WO2019200641A1 - 高效低阻微纳米纤维微观梯度结构过滤材料及其制备方法 - Google Patents

高效低阻微纳米纤维微观梯度结构过滤材料及其制备方法 Download PDF

Info

Publication number
WO2019200641A1
WO2019200641A1 PCT/CN2018/087101 CN2018087101W WO2019200641A1 WO 2019200641 A1 WO2019200641 A1 WO 2019200641A1 CN 2018087101 W CN2018087101 W CN 2018087101W WO 2019200641 A1 WO2019200641 A1 WO 2019200641A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
micro
layer
nano
filter layer
Prior art date
Application number
PCT/CN2018/087101
Other languages
English (en)
French (fr)
Inventor
严玉蓉
张鹏
朱锐钿
赵耀明
邓玲利
邹飞
杨苏邯
张文韬
Original Assignee
华南理工大学
广州纤维产品检测研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广州纤维产品检测研究院 filed Critical 华南理工大学
Priority to US17/047,697 priority Critical patent/US20210154606A1/en
Publication of WO2019200641A1 publication Critical patent/WO2019200641A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2065Carbonaceous material the material being fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/545Polyvinyl alcohol
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/548Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/549Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0216Bicomponent or multicomponent fibres
    • B01D2239/0233Island-in-sea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0627Spun-bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0654Support layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the invention relates to the field of air filtration, in particular to a gradient composite structure filter medium material with good filtering effect and a preparation process thereof.
  • Air is a necessary condition for human survival. Due to the influence of production and human activities, especially the large amount of industrial waste gas, the air contains excessive dust and harmful gases and is polluted to varying degrees. Over the past few years, PM2.5 has caused widespread concern in society, and dust can cause great harm to organs such as the respiratory tract and eyes. According to the “Green GDP Accounting Report”, the loss caused by environmental pollution is as high as 11.6 billion yuan per year in only one city in Beijing. Among them, the economic losses caused by air pollution to Beijing are the most serious, reaching 9.52 billion yuan, which is a loss caused by total pollution. 81.75%, it can be seen that the impact of environmental pollution on the economy and society is very large, especially air pollution should be worthy of attention.
  • the fiber air filter materials on the market mainly include glass fiber, polyester fiber, polyacrylonitrile fiber, activated carbon fiber, etc., but most of the fiber air filter materials are straight-through structures, and only have a high particle size of 0.3 ⁇ m or more. Filtration efficiency makes it difficult to achieve effective filtration for submicron particles as well as smaller particles. For the traditional air filter materials, the short use period of the filter is too large to meet the requirements of high-efficiency filter materials.
  • micro-nano multi-stage structure of the material gives its novel properties and special functions.
  • electrospun fiber materials with micro-nano multi-stage structure not only have fiber diameter and membrane pore size, high porosity, but also greatly increase the specific surface area of fibers due to the introduction of multi-stage structure.
  • the pore volume enhances the adsorption and dust holding volume of the fiber membrane, and effectively improves the filtration efficiency of the material.
  • the composite structure filter material with electrospinning nanofiber membrane as the interlayer is more suitable for filtering fine particles, and the combination of nanofibers and gradient structure is more advantageous for prolonging the service life of the filter material.
  • Chinese patent CN 103264533 A discloses a ceramic-intermetallic compound gradient filter tube and a preparation method and use thereof.
  • the invention has a filter tube of Ni powder, Al powder, Ti powder, B 4 C powder, SiC powder and TiH 2 .
  • the raw material is synthesized into a porous TiC+TiB 2 ceramic with good wear resistance and corrosion resistance by reaction, and the pores are covered with TiB+Ti 3 B 4 whisker with a length of 10 ⁇ m, and the outermost layer has high strength and good corrosion resistance.
  • the porous NiAl+Ni 3 Al intermetallic compound layer gradually decreases from the inner to the outer ceramic component, and the intermetallic compound component gradually increases, thereby forming a gradient structure to overcome the large filter resistance of the existing filter material, low filtration efficiency, and difficulty in washing, etc. Disadvantages, but the ceramic-intermetallic compound gradient filter tube has higher cost and complicated process, which is not conducive to the promotion and industrialization of technology.
  • Chinese invention patent application CN 103446804 A discloses a carbon nanotube air filter material having a gradient structure and a preparation method thereof, the carbon nano air filter material forming a gradient structure by growing different amounts of carbon nanotubes on the surface of the fiber The filtration efficiency is high and the filtration resistance is low. However, the carbon nanotubes tend to agglomerate in the solution, thereby reducing the porosity of the filter material, and the nanoparticles will fall off during use, posing a threat to people's health.
  • the primary object of the present invention is to improve the existing filter material in the case of satisfying the high filtration efficiency of air, the resistance is large and the use period of the filter material is short, providing a low cost, excellent filtering effect, and three-dimensional A highly efficient, low-resistance filter media material that reduces filtration resistance and extends filter life.
  • Another object of the present invention is to provide a method of preparing a high efficiency, low resistance filter media material for air filtration.
  • the preparation process of the composite gradient structure filter medium material of the invention is simple, and there is no microfiber layer having a curl structure under the spinning condition of the invention, which has factors affecting fiber uniformity, high efficiency and low resistance.
  • the micro-nano filter layer having a 3D solid structure formed by combining with the nanofiber layer containing the tapered tip-concave stacking structure increases the chance of inertial collision between the fiber and the airflow, resulting in an increased probability of the particles being intercepted by the filter component.
  • the direction of the microfibers is at an angle to the direction of the airflow, the resistance of the direct interception of the filter material is reduced, and the pore structure provided by the three-dimensional structure changes the flow direction of the airflow, and the more fluffy micron-sized fiber filter layer structure can accommodate more The particles are filtered, which greatly reduces the filtration resistance of the filter material.
  • micro-gradient structure filter material including nano fine filter layer A, micro-support primary filter layer B and protective surface layer C; micro-support primary filter layer and nano-fine filter layer are superimposed and arranged on two protective surfaces Between layers;
  • the nano fine filter layer is composed of a planar base fiber layer D and a pyramid structure E, wherein the fiber between the tip end of the pyramid structure E and the mesh base fiber layer D forms an orientation structure along the tip end to the planar base fiber layer D, the cone
  • the cone angle of the body structure E is 10 to 70°
  • the pitch of the tip of the cone is 2 to 20 mm
  • the plurality of pyramid structures E are uniformly formed into a grid-like structure in the plane matrix fiber layer D;
  • the micro-supported primary filter layer B is composed of a micro-fiber layer having a crimped structure; the nano-fine filter layer has a grid-like structure;
  • the surface of the nano fine filter layer is charged or uncharged; the micro support filter layer is charged or uncharged.
  • the nanofibers in the nano fine filter layer have a diameter of 10 to 1000 nm and a grammage of 0.5 to 20 g/m 2 ; and the diameter of the fiber material of the micron-supported primary filter layer is 1 ⁇ 100 ⁇ m, and the grammage is 10 to 200 g/m 2 .
  • the fibrous material of the micron-supported primary filter layer is obtained by needling, hydroentanglement, spunbonding, meltblowing or stitching.
  • the fibers of the microfiber layer are at an angle of 10-50° to a horizontal plane, and the fibers of the microfiber layer have a Z-shaped, S-shaped, spiral or wavy crimp structure; when the fibers of the micro-fiber layer are short fibers
  • the crimped structure is obtained by a composite spinning process; the composite fiber obtained by the composite spinning process comprises a sheath core, an eccentric core or a side-by-side structure.
  • the material of the micro-supported primary filter layer comprises polyester fiber, polypropylene fiber, polyurethane elastic fiber, polyacrylonitrile fiber, polyamide fiber, polyvinyl acetal fiber, polylactic acid fiber, acetate fiber, fiber Plain fiber, polycaprolactone fiber, sheath core structure fiber, natural fiber or inorganic fiber;
  • the sheath core structure fiber comprises PP/PE, PET/PE, PA/PE, PET/PA, PET/coPET fiber, wherein PE, PA or coPET is a skin layer;
  • the natural fiber comprises cotton, kapok, jute, hemp, ramie, apocynum, coir, pineapple fiber, bamboo fiber or straw fiber;
  • the inorganic fibers include glass fibers, carbon fibers, boron fibers, alumina fibers, silicon carbide fibers or basalt fibers.
  • the material of the protective facing layer comprises polyester fiber, polypropylene fiber, polyethylene fiber, polyamide fiber or cellulose recycled fiber.
  • the protective surface layer is a non-woven fabric material obtained by spunbonding, hot rolling or hot air forming, and has a basis weight of 10 to 80 g/m 2 .
  • the unfiltered high-efficiency low-resistance micro-nanofiber micro-gradient structure filter material has a filtration efficiency of 99.9-99.999% for a NaCl aerosol having a mass median diameter of 0.26 ⁇ m;
  • the high-efficiency low-resistance micro-nanofiber micro-gradient structure filter material with a weight of 30-250Pa has a filtration efficiency of 99.9-99.999% for a NaCl aerosol with a median diameter of 0.26 ⁇ m, achieving high-efficiency air filtration.
  • the preparation method of the high-efficiency low-resistance micro-nano fiber micro-gradient structure filter material comprises the following steps:
  • the obtained polymer solution is prepared by needle electrospinning, centrifugal spinning, needleless free surface electrospinning, centrifugal electrospinning or meltblown electrospinning, and the template is used as a receiver to prepare a grid structure.
  • Technical molding processing using a template as a receiver, and then being treated with n-hexanol to prepare a nano fine filter layer having a grid structure without electricity;
  • the micro-supported primary filter layer is treated by a corona discharge, a triboelectric charge, a thermal polarization method or a low-energy electron beam bombardment method to obtain a charged micro-supported primary filter layer;
  • High-efficiency low-resistance micro-nano fiber micro-gradient structure The outermost two layers of the filter material are the protective surface layer, and the micro-supported primary filter layer and the nano-fine filter layer are alternately superposed; the protective surface layer, the micro-supported primary filter layer, and the nano-fine filter The layer and the protective surface layer are composited by hot air bonding technology, and the hot air composite temperature is 150-250 °C.
  • the material of the template comprises plastic, ceramic, stainless steel, copper, aluminum, mica or silicon wafer;
  • the template comprises an array of bottom plates and a pyramid structure, and a plurality of pyramid structures are uniformly distributed on the bottom plate to form
  • the pyramid structure array the bottom of the pyramid structure is a regular polygon or a circle, the diameter or side length of the pyramid structure is 0.01 to 5 mm, the distribution density of the pyramid structure is 10 to 100 / cm 2 , and the height of the pyramid structure is 0.001 to 1.0 mm; a vertebral body of a certain density is distributed on the bottom plate to form a lattice structure;
  • the high molecular polymer is polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly Acrylonitrile (PAN), polystyrene (PS), polymethacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), ethylene-propylene copolymer (EPDM), polyvinyl acetate One or more of ester (EVA), polyethylene elastomer (EEA), polyamide (PA), and copolymerized polyamide (coPA);
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PLA polylactic acid
  • PGA polyglycolic acid
  • PCL polycaprolactone
  • PAN poly Acrylonitrile
  • PAN polystyrene
  • PMMA
  • the nano-fine filter layer with no surface charge can obtain surface-charged nano-fine filter layer by corona discharge, triboelectric charge, thermal polarization or low energy electron beam bombardment.
  • the micro-supported primary filter layer of the present invention is composed of a micro-fiber layer having a crimped structure, and the nano-fine filter layer is composed of a nano-fiber layer having a tapered tip-cone stack structure, and the filter medium material has a 3D scale gradient structure, but the scale gradient does not exist. There is a significant layering gradient with partial overlap.
  • the material of the template having the mesh structure comprises one of plastic, ceramic, stainless steel, copper, aluminum, mica plate and silicon wafer.
  • the template including the bottom plate and the pyramid structure exists in a stable equidistant polygonal structure or a circular structure.
  • the diameter or side length of the pyramid structure is 0.01 to 5 mm, and the distribution density of the pyramid structure is 10 to 100/cm 2 .
  • the height of the pyramid structure is 0.001 to 1.0 mm.
  • the filter medium material is compounded, and the process characteristic is that the non-woven protective surface layer, the micro-supported primary filter layer and the nano-fine filter layer are combined by hot air bonding technology, and the hot air composite temperature is 150-250 ° C, and the local orientation is obtained.
  • Composite filter material with 3D structure is
  • the outermost upper and lower layers of the filter medium material are protective surface layers, and the filter layer of the composite medium material is composed of a micro-supported primary filter layer and a nano-fine filter layer alternately stacked.
  • the partially oriented 3D solid structure comprises one of a z-shaped, S-shaped, spiral-shaped, wavy-shaped crimped structure, which has a crimped structure for the short-fiber raw material and a composite spinning process for the filament.
  • the crimped structure is adjusted, and the composite fiber obtained by the composite spinning method includes a sheath core, an eccentric core or a side-by-side structure.
  • the micron-supported primary filter layer can be treated by an electrostatic electret process such as corona discharge, triboelectric charge, thermal polarization or low energy electron beam bombardment to obtain a charged micron-supported primary filter layer.
  • an electrostatic electret process such as corona discharge, triboelectric charge, thermal polarization or low energy electron beam bombardment to obtain a charged micron-supported primary filter layer.
  • the invention produces a composite filter material having a locally oriented 3D solid structure, wherein the fibers in the nanometer-sized fine filter layer have a certain degree of two-dimensional or three-dimensional orientation, and the micron-sized material is prepared to support the primary filter layer and the fiber has a 3D network. Structure, and has a certain degree of bulkiness.
  • the Median particle diameter is also known as the mass median aerodynamic diameter.
  • the mass median diameter When the total mass of particles of various sizes smaller than a certain aerodynamic diameter in the particulate matter accounts for 50% of the total mass of the particulate matter (ie, the sum of the masses of all the different particle sizes), the diameter is referred to as the mass median diameter. That is, half of the particles having this median diameter have a particle diameter smaller than this diameter, and half of them are larger than this diameter. It is also difficult to define the NaCl aerosol particle size without a specific distribution.
  • the present invention has the following advantages and beneficial effects:
  • the micro-nano filter medium material with composite gradient structure according to the invention has simple preparation process and uniform conical tip-cone stacking structure, and the micro-nano fiber layer forms a locally oriented 3D three-dimensional structure, which is composed of nanometer and micrometer.
  • the local orientation, multi-stage, and transition material-containing filter material can reduce the filtration resistance and prolong the service life of the filter material; and the air is filtered through the primary layer of the micro-fiber layer, and the nano-fiber layer is finely filtered to achieve high filtration effect, and non-woven.
  • the cloth layer provides support protection for the core filter material and improves its mechanical properties.
  • the uncharged composite material has a filtration efficiency of 99.9-99.999% for a NaCl aerosol having a mass median diameter of 0.26 ⁇ m, a pressure drop of 130-300 Pa, and a gas-treated composite material having a mass median diameter of 0.26 ⁇ m of NaCl gas.
  • the filtration efficiency of the sol is 99.9-99.999%, and the pressure drop is 30-250Pa, which can effectively achieve the purpose of air filtration.
  • FIG. 1 is a schematic view showing the structure of a high-efficiency low-resistance composite structure filter medium material having a gradient structure according to the present invention.
  • FIG. 2 is a schematic structural view of a nano fine filter layer having a mesh structure in FIG. 1.
  • Figure 3 is a schematic view showing the structure of a filter layer having a partial overlap gradient in the present invention.
  • Figure 4 is a schematic view showing the structure and fiber arrangement of a fiber having a three-dimensionally crimped structure in Example 1 of the present invention.
  • Fig. 5 is a schematic view showing the structure of a fiber having a three-dimensionally crimped structure in Embodiment 2 of the present invention.
  • Fig. 6 is a schematic view showing the structure of a fiber having a three-dimensionally crimped structure in Embodiment 3 of the present invention.
  • Figure 7 is a schematic view showing the structure of a fiber having a three-dimensionally crimped structure in Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural diagram of a receiving board in Embodiment 1 of the present invention.
  • FIG. 9 is a schematic structural diagram of a receiving board in Embodiment 2 of the present invention.
  • the figure shows the nanofine filter layer A, the micro-supported primary filter layer B, the protective surface layer C, the mesh matrix fiber layer D, the pyramid structure E, and the cone angle ⁇ of the pyramid structure E.
  • FIG. 1 is a schematic view showing the structure of a high-efficiency low-resistance composite structure filter medium material having a gradient structure according to the present invention.
  • 2 is a schematic structural view of a nano fine filter layer having a mesh structure in FIG. 1.
  • High-efficiency low-resistance micro-nano fiber composite micro-gradient structure filter material including nano-fine filter layer A, micro-supported primary filter layer B, protective surface layer C; nano-fine filter layer A and micro-supported primary filter layer B are alternately superposed, set in two The layer protects the surface layer C between.
  • the nano fine filter layer A has a mesh structure composed of a planar base fiber layer D and a pyramid structure E, wherein the fiber between the tip of the pyramid structure E and the mesh matrix fiber layer D forms an orientation along the tip to the base fiber layer D.
  • the cone angle ⁇ of the pyramid structure E is 10 to 70°, and the pitch of the tip of the cone is 2 to 20 mm; the surface of the nano fine filter layer A is charged or uncharged.
  • the micro-supported primary filter layer B is composed of a micro-fiber layer having a crimped structure, and the fiber layer constitutes an angle ⁇ (10-50°) to the level of the layer, the micro-fiber having a Z-shape, an S-shape, a spiral or a wave Curled structure.
  • a fine filter layer is prepared by using a nano-sized material, and a primary filter layer is prepared by using a micron-sized material, and then the nano-fine filter layer and the micro-supported primary filter layer, and the protective surface layer are composited by hot air bonding technology.
  • the protective surface layer of the high-efficiency low-resistance micro-nano fiber micro-gradient structure filter material is a protective layer, the micro-support primary filter layer is a primary filter layer and a dust-retaining layer; and the nano-fiber layer is a fine filter layer.
  • the high-efficiency and low-resistance micro-nano fiber micro-gradient structure filter material of the invention is a high-efficiency low-resistance filter medium material having a three-dimensional structure
  • the nano-fine filter layer is a nano-fiber layer containing a tapered tip-cone stack structure
  • the support filter layer is micron.
  • the grade fiber is composed and forms a scale gradient perpendicular to the direction of the surface layer of the filter material, and the scale gradient does not have a significant layered gradient, and there is partial overlap.
  • the grid structure in the template is a grid structure formed by distribution of vertebral structures distributed at a certain density on the bottom plate; and the grid structure in the nano fine filter layer is a grid given to the nanofiber layer by a template having a grid structure structure.
  • the nano-fine filter layer A is prepared by using a needle-free free surface electrospinning method for the PVA solution, and the nano fine filter layer A is a nano fine filter layer with no PVA surface.
  • the distance between the receiving plate and the solution tank was about 25 cm
  • the voltage was about 60 kV
  • the number of revolutions of the rotor in which the wire was wound in the solution tank to form the wire electrode was 70 r/min.
  • the receiving plate is made of plastic, and the receiving plate is as shown in Fig. 8.
  • the receiving plate comprises a bottom plate and a cone structure, and a plurality of pyramid structures are uniformly distributed on the bottom plate.
  • the bottom of the cone structure is circular, and the cone structure is round.
  • the bottom of the shape has a diameter F of 4 mm, a pyramid structure distribution density of 50 pieces/cm 2 , and a template pyramid structure height of 0.001 mm.
  • the obtained nano fine filter layer A has a mesh structure, and the PVA surface is not charged.
  • an oriented fiber structure exists between the tip end of the pyramid structure E and the mesh base fiber layer D, and the taper angle of the pyramid structure E At 40°, the pitch of the tip of the cone is 10 mm; the diameter of the nanofiber of the PVA fine filter layer is 100 to 200 nm, and the basis weight is 10 g/m 2 .
  • the micro-supported primary filter layer B is obtained by a needle punching method from a polylactic acid fiber having a spiral structure as shown in FIG. 4, and the diameter of the polylactic acid fiber in the non-woven material is 20 to 50 ⁇ m, and the fiber axial direction is
  • the cloth substrate surface has an included angle ⁇ of 20° and a basis weight of 100 g/m 2 , and is then treated by a corona discharge electret process to obtain a charged micron-supported primary filter layer B.
  • a nonwoven fabric material obtained by a needle punching method is provided on a receiving plate as shown in FIG. 8 , and then a nano fine filter layer which is supercharged on the surface of the PVA is received thereon, and then The upper and lower ends of the obtained material were respectively provided with a cellulose-recycled fiber spunbonded nonwoven fabric having a basis weight of 40 g/m 2 , and four layers were composited by hot air bonding technology, and the hot air composite temperature was 180 ° C to obtain a composite having a locally oriented 3D three-dimensional structure.
  • the material is filtered, and there is a partially overlapping gradient structure between the micro-supported primary filter layer and the fine filter layer in the filter medium (Fig. 3), and a high-efficiency low-resistance filter medium material for air filtration is obtained.
  • the filtration performance test of the filter material was carried out by TSI 8130 automatic filter material tester of TSI Company of the United States.
  • the composite filter media material obtained by the present embodiment was subjected to a NaCl aerosol having a mass median diameter of 0.26 ⁇ m.
  • the filtration efficiency is 99.99%, and the PAN microsphere/nanofiber composite membrane with three-dimensional cavity structure prepared by free surface electrospinning has a pressure drop of 126.7Pa when the filtration performance reaches 99.99% [Gao H, Yang Y, Akampumuza O, et al. Low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM 2.5 capture [J].
  • the filter medium of the invention has a continuous filtration loading time of 30 min, when the micro-supporting primary filter layer B is on the windward side, the pressure drop is increased from 110 Pa to 369 Pa; when the nano-fine filter layer A is on the windward side, the pressure drop is increased from 110 Pa to 581 Pa. .
  • the micro-supported primary filter layer of the micro-nano fiber filter material with gradient structure is described, which can greatly reduce the speed of resistance rise and has a longer service life.
  • the composite gradient structure filter medium material has a simple preparation process, high efficiency and low resistance, and a microfibrous layer having a crimped structure and a nanofiber layer comprising a tapered pyramid stacking structure are combined.
  • the micro-nano filter layer with 3D stereo structure increases the chance of inertial collision between the fiber and the airflow, resulting in an increased probability of the particles being intercepted by the filter component.
  • the direction of the microfibers is at an angle to the direction of the airflow, the resistance of the direct interception of the filter material is reduced, and the pore structure provided by the three-dimensional structure changes the flow direction of the airflow, and the more fluffy micron-sized fiber filter layer structure can accommodate more The particles are filtered, which greatly reduces the filtration resistance of the filter material.
  • the nano fine filter layer A is prepared by a melt blown electrospinning method for the PLA solution, and the nano fine filter layer A is a nano fine filter layer charged on the surface of the PLA.
  • the distance between the receiving plate and the meltblown electrostatic spinneret was about 20 cm
  • the voltage was about 60 kV
  • the PLA melt was melt blown electrospun at a flow rate of 0.3 cc/min.
  • the receiving plate is made of stainless steel with a receiving surface structure as shown in Figure 9.
  • the receiving surface includes a bottom plate and a cone structure.
  • the plurality of pyramid structures are uniformly distributed on the bottom plate.
  • the bottom of the cone structure is square, square.
  • the side length F is 1.41 mm
  • the pyramid structure distribution density is 60 pieces/cm 2
  • the template cone structure height is 0.002 mm.
  • the obtained nano fine filter layer A has a lattice structure, and the PLA surface is charged.
  • an oriented fiber structure exists between the tip end of the pyramid structure E and the mesh matrix fiber layer D, and the cone angle of the pyramid structure E is 50°, the pitch of the tip of the cone is 15 mm; the diameter of the nanofiber of the PLA fine filter layer is 400-800 nm, and the basis weight is 20 g/m 2 .
  • the micro-supported primary filter layer B is obtained by a hydroentanglement method from a polyester fiber having a Z-shaped crimp structure as shown in FIG. 5, and the diameter of the polyester fiber in the non-woven material is 2 to 10 ⁇ m, and the fiber axis is The angle between the direction and the surface of the cloth substrate is 45°, the basis weight is 50 g/m 2 , and then processed by a triboelectric charging process to obtain a charged micron-supported primary filtration layer B.
  • a nonwoven fabric material obtained by a hydroentangled method of a polyester fiber having a Z-curled structure is provided on the template of FIG. 9, and then a nano fine filter layer charged on the surface of the PLA is received thereon, and then charged on the surface of the PLA.
  • the nano-fine filter layer is superposed with a non-woven fabric material obtained by a hydroentangled method of a polyester fiber having a Z-shaped crimp structure, and then a polypropylene fiber melt-blown nonwoven fabric having a basis weight of 20 g/m 2 is disposed at the upper and lower ends of the obtained material.
  • a composite filter material having a locally oriented 3D solid structure was prepared by hot air bonding technology, and a composite layer having a locally oriented 3D structure was obtained, and a partial overlapping gradient structure between the micro-supported primary filter layer and the fine filter layer in the filter medium was obtained.
  • a highly efficient low resistance filter media material for air filtration is obtained.
  • the filtration performance test of the filter material was carried out by TSI 8130 automatic filter material tester of TSI Company of the United States.
  • the pressure drop was 60 Pa
  • the composite filter media material obtained by the present embodiment was subjected to a NaCl aerosol having a mass median diameter of 0.26 ⁇ m.
  • the filtration efficiency is 99.9%, which can effectively achieve the purpose of air filtration.
  • the nano fine filter layer A is prepared by a double needle electrospinning method for the PCL solution, and the nano fine filter layer A is a nano fine filter layer charged on the surface of the PCL.
  • the distance between the receiving plate and the needle was about 12 cm
  • the voltage was about 15 kV
  • the PCL solution was electrospun at a flow rate of 0.5 mL/h.
  • the receiving plate is made of a silicon wafer, and the receiving plate is a circular mesh having a mesh diameter of 0.04 mm, a density of 80/cm 2 , and a height of 0.02 mm.
  • the obtained nano fine filter layer A has a mesh structure, and the surface of the PCL is charged. As shown in FIG.
  • an oriented fiber structure exists between the tip end of the pyramid structure E and the mesh matrix fiber layer D, and the taper angle of the pyramid structure E is 60°, the pitch of the tip of the cone is 12 mm; the diameter of the nanofiber of the PCL fine filter layer is 80-300 nm, and the basis weight is 4 g/m 2 .
  • the micro-supported primary filter layer B is obtained by a spunbonding method from a polypropylene fiber having a spirally crimped structure as shown in FIG. 6.
  • the polypropylene fiber has a diameter ranging from 20 to 40 ⁇ m in the nonwoven fabric material, and the fiber axial direction The angle of the substrate surface with the cloth substrate is 25°, the weight is 120g/m 2 , and then processed by the corona discharge electret process to obtain a charged micro-supported primary filter layer.
  • a non-woven fabric material obtained by a spunbonding method is provided on a stencil, and then a nano-fine filtration layer superposed on the surface of the PCL is received thereon, and then a gram is placed on the upper and lower ends of the obtained material.
  • hot air composite temperature hot air composite temperature
  • the filtration performance test of the filter material was carried out by TSI 8130 automatic filter material tester of TSI Company of the United States.
  • the pressure drop was 40 Pa
  • the composite filter media material obtained by the present embodiment was subjected to a NaCl aerosol having a mass median diameter of 0.26 ⁇ m.
  • the filtration efficiency is 99.97%, which can effectively achieve the purpose of air filtration.
  • the PA solution is prepared by a single needle electrospinning method and subjected to n-hexanol treatment to prepare a nano fine filter layer A, which is a nano fine filter layer with no PA surface.
  • the distance between the receiving plate and the needle was about 10 cm
  • the voltage was about 10 kV
  • the PA solution was electrospun at a flow rate of 0.3 mL/h.
  • the receiving plate is made of stainless steel, and the receiving plate is a hexagonal mesh with a mesh length of 0.5 mm, a density of 60/cm 2 , and a height of 0.01 mm.
  • the obtained nano fine filter layer A has a mesh structure, and the PA surface is not charged. As shown in FIG.
  • the pitch of the tip of the cone is 16 mm; the diameter of the nanofiber of the PA fine filter layer is 100 to 250 nm, and the basis weight is 15 g/m 2 .
  • the micro-supported primary filter layer B is obtained by a melt-blown method from a polyurethane elastic fiber having an S-type crimp structure as shown in FIG. 7, and the diameter of the polyurethane fiber in the nonwoven fabric is 25 to 40 ⁇ m.
  • the angle between the direction and the surface of the cloth substrate was 30°, and the basis weight was 90 g/m 2 to obtain an uncharged micro-supported primary filter layer.
  • a polyurethane elastic fiber having an S-type crimp structure is disposed on the template to obtain a nonwoven fabric material by a melt blowing method, and then a nano fine filter layer having an uncharged PA surface is received thereon, and then disposed at the upper and lower ends of the obtained material.
  • the polyester fiber hot air non-woven fabric with a weight of 20g/m 2 is compounded by hot air bonding technology, and the composite temperature of the hot air is 200 ° C to obtain a composite filter material with a locally oriented 3D structure, and the micron in the filter medium.
  • a partially overlapping gradient structure exists between the support primary filter layer and the fine filter layer to obtain an efficient low-resistance filter media material for air filtration.
  • the filtration performance of the filter material was tested by TSI 8130 automatic filter material tester from TSI, USA.
  • the pressure drop was 200 Pa
  • the uncharged composite filter media material obtained in this example was a NaCl aerosol with a mass median diameter of 0.26 ⁇ m.
  • the filtration efficiency is 99.99%, which can effectively achieve the purpose of air filtration.
  • the nano-fine filter layer A was prepared by centrifugal electrospinning of the PS solution and the nano-fine filter layer A was prepared by treatment with n-hexanol.
  • the nano-fine filter layer A was nano-fine with no charge on the PS surface. Filter layer.
  • the receiving plate is made of plastic, and the receiving plate is a circular mesh with a mesh diameter of 0.5 mm, a density of 80/cm 2 , and a height of 0.3 mm.
  • the obtained nano fine filter layer A has a mesh structure, and the PS surface is not charged. As shown in FIG.
  • the pitch of the tip of the cone is 15 mm; the diameter of the nanofiber of the PS fine filter layer is 200 to 500 nm, and the basis weight is 4 g/m 2 .
  • the surface-charged PS nanofine filter layer was obtained by corona discharge treatment of the surface-uncharged PS nanofine filter layer.
  • Micron-supported primary filter layer B is obtained from a polypropylene fiber having an S-type crimp structure by a spunbonding method.
  • the diameter of the polypropylene fiber in the nonwoven fabric is 10 to 25 ⁇ m, and the fiber axial direction and the cloth substrate are The face has an included angle of 50° and a grammage of 120 g/m 2 and is then processed by a thermal polarization process to obtain a charged micron support and primary filtration composite layer.
  • a polypropylene fiber having an S-shaped crimp structure is disposed on the template to obtain a nonwoven fabric material by a spunbonding method, and then a nano fine filter layer superposed on the surface of the PS is received thereon, and then nano-fine filtration is performed on the surface of the PS.
  • a polypropylene fiber having an S-type crimp structure is layer-laminated to obtain a nonwoven fabric material by a spunbonding method, and then a polyamide fiber spunbonded nonwoven fabric having a basis weight of 50 g/m 2 is disposed at the upper and lower ends of the obtained material, and the hot air bonding technique is adopted.
  • the composite coating material with localized 3D structure was prepared by combining 5 layers and hot air composite temperature of 200 ° C, and a partial overlapping gradient structure between the micro-supported primary filter layer and the fine filter layer in the filter material was obtained for air filtration. High efficiency low resistance filter media material.
  • the filtration performance test of the filter material was carried out by TSI 8130 automatic filter material tester of TSI Company of the United States.
  • the pressure drop was 230 Pa
  • the composite filter media material obtained by the present embodiment was subjected to a NaCl aerosol having a mass median diameter of 0.26 ⁇ m.
  • the filtration efficiency is 99.999%, which can effectively achieve the purpose of air filtration.
  • the nano fine filter layer A is prepared by a double needle electrospinning method for the PEO solution, and the nano fine filter layer A is a nano fine filter layer with no surface on the PEO surface.
  • the distance between the receiving plate and the needle was about 12 cm
  • the voltage was about 15 kV
  • the PEO solution was electrospun at a flow rate of 0.5 mL/h.
  • the receiving plate is made of mica plate, and the receiving plate is a circular mesh with a mesh diameter of 0.6 mm, a density of 70/cm 2 , and a height of 0.005 mm.
  • the obtained nano fine filter layer A has a mesh structure, and the PEO surface is not charged. As shown in FIG.
  • the micro-supported primary filter layer B consists of a polyvinyl formal fiber with a Z-shaped crimp structure and a PP/PE sheath core structure fiber (PP to PE mass ratio of 50:50; polyvinyl formal fiber and PP/PE sheath core)
  • the structural fiber mass ratio is 80:20)
  • the nonwoven fabric material is obtained by the hydroentangling method, the diameter of the polyvinyl formal fiber in the non-woven material is 15-30 ⁇ m, and the diameter of the PP/PE sheath core structural fiber is 10 ⁇ 25 ⁇ m, the angle between the axial direction of the fiber and the surface of the cloth substrate was 20°, and the basis weight was 60 g/m 2 , and an uncharged micro-supported primary filter layer was obtained.
  • a polyvinyl formal fiber and a PP/PE sheath core structure fiber having a Z-shaped crimp structure are disposed on the template (the ratio of PP to PE is 50:50; polyvinyl formal fiber and PP/PE sheath core)
  • the structural fiber mass ratio is 80:20)
  • the non-woven fabric material is obtained by the hydroentangling method, and then the nano fine filter layer which is supercharged on the surface of the PEO is received thereon, and then the weight of the upper and lower ends of the obtained material is respectively set to 50 g/m 2 .
  • the filtration performance test of the filter material was carried out by TSI 8130 automatic filter material tester of TSI Company of the United States.
  • the pressure drop was 140 Pa
  • the uncharged composite filter media material obtained in this example was a NaCl aerosol with a mass median diameter of 0.26 ⁇ m.
  • the filtration efficiency is 99.9%, which can effectively achieve the purpose of air filtration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种高效低阻微纳米纤维微观梯度结构过滤材料,包括纳米精细过滤层(A)、微米支撑初级过滤层(B)和保护面层(C),微米支撑初级过滤层(A)和纳米精细过滤层(B)交互叠加,设置在两层保护面层(C)之间,纳米精细过滤层(A)具有网格结构,由平面基体纤维层(D)和锥体结构(E)组成,其中锥体结构(E)的尖端与网格基体纤维层(D)间的纤维形成沿尖端和平面基体纤维层(D)的取向结构;以及一种高效低阻微纳米纤维微观梯度结构过滤材料的制备方法。

Description

高效低阻微纳米纤维微观梯度结构过滤材料及其制备方法 技术领域
本发明涉及空气过滤领域,具体涉及一种具有良好过滤效果的梯度复合结构过滤介质材料及其制备工艺。
背景技术
空气是人类赖以生存的必要条件,由于生产和人类各种活动的影响,特别是工业废气的大量任意排放,空气中含有过量的粉尘及有害气体而遭到不同程度的污染。这几年来,PM2.5引起了社会的广泛关注,粉尘对呼吸道和眼睛等器官会造成很大危害。根据“绿色GDP核算报告”,仅北京一个城市,每年因环境污染造成的损失就高达116亿多元,其中大气污染对北京市造成的经济损失最严重,高达95.2亿元,占总污染造成损失的81.75%,由此可看出,环境污染对经济和社会的影响非常大,特别是大气污染更应值得关注。
目前市场上的纤维空气过滤材料主要有玻璃纤维、聚酯纤维、聚丙烯腈纤维、活性炭纤维等,但该类纤维空气过滤材料大部分是直通结构,仅对0.3μm以上的颗粒有较高的过滤效率,对亚微米颗粒以及较小粒子难以实现有效过滤。对于传统空气过滤材料,其使用周期短过滤阻力大,已无法完全满足人们对高效过滤材料的要求。
随着纳米科技的发展,纳米材料由于具有独特且优异的性能越来越广泛地代替了传统材料,在分离、传感器及生物医学等领域应用。材料的微纳米多级结构赋予了其新颖的性质和特殊功能。与传统无纺布纤维相比,具有微纳米多级结构的静电纺纤维材料,不仅具有纤维直径和膜孔径小、孔隙率高,而且因为多级结构的引入,大幅度提高了纤维的比表面积和孔体积,增强了纤维膜的吸附和容尘体积,有效的提高材料的过滤效率。以静电纺纳米纤维膜为夹层的复合结构过滤材料,更适合过滤细小微粒,将纳米纤维和梯度结构结合更有利于延长滤材的使用寿命。
中国专利CN 103264533 A,公开了一种陶瓷-金属间化合物梯度过滤管及其制备方法和用途,发明的过滤管以Ni粉、Al粉、Ti粉、B 4C粉、SiC粉和TiH 2为原料,通过反应合成内层为耐磨耐腐蚀性能好的多孔TiC+TiB 2陶瓷,孔内布满长度10μm的TiB+Ti 3B 4晶须,最外层为强度高、耐蚀性能好的多孔NiAl+Ni 3Al金属间化合物层,由内到外陶瓷组分逐渐减少,金属间化合物组分逐渐增多,从而形成了梯度结构克服现有滤材过滤阻力大、过滤效率低、不易冲洗等缺点,但 是该陶瓷-金属间化合物梯度过滤管成本较高,工艺较复杂,不利于技术的推广和工业化。中国发明专利申请CN 103446804 A公开了一种具有梯度结构的碳纳米管空气过滤材料及其制备方法,该碳纳米空气过滤材料通过在纤维表面生长不同含量的碳纳米管,形成梯度结构使其具有过滤效率高,过滤阻力低等特点,但是碳纳米管在溶液中易出现团聚现象,从而降低滤材的孔隙率,且在使用过程中纳米颗粒会发生脱落,对人们健康造成威胁。
发明内容
本发明的首要目的是为了改善现有过滤材料在满足空气的高过滤效率的情况下,阻力较大和滤材的使用周期短的不足,提供一种成本低,具有优秀过滤效果,且具有三维立体结构的可降低过滤阻力,延长滤材使用寿命的高效低阻过滤介质材料。
本发明另一目的是提供一种用于空气过滤的高效低阻过滤介质材料的制备方法。
同现有技术的复合梯度结构过滤材料相比,本发明复合梯度结构过滤介质材料制备工艺简单,本发明纺丝条件下不存在影响纤维均匀性因素,高效低阻,具有卷曲结构的微米纤维层和包含锥形尖锥堆积结构的纳米纤维层组合形成的具有3D立体结构的微纳米过滤层,增加了纤维与气流间惯性碰撞机会,导致颗粒被过滤组分拦截的机率增加。同时由于微米纤维方向与气流方向成一定的角度,减小了滤材直接拦截的阻力,立体结构提供的孔隙结构,改变气流的流动方向,更为蓬松的微米级纤维过滤层结构可容纳更多被过滤的颗粒,从而大大降低了滤材的过滤阻力。
本发明目的通过如下技术方案实现:
高效低阻微纳米纤维微观梯度结构过滤材料,包括纳米精细过滤层A、微米支撑初级过滤层B和保护面层C;微米支撑初级过滤层和纳米精细过滤层交互叠加,设置在两层保护面层之间;
所述纳米精细过滤层由平面基体纤维层D和锥体结构E组成,其中锥体结构E的尖端与网格基体纤维层D间的纤维形成沿尖端向平面基体纤维层D的取向结构,锥体结构E的锥角为10~70°,锥体尖端的间距为2~20mm;多个锥体结构E在平面基体纤维层D均布形成网格状结构;
所述的微米支撑初级过滤层B由具有卷曲结构的微米纤维层组成;所述纳米精细过滤层具有网格状结构;
所述的纳米精细过滤层表面带电或不带电;微米支撑过滤层带电或不带电。
为进一步实现本发明目的,优选地,所述纳米精细过滤层中纳米纤维的直径为10~1000nm,克重为0.5~20g/m 2;所述微米支撑初级过滤层的纤维材料的直径为1~100μm,克重为10~200g/m 2
优选地,所述微米支撑初级过滤层的纤维材料通过针刺、水刺、纺粘、熔喷或缝编获得的无 纺布结构。
优选地,所述微米纤维层的纤维与水平面呈10-50°角,所述微米纤维层的纤维具有Z型、S型、螺旋或波浪卷曲结构;所述微米纤维层的纤维为短纤维时,自身具有卷曲结构;所述微米纤维层的纤维为长丝时,通过复合纺丝工艺获得卷曲结构;所述复合纺丝工艺所获得的复合纤维包括皮芯、偏芯或并列型结构。
优选地,所述微米支撑初级过滤层的材质包括聚酯纤维、聚丙烯纤维、聚氨酯弹性纤维、聚丙烯腈纤维、聚酰胺纤维、聚乙烯醇缩醛纤维、聚乳酸纤维、醋酯纤维、纤维素纤维、聚己内酯纤维、皮芯结构纤维、天然纤维或无机纤维;
所述皮芯结构纤维包括PP/PE、PET/PE、PA/PE、PET/PA、PET/coPET纤维,其中PE、PA或coPET为皮层;
所述天然纤维包括棉、木棉、黄麻、大麻、苎麻、罗布麻、椰壳纤维、菠萝纤维、竹原纤维或秸秆纤维;
所述无机纤维包括玻璃纤维、碳纤维、硼纤维、氧化铝纤维、碳化硅纤维或玄武岩纤维。
优选地,所述保护面层的材质包括聚酯纤维、聚丙烯纤维、聚乙烯纤维、聚酰胺纤维或纤维素再生纤维。
优选地,所述保护面层为通过纺粘、热轧或热风成型得到的无纺布材料,克重为10~80g/m 2
优选地,当压力降为130-300Pa,未加电的高效低阻微纳米纤维微观梯度结构过滤材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.9-99.999%;当压力降为30-250Pa,加电处理的高效低阻微纳米纤维微观梯度结构过滤材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.9-99.999%,实现高效空气过滤。
所述的高效低阻微纳米纤维微观梯度结构过滤材料的制备方法,包括如下步骤:
1)将高分子聚合物与溶剂混合,配制成质量分数为5~40%的高分子溶液,静置脱泡;
2)将所得高分子溶液采用针头静电纺丝、离心纺丝、无针头自由表面静电纺丝、离心静电纺丝或熔喷静电纺丝成型加工,以模板作为接收器,制备得到具有网格结构的表面带电或不带电的纳米精细过滤层;或将高分子溶液采用冷冻干燥相分离、离心纺丝、针头静电纺丝、无针头自由表面静电纺丝、离心静电纺丝或熔喷静电纺丝技术成型加工,以模板作为接收器,后经过正己醇处理,制备得到具有网格结构不带电的纳米精细过滤层;
3)微米支撑初级过滤层通过电晕放电、摩擦起电、热极化法或低能电子束轰击法的静电驻极工艺处理,得到带电的微米支撑初级过滤层;
4)高效低阻微纳米纤维微观梯度结构过滤材料的最外两层为保护面层,微米支撑初级过滤层和纳米精细过滤层依次交互叠加;保护面层、微米支撑初级过滤层、纳米精细过滤层和保护面层采用热风粘合技术复合,热风复合温度为150-250℃。
优选地,所述模板的材质包括塑料、陶瓷、不锈钢、铜、铝、云母片或硅晶片;所述模板包括底部板材和锥体结构阵列,多个锥体结构均布在底部板材上,形成锥体结构阵列,锥体结构的底部为正多边形或者圆形,锥体结构的直径或边长为0.01~5mm,锥体结构分布密度为10~100个/cm 2,锥体结构的高度为0.001~1.0mm;底板上分布一定密度的椎体,形成网格结构;
所述高分子聚合物为聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)、聚氧化乙烯(PEO)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚己内酯(PCL)、聚丙烯腈(PAN)、聚苯乙烯(PS)、聚甲基丙烯酸酯(PMMA)、聚偏氟乙烯(PVDF)、聚偏氯乙烯(PVDC)、乙烯-丙烯共聚物(EPDM)、聚醋酸乙烯酯(EVA)、聚乙烯弹性体(EEA)、聚酰胺(PA)和共聚聚酰胺(coPA)中的一种或多种;
表面不带电的纳米精细过滤层可通过电晕放电、摩擦起电、热极化法或低能电子束轰击法得到表面带电的纳米精细过滤层。
本发明微米支撑初级过滤层由具有卷曲结构的微米纤维层组成,纳米精细过滤层由具有锥形尖锥堆积结构的纳米纤维层组成,过滤介质材料具有3D尺度梯度结构,但该尺度梯度不存在明显的分层梯度,存在部分的重叠。
优选的,具有网格结构的模板的材质包括塑料、陶瓷、不锈钢、铜、铝、云母片和硅晶片中的一种。包括底部板材和锥体结构的模板以稳定的等间距的多边形结构或者圆形结构存在,锥体结构的直径或边长为0.01~5mm,锥体结构分布密度为10~100个/cm 2,锥体结构的高度为0.001~1.0mm。
过滤介质材料复合,其工艺特点为采用热风粘合技术将无纺布保护面层、微米支撑初级过滤层和纳米精细过滤层复合在一起,热风复合温度为150-250℃,制得具有局部取向3D立体结构的复合过滤材料。
其中所述的过滤介质材料的最外上、下两层为保护面层,复合介质材料的过滤层由微米支撑初级过滤层和纳米精细过滤层依次交互叠加组成。
所述的具有局部取向3D立体结构包括z型、S型、螺旋形、波浪形的卷曲结构中的一种,对于短纤维原料其自身具有卷曲结构,对于长丝则是通过复合纺丝工艺的调整获得卷曲结构,复合纺丝法所获得的复合纤维包括皮芯、偏芯或并列型结构。
微米支撑初级过滤层可通过电晕放电、摩擦起电、热极化法或低能电子束轰击法等静电驻极工艺处理,得到带电的微米支撑初级过滤层。
本发明制得具有局部取向3D立体结构的复合过滤材料,其中纳米尺寸精细过滤层中纤维具有一定的二维或者三维的取向度,微米尺寸级别材料制备成支撑初级过滤层的纤维具有3D的网络结构,且具有一定的蓬松度。
质量中值直径(Median particle diameter)又称质量中值空气动力学直径。颗粒物中小于某一空气动力[学]直径的各种粒度颗粒的总质量,占全部颗粒物质量(即全部不同粒度颗粒质量的总和)的50%时,则此直径称为质量中值直径。也即是具有这一中值直径的颗粒物有一半其粒径小于这个直径,有一半则大于这个直径。如果没有具体分布情况也难以界定NaCl气溶胶粒径情况。
相对于现有技术,本发明具有如下优点和有益效果:
本发明所述的具有复合梯度结构的微纳米过滤介质材料,制备工艺简单,具有均匀的锥形尖锥堆积结构,微纳米纤维层形成了局部取向的3D立体结构,这种由纳米、微米构成的局部取向、多级,且含过渡结构的过滤材料,能够降低过滤阻力,延长滤材的使用寿命;且空气通过微米纤维层初级过滤,纳米纤维层精细过滤,达到了高过滤效果,无纺布面层提供芯层滤材的支撑保护,提高其力学性能。该未加电复合材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.9-99.999%,压力降为130-300Pa,加电处理复合材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.9-99.999%,压力降为30-250Pa,能够有效实现空气过滤的目的。
附图说明
图1是本发明具有梯度结构的高效低阻复合结构过滤介质材料的结构示意图。
图2为图1中具有网格结构的纳米精细过滤层的结构示意图。
图3为本发明过滤层中具有部分重叠梯度的结构示意图。
图4为本发明实施例1中具有三维卷曲结构纤维的结构和纤维排布示意图。
图5为本发明实施例2中具有三维卷曲结构纤维的结构示意图。
图6为本发明实施例3中具有三维卷曲结构纤维的结构示意图。
图7为本发明实施例4中具有三维卷曲结构纤维的结构示意图。
图8为本发明实施例1中接收板的结构示意图。
图9为本发明实施例2中接收板的结构示意图。
图中示出:纳米精细过滤层A、微米支撑初级过滤层B、保护面层C、网格基体纤维层D、 锥体结构E、锥体结构E的锥角α。
具体实施方式
为更好地理解本发明,下面结合附图和实施例对本发明作进一步的描述,但本发明的实施方式不限于此。
图1是本发明具有梯度结构的高效低阻复合结构过滤介质材料的结构示意图。图2为图1中具有网格结构的纳米精细过滤层的结构示意图。高效低阻微纳米纤维复合微观梯度结构过滤材料,包括纳米精细过滤层A、微米支撑初级过滤层B、保护面层C;纳米精细过滤层A和微米支撑初级过滤层B交互叠加,设置在两层保护面层C之间。
纳米精细过滤层A具有网格结构,由平面基体纤维层D和锥体结构E组成,其中锥体结构E的尖端与网格基体纤维层D间的纤维形成沿尖端到基体纤维层D的取向排列,锥体结构E的锥角α为10~70°,锥体尖端的间距为2~20mm;纳米精细过滤层A表面带电或不带电。
微米支撑初级过滤层B由具有卷曲结构的微米纤维层组成,且该纤维层所构成纤维与该层水平面呈角β(10-50°),该微米纤维具有Z型、S型、螺旋或波浪卷曲结构。
分别用纳米尺寸级别材料制备成精细过滤层,用微米尺寸级别材料制备成支撑初级过滤层,然后将纳米精细过滤层与微米支撑初级过滤层,以及保护面层通过热风粘合技术复合,得到用于空气过滤的高效低阻过滤介质材料。
本发明高效低阻微纳米纤维微观梯度结构过滤材料的保护面层为保护层,微米支撑初级过滤层为初级过滤层及容尘层;纳米纤维层为精细过滤层。
本发明高效低阻微纳米纤维微观梯度结构过滤材料是一种具有三维立体结构的高效低阻过滤介质材料,纳米精细过滤层为含有锥形尖锥堆积结构的纳米纤维层,支撑过滤层由微米级纤维组成,且形成了垂直于过滤材料面层方向的尺度梯度,且该尺度梯度不存在明显的分层梯度,存在部分的重叠。
模板中的网格结构是底板上以一定密度分布的椎体结构分布形成的网格结构;而纳米精细过滤层中的网格结构是由于具有网格结构的模板赋予该纳米纤维层的网格结构。
实施例1
聚乙烯醇(M w=2.5×10 5g/mol)真空干燥(50℃,12h)后,采用去离子水为溶剂,升温到80℃后搅拌2h,得到质量浓度为10%均匀的PVA溶液,静置脱泡4h。
如图1-图3所示,将PVA溶液采用无针头自由表面静电纺丝方法制备纳米精细过滤层A,该纳米精细过滤层A为PVA表面不带电的纳米精细过滤层。成型时,接收板与溶液槽之间的距 离约25cm,电压约60kV,溶液槽中的缠有金属丝形成线电极的转子的转速为70r/min。接收板的材质为塑料,接收板如图8所示,接收板包括底部板材和锥体结构,多个锥体结构均布在底部板材上,锥体结构的底部为圆形,锥体结构圆形底部的直径F为4mm,锥体结构分布密度为50个/cm 2,模板锥体结构的高度为0.001mm。得到的纳米精细过滤层A具有网格结构,PVA表面不带电,如图2所示,锥体结构E的尖端与网格基体纤维层D间存在取向的纤维结构,锥体结构E的锥角为40°,锥体尖端的间距为10mm;PVA精细过滤层的纳米纤维的直径为100~200nm,克重为10g/m 2
微米支撑初级过滤层B由如图4所示的具有螺旋结构的聚乳酸纤维通过针刺方法得到无纺布材料,无纺布材料中聚乳酸纤维的直径为20~50μm,纤维轴向方向与布基材面的夹角β为20°,克重为100g/m 2,然后通过电晕放电驻极工艺处理,得到带电的微米支撑初级过滤层B。
成型时,在如图8所示的接收板上设置具有螺旋结构的聚乳酸纤维通过针刺方法得到的无纺布材料,然后在其上接收叠加PVA表面不带电的纳米精细过滤层,然后在所得材料上下端分别设置克重为40g/m 2纤维素再生纤维纺粘无纺布,通过热风粘合技术将4层复合,热风复合温度为180℃,制得具有局部取向3D立体结构的复合过滤材料,且滤材中微米支撑初级过滤层和精细过滤层间存在部分重叠梯度结构(如图3),得到用于空气过滤的高效低阻过滤介质材料。
采用美国TSI公司的TSI 8130型自动滤材测试仪对滤材进行过滤性能测试,当压力降为110Pa,本实施例所得加电处理复合过滤介质材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.99%,而同是通过自由表面静电纺丝制备的具有三维空腔结构的PAN微球/纳米纤维复合膜,其过滤性能达到99.99%时,压力降为126.7Pa【Gao H,Yang Y,Akampumuza O,et al.Low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5capture[J].Environmental Science Nano,2017,4(4).】。表明了在滤材中,微米支撑初级过滤层相对于微球/纳米纤维复合过滤层而言,滤材的蓬松度增加,且具有更强的降低压力降的作用。
本发明滤材在持续过滤加载时间30min时,当微米支撑初级过滤层B在迎风面时,压力降从110Pa增为369Pa;当纳米精细过滤层A在迎风面时,压力降从110Pa增为581Pa。说明了具有梯度结构的微纳米纤维过滤材料的微米支撑初级过滤层能够大大降低阻力上升的速度,具有更长的使用寿命。
同现有技术的复合梯度结构过滤材料相比,该复合梯度结构过滤介质材料制备工艺简单,高效低阻,具有卷曲结构的微米纤维层和包含锥形尖锥堆积结构的纳米纤维层组合形成的具有 3D立体结构的微纳米过滤层,增加了纤维与气流间惯性碰撞机会,导致颗粒被过滤组分拦截的机率增加。同时由于微米纤维方向与气流方向成一定的角度,减小了滤材直接拦截的阻力,立体结构提供的孔隙结构,改变气流的流动方向,更为蓬松的微米级纤维过滤层结构可容纳更多被过滤的颗粒,从而大大降低了滤材的过滤阻力。
实施例2
聚乳酸(M w=6.0×10 5g/mol)真空干燥后(60℃,10h)备用。
如图1-图3所示,将PLA溶液采用熔喷静电纺丝方法制备纳米精细过滤层A,该纳米精细过滤层A为PLA表面带电的纳米精细过滤层。成型时,接收板与熔喷静电喷丝头之间的距离约20cm,电压约60kV,PLA熔体以0.3cc/min的流速进行熔喷静电纺丝。接收板的材质为不锈钢带,带接收面结构如图9所示,接收面包括底部板材和锥体结构,多个锥体结构均布在底部板材上,锥体结构的底部为正方形,正方形的边长F为1.41mm,锥体结构分布密度为60个/cm 2,模板锥体结构的高度为0.002mm。得到的纳米精细过滤层A具有网格结构,PLA表面带电,如图2所示,锥体结构E的尖端与网格基体纤维层D间存在取向的纤维结构,锥体结构E的锥角为50°,锥体尖端的间距为15mm;PLA精细过滤层的纳米纤维的直径为400~800nm,克重为20g/m 2
微米支撑初级过滤层B由如图5所示的具有Z型卷曲结构的聚酯纤维通过水刺方法得到无纺布材料,无纺布材料中聚酯纤维的直径为2~10μm,纤维轴向方向与布基材面的夹角β为45°,克重为50g/m 2,然后通过摩擦起电工艺处理,得到带电的微米支撑初级过滤层B。
成型时,在图9的模板上设置具有Z型卷曲结构的聚酯纤维通过水刺方法得到的无纺布材料,然后在其上接收叠加PLA表面带电的纳米精细过滤层,再在PLA表面带电的纳米精细过滤层叠加具有Z型卷曲结构的聚酯纤维通过水刺方法得到的无纺布材料,然后在所得材料上下端分别设置克重为20g/m 2聚丙烯纤维熔喷无纺布,通过热风粘合技术将5层复合,热风复合温度为180℃,制得具有局部取向3D立体结构的复合过滤材料,且滤材中微米支撑初级过滤层和精细过滤层间存在部分重叠梯度结构,得到用于空气过滤的高效低阻过滤介质材料。
采用美国TSI公司的TSI 8130型自动滤材测试仪对滤材进行过滤性能测试,当压力降为60Pa,本实施例所得加电处理复合过滤介质材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.9%,能够有效实现空气过滤的目的。
实施例3
聚己内酯(M w=1.2×10 6g/mol)真空干燥后(50℃,8h),采用二甲基乙酰胺为溶剂,升温到60℃后搅拌2h,得到质量浓度为15%均匀的PCL溶液,静置脱泡3h。
如图1-图3所示,将PCL溶液采用双针头静电纺丝方法制备纳米精细过滤层A,该纳米精细过滤层A为PCL表面带电的纳米精细过滤层。成型时,接收板与针头之间的距离约12cm,电压约15kV,PCL溶液以0.5mL/h的流速进行静电纺丝。接收板的材质为硅晶片,接收板为网格直径为0.04mm、密度为80个/cm 2、高度为0.02mm的圆形网格。得到的纳米精细过滤层A具有网格结构,PCL表面带电,如图2所示,锥体结构E的尖端与网格基体纤维层D间存在取向的纤维结构,锥体结构E的锥角为60°,锥体尖端的间距为12mm;PCL精细过滤层的纳米纤维的直径为80~300nm,克重为4g/m 2
微米支撑初级过滤层B由如图6所示具有螺旋卷曲结构的聚丙烯纤维通过纺粘方法得到无纺布材料,无纺布材料中聚丙烯纤维的直径范围为20~40μm,纤维轴向方向与布基材面的夹角为25°,克重为120g/m 2,然后通过电晕放电驻极工艺处理,得到带电的微米支撑初级过滤层。
成型时,在模板上设置具有螺旋卷曲结构的聚丙烯纤维通过纺粘方法得到的无纺布材料,然后在其上接收叠加PCL表面带电的纳米精细过滤层,然后在所得材料上下端分别设置克重为60g/m 2纤维素再生纤维纺粘无纺布,通过热风粘合技术将4层复合,热风复合温度为150℃,制得具有局部取向3D立体结构的复合过滤材料,且滤材中微米支撑初级过滤层和精细过滤层间存在部分重叠梯度结构,得到用于空气过滤的高效低阻过滤介质材料。
采用美国TSI公司的TSI 8130型自动滤材测试仪对滤材进行过滤性能测试,当压力降为40Pa,本实施例所得加电处理复合过滤介质材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.97%,能够有效实现空气过滤的目的。
实施例4
聚酰胺(M w=3.5×10 5g/mol)真空干燥后(70℃,12h),采用甲酸为溶剂,升温到70℃后搅拌2h,得到质量浓度为10%均匀的PA溶液,静置脱泡4h。
如图1-图3所示,将PA溶液采用单针头静电纺丝方法并经过正己醇处理制备纳米精细过滤层A,该纳米精细过滤层A为PA表面不带电的纳米精细过滤层。成型时,接收板与针头之间的距离约10cm,电压约10kV,PA溶液以0.3mL/h的流速进行静电纺丝。接收板的材质为不锈钢,接收板为网格边长为0.5mm、密度为60个/cm 2、高度为0.01mm的六边形网格。得到的纳米精细过滤层A具有网格结构,PA表面不带电,如图2所示,锥体结构E的尖端与网格基体纤维层D间存在取向的纤维结构,锥体结构E的锥角为55°,锥体尖端的间距为16mm;PA精细过滤层的纳米纤维的直径为100~250nm,克重为15g/m 2
微米支撑初级过滤层B由如图7所示的具有S型卷曲结构的聚氨酯弹性纤维通过熔喷方法 得到无纺布材料,无纺布材料中聚氨酯纤维的直径范围为25~40μm,纤维轴向方向与布基材面的夹角为30°,克重为90g/m 2,得到不带电的微米支撑初级过滤层。
成型时,在模板上设置具有S型卷曲结构的聚氨酯弹性纤维通过熔喷方法得到无纺布材料,然后在其上接收叠加PA表面不带电的纳米精细过滤层,然后在所得材料上下端分别设置克重为20g/m 2聚酯纤维热风无纺布,通过热风粘合技术将4层复合,热风复合温度为200℃,制得具有局部取向3D立体结构的复合过滤材料,且滤材中微米支撑初级过滤层和精细过滤层间存在部分重叠梯度结构,得到用于空气过滤的高效低阻过滤介质材料。
采用美国TSI公司的TSI 8130型自动滤材测试仪对滤材进行过滤性能测试,当压力降为200Pa,本实施例所得未加电复合过滤介质材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.99%,能够有效实现空气过滤的目的。
实施例5
聚苯乙烯(M w=3.0×10 5g/mol)真空干燥后(50℃,12h),采用DMF为溶剂,升温到80℃后搅拌1h,得到质量浓度为15%均匀的PS溶液,静置脱泡4h。
如图1-图3所示,将PS溶液采用离心静电纺丝方法制备纳米精细过滤层A并经过正己醇处理制备纳米精细过滤层A,该纳米精细过滤层A为PS表面不带电的纳米精细过滤层。成型时,接收板与针头之间的距离约10cm,电压约20kV,离心纺丝转速350r/min进行纺丝。接收板的材质为塑料,接收板为网格直径为0.5mm、密度为80个/cm 2、高度为0.3mm的圆形网格。得到的纳米精细过滤层A具有网格结构,PS表面不带电,如图2所示,锥体结构E的尖端与网格基体纤维层D间存在取向的纤维结构,锥体结构E的锥角为20°,锥体尖端的间距为15mm;PS精细过滤层的纳米纤维的直径为200~500nm,克重为4g/m 2。将表面不带电的PS纳米精细过滤层通过电晕放电处理得到表面带电的PS纳米精细过滤层。
微米支撑初级过滤层B由具有S型卷曲结构的聚丙烯纤维通过纺粘方法得到无纺布材料,无纺布材料中聚丙烯纤维的直径范围为10~25μm,纤维轴向方向与布基材面的夹角为50°,克重为120g/m 2,然后通过热极化工艺处理,得到带电的微米支撑及初级过滤复合层。
成型时,在模板上设置具有S型卷曲结构的聚丙烯纤维通过纺粘方法得到无纺布材料,然后在其上接收叠加PS表面带电的纳米精细过滤层,再在PS表面带电的纳米精细过滤层叠加具有S型卷曲结构的聚丙烯纤维通过纺粘方法得到无纺布材料,然后在所得材料上下端分别设置克重为50g/m 2聚酰胺纤维纺粘无纺布,通过热风粘合技术将5层复合,热风复合温度为200℃,制得具有局部取向3D立体结构的复合过滤材料,且滤材中微米支撑初级过滤层和精细过滤层间存在部 分重叠梯度结构,得到用于空气过滤的高效低阻过滤介质材料。
采用美国TSI公司的TSI 8130型自动滤材测试仪对滤材进行过滤性能测试,当压力降为230Pa,本实施例所得加电处理复合过滤介质材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.999%,能够有效实现空气过滤的目的。
实施例6
聚氧化乙烯(M w=2.0×10 6g/mol)真空干燥后(50℃,10h),采用水为溶剂,升温到60℃后搅拌2h,得到质量浓度为5%均匀的PEO溶液,静置脱泡5h。
如图1-图3所示,将PEO溶液采用双针头静电纺丝方法制备纳米精细过滤层A,该纳米精细过滤层A为PEO表面不带电的纳米精细过滤层。成型时,接收板与针头之间的距离约12cm,电压约15kV,PEO溶液以0.5mL/h的流速进行静电纺丝。接收板的材质为云母片,接收板为网格直径为0.6mm、密度为70个/cm 2、高度为0.005mm的圆形网格。得到的纳米精细过滤层A具有网格结构,PEO表面不带电,如图2所示,锥体结构E的尖端与网格基体纤维层D间存在取向的纤维结构,锥体结构E的锥角为50°,锥体尖端的间距为8mm;PEO精细过滤层的纳米纤维的直径为100~300nm,克重为2g/m 2
微米支撑初级过滤层B由具有Z型卷曲结构的聚乙烯醇缩甲醛纤维和PP/PE皮芯结构纤维(PP与PE质量比例为50:50;聚乙烯醇缩甲醛纤维和PP/PE皮芯结构纤维质量比例为80:20)通过水刺方法得到无纺布材料,无纺布材料中聚乙烯醇缩甲醛纤维的直径范围为15~30μm,PP/PE皮芯结构纤维的直径范围为10~25μm,纤维轴向方向与布基材面的夹角为20°,克重为60g/m 2,得到不带电的微米支撑初级过滤层。
成型时,在模板上设置具有Z型卷曲结构的聚乙烯醇缩甲醛纤维和PP/PE皮芯结构纤维(PP与PE质量比例为50:50;聚乙烯醇缩甲醛纤维和PP/PE皮芯结构纤维质量比例为80:20)通过水刺方法得到无纺布材料,然后在其上接收叠加PEO表面不带电的纳米精细过滤层,然后在所得材料上下端分别设置克重为50g/m 2聚丙烯纤维热风无纺布,通过热风粘合技术将4层复合,热风复合温度为150℃,制得具有局部取向3D立体结构的复合过滤材料,且滤材中微米支撑初级过滤层和精细过滤层间存在部分重叠梯度结构,得到用于空气过滤的高效低阻过滤介质材料。
采用美国TSI公司的TSI 8130型自动滤材测试仪对滤材进行过滤性能测试,当压力降为140Pa,本实施例所得未加电复合过滤介质材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.9%,能够有效实现空气过滤的目的。
本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下 所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围。

Claims (10)

  1. 高效低阻微纳米纤维微观梯度结构过滤材料,其特征在于,包括纳米精细过滤层(A)、微米支撑初级过滤层(B)和保护面层(C);微米支撑初级过滤层和纳米精细过滤层交互叠加,设置在两层保护面层之间;
    所述纳米精细过滤层由平面基体纤维层(D)和锥体结构(E)组成,其中锥体结构(E)的尖端与网格基体纤维层(D)间的纤维形成沿尖端向平面基体纤维层(D)的取向结构,锥体结构(E)的锥角为10~70°,锥体尖端的间距为2~20mm;多个锥体结构(E)在平面基体纤维层(D)均布形成网格状结构;
    所述的微米支撑初级过滤层(B)由具有卷曲结构的微米纤维层组成;所述纳米精细过滤层具有网格状结构;
    所述的纳米精细过滤层表面带电或不带电;微米支撑过滤层带电或不带电。
  2. 根据权利要求1所述的高效低阻微纳米纤维微观梯度结构过滤材料,其特征在于,所述纳米精细过滤层中纳米纤维的直径为10~1000nm,克重为0.5~20g/m 2;所述微米支撑初级过滤层的纤维材料的直径为1~100μm,克重为10~200g/m 2
  3. 根据权利要求1所述的高效低阻微纳米纤维微观梯度结构过滤材料,其特征在于,所述微米支撑初级过滤层的纤维材料通过针刺、水刺、纺粘、熔喷或缝编获得的无纺布结构。
  4. 根据权利要求1所述的高效低阻微纳米纤维微观梯度结构过滤材料,其特征在于,所述微米纤维层的纤维与水平面呈10-50°角,所述微米纤维层的纤维具有Z型、S型、螺旋或波浪卷曲结构;所述微米纤维层的纤维为短纤维时,自身具有卷曲结构;所述微米纤维层的纤维为长丝时,通过复合纺丝工艺获得卷曲结构;所述复合纺丝工艺所获得的复合纤维包括皮芯、偏芯或并列型结构。
  5. 根据权利要求1所述的高效低阻微纳米纤维微观梯度结构过滤材料,其特征在于,所述微米支撑初级过滤层的材质包括聚酯纤维、聚丙烯纤维、聚氨酯弹性纤维、聚丙烯腈纤维、聚酰胺纤维、聚乙烯醇缩醛纤维、聚乳酸纤维、醋酯纤维、纤维素纤维、聚己内酯纤维、皮芯结构纤维、天然纤维或无机纤维;
    所述皮芯结构纤维包括PP/PE、PET/PE、PA/PE、PET/PA、PET/coPET纤维,其中PE、PA或coPET为皮层;
    所述天然纤维包括棉、木棉、黄麻、大麻、苎麻、罗布麻、椰壳纤维、菠萝纤维、竹原纤维或秸秆纤维;
    所述无机纤维包括玻璃纤维、碳纤维、硼纤维、氧化铝纤维、碳化硅纤维或玄武岩纤维。
  6. 根据权利要求1所述的高效低阻微纳米纤维微观梯度结构过滤材料,其特征在于,所述保护面层的材质包括聚酯纤维、聚丙烯纤维、聚乙烯纤维、聚酰胺纤维或纤维素再生纤维。
  7. 根据权利要求1所述的高效低阻微纳米纤维微观梯度结构过滤材料,其特征在于,所述保护面层为通过纺粘、热轧或热风成型得到的无纺布材料,克重为10~80g/m 2
  8. 根据权利要求1所述的高效低阻微纳米纤维微观梯度结构过滤材料,其特征在于,当压力降为130-300Pa,未加电的高效低阻微纳米纤维微观梯度结构过滤材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.9-99.999%;当压力降为30-250Pa,加电处理的高效低阻微纳米纤维微观梯度结构过滤材料对质量中值直径为0.26μm的NaCl气溶胶的过滤效率为99.9-99.999%,实现高效空气过滤。
  9. 权利要求1-8任一项所述的高效低阻微纳米纤维微观梯度结构过滤材料的制备方法,其特征在于包括如下步骤:
    1)将高分子聚合物与溶剂混合,配制成质量分数为5~40%的高分子溶液,静置脱泡;
    2)将所得高分子溶液采用针头静电纺丝、离心纺丝、无针头自由表面静电纺丝、离心静电纺丝或熔喷静电纺丝成型加工,以模板作为接收器,制备得到具有网格结构的表面带电或不带电的纳米精细过滤层;或将高分子溶液采用冷冻干燥相分离、离心纺丝、针头静电纺丝、无针头自由表面静电纺丝、离心静电纺丝或熔喷静电纺丝技术成型加工,以模板作为接收器,后经过正己醇处理,制备得到具有网格结构不带电的纳米精细过滤层;
    3)微米支撑初级过滤层通过电晕放电、摩擦起电、热极化法或低能电子束轰击法的静电驻极工艺处理,得到带电的微米支撑初级过滤层;
    4)高效低阻微纳米纤维微观梯度结构过滤材料的最外两层为保护面层,微米支撑初级过滤层和纳米精细过滤层依次交互叠加;保护面层、微米支撑初级过滤层、纳米精细过滤层和保护面层采用热风粘合技术复合,热风复合温度为150-250℃。
  10. 根据权利要求9所述的高效低阻微纳米纤维微观梯度结构过滤材料的制备方法,其特征在于,所述模板的材质包括塑料、陶瓷、不锈钢、铜、铝、云母片或硅晶片;所述模板包括底部板材和锥体结构阵列,多个锥体结构均布在底部板材上,形成锥体结构阵列,锥体结构的底部为正多边形或者圆形,锥体结构的直径或边长为0.01~5mm,锥体结构分布密度为10~100个/cm 2, 锥体结构的高度为0.001~1.0mm;底板上分布一定密度的椎体,形成网格结构;
    所述高分子聚合物为聚乙烯吡咯烷酮、聚乙烯醇、聚氧化乙烯、聚乳酸、聚乙醇酸、聚己内酯、聚丙烯腈、聚苯乙烯、聚甲基丙烯酸酯、聚偏氟乙烯、聚偏氯乙烯、乙烯-丙烯共聚物、聚醋酸乙烯酯、聚乙烯弹性体、聚酰胺和共聚聚酰胺中的一种或多种。
PCT/CN2018/087101 2018-04-17 2018-05-16 高效低阻微纳米纤维微观梯度结构过滤材料及其制备方法 WO2019200641A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/047,697 US20210154606A1 (en) 2018-04-17 2018-05-16 Efficient low-resistance micro-nano-fiber microscopic gradient structure filtration material, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810341627.1 2018-04-17
CN201810341627.1A CN108796823B (zh) 2018-04-17 2018-04-17 高效低阻微纳米纤维微观梯度结构过滤材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019200641A1 true WO2019200641A1 (zh) 2019-10-24

Family

ID=64094752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087101 WO2019200641A1 (zh) 2018-04-17 2018-05-16 高效低阻微纳米纤维微观梯度结构过滤材料及其制备方法

Country Status (3)

Country Link
US (1) US20210154606A1 (zh)
CN (1) CN108796823B (zh)
WO (1) WO2019200641A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546735A (zh) * 2020-11-12 2021-03-26 安徽元琛环保科技股份有限公司 一种梯度滤料用熔喷-针刺复合制备方法及制得的梯度针刺毡
CN113289413A (zh) * 2021-05-25 2021-08-24 九江市磐泰复合材料有限公司 一种高容量氟玻璃纤维过滤材料的制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152551A1 (en) * 2019-01-21 2020-07-30 3M Innovative Properties Company Multi-layer, biodegradable composites for air filtration
CN109851363B (zh) * 2019-01-31 2021-08-27 中南大学 一种带梯度界面层的含异质元素SiC纤维及其制备方法和设备
CN113453780A (zh) * 2019-02-28 2021-09-28 富士胶片株式会社 液体过滤器及液体过滤器的制造方法
CN111020876B (zh) * 2019-12-30 2022-04-05 南通大学 一种具有梯度结构的高效过滤材料及其生产方法
CN111013256A (zh) * 2020-01-15 2020-04-17 中原工学院 一种高效低阻多组分立体空腔结构空气过滤材料及其制备方法
CN113509800B (zh) * 2020-04-10 2022-09-30 中国科学技术大学 一种多尺度结构植物纤维空气过滤材料及其制备方法和用途
CN111501198B (zh) * 2020-04-20 2021-12-10 欣龙控股(集团)股份有限公司 一种水刺静电棉材料及其制备方法和应用
CN111389098A (zh) * 2020-04-27 2020-07-10 蚌埠泰鑫材料技术有限公司 有效负载铜离子的静电纺丝复合纤维材料
CN112263877A (zh) * 2020-10-16 2021-01-26 浙江金海高科股份有限公司 空气过滤材料及过滤元件和应用
CN114575155B (zh) * 2020-11-17 2023-06-06 中国科学院大连化学物理研究所 一种在线负载纳米纤维的聚丙烯复合纤维、熔喷无纺布及其制备方法与应用
CN112755651B (zh) * 2020-12-31 2022-07-08 东华大学 一种多组合功能性静电纺亚微米纤维空气过滤材料及其制备
CN112941719A (zh) * 2021-01-29 2021-06-11 江苏盛纺纳米材料科技股份有限公司 一种静电棉口罩专用的热风非织造布及其制备方法
CN112885504B (zh) * 2021-02-09 2022-07-12 兰州空间技术物理研究所 一种具有微纳结构的月尘防护导电薄膜及其制备方法
CN113054321B (zh) * 2021-03-17 2022-10-14 西安工程大学 锌空气电池隔膜及其制备工艺
CN113089377B (zh) * 2021-04-06 2022-08-09 山东仁丰特种材料股份有限公司 高效低阻全合成纤维空气过滤材料的制备方法
CN113996119B (zh) * 2021-09-19 2023-08-29 宿迁空天新材料有限公司 一种空气过滤用抗菌抗病毒玻璃纤维棉毡的制备方法
CN114032621B (zh) * 2021-10-22 2023-03-14 武汉纺织大学 增强纤维膜及其制备方法
CN113996118A (zh) * 2021-11-29 2022-02-01 闽江学院 一种具有梯度结构的复合过滤材料及其制备方法
WO2023107726A1 (en) * 2021-12-09 2023-06-15 Metalmark Innovations, Pbc Multifunctional hierarchical material structure
CN114801393B (zh) * 2022-03-31 2024-03-15 金发科技股份有限公司 一种多尺度纤维过滤层及其制备方法与应用
CN115142199B (zh) * 2022-07-07 2023-11-07 桐乡市健民过滤材料有限公司 一种低阻高效高容尘空气过滤材料的制备方法
CN116726606B (zh) * 2023-07-08 2024-05-10 江苏金由新材料有限公司 一种多孔过滤材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111692A (ja) * 2005-09-22 2007-05-10 Daiwabo Co Ltd 機能性分離材、ガス吸着材及びタバコ消臭用フィルター
US20100206803A1 (en) * 2009-02-17 2010-08-19 Ward Bennett C Multi-Layer, Fluid Transmissive Fiber Structures Containing Nanofibers and a Method of Manufacturing Such Structures
CN104524868A (zh) * 2015-01-13 2015-04-22 东华大学 一种纳米纤维膜复合无纺布基材的梯度过滤材料
CN105148611A (zh) * 2015-07-21 2015-12-16 安徽省元琛环保科技有限公司 一种高过滤性能芳纶复合滤料及其制备方法
CN106955528A (zh) * 2015-12-21 2017-07-18 泰贺斯聚合物股份有限公司 无纺布滤材和空气滤清器滤芯
CN206881303U (zh) * 2017-07-10 2018-01-16 河南省安克林滤业有限公司 一种纺粘无纺布复合过滤材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058208A (ja) * 1983-09-09 1985-04-04 Kurabo Ind Ltd フイルタ−エレメントとその製法
US6649547B1 (en) * 2000-08-31 2003-11-18 Kimberly-Clark Worldwide, Inc. Integrated nonwoven laminate material
CN1460534A (zh) * 2003-05-28 2003-12-10 东南大学 纳米纤维防护过滤材料及其制备方法
JP2005037076A (ja) * 2003-07-16 2005-02-10 Kureha Ltd 気化フィルター用不織布集合体
JP5501133B2 (ja) * 2010-07-23 2014-05-21 日本バイリーン株式会社 櫛状部材、この櫛状部材を装着した装着構造体及びシート状物の搬送方法
DE102010052155A1 (de) * 2010-11-22 2012-05-24 Irema-Filter Gmbh Luftfiltermedium mit zwei Wirkmechanismen
KR20130033794A (ko) * 2011-09-27 2013-04-04 한국전자통신연구원 필터 제조 방법 및 이에 의해 제조된 필터
CN105392544B (zh) * 2013-08-02 2017-12-15 康明斯过滤Ip公司 梯度纳米纤维过滤介质
CN103505942A (zh) * 2013-09-30 2014-01-15 天津工业大学 一种纳米纤维过滤材料
CA3021487A1 (en) * 2016-04-21 2017-10-26 O&M Halyard International Unlimited Company Multi-layered structure and articles formed therefrom having improved splash resistance by increased interlayer spacing
CN105999852B (zh) * 2016-06-02 2018-02-06 河北科技大学 一种具有梯度结构的微珠/纳米纤维复合空气过滤材料及其制备方法
CN106757424A (zh) * 2017-02-10 2017-05-31 江苏纳纤新材料科技有限公司 一种制备具有立体结构纤维膜的静电纺丝法及静电纺丝机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111692A (ja) * 2005-09-22 2007-05-10 Daiwabo Co Ltd 機能性分離材、ガス吸着材及びタバコ消臭用フィルター
US20100206803A1 (en) * 2009-02-17 2010-08-19 Ward Bennett C Multi-Layer, Fluid Transmissive Fiber Structures Containing Nanofibers and a Method of Manufacturing Such Structures
CN104524868A (zh) * 2015-01-13 2015-04-22 东华大学 一种纳米纤维膜复合无纺布基材的梯度过滤材料
CN105148611A (zh) * 2015-07-21 2015-12-16 安徽省元琛环保科技有限公司 一种高过滤性能芳纶复合滤料及其制备方法
CN106955528A (zh) * 2015-12-21 2017-07-18 泰贺斯聚合物股份有限公司 无纺布滤材和空气滤清器滤芯
CN206881303U (zh) * 2017-07-10 2018-01-16 河南省安克林滤业有限公司 一种纺粘无纺布复合过滤材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546735A (zh) * 2020-11-12 2021-03-26 安徽元琛环保科技股份有限公司 一种梯度滤料用熔喷-针刺复合制备方法及制得的梯度针刺毡
CN112546735B (zh) * 2020-11-12 2022-04-12 安徽元琛环保科技股份有限公司 一种梯度滤料用熔喷-针刺复合制备方法及制得的梯度针刺毡
CN113289413A (zh) * 2021-05-25 2021-08-24 九江市磐泰复合材料有限公司 一种高容量氟玻璃纤维过滤材料的制备方法

Also Published As

Publication number Publication date
US20210154606A1 (en) 2021-05-27
CN108796823B (zh) 2020-06-19
CN108796823A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2019200641A1 (zh) 高效低阻微纳米纤维微观梯度结构过滤材料及其制备方法
Yang et al. Multifunctional composite membrane based on BaTiO3@ PU/PSA nanofibers for high-efficiency PM2. 5 removal
CN107441827B (zh) 一种多层驻极纳米纤维过滤材料及其制备方法
CN107224783B (zh) 一种复合结构过滤毡及其制备方法和应用
CN107604536B (zh) 一种蓬松弹性三维微纳米纤维材料的制备方法、装置以及由该方法制备的纤维材料及其应用
CN110732186B (zh) 一种多孔空气过滤膜及其制备方法和用途
CN104722216B (zh) 一种复合空气过滤膜的制备方法
CN106621571B (zh) 一种可释放负离子的空气过滤材料及其制备方法
JPH11507868A (ja) 複合繊維フィルター
CN109046040B (zh) 基于纳米纤维的梯度过滤膜材料及其制备方法
CN106890506B (zh) 一种低阻抗高效能空气过滤材料及其制备方法
CN109339681A (zh) 一种pvdf/go复合纳米纤维防雾霾窗纱及其制备方法
CN112263877A (zh) 空气过滤材料及过滤元件和应用
Gobi et al. Development of PAN nano fibrous filter hybridized by SiO
CN113646474A (zh) 复合结构体、其制造方法及包含所述复合结构体的滤材
WO2018221063A1 (ja) 不織布フィルター
CN106621840B (zh) 一种可释放远红外线的功能过滤材料及其制备方法
WO2021082090A1 (zh) 带锚点耐反吹纳米纤维复合滤材
Lin et al. Preparation of fluffy bimodal conjugated electrospun poly (lactic acid) air filters with low pressure drop
KR102116377B1 (ko) 미세먼지 차단용 필터 제조 방법
CN113509800B (zh) 一种多尺度结构植物纤维空气过滤材料及其制备方法和用途
CN113509790A (zh) 一种微纳米纤维复合材料、其制备方法及其应用
CN106669384B (zh) 可释放负离子的复合防雾霾窗纱及其静电纺丝装置和方法
CN214680556U (zh) 一种梯度过滤无纺布以及由其组成的滤芯
KR20110131665A (ko) 셀룰로오스 나노섬유를 이용한 에어 필터여재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2021)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO F1205A DATED 20.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18915017

Country of ref document: EP

Kind code of ref document: A1