WO2019200655A1 - 锂二次电池电解液及其锂二次电池 - Google Patents

锂二次电池电解液及其锂二次电池 Download PDF

Info

Publication number
WO2019200655A1
WO2019200655A1 PCT/CN2018/087899 CN2018087899W WO2019200655A1 WO 2019200655 A1 WO2019200655 A1 WO 2019200655A1 CN 2018087899 W CN2018087899 W CN 2018087899W WO 2019200655 A1 WO2019200655 A1 WO 2019200655A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
lithium
electrolyte
battery electrolyte
Prior art date
Application number
PCT/CN2018/087899
Other languages
English (en)
French (fr)
Inventor
范伟贞
余乐
范超君
赵经纬
Original Assignee
广州天赐高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州天赐高新材料股份有限公司 filed Critical 广州天赐高新材料股份有限公司
Priority to US16/964,126 priority Critical patent/US20210036366A1/en
Priority to EP18915088.1A priority patent/EP3731326A4/en
Publication of WO2019200655A1 publication Critical patent/WO2019200655A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium secondary battery technology, and in particular to a lithium secondary battery electrolyte containing an ionic liquid and a lithium secondary battery containing the same.
  • solvents with higher boiling points such as diethyl carbonate and ethyl methyl carbonate are generally selected as the main solvent of the electrolyte, but the melting points of these solvents are relatively high, and the conductance of the electrolyte at low temperatures The rate drops very quickly and the battery impedance increases quickly. It is difficult to meet the low-temperature discharge performance of the battery.
  • a carboxylate having a lower melting point such as ethyl acetate or ethyl propionate is generally selected as the main solvent of the electrolytic solution, but the boiling point of these solvents is relatively low, which is disadvantageous to the high-temperature performance of the battery.
  • Patent CN201110040162.4 discloses an electrolyte for a 300 Ah high-low temperature lithium iron phosphate battery, which improves the conductivity of the electrolyte and improves the low temperature performance of the battery by adding different additives to the electrolyte.
  • embodiments for improving high temperature performance are not disclosed.
  • a lithium secondary battery electrolyte comprising an organic solvent, a conductive lithium salt, an ionic liquid, and an additive.
  • the ionic liquid is selected from at least one of 1-ethyl-3-methylimidazolium tetrafluoroborate and dipyrrolidinium ammonium tetrafluoroborate;
  • the total mass of the lithium secondary battery electrolyte is 0.1-10.0%.
  • the additive is selected from at least one of lithium difluorophosphate, methyl 2-propynyl carbonate, methyl allyl carbonate, and 1,3 propane sultone, and comprises lithium 0.1-5.0% of the total mass of the secondary battery electrolyte.
  • the conductive lithium salt is at least one of lithium hexafluorophosphate or lithium bisfluorosulfonate; the conductive lithium salt accounts for 8.0-18.0% of the total mass of the lithium secondary battery electrolyte.
  • the organic solvent is composed of a cyclic solvent and a linear solvent, and the mass ratio of the cyclic solvent to the linear solvent is (1 to 3): 3.
  • the amount of the organic solvent accounts for 67.0-91.8% of the total mass of the electrolyte of the lithium secondary battery
  • the cyclic solvent is selected from at least one of ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and 1,4 butyl sultone.
  • the linear solvent is selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, propyl propionate, 1,1,2,2-tetrafluoroethyl. At least one of -2,2,3,3-tetrafluoropropyl ether and 2,2-difluoroethyl acetate.
  • Another object of the present invention is to provide a lithium secondary battery.
  • a lithium secondary battery comprising the above lithium secondary battery electrolyte (a positive electrode sheet further comprising a positive electrode active material, a negative electrode sheet containing a negative electrode active material, and a separator).
  • the positive electrode active material means a lithium-containing metal compound
  • the lithium-containing metal compound is Li 1+a (Ni x Co y M 1-xy )O 2 , Li(Ni p Mn q At least one of Co 2-pq )O 4 and LiM h (PO 4 ) m , wherein 0 ⁇ a ⁇ 0.3, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1, 0 ⁇ p ⁇ 2, 0 ⁇ q ⁇ 2, 0 ⁇ p + q ⁇ 2, M is Fe, Ni, Co, Mn, Al or V, 0 ⁇ h ⁇ 5, 0 ⁇ m ⁇ 5;
  • the negative active material includes lithium At least one of a metal, a lithium alloy, a carbon material, a silicon-based material, and a tin-based material.
  • the above electrolyte is added by adding an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate, dipyrrolidinium ammonium tetrafluoroborate and an additive lithium lithium difluorophosphate, 2-propynyl methyl carbonate, alkene
  • an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate, dipyrrolidinium ammonium tetrafluoroborate and an additive lithium lithium difluorophosphate, 2-propynyl methyl carbonate, alkene
  • the combination of propyl methyl carbonate and 1,3 propane sultone can improve the high temperature, normal temperature and low temperature cycle performance of the electrolyte.
  • a lithium secondary battery electrolyte is composed of an organic solvent, a conductive lithium salt, 1-ethyl-3-methylimidazolium tetrafluoroborate, and an additive.
  • the organic solvent accounts for 80.0% of the total mass of the lithium secondary battery electrolyte, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass ratio of ethylene carbonate to ethyl methyl carbonate is 1 :1.
  • the conductive lithium salt is lithium hexafluorophosphate, which accounts for 18.0% of the total mass of the lithium secondary battery electrolyte.
  • the additive is lithium difluorophosphate or 2-propynyl methyl carbonate, which accounts for 1.0% and 0.5% of the total mass of the electrolyte, respectively.
  • the electrolytic solution of this example was applied to a LiNi 0.8 Co 0.1 Mn 0.1 O 2 /graphite soft pack battery.
  • a lithium secondary battery electrolyte is composed of an organic solvent, a conductive lithium salt, dipyrrolidinium ammonium tetrafluoroborate, and an additive.
  • the organic solvent accounts for 79.5% of the total mass of the lithium secondary battery electrolyte, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (dimethyl carbonate), and the mass ratio of ethylene carbonate to dimethyl carbonate is 1 :2.
  • the conductive lithium salt is lithium hexafluorophosphate, which accounts for 15.0% of the total mass of the lithium secondary battery electrolyte.
  • the dipyrrolidinium ammonium tetrafluoroborate accounts for 3.0% of the total mass of the electrolyte, and the additive is allyl methyl carbonate, which accounts for 2.5% of the total mass of the electrolyte.
  • the electrolytic solution of this example was used for a LiNi 0.8 Co 0.1 Mn 0.1 O 2 /silicon carbon soft pack battery.
  • a lithium secondary battery electrolyte is composed of an organic solvent, a conductive lithium salt, dipyrrolidinium ammonium tetrafluoroborate, and an additive.
  • the organic solvent accounts for 77.0% of the total mass of the lithium secondary battery electrolyte, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (diethyl carbonate), and the mass ratio of ethylene carbonate to diethyl carbonate is 1 :3.
  • the conductive lithium salt is lithium hexafluorophosphate, which accounts for 12.0% of the total mass of the lithium secondary battery electrolyte.
  • the dipyrrolidinium ammonium tetrafluoroborate accounts for 10.0% of the total mass of the electrolyte, and the additive is lithium difluorophosphate, which accounts for 1.0% of the total mass of the electrolyte.
  • the electrolytic solution of this example was used for a LiNi 0.6 Co 0.2 Mn 0.2 O 2 /graphite soft pack battery.
  • a lithium secondary battery electrolyte is composed of an organic solvent, a conductive lithium salt, 1-ethyl-3-methylimidazolium tetrafluoroborate, and an additive.
  • the organic solvent accounts for 78.5% of the total mass of the lithium secondary battery electrolyte, and is composed of a cyclic solvent (ethylene carbonate, propylene carbonate) and a linear solvent (ethyl methyl carbonate, propyl propionate), ethylene carbonate,
  • the mass ratio of propylene carbonate, ethyl methyl carbonate, and propyl propionate was 1:0.5:1:1.
  • the conductive lithium salt is lithium hexafluorophosphate, which accounts for 12.0% of the total mass of the lithium secondary battery electrolyte.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate accounts for 6.0% of the total mass of the electrolyte, and the additive is lithium difluorophosphate and 1,3-propane sultone, respectively, which account for the total mass of the electrolyte. 0.5%, 3.0%.
  • the electrolytic solution of this example was applied to a LiNi 0.6 Co 0.2 Mn 0.2 O 2 /silicon carbon soft pack battery.
  • a lithium secondary battery electrolyte is composed of an organic solvent, a conductive lithium salt, 1-ethyl-3-methylimidazolium tetrafluoroborate, and an additive.
  • the organic solvent accounts for 87.5% of the total mass of the lithium secondary battery electrolyte, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate, 1,1,2,2-tetrafluoroethyl-2, 2,3,3-tetrafluoropropyl ether) composition, ethylene carbonate, propylene carbonate, ethyl methyl carbonate, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoro
  • the mass ratio of propyl ether was 1:2:0.5.
  • the conductive lithium salt is lithium hexafluorophosphate, which accounts for 8.5% of the total mass of the lithium secondary battery electrolyte.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate accounts for 1.0% of the total mass of the electrolyte, and the additive is 2-propynylmethyl carbonate and 1,3-propane sultone, respectively. 1.0% and 2.0% of the total mass of the liquid.
  • the electrolytic solution of this example was applied to a LiNi 0.5 Co 0.2 Mn 0.3 O 2 /graphite soft pack battery.
  • a lithium secondary battery electrolyte is composed of an organic solvent, a conductive lithium salt, 1-ethyl-3-methylimidazolium tetrafluoroborate, dipyrrolidinium ammonium tetrafluoroborate, and an additive.
  • the organic solvent accounts for 86.0% of the total mass of the lithium secondary battery electrolyte, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass ratio of ethylene carbonate and ethyl methyl carbonate is 1 :1.
  • the conductive lithium salt is lithium hexafluorophosphate, which accounts for 8.5% of the total mass of the lithium secondary battery electrolyte.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate and dipyrrolidinium ammonium tetrafluoroborate accounted for 2.0% and 2.0%, respectively, of the total mass of the electrolyte.
  • the additive is lithium difluorophosphate, olefin Methyl carbonate, which accounts for 0.5% and 2.0% of the total mass of the electrolyte, respectively.
  • the electrolytic solution of this example was applied to a LiNi 0.5 Co 0.2 Mn 0.3 O 2 /silicon carbon soft pack battery.
  • a lithium secondary battery electrolyte is composed of an organic solvent, a conductive lithium salt, 1-ethyl-3-methylimidazolium tetrafluoroborate, and an additive.
  • the organic solvent accounts for 80.0% of the total mass of the lithium secondary battery electrolyte, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate). The mass ratio of ethylene carbonate and ethyl methyl carbonate is 1 :1.
  • the conductive lithium salt is lithium hexafluorophosphate or lithium bisfluorosulfonimide, which accounts for 10.0% and 4.5% of the total mass of the electrolyte of the lithium secondary battery.
  • 1-Ethyl-3-methylimidazolium tetrafluoroborate accounts for 4.5% of the total mass of the electrolyte, and the additive is lithium difluorophosphate, which accounts for 1.0% of the total mass of the electrolyte.
  • the electrolytic solution of this example was used for a LiNi 0.6 Co 0.2 Mn 0.2 O 2 /graphite soft pack battery.
  • a lithium secondary battery electrolyte is composed of an organic solvent, a conductive lithium salt, dipyrrolidinium ammonium tetrafluoroborate, and an additive.
  • the organic solvent accounts for 85.0% of the total mass of the lithium secondary battery electrolyte, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass ratio of ethylene carbonate and ethyl methyl carbonate is 1 :1.
  • the conductive lithium salt is lithium hexafluorophosphate or lithium bisfluorosulfonimide, which accounts for 8.0% and 3.0% of the total mass of the electrolyte of the lithium secondary battery.
  • the dipyrrolidinium ammonium tetrafluoroborate accounts for 3.0% of the total mass of the electrolyte, and the additive is 2-propynylmethyl carbonate, which accounts for 1.0% of the total mass of the electrolyte.
  • the electrolytic solution of this example was used for a LiNi 0.6 Co 0.2 Mn 0.2 O 2 /graphite soft pack battery.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 1, except that the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate was not contained, and the electrolytic solution was the same as in Example 1. The method is applied to the battery to test its performance.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 1, except that the additive lithium difluorophosphate and 2-propynyl methyl carbonate were not contained, and the electrolytic solution was applied in the same manner as in Example 1. Test its performance in a battery.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 2, except that the ionic liquid dipyrrolidinium ammonium tetrafluoroborate was not contained, and the electrolytic solution was applied to the battery in the same manner as in Example 2. Test its performance.
  • the electrolytic solution of this comparative example was prepared in the same manner as in Example 2 except that the additive allyl methyl carbonate was not contained, and the electrolytic solution was applied to a battery in the same manner as in Example 2 to test its properties.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 3, except that the ionic liquid dipyrrolidinium ammonium tetrafluoroborate was not contained, and the electrolytic solution was applied to the battery in the same manner as in Example 3. Test its performance.
  • the electrolytic solution of this comparative example was prepared in the same manner as in Example 3 except that the additive lithium difluorophosphate was not contained, and the electrolytic solution was applied to a battery in the same manner as in Example 3 to test its performance.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 4, except that the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate was not contained, and the electrolytic solution was the same as in Example 4. The method is applied to the battery to test its performance.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 4 except that the additive lithium difluorophosphate and 1,3-propane sultone were not contained, and the electrolytic solution was the same as in Example 4. Used in batteries to test its performance.
  • the electrolytic solution of this comparative example was prepared in the same manner as in Example 1, except that the ionic liquid contained was triethylmethylammonium tetrafluoroborate, and the electrolytic solution was applied in the same manner as in Example 1. Test its performance in a battery.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 1, except that the ionic liquid contained was 1-methyl-1-n-propylpyrrolidine bis(trifluoromethanesulfonyl)imide salt, This electrolytic solution was applied to a battery to test its performance in the same manner as in Example 1.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 2 except that the ionic liquid contained was triethylmethylammonium tetrafluoroborate, and the electrolytic solution was applied in the same manner as in Example 1. Test its performance in a battery.
  • the electrolytic solution of the present comparative example was prepared in the same manner as in Example 2, except that the ionic liquid contained was 1-methyl-1-n-propylpyrrolidine bis(trifluoromethanesulfonyl)imide salt, This electrolytic solution was applied to a battery to test its performance in the same manner as in Example 1.
  • the lithium secondary batteries prepared in the above Examples 1 to 8 and Comparative Examples 1 to 8 were subjected to high temperature, normal temperature, and low temperature cycle tests.
  • Charge and discharge test conditions In order to measure the charge and discharge performance of the battery using the electrolyte prepared by the present invention, the following operations were carried out: positive and negative electrode sheets were prepared according to a conventional method, and electrolytes prepared in the respective examples were used to inject liquid in a glove box. Pole piece preparation 053048 type soft pack battery, using the Xinwei (BS-9300R type) battery test system to test the charge and discharge of the prepared 053048 type battery, and compare it with the corresponding comparative electrolyte prepared battery.
  • the battery is placed at a high temperature of 45 ° C at a charge rate of 3.0 to 4.2 V at a rate of 1 C for 500 cycles, at a normal temperature of 25 ° C at a rate of 3.0 to 4.2 V at a rate of 1 C for 800 cycles, and at a low temperature of -10 ° C at a rate of 3.0 to 4.2 V at 0.2 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种锂二次电池电解液及其锂二次电池,锂二次电池电解液包括有机溶剂、导电锂盐、离子液体和添加剂。所述离子液体选自1-乙基-3-甲基咪唑四氟硼酸盐、二吡咯烷基铵四氟硼酸盐中的至少一种。上述电解液通过添加离子液体1-乙基-3-甲基咪唑四氟硼酸盐、二吡咯烷基铵四氟硼酸盐与添加剂二氟磷酸锂、2-丙炔基碳酸甲酯、烯丙基碳酸甲酯、1,3丙烷磺酸内酯组合使用能够改善电解液的高温、常温、低温循环性能。

Description

锂二次电池电解液及其锂二次电池 技术领域
本发明涉及锂二次电池技术领域,特别是涉及一种含离子液体的锂二次电池电解液及其含有该电解液的锂二次电池。
背景技术
为了改善锂离子电池的高温性能,一般会选择碳酸二乙酯、碳酸甲乙酯等沸点较高的溶剂作为电解液的主溶剂,但是这些溶剂的熔点相对较高,在低温下电解液的电导率下降非常快,电池阻抗增加快速。很难满足电池的低温放电性能。为了改善电池的低温性能,一般会选择乙酸乙酯、丙酸乙酯等熔点较低的羧酸酯作为电解液的主溶剂,但是这些溶剂的沸点相对较低,对电池的高温性能不利。而在添加剂方面,为了改善高温性能一般使用碳酸亚乙烯酯、碳酸乙烯亚乙酯等添加剂,但是这一类添加剂会造成电池阻抗较大,尤其是在低温下,电池阻抗增加非常明显,导致电池的低温性能下降。专利CN201110040162.4公开了一种用于300Ah高低温兼顾型磷酸铁锂电池的电解液,通过在电解液中添加不同的添加剂从原理上改善了电解液的电导率,改善电池的低温性能。但是并没有公开对高温性能改善的实施例。
要通过电解液来同时改善电池的高低温性能是一个比较难的课题。因此,有必要开发一种能同时改善电池高温和低温性能的电解液。
发明内容
基于此,本发明的目的是提供一种能同时改善电池高温和低温性能的锂二次电池电解液。
具体的技术方案如下:
一种锂二次电池电解液,包括有机溶剂、导电锂盐、离子液体和添加剂。
在其中一些实施例中,所述离子液体选自1-乙基-3-甲基咪唑四氟硼酸盐、二吡咯烷基铵四氟硼酸盐中的至少一种;所述离子液体占锂二次电池电解液总质量的0.1-10.0%。
在其中一些实施例中,所述添加剂选自二氟磷酸锂、2-丙炔基碳酸甲酯、烯丙基碳酸甲酯、1,3丙烷磺酸内酯中的至少一种,占锂二次电池电解液总质量的0.1-5.0%。
在其中一些实施例中,所述导电锂盐为六氟磷酸锂或双氟磺酰亚胺锂中的至少一种;所述导电锂盐占锂二次电池电解液总质量的8.0-18.0%。
在其中一些实施例中,所述有机溶剂由环状溶剂和线性溶剂组成,所述环状溶剂与所述线型溶剂的质量比为(1~3):3。
所述有机溶剂的用量占锂二次电池电解液总质量的67.0-91.8%
在其中一些实施例中,所述环状溶剂选自碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯和1,4丁基磺酸内酯的至少一种。
在其中一些实施例中,所述线型溶剂选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯、丙酸丙酯、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚、2,2-二氟乙基乙酸酯中的至少一种。
本发明的另一目的是提供一种锂二次电池。
一种锂二次电池,包含上述锂二次电池电解液(还包含正极活性材料的正极片、含有负极活性材料的负极片以及隔膜)。
在上述锂二次电池中所述正极活性材料是指含锂金属化合物,所述的含锂金属化合物为Li 1+a(Ni xCo yM 1-x-y)O 2、Li(Ni pMn qCo 2-p-q)O 4、LiM h(PO 4) m的至少一种,其中0≤a≤0.3,0≤x≤1,0≤y≤1,0<x+y≤1,0≤p≤2,0≤q≤2,0<p+q≤2,M为Fe、Ni、Co、Mn、Al或V,0<h<5,0<m<5;所述负极活性材料包括锂金属、锂合金、碳材料、硅基材料和锡基材料中的至少一种。
上述锂二次电池电解液具有如下优点及有益效果:
上述电解液通过添加离子液体1-乙基-3-甲基咪唑四氟硼酸盐、二吡咯烷基 铵四氟硼酸盐与添加剂二氟磷酸锂、2-丙炔基碳酸甲酯、烯丙基碳酸甲酯、1,3丙烷磺酸内酯组合使用能够改善电解液的高温、常温、低温循环性能。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本发明所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本发明所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例1
本实施例一种锂二次电池电解液,由有机溶剂、导电锂盐、1-乙基-3-甲基咪唑四氟硼酸盐和添加剂构成。所述有机溶剂占锂二次电池电解液总质量的80.0%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:1。所述导电锂盐为六氟磷酸锂,占锂二次电池电解液总质量的18.0%。1-乙基-3-甲基咪唑四氟硼酸盐总质量的0.5%。所述添加剂为二氟磷酸锂、2-丙炔基碳酸甲酯,分别占电解液总质量的1.0%、0.5%。将本实施例的电解液用于LiNi 0.8Co 0.1Mn 0.1O 2/石墨软包电池。
实施例2
本实施例一种锂二次电池电解液,由有机溶剂、导电锂盐、二吡咯烷基铵四氟硼酸盐和添加剂构成。所述有机溶剂占锂二次电池电解液总质量的79.5%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸二甲酯)组成,碳酸乙烯酯和碳酸二甲酯的质量比为1:2。所述导电锂盐为六氟磷酸锂,占锂二次电池电解液总质量的15.0%。二吡咯烷基铵四氟硼酸盐占电解液总质量的3.0%,所述添加剂为烯丙基碳酸甲酯,占电解液总质量的2.5%。将本实施例的电解液用于LiNi 0.8Co 0.1Mn 0.1O 2/硅碳软包电池。
实施例3
本实施例一种锂二次电池电解液,由有机溶剂、导电锂盐、二吡咯烷基铵四氟硼酸盐和添加剂构成。所述有机溶剂占锂二次电池电解液总质量的77.0%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸二乙酯)组成,碳酸乙烯酯和碳酸二乙酯的质量比为1:3。所述导电锂盐为六氟磷酸锂,占锂二次电池电解液总质量的12.0%。二吡咯烷基铵四氟硼酸盐占电解液总质量的10.0%,所述添加剂为二氟磷酸锂,占电解液总质量的1.0%。将本实施例的电解液用于LiNi 0.6Co 0.2Mn 0.2O 2/石墨软包电池。
实施例4
本实施例一种锂二次电池电解液,由有机溶剂、导电锂盐、1-乙基-3-甲基咪唑四氟硼酸盐和添加剂构成。所述有机溶剂占锂二次电池电解液总质量的78.5%,由环状溶剂(碳酸乙烯酯、碳酸丙烯酯)和线性溶剂(碳酸甲乙酯、丙酸丙酯)组成,碳酸乙烯酯、碳酸丙烯酯、碳酸甲乙酯、丙酸丙酯的质量比为1:0.5:1:1。所述导电锂盐为六氟磷酸锂,占锂二次电池电解液总质量的12.0%。1-乙基-3-甲基咪唑四氟硼酸盐占电解液总质量的6.0%,所述添加剂为二氟磷酸锂、1,3-丙烷磺酸内酯,分别占电解液总质量的0.5%、3.0%。将本实施例的电解液用于LiNi 0.6Co 0.2Mn 0.2O 2/硅碳软包电池。
实施例5
本实施例一种锂二次电池电解液,由有机溶剂、导电锂盐、1-乙基-3-甲基咪唑四氟硼酸盐和添加剂构成。所述有机溶剂占锂二次电池电解液总质量的87.5%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚)组成,碳酸乙烯酯、碳酸丙烯酯、碳酸甲乙酯、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚的质量比为1:2:0.5。所述导电锂盐为六氟磷酸锂,占锂二次电池电解液总质量的8.5%。1-乙基-3-甲基咪唑四氟硼酸盐占电解液总质量的1.0%,所述添加剂为2-丙炔基碳酸甲酯、1,3-丙烷磺酸内酯,分别占电解液总质量的1.0%、2.0%。将本实施例的电解液用于LiNi 0.5Co 0.2Mn 0.3O 2/石墨软包电池。
实施例6
本实施例一种锂二次电池电解液,由有机溶剂、导电锂盐、1-乙基-3-甲基咪唑四氟硼酸盐、二吡咯烷基铵四氟硼酸盐和添加剂构成。所述有机溶剂占锂二次电池电解液总质量的86.0%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯、碳酸甲乙酯的质量比为1:1。所述导电锂盐为六氟磷酸锂,占锂二次电池电解液总质量的8.5%。1-乙基-3-甲基咪唑四氟硼酸盐、二吡咯烷基铵四氟硼酸盐分别占电解液总质量的2.0%、2.0%,所述添加剂为二氟磷酸锂,烯丙基碳酸甲酯,分别占电解液总质量的0.5%、2.0%。将本实施例的电解液用于LiNi 0.5Co 0.2Mn 0.3O 2/硅碳软包电池。
实施例7
本实施例一种锂二次电池电解液,由有机溶剂、导电锂盐、1-乙基-3-甲基咪唑四氟硼酸盐和添加剂构成。所述有机溶剂占锂二次电池电解液总质量的80.0%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯、碳酸甲乙酯的质量比为1:1。所述导电锂盐为六氟磷酸锂、双氟磺酰亚胺锂,占锂二次电池电解液总质量的10.0%、4.5%。1-乙基-3-甲基咪唑四氟硼酸盐占电解液总质量的4.5%,所述添加剂为二氟磷酸锂,占电解液总质量的1.0%。将本实施例的电解液用于LiNi 0.6Co 0.2Mn 0.2O 2/石墨软包电池。
实施例8
本实施例一种锂二次电池电解液,由有机溶剂、导电锂盐、二吡咯烷基铵四氟硼酸盐和添加剂构成。所述有机溶剂占锂二次电池电解液总质量的85.0%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯、碳酸甲乙酯的质量比为1:1。所述导电锂盐为六氟磷酸锂、双氟磺酰亚胺锂,占锂二次电池电解液总质量的8.0%、3.0%。二吡咯烷基铵四氟硼酸盐占电解液总质量的3.0%,所述添加剂为2-丙炔基碳酸甲酯,占电解液总质量的1.0%。将本实施例的电解液用于LiNi 0.6Co 0.2Mn 0.2O 2/石墨软包电池。
对比例1
本对比例的电解液的制备方法与实施例1相同,所不同的是,不含离子液 体1-乙基-3-甲基咪唑四氟硼酸盐,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
对比例2
本对比例的电解液的制备方法与实施例1相同,所不同的是,不含添加剂二氟磷酸锂、2-丙炔基碳酸甲酯,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
对比例3
本对比例的电解液的制备方法与实施例2相同,所不同的是,不含离子液体二吡咯烷基铵四氟硼酸盐,将此电解液按照与实施例2相同的方法应用于电池中测试其性能。
对比例4
本对比例的电解液的制备方法与实施例2相同,所不同的是,不含添加剂烯丙基碳酸甲酯,将此电解液按照与实施例2相同的方法应用于电池中测试其性能。
对比例5
本对比例的电解液的制备方法与实施例3相同,所不同的是,不含离子液体二吡咯烷基铵四氟硼酸盐,将此电解液按照与实施例3相同的方法应用于电池中测试其性能。
对比例6
本对比例的电解液的制备方法与实施例3相同,所不同的是,不含添加剂二氟磷酸锂,将此电解液按照与实施例3相同的方法应用于电池中测试其性能。
对比例7
本对比例的电解液的制备方法与实施例4相同,所不同的是,不含离子液体1-乙基-3-甲基咪唑四氟硼酸盐,将此电解液按照与实施例4相同的方法应用于电池中测试其性能。
对比例8
本对比例的电解液的制备方法与实施例4相同,所不同的是,不含添加剂 二氟磷酸锂、1,3-丙烷磺酸内酯,将此电解液按照与实施例4相同的方法应用于电池中测试其性能。
对比例9
本对比例的电解液的制备方法与实施例1相同,所不同的是,所含离子液体为三乙基甲基铵四氟硼酸盐,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
对比例10
本对比例的电解液的制备方法与实施例1相同,所不同的是,所含离子液体为1-甲基-1-正丙基吡咯烷双(三氟甲磺酰)亚胺盐,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
对比例11
本对比例的电解液的制备方法与实施例2相同,所不同的是,所含离子液体为三乙基甲基铵四氟硼酸盐,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
对比例12
本对比例的电解液的制备方法与实施例2相同,所不同的是,所含离子液体为1-甲基-1-正丙基吡咯烷双(三氟甲磺酰)亚胺盐,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
实施例和对比例的应用实验:
将上述实施例1~8和对比例1~8制备的锂二次电池进行高温、常温、低温循环测试。
充放电测试条件:为了测量使用本发明制得的电解液的电池充放电性能,进行以下操作:按照常规方法制备正负极片,使用各实施例制备得到电解液在手套箱中注液使用上述极片制备053048型软包电池,用新威(BS-9300R型)电池测试系统对制备的053048型电池进行充放电测试,同时与对应的对比例电解液制备的电池进行比较。电池置于高温45℃以3.0~4.2V 1C倍率下充放电循 环500周、常温25℃以3.0~4.2V 1C倍率下充放电循环800周、低温-10℃以3.0~4.2V 0.2C倍率下充放电循环100周。结果如表1所示。
表1 实施例和对比例的高温、常温、低温循环测试结果:
Figure PCTCN2018087899-appb-000001
Figure PCTCN2018087899-appb-000002
由表1可以看出:实施例1~8相对于对比例1~10,向电解液中添加不同比例的离子液体与添加剂结合使用,都能够明显改善电池的高温、常温、低温循环性能。而只添加离子液体或者添加剂的电解液,电池的高温、常温、低温循环性能都相对同时添加离子液体和添加剂的电池性能要差。
从实施例1、2与对比例9、10、11、12的结果看,离子液体1-乙基-3-甲基咪唑四氟硼酸、二吡咯烷基铵四氟硼酸盐均比离子液体三乙基甲基铵四氟硼酸盐、1-甲基-1-正丙基吡咯烷双(三氟甲磺酰)亚胺盐具有更好的高温、常温、低温循环性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求。

Claims (10)

  1. 一种锂二次电池电解液,其特征在于,包括有机溶剂、导电锂盐、离子液体和添加剂。
  2. 根据权利要求1所述的锂二次电池电解液,其特征在于,所述离子液体选自1-乙基-3-甲基咪唑四氟硼酸盐、二吡咯烷基铵四氟硼酸盐中的至少一种。
  3. 根据权利要求1所述的锂二次电池电解液,其特征在于,所述离子液体占锂二次电池电解液总质量的0.1-10.0%。
  4. 根据权利要求1-3任一项所述的锂二次电池电解液,其特征在于,所述添加剂选自二氟磷酸锂、2-丙炔基碳酸甲酯、烯丙基碳酸甲酯、1,3丙烷磺酸内酯中的至少一种。
  5. 根据权利要求1-3任一项所述的锂二次电池电解液,其特征在于,所述添加剂占锂二次电池电解液总质量的0.1-5.0%。
  6. 根据权利要求1-3任一项所述的锂二次电池电解液,其特征在于,所述导电锂盐为六氟磷酸锂或双氟磺酰亚胺锂中的至少一种,占锂二次电池电解液总质量的8.0-18.0%。
  7. 根据权利要求1-3任一项所述的锂二次电池电解液,其特征在于,所述有机溶剂由环状溶剂和线性溶剂组成。
  8. 根据权利要求7所述的锂二次电池电解液,其特征在于,所述环状溶剂选自碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯和1,4丁基磺酸内酯的至少一种。
  9. 根据权利要求7所述的锂二次电池电解液,其特征在于,所述线型溶剂选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯、丙酸丙酯、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚、2,2-二氟乙基乙酸酯中的至少一种。
  10. 一种锂二次电池,其特征在于,包含权利要求1-9任一项所述的锂二次电池电解液。
PCT/CN2018/087899 2018-04-18 2018-05-22 锂二次电池电解液及其锂二次电池 WO2019200655A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/964,126 US20210036366A1 (en) 2018-04-18 2018-05-22 Lithium secondary battery electrolyte and lithium secondary battery thereof
EP18915088.1A EP3731326A4 (en) 2018-04-18 2018-05-22 SECONDARY LITHIUM BATTERY ELECTROLYTE AND ASSOCIATED SECONDARY LITHIUM BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810348334.6A CN108539257A (zh) 2018-04-18 2018-04-18 锂二次电池电解液及其锂二次电池
CN201810348334.6 2018-04-18

Publications (1)

Publication Number Publication Date
WO2019200655A1 true WO2019200655A1 (zh) 2019-10-24

Family

ID=63480523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087899 WO2019200655A1 (zh) 2018-04-18 2018-05-22 锂二次电池电解液及其锂二次电池

Country Status (4)

Country Link
US (1) US20210036366A1 (zh)
EP (1) EP3731326A4 (zh)
CN (1) CN108539257A (zh)
WO (1) WO2019200655A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7277701B2 (ja) * 2018-12-25 2023-05-19 ダイキン工業株式会社 リチウムイオン二次電池用電解液、リチウムイオン二次電池及びモジュール
CN110400970B (zh) * 2019-06-04 2023-09-05 江西力能新能源科技有限公司 一种电解质材料及其在高温锂电池上的应用
KR102549975B1 (ko) * 2019-11-20 2023-06-30 제이투에이치바이오텍 (주) 이차 전지용 수성 전해액
CN114245947A (zh) * 2021-03-17 2022-03-25 宁德新能源科技有限公司 电解液及包含该电解液的电化学装置
KR20230057798A (ko) * 2021-10-22 2023-05-02 주식회사 엘지에너지솔루션 전해액 첨가제, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지
CN116613380B (zh) * 2023-07-20 2023-09-22 蓝固(常州)新能源有限公司 一种正极成膜添加剂及其制备方法、电解液和锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468515A (zh) * 2010-11-05 2012-05-23 海洋王照明科技股份有限公司 一种锂离子电池及其制备方法
CN102768901A (zh) * 2012-08-06 2012-11-07 张宝生 一种长寿命的电容电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924549B1 (en) * 2008-10-14 2011-04-12 Lithdyne, LLC Carbon electrodes and electrochemical capacitors
WO2010064637A1 (ja) * 2008-12-02 2010-06-10 ステラケミファ株式会社 ジフルオロリン酸塩の製造方法、非水系電解液及び非水系電解液二次電池
CN102842699B (zh) * 2011-06-24 2016-02-24 精工电子有限公司 电化学电池及其制造方法
CN102903954B (zh) * 2011-07-25 2015-06-03 微宏动力系统(湖州)有限公司 含有离子液体电解质的锂离子二次电池
KR20160077270A (ko) * 2014-12-22 2016-07-04 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
US11005127B2 (en) * 2015-05-05 2021-05-11 Ut-Battelle, Llc Stable fluorinated alkylated lithium malonatoborate salts for lithium-ion battery applications
US20200058927A1 (en) * 2016-10-17 2020-02-20 The Board Of Trustees Of The University Of Illinois Protected Anodes and Methods for Making and Using Same
CN107611479B (zh) * 2017-09-08 2022-10-11 广东天劲新能源科技股份有限公司 锂离子动力电池电解液及锂离子二次电池
CN107658498B (zh) * 2017-10-24 2020-10-20 广州天赐高新材料股份有限公司 锂二次电池电解液及其锂二次电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468515A (zh) * 2010-11-05 2012-05-23 海洋王照明科技股份有限公司 一种锂离子电池及其制备方法
CN102768901A (zh) * 2012-08-06 2012-11-07 张宝生 一种长寿命的电容电池

Also Published As

Publication number Publication date
EP3731326A4 (en) 2021-09-29
CN108539257A (zh) 2018-09-14
EP3731326A1 (en) 2020-10-28
US20210036366A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2019200655A1 (zh) 锂二次电池电解液及其锂二次电池
CN104051786B (zh) 一种电解液及其制备方法以及一种高电压锂离子电池
EP3699997B1 (en) Lithium secondary battery electrolyte and lithium secondary battery comprising the same
JP5429631B2 (ja) 非水電解質電池
CN105428719B (zh) 高电压宽温锂离子电池电解液及其制备方法及应用
JP6296597B2 (ja) リチウムイオン二次電池
WO2019200656A1 (zh) 锂二次电池电解液及其锂二次电池
WO2020248567A1 (zh) 一种降低电池阻抗的锂二次电池电解液及其锂二次电池
CN105161763A (zh) 一种锂离子电池非水电解液及锂离子电池
JP6799085B2 (ja) リチウムイオン電池
WO2016054843A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2018099097A1 (zh) 电解液及二次锂电池
JP6533836B2 (ja) リチウムイオン電池用非水電解液及びリチウムイオン電池
WO2016147872A1 (ja) 非水電解液及び非水電解液二次電池
CN105140566A (zh) 一种锂离子电池非水电解液及锂离子电池
JP2020529425A (ja) リチウム塩混合物と電池電解質としてのその使用
CN107785610B (zh) 锂二次电池电解液及其锂二次电池
JP6587101B2 (ja) 非水電解液二次電池
CN104681868A (zh) 一种含有腈乙基胺的电解液及一种锂二次电池
WO2019080259A1 (zh) 锂二次电池电解液及其锂二次电池
CN104064810B (zh) 一种非水电解液及其制备方法以及一种锂二次电池
Li et al. Lithium difluoro (sulfato) borate as a novel electrolyte salt for high-temperature lithium-ion batteries
CN104051788B (zh) 非水电解液及其制备方法以及一种锂离子电池
KR101714126B1 (ko) 리튬공기전지용 글라임계 이온성 액체 전해질 조성물
JP2018501611A (ja) リチウムイオン電池用電解質成分としての環状ホスホンアミド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018915088

Country of ref document: EP

Effective date: 20200723

NENP Non-entry into the national phase

Ref country code: DE