WO2019201479A1 - Umgeformter magnetkern für einen elektromagnetischen aktuator und verfahren zur herstellung - Google Patents

Umgeformter magnetkern für einen elektromagnetischen aktuator und verfahren zur herstellung Download PDF

Info

Publication number
WO2019201479A1
WO2019201479A1 PCT/EP2019/050548 EP2019050548W WO2019201479A1 WO 2019201479 A1 WO2019201479 A1 WO 2019201479A1 EP 2019050548 W EP2019050548 W EP 2019050548W WO 2019201479 A1 WO2019201479 A1 WO 2019201479A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
wall segments
segment
magnetic core
magnetic
Prior art date
Application number
PCT/EP2019/050548
Other languages
English (en)
French (fr)
Inventor
Johannes KNUST
Olaf Josef
Guido Bayard
Original Assignee
Federal-Mogul Valvetrain Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal-Mogul Valvetrain Gmbh filed Critical Federal-Mogul Valvetrain Gmbh
Priority to PL19700374T priority Critical patent/PL3747031T3/pl
Priority to US17/049,111 priority patent/US20210241954A1/en
Priority to EP19700374.2A priority patent/EP3747031B1/de
Publication of WO2019201479A1 publication Critical patent/WO2019201479A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/10Electromagnets; Actuators including electromagnets with armatures specially adapted for alternating current
    • H01F7/11Electromagnets; Actuators including electromagnets with armatures specially adapted for alternating current reducing or eliminating the effects of eddy currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/127Assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/083External yoke surrounding the coil bobbin, e.g. made of bent magnetic sheet

Definitions

  • the present invention relates to a deformed magnetic core and a method for producing a deformed magnetic core for electromagnets, in particular for an electromagnetic actuator of e 1 ektromagnetician valve drive.
  • electromagnetic actuators are used, which are based on the principle of a spring-mass oscillator.
  • the linear structure actuators used for this purpose essentially consist of a magnet armature which is moved between two electromagnets and two cylindrical pressure springs connected to the armature (more precisely to a shaft of the armature) or the valve. If one of the electromagnets is energized, the system is deflected to the corresponding pole face and the associated valve is brought into the closed or open position.
  • Segmented magnetic cores are used to reduce the eddy currents. For this purpose, very fine slots are introduced into the magnetic cores, which lead to the Eddy currents are reduced. The power consumption and the sticking time of the electromagnetic actuators are thereby reduced. The slots must be very fine, since as little as possible surface or volume of the magnetic core should be lost in order to maintain the performance of the magnet.
  • the magnetic cores are made of solid material by machining.
  • the machining is very complicated and leads to a high unit price of the magnetic cores.
  • the final process step of eroding the slots is time consuming and costly.
  • Another disadvantage of machining is the poor material efficiency. Due to the high material price of the alloys used, e.g. Cobalt-iron alloys with a cobalt content of up to 50%, a machining is particularly uneconomical.
  • the object is achieved by a method for producing a magnetic core for an electromagnetic actuator of an electromagnetic valve drive comprising punching a core blank from a soft magnetic sheet, the core blank comprising: a bottom segment having an opening and a plurality of wall segments extending from an outer edge of the bottom segment to the outside extend; and forming the core blank, wherein the plurality of wall segments are bent in a direction substantially perpendicular to the ground segment.
  • the method may further comprise attaching a tubular soft magnetic inner core to the ground segment.
  • the method may further include attaching a cylindrical soft magnetic inner core on the ground segment and introducing a perpendicular to the ground segment extending through hole by the réellekem include.
  • the attachment of the inner core can take place by means of friction welding, laser beam welding or electron beam welding.
  • the method may further include embossing the soft magnetic sheet prior to the step of stamping or embossing the core blank after the stamping step.
  • the core blank may comprise at least 4 wall segments, preferably 8 to 16 wall segments.
  • the wall segments may have substantially the shape of a rectangle.
  • the sum of widths of the wall segments after the forming may be smaller than an outer circumference of the magnetic core.
  • the wall segments may extend in the outward direction equidistant from the floor segment.
  • the method may further comprise heat treating the magnetic core after reshaping the core blank.
  • the floor segment may have the shape of a circular disk.
  • the stamping may further include stamping a solenoid power supply line opening.
  • a magnetic core for an electromagnetic actuator for an electromagnetic valve train made by any one of the above methods, wherein the magnetic core comprises an outer wall with slits.
  • a width of the slots of the magnetic core may range between 0.05 mm and 0.3 mm, preferably between 0.1 mm and 0.2 mm.
  • an electromagnetic actuator for an electromagnetic valve drive which comprises a magnetic core produced according to the invention.
  • Fig. 1 shows a plan view of a core blank after punching and before forming
  • Fig. 2A is a sectional view of the core blank after punching and before forming
  • Fig. 2B is a sectional view after forming the core blank
  • Fig. 2C is a sectional view after attaching the inner core
  • Fig. 3A is a perspective view after forming the core blank
  • Fig. 3B shows a perspective view after attaching the inner core
  • FIG. 4 shows a view of an electromagnetic valve drive.
  • a core blank made of a soft magnetic sheet i. a sheet metal from a white chmagneti see material, punched.
  • a core blank 2 is shown in Fig. 1 in a plan view.
  • the stamped core blank 2 comprises a bottom segment 4 having an opening 8 and a plurality (at least two) of wall segments 6 (only one is provided with a reference numeral in the figure) extending outwardly from an outer edge of the bottom segment 4 - i.e. away from the ground segment.
  • the punched opening 8 forms a passage opening through the floor segment; an edge of the opening is corresponding to an inner edge of the floor segment.
  • the opening 8 is arranged centrally in the bottom segment 4.
  • the core blank 1 may optionally include a likewise punched opening for a later power line feed for a magnetic coil used in the finished electromagnetic actuator; i.e. a solenoid power supply line opening 12.
  • the bottom segment 4 in FIG. 1 has approximately the shape of a circular disk.
  • other forms are possible, e.g. an oval shape, triangular, quadrangular, pentagonal, or more generally n-shaped.
  • the shape is determined in particular by the desired shape of the magnetic core.
  • the floor segment 4 in FIG. 1 comprises eight wall segments 6, which are regularly arranged around the outer edge or circumference of the bottom segment, so that an angle a of 45 exists between two adjacent wall segments 6.
  • the core blank in the example of the figure is thus star-shaped.
  • the core blank preferably comprises at least 4, more preferably 4 to 20, most preferably 8 to 16, wall segments.
  • a not regular arrangement is the Wall segments 6 along the outer edge of the bottom segment 4 conceivable.
  • the wall segments 8 in the figure (which shows a preferred embodiment) have a substantially rectangular shape (ie, the shape of a rectangle) with a width measured along the outer edge of the bottom segment 4 and a length measured perpendicular to it.
  • Rectangular shape means here that the width remains the same with increasing distance from the ground segment, ie parallel side edges in the longitudinal direction, but the shape of the other two side edges of the rectangle may differ slightly from the exact rectangular shape, for example adapted to the shape of the outer edge of the bottom segment.
  • the wall segments all have the same width; However, there are also different widths possible.
  • the lengths of the wall segments are preferably the same, i.
  • the wall segments extend equidistant from the ground segment; whereby also here different lengths are conceivable. It is also possible to deviate from the preferred rectangular shape of the wall segments; e.g. is a parallelogram shape or a stepped shape (several rectangles offset strung together) possible.
  • the later course of the magnetic field lines is to be considered.
  • the sum of the widths of the wall segments 6 is preferably substantially equal to the length of the outer edge of the bottom segment 4, i. the circumference of the bottom segment.
  • N is the number of wall segments and d is a predetermined minimum distance in the range of 0 mm to 0.3 mm, more preferably 0.1 mm to 0, 2 mm, is.
  • d is a predetermined minimum distance in the range of 0 mm to 0.3 mm, more preferably 0.1 mm to 0, 2 mm.
  • the design of the forming step is relevant.
  • the sheet used consists of a soft magnetic material, ie a Ferromagnetic material with low (less than about 1000 A / m) coercive field strength, which can be magnetized relatively easily.
  • a cobalt-iron alloy is used.
  • Other possible materials include soft iron or a nickel-iron alloy.
  • holes can still be provided in the corners, meet at the two wall segments. As will be described below, these holes may also serve to continue the slots formed in the ground segment between the wall segments (after forming).
  • FIGS. 2A, 2B and 2C show sectional views of the core blank 2 or magnetic core 1 during further method steps.
  • Fig. 2A shows the core blank 2, which comprises the bottom segment 4 with the opening 8 and the wall segments 6, after punching in a sectional view (eg, a section along the horizontal dotted line in Fig. 1).
  • the floor segment 2 has, by way of example, a greater thickness than the wall segments 6.
  • embossing is meant here a forming process which enables a thickness structuring of a flat metal component, such as pressing, extruding, possibly accompanied by a change in the dimensions of the metal component in directions perpendicular to the thickness.
  • the method may include embossing the soft magnetic sheet prior to punching or embossing the core blank after punching.
  • the blank may first be punched from a thicker sheet, and then the wall segments may be lengthened and reduced in thickness by the embossing step to obtain the final core blank.
  • a thickness structuring can be embossed in order, for example, to achieve greater thicknesses in regions with a higher magnetic field strength.
  • the "thickness" of the core blank
  • the dimension is defined perpendicular to the plane formed by the ground segment that coincides with the plane formed by the original sheet.
  • a forming step takes place in which the plurality of wall segments 6 are bent in a direction substantially perpendicular to the plane formed or defined by the bottom segment 4.
  • Fig. 2B shows the magnetic core 1 after this forming.
  • “Substantially perpendicular” is to be understood here as meaning that small deviations from the 90 ° angle can occur, ie the angle should be between 80 and 100 °, preferably between 85 and 95 °. More generally, larger angles, such as between 70 ° and 1 10 °, conceivable. This is particularly dependent on the ultimately desired shape of the magnetic core.
  • the forming takes place in a forming machine by means of a suitable tool, so that an outer wall (formed by the bent wall segments) of the magnetic core is generated.
  • the core blank can be pressed by a stamp in a corresponding counter-mold (a cup-shaped negative form), wherein the dimensions (eg the diameter) of the punch correspond approximately to the dimensions of the bottom segment or are slightly smaller and the larger dimensions of the counter-mold the desired Corresponding dimensions of the magnetic core to be produced, so that when pushing the punch in the counter-shape, the wall segments are bent.
  • the distance (measured in the circumferential direction, ie in the direction of the outer edge of the bottom segment) between each two wall segments after the forming is preferably in the range between 0.05 mm and 0.3 mm, more preferably between 0.1 mm and 0.2 mm , This distance corresponds to a width of the slots.
  • narrow slits are obtained, on the one hand affect the magnetic properties or performance of the magnetic core only slightly and on the other hand prevent eddy currents in the circumferential direction. Erosion of slots can therefore be dispensed with, which leads to a saving of time and costs in production and enables a reduction of the cycle times. At the same time less material needed because the core is not made of solid material machined.
  • an inner core 10 (a type of dome) may be attached to the ground segment 4.
  • Fig. 2C shows the magnetic core 1 after this optional attachment of the inner core 10.
  • the inner core 10 extends in the same direction in which the wall segments 6 are bent; the corresponding side of the bottom segment 4 is also referred to as the top of the bottom segment.
  • the réellekem 10 is made of a soft magnetic material, wherein also here preferably a cobalt-iron alloy, a nickel-iron alloy or soft iron is used.
  • the windings of a magnetic coil to be attached extend around the inner core 10 and within the outer wall formed by the bent wall segments 6.
  • the inner core 10 has a through hole which is aligned with the opening of the bottom segment 4; Here, an anchor shaft (or possibly a valve stem) is passed through during subsequent use in a valve train (see Fig. 4).
  • the réellekem may already have a tubular shape prior to attachment to the ground segment 4, ie the through hole is present from the outset.
  • tubular is meant a general tubular body, not necessarily a circular tube, but the latter is preferred.
  • a cylindrical inner core can be attached to the floor segment 4, and then the through hole can be introduced through the inner core in the direction perpendicular to the floor segment.
  • cylinder is here to be understood a general cylinder, ie a body which arises by parallel displacement of a not necessarily circular base along a direction perpendicular to the base.
  • the cylindrical réellekem is attached to this base on the ground segment, so that the opening of the bottom segment is covered. Subsequently, the through hole is introduced, for example by drilling, so that it passes through the opening.
  • a réellekem which has a circular shape in a plan view or a circular cylinder (the base is thus a circle). More generally, the base may be an oval, triangle, rectangle, n-corner, etc.
  • the through hole through the uzekem which is preferably circular, however, corresponding to the shape of a typical armature shaft (possibly valve stem).
  • the attachment of the inner core 10 to the ground segment 4 takes place, for example, by friction welding, laser beam welding or electron beam welding.
  • the combination of this joining process with the previous forming process leads to a significantly improved material efficiency compared to a machining.
  • the slots required to minimize power consumption are already contained in the reshaped core by the blank mold.
  • An edge of the opening of the bottom segment 4 may be adapted to the shape and dimensions of an outer edge of the inner core so that the inner core can be inserted flush with the opening and secured there (e.g., by one of the above welding methods) as shown in Fig. 2C.
  • the inner core may be larger than the opening in the ground segment and secured to a surface at the top of the bottom segment, friction welding being preferred.
  • dimensions parallel to the ground segment e.g., a diameter
  • the through hole of the inner core correspond to corresponding dimensions of the opening of the bottom segment so that the opening of the bottom segment and the through hole of the inner core smoothly merge.
  • the edge of the opening of the bottom segment and the inner core have mutually complementary circumferential steps, which are placed into one another during attachment.
  • the method may include one or more heat treatments (eg, tempering) of the magnetic core, for example, tempering at a suitable temperature. This can be counteracted by a structural change due to the forming and tensions are reduced. Furthermore, a tempering for adjusting the magnetic Properties of the material used may be helpful. The heat treatment thus takes place after the forming step and, if an inner core is attached, after the inner core has been attached.
  • tempering e.g. tempering
  • FIGS. 3A and 3B show perspective views of the magnetic core 1 after forming the core blank or inner core (FIG. 3A) and after attaching the inner core 10 (FIG. 3B).
  • the slots 22 shown as lines between the wall segments 6 can be seen.
  • the magnetic core 1 thus has an outer wall with slots 22, which is formed by the bent wall segments 6.
  • a lateral edge of the bottom segment 4 is visible, which has no slots here by way of example.
  • the inner core 10 which has no slots in FIG. 3B, is provided with slots on the outside, which are inserted by means of a method known to the person skilled in the art, e.g. Erode.
  • a magnetic coil can be introduced, which extends around the opening and which runs in the case of an attached inner core between réellekem and wall.
  • FIG. 4 illustrates a portion of a valve train employing an electromagnetic actuator having two electromagnets each employing a magnetic core.
  • the electromagnets of the electromagnetic actuator each include the magnetic core 1 and a magnetic coil 14 disposed in the annular space the respective magnetic core is arranged.
  • an armature shaft 18 of a ferromagnetic (magnetic) armature 16 is guided.
  • An only partially illustrated valve is disposed (in the figure) below the armature shaft 18, wherein a valve stem 24 of the valve is in extension of the armature shaft 18.
  • the valve head not shown, would be located below the figure.
  • the armature shaft 18 is connected to the armature 16, so attached to this or manufactured in one piece with this.
  • the system is supported by two (pressure) Fedem 20 vibrationally, with a compression spring acts on the upper end of the armature shaft 18 and the other on the valve stem 24.
  • a compression spring acts on the upper end of the armature shaft 18 and the other on the valve stem 24.
  • the valve stem simultaneously forms the armature shaft, in this case, the valve stem extends through the actuator, the armature 16 is connected to the valve stem and both pressure springs act on the valve stem.
  • one of the electromagnets of the electromagnetic actuator is turned on, ie current flows through the respective magnetic coil 14, the armature 16 and the associated armature shaft 18 attracted by this and thus actuated the valve.
  • the figures represent a particularly preferred embodiment, which has a rotational symmetry. That the floor segment and the opening in the floor segment are circular and the wall segments all have the same shape and are regularly arranged around the floor segment.
  • the inner core has the shape of a hollow circular cylinder.
  • the wall segments accordingly form after forming an annular outer wall which is connected by the bottom segment in the form of a circular disk with the réellekem.
  • the method may be practiced with other forms and configurations and that the manufactured magnetic core may be adapted to a predetermined requirement, such as a predetermined outer shape.
  • the ground segment may be rectangular with a round opening; After forming, a cuboid open on one side is then obtained.
  • a corresponding inner core may also have an outer parallelepiped shape with a round through hole.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Abstract

Verfahren zur Herstellung eines Magnetkerns für einen elektromagnetischen Aktuator eines elektromagnetischen Ventiltriebs, wobei das Verfahren Stanzen eines Kernrohlings aus einem weichmagnetischen Blech und Umformen des Kernrohlings umfasst. Der Kernrohling umfasst ein Bodensegment mit einer Öffnung und mehrere Wandsegmente, die sich von einem Außenrand des Bodensegments nach außen erstrecken. Die mehreren Wandsegmente werden beim Umformen in eine Richtung im Wesentlichen senkrecht zu dem Bodensegment umgebogen.

Description

UMGEFORMTER MAGNETKERN FÜR EINEN ELEKTROMAGNETISCHEN
AKTUATOR UND VERFAHREN ZUR HERSTELLUNG
Gebiet der Erfindung
Die vorliegende Erfindung betrifft einen umgeformten Magnetkern und ein Verfahren zur Herstellung eines umgeformten Magnetkerns für Elektromagnete, insbesondere für einen elektromagnetischen Aktuator eines e 1 ektromagnetischen Ventilantriebs.
Stand der Technik
Für nockenwellenlose Ventiltriebe (bzw. Ventilantriebe) werden elektromagnetische Aktuatoren eingesetzt, die auf dem Prinzip eines Feder-Masse-Schwingers beruhen. Üblicherweise bestehen die hierfür verwendeten Aktuatoren mit linearem Aufbau im Wesentlichen aus einem Magnetanker, der zwischen zwei Elektromagneten bewegt wird, und zwei mit dem Anker (genauer einem Schaft des Ankers) bzw. dem Ventil verbundenen, zylindrischen Druckfedem. Wird einer der Elektromagneten bestromt, so wird das System zur entsprechenden Polfläche ausgelenkt und das dazugehörige Ventil in die geschlossene bzw. geöffnete Stellung gebracht.
Je nach Position ist hierbei immer eine Druckfeder voll belastet während die andere Feder nur teilweise gespannt ist. Somit wird in den Endlagen die kinetische Energie des Magnetankers als potenzielle Energie in den gespannten Federn gespeichert. Nach Abschalten des Stroms schwingt das System zur jeweils anderen Seite. Durch das Abschalten des Stroms entstehen im Magnetkern (Eisenkern) des Elektromagneten Wirbelströme, welche dazu führen, dass der Magnetanker eine kurze Zeit weiterhin am Magnetkern klebt. Diese Klebzeit ist unerwünscht, da Sie die maximale Drehzahl begrenzt und die Regelung erschwert.
Um die Wirbelströme zu reduzieren werden segmentierte Magnetkerne eingesetzt. Dazu werden in die Magnetkerne sehr feine Schlitze eingebracht, die dazu führen, dass die Wirbelströme reduziert werden. Die Leistungsaufnahme und die Klebzeit der elektromagnetischen Aktuatoren verringern sich dadurch. Die Schlitze müssen sehr fein sein, da möglichst wenig Oberfläche bzw. Volumen des Magnetkerns verloren gehen soll, um die Leistungsfähigkeit des Magneten zu erhalten.
Aktuell werden die Magnetkerne aus Vollmaterial spanend hergestellt. Die spanende Bearbeitung ist sehr aufwendig und führt zu einem hohen Stückpreis der Magnetkerne. Insbesondere der abschließende Prozessschritt des Erodierens der Schlitze ist zeitaufwendig und kostenintensiv. Ein weiterer Nachteil der spanenden Bearbeitung ist, die schlechte Materialeffizienz. Bedingt durch den hohen Materialpreis der verwendeten Legierungen, z.B. Kobalt-Eisen-Legierungen mit einem Kobaltanteil von bis zu 50%, ist eine spanende Bearbeitung besonders unwirtschaftlich.
Es besteht also Bedarf an einem weniger aufwendigen Herstel lungsverfahren, welches die vorgenannten Probleme behebt, d.h. welches weniger zeitaufwendig und kostenintensiv ist und welches einen geringeren Materialverbrauch aufweist.
Zusammenfassung der Erfindung
Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Magnetkerns für einen elektromagnetischen Aktuator eines elektromagnetischen Ventiltriebs umfassend Stanzen eines Kemrohlings aus einem weichmagnetischen Blech, wobei der Kernrohling umfasst: ein Bodensegment mit einer Öffnung und mehrere Wandsegmente, die sich von einem Außenrand des Bodensegments nach außen erstrecken; und Umformen des Kemrohlings, wobei die mehreren Wandsegmente in eine Richtung im Wesentlichen senkrecht zu dem Bodensegment umgebogen werden.
Gemäß einem Aspekt der vorliegenden Erfindung kann das Verfahren weiterhin Anbringen eines röhrenförmigen weichmagnetischen Innenkems an dem Bodensegment umfassen.
Gemäß einem weiteren Aspekt kann das Verfahren weiterhin Anbringen eines zylindrischen weichmagnetischen Innenkems an dem Bodensegment und Einbringen eines sich senkrecht zu dem Bodensegment erstreckenden Durchgangslochs durch den Innenkem umfassen.
Gemäß einem weiteren Aspekt kann das Anbringen des Innenkems mittels Reibschweißen, Laserstrahlschweißen oder Elektronenstrahlschweißen erfolgen.
Gemäß einem weiteren Aspekt kann das Verfahren weiterhin Prägen des weichmagnetischen Blechs vor dem Schritt des Stanzens oder Prägen des Kemrohlings nach dem Schritt des Stanzens umfassen.
Gemäß einem weiteren Aspekt kann der Kemrohling mindestens 4 Wandsegmente, bevorzugt 8 bis 16 Wandsegmente, umfassen.
Gemäß einem weiteren Aspekt können die Wandsegmente im Wesentlichen die Form eines Rechtecks aufweisen.
Gemäß einem weiteren Aspekt kann die Summe von Breiten der Wandsegmente nach dem Umformen kleiner als ein Außenumfang des Magnetkerns sein.
Gemäß einem weiteren Aspekt kann der Abstand zwischen jeweils zwei Wandsegmenten nach dem Umformen im Bereich zwischen 0,05 mm und 0,3 mm, bevorzugt zwischen 0,1 mm und 0,2 mm, liegen.
Gemäß einem weiteren Aspekt können sich die Wandsegmente in Richtung nach außen gleich weit vom Bodensegment aus erstrecken.
Gemäß einem weiteren Aspekt kann das Verfahren weiterhin eine Wärmebehandlung des Magnetkerns nach dem Umformen des Kemrohlings umfassen.
Gemäß einem weiteren Aspekt kann das Bodensegment die Form einer Kreisringscheibe aufweisen. Gemäß einem weiteren Aspekt kann das Stanzen weiterhin Stanzen einer Magnetspulen- Stromversorgungsleitung-Öffnung umfassen.
Weiter wird erfmdungsgemäß ein Magnetkern für einen elektromagnetischen Aktuator für einen elektromagnetischen Ventiltrieb hergestellt mit einem der vorstehenden Verfahren bereitgestellt, wobei der Magnetkern eine äußere Wand mit Schlitzen umfasst.
Gemäß einem weiteren Aspekt kann eine Breite der Schlitze des Magnetkerns im Bereich zwischen 0,05 mm und 0,3 mm, bevorzugt zwischen 0,1 mm und 0,2 mm, liegen.
Weiter wird erfmdungsgemäß ein elektromagnetischer Aktuator für einen elektromagnetischen Ventiltrieb bereitgestellt, der einen erfmdungsgemäß hergestellten Magnetkern umfasst.
Kurze Beschreibung der Zeichnung
Im Folgenden werden beispielhafte Ausführungsformen der Erfindung unter Bezug auf die Figuren genauer beschrieben, wobei
Fig. 1 eine Draufsicht auf einen Kemrohling nach dem Stanzen und vor dem Umformen zeigt;
Fig. 2A eine Schnittansicht des Kemrohlings nach dem Stanzen und vor dem Umformen zeigt;
Fig. 2B eine Schnittansicht nach dem Umformen des Kemrohlings zeigt;
Fig. 2C eine Schnittansicht nach dem Anbringen des Innenkems zeigt;
Fig. 3A eine perspektivische Ansicht nach dem Umformen des Kemrohlings zeigt;
Fig. 3B eine perspektivische Ansicht nach dem Anbringen des Innenkems zeigt; und
Fig. 4 eine Ansicht eines elektromagnetischen Ventiltriebs zeigt.
Im Folgenden werden sowohl in der Beschreibung als auch in der Zeichnung gleiche Bezugszeichen für gleiche oder ähnliche Elemente oder Komponenten verwendet. Es ist zudem eine Bezugszeichenliste angegeben, die für alle Figuren gültig ist. Die in den Figuren dargestellten Ausführungen sind lediglich schematisch und stellen nicht notwendigerwei se die tatsächlichen Größenverhältnisse dar.
Ausführliche Beschreibung der Erfindung
Erfindungsgemäß wird zunächst ein Kemrohling aus einem weichmagnetischen Blech, d.h. einem Blech aus einem wei chmagneti sehen Material, gestanzt. Ein solcher Kemrohling 2 ist in Fig. 1 in einer Draufsicht dargestellt. Der gestanzte Kemrohling 2 umfasst ein Bodensegment 4 mit einer Öffnung 8 und mehrere (mindestens zwei) Wandsegmente 6 (von denen in der Figur beispielhaft lediglich eines mit einem Bezugszeichen versehen ist), die sich ausgehend von einem Außenrand des Bodensegments 4 nach außen - d.h. vom Bodensegment weg - erstrecken. Die gestanzte Öffnung 8 bildet eine Durchgangsöffnung durch das Bodensegment; ein Rand der Öffnung ist entsprechend ein Innenrand des Bodensgments. Bevorzugt ist die Öffnung 8 mittig in dem Bodensegment 4 angeordnet. Weiterhin kann der Kernrohling 1 optional eine ebenfalls gestanzte Öffnung für eine spätere Stromleitungszuführung für eine im fertiggestellten elektromagnetischen Aktuator verwendete Magnetspule umfassen; d.h. eine Magnetspulen-Stromversorgungsleitung- Öffnung 12.
Beispielhaft weist das Bodensegment 4 in Fig. 1 in etwa die Form einer Kreisringscheibe auf. Abweichend davon sind auch andere Formen möglich, z.B. eine ovale Form, dreieckig, viereckig, fünfeckig, oder allgemeiner n-eckig. Selbiges gilt für die Form der Öffnung, deren Form auch von der Form des Bodensegments verschieden sein kann. Die Form wird insbesondere durch die gewünschte Form des Magnetkerns mitbestimmt.
Ebenso beispielhaft umfasst das Bodensegment 4 in Fig. 1 acht Wandsegmente 6, die regelmäßig um den Außenrand bzw. Umfang des Bodensegments angeordnet sind, so dass zwischen zwei benachbarten Wandsegmenten 6 jeweils ein Winkel a von 45 besteht. Insgesamt ist der Kemrohling im Beispiel der Figur also sternförmig. Im Allgemeinen umfasst der Kemrohling bevorzugt mindestens 4, weiter bevorzugt 4 bis 20, am meisten bevorzugt 8 bis 16, Wandsegmente. Auch ist eine nicht regelmäßige Anordnung der Wandsegmente 6 entlang des Außenrandes des Bodensegments 4 denkbar.
Die Wandsegmente 8 weisen in der Figur (die eine bevorzugte Ausführungsform zeigt) im Wesentlichen eine Rechteckform (d.h. die Form eines Rechtecks) mit einer entlang des Außenrandes des Bodensegments 4 gemessenen Breite und einer senkrecht dazu, nach außen gemessenen Länge auf.„Im Wesentlichen eine Rechteckform“ heißt hier, dass die Breite mit zunehmenden Abstand vom Bodensegment gleich bleibt, also parallele Seitenkanten in Längsrichtung, jedoch die Form der beiden anderen Seitenkanten des Rechtecks geringfügig von der exakten Rechteckform abweichen können, um z.B. an die Form des Außenrandes des Bodensegments angepasst zu sein. Bevorzugt (wie dargestellt) weisen die Wandsegmente alle die gleiche Breite auf; es sind jedoch auch unterschiedliche Breiten möglich. Auch die Längen der Wandsegmente sind bevorzugt gleich, d.h. in Richtung nach außen erstrecken sich die Wandsegmente gleich weit vom Bodensegment aus; wobei auch hier unterschiedliche Längen denkbar sind. Ebenso ist es möglich von der bevorzugten Rechteckform der Wandsegmente abzuweichen; z.B. ist eine Parallelogramm-Form oder eine gestufte Form (mehrere Rechtecke versetzt aneinandergereiht) möglich. Hier ist insbesondere der spätere Verlauf der Magnetfeldlinien zu beachten.
Die Summe der Breiten der Wandsegmente 6 gleicht bevorzugt im Wesentlichen der Länge des Außenrandes des Bodensegments 4, d.h. dem Umfang des Bodensegments. Dies führt dazu, dass nach dem weiter unten beschriebenen Umformschritt, bei dem die Wandsegmente 6 in eine Richtung im Wesentlichen senkrecht zum Bodensegment 4 umgebogen werden, zwischen den Wandsegmenten schmale Spalte verbleiben, die Wirbelströme unterbinden. „Im Wesentlichen“ heißt hier also, dass die Summe der Breiten der Wandsegmente gleich oder etwas kleiner als der Umfang des Bodensegments ist. Z.B. beträgt die Differenz von Umfang des Bodensegments minus Summe der Breiten der Wandsegmente N mal d, wobei N die Anzahl der Wandsegmente ist und d ein vorgegebener Mindestabstand im Bereich von 0 mm bis 0,3 mm, weiter bevorzugt von 0,1 mm bis 0,2 mm, ist. Hier ist insbesondere auch die Ausgestaltung des Umformschrittes maßgeblich.
Das verwendete Blech besteht aus einem weichmagnetischen Material, d.h. einem ferromagnetischen Material mit geringer (kleiner als ca. 1000 A/m) Koerzitivfeldstärke, welches sich relativ leicht magnetisieren lässt. Bevorzugt findet eine Kobalt-Eisen-Legierung Verwendung. Weitere mögliche Materialien sind z.B. Weicheisen oder eine Nickel-Eisen- Legierung.
Um das spätere Umformen zu erleichtern können weiterhin kleine Löcher in den Ecken, an den zwei Wandsegmente aufeinandertreffen vorgesehen sein. Wie weiter unten beschrieben wird können diese Löcher auch dazu dienen, die zwischen den Wandsegmenten (nach dem Umformen) gebildeten Schlitze in dem Bodensegment fortzusetzen.
Fig. 2A, Fig. 2B und Fig. 2C stellen Schnittansichten des Kemrohlings 2 bzw. Magnetkerns 1 während weiterer V erfahrensschritte dar.
Fig. 2A zeigt den Kernrohling 2, der das Bodensegment 4 mit der Öffnung 8 und die Wandsegmente 6 umfasst, nach dem Stanzen in einer Schnittansicht (z.B. ein Schnitt entlang der waagrechten Strichpunktlinie in Fig. 1). Zusätzlich ist hier zu erkennen, dass das Bodensegment 2 beispielhaft eine größere Dicke als die Wandsegmente 6 aufweist. Dies wird durch einen zusätzlichen optionalen Prägeschritt erreicht. Unter Prägen ist hier ein Umformverfahren zu verstehen, welches eine Dickenstrukturierung eines flachen Metallbauteils ermöglicht, wie z.B. Pressen, Fließpressen Ziehen, womit möglicherweise auch eine Änderung der Abmessungen es Metallbauteils in Richtungen senkrecht zur Dicke einhergeht. Insbesondere kann das Verfahren Prägen des weichmagnetischen Bleches vor dem Stanzen oder Prägen des Kemrohlings nach dem Stanzen umfassen. In letzterem Fall kann der Rohling z.B. zunächst aus einem dickeren Blech gestanzt werden und anschließend können durch den Prägeschritt die Wandsegmente verlängert und in ihren Dicken reduziert werden, um den letztendlichen Kemrohling zu erhalten. Allgemeiner kann durch Prägen dem Kemrohling eine Dickenstrukturierung eingeprägt werden, um z.B. größere Dicken in Bereichen mit höherer Magnetfeldstärke zu erreichen. Als„Dicke“ (des Kemrohlings) ist die Abmessung senkrecht zu der durch die von dem Bodensegment gebildete Ebene, die mit der durch das ursprüngliche Blech gebildeten Ebene übereinstimmt, definiert. Nach dem Schritt des Ausstanzens und gegebenenfalls Prägens erfolgt erfindungsgemäß ein Umformschritt, bei dem die mehreren Wandsegmente 6 in eine Richtung im Wesentlichen senkrecht zu der durch das Bodensegment 4 gebildeten, bzw. definierten, Ebene umgebogen werden. Fig. 2B zeigt den Magnetkern 1 nach diesem Umformen. „Im Wesentlichen senkrecht“ ist hier so zu verstehen, dass es zu kleinen Abweichungen vom 90° Winkel kommen kann, d.h. der Winkel sollte zwischen 80 und 100°, bevorzugt zwischen 85 und 95°, liegen. Allgemeiner sind auch größere Winkel, etwa zwischen 70° und 1 10°, denkbar. Dies ist insbesondere auch von der letztendlich gewünschten Form des Magnetkerns abhängig.
Das Umformen erfolgt in einer Umformmaschine mittels eines geeigneten Werkzeugs, so dass eine äußere Wand (gebildet durch die umgebogenen Wandsegmente) des Magnetkerns erzeugt wird. Z.B. kann der Kemrohling durch einen Stempel in eine entsprechende Gegenform (eine topfförmige Negativ-Form) gedrückt werden, wobei die Abmessungen (z.B. der Durchmesser) des Stempels in etwa den Abmessungen des Bodensegments entsprechen oder etwas kleiner sind und wobei die größeren Abmessungen der Gegenform den gewünschten Abmessungen des herzustellenden Magnetkerns entsprechen, so dass beim Hineindrücken des Stempels in die Gegenform die Wandsegmente umgebogen werden.
Durch das Umbiegen sind die im Stand der Technik mittels Erodieren eingebrachten Schlitze bereits in der äußeren Wand des Magnetkerns enthalten. Die Summe der Breiten der Wandsegmente 6 sollte nach dem Umformen kleiner als ein Außenumfang des Magnetkerns sein, damit in jedem Fall Schlitze erhalten werden. Weiterhin liegt der Abstand (gemessen in Umfangrichtung, also in Richtung des Außenrandes des Bodensegments) zwischen jeweils zwei Wandsegmenten nach dem Umformen bevorzugt im Bereich zwischen 0,05 mm und 0,3 mm, weiter bevorzugt zwischen 0,1 mm und 0,2 mm. Dieser Abstand entspricht einer Breite der Schlitze. Somit werden schmale Schlitze erhalten, die einerseits die magnetischen Eigenschaften bzw. Leistungsfähigkeit des Magnetkerns nur wenig beeinträchtigen und andererseits Wirbelströme in Umfangrichtung unterbinden. Auf ein Erodieren von Schlitzen kann also verzichtet werden, was zu einer Zeit- und Kostenersparnis in der Fertigung führt und einer Verringerung der Taktzeiten ermöglicht. Gleichzeitig wird weniger Material benötigt, da der Kern nicht aus Vollmaterial spanend hergestellt wird.
Weiter kann ein Innenkem 10 (ein Art Dom) am Bodensegment 4 angebracht werden. Fig. 2C zeigt den Magnetkern 1 nach diesem optionalen Anbringen des Innenkems 10. Der Innenkem 10 erstreckt sich in die gleiche Richtung, in die auch die Wandsegmente 6 gebogen sind; die entsprechende Seite des Bodensegments 4 wird auch als Oberseite des Bodensegments bezeichnet. Der Innenkem 10 besteht aus einem weichmagnetischen Material, wobei auch hier bevorzugt eine Kobalt-Eisen-Legierung, eine Nickel-Eisen- Legierung oder Weicheisen verwendet wird. Die Wicklungen einer anzubringenden Magnetspule (vgl. Fig. 4) verlaufen um den Innenkem 10 herum und innerhalb der durch die umgebogenen Wandsegmente 6 gebildeten äußeren Wand.
Der Innenkem 10 weist ein Durchgangsloch auf, das mit der Öffnung des Bodensegments 4 fluchtet; hier wird bei der späteren Verwendung in einem Ventiltrieb ein Ankerschaft (oder evtl ein Ventilstamm) hindurchgeführt (vgl. Fig. 4). Der Innenkem kann bereits vor dem Anbringen am Bodensegment 4 eine Röhrenform aufweisen, d.h. das Durchgangsloch ist von vornherein vorhanden. Unter„Röhrenform“ ist hier ein allgemeiner röhrenförmiger Körper zu verstehen, nicht unbedingt eine kreisförmige Röhre, letztere ist allerdings bevorzugt. Alternativ kann zunächst ein zylindrischer Innenkem am Bodensegment 4 angebracht werden und anschließend das Durchgangsloch durch den Innenkem in Richtung senkrecht zum Bodensegment eingebracht werden. Unter„Zylinder“ ist hier ein allgemeiner Zylinder zu verstehen, d.h. ein Körper der durch Parallelverschieben einer nicht notwendigerweise kreisförmigen Grundfläche entlang einer Richtung senkrecht zur Grundfläche entsteht. Der zylinderförmige Innenkem wird an dieser Grundfläche am Bodensegment angebracht, so dass die Öffnung des Bodensegments überdeckt wird. Anschließend wird das Durchgangsloch z.B. durch Bohren eingebracht, so dass dieses durch die Öffnung verläuft. Bevorzugt ist ein Innenkem, der in einer Draufsicht eine Kreisform aufweist bzw. ein Kreiszylinder (die Grundfläche ist also ein Kreis). Allgemeiner kann die Grundfläche ein Oval, Dreieck, Rechteck, n-Eck, usw. sein. Selbiges gilt für das Durchgangsloch durch den Innenkem, die jedoch bevorzugt kreisrund ist, entsprechend der Form eines typischen Ankerschafts (evtl. Ventilstamms). Das Anbringen bzw. Anftigen des Innenkems 10 am Bodensegment 4 erfolgt beispielsweise durch Reibschweißen, Laserstrahlschweißen oder Elektronenstrahlschweißen. Die Kombination dieses Fügeprozesses mit dem vorhergehenden Umformprozess führt zu einer deutlich verbesserten Materialeffizienz im Vergleich zu einer spanenden Bearbeitung. Die zu Minimierung der Leistungsaufnahme erforderlichen Schlitze sind durch die Rohlingsform bereits in dem umgeformten Kern enthalten.
Ein Rand der Öffnung des Bodensegments 4 kann an die Form und Abmessungen eines Außenrandes des Innenkems angepasst sein, so dass der Innenkem bündig in die Öffnung eingesetzt und dort befestigt (z.B. durch eines der obigen Schweißverfahren) werden kann, wie in Fig. 2C dargestellt. Alternativ (nicht dargestellt) kann der Innenkem größer als die Öffnung im Bodensegment sein und an einer Fläche an der Oberseite des Bodensegments befestigt werden, wobei hier Reibschweißen bevorzugt wird. In letzterem Fall stimmen bevorzugt Abmessungen parallel zum Bodensegment (z.B. ein Durchmesser) des Durchgangslochs des Innenkems mit entsprechenden Abmessungen der Öffnung des Bodensegments überein, so dass die Öffnung des Bodensegments und das Durchgangsloch des Innenkems stufenlos ineinander übergehen. Weiterhin ist es möglich, dass der Rand der Öffnung des Bodensegments und der Innenkem zueinander komplementäre umlaufende Stufen aufweisen, die beim Anbringen ineinander gesetzt werden.
Es sei noch angemerkt, dass auf den Innenkem 10 auch verzichtet werden kann. Der Ankerschaft (evtl. Ventilstamm) wird dann nur durch die Öffnung 8 des Bodensegments 4 geführt. Allerdings wird die Ausführung mit Innenkem bevorzugt, da dies zu einer Verbesserung der magnetischen Eigenschaften eines mit dem Magnetkern hergestellten Elektromagneten führt.
Weiter kann das Verfahren eine oder mehrere W ärmebehandlungen (z.B. Anlassen) des Magnetkerns umfassen, beispielsweise ein Temperieren bei geeigneter Temperatur. Damit kann einer Gefügeänderung aufgrund des Umformens entgegengewirkt und Spannungen abgebaut werden. Weiterhin kann ein Temperieren zum Einstellen der magnetischen Eigenschaften des verwendeten Materials hilfreich sein. Die Wärmebehandlung erfolgt also nach dem Schritt des Umformens und, falls ein Innenkem angebracht wird, nach dem Anbringen des Innenkems.
Fig. 3A und Fig. 3B zeigen perspektivische Ansichten des Magnetkerns 1 nach dem Umformen des Kemrohlings bzw. ohne Innenkem (Fig. 3A) und nach dem Anbringen des Innenkems 10 (Fig. 3B). In beiden Figuren sind die als Linien dargestellten Schlitze 22 zwischen den Wandsegmenten 6 zu erkennen. Der Magnetkern 1 weist also eine äußere Wand mit Schlitzen 22 auf, welche durch die umgebogenen Wandsegmente 6 gebildet wird. Ebenso ist ein seitlicher Rand des Bodensegments 4 sichtbar, welches hier beispielhaft keine Schlitze aufweist. Abweichend davon ist es möglich, auch das Bodensegment 4 mit Schlitzen zu versehen, welche die Schlitze zwischen den Wandsegmenten am Boden fortsetzen. Dies kann z.B. dadurch erfolgen, dass beim Stanzen entsprechende Bereiche mit ausgestanzt werden; vgl. Fig. 1, wo entsprechend kleine Löcher an den Ecken, an denen Wandsegmente aufeinandertreffen, vorgesehen sind. Ebenso ist es denkbar, dass der Innenkem 10, der in Fig. 3B keine Schlitze aufweist, mit Schlitzen an der Außenseite versehen ist, die mit einem dem Fachmann bekannten Verfahren eingefugt werden, z.B. Erodieren. In den Raum entlang der Innenseite der durch die umgebogenen Wandsegmente gebildeten äußeren Wand kann eine Magnetspule eingebracht werden, die um die Öffnung verläuft und die im Falle eines angebrachten Innenkems zwischen Innenkem und Wand verläuft.
Fig. 4 stellt einen Ausschnitt aus einem Ventiltrieb, der einen elektromagnetischen Aktuator mit zwei Elektromagneten verwendet, bei denen jeweils ein Magnetkern zum Einsatz kommt, dar. Die Elektromagnete des elektromagnetischen Aktuators umfassen jeweils den Magnetkern 1 und eine Magnetspule 14, die in dem ringförmigen Raum des jeweiligen Magnetkerns angeordnet ist. Durch die Öffnungen der Magnetkerne 1 ist ein Ankerschaft 18 eines ferromagnetischen (Magnet-)Ankers 16 geführt. Ein nur teilweise dargestelltes Ventil ist (in der Figur) unterhalb des Ankerschafts 18 angeordnet, wobei sich ein Ventilstamm 24 des Ventils in Verlängerung des Ankerschafts 18 befindet. Der nicht dargestellte Ventilkopf würde sich unterhalb der Figur befinden. Der Ankerschaft 18 ist mit dem Anker 16 verbunden, also an diesem befestigt oder einstückig mit diesem gefertigt. Das System ist durch zwei (Druck- )Fedem 20 schwingfahig gelagert, wobei eine Druckfeder am oberen Ende des Ankerschafts 18 wirkt und die andere am Ventilstamm 24. (Prinzipiell ist es auch möglich, dass der Ventilstamm gleichzeitig den Ankerschaft bildet, in diesem Fall erstreckt sich der Ventilstamm durch den Aktuator hindurch, der Anker 16 ist mit dem Ventilstamm verbunden und beide Druckfedem wirken am Ventilstamm.) Wird einer der Elektromagnete des elektromagnetischen Aktuators angeschaltet, d.h. fließt Strom durch die jeweilige Magnetspule 14, so wird der Anker 16 und der damit verbundene Ankerschaft 18 von diesem angezogen und mithin das Ventil betätigt.
Abschließend sei noch angemerkt, dass die Figuren eine besonders bevorzugte Ausfiihrungsform darstellen, die eine Rotationssymmetrie aufweist. D.h. das Bodensegment und die Öffnung im Bodensegment sind kreisrund und die Wandsegmente weisen alle die gleiche Form auf und sind regelmäßig um das Bodensegment angeordnet. Ebenso hat der Innenkem die Form eines hohlen Kreiszylinders. Die Wandsegmente bilden entsprechend nach dem Umformen eine kreisringförmige äußere Wand, die durch das Bodensegment in Form einer Kreisringscheibe mit dem Innenkem verbunden ist. Dem Fachmann ist jedoch klar, dass das Verfahren auch mit anderen Formen und Ausgestaltungen ausgefuhrt werden kann und der hergestellte Magnetkern so an vorgegebene Anforderung, wie etwa eine vorgegeben äußere Form, angepasst werden kann. Dabei ist es möglich die vorstehend in dieser Anmeldung beschriebenen Formen für Bodensegment, Öffnung im Bodensegment, Wandsegmente und gegebenenfalls Innenkem zu kombinieren. Beispielsweise kann das Bodensegment rechteckig mit einer runden Öffnung sein; nach dem Umformen wird dann ein an einer Seite offener Quader erhalten. Ein entsprechender Innenkem kann ebenfalls eine äußere Quaderform mit einem runden Durchloch aufweisen.
Bezugszeichenliste
1 Magnetkern
2 Kemrohling
4 Bodensegment
6 Wandsegment Öffnung im Bodensegment
Innenkem
Magnetspulen-Stromversorgungsleitung-Öffnung
Magnetspule
Anker
Ankerschaft
Feder
Schlitz
Ventilstamm

Claims

Ansprüche
1. Verfahren zur Herstellung eines Magnetkerns (1) für einen elektromagnetischen Aktuator für einen elektromagnetischen Ventiltrieb, umfassend
Stanzen eines Kemrohlings (2) aus einem weichmagnetischen Blech, wobei der Kemrohling (2) umfasst:
ein Bodensegment (4) mit einer Öffnung (8) und
mehrere Wandsegmente (6), die sich von einem Außenrand des Bodensegments (4) nach außen erstrecken; und
Umformen des Kemrohlings (2), wobei die mehreren Wandsegmente (6) in eine Richtung im Wesentlichen senkrecht zu dem Bodensegment (4) umgebogen werden.
2. Verfahren gemäß Anspruch 1, weiterhin umfassend
Anbringen eines röhrenförmigen weichmagnetischen Innenkems (10) an dem
Bodensegment (4).
3. Verfahren gemäß Anspruch 1, weiterhin umfassend
Anbringen eines zylindrischen weichmagnetischen Innenkems ( 10) an dem
Bodensegment (4); und
Einbringen eines sich senkrecht zu dem Bodensegment (4) erstreckenden
Durchgangslochs durch den Innenkem (10).
4. Verfahren gemäß einem der Ansprüche 2 oder 3, wobei das Anbringen des
Innenkems (10) mittels Reibschweißen, Laserstrahlschweißen oder
Elektronenstrahlschweißen erfolgt.
5. Verfahren gemäß einem der vorstehenden Ansprüche, weiterhin umfassend
Prägen des weichmagnetischen Blechs vor dem Schritt des Stanzens oder Prägen des Kemrohlings (2) nach dem Schritt des Stanzens.
6. Verfahren gemäß einem der vorstehenden Ansprüche, wobei der Kemrohling (2) mindestens 4 Wandsegmente (6), bevorzugt 8 bis 16 Wandsegmente (8), umfasst.
7. Verfahren gemäß einem der vorstehenden Ansprüche, wobei die Wandsegmente (6) im Wesentlichen die Form eines Rechtecks aufweisen.
8. Verfahren gemäß einem der vorstehenden Ansprüche, wobei die Summe von Breiten der Wandsegmente (6) nach dem Umformen kleiner als ein Außenumfang des Magnetkerns (1) ist.
9. Verfahren gemäß einem der vorstehenden Ansprüche, wobei der Abstand zwischen jeweils zwei Wandsegmenten (6) nach dem Umformen im Bereich zwischen 0,05 mm und 0,3 mm, bevorzugt zwischen 0, 1 mm und 0,2 mm, liegt.
10. Verfahren gemäß einem der vorstehenden Ansprüche, wobei sich die Wandsegmente (6) in Richtung nach außen gleich weit vom Bodensegment (4) aus erstrecken.
1 1. Verfahren gemäß einem der vorstehenden Ansprüche, weiterhin umfassend
eine Wärmebehandlung des Magnetkerns (1) nach dem Umformen des Kemrohlings
(2).
12. Verfahren gemäß einem der vorstehenden Ansprüche, wobei das Bodensegment (4) die Form einer Kreisringscheibe aufweist.
13. Verfahren gemäß einem der vorstehenden Ansprüche, wobei das Stanzen weiterhin Stanzen einer Magnetspulen-Stromversorgungsleitung-Öffnung (12) umfasst.
14. Magnetkern (1) für einen elektromagnetischen Aktuator für einen
elektromagnetischen Ventiltrieb, umfassend eine äußere Wand mit Schlitzen (22), wobei der Magnetkern (1) mit einem Verfahren gemäß einem der Ansprüche 1-13 hergestellt ist.
15. Magnetkern (1) gemäß Anspruch 14, wobei eine Breite der Schlitze (22) im Bereich zwischen 0,05 mm und 0,3 mm, bevorzugt zwischen 0,1 mm und 0,2 mm, liegt.
16. Elektromagnetischer Aktuator für einen elektromagnetischen Ventiltrieb umfassend einen Magnetkern (1) gemäß einem der Ansprüche 14 oder 15.
PCT/EP2019/050548 2018-04-20 2019-01-10 Umgeformter magnetkern für einen elektromagnetischen aktuator und verfahren zur herstellung WO2019201479A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL19700374T PL3747031T3 (pl) 2018-04-20 2019-01-10 Przekształcony rdzeń magnetyczny do elektromagnetycznego urządzenia uruchamiającego oraz sposób wytwarzania
US17/049,111 US20210241954A1 (en) 2018-04-20 2019-01-10 Shaped magnetic core for an electromagnetic actuator, and method for producing same
EP19700374.2A EP3747031B1 (de) 2018-04-20 2019-01-10 Umgeformter magnetkern für einen elektromagnetischen aktuator und verfahren zur herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018109516.3A DE102018109516B4 (de) 2018-04-20 2018-04-20 Umgeformter magnetkern für einen elektromagnetischen aktuator und verfahren zur herstellung
DE102018109516.3 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019201479A1 true WO2019201479A1 (de) 2019-10-24

Family

ID=65013704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/050548 WO2019201479A1 (de) 2018-04-20 2019-01-10 Umgeformter magnetkern für einen elektromagnetischen aktuator und verfahren zur herstellung

Country Status (5)

Country Link
US (1) US20210241954A1 (de)
EP (1) EP3747031B1 (de)
DE (1) DE102018109516B4 (de)
PL (1) PL3747031T3 (de)
WO (1) WO2019201479A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600419B2 (en) * 2018-10-08 2023-03-07 Taiwan Oasis Technology Co., Ltd. Magnetic assembly structure
US10854366B2 (en) * 2018-10-08 2020-12-01 Taiwan Oasis Technology Co., Ltd. Magnetic assembly structure and assembling/disassembling method using the magnetic assembly structure
DE102019120250A1 (de) * 2019-07-26 2021-01-28 Dunkermotoren Gmbh Bremse für einen Elektromotor und Herstellungsverfahren hierfür

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556818A (en) * 1978-06-30 1980-01-18 Fujitsu Ltd Method of producing slotted core
DE102013017259A1 (de) * 2013-10-17 2015-04-23 Staiger Gmbh & Co. Kg Ventil
DE102016104304A1 (de) * 2015-03-11 2016-09-15 Johnson Electric S.A. Magnetventil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127137Y2 (de) * 1981-01-08 1986-08-13
US5016340A (en) * 1990-08-16 1991-05-21 Kato Iron Works, Ltd. Method of manufacture of a rotor core member for a dynamoelectric machine
US5494534A (en) * 1995-03-17 1996-02-27 Industrial Technology Research Institute Method of heat treating an amorphous soft magnetic article
JPH09260126A (ja) * 1996-01-16 1997-10-03 Tdk Corp 圧粉コア用鉄粉末、圧粉コアおよびその製造方法
US6892970B2 (en) * 2002-12-18 2005-05-17 Robert Bosch Gmbh Fuel injector having segmented metal core
FR2916103B1 (fr) * 2007-05-11 2009-06-26 Cnes Epic Actionneur electromagnetique a reluctance variable
JP5397396B2 (ja) * 2011-03-02 2014-01-22 株式会社デンソー 回転電機の回転子鉄心の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556818A (en) * 1978-06-30 1980-01-18 Fujitsu Ltd Method of producing slotted core
DE102013017259A1 (de) * 2013-10-17 2015-04-23 Staiger Gmbh & Co. Kg Ventil
DE102016104304A1 (de) * 2015-03-11 2016-09-15 Johnson Electric S.A. Magnetventil

Also Published As

Publication number Publication date
EP3747031B1 (de) 2021-06-23
DE102018109516B4 (de) 2024-02-08
DE102018109516A1 (de) 2019-10-24
PL3747031T3 (pl) 2021-12-27
US20210241954A1 (en) 2021-08-05
EP3747031A1 (de) 2020-12-09

Similar Documents

Publication Publication Date Title
EP3747031B1 (de) Umgeformter magnetkern für einen elektromagnetischen aktuator und verfahren zur herstellung
DE102007055578B4 (de) Betätigungsmagnet zum Bewegen einer Verschlussnadel einer Heißkanaldüse eines Spritzgusswerkzeugs
DE1272666B (de) Elektromagnetisch betaetigbares Ventil mit Tauchankermagnetsystem
DE202008008142U1 (de) Elektromagnetische Stellvorrichtung
EP1016105B1 (de) Verfahren und vorrichtung zur herstellung von aus blechlamellen bestehenden paketen für magnetkerne
DE2166608A1 (de) Elektromagnet
DE102008060091A1 (de) Solenoidanordnung mit geschlitztem Stator
EP2336618A2 (de) Magnetantrieb
DE102009060406B4 (de) Polrohr eines Elektromagneten
DE4201448C2 (de) Tauchanker-Magnetanordnung und Verfahren zu dessen Herstellung
DE102013100126A1 (de) Elektromagnetisches Ventil
DE10014113C2 (de) Solenoid-Ventilantriebsvorrichtung
DE60026219T2 (de) Elektromagnetspulenanordnung mit C-förmigem Rahmen hoher Flussdichte und Verfahren zu ihrer Herstellung
DE102006059375A1 (de) Elektromagnetischer Aktuator sowie Verfahren zur Herstellung eines Bauteils für einen elektromagnetischen Aktuator
DE102011056853A1 (de) Spulenträger sowie elektromagnetische Stellvorrichtung mit Spulenträger
DE102014216293A1 (de) Verfahren zur Erzeugung von turbulenzerzeugenden Elementen und Rohr mit turbulenzerzeugenden Elementen
EP3885613B1 (de) Randgestauchter kippanker für ein fahrzeugmagnetventil
DE112019006283T5 (de) Kern, Stator und rotierende elektrische Maschine
DE102018215493A1 (de) Herstellungsverfahren für ein Ankerführungsrohr, einen elektromagnetischen Aktor und ein Magnetventil
DE102018117008A1 (de) Elektromagnetischer Aktuator mit Lagerelement
DE19928622A1 (de) Längsgeblechter Jochkörper für einen Elektromagneten
DE2012596A1 (de) Elektromechanisch^ Einrichtung bei Raschelmaschinen zur Ermöglichung einer Heb- und Senkbewegung für eine oder mehrere Pollegeschienen
DE19922424A1 (de) Elektromagnetischer Stellantrieb
DE102019133047A1 (de) Bauteil für einen elektromagnetischen Aktuator, Elektromagnetischer Aktuator und Verfahren zur Herstellung eines Bauteils
DE102021133235A1 (de) Elektromagnetische Vorrichtung, sowie Verfahren zum Herstellen einer solchen elektromagnetischen Vorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19700374

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019700374

Country of ref document: EP

Effective date: 20200902