WO2019200622A1 - 一种通话设备中听筒的质量检测系统、方法及装置 - Google Patents

一种通话设备中听筒的质量检测系统、方法及装置 Download PDF

Info

Publication number
WO2019200622A1
WO2019200622A1 PCT/CN2018/085396 CN2018085396W WO2019200622A1 WO 2019200622 A1 WO2019200622 A1 WO 2019200622A1 CN 2018085396 W CN2018085396 W CN 2018085396W WO 2019200622 A1 WO2019200622 A1 WO 2019200622A1
Authority
WO
WIPO (PCT)
Prior art keywords
earpiece
detecting
tested
image
detection
Prior art date
Application number
PCT/CN2018/085396
Other languages
English (en)
French (fr)
Inventor
张勇
曾庆好
赵东宁
汤奇
马少勇
马博文
何泽裕
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019200622A1 publication Critical patent/WO2019200622A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements

Definitions

  • the invention belongs to the field of industrial production automation, and particularly relates to a quality detecting system, method and device for an earpiece in a talking device.
  • Mesh earpieces are widely used in call equipment (for example, mobile phones, tablet computers), and are an indispensable part of the call equipment, and the earpiece may have dimensional deviation defects during processing, if the defective product flows into the next production. The environment will bring serious quality problems to the final product.
  • the call equipment tends to be miniaturized and miniaturized, and the handset in the call equipment must adapt to the trend of miniaturization of the call equipment, so the earpiece specifications are getting smaller and smaller, and the processing precision is higher and higher, resulting in higher precision.
  • the difficulty of quality inspection in the later stage of the earpiece is also getting higher and higher.
  • the measurement of the size of the earpiece is a big problem.
  • the manual sampling method is basically used. The manual sampling test can only rely on the human eye to detect one by one under the microscope.
  • the present invention provides a quality inspection system for an earpiece in a communication device, the system comprising:
  • a cabinet for supporting various components in a quality inspection system of an earpiece in a call device
  • the loading assembly being composed of a vibrating plate and a direct vibration
  • a robotic pick-up assembly mounted on the cabinet, the robot pick-up assembly is taken from a pick-up position optical fiber, a mechanical arm, a servo motor, a first detection bit in-position fiber, a second detection bit in-position fiber, a take-up finger, and a take-up Material nozzle composition;
  • a detecting component mounted on the cabinet, the detecting component being composed of a first detecting camera, a first detecting lens, a first detecting light source, a second detecting camera, a second detecting lens, a second detecting light source and a detecting bracket;
  • a mass sorting component mounted on the cabinet, the mass sorting component being composed of a sorting robot, a first defective product collecting box, a second defective product collecting box, and a good collecting box;
  • a visual inspection device coupled to the detection component for performing product identification on the photo of the receiver to be tested taken by the detection component
  • a programmable logic controller coupled to the loading assembly, the robot picking assembly, the detecting assembly, the mass sorting assembly, and the visual inspection device for receiving an identification of the output of the visual inspection device
  • the present invention provides a quality detecting method for a quality detecting system of an earpiece in the above-mentioned talking device, the method comprising the following steps:
  • the first detecting camera performs a first image acquisition on the earpiece to be tested placed in the first detecting position when receiving a request for quality detection of the earpiece to be tested in the calling device;
  • the visual detecting device acquires a first detecting parameter of the earpiece to be tested according to the collected first image, and determines whether the earpiece to be tested has a defect according to the first detecting parameter;
  • the reclaiming robot When determining that the earpiece to be tested has no defect according to the first detection parameter, the reclaiming robot places the earpiece to be tested to the second detection bit to trigger the second detection camera to The second image is collected by the earpiece to be tested;
  • the quality detection result of the audiometer is sent to the programmable logic controller;
  • the programmable logic controller sends a processing signal to the mass sorting component according to the quality detection result, so that the mass sorting component performs corresponding processing on the earpiece to be tested.
  • the present invention provides a quality detecting apparatus for a quality detecting system of an earpiece in the above-mentioned talking device, the device comprising:
  • a first image capturing unit configured to: when receiving a request for quality detection of an earpiece to be tested in a call device, the first detecting camera performs first image capturing on the earpiece to be tested placed in the first detecting position;
  • a first defect determining unit configured to acquire, according to the collected first image, a first detection parameter of the to-be-tested earpiece, and determine, according to the first detection parameter, whether the earpiece to be tested exists defect;
  • a second image capturing unit configured to: when the first detecting parameter determines that the earpiece to be tested has no defect, the reclaiming robot places the earpiece to be tested to the second detecting position to trigger the The second detecting camera performs second image acquisition on the earpiece to be tested;
  • a second defect determining unit configured to acquire, according to the collected second image, a second detection parameter of the earpiece to be tested, and determine, according to the second detection parameter, whether the earpiece to be tested is Defects are obtained to obtain a quality detection result of the earpiece to be tested, and the quality detection result is sent to the programmable logic controller;
  • a processing signal sending unit configured to send, by the programmable logic controller, a processing signal to the quality sorting component according to the quality detection result, so that the mass sorting component performs corresponding processing on the earpiece to be tested.
  • the invention provides a quality inspection system for an earpiece in a communication device, the system comprising a cabinet and a loading component mounted on the cabinet, a robot reclaiming component, a detecting component and a mass sorting component, and a visual connection with the detecting component
  • the detecting device and the programmable logic controller respectively connected with the loading component, the robot picking component, the detecting component, the mass sorting component and the visual detecting device, the invention receives the request for quality detection of the earpiece to be tested in the talking device Firstly, the earpiece image is collected from the different angles by the first detecting camera and the second detecting camera, and then, by the visual detecting device, the earpiece is to be measured from the length, the width and the height according to the collected earpiece image.
  • the present invention detects double-bit parallel handset detection test treatment, thereby increasing the degree of automation call quality inspection apparatus of the handset, thus improving the quality of the detected speed and industrial generation efficiency and reduces the time and labor costs.
  • FIG. 1 is a schematic structural diagram of a quality detecting system of an earpiece in a communication device according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram showing an example of the structure of a quality detecting system of an earpiece in a talking device according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of implementing a method for detecting quality of an earpiece in a call device according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic structural diagram of a quality detecting apparatus of an earpiece in a communication device according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of a preferred structure of a quality detecting apparatus for an earpiece in a communication device according to Embodiment 3 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 shows the structure of a quality detecting system for an earpiece in a talking device according to a first embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • Embodiments of the present invention provide a quality inspection system for an earpiece in a communication device, the quality detection system including a cabinet 11, a loading assembly 12, a robot reclaim assembly 13, a detection assembly 14, a mass sorting assembly 15, and a visual inspection device 16. And a programmable logic controller 17, wherein:
  • the cabinet 11 is used to support various components in the quality inspection system of the handset in the talking device.
  • the loading assembly 12 is mounted on the cabinet 11.
  • the loading assembly 12 is composed of a vibrating plate 121 and a direct vibration 122.
  • the vibrating plate 121 is used to arrange the to-be-measured tubes in a predetermined direction
  • the direct vibration 122 is used to arrange the rows to be tested.
  • the earpieces are discharged one by one in sequence.
  • the robot pick-up assembly 13 is mounted on the cabinet 11.
  • the robot pick-up assembly 13 is provided by the take-up position in-situ fiber 131, the robot arm 132, the servo motor 133, the first detecting bit in-position fiber 134, the second detecting bit in-position fiber 135, and the reclaiming material.
  • the finger 136 and the retracting nozzle 137 are configured to take the material from the preset reclaiming position, and place the obtained earpiece to be tested in the first detecting position or the second detecting position. Specifically, when the reclaimed bit in-situ fiber 131 senses that the earpiece to be tested reaches the reclaiming position, the triggering robot 132 starts the reclaiming action.
  • the servo motor 133 is controlled to move the retracting robot 132 to the reclaiming position to reach the fetching position. After the material level, the control take-up finger 136 is pressed against the earpiece to be tested, the suction nozzle 137 is controlled to inhale, and the earpiece to be tested is sucked. Then, the servo motor 133 is controlled to drive the retracting robot 132 to move to the first detection position.
  • the detecting component 14 is mounted on the cabinet 11, and the detecting component 14 is composed of a first detecting camera 141, a first detecting lens 142, a first detecting light source 143, a second detecting camera 144, a second detecting lens 145, a second detecting light source 146, and detection.
  • the bracket 147 is configured to perform photographing of the earpiece to be measured from the horizontal direction of the first detecting position by the first detecting camera 141, and the second detecting camera 144 to photograph the earpiece from above the second detecting position.
  • the first detection camera 141 when the first detection bit in-position fiber 134 senses the product, the first detection camera 141 sends a trigger photo signal, and when the second detection bit in-position fiber 135 senses the product, the second detection camera 144 sends a trigger photo signal. .
  • the mass sorting assembly 15 is mounted on the cabinet 11, and the mass sorting assembly 15 is composed of a sorting robot 151, a first defective product collecting box 152, a second defective product collecting box 153, and a good collecting box 154 for detecting according to the second detecting
  • the quality detection result returned after the detection of the earpiece to be tested is correspondingly processed by the earpiece to be tested.
  • the control robot 132 places the product into the first defective product collection box 152, and when the quality detection result of the second detection position to be tested is not When the product is good, the control sorting robot 151 places the earpiece to be tested into the second defective product collection box 153.
  • the sorting robot 151 is controlled to be tested. Placed in the good collection box 154.
  • the visual inspection device 16 is coupled to the detection assembly 14 for product identification of the photo of the handset to be tested taken by the detection assembly 14. Specifically, after the first detecting camera 141 collects the earpiece image for the earpiece to be tested placed in the first detecting position, the visual detecting device 16 performs quality detection on the earpiece according to the height and width of the earpiece image, and when the second After the detecting camera 144 collects the earpiece image for the earpiece to be tested placed in the second detecting position, the visual detecting device 16 performs quality detection on the earpiece according to the length and height of the earpiece image.
  • the programmable logic controller 17 is connected to the loading component 12, the robot picking component 13, the detecting component 14, the mass sorting component 15, and the visual detecting device 16, for receiving the recognition result output by the visual detecting device 17, and loading the material.
  • the assembly 12, the robotic pick-up assembly 13, the inspection assembly 14, and the mass sorting assembly 15 are controlled.
  • the first detecting light source 143 and the second detecting light source 146 are backlights, and according to the uniform characteristics of the backlight light, the interference of the external light on the quality detecting system of the earpiece in the talking device is reduced, thereby improving the detection precision.
  • the first detecting lens 142 and the second detecting lens 145 are telecentric lenses, and the telecentric lens distortion is small, thereby improving the detection accuracy of the measurement of the size of the earpiece to be measured.
  • the sorting robot 151 is composed of a sorting motor, a sorting robot arm, a sorting mechanical finger, and a sorting nozzle, thereby improving the processing speed of the tube to be measured, thereby improving the overall detection efficiency.
  • the sorting motor uses a stepping motor or a servo motor, thereby improving the control precision of the sorting robot.
  • FIG. 2 shows a schematic structural diagram of an earpiece quality detecting system in a talking device.
  • the earpiece quality detecting system in the figure includes a loading component 1 composed of a vibrating disk 11 and a direct vibration 12, and a receiving material in-position fiber. 21.
  • the robot arm 22, the servo motor 23, the first detection bit in-position fiber 24, the second detection bit in-position fiber 25, the take-up finger 26, and the retracting nozzle 27 are assembled by the first hand detecting camera 31.
  • the first detecting lens 32, the first detecting light source 33, the second detecting camera 34, the second detecting lens 35, the second detecting light source 36, and the detecting component 3 composed of the detecting bracket 37 are selected by the sorting robot 41 and the first defective product.
  • the mass sorting assembly 4 composed of the collection box 42, the second defective product collection box 43, and the good collection box 44 further includes a cabinet 5, a visual inspection device 6, and a programmable logic controller 7, wherein the programmable logic controller 7 is wired Or wirelessly connected with the loading component 1, the robot reclaiming component 2, the detecting component 3, the mass sorting component 4, and the visual detecting device 6, respectively, which have the same functions as those of the component shown in FIG. I will not repeat them here.
  • the embodiment of the invention provides a quality inspection system for an earpiece in a communication device, the system comprising a cabinet and a loading component mounted on the cabinet, a robot reclaiming component, a detecting component and a mass sorting component, and further comprising connecting with the detecting component
  • the visual inspection device and the programmable logic controller respectively connected to the loading component, the robot picking component, the detecting component, the mass sorting component and the visual detecting device, when receiving the device to be tested in the talking device
  • the earpiece image is collected from the different angles by the first detecting camera and the second detecting camera, and then, by the visual detecting device, according to the collected earpiece image, the length, the width and the height are three.
  • the embodiment of the invention uses the dual detection bit to perform parallel detection on the earpiece, thereby improving the automation degree of the earpiece quality detection in the call device, thereby improving the quality detection speed and the industrial generation efficiency, and reducing the time cost. And labor costs.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 is a flowchart of a method for detecting a quality of an earpiece in a call device according to Embodiment 2 of the present invention.
  • the method for detecting the quality of the earpiece in the call device is applicable to the earpiece quality detecting system in Embodiment 1.
  • Embodiment 1 For convenience of description, only Parts related to embodiments of the present invention are shown, as detailed below:
  • step S301 when receiving a request for quality detection of the earpiece to be tested in the call device, the first detecting camera performs the first image capturing on the earpiece to be tested placed in the first detecting position.
  • the embodiment of the present invention is applicable to the quality inspection system of the earpiece in the communication device in the first embodiment, and detects the quality of the earpiece to be tested.
  • the system includes a cabinet, a loading component mounted on the cabinet, a robot picking component, and a detecting component.
  • a quality sorting component further comprising a visual inspection device coupled to the detection component and a programmable logic controller coupled to the loading component, the robotic retrieval component, the detection component, the mass sorting component, and the visual inspection device, respectively.
  • the first detection camera that triggers the detection component takes a picture of the earpiece to be tested on the detection position, and acquires the first image.
  • the first detecting camera when receiving the request for quality detection of the earpiece to be tested in the call device, performs the first image capturing on the earpiece to be tested placed in the first detecting position from the horizontal direction of the first detecting bit, thereby The detection basis is provided for subsequent quality inspection from the width (or length) and height of the earpiece to be tested.
  • step S302 the visual detecting device acquires the first detection parameter of the earpiece to be tested according to the collected first image, and determines whether the earpiece to be tested has a defect according to the first detection parameter.
  • the first detection parameter of the earpiece to be tested includes the height and width (or length) of the earpiece to be tested.
  • the visual detecting device When the visual detecting device acquires the first detecting parameter of the earpiece to be tested according to the collected first image, preferably, first, the visual detecting device compares the collected first image with the pre-acquired first detecting bit without the product.
  • the background image is subjected to residual processing to obtain a first residual image corresponding to the first image, and the first residual image is grayed out to obtain a corresponding first grayscale image, and then the visual inspection device uses the contour
  • the extraction algorithm and the minimum circumscribed rectangle algorithm perform minimum circumscribed rectangle extraction on the first gray image to obtain the first detection parameter of the earpiece to be tested.
  • the visual detection device determines whether the earpiece to be tested has defects according to the obtained first detection parameter. Thereby improving the accuracy of the judgment of the defect of the test tube.
  • the visual inspection device Before performing the residual processing on the acquired first image by the visual inspection device, it is further preferable to acquire a background image in the case where the first detection bit is not placed with the product and the light source, thereby improving the residual processing on the first image. Effect.
  • the visual inspection device uses the contour extraction algorithm and the minimum circumscribed rectangle algorithm to perform minimum circumscribed rectangle extraction on the first grayscale image
  • the visual detection device uses the contour extraction algorithm and the minimum circumscribed rectangle algorithm according to a preset fixed threshold.
  • the first grayscale image is extracted with a minimum circumscribed rectangle, thereby improving the saliency of the contour feature of the first grayscale image, thereby improving the accuracy of the minimum circumscribed rectangle extraction.
  • the visual inspection device uses the contour extraction algorithm and the minimum circumscribed rectangle algorithm to perform minimum circumscribed rectangle extraction on the first grayscale image
  • first, image local enhancement processing and avoidance processing are performed on the first grayscale image to Obtaining a corresponding avoidance image, and then performing image binarization processing on the avoidance image to obtain a corresponding binarized image, and then performing image etching processing on the binarized image to obtain a corresponding corrosion image, and then passing
  • the contour extraction algorithm performs image contour detection on the corroded image, and uses the minimum circumscribed rectangle algorithm to quadrilaterally fit the detected largest contour of the area to obtain the coordinates of the four vertices of the minimum circumscribed rectangle. Finally, according to the four vertices of the minimum circumscribed rectangle The coordinates acquire the first detection parameter of the earpiece to be tested, thereby improving the accuracy of the minimum circumscribed rectangle extraction.
  • the pixel value of the first grayscale image When performing image local enhancement processing on the first grayscale image, it is further preferable to traverse the pixel value of the first grayscale image, and when the pixel value is greater than or equal to a preset specified value, increase the pixel value by a preset enhancement.
  • the value when the pixel value is less than the specified value, sets the pixel value to 0, thereby improving the contour feature of the image.
  • the first detection parameter of the earpiece to be tested after the first detection parameter of the earpiece to be tested is obtained, it is determined whether the first detection parameter is successfully acquired.
  • the first detection parameter is determined according to the acquired first detection parameter. Whether there is a defect in the audiometer, otherwise, when the first detection parameter is unsuccessful, the quality detection result of the earpiece to be tested is set to no product, the corresponding quality detection result is obtained, and the quality detection result is sent to the programmable logic control. , thereby increasing the success rate of the quality of the test tube.
  • the width (or length) and height of the earpiece to be tested are calculated according to the first detecting parameter, and then, Compare the obtained width (or length) with a preset standard width (or length) of the earpiece, and compare the obtained height with a preset standard height of the earpiece, and finally, when the width (or length) and the standard width of the earpiece ( If the difference between the lengths exceeds the first length range or the difference between the height and the standard height of the earpiece exceeds the second length range, it is determined that the earpiece to be tested has a width (or length) defect or a high defect, and the earpiece to be tested
  • the quality detection result is set as a defective product, and the control robot puts the earpiece to be tested into the first defective product collection box according to the quality detection result by the programmable logic controller.
  • the steps are performed. S303.
  • the accuracy of the quality detection of the earpiece from the width (or length) and height dimensions is improved.
  • the success rate of quality detection is improved.
  • step S303 when it is determined that there is no defect in the earpiece to be tested according to the first detection parameter, the reclaiming robot places the earpiece to be tested to the second detection position to trigger the second detection camera to perform second image acquisition on the earpiece.
  • the second detection camera that triggers the detection component takes a picture of the earpiece to be tested on the detection position, and acquires a second image.
  • the retrieving robot places the earpiece to be tested to the second detecting position to trigger the second detecting camera to perform the second image capturing of the earpiece
  • the second detecting camera is triggered to perform second image acquisition from the earpiece directly above the second detecting position, thereby providing a detection basis for subsequent quality inspection from two dimensions of length and width of the earpiece to be tested.
  • step S304 the visual detecting device acquires the second detection parameter of the earpiece to be tested according to the collected second image, and determines whether there is a defect in the earpiece to be tested according to the second detection parameter, so as to obtain the quality detection result of the earpiece to be tested.
  • the quality detection result is sent to the programmable logic controller.
  • the second detection parameter of the earpiece to be tested includes the length and width of the earpiece to be tested.
  • the visual inspection device When the visual inspection device acquires the second detection parameter of the earpiece to be tested according to the acquired second image, preferably, first, the visual inspection device compares the acquired second image with the pre-acquired second detection position without the product.
  • the background image is subjected to residual processing to obtain a second residual image corresponding to the second image, and the second residual image is grayed out to obtain a corresponding second grayscale image, and then the visual inspection device uses the contour
  • the extraction algorithm and the minimum circumscribed rectangle algorithm perform minimum circumscribed rectangle extraction on the second gray image to obtain the second detection parameter of the earpiece to be tested.
  • the visual detection device determines whether the earpiece to be tested has defects according to the acquired second detection parameter. Thereby improving the accuracy of the judgment of the defect of the test tube.
  • the visual inspection device Before performing the residual processing on the acquired second image by the visual inspection device, it is further preferable to obtain a background image in the case where the second detection bit is not placed with the product and the light source, thereby improving the residual processing on the second image. Effect.
  • the visual inspection device uses the contour extraction algorithm and the minimum circumscribed rectangle algorithm to perform minimum circumscribed rectangle extraction on the second grayscale image
  • the visual detection device uses the contour extraction algorithm and the minimum circumscribed rectangle algorithm according to the preset fixed threshold.
  • the second grayscale image is extracted by the minimum circumscribed rectangle, thereby improving the saliency of the contour feature of the second grayscale image, thereby improving the accuracy of the minimum circumscribed rectangle extraction.
  • the visual inspection device uses the contour extraction algorithm and the minimum circumscribed rectangle algorithm to perform minimum circumscribed rectangle extraction on the second grayscale image
  • image local enhancement processing and avoidance processing are performed on the second grayscale image to Obtaining a corresponding second avoidance image
  • image binarization processing on the second avoidance image to obtain a corresponding binarized image
  • image etching processing on the binarized image to obtain a corresponding corrosion image
  • the contour image is used to detect the contour of the corrosion image
  • the minimum circumscribed rectangle algorithm is used to quadrilaterally fit the detected maximum contour of the area to obtain the coordinates of the four vertices of the minimum circumscribed rectangle.
  • the coordinates of the four vertices acquire the second detection parameter of the earpiece to be tested, thereby improving the accuracy of the minimum circumscribed rectangle extraction.
  • the pixel value of the second grayscale image When performing image local enhancement processing on the second grayscale image, it is further preferable to traverse the pixel value of the second grayscale image, and when the pixel value is greater than or equal to a preset specified value, the pixel value is increased by a preset enhancement.
  • the value when the pixel value is less than the specified value, sets the pixel value to 0, thereby improving the contour feature of the image.
  • the second detection parameter before determining whether the earpiece to be tested has a defect according to the second detection parameter, it is preferably determined whether the second detection parameter is successfully acquired, and when the second detection parameter is successfully acquired, according to the acquired second detection.
  • the parameter determines whether there is a defect in the earpiece to be tested. Otherwise, the quality detection result of the earpiece to be tested is set to be no product, the corresponding quality detection result is obtained, and the quality detection result is sent to the programmable logic controller, thereby improving the measurement.
  • the success rate of the quality of the earpiece is preferably determined whether the second detection parameter is successfully acquired, and when the second detection parameter is successfully acquired, according to the acquired second detection.
  • the width is the width of the earpiece to be tested, and then the obtained length is compared with the preset standard length of the earpiece, and the obtained width is compared with the preset standard width of the earpiece, and finally, the length and the standard length of the earpiece If the difference exceeds the third length range or the difference between the width and the standard width of the earpiece exceeds the first length range, it is determined that the earpiece to be tested has a defective length defect or a poor width defect, and the quality detection result of the earpiece to be tested is set to not Good product, otherwise, it is determined that there is no defect in the earpiece to be tested, and the quality detection result of the earpiece to be tested is set as a good product, the difference exceeds the third length range or the difference between the width and the standard width of the earpiece exceeds the first length range, it is determined that the earpiece to be tested has a defective length defect or a poor width defect, and the quality detection result of the earpiece to be tested is set to not Good
  • step S305 the programmable logic controller sends a processing signal to the quality sorting component according to the quality detection result, so that the mass sorting component performs corresponding processing on the earpiece.
  • the programmable logic controller when the quality detection result is a defective product, sends a processing signal to the quality sorting component, so that the mass sorting component places the earpiece to be tested into the second defective product collection box.
  • the programmable logic controller sends a processing signal to the mass sorting component, so that the mass sorting component places the earpiece to be tested into the good collection box.
  • the earpiece image is collected from the different angles by the first detecting camera and the second detecting camera, and then, The visual inspection device performs quality inspection on the earpiece according to the length, width and height of the collected earpiece image, obtains the quality detection result of the earpiece to be tested, and sends the quality detection result to the programmable logic controller. Finally, The programmable logic controller sends a processing signal to the robot pick-up component or the mass sorting component according to the quality detection result, and performs corresponding processing on the test tube.
  • the embodiment of the invention uses the double detection bit to perform parallel detection on the earphone, thereby
  • the automation of the quality inspection of the earpiece in the communication device is improved, thereby improving the speed of quality detection and the efficiency of industrial generation, and reducing the time cost and labor cost.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 4 is a diagram showing the structure of a quality detecting device for an earpiece in a call device according to a third embodiment of the present invention.
  • the mass detecting device of the earpiece in the calling device is applicable to the earpiece quality detecting system in the first embodiment, and is only shown for convenience of explanation. Portions related to embodiments of the present invention are included, including:
  • the first image capturing unit 41 is configured to: when receiving the request for quality detection of the earpiece to be tested in the calling device, the first detecting camera performs the first image capturing on the earpiece to be tested placed in the first detecting position;
  • the first defect determining unit 42 is configured to obtain, by the visual detecting device, the first detecting parameter of the earpiece to be tested according to the collected first image, and determine whether the earpiece to be tested has a defect according to the first detecting parameter;
  • the second image acquisition unit 43 is configured to: when determining that the earpiece to be tested has no defect according to the first detection parameter, the reclaiming robot places the earpiece to be tested to the second detection position to trigger the second detection camera to perform the second measurement of the earpiece graphic gathering;
  • the second defect determining unit 44 is configured to: the visual detecting device acquires the second detecting parameter of the earpiece to be tested according to the collected second image, and determines whether the earpiece to be tested has a defect according to the second detecting parameter, to obtain the earpiece to be tested. Quality test results, the quality test results are sent to the programmable logic controller;
  • the processing signal sending unit 45 is configured to send a processing signal to the quality sorting component according to the quality detection result, so that the mass sorting component performs corresponding processing on the earpiece.
  • the first defect determining unit 42 includes:
  • the image processing unit 421 is configured to perform a residual processing on the first image and the background image when the first detection bit has no product, and obtain a first residual image corresponding to the first image, and obtain the first image. Performing a grayscale process on the residual image to obtain a corresponding first grayscale image;
  • a detection parameter obtaining unit 422 configured to: use a contour extraction algorithm and a minimum circumscribed rectangle algorithm to perform minimum circumscribed rectangle extraction on the first grayscale image to obtain a first detection parameter of the earpiece to be tested;
  • the defect determining sub-unit 423 is configured to determine, by the visual detecting device, whether the earpiece to be tested has a defect according to the acquired first detecting parameter.
  • each unit of the quality detecting device of the handset in the communication device can be implemented by a corresponding hardware or software unit, and each unit can be an independent software and hardware unit, or can be integrated into a soft and hardware unit. It is not intended to limit the invention. For a specific implementation of each unit, reference may be made to the description of Embodiment 1, and details are not described herein again.

Abstract

本发明适用工业生产自动化领域,提供了一种通话设备中听筒的质量检测系统、方法及装置,该系统包括:机柜、上料组件、机械手取料组件、检测组件、质量分选组件、视觉检测设备以及可编程逻辑控制器,当接收到对待测听筒进行质量检测的请求时,首先通过两个检测位的检测相机从不同的角度对待测听筒进行听筒图像采集,然后通过视觉检测设备根据采集到的听筒图像从长、宽、高对待测听筒进行质量检测,得到待测听筒的质量检测结果,最后通过可编程逻辑控制器根据该质量检测结果发送处理信号给机械手取料组件或者质量分选组件,以对待测听筒进行相应的处理,通过双检测位并行检测,从而提高了质量检测系统的自动化程度,进而提高了质量检测的效率。

Description

一种通话设备中听筒的质量检测系统、方法及装置 技术领域
本发明属于工业生产自动化领域,尤其涉及一种通话设备中听筒的质量检测系统、方法及装置。
背景技术
网状听筒广泛应用在通话设备(例如,手机、平板电脑)中,是通话设备中必不可少的零件,而听筒在加工生产过程中可能出现尺寸偏差的缺陷,如果缺陷品流入到下一道生产环境,将会给最终产品带来严重的质量问题。
随着通话设备工业生产技术的发展,通话设备趋向于微型化、小型化,通话设备中的听筒必须适应通话设备微型化的趋势,因此听筒规格越来越小,加工精度越来越高,导致听筒后期质量检测的难度也越来越高,特别是对听筒的尺寸测量是一大难题,目前基本上采用人工抽样检测的方法,人工抽样检测只能依靠人眼在显微镜下一个一个检测,而检测人员的视力、耐力有限,无法做到对听筒产品进行全面检查,以至造成听筒产品大量返工和原材料浪费,甚至收到客户的投诉以及退货,这种人工抽样检测方法,无法做到对通话设备中听筒的质量进行全面有效的监控,且费时费力,对于产品质量是一种严重的隐患。
技术问题
本发明的目的在于提供一种通话设备中听筒的质量检测系统、方法及装置,旨在解决现有技术导致通话设备中听筒的质量检测效率低、成本高的问题。
技术解决方案
一方面,本发明提供了一种通话设备中听筒的质量检测系统,所述系统包括:
机柜,用于承托通话设备中听筒的质量检测系统中的各个组件;
安装在所述机柜上的上料组件,所述上料组件由振动盘和直振组成;
安装在所述机柜上的机械手取料组件,所述机械手取料组件由取料位到位光纤、机械手臂、伺服电机、第一检测位到位光纤、第二检测位到位光纤、取料手指以及取料吸嘴组成;
安装在所述机柜上的检测组件,所述检测组件由第一检测相机、第一检测镜头、第一检测光源、第二检测相机、第二检测镜头、第二检测光源以及检测支架组成;
安装在所述机柜上的质量分选组件,所述质量分选组件由分选机械手、第一不良品收集箱、第二不良品收集箱以及良品收集箱组成;
与所述检测组件连接的视觉检测设备,用于对通过检测组件拍摄的所述待测听筒照片进行产品识别;以及
与所述上料组件、所述机械手取料组件、所述检测组件、所述质量分选组件以及所述视觉检测设备连接的可编程逻辑控制器,用于接收所述视觉检测设备输出的识别结果,并对所述上料组件、所述机械手取料组件、所述检测组件以及所述质量分选组件进行控制。
另一方面,本发明提供了一种上述通话设备中听筒的质量检测系统的质量检测方法,所述方法包括下述步骤:
当接收到对通话设备中待测听筒进行质量检测的请求时,所述第一检测相机对放置在所述第一检测位的待测听筒进行第一图像采集;
所述视觉检测设备根据所述采集到的第一图像,获取所述待测听筒的第一检测参数,根据所述第一检测参数确定所述待测听筒是否存在缺陷;
当根据所述第一检测参数确定所述待测听筒不存在缺陷时,所述取料机械手将所述待测听筒放置到所述第二检测位,以触发所述第二检测相机对所述待测听筒进行第二图像采集;
所述视觉检测设备根据所述采集到的第二图像,获取所述待测听筒的第二检测参数,并根据所述第二检测参数确定所述待测听筒是否存在缺陷,以得到所述待测听筒的质量检测结果,将所述质量检测结果发送给所述可编程逻辑控制器;
所述可编程逻辑控制器根据所述质量检测结果发送处理信号给所述质量分选组件,以使所述质量分选组件对所述待测听筒进行相应的处理。
另一方面,本发明提供了一种上述通话设备中听筒的质量检测系统的质量检测装置,所述装置包括:
第一图像采集单元,用于当接收到对通话设备中待测听筒进行质量检测的请求时,所述第一检测相机对放置在所述第一检测位的待测听筒进行第一图像采集;
第一缺陷确定单元,用于所述视觉检测设备根据所述采集到的第一图像,获取所述待测听筒的第一检测参数,根据所述第一检测参数确定所述待测听筒是否存在缺陷;
第二图像采集单元,用于当根据所述第一检测参数确定所述待测听筒不存在缺陷时,所述取料机械手将所述待测听筒放置到所述第二检测位,以触发所述第二检测相机对所述待测听筒进行第二图像采集;
第二缺陷确定单元,用于所述视觉检测设备根据所述采集到的第二图像,获取所述待测听筒的第二检测参数,并根据所述第二检测参数确定所述待测听筒是否存在缺陷,以得到所述待测听筒的质量检测结果,将所述质量检测结果发送给所述可编程逻辑控制器;以及
处理信号发送单元,用于所述可编程逻辑控制器根据所述质量检测结果发送处理信号给所述质量分选组件,以使所述质量分选组件对所述待测听筒进行相应的处理。
有益效果
本发明提供了一种通话设备中听筒的质量检测系统,该系统包括机柜和安装在机柜上的上料组件、机械手取料组件、检测组件以及质量分选组件,还包括与检测组件连接的视觉检测设备和与上料组件、机械手取料组件、检测组件、质量分选组件以及视觉检测设备分别连接的可编程逻辑控制器,本发明当接收到对通话设备中待测听筒进行质量检测的请求时,首先,通过第一检测相机和第二检测相机从不同的角度对待测听筒进行听筒图像采集,然后,通过视觉检测设备根据采集到的听筒图像从长度、宽度、高度三维尺寸对待测听筒进行质量检测,得到待测听筒的质量检测结果,将该质量检测结果发送给可编程逻辑控制器,最后,通过可编程逻辑控制器根据该质量检测结果发送处理信号给机械手取料组件或者质量分选组件,以对待测听筒进行相应的处理,本发明采用双检测位对待测听筒进行并行检测,从而提高了通话设备中听筒质量检测的自动化程度,进而提高了质量检测的速度和工业生成的效率,并降低了时间成本和人工成本。
附图说明
图1是本发明实施例一提供的通话设备中听筒的质量检测系统的结构示意图;
图2是本发明实施例一提供的通话设备中听筒的质量检测系统的结构示例图;
图3是本发明实施例二提供的通话设备中听筒的质量检测方法的实现流程图;
图4是本发明实施例三提供的通话设备中听筒的质量检测装置的结构示意图;以及
图5是本发明实施例三提供的通话设备中听筒的质量检测装置的优选结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述:
实施例一:
图1示出了本发明实施例一提供的通话设备中听筒的质量检测系统的结构,为了便于说明,仅示出了与本发明实施例相关的部分。
本发明实施例提供了一种通话设备中听筒的质量检测系统,该质量检测系统包括机柜11、上料组件12、机械手取料组件13、检测组件14、质量分选组件15、视觉检测设备16以及可编程逻辑控制器17,其中:
机柜11用于承托通话设备中听筒的质量检测系统中的各个组件。
上料组件12安装在机柜11上,上料组件12由振动盘121和直振122组成,振动盘121用于将待测听筒按预设方向进行排列,直振122用于将排列好的待测听筒按顺序一个一个进行出料。
机械手取料组件13安装在机柜11上,机械手取料组件13由取料位到位光纤131、机械手臂132、伺服电机133、第一检测位到位光纤134、第二检测位到位光纤135、取料手指136以及取料吸嘴137组成,用于从预设的取料位进行取料,并将取得的待测听筒放置在第一检测位或者第二检测位。具体地,当取料位到位光纤131感应到待测听筒到达取料位后,触发机械手臂132开始取料动作,首先,控制伺服电机133带动取料机械手臂132运动到取料位,到达取料位后,控制取料手指136压在待测听筒上,控制取料吸嘴137吸气,将待测听筒吸住,然后,控制伺服电机133带动取料机械手臂132运动到第一检测位,控制取料吸嘴137停止吸气,将待测听筒放在第一检测位,当对第一检测位的待测听筒质量检测结果为良品时,控制取料机械臂132将第一检测位检测完成的待测听筒取到第二检测位,以对该待测听筒从不同的角度进行再次质量检测。
检测组件14安装在机柜11上,检测组件14由第一检测相机141、第一检测镜头142、第一检测光源143、第二检测相机144、第二检测镜头145、第二检测光源146以及检测支架147组成,用于通过第一检测相机141从第一检测位的水平方向对待测听筒进行拍摄,第二检测相机144从第二检测位的上方对待测听筒进行拍摄。具体地,当第一检测位到位光纤134感应到产品时,给第一检测相机141发送触发拍照信号,当第二检测位到位光纤135感应到产品时,给第二检测相机144发送触发拍照信号。
质量分选组件15安装在机柜11上,质量分选组件15由分选机械手151、第一不良品收集箱152、第二不良品收集箱153以及良品收集箱154组成,用于根据第二检测位的待测听筒检测后返回的质量检测结果对该待测听筒进行相应的处理。具体地,当第一检测位待测听筒质量检测结果为不良品时,控制机械手臂132将产品放到第一不良品收集箱152中,当第二检测位待测听筒的质量检测结果是不良品时,控制分选机械手151将该待测听筒放置到第二不良品收集箱153中,当第二检测位待测听筒的质量检测结果是良品时,则控制分选机械手151将待测听筒放置到良品收集箱154。
视觉检测设备16与检测组件14连接,用于对通过检测组件14拍摄的待测听筒照片进行产品识别。具体地,当第一检测相机141对放置在第一检测位的待测听筒采集了听筒图像后,视觉检测设备16根据该听筒图像从高度和宽度两方面对待测听筒进行质量检测,当第二检测相机144对放置在第二检测位的待测听筒采集了听筒图像后,视觉检测设备16根据该听筒图像从长度和高度两方面对待测听筒进行质量检测。
可编程逻辑控制器17与上料组件12、机械手取料组件13、检测组件14、质量分选组件15以及视觉检测设备16连接,用于接收视觉检测设备17输出的识别结果,并对上料组件12、机械手取料组件13、检测组件14以及质量分选组件15进行控制。
优选地,第一检测光源143和所述第二检测光源146为背光源,根据背光源光线均匀的特性,从而降低外界光线对通话设备中听筒的质量检测系统的干扰,进而提高检测精度。
又一优选地,第一检测镜头142和第二检测镜头145为远心镜头,由于远心镜头畸变小,从而提高了对待测听筒尺寸测量的检测精度。
优选地,分选机械手151由分选电机、分选机械手臂、分选机械手指以及分选吸嘴组成,从而提高对待测听筒的处理速度,进而提高整体检测效率。
进一步优选地,分选电机采用步进电机或者伺服电机,从而提高了对分选机械手的控制精度。
作为示例地,图2示出了一通话设备中听筒质量检测系统的结构示意图,图中的听筒质量检测系统包括由振动盘11和直振12组成的上料组件1,由取料位到位光纤21、机械手臂22、伺服电机23、第一检测位到位光纤24、第二检测位到位光纤25、取料手指26以及取料吸嘴27组成的机械手取料组件2,由第一检测相机31、第一检测镜头32、第一检测光源33、第二检测相机34、第二检测镜头35、第二检测光源36以及检测支架37组成的检测组件3,由分选机械手41、第一不良品收集箱42、第二不良品收集箱43以及良品收集箱44组成的质量分选组件4,还包括机柜5、视觉检测设备6以及可编程逻辑控制器7,其中可编程逻辑控制器7通过有线或者无线方式与上料组件1、机械手取料组件2、检测组件3、质量分选组件4以及视觉检测设备6分别连接,这些组件与图1所示组件的功能对应相同,在此不再赘述。
本发明实施例提供了一种通话设备中听筒的质量检测系统,该系统包括机柜和安装在机柜上的上料组件、机械手取料组件、检测组件以及质量分选组件,还包括与检测组件连接的视觉检测设备和与上料组件、机械手取料组件、检测组件、质量分选组件以及视觉检测设备分别连接的可编程逻辑控制器,本发明实施例当接收到对通话设备中待测听筒进行质量检测的请求时,首先,通过第一检测相机和第二检测相机从不同的角度对待测听筒进行听筒图像采集,然后,通过视觉检测设备根据采集到的听筒图像从长度、宽度、高度三个维度对待测听筒进行质量检测,得到待测听筒的质量检测结果,将该质量检测结果发送给可编程逻辑控制器,最后,通过可编程逻辑控制器根据该质量检测结果发送处理信号给机械手取料组件或者质量分选组件,以对待测听筒进行相应的处理,本发明实施例采用双检测位对待测听筒进行并行检测,从而提高了通话设备中听筒质量检测的自动化程度,进而提高了质量检测的速度和工业生成的效率,并降低了时间成本和人工成本。
实施例二:
图3示出了本发明实施例二提供的通话设备中听筒的质量检测方法的实现流程,该通话设备中听筒的质量检测方法适用于实施例一中的听筒质量检测系统,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
在步骤S301中,当接收到对通话设备中待测听筒进行质量检测的请求时,第一检测相机对放置在第一检测位的待测听筒进行第一图像采集。
本发明实施例适用于实施例一中的通话设备中听筒的质量检测系统,以对待测听筒的质量进行检测,该系统包括机柜和安装在机柜上的上料组件、机械手取料组件、检测组件以及质量分选组件,还包括与检测组件连接的视觉检测设备和与上料组件、机械手取料组件、检测组件、质量分选组件以及视觉检测设备分别连接的可编程逻辑控制器。
在本发明实施例中,当待测听筒放置在第一检测位上时,触发检测组件的第一检测相机对该检测位上的待测听筒进行拍照,并采集第一图像。
优选地,当接收到对通话设备中待测听筒进行质量检测的请求时,第一检测相机从第一检测位的水平方向对放置在第一检测位的待测听筒进行第一图像采集,从而为后续从待测听筒的宽度(或者长度)和高度两个维度进行质量检测提供检测依据。
在步骤S302中,视觉检测设备根据采集到的第一图像,获取待测听筒的第一检测参数,根据第一检测参数确定待测听筒是否存在缺陷。
在本发明实施例中,待测听筒的第一检测参数包括待测听筒的高度和宽度(或者长度)。
在视觉检测设备根据采集到的第一图像,获取待测听筒的第一检测参数时,优选地,首先,视觉检测设备将采集到的第一图像与预先获取的、第一检测位无产品时的背景图像进行残差处理,得到第一图像对应的第一残差图像,并将第一残差图像进行灰度化处理,以得到对应的第一灰度图像,然后,视觉检测设备使用轮廓提取算法以及最小外接矩形算法对第一灰度图像进行最小外接矩形提取,获取待测听筒的第一检测参数,最后,视觉检测设备根据获取到的第一检测参数确定待测听筒是否存在缺陷,从而提高对待测听筒缺陷判断的准确度。
在通过视觉检测设备对采集到的第一图像进行残差处理之前,进一步优选地,获取第一检测位没有放置产品且有光源的情况下的背景图像,从而提高对第一图像进行残差处理的效果。
在视觉检测设备使用轮廓提取算法以及最小外接矩形算法对第一灰度图像进行最小外接矩形提取时,进一步优选地,视觉检测设备根据预先设置的固定阈值,使用轮廓提取算法以及最小外接矩形算法对第一灰度图像进行最小外接矩形提取,从而提高了第一灰度图像轮廓特征的显著性,进而提高最小外接矩形提取的准确度。
在视觉检测设备使用轮廓提取算法以及最小外接矩形算法对第一灰度图像进行最小外接矩形提取时,又一优选地,   首先,对第一灰度图像进行图像局部增强处理和避位处理,以得到对应的避位图像,然后,将避位图像进行图像二值化处理,以得到对应的二值化图像,再将二值化图像进行图像腐蚀处理,以得到对应的腐蚀图像,之后,通过轮廓提取算法对腐蚀图像进行图像轮廓检测,并采用最小外接矩形算法对检测到的面积最大轮廓进行四边形拟合处理,得到最小外接矩形四个顶点的坐标,最后,根据最小外接矩形四个顶点的坐标获取待测听筒的第一检测参数,从而提高最小外接矩形提取的准确度。
在对第一灰度图像进行图像局部增强处理时,进一步优选地,遍历第一灰度图像的像素值,当像素值大于或等于预设的指定值时,将该像素值增加预设的增强值,当像素值小于指定值时,将该像素值置为0,从而提高图像的轮廓特征。
在本发明实施例中,在获取待测听筒的第一检测参数之后,优选地,判断第一检测参数是否获取成功,当第一检测参数获取成功时,则根据获取的第一检测参数确定待测听筒是否存在缺陷,否则,当第一检测参数获取不成功时,将待测听筒的质量检测结果设置为无产品,得到对应的质量检测结果,并将该质量检测结果发送给可编程逻辑控制器,从而提高了对待测听筒质量检测的成功率。
在本发明实施例中,当视觉检测设备根据第一检测参数确定待测听筒是否存在缺陷时,优选地,首先,根据第一检测参数计算待测听筒的宽度(或者长度)和高度,然后,将得到的宽度(或者长度)与预先设置的听筒标准宽度(或者长度)进行比较,且将得到的高度与预先设置的听筒标准高度进行比较,最后,当宽度(或者长度)与听筒标准宽度(或者长度)的差值超过第一长度范围或者高度与听筒标准高度的差值超过第二长度范围时,则确定待测听筒存在宽度(或者长度)不良缺陷或者高度不良缺陷,并将待测听筒的质量检测结果设置为不良品,通过可编程逻辑控制器根据该质量检测结果,控制机械手臂将待测听筒放到第一不良品收集箱中,否则,确定待测听筒不存在缺陷,执行步骤S303。通过将待测听筒的从宽度(或者长度)和高度这两个维度与预设的标准尺寸进行比较,从而提高了对待测听筒从宽度(或者长度)和高度的维度上质量检测的精确度,进而提高了质量检测的成功率。
在步骤S303中,当根据第一检测参数确定待测听筒不存在缺陷时,取料机械手将待测听筒放置到第二检测位,以触发第二检测相机对待测听筒进行第二图像采集。
在本发明实施例中,当待测听筒放置在第二检测位上时,触发检测组件的第二检测相机对该检测位上的待测听筒进行拍照,并采集第二图像。
当取料机械手将待测听筒放置到第二检测位,以触发第二检测相机对待测听筒进行第二图像采集时,优选地,当取料机械手将待测听筒放置到第二检测位时,触发第二检测相机从第二检测位的正上方对待测听筒进行第二图像采集,从而为后续从待测听筒的长度和宽度两个维度进行质量检测提供检测依据。
在步骤S304中,视觉检测设备根据采集到的第二图像,获取待测听筒的第二检测参数,并根据第二检测参数确定待测听筒是否存在缺陷,以得到待测听筒的质量检测结果,将该质量检测结果发送给可编程逻辑控制器。
在本发明实施例中,待测听筒的第二检测参数包括待测听筒的长度和宽度。
在视觉检测设备根据采集到的第二图像,获取待测听筒的第二检测参数时,优选地,首先,视觉检测设备将采集到的第二图像与预先获取的、第二检测位无产品时的背景图像进行残差处理,得到第二图像对应的第二残差图像,并将第二残差图像进行灰度化处理,以得到对应的第二灰度图像,然后,视觉检测设备使用轮廓提取算法以及最小外接矩形算法对第二灰度图像进行最小外接矩形提取,获取待测听筒的第二检测参数,最后,视觉检测设备根据获取到的第二检测参数确定待测听筒是否存在缺陷,从而提高对待测听筒缺陷判断的准确度。
在通过视觉检测设备对采集到的第二图像进行残差处理之前,进一步优选地,获取第二检测位没有放置产品且有光源的情况下的背景图像,从而提高对第二图像进行残差处理的效果。
在视觉检测设备使用轮廓提取算法以及最小外接矩形算法对第二灰度图像进行最小外接矩形提取时,进一步优选地,视觉检测设备根据预先设置的固定阈值,使用轮廓提取算法以及最小外接矩形算法对第二灰度图像进行最小外接矩形提取,从而提高了第二灰度图像轮廓特征的显著性,进而提高最小外接矩形提取的准确度。
在视觉检测设备使用轮廓提取算法以及最小外接矩形算法对第二灰度图像进行最小外接矩形提取时,又一优选地,   首先,对第二灰度图像进行图像局部增强处理和避位处理,以得到对应的第二避位图像,然后,将第二避位图像进行图像二值化处理,以得到对应的二值化图像,再将二值化图像进行图像腐蚀处理,以得到对应的腐蚀图像,之后,通过轮廓提取算法对腐蚀图像进行图像轮廓检测,并采用最小外接矩形算法对检测到的面积最大轮廓进行四边形拟合处理,得到最小外接矩形四个顶点的坐标,最后,根据最小外接矩形四个顶点的坐标获取待测听筒的第二检测参数,从而提高最小外接矩形提取的准确度。
在对第二灰度图像进行图像局部增强处理时,进一步优选地,遍历第二灰度图像的像素值,当像素值大于或等于预设的指定值时,将该像素值增加预设的增强值,当像素值小于指定值时,将该像素值置为0,从而提高图像的轮廓特征。
在本发明实施例中,在根据第二检测参数确定待测听筒是否存在缺陷之前,优选地,判断第二检测参数是否获取成功,当第二检测参数获取成功时,则根据获取的第二检测参数确定待测听筒是否存在缺陷,否则,将待测听筒的质量检测结果设置为无产品,得到对应的质量检测结果,并将该质量检测结果发送给可编程逻辑控制器,从而提高了对待测听筒质量检测的成功率。
在本发明实施例中,在根据第二检测参数确定待测听筒是否存在缺陷时,优选地,首先,根据第二检测参数计算最小外接矩形的长度和宽度,该长度即为待测听筒的长度,该宽度即为待测听筒的宽度,然后,将得到的长度与预先设置的听筒标准长度进行比较,且将得到的宽度与预先设置的听筒标准宽度进行比较,最后,当长度与听筒标准长度的差值超过第三长度范围或者宽度与听筒标准宽度的差值超过第一长度范围时,则确定待测听筒存在长度不良缺陷或者宽度不良缺陷,并将待测听筒的质量检测结果设置为不良品,否则,确定待测听筒不存在缺陷,并将待测听筒的质量检测结果设置为良品,得到对应的质量检测结果,并将该质量检测结果发送给可编程逻辑控制器。通过将待测听筒从长度和宽度两个维度上与预设的标准尺寸进行比较,从而提高了对待测听筒质量检测的精确度,进而提高了质量检测的成功率。
在步骤S305中,可编程逻辑控制器根据质量检测结果发送处理信号给质量分选组件,以使质量分选组件对待测听筒进行相应的处理。
在本发明实施例中,当质量检测结果为不良品时,可编程逻辑控制器发送处理信号给质量分选组件,以使质量分选组件将待测听筒放置到第二不良品收集箱里,当质量检测结果为良品时,可编程逻辑控制器发送处理信号给质量分选组件,以使质量分选组件将待测听筒放置到良品收集箱里。
在本发明实施例中,当接收到对通话设备中待测听筒进行质量检测的请求时,首先,通过第一检测相机和第二检测相机从不同的角度对待测听筒进行听筒图像采集,然后,通过视觉检测设备根据采集到的听筒图像从长度、宽度、高度三个维度对待测听筒进行质量检测,得到待测听筒的质量检测结果,将该质量检测结果发送给可编程逻辑控制器,最后,通过可编程逻辑控制器根据该质量检测结果发送处理信号给机械手取料组件或者质量分选组件,以对待测听筒进行相应的处理,本发明实施例采用双检测位对待测听筒进行并行检测,从而提高了通话设备中听筒质量检测的自动化程度,进而提高了质量检测的速度和工业生成的效率,并降低了时间成本和人工成本。
实施例三:
图4示出了本发明实施例三提供的通话设备中听筒的质量检测装置的结构,该通话设备中听筒的质量检测装置适用于实施例一中的听筒质量检测系统,为了便于说明,仅示出了与本发明实施例相关的部分,其中包括:
第一图像采集单元41,用于当接收到对通话设备中待测听筒进行质量检测的请求时,第一检测相机对放置在第一检测位的待测听筒进行第一图像采集;
第一缺陷确定单元42,用于视觉检测设备根据采集到的第一图像,获取待测听筒的第一检测参数,根据第一检测参数确定待测听筒是否存在缺陷;
第二图像采集单元43,用于当根据第一检测参数确定待测听筒不存在缺陷时,取料机械手将待测听筒放置到第二检测位,以触发第二检测相机对待测听筒进行第二图像采集;
第二缺陷确定单元44,用于视觉检测设备根据采集到的第二图像,获取待测听筒的第二检测参数,并根据第二检测参数确定待测听筒是否存在缺陷,以得到待测听筒的质量检测结果,将质量检测结果发送给可编程逻辑控制器;以及
处理信号发送单元45,用于可编程逻辑控制器根据质量检测结果发送处理信号给质量分选组件,以使质量分选组件对待测听筒进行相应的处理。
其中,如图5所示,优选地,第一缺陷确定单元42包括:
图像处理单元421,用于视觉检测设备将第一图像与预先获取的、第一检测位无产品时的背景图像进行残差处理,得到第一图像对应的第一残差图像,并将第一残差图像进行灰度化处理,以得到对应的第一灰度图像;
检测参数获取单元422,用于视觉检测设备使用轮廓提取算法以及最小外接矩形算法对第一灰度图像进行最小外接矩形提取,获取待测听筒的第一检测参数;以及
缺陷确定子单元423,用于视觉检测设备根据获取到的第一检测参数确定待测听筒是否存在缺陷。
在本发明实施例中,通话设备中听筒的质量检测装置的各单元可由相应的硬件或软件单元实现,各单元可以为独立的软、硬件单元,也可以集成为一个软、硬件单元,在此不用以限制本发明。各单元的具体实施方式可参考实施例一的描述,在此不再赘述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种通话设备中听筒的质量检测系统,其特征在于,所述系统包括:
    机柜,用于承托通话设备中听筒的质量检测系统中的各个组件;
    安装在所述机柜上的上料组件,所述上料组件由振动盘和直振组成;
    安装在所述机柜上的机械手取料组件,所述机械手取料组件由取料位到位光纤、机械手臂、伺服电机、第一检测位到位光纤、第二检测位到位光纤、取料手指以及取料吸嘴组成;
    安装在所述机柜上的检测组件,所述检测组件由第一检测相机、第一检测镜头、第一检测光源、第二检测相机、第二检测镜头、第二检测光源以及检测支架组成;
    安装在所述机柜上的质量分选组件,所述质量分选组件由分选机械手、第一不良品收集箱、第二不良品收集箱以及良品收集箱组成;
    与所述检测组件连接的视觉检测设备,用于对通过检测组件拍摄的所述待测听筒照片进行产品识别;以及
    与所述上料组件、所述机械手取料组件、所述检测组件、所述质量分选组件以及所述视觉检测设备连接的可编程逻辑控制器,用于接收所述视觉检测设备输出的识别结果,并对所述上料组件、所述机械手取料组件、所述检测组件以及所述质量分选组件进行控制。
  2. 如权利要求1所述通话设备中听筒的质量检测系统,其特征在于,所述第一检测光源和所述第二检测光源为背光源。
  3. 如权利要求1所述通话设备中听筒的质量检测系统,其特征在于,所述第一检测镜头和所述第二检测镜头为远心镜头。
  4. 如权利要求1所述通话设备中听筒的质量检测系统,其特征在于,所述分选机械手由分选电机、分选机械手臂、分选机械手指以及分选吸嘴组成。
  5. 一种基于权利要求1-4任一所述通话设备中听筒的质量检测系统的质量检测方法,其特征在于,所述方法包括下述步骤:
    当接收到对通话设备中待测听筒进行质量检测的请求时,所述第一检测相机对放置在所述第一检测位的待测听筒进行第一图像采集;
    所述视觉检测设备根据所述采集到的第一图像,获取所述待测听筒的第一检测参数,根据所述第一检测参数确定所述待测听筒是否存在缺陷;
    当根据所述第一检测参数确定所述待测听筒不存在缺陷时,所述取料机械手将所述待测听筒放置到所述第二检测位,以触发所述第二检测相机对所述待测听筒进行第二图像采集;
    所述视觉检测设备根据所述采集到的第二图像,获取所述待测听筒的第二检测参数,并根据所述第二检测参数确定所述待测听筒是否存在缺陷,以得到所述待测听筒的质量检测结果,将所述质量检测结果发送给所述可编程逻辑控制器;
    所述可编程逻辑控制器根据所述质量检测结果发送处理信号给所述质量分选组件,以使所述质量分选组件对所述待测听筒进行相应的处理。
  6. 如权利要求5所述的方法,其特征在于,所述视觉检测设备根据所述采集到的第一图像,获取所述待测听筒的第一检测参数的步骤,包括:
    所述视觉检测设备将所述第一图像与预先获取的、所述第一检测位无产品时的背景图像进行残差处理,得到所述第一图像对应的第一残差图像,并将所述第一残差图像进行灰度化处理,以得到对应的第一灰度图像;
    所述视觉检测设备使用轮廓提取算法以及最小外接矩形算法对所述第一灰度图像进行最小外接矩形提取,获取所述待测听筒的第一检测参数;
    所述视觉检测设备根据所述获取到的第一检测参数确定所述待测听筒是否存在缺陷。
  7. 如权利要求5所述的方法,其特征在于,所述第一检测相机对放置在所述第一检测位的待测听筒进行第一图像采集的步骤,包括:
    所述第一检测相机从所述第一检测位的水平方向对放置在所述第一检测位的待测听筒进行第一图像采集。
  8. 如权利要求5所述的方法,其特征在于,所述取料机械手将所述待测听筒放置到所述第二检测位,以触发所述第二检测相机对所述待测听筒进行第二图像采集的步骤,包括:
    所述取料机械手将所述待测听筒放置到所述第二检测位,以触发所述第二检测相机从所述第二检测位的正上方对所述待测听筒进行第二图像采集。
  9. 一种基于权利要求1-4任一所述通话设备中听筒的质量检测系统的质量检测装置,其特征在于,所述装置包括:
    第一图像采集单元,用于当接收到对通话设备中待测听筒进行质量检测的请求时,所述第一检测相机对放置在所述第一检测位的待测听筒进行第一图像采集;
    第一缺陷确定单元,用于所述视觉检测设备根据所述采集到的第一图像,获取所述待测听筒的第一检测参数,根据所述第一检测参数确定所述待测听筒是否存在缺陷;
    第二图像采集单元,用于当根据所述第一检测参数确定所述待测听筒不存在缺陷时,所述取料机械手将所述待测听筒放置到所述第二检测位,以触发所述第二检测相机对所述待测听筒进行第二图像采集;
    第二缺陷确定单元,用于所述视觉检测设备根据所述采集到的第二图像,获取所述待测听筒的第二检测参数,并根据所述第二检测参数确定所述待测听筒是否存在缺陷,以得到所述待测听筒的质量检测结果,将所述质量检测结果发送给所述可编程逻辑控制器;以及
    处理信号发送单元,用于所述可编程逻辑控制器根据所述质量检测结果发送处理信号给所述质量分选组件,以使所述质量分选组件对所述待测听筒进行相应的处理。
  10. 如权利要求9所述的装置,其特征在于,所述第一缺陷确定单元包括:
    图像处理单元,用于所述视觉检测设备将所述第一图像与预先获取的、所述第一检测位无产品时的背景图像进行残差处理,得到所述第一图像对应的第一残差图像,并将所述第一残差图像进行灰度化处理,以得到对应的第一灰度图像;
    检测参数获取单元,用于所述视觉检测设备使用轮廓提取算法以及最小外接矩形算法对所述第一灰度图像进行最小外接矩形提取,获取所述待测听筒的第一检测参数;以及
    缺陷确定子单元,用于所述视觉检测设备根据所述获取到的第一检测参数确定所述待测听筒是否存在缺陷。
PCT/CN2018/085396 2018-04-18 2018-05-03 一种通话设备中听筒的质量检测系统、方法及装置 WO2019200622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810347557.0 2018-04-18
CN201810347557.0A CN108810784A (zh) 2018-04-18 2018-04-18 一种通话设备中听筒的质量检测系统、方法及装置

Publications (1)

Publication Number Publication Date
WO2019200622A1 true WO2019200622A1 (zh) 2019-10-24

Family

ID=64094372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085396 WO2019200622A1 (zh) 2018-04-18 2018-05-03 一种通话设备中听筒的质量检测系统、方法及装置

Country Status (2)

Country Link
CN (1) CN108810784A (zh)
WO (1) WO2019200622A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810784A (zh) * 2018-04-18 2018-11-13 深圳大学 一种通话设备中听筒的质量检测系统、方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975397A1 (en) * 2014-07-18 2016-01-20 Siemens Aktiengesellschaft High frequency acoustic spectrum imaging method
CN105717126A (zh) * 2016-02-03 2016-06-29 宁波韵升智能技术有限公司 一种产品外形缺陷自动检测设备
CN106802301A (zh) * 2016-12-27 2017-06-06 江苏大学 一种发动机气门的机器视觉在线检测系统和方法
CN108810784A (zh) * 2018-04-18 2018-11-13 深圳大学 一种通话设备中听筒的质量检测系统、方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204564598U (zh) * 2015-02-07 2015-08-19 深圳市品印宝智能科技有限公司 玻璃管分选装置及玻璃管外观自动化检测设备
CN205816226U (zh) * 2016-07-14 2016-12-21 宁波古思智能科技有限公司 一种检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975397A1 (en) * 2014-07-18 2016-01-20 Siemens Aktiengesellschaft High frequency acoustic spectrum imaging method
CN105717126A (zh) * 2016-02-03 2016-06-29 宁波韵升智能技术有限公司 一种产品外形缺陷自动检测设备
CN106802301A (zh) * 2016-12-27 2017-06-06 江苏大学 一种发动机气门的机器视觉在线检测系统和方法
CN108810784A (zh) * 2018-04-18 2018-11-13 深圳大学 一种通话设备中听筒的质量检测系统、方法及装置

Also Published As

Publication number Publication date
CN108810784A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN107040725B (zh) 一种图像获取装置的坐标校正方法及图像获取装置
US20090067701A1 (en) System and method for detecting blemishes on surface of object
US11837484B2 (en) Robot arm device and method for transferring wafer
KR101469158B1 (ko) 카메라 렌즈 모듈 검사장치 및 그에 따른 검사방법
US7403218B2 (en) Image processing system and image processing method
CN110560376B (zh) 一种产品表面缺陷检测方法及装置
CN107833843A (zh) 缺陷来源的分析方法及分析系统、缺陷检测装置
CN112084964A (zh) 产品识别设备、方法及存储介质
US20070260341A1 (en) Correcting apparatus for wafer transport equipment and correcting method for wafer transport equipment
WO2019200622A1 (zh) 一种通话设备中听筒的质量检测系统、方法及装置
CN114820475A (zh) 边缘识别方法、系统、晶圆加工装置及晶圆与加工台同心状态确定方法
CN101097398B (zh) 镜头测试装置及方法
TWI531787B (zh) An automatic optical detection method and an automatic optical detection system for carrying out the method
US20070126451A1 (en) Method for testing the quality of light-permeable thin film
TW201445458A (zh) 一種攝像設備的檢測裝置及方法
KR20180032886A (ko) 비젼 시스템 기반의 pin 검출을 이용하는 pcb 진단 장치 및 방법
CN113203752B (zh) 电子纸自动检测的控制方法、装置及存储介质
CN105548210A (zh) 基于机器视觉的美标电源延长线的检测方法
CN112927170B (zh) 半导体制造工艺中的自动缺陷去除方法
CN211402180U (zh) 用于布面缺陷识别的系统
JP2021502229A (ja) セラミックボールの自動選別システム及び方法
CN114460087A (zh) 一种基于机器视觉的焊点缺陷检测系统和方法
KR20100137066A (ko) 작업성이 향상된 전자기기용 표면 검사장치
CN111522074B (zh) 麦克风检测设备及麦克风检测方法
CN111447366B (zh) 运输方法、运输装置、电子装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914985

Country of ref document: EP

Kind code of ref document: A1