2b.
- the antenna control unit 13 mechanically controls the attitude of the planar antenna 11 within a range that does not cause beam blocking by the edge of the recess 2b. Specifically, when the antenna control unit 13 controls the attitude control unit 12, the beams of the plurality of antenna elements 11 a are radiated to the outside of the aircraft 2 through positions separated from the edges of the recesses 2 b.
- the range that does not cause blocking is defined based on the range in which the planar antenna 11 can be rotated around the X axis and the range in which the planar antenna 11 can be rotated around the Y axis.
- the range that does not cause blocking is determined by the shape and size of the recess 2b and the position of the planar antenna 11 in the recess 2b.
- the antenna control unit 13 maintains a range that does not cause blocking.
- the antenna control unit 13 controls the attitude control unit 12 so that the Z ′ axis faces the communication satellite within a range in which blocking does not occur.
- the beam of any antenna element 11a is not blocked by the edge of the recess 2b by moving the lower end of the planar antenna 11 in the Z-axis direction above the position of FIG.
- the antenna device 1 According to the antenna device 1 according to the second embodiment, it is possible to prevent the beams of the plurality of antenna elements 11a from being blocked by the edge of the recess 2b.
- FIG. 14 is a diagram illustrating a hardware configuration example of the scan control unit 14 according to the embodiment.
- the scanning control unit 14 includes a processor 21, a memory 22, and an interface 23 as a hardware configuration for controlling each unit. Each function of these devices is realized by the processor 21 executing a program stored in the memory 22. Further, the scanning control unit 14 stores the maximum scanning angles ⁇ LMT and ⁇ LMT in the memory 22.
- the interface 23 connects each device and establishes communication, and may be configured with a plurality of types of interfaces as necessary.
- the scanning control unit 14 is connected to the target direction calculation unit 15 and the communication device 3 via the interface 23 to perform communication.
- FIG. 14 shows an example in which each of the processor 21 and the memory 22 is configured as one, but a plurality of processors 21 and a plurality of memories 22 may cooperate to execute each function.
- the central part that has the processor 21, the memory 22, and the interface 23 and performs the control processing can be realized by using a normal computer system without depending on a dedicated system.
- a computer program for executing the above-described operation is recorded on a computer-readable recording medium (flexible disc, CD-ROM (Compact Disc-Read-Only Memory), DVD-ROM (Digital Versatile Disc-Read-Only Memory), etc.
- the scanning control unit 14 that executes the above-described processing may be configured by storing and distributing the program in the computer and installing the computer program in the computer.
- the computer program may be stored in a storage device included in a server device on a communication network, and the scan control unit 14 may be configured by being downloaded by a normal computer system.
- the function of the scanning control unit 14 is realized by sharing an OS (Operating System) and an application program, or by cooperation between the OS and the application program, only the application program part is stored in a recording medium or a storage device. May be.
- OS Operating System
- the computer program may be posted on a bulletin board (BBS: Bulletin Board System) on a communication network, and the computer program may be distributed via the communication network. Then, the above-described processing may be executed by starting this computer program and executing it in the same manner as other application programs under the control of the OS.
- BSS Bulletin Board System
- the configuration of the antenna device 1 is not limited to the above-described configuration.
- the arrangement method of the antenna elements 11a is arbitrary, and may be a square arrangement.
- the moving body on which the antenna device 1 is mounted can also be mounted on an arbitrary moving body such as a vehicle or a ship.
- the communication destination is not limited to the communication satellite, and can communicate with an arbitrary target, and communicates with a communication device mounted on a vehicle, a communication device fixed on the ground, or the like. Further, one position of the antenna device 1 and the target may be fixed.
- steps S11 to S14 shown in FIG. 9 can be changed as appropriate.
- the processes of steps S13 and S14 can be repeated over a predetermined time, or can be repeated a predetermined number of times.
- the time and number of times that steps S13 and S14 are repeated can be arbitrarily determined according to, for example, the types of the target and moving body, the characteristics of the antenna device 1, and the like.
- step S14 if the signal level of the received signal is reduced to, for example, a threshold level or lower, the process returns to step S13.
- step S13 If the beam direction in which the received signal intensity exceeds the threshold cannot be detected in step S13, the process returns to step S11. You may make it do. As described above, steps S13 and S14 are repeated, and a small attitude control mechanism with low responsiveness is used as the attitude control unit 12 by changing the direction of the beam with respect to a change in the relative position of the target. it can.
- the biaxial gimbal mechanism is illustrated as the attitude control unit 12, the attitude of the planar antenna 11, that is, the orientation of the antenna surface, can be mechanically changed or controlled like a gimbal mechanism having three or more degrees of freedom. Any mechanism can be employed.
- the antenna control unit 13 may only control the attitude control unit 12 in such a direction as to reduce the angle between the line connecting the planar antenna 11 and the communication satellite and the Z ′ axis.
- the normal direction of the antenna surface that is, the Z ′ axis is directed to the communication satellite.
- the direction of the beam whose excitation phase is the origin is the Z′-axis direction of the antenna 11.
- the antenna control unit 13 moves the Z ′ axis from the communication satellite in order to direct the direction of the beam at the origin to the communication satellite.
- the posture control unit 12 may be controlled in a direction shifted by the predetermined angle.
- the scanning control unit 14 may adjust the excitation phase and the excitation amplitude of the antenna element 11a using a variable phase shifter and an amplitude adjuster.
- the scanning control unit 14 includes an amplifier, a frequency converter, an AD (Analog-to-Digital) converter, and a digital signal processing circuit provided for each antenna element 11a. The circuit adjusts the excitation phase and excitation amplitude in the digital domain.
- the scanning control unit 14 is a range of attitude error that is a difference between the Z ′ axis and the direction of the communication satellite caused by restriction of the driving range of the attitude control unit 12, mechanical structure error, control processing error, etc.
- the direction of the communication satellite may be searched.
- the scanning control unit 14 determines the difference between the direction of the communication satellite acquired from the target direction calculation unit 15 and the direction of the Z ′ axis acquired from the attitude control unit 12, as well as a mechanical structure error and control processing that may occur. Is calculated by calculating a possible attitude error value and searching for the direction of the communication satellite within the range of the attitude error.
- the Z ′ axis is set to the center of the scanning range, but it is not necessary to set the Z ′ axis to the center of the scanning range.
- the scanning control unit 14 may search for the direction of the communication satellite by a lobe switch method.
- the target direction calculation unit 15 may calculate the direction of the communication satellite as viewed from the aircraft 2 using position information of the aircraft 2 based on at least one of a gyro sensor and GPS (Global Positioning System).
- 1 antenna device 2 aircraft, 2a outer surface, 2b recess, 2c bottom surface, 3 communication device, 4 external device, 11 planar antenna, 11a antenna element, 12 attitude control unit, 13 antenna control unit, 14 scanning control unit, 15 target direction Calculation unit, 21 processor, 22 memory, 23 interface, 141 phase shifter, 142 distribution / synthesis circuit.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
平面アンテナ(11)は、複数のアンテナ素子を有し、目標物に対して電波の送受信を行う。姿勢制御部(12)は、平面アンテナ(11)に取り付けられ、平面アンテナ(11)の姿勢を機械的に制御する。アンテナ制御部(13)は、平面アンテナ(11)が、目標物を基準として予め定められた向きを向くように、姿勢制御部(12)を制御する。走査制御部(14)は、平面アンテナ(11)によるビーム走査を制御し、ビーム走査を行った際の受信信号の信号レベルに応じて、各アンテナ素子の励振位相を調節し、平面アンテナ(11)のビームを目標物に向ける。走査制御部(14)は、ビーム走査の範囲をグレーティングローブが生じない範囲に制限する。
Description
本発明は、アンテナ装置、アンテナ制御方法、およびプログラムに関する。
航空機には、衛星通信用アンテナが搭載されている。航空機と通信衛星はその相対位置が変化するため、航空機に搭載された衛星通信用アンテナとしては、機械駆動方式のアンテナ、ビーム走査型のアンテナ、機械駆動が可能なビーム走査型のアンテナ等のアンテナの指向方向を調整する機能を有するものが主に使用されている。この種の衛星通信用アンテナの一例が、特許文献1に開示されている。特許文献1に開示される衛星通信用アンテナは、移動体に搭載されるフェーズドアレイアンテナであって、アンテナのビームの向きを走査可能であると共にアンテナの角度を複数のアクチュエータによって制御可能な構成を有する。
衛星通信用アンテナには、高利得化、消費電力の低減、コストの低減等が求められる。そこで、衛星通信用アンテナのアンテナ素子の数を減らすことが考えられる。
衛星通信用アンテナの装置占有面積が同一だとすると、アンテナ素子の数が減ると、素子間隔は広がることになる。しかし、フェーズドアレーアンテナにおいて、アンテナ素子の間隔が広がると、アンテナの可視領域に、主ビームだけでなく、グレーティングローブと呼ばれる副ビームが含まれることがある。アンテナの可視領域にグレーティングローブが含まれると、主ビームの方向以外の方向において電波の送受信を行うことで、不要輻射が発生し、利得が低下する。
同様の問題は、航空機に限られず、車両、船舶等の他の移動体に搭載されたフェーズドアレーアンテナから構成される衛星通信用アンテナでも、同様に発生する。
本発明は上述の事情に鑑みてなされたものであり、アンテナ素子数を抑えつつ、上述のグレーティングローブの発生を抑制しながら、ビーム走査を行うことが可能なアンテナ装置を提供することを目的とする。
上記目的を達成するため、本発明に係るアンテナ装置は、平面アンテナ、姿勢制御部、アンテナ制御部、および、走査制御部を備える。平面アンテナは、複数のアンテナ素子を有し、目標物に対して電波の送受信を行う。姿勢制御部は、平面アンテナに取り付けられ、平面アンテナの姿勢を機械的に制御する。アンテナ制御部は、平面アンテナが、目標物を基準として予め定められた向きを向くように、姿勢制御部を制御する。走査制御部は、平面アンテナによるビーム走査を制御し、ビーム走査を行った際に目標物から受信した電波から生成される受信信号の信号レベルに応じて、複数のアンテナ素子の励振位相を調節して、平面アンテナのビームを目標物に向ける。走査制御部は、ビーム走査の範囲を、複数のアンテナ素子の間隔に応じて定められる、グレーティングローブが生じない範囲に制限する。
本発明に係るアンテナ装置によれば、平面アンテナの姿勢を機械的に制御した上で、ビーム走査を行う。アンテナ装置は、ビーム走査の範囲を、アンテナ素子の間隔に応じたグレーティングローブが生じない範囲に制限する。その結果、アンテナ素子数を抑えつつグレーティングローブの発生を抑制しながらビーム走査を行うアンテナ装置を提供することが可能である。
以下、本発明の実施の形態に係るアンテナ装置について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
(実施の形態1)
実施の形態1に係るアンテナ装置を、移動体の一例である航空機に搭載され、目標物の一例である通信衛星との通信を行うアンテナ装置を例に説明する。図1に示すアンテナ装置1の説明において、理解を容易にするため、X軸、Y軸、およびZ軸を有する航空機座標系を設定し、適宜参照する。航空機座標系において、Y軸は、航空機2の進行方向を示し、Z軸は航空機の底面に直交する方向を示し、X軸は、Y軸およびZ軸に直交する。なお航空機の底面は、航空機が地上の平坦な場所に停止している際に水平な面とする。図1は、航空機2の進行方向後方から進行方向前方に向かって、アンテナ装置1を見た図である。
実施の形態1に係るアンテナ装置を、移動体の一例である航空機に搭載され、目標物の一例である通信衛星との通信を行うアンテナ装置を例に説明する。図1に示すアンテナ装置1の説明において、理解を容易にするため、X軸、Y軸、およびZ軸を有する航空機座標系を設定し、適宜参照する。航空機座標系において、Y軸は、航空機2の進行方向を示し、Z軸は航空機の底面に直交する方向を示し、X軸は、Y軸およびZ軸に直交する。なお航空機の底面は、航空機が地上の平坦な場所に停止している際に水平な面とする。図1は、航空機2の進行方向後方から進行方向前方に向かって、アンテナ装置1を見た図である。
アンテナ装置1は、航空機2の外面2aに形成された凹部2bに設けられる。航空機2および通信衛星はそれぞれ移動するため、航空機2から見た通信衛星の位置は変化する。そこで、アンテナ装置1は、ビーム走査を行って、ビームを通信衛星に向けるよう制御し、通信衛星と通信する。アンテナ装置1は、通信衛星に対して電波の送受信を行うビーム走査型の平面アンテナ11を有する。平面アンテナ11には、姿勢制御部12が取り付けられる。姿勢制御部12は、凹部2bの底面2cに固定されている。詳細には、姿勢制御部12は、平面アンテナ11をZ軸方向に支持する少なくとも3つの支持部を有する。支持部のZ軸方向の長さを調節することで、図2に示すように、平面アンテナ11を底面2cに対して任意の向きに任意の角度だけ傾斜させることが可能である。図2では、平面アンテナ11は、底面2cから、反時計回りに角度ψだけ傾いている。なお底面2cは、航空機が地上の平坦な場所に停止している際に水平な面とする。
アンテナ装置1は、図3に示すように、通信衛星から受信した電波から受信信号を生成し、受信信号を通信機3に送る。通信機3は、増幅器、フィルタ、ミキサ等を備え、受信信号を処理して所望の信号を生成し、外部装置4に出力する。また通信機3は、外部装置4から取得した信号を処理して送信信号を生成し、アンテナ装置1に送る。アンテナ装置1は、送信信号から生成した電波を送信する。
図3に示すように、アンテナ装置1は、電気的には、上述の平面アンテナ11および姿勢制御部12に加えて、姿勢制御部12を制御するアンテナ制御部13、平面アンテナ11のビームを通信衛星に向ける走査制御部14、および、通信衛星の方向を算出する目標方向算出部15を備える。
アンテナ制御部13、走査制御部14、および目標方向算出部15は、航空機2の内部に収容される。アンテナ制御部13は、平面アンテナ11が、目標方向算出部15が算出した通信衛星の方向に向くように、姿勢制御部12を制御する。換言すれば、アンテナ制御部13が姿勢制御部12を制御することで、平面アンテナ11が通信衛星の方向を向く。走査制御部14は、平面アンテナ11によるビーム走査を制御する。またビーム走査を行った際の受信信号の信号レベルに応じて、走査制御部14は、平面アンテナ11が有するアンテナ素子の励振位相を調節して、平面アンテナ11のビームを通信衛星に向ける。なお走査制御部14は、ビーム走査の範囲を、後述するグレーティングローブが生じない範囲に制限する。アンテナ装置1の各部の詳細について以下に説明する。
アンテナ制御部13、走査制御部14、および目標方向算出部15は、航空機2の内部に収容される。アンテナ制御部13は、平面アンテナ11が、目標方向算出部15が算出した通信衛星の方向に向くように、姿勢制御部12を制御する。換言すれば、アンテナ制御部13が姿勢制御部12を制御することで、平面アンテナ11が通信衛星の方向を向く。走査制御部14は、平面アンテナ11によるビーム走査を制御する。またビーム走査を行った際の受信信号の信号レベルに応じて、走査制御部14は、平面アンテナ11が有するアンテナ素子の励振位相を調節して、平面アンテナ11のビームを通信衛星に向ける。なお走査制御部14は、ビーム走査の範囲を、後述するグレーティングローブが生じない範囲に制限する。アンテナ装置1の各部の詳細について以下に説明する。
平面アンテナ11は、図4に示すように、複数のアンテナ素子11aを有するフェーズドアレーアンテナから構成される。平面アンテナ11が有するアンテナ素子11aとして、線状アンテナ、スロットアンテナ、マイクロストリップアンテナ等が用いられる。アンテナ素子11aは、平面アンテナ11の主面において、三角配列で配置される。図4の座標系は、平面アンテナ11の水平面に対する傾斜に応じて、回転するアンテナ座標系である。Z’軸は、アンテナ素子11aが配置されるアンテナ面に直交する軸とする。X’軸およびY’軸は、アンテナ素子11aの配列方向とする。X’軸およびY’軸は、互いに直交し、かつ、Z’軸に直交する。アンテナ素子11aは、X’軸方向に2dx、かつ、Y’軸方向に2dyの間隔で配置される。さらに上述のように配置された各アンテナ素子11aからX’軸方向にdx、かつ、Y’軸方向にdyの間隔をあけて、アンテナ素子11aが配置される。
平面アンテナ11のビーム方向は、図5に示すように、走査角(θ,φ)で表される。角度θは、ビーム方向とZ’軸とのなす角を示す。また角度φは、ビーム方向およびZ’軸を含む平面とX’軸とのなす角を示す。なおビーム方向およびZ’軸を含む平面とY’軸とのなす角は、(90°-φ)で表される。平面アンテナ11において、走査角θが取り得る範囲は、-π/2≦θ≦π/2の範囲である。この範囲を可視領域という。アンテナパターンのゲインは周期的に大きくなり、主ビーム以外にも、グレーティングローブと呼ばれるピーク値が存在する。
上述のように、姿勢制御部12は、平面アンテナ11の裏面と底面2cとの間に取り付けられていて、平面アンテナ11の姿勢を機械的に制御する。アンテナ制御部13は、平面アンテナ11を、通信衛星を基準として予め定められた向きに向かせるための、姿勢制御部12の制御を行う。本実施の形態では、アンテナ制御部13は、後述する目標方向算出部15から、航空機2から見た通信衛星の方向を取得し、Z’軸を該通信衛星の方向に延ばすために、姿勢制御部12を制御する。その結果、Z’軸は、通信衛星の方向に延びる。
走査制御部14は、アンテナ素子11aごとに設けられた移相器141、および、分配/合成回路142を有する。アンテナ素子11aで受信された電波は、分配/合成回路142で合成され、受信信号が生成される。走査制御部14は、受信信号を通信機3に送る。また走査制御部14は、通信機3から、送信信号を取得する。送信信号は分配/合成回路142で分配されて、各移相器141に出力される。走査制御部14は、各移相器141によって励振位相を調節することで、平面アンテナ11のビーム方向を制御する。
走査制御部14は、後述する目標方向算出部15から、航空機2から見た通信衛星の方向を取得する。そして、走査制御部14は、航空機2から見た通信衛星の方向に基づき、平面アンテナ11によるビーム走査を制御する。さらに走査制御部14は、ビーム走査を行った際に通信衛星から受信した電波から生成される受信信号の信号レベルに応じて、ステップトラック方式に基づき、信号レベルが最も高くなる方向、すなわち、通信衛星の方向を探索する。通信衛星の方向が探索されると、走査制御部14は、アンテナ素子11aの励振位相を調節して、平面アンテナ11のビームを通信衛星に向ける。
アンテナ素子11aの間隔が広がると、平面アンテナ11の可視領域に、ゲインのピークを有する主ビームだけでなく、グレーティングローブが含まれることがある。図6に主ビームおよびグレーティングローブの一例を示す。図6の例では、45°の方向に主ビームが存在するが、-45°の方向にも主ビームと同程度のゲインのピークを有するグレーティングローブが存在する。図7は、可視領域に対するグレーティングローブの位置を示すグレーティングローブダイアグラムである。図7のTx軸は、sinθcosφを示し、Ty軸は、sinθsinφを示す。可視領域は、原点を中心とする半径1の円で示される。図7において、目標物の方向、すなわち、電波の到来方向を黒丸で示し、グレーティングローブを白丸で示す。図7に、目標物がθ=0°、φ=0°で定まる方向に位置する場合の例を示す。この場合、可視領域にグレーティングローブが含まれない。すなわち、グレーティングローブが生じない。
図8に、目標物がθ=θ1、φ=φ1で定まる方向に位置する場合の例を示す。グレーティングローブは、目標物の位置に応じて、θ=0°、φ=0°の状態からグレーティングローブダイアグラム上で共に平行移動する。その結果、可視領域にグレーティングローブが位置する、すなわち、グレーティングローブが生じる。図7および図8に示すように、グレーティングローブダイアグラムにおけるグレーティングローブの間隔は、自由空間波長λを図4に示すdxで除算した値、または、自由空間波長λを図4に示すdyで除算した値で表される。アンテナ素子11aの間隔が広がる、すなわち、dx,dyが大きくなると、グレーティングローブダイアグラム上でのグレーティングローブの間隔が狭まる。その結果、グレーティングローブが生じない走査角の範囲は狭まる。
上述のように、グレーティングローブが生じる条件は、アンテナ素子11aの間隔に応じて決まる。換言すれば、グレーティングローブが生じない走査角θ,φの範囲は、アンテナ素子11aの間隔に応じて予め定められる。そこで走査制御部14は、平面アンテナ11のビーム走査の範囲を、可視領域にグレーティングローブが含まれない、すなわち、θおよびφの組み合わせで決定されるグレーティングローブが生じない範囲に制限する。詳細には、走査制御部14は、平面アンテナ11の走査角θ,φのそれぞれを、アンテナ素子11aの間隔dx,dyにより定められる最大走査角θLMT,φLMT以下の範囲に制限し、ビーム走査を行う。なお走査制御部14は、θの最大走査角θLMTおよびφの最大走査角φLMTを予め保持している。θLMTおよびφLMTは、平面アンテナ11の設計段階において、定めることができる。そして、走査制御部14は、平面アンテナ11の走査角を、-θLMT≦θ≦θLMTの範囲、かつ、-φLMT≦φ≦φLMTの範囲に維持して、ビーム走査を行う。
上記処理を行うため、走査制御部14は、走査角θが-θLMT≦θ≦θLMTの範囲内にあるか否か、および、走査角φが-φLMT≦φ≦φLMTの範囲内にあるか否かを判定する判定回路を有する。また走査制御部14は、判定回路が、走査角θが-θLMT≦θ≦θLMTの範囲内にない、または、走査角φが-φLMT≦φ≦φLMTの範囲内にないと判定した場合に、電波の送信を停止する停波制御部を有する。なおアンテナ制御部13の制御によって、Z’軸が通信衛星に向いている場合、走査角θ,φのいずれかのみを調節しながらビーム走査することで、最も受信信号の信号レベルが高くなる方向を探索することが可能である。
目標方向算出部15は、図示しない外部機器である慣性航行装置から、通信衛星の位置情報および航空機2の予測位置情報を取得する。そして、目標方向算出部15は、通信衛星の位置情報および航空機2の予測位置情報に基づいて、航空機2から見た通信衛星の方向を算出する。通信衛星の位置情報は、通信衛星の緯度、経度、および高度を含む。航空機2の位置情報は、航空機2の緯度、経度、および高度を含む。
上述の構成を有するアンテナ装置1は、Z’軸を通信衛星に向け、平面アンテナ11のビーム走査の範囲をグレーティングローブが生じない範囲内に維持しながら、ビーム走査を行う。アンテナ装置1の動作を図9を用いて説明する。目標方向算出部15は、一定の時間間隔で、航空機2から見た通信衛星の方向を算出する(ステップS11)。詳細には、目標方向算出部15は、通信衛星の位置情報、および、航空機2の予測位置情報に基づいて、航空機2から見た通信衛星の方向を算出する。そして、目標方向算出部15は、算出した通信衛星の方向をアンテナ制御部13および走査制御部14に送る。通信衛星の方向は、方位角および仰角で表される。
アンテナ制御部13は、目標方向算出部15から、航空機2から見た通信衛星の方向を取得すると、該通信衛星の方向に応じてZ’軸を通信衛星に向けるために、姿勢制御部12を制御する(ステップS12)。詳細には、アンテナ制御部13は、姿勢制御部12が有する支持部のZ軸方向の長さを調節することで、平面アンテナ11を傾けてZ’軸を通信衛星に向ける。
走査制御部14は、通信機3から受信信号の信号レベルを示す情報を取得する。走査制御部14は、平面アンテナ11のビーム方向を変化させながらビーム走査を行い、ビーム走査した際の受信信号の信号レベルが最も高くなる方向を探索する(ステップS13)。なおビーム走査する際、走査制御部14は、ビーム走査の範囲をグレーティングローブが生じない範囲に制限する。ステップS13の処理によって、最も信号レベルが高くなる方向、すなわち、通信衛星の方向が探索されると、走査制御部14は、探索された通信衛星の方向にビームを向け、通信衛星と通信を行う(ステップS14)。ステップS14において、受信信号の信号レベルが、例えば、閾値レベル以下まで低減すると、ステップS11に戻り、上述の処理を繰り返す。
アンテナ制御部13に制御された姿勢制御部12が平面アンテナ11の姿勢を機械的に制御してから、走査制御部14が平面アンテナ11の走査角θをグレーティングローブが発生しない範囲内に維持しながら、ビーム走査することで、グレーティングローブの発生が抑制される。図10、図11はそれぞれ、図1、図2にビーム方向を追記したものである。理解を容易にするために、走査角φを一定とし、走査角θのみ調節する場合を例にして説明する。走査角θ=0の場合のビーム方向D1を、実線の矢印で示す。走査角θ=θLMTの場合のビーム方向D2はおよび走査角θ=-θLMTの場合のビーム方向D3を点線の矢印で示す。
平面アンテナ11の姿勢を機械的に制御しないアンテナ装置、すなわち、平面アンテナ11の向きが図10の状態から変化しない場合は、グレーティングローブを生じさせずにビーム走査できる範囲は、図10におけるD2からD3までの範囲に限定される。実施の形態1に係るアンテナ装置1では、図11に示すように、平面アンテナ11を水平面に対して傾けた上で、-θLMT≦θ≦θLMTの範囲でビーム走査を行う。図11では、Y軸回りに反時計回りに平面アンテナ11を傾けているが、Y軸回りに時計回りに平面アンテナ11を傾けることも可能である。Y軸回りに反時計回りに平面アンテナ11を傾けた場合の走査範囲と、Y軸回りに時計回りに平面アンテナ11を傾けた場合の走査範囲とをあわせることで、実施の形態1に係るアンテナ装置1は、グレーティングローブを発生させることなく、より広い範囲をビーム走査することが可能である。また図11に示すように、平面アンテナ11を底面2cに対して傾斜した際に、平面アンテナ11の一部が凹部2bの内部に位置することで、航空機2の空力特性に及ぼす影響を小さくすることが可能である。
以上説明したとおり、本実施の形態1に係るアンテナ装置1によれば、平面アンテナ11の姿勢を機械的に制御することで、ビーム走査する際に、ビーム走査の範囲をグレーティングローブが生じない範囲に制限することが可能である。その結果、グレーティングローブの発生を抑制することが可能である。グレーティングローブの発生を抑制することが可能となるため、アンテナ素子11aの間隔を広げることが可能となる。またアンテナ制御部13が平面アンテナ11の姿勢を機械的に制御してからビーム走査することで、グレーディングローブの発生を抑制しながら、より水平面に近い領域をビーム走査することが可能である。機械的な姿勢の制御を行わない平面アンテナでは、走査角θの絶対値がπ/2に近づくと、ビームの方向から見たアンテナ開口が小さくなり、ビームの電力半値幅が大きくなって、ゲインが低下してしまう。そのため、通信を可能にするには、平面アンテナを大きくしなければならない。一方、実施の形態1に係るアンテナ装置1では、平面アンテナ11の姿勢を機械的に制御して、Z’軸を目標物に向けるため、平面アンテナ11の小型化が可能である。
(実施の形態2)
実施の形態1のように、アンテナ制御部13によって、平面アンテナ11の姿勢を機械的に制御することで、図12において実線の矢印で示すように、一部のアンテナ素子11aのビームは通信衛星に向かって放射されるが、点線の矢印で示すように、他の一部のアンテナ素子11aのビームが凹部2bの縁によってブロッキングされることがある。
実施の形態1のように、アンテナ制御部13によって、平面アンテナ11の姿勢を機械的に制御することで、図12において実線の矢印で示すように、一部のアンテナ素子11aのビームは通信衛星に向かって放射されるが、点線の矢印で示すように、他の一部のアンテナ素子11aのビームが凹部2bの縁によってブロッキングされることがある。
そこで、実施の形態2に係るアンテナ装置1においては、アンテナ制御部13は、凹部2bの縁によるビームのブロッキングを生じさせない範囲で、平面アンテナ11の姿勢を機械的に制御する。詳細には、アンテナ制御部13が姿勢制御部12を制御することで、複数のアンテナ素子11aのビームが、凹部2bの縁から離隔した位置を通って、航空機2の外部に放射される。ブロッキングを生じさせない範囲は、平面アンテナ11をX軸回りに回転可能な範囲、および、平面アンテナ11をY軸回りに回転可能な範囲に基づいて定義される。またブロッキングを生じさせない範囲は、凹部2bの形状および大きさ、凹部2bにおける平面アンテナ11の位置によって決まる。なおアンテナ制御部13は、ブロッキングを生じさせない範囲を保持している。アンテナ制御部13は、ブロッキングを生じさせない範囲において、Z’軸が通信衛星に向くように、姿勢制御部12を制御する。
図13に示すように、平面アンテナ11のZ軸方向の下端を、図12の位置よりも上方に移動することで、いずれのアンテナ素子11aのビームも、凹部2bの縁によって、ブロッキングされない。
以上説明したとおり、本実施の形態2に係るアンテナ装置1によれば、複数のアンテナ素子11aのビームが凹部2bの縁によってブロッキングされることを抑制することが可能である。
図14は、実施の形態に係る走査制御部14のハードウェアの構成例を示す図である。走査制御部14は、各部を制御するハードウェア構成としてプロセッサ21、メモリ22、およびインターフェース23を備える。これらの装置の各機能は、プロセッサ21がメモリ22に記憶されたプログラムを実行することにより実現される。また走査制御部14は、最大走査角θLMT,φLMTをメモリ22に記憶しておく。インターフェース23は各装置を接続し、通信を確立させるためのものであり、必要に応じて複数の種類のインターフェースで構成されてもよい。走査制御部14は、インターフェース23を介して、目標方向算出部15と通信機3に接続し、通信を行う。図14では、プロセッサ21およびメモリ22をそれぞれ1つで構成する例を示しているが、複数のプロセッサ21および複数のメモリ22が連携して各機能を実行してもよい。
その他、上記のハードウェア構成やフローチャートは一例であり、任意に変更および修正が可能である。
プロセッサ21、メモリ22、およびインターフェース23を有し、制御処理を行う中心となる部分は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。たとえば、上述の動作を実行するためのコンピュータプログラムを、コンピュータが読み取り可能な記録媒体(フレキシブルディスク、CD-ROM(Compact Disc Read-Only Memory)、DVD-ROM(Digital Versatile Disc Read-Only Memory)など)に格納して配布し、上記コンピュータプログラムをコンピュータにインストールすることにより、上述の処理を実行する走査制御部14を構成してもよい。また、通信ネットワーク上のサーバ装置が有する記憶装置に上記コンピュータプログラムを格納しておき、通常のコンピュータシステムがダウンロードすることで走査制御部14を構成してもよい。
また、走査制御部14の機能を、OS(Operating System)とアプリケーションプログラムの分担、またはOSとアプリケーションプログラムとの協働により実現する場合などには、アプリケーションプログラム部分のみを記録媒体や記憶装置に格納してもよい。
また、搬送波にコンピュータプログラムを重畳し、通信ネットワークを介して配信することも可能である。たとえば、通信ネットワーク上の掲示板(BBS:Bulletin Board System)に上記コンピュータプログラムを掲示し、通信ネットワークを介して上記コンピュータプログラムを配信してもよい。そして、このコンピュータプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行してもよい。
以上、本発明の実施の形態を説明したが、本発明は上述した実施の形態に限られない。
例えば、アンテナ装置1の構成は、上述の構成に限られない。一例として、アンテナ素子11aの配列の仕方は任意であり、四角配列でもよい。
アンテナ装置1が搭載される移動体も、車両、船舶等の任意の移動体に搭載可能である。通信先も、通信衛星に限らず、任意の目標物と通信を行うことができ、車両に搭載された通信装置、地上に固定された通信装置等と通信を行う。また、アンテナ装置1と目標物の一方の位置が固定でもよい。
例えば、アンテナ装置1の構成は、上述の構成に限られない。一例として、アンテナ素子11aの配列の仕方は任意であり、四角配列でもよい。
アンテナ装置1が搭載される移動体も、車両、船舶等の任意の移動体に搭載可能である。通信先も、通信衛星に限らず、任意の目標物と通信を行うことができ、車両に搭載された通信装置、地上に固定された通信装置等と通信を行う。また、アンテナ装置1と目標物の一方の位置が固定でもよい。
上述の処理動作・通信動作も例示であり、適宜変更可能である。例えば、図9に示したステップS11-S14の処理を実行する順序は適宜変更可能である。例えば、図9におけるステップS11,S12の処理を行った後に、ステップS13,S14の処理を定められた時間に亘って繰り返し行う、または、定められた回数だけ繰り返し行うことができる。ステップS13,S14を繰り返す時間および回数は、例えば目標物および移動体の種類、アンテナ装置1の特性等に応じて任意に定めることができる。また、ステップS14において、受信信号の信号レベルが、例えば、閾値レベル以下まで低減すると、ステップS13に戻り、ステップS13で受信信号強度が閾値を超えるビームの方向を検出できない場合に、ステップS11にリターンするようにしてもよい。上述のように、ステップS13,S14を繰り返し、目標物の相対位置の変動に対して、ビームの向きを変えることで、姿勢制御部12として、応答性の低い小型の姿勢制御機構を用いることができる。
姿勢制御部12として、2軸のジンバル機構を例示したが、3軸以上の自由度を有するジンバル機構のように、平面アンテナ11の姿勢、即ち、アンテナ面の向きを機械的に変更あるいは制御可能な任意の機構を採用しうる。
アンテナ制御部13の機能として、アンテナ面の法線方向、すなわち、Z’軸を通信衛星に向ける例を開示したが、これに限定されるものではない。アンテナ制御部13は、平面アンテナ11と通信衛星を結ぶ線とZ’軸との角度を小さくする向きに姿勢制御部12を制御するだけでもよい。
実施の形態では、アンテナ制御部13の機能として、アンテナ面の法線方向、すなわち、Z’軸を通信衛星に向ける例を開示した。これは、励振位相が原点のビームの方向がアンテナ11のZ’軸方向であると仮定したものである。励振位相が原点のビームの方向がZ’軸からある角度だけずれる構成の場合、アンテナ制御部13は、励振位相が原点のビームの方向を通信衛星に向けるために、Z’軸を通信衛星から定められたその角度だけずれた方向に向けて姿勢制御部12を制御してもよい。
走査制御部14は、可変移相器および振幅調整器によって、アンテナ素子11aの励振位相および励振振幅を調節してもよい。この場合、走査制御部14は、アンテナ素子11aごとに設けられた増幅器、周波数変換器、およびA-D(Analog-to-Digital)変換器、ならびに、ディジタル信号処理回路を有し、ディジタル信号処理回路によって、ディジタル領域で励振位相および励振振幅を調節する。
また走査制御部14は、姿勢制御部12の駆動範囲の制約、機械的構造の誤差、制御処理の誤差等によって生じたZ’軸と通信衛星の方向との差である姿勢誤差の範囲で、通信衛星の方向を探索してもよい。この場合、走査制御部14は、目標方向算出部15から取得した通信衛星の方向と姿勢制御部12から取得したZ’軸の方向との差に、ならびに生じ得る機械的構造の誤差および制御処理の誤差を加算して姿勢誤差の取り得る値を算出し、姿勢誤差の範囲で、通信衛星の方向を探索すればよい。
上述の実施の形態では、Z’軸を走査範囲の中心に設定したが、Z’軸を走査範囲の中心に設定する必要はない。また走査制御部14は、ローブスイッチ方式によって、通信衛星の方向を探索してもよい。目標方向算出部15は、ジャイロセンサおよびGPS(Global Positioning System)の少なくとも一方に基づく航空機2の位置情報を用いて、航空機2から見た通信衛星の方向を算出してもよい。
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
本出願は、2018年4月18日に出願された、日本国特許出願特願2018-80179号に基づく。本明細書中に日本国特許出願特願2018-80179号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
1 アンテナ装置、2 航空機、2a 外面、2b 凹部、2c 底面、3 通信機、4 外部機器、11 平面アンテナ、11a アンテナ素子、12 姿勢制御部、13 アンテナ制御部、14 走査制御部、15 目標方向算出部、21 プロセッサ、22 メモリ、23 インターフェース、141 移相器、142 分配/合成回路。
Claims (6)
- 複数のアンテナ素子を有し、目標物に対して電波の送受信を行う平面アンテナと、
前記平面アンテナに取り付けられ、前記平面アンテナの姿勢を機械的に制御する姿勢制御部と、
前記平面アンテナが、前記目標物を基準として予め定められた向きを向くように、前記姿勢制御部を制御するアンテナ制御部と、
前記平面アンテナによるビーム走査を制御し、前記ビーム走査を行った際に前記目標物から受信した電波から生成される受信信号の信号レベルに応じて、前記複数のアンテナ素子の励振位相を調節して、前記平面アンテナのビームを前記目標物に向ける走査制御部と、
を備え、
前記走査制御部は、前記ビーム走査の範囲を、前記複数のアンテナ素子の間隔に応じて定められる、グレーティングローブが生じない範囲に制限する、
アンテナ装置。 - 前記アンテナ装置は、移動体に搭載され、
前記目標物の位置情報および前記移動体の位置情報に基づいて、前記移動体から見た前記目標物の方向を算出する目標方向算出部をさらに備え、
前記アンテナ制御部は、前記目標方向算出部が算出した前記目標物の方向に応じて前記姿勢制御部を制御する、
請求項1に記載のアンテナ装置。 - 前記アンテナ装置は、前記移動体の外面に形成された凹部に設けられ、
前記複数のアンテナ素子のビームが、前記凹部の縁から離隔した位置を通って、前記移動体の外部に放射されるように、前記アンテナ制御部は、前記姿勢制御部を制御する、
請求項2に記載のアンテナ装置。 - 前記走査制御部は、前記平面アンテナの向く方向と、前記目標物の方向との差である姿勢誤差の範囲で、前記ビーム走査を行う、
請求項1から3のいずれか1項に記載のアンテナ装置。 - 複数のアンテナ素子を有し、目標物に対して電波の送受信を行う平面アンテナを、前記目標物を基準として予め定められた向きに向けるように、前記平面アンテナの姿勢を制御し、
前記平面アンテナによるビーム走査を制御し、前記ビーム走査を行った際に前記目標物から受信した電波から生成される受信信号の信号レベルに応じて、前記複数のアンテナ素子の励振位相を調節して、前記平面アンテナのビームを前記目標物に向け、
前記ビーム走査の範囲を、前記複数のアンテナ素子の間隔に応じて定められる、グレーティングローブが生じない範囲に制限する、
アンテナ制御方法。 - コンピュータを、
複数のアンテナ素子を有し、目標物に対して電波の送受信を行う平面アンテナを、前記目標物を基準として予め定められた向きに向けるように、前記平面アンテナの姿勢を制御するアンテナ制御部、および、
前記平面アンテナによるビーム走査を制御し、前記ビーム走査を行った際に前記目標物から受信した電波から生成される受信信号の信号レベルに応じて、前記複数のアンテナ素子の励振位相を調節して、前記平面アンテナのビームを前記目標物に向ける走査制御部として機能させ、
前記ビーム走査の範囲を、前記複数のアンテナ素子の間隔に応じて定められる、グレーティングローブが生じない範囲に制限する、
ためのプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020513941A JP6698977B2 (ja) | 2018-04-18 | 2019-01-15 | アンテナ装置、アンテナ制御方法、およびプログラム |
US16/968,715 US11296406B2 (en) | 2018-04-18 | 2019-01-15 | Antenna device, antenna control method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018080179 | 2018-04-18 | ||
JP2018-080179 | 2018-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019202789A1 true WO2019202789A1 (ja) | 2019-10-24 |
Family
ID=68240234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000932 WO2019202789A1 (ja) | 2018-04-18 | 2019-01-15 | アンテナ装置、アンテナ制御方法、およびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11296406B2 (ja) |
JP (1) | JP6698977B2 (ja) |
WO (1) | WO2019202789A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230387593A1 (en) * | 2021-02-24 | 2023-11-30 | Bluehalo, Llc | System and method for a digitally beamformed phased array feed |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11619701B2 (en) * | 2021-06-21 | 2023-04-04 | Microelectronics Technology, Inc. | Satellite tracking system and method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897758A (ja) * | 1994-09-22 | 1996-04-12 | Mitsubishi Electric Corp | フェーズドアレイアンテナ装置 |
JPH10178313A (ja) * | 1996-12-19 | 1998-06-30 | Mitsubishi Electric Corp | アンテナ装置 |
JP2006352788A (ja) * | 2005-06-20 | 2006-12-28 | Brother Ind Ltd | 無線タグ通信装置 |
JP2008523708A (ja) * | 2004-12-13 | 2008-07-03 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | アンテナ装置とそれに関する方法 |
JP2010266246A (ja) * | 2009-05-12 | 2010-11-25 | Toshiba Corp | レーダ装置空中線 |
JP2011239078A (ja) * | 2010-05-07 | 2011-11-24 | Mitsubishi Heavy Ind Ltd | フェーズドアレイレーダ装置およびこれを備えた車両 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002135019A (ja) | 2000-10-24 | 2002-05-10 | Mitsubishi Electric Corp | 移動体用アンテナ装置 |
WO2005104331A1 (ja) * | 2004-03-30 | 2005-11-03 | Mitsubishi Denki Kabushiki Kaisha | レクテナ太陽電池ハイブリッドパネル、及びハイブリッド太陽光発電システム |
US11183749B2 (en) * | 2015-06-05 | 2021-11-23 | Viasat, Inc. | Methods and systems for mitigating interference with a nearby satellite |
MX2018009778A (es) * | 2016-02-12 | 2018-11-09 | Aeronet Global Communications Labs Dac | Sistema de antena y metodo para vehiculos aereos. |
GB2563574B (en) * | 2017-06-05 | 2021-08-04 | International Electric Company Ltd | A phased array antenna and apparatus incorporating the same |
-
2019
- 2019-01-15 US US16/968,715 patent/US11296406B2/en active Active
- 2019-01-15 WO PCT/JP2019/000932 patent/WO2019202789A1/ja active Application Filing
- 2019-01-15 JP JP2020513941A patent/JP6698977B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897758A (ja) * | 1994-09-22 | 1996-04-12 | Mitsubishi Electric Corp | フェーズドアレイアンテナ装置 |
JPH10178313A (ja) * | 1996-12-19 | 1998-06-30 | Mitsubishi Electric Corp | アンテナ装置 |
JP2008523708A (ja) * | 2004-12-13 | 2008-07-03 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | アンテナ装置とそれに関する方法 |
JP2006352788A (ja) * | 2005-06-20 | 2006-12-28 | Brother Ind Ltd | 無線タグ通信装置 |
JP2010266246A (ja) * | 2009-05-12 | 2010-11-25 | Toshiba Corp | レーダ装置空中線 |
JP2011239078A (ja) * | 2010-05-07 | 2011-11-24 | Mitsubishi Heavy Ind Ltd | フェーズドアレイレーダ装置およびこれを備えた車両 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230387593A1 (en) * | 2021-02-24 | 2023-11-30 | Bluehalo, Llc | System and method for a digitally beamformed phased array feed |
US12034228B2 (en) * | 2021-02-24 | 2024-07-09 | Bluehalo, Llc | System and method for a digitally beamformed phased array feed |
US12062861B2 (en) | 2021-02-24 | 2024-08-13 | Bluehalo, Llc | System and method for a digitally beamformed phased array feed |
Also Published As
Publication number | Publication date |
---|---|
US11296406B2 (en) | 2022-04-05 |
US20200381820A1 (en) | 2020-12-03 |
JPWO2019202789A1 (ja) | 2020-06-11 |
JP6698977B2 (ja) | 2020-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101183482B1 (ko) | 이동 타겟을 추적하기 위한 페이즈드 어레이 평면형 안테나및 추적방법 | |
US20140285373A1 (en) | On-board radar apparatus | |
KR20180006294A (ko) | 컨포멀 안테나를 동작시키기 위한 시스템 및 방법 | |
JP6456579B1 (ja) | フェーズドアレイアンテナ | |
US9337536B1 (en) | Electronically steerable SATCOM antenna | |
US11824280B2 (en) | System and method for a digitally beamformed phased array feed | |
WO2019202789A1 (ja) | アンテナ装置、アンテナ制御方法、およびプログラム | |
EP3032765B1 (en) | Method of reducing phase abberation in an antenna system with array feed | |
US10833757B1 (en) | Systems and methods for mitigating adjacent satellite interference | |
JP2010078395A (ja) | 干渉合成開口レーダシステム、処理方法、指向角度補正装置、指向角度補正方法及びプログラム | |
RU2314611C2 (ru) | Многоканальная линзовая антенна со стабилизируемой и управляемой по углам многолучевой диаграммой направленности | |
JP7479326B2 (ja) | アンテナ装置及びレーダ装置 | |
KR102039047B1 (ko) | 이동형 위성통신 단말의 위성추적 성능개선을 위한 스텝 추적과 모노펄스 추적의 혼합추적방법 및 장치 | |
JP2010050698A (ja) | レーダ装置 | |
US11943047B2 (en) | Apparatus and method of CRPA neutralization for illegal unmanned aerial vehicle | |
JP6874506B2 (ja) | アンテナ装置 | |
WO2018088230A1 (ja) | レーダ装置及び航空機 | |
JP2021010145A (ja) | アンテナ装置 | |
JPS60163504A (ja) | 移動体用衛星通信アンテナ装置 | |
JP2010136258A (ja) | 追尾アンテナ | |
JP2019041256A (ja) | アンテナ及び電波方向変更方法 | |
JPH11194164A (ja) | リフレクタアンテナ装置 | |
JPS62111530A (ja) | 妨害波除去方式 | |
JPH02222306A (ja) | 衛星搭載アンテナ装置 | |
JP2007329717A (ja) | アレー給電反射鏡アンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19788053 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020513941 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19788053 Country of ref document: EP Kind code of ref document: A1 |