WO2019200500A1 - 1,2,4-三氮唑及其制备方法 - Google Patents

1,2,4-三氮唑及其制备方法 Download PDF

Info

Publication number
WO2019200500A1
WO2019200500A1 PCT/CN2018/083136 CN2018083136W WO2019200500A1 WO 2019200500 A1 WO2019200500 A1 WO 2019200500A1 CN 2018083136 W CN2018083136 W CN 2018083136W WO 2019200500 A1 WO2019200500 A1 WO 2019200500A1
Authority
WO
WIPO (PCT)
Prior art keywords
triazole
mmol
reaction
compound
follows
Prior art date
Application number
PCT/CN2018/083136
Other languages
English (en)
French (fr)
Inventor
李海燕
李辉煌
王亚雄
万小兵
Original Assignee
苏州大学张家港工业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院, 苏州大学 filed Critical 苏州大学张家港工业技术研究院
Priority to PCT/CN2018/083136 priority Critical patent/WO2019200500A1/zh
Publication of WO2019200500A1 publication Critical patent/WO2019200500A1/zh
Priority to US17/067,721 priority patent/US11072589B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/122Halides of copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms

Definitions

  • the present invention relates to 1,2,4-triazole and a preparation method thereof, and belongs to the technical field of organic synthesis.
  • 1,2,4-triazole is a very valuable five-membered nitrogen-containing heterocyclic skeleton, which is widely used in many functional molecules and is used in the fields of organic catalysis and materials science.
  • the 1,2,4-triazole skeleton is also found in many bioactive molecules and has important applications in the pharmaceutical industry and pesticides.
  • the preparation of 1,2,4-triazole has many disadvantages such as many reaction steps, complicated preparation of raw materials, complicated reaction conditions, and narrow substrate range. E.g:
  • the object of the present invention is to provide a method for preparing 1,2,4-triazole, which has rich source of reaction materials, wide universality of reaction substrate, simple operation, and convenient functionalization to synthesize potential drug molecules in the later stage. .
  • a method for preparing 1,2,4-triazole comprising the steps of: using a fluoroborate aryl diazonium salt, a diazo ester derivative, and an organic nitrile as a reaction substrate, and using a copper salt as a catalyst,
  • the 1,2,4-triazole is prepared by a cyclization reaction using an inorganic base as an additive; wherein the chemical structure of the fluoroborate aryl diazonium salt is f-NSN BF 4
  • Ar is selected from the group consisting of an aryl group, a monosubstituted aryl group, a disubstituted aryl group, and a naphthyl group;
  • R 2 is selected from the group consisting of ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, benzyl;
  • R 3 is selected from the group consisting of methyl, isopropyl, t-butyl, benzyl;
  • the present invention discloses the use of an aryl diazonium salt, a diazo ester derivative and an organic nitrile as a raw material in the preparation of 1,2,4-triazole; the 1,2,4-triazole
  • the chemical structure is as follows: [0017]
  • the present invention also discloses the use of a halogen copper salt catalyst and/or an inorganic base additive in the preparation of 1,2,4-triazole; or a ruthenium copper salt catalyst and/or an inorganic base additive in catalyzing fluoroborate Use of a base heavy nitrogen salt, a diazo ester derivative and an organic nitrile cyclization reaction; the chemical structural formula of the 1,2,4-triazole is as follows:
  • the reaction temperature of the cyclization reaction is 40 ° C, and the reaction time is 1 hour; and the cyclization reaction is carried out in the air.
  • the copper salt is a halogen copper salt
  • the additive is selected from the group consisting of lithium carbonate, potassium carbonate, cesium carbonate, sodium acetate, lithium t-butoxide; preferably, a copper salt of south It is cuprous bromide and the additive is lithium carbonate.
  • the aryl group is a phenyl group
  • the amount of the catalyst is 20% of the molar amount of the aryl diazonium fluoroborate; and the amount of the additive is 1 time of the molar amount of the aryl diazonium fluoroborate.
  • the amount of the organic nitrile is 20-50 times the molar amount of the aryl diazonium fluoroborate; and the diazo ester derivative is 3 times the molar amount of the aryl diazonium fluoroborate.
  • the cyclization reaction of the present invention is carried out in the air, and after the completion of the reaction, it is first quenched with ethyl acetate, then the solvent is removed by a rotary evaporator, and the silica gel is adsorbed, and finally, a mixed solvent of ethyl acetate and petroleum ether is simply used. Column chromatography gave the product 1,2,4-triazole. Therefore, the present invention also discloses 1,2,4-triazole prepared according to the above method.
  • the present invention preferably uses cuprous bromide as a catalyst, lithium carbonate as an additive to achieve cyclization of fluoroborate aryl diazonium salt, diazo ester derivative and organic nitrile to prepare 1,2,4 -trinitrogen Oxazole, compared with the prior art raw material preparation, reaction steps and harsh conditions, the reaction is more economical, the substrate is more universal, and the raw materials are easy to obtain.
  • the method disclosed in the present invention has mild reaction conditions, can be carried out in air, has a small amount of catalyst, and is easy to be post-treated, which is advantageous for purification of products and large-scale industrial application, and one-step functionalization of commercial drugs is easier to carry out.
  • the raw materials, catalysts and additives of the invention are all market-oriented commodities, which can be purchased directly or can be prepared according to conventional techniques, for example, the aryl diazonium fluoroborate can be marketed by aromatic amines, sodium nitrite and fluoroboric acid.
  • the reaction is obtained; the diazo ester derivative can be synthesized by a simple raw material such as a commercially available alcohol with bromoacetyl bromide, p-toluenesulfonyl hydrazide or p-toluenesulfonyl chloride.
  • the system was magnetically stirred at 40 ° C for 1 hour in the air, and then quenched with ethyl acetate.
  • the solvent was removed by a rotary evaporator, and the silica gel was adsorbed, and the product was obtained by simple column chromatography.
  • the yield is 85%.
  • the main test data of the obtained product are as follows. It can be seen from the analysis that the actual synthesized product is consistent with the theoretical analysis.
  • the reaction flask was charged with compound lk (0.2 mmol, 43.4 mg), CuBr (0.04 mmol, 5.8 mg), Li 2 CO 3 (14.8 mmol,), Compound 3a (0.5 mL), Compound 2a (0.6 mmol) , 72.1 mg). Then, the system was stirred under magnetic stirring at 40 ° C for 1 hour in the air, and then quenched with ethyl acetate. The solvent was removed by a rotary evaporator, and the silica gel was adsorbed, and the product 4k was obtained by simple column chromatography. 69%.
  • the main test data of the obtained product are as follows. It can be seen from the analysis that the actual synthesized product is consistent with the theoretical analysis.
  • the system was magnetically stirred at 40 ° C for 1 hour in the air, and then quenched with ethyl acetate.
  • the solvent was removed by a rotary evaporator, and the silica gel was adsorbed, and the product was obtained by simple column chromatography.
  • the yield is 40%.
  • the main test data of the obtained product are as follows. It can be seen from the analysis that the actual synthesized product is consistent with the theoretical analysis.
  • the reaction flask was charged with compound In (0.2 mmol, 54.8 mg), CuBr (0.04 mmol, 5.8 mg), Li 2 CO 3 (14.8 mmol,), Compound 3a (0.5 mL), Compound 2a (0.6 mmol) , 72.1 mg). Then, the system was stirred under magnetic stirring at 40 ° C for 1 hour in the air, and then quenched with ethyl acetate. The solvent was removed by a rotary evaporator, and the silica gel was adsorbed, and the product 4 ii was obtained by simple column chromatography. 31%.
  • the main test data of the obtained product are as follows. It can be seen from the analysis that the actual synthesized product is consistent with the theoretical analysis.
  • the reaction flask was charged with compound lp (0.2 mmol, 50.6 mg), CuBr (0.04 mmol, 5.8 mg), Li 2 CO 3 (14.8 mmol,), Compound 3a (0.5 mL), Compound 2a (0.6 mmol) , 72.1 mg). Then, the system was magnetically stirred at 40 ° C for 1 hour in the air, and then quenched with ethyl acetate. The solvent was removed by a rotary evaporator, and the silica gel was adsorbed. The product was obtained by simple column chromatography. 63% The main test data of the obtained product are as follows. It can be seen from the analysis that the actual synthesized product is consistent with the theoretical analysis.
  • the reaction flask was charged with compound la (0.2 mmol, 45.8 g), CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,), Compound 3a (0.5 mL), Compound 2b (0.6 mmol, 78.5 mg). Then, the system was stirred under magnetic stirring at 40 ° C for 1 hour in the air, and then quenched with ethyl acetate. The solvent was removed by a rotary evaporator, and the silica gel was adsorbed, and the product 5 was obtained by simple column chromatography. 85%.
  • the main test data of the obtained product are as follows. It can be seen from the analysis that the actual synthesized product is consistent with the theoretical analysis.
  • the reaction flask was charged with compound la (0.2 mmol, 45.8 mg), CuBr (0.04 mmol, 5.8 mg), Li 2 CO 3 (14.8 mmol,), Compound 3b (0.5 mL), Compound 2a (0.6 mmol) , 72.1 mg). Then, the system was stirred under magnetic stirring at 40 ° C for 1 hour in the air, and then quenched with ethyl acetate. The solvent was removed by a rotary evaporator, and the silica gel was adsorbed, and the product 6a was obtained by simple column chromatography. 76%.
  • the main test data of the obtained product are as follows. It can be seen from the analysis that the actual synthesized product is consistent with the theoretical analysis.
  • the reaction flask was charged with compound la (0.2 mmol, 45.8 mg), CuBr (0.04 mmol, 5.8 mg), Li 2 CO 3 (14.8 mmol,), compound 3 g (0.5 mL), Compound 2a (0.6 mmol) , 72.1 mg). Then, the system was magnetically stirred for 1 hour in air at 40 ° C, and then quenched with ethyl acetate. The solvent was removed by a rotary evaporator, and the silica gel was adsorbed. The product 6f was obtained by simple column chromatography. 52%.
  • the main test data of the prepared product are as follows. According to the analysis, the actual synthetic product is consistent with the theoretical analysis.

Abstract

本发明公开了一种制备1,2,4-三氮唑的方法,以氟硼酸芳基重氮盐、重氮酯衍生物和有机腈为反应底物,以过渡金属为催化剂,以无机碱为添加剂,通过环化反应制备得到1,2,4-三氮唑。本发明所使用的方法具有以下特点:反应更经济、底物普适性更广、后期官能团化更容易,反应条件温和,空气中即可进行,催化剂用量少,后处理简便,有利于产物的纯化和工业化应用。同时,本发明使用的反应物、催化剂等原料廉价易得,反应组成合理,无需配体,反应步骤少,仅需一步反应即可取得较高的产率,符合当代绿色化学和药物化学的要求和方向,适于筛选高活性的1,2,4-三氮唑药物。

Description

1,2,4 -三氮唑及其制备方法
技术领域
[0001] 本发明涉及一种 1,2, 4 -三氮唑及其制备方法, 属于有机合成技术领域。
背景技术
[0002] 1,2, 4 -三氮唑作为一种非常有价值的五元含氮杂环骨架, 广泛存在于许多功能 分子中, 被应用于有机催化、 材料科学等领域。 另外, 1,2, 4 -三氮唑骨架也出现 于许多生物活性分子中, 在制药业、 农药中具有重要的用途。 目前, 制备 1,2,4- 三氮唑的方法有着反应步骤多, 原料制备繁琐, 反应条件复杂、 底物范围窄等 缺点。 例如:
[0003] (l) Michael J.
Stocks等人报道了伯胺、 酰胺二缩醛衍生物、 酰肼衍生物制备 1,2, 4 -三氮唑, 但 是需要多步反应, 反应底物范围窄 (参见: Michael J. Stocks; Org. Lett.2004, 6, 2969) ;
[0004] (2) Hideko Nagasawa等人报道了脒盐酸盐衍生物、 有机腈制备 1,2, 4 -三氮唑, 但反应温度高, 且底物范围窄 (参见: Hideko Nagasawa; J. Am. Chem. Soc.2009 , 131, 15080) ;
[0005] (3) 最近, Bo Tang等人报道了以氮杂环丙烯衍生物、 偶氮二羧酸酯和溴化物 为反应底物制备 1,2, 4 -三氮唑, 但反应需分两步进行, 且原料需要多步合成 (参 见: Bo Tang; Chem. Commun.2017 , 53, 9644) 。
[0006] 因此, 很有必要研发一种原料来源丰富, 反应活性较高、 成本低、 操作简便的 制备方法来有效合成 1,2, 4 -三氮唑化合物。
发明概述
技术问题
[0007] 本发明的目的是提供一种制备 1,2, 4 -三氮唑的方法, 其反应原料来源丰富、 反 应底物普适性广, 操作简便、 便于后期功能化合成潜在的药物分子。
问题的解决方案 技术解决方案
[0008] 为达到上述发明目的, 本发明采用的技术方案是:
[0009] 一种 1,2, 4 -三氮唑的制备方法, 包括以下步骤, 以氟硼酸芳基重氮盐、 重氮酯 衍生物和有机腈为反应底物, 以铜盐为催化剂, 以无机碱为添加剂, 通过环化 反应制备得到 1,2, 4 -三氮唑; 其中, 所述氟硼酸芳基重氮盐的化学结构通式为 爲 f—NSN BF4
, 式中, Ar选自芳基、 单取代芳基、 双取代芳基、 萘基;
[0010] 所述重氮酯衍生物的结构式如下:
Figure imgf000003_0001
[0011] 式中, R 2选自乙基、 异丙基、 叔丁基、 环己基、 苯基、 苄基;
[0012] 所述有机腈的化学结构式如下:
[0013]
Figure imgf000003_0002
式中, R 3选自甲基、 异丙基、 叔丁基、 苄基;
[0014] 所述 1,2, 4 -三氮唑的化学结构式如下:
[0015]
Figure imgf000003_0003
[0016] 本发明公开了芳基重氮盐、 重氮酯衍生物和有机腈作为原料在制备 1,2, 4 -三氮 唑中的应用; 所述 1,2, 4 -三氮唑的化学结构式如下: [0017]
Figure imgf000004_0001
[0018] 本发明还公开了卤素铜盐催化剂和 /或无机碱添加剂在制备 1 ,2, 4 -三氮唑中的应 用; 或者南素铜盐催化剂和 /或无机碱添加剂在催化氟硼酸芳基重氮盐、 重氮酯 衍生物和有机腈环化反应中的应用; 所述 1,2, 4 -三氮唑的化学结构式如下:
[0019]
Figure imgf000004_0002
[0020] 上述技术方案中, 所述环化反应的反应温度为 40°C, 反应时间为 1小时; 所述 环化反应在空气中进行。
[0021] 上述技术方案中, 所述铜盐为卤素铜盐; 所述添加剂选自碳酸锂、 碳酸钾、 碳 酸铯、 醋酸钠、 叔丁醇锂中的一种; 优选的, 南素铜盐为溴化亚铜, 所述添加 剂为碳酸锂。
[0022] 上述技术方案中, 所述芳基为苯基;
[0023] 所述单取代芳基的化学结构式如下:
Figure imgf000004_0003
[0024] 1^选自氢、 甲基、 异丙基、 叔丁基、 苯基、 甲氧基、 氟、 氯、 溴、 三氟甲基、 三氟甲氧基; [0025] 所述双取代芳基的化学结构式如下:
[0026]
Figure imgf000005_0001
[0027] 上述技术方案中, 所述催化剂用量为氟硼酸芳基重氮盐摩尔量的 20%; 所述添 加剂用量为氟硼酸芳基重氮盐摩尔量的 1倍。
[0028] 上述技术方案中, 有机腈的用量为氟硼酸芳基重氮盐摩尔量的 20-50倍; 所述 重氮酯衍生物为氟硼酸芳基重氮盐摩尔量的 3倍。
[0029] 本发明的环化反应在空气中进行, 反应完成后先用乙酸乙酯淬灭, 然后用旋转 蒸发仪除去溶剂、 硅胶吸附, 最后用乙酸乙酯和石油醚的混合溶剂进行简单的 柱层析即可得产物 1,2, 4 -三氮唑。 因此本发明还公开了根据上述方法制备得到的 1 ,2, 4 -三氮唑。
发明的有益效果
有益效果
[0030] 由于上述技术方案的运用, 本发明与现有技术相比具有下列优点:
[0031] 1 . 本发明优选溴化亚铜为催化剂, 碳酸锂为添加剂实现氟硼酸芳基重氮盐、 重氮酯衍生物和有机腈的环化反应来制备 1,2, 4 -三氮唑, 与现有技术中的原料预 制备、 反应步骤多和条件苛刻相比, 反应更经济、 底物普适性更广、 原料易得
、 后期官能团化更易。
[0032] 2. 本发明公开的方法反应条件温和, 空气中即可进行, 催化剂用量少, 后处 理简便, 有利于产物的纯化和大规模工业化应用, 商品化药物的一步官能团化 更易进行。
[0033] 3 . 本发明使用的反应物、 催化剂等原料廉价易得, 反应组成合理, 无需配体 , 反应步骤少, 仅需一步反应即可取得较高的产率, 符合当代绿色化学和药物 化学的要求和方向, 适于筛选高活性的 1,2, 4 -三氮唑药物。 发明实施例
本发明的实施方式
[0034] 下面结合实施例对本发明作进一步描述:
[0035] 本发明的原料、 催化剂、 添加剂皆为市场化商品, 可直接购买, 也可根据常规 技术制备, 比如氟硼酸芳基重氮盐可以通过市场化的芳香胺、 亚硝酸钠和氟硼 酸反应得到; 重氮酯衍生物可以通过市场化的醇与溴乙酰溴、 对甲苯磺酰肼、 对甲苯磺酰氯等简单原料合成。
[0036] 实施例一
Figure imgf000006_0001
反应瓶中依次装入化合物 la (0.2 mmol, 45.8 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,), 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg)
。 然后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用 旋转蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4a
, 收率为 85%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物 与理论分析一致。
[0038] 'H NMR (400 MHz, CDC1 3) 6 7.33 - 7.25 (m, 4H), 4.36 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 2.43 (s, 3H), 1.34 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 160.79, 157.28, 144.66, 139.60, 135.29, 129.33, 125.31, 62.38, 21.15, 13.89, 13.72. HRMS (ESI-TOF): Anal. Calcd. For C 13H 15N 30 2+Na +: 284.1006, Found: 284.1015; IR (neat, cm-1): u 2936.42, 1731.74, 1519.50, 1255.34, 1234.01, 1112.29, 1107.30,
827.78
[0039]
Figure imgf000006_0002
[0040]
Figure imgf000007_0001
反应瓶中依次装入化合物 lb (0.2 mmol, 43.4 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2C0 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4b, 收率为 71%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一
[0041] >H NMR (400 MHz, CDC1 3) 6 7.33 - 7.25 (m, 4H), 4.36 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 2.43 (s, 3H), 1.34 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 160.79, 157.28, 144.66, 139.60, 135.29, 129.33, 125.31, 62.38, 21.15, 13.89, 13.72. HRMS
(ESI-TOF): Anal. Calcd. For C 13H 15N 30 2+H +: 246.1237, Found: 246.1235; IR (neat, cm-1): u 2986.72, 1728.32, 1518.54, 1300.80, 1229.34, 1118.00, 1052.76, 816.07。
[0042] 实施例三
[0043]
Figure imgf000007_0002
反应瓶中依次装入化合物 lc (0.2 mmol, 49.3 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4c, 收率为 70%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一 致。
[0044] 'H NMR (400 MHz, CDC1 3) 6 7.38 - 7.30 (m, 4H), 4.36 (q, / = 8.0 Hz, 2H), 2.99 (dt, / = 13.8, 6.9 Hz, 1H), 2.51 (s, 3H), 1.33 (t, / = 8.0 Hz, 3H), 1.28 (d, / = 6.9 Hz, 6H). 13C NMR (101 MHz, CDC1 3) 6 160.80, 157.31, 150.40, 144.63, 135.51, 126.77, 125.38, 62.38, 33.82, 23.76, 13.87, 13.72. HRMS (ESI-TOF): Anal. Calcd. For C 15H 19
N 30 2+H +: 274.1550, Found: 274.1549; IR (neat, cm-1): u 2960.85, 1739.54,
1521.23, 1224.84, 1115.14, 1057.49, 853.78, 837.46
[0045] 实施例四
[]
Figure imgf000008_0002
0.2 rnmoi
Figure imgf000008_0001
0 mmol 0,s mL
id t£S 3兹
Figure imgf000008_0003
[0046] 反应瓶中依次装入化合物 Id (0.2 mmol, 52.3 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4d, 收率为 66%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一
[0047] >H NMR (400 MHz, CDC1 3) 6 7.52 - 7.46 (m, 2H), 7.39 - 7.32 (m, 2H), 4.37 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 1.38 - 1.30 (m, 12H). 13C NMR (101 MHz, CDC1 3) 6 160.79, 157.32, 152.65, 144.60, 135.21, 125.70, 125.02, 62.37, 34.73, 31.16, 13.88, 13.73. HRMS (ESI-TOF): Anal. Calcd. For C 16H 21N 30 2+ Na +: 310.1526, Found: 310.1536; IR (neat, cm-1): u 2962.52, 1740.86, 1523.31, 1483.23, 1227.50, 1104.75, 1055.22, 841.35。
[0048] 实施例五
[]
Figure imgf000008_0004
[0049] 反应瓶中依次装入化合物 le (0.2 mmol, 56.5 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4e, 收率为 52%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一 致。
[0050] 'H NMR (400 MHz, CDC1 3) 6 7.74 - 7.67 (m, 2H), 7.62 (m, 2H), 7.54 - 7.44 (m, 4H), 7.42 - 7.36 (m, 1H), 4.39 (q, / = 8.0 Hz, 2H), 2.53 (s, 3H), 1.36 (t, /= 7.1 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.07, 157.37, 144.74, 142.48, 139.74, 136.86, 128.85, 127.86, 127.46, 127.16, 125.88, 62.56, 13.97, 13.80. HRMS (ESI-TOF): Anal. Calcd. For C 18H 17N 30 2+Na +: 330.1213, Found: 330.1220; IR (neat, cm-1): v 2920.13, 1745.02, 1299.15, 1220.32, 1112.49, 1055.96, 770.05, 705.14。
[0051] 实施例六
[]
Figure imgf000009_0001
[0052] 反应瓶中依次装入化合物 If (0.2 mmol, 40.4 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4f, 收率为 64%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0053] 'H NMR (400 MHz, CDC1 3) 6 7.51 - 7.46 (m, 3H), 7.46 - 7.41 (m, 2H), 4.36 (q, / = 8.0 Hz, 2H), 2.52 (s, 3H), 1.32 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 160.86, 157.15, 144.66, 137.72, 129.38, 128.70, 125.50, 62.36, 13.80, 13.65. HRMS (ESI-TOF): Anal. Calcd. For C 12H 13N 30 2+Na +: 254.0900, Found: 254.0903; IR (neat, cm-1): u 2986.08, 1734.75, 1509.89, 1227.99, 1118.24, 1053.52, 765.16, 694.81 [0054] 实施例七
Figure imgf000010_0001
[0055] 反应瓶中依次装入化合物 lg (0.2 mmol, 44.2 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4g, 收率为 60%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一
[0056] 'H NMR (400 MHz, CDC1 3) 6 7.53 - 7.32 (m, 2H), 7.23 - 7.06 (m, 2H), 4.37 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 1.35 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 164.00, 161.51, 160.99, 157.10, 144.75, 133.82, 133.79, 127.64, 127.55, 115.87,
115.64, 62.52, 13.87, 13.67. HRMS (ESI-TOF): Anal. Calcd. For C 12H 12FN 30 2+Na + : 272.0806, Found: 272.0801; IR (neat, cm-1): u 2987.77, 1728.00, 1517.03, 1484.20,
1232.15, 1122.99, 1051.12, 834.38。
[0057] 实施例八
[]
Figure imgf000010_0002
0.
Figure imgf000010_0003
[0058] 反应瓶中依次装入化合物 lh (0.2 mmol, 47.7 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4h, 收率为 54%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一 致。
[0059] 'H NMR (400 MHz, CDC1 3) 6 7.52 - 7.43 (m, 2H), 7.42 - 7.34 (m, 2H), 4.38 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 1.36 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.23, 157.20, 144.76, 136.24, 135.48, 129.01, 126.96, 62.66, 13.95, 13.75. HRMS
(ESI-TOF): Anal. Calcd. For C 12H 12C1N 30 2+Na +: 288.0510, Found: 288.0499; IR
(neat, cm-1): u 2923.78, 1728.88, 1479.44, 1302.47, 1235.60, 1100.73, 1051.74, 830.37。
[0060] 实施例九
[]
Figure imgf000011_0001
Figure imgf000011_0002
[0061] 反应瓶中依次装入化合物 li (0.2 mmol, 56.0 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4i, 收率为 53%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0062] >H NMR (400 MHz, CDC1 3) 6 7.79 - 7.51 (m, 2H), 7.40 - 7.24 (m, 2H), 4.38 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 1.36 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.3, 157.2, 144.7, 136.7, 132.0, 127.2, 123.5, 62.7, 14.0, 13.8. HRMS (ESI-TOF): Anal. Calcd. For C 12H 12BrN 30 2+Na +: 332.0005,333.9985, Found: 332.0006, 333.9983; IR (neat, cm-1): u 2977.70, 1728.33, 1497.41, 1301.34, 1235.41, 1122.10, 1099.21, 827.50。
[0063] 实施例十
[0064]
Figure imgf000012_0001
反应瓶中依次装入化合物 lj (0.2 mmol, 58.1 mg) , CuBr (0.04 mmol, 5.8 mg),
Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4j, 收率为 46%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0065] 'H NMR (400 MHz, CDC1 3) 6 7.58 - 7.45 (m, 2H), 7.34 (d, / = 8.4 Hz, 2H), 4.38 (q, / = 8.0 Hz, 2H), 2.52 (s, 3H), 1.35 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.31, 157.18, 149.58, 144.83, 136.13, 127.35, 121.15, 62.71, 13.92, 13.76. HRMS
(ESI-TOF): Anal. Calcd. For C 13H 12F 3N 30 3+Na +: 338.0723, Found: 338.0718; IR (neat, cm-1): u 2990.01, 1741.28, 1517.71, 1257.97, 1203.59, 1161.03, 1122.05, 860.53。
[0066] 实施例十一
Figure imgf000012_0002
[0067] 反应瓶中依次装入化合物 lk (0.2 mmol, 43.4 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4k, 收率为 69%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一 致。
[0068] !H NMR (400 MHz, CDC1 3) 6 7.36 (m, 1H), 7.29 (m, 1H), 7.27 - 7.19 (m, 1H), 4.36 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 2.42 (s, 3H), 1.33 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 160.87, 157.27, 144.73, 139.01, 137.70, 130.24, 128.54, 126.04, 122.66, 62.41, 21.16, 13.89, 13.73. HRMS (ESI-TOF): Anal. Calcd. For C 13H 15N 30
+Na +: 268.1056, Found: 268.1060; IR (neat, cm-1): u 2925.21, 1732.17, 1504.01,
1231.72, 1115.47, 1062.54, 796.71, 694.59
[0069]
Figure imgf000013_0001
[]
Figure imgf000013_0002
[0070] 反应瓶中依次装入化合物 11 (0.2 mmol, 47.7 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 41, 收率为 46%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0071] >H NMR (400 MHz, CDC1 3) 6 7.67 - 7.59 (m, 2H), 7.43 - 7.33 (m, 2H), 4.38 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 1.35 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.30, 157.08, 144.83, 138.72, 132.58, 129.96, 128.85, 124.41, 122.10, 62.67, 13.91, 13.73. HRMS (ESI-TOF): Anal. Calcd. For C 12H 12C1N 30 2+Na +: 288.0510, Found: 288.0519; IR (neat, cm-1): u 2918.90, 1728.46, 1504.34, 1296.90, 1233.04, 1122.62, 786.51, 682.53。
[0072] 实施例十三
[]
Figure imgf000013_0003
Figure imgf000013_0004
[0073] 反应瓶中依次装入化合物 lm (0.2 mmol, 56.0 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,), 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg)
。 然后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用 旋转蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4m
, 收率为 40%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物 与理论分析一致。
[0074] 'H NMR (400 MHz, CDC1 3) 6 7.50 - 7.46 (m, 2H), 7.45 - 7.40 (m, 1H), 7.37 - 7.33 (m, 1H), 4.38 (q, / = 8.0 Hz, 2H), 2.51 (s, 3H), 1.35 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.28, 157.08, 144.82, 138.65, 134.50, 129.76, 129.72, 126.08, 123.97, 62.73, 13.93, 13.74. HRMS (ESI-TOF): Anal. Calcd. For C 12H 12BrN 30 2+Na +: 332.0005,333.9985, Found: 332.0016, 333.9995; IR (neat, cm-1): u 2935.73, 1731.12, 1472.25, 1231.83, 1123.08, 867.37, 790.69, 682.99。
[0075] 实施例十四
[]
Figure imgf000014_0001
[0076] 反应瓶中依次装入化合物 In (0.2 mmol, 54.8 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4ii, 收率为 31%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一 致。
[0077] >H NMR (400 MHz, CDC1 3) 6 7.80 - 7.73 (m, 2H), 7.69 - 7.60 (m, 2H), 4.38 (q, / = 8.0 Hz, 2H), 2.53 (s, 3H), 1.34 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.48, 157.07, 144.88, 138.17, 131.96, 131.63, 131.30, 130.97, 129.41, 129.04, 126.23, 126.20, 126.16, 126.12, 124.59, 122.96, 122.92, 122.89, 122.85, 121.88,
62.73, 13.84, 13.70. HRMS (ESI-TOF): Anal. Calcd. For C 13H 12F 3N 30 2+H +:
300.0954, Found: 300.0955; IR (neat, cm-1): u 2957.27, 1735.31, 1329.97, 1282.83, 1187.40, 1167.55, 1121.79, 803.91。
[0078] 实施例十五
[]
Figure imgf000015_0004
Figure imgf000015_0001
[0079] 反应瓶中依次装入化合物 lo (0.2 mmol, 45.0 mg) , CuBr (0.04 mmol, 5.8 mg),
Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 40, 收率为 62%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一
[0080] >H NMR (400 MHz, CDC1 3) 6 7.48 - 7.41 (m, 1H), 7.39 (m, 1H), 7.07 (m, 1H), 7.01 (m, 1H), 4.32 (q, / = 8.0 Hz, 2H), 3.75 (s, 3H), 2.51 (s, 3H), 1.29 (t, / = 8.0 Hz, 3H). 13 C NMR (101 MHz, CDC1 3) 6 160.87, 157.18, 153.34, 146.25, 130.74, 127.15, 126.88, 120.57, 111.54, 62.02, 55.53, 13.84, 13.77. HRMS (ESI-TOF): Anal. Calcd. For C 13H 15N 30 3+Na +: 284.1006, Found: 284.0993; IR (neat, cm-1): u 2919.79, 1731.90,
1494.78, 1290.07, 1248.55, 1100.45, 1038.55, 781.89。
[0081] 实施例十六
[]
Figure imgf000015_0002
Figure imgf000015_0003
[0082] 反应瓶中依次装入化合物 lp (0.2 mmol, 50.6 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4p, 收率为 63% 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一 致。
[0083] 'H NMR (400 MHz, CDC1 3) 6 7.39 - 7.30 (m, 2H), 7.28 - 7.23 (m, 1H), 4.33 (q, J = 8.0 Hz, 2H), 2.56 (s, 3H), 2.08 (s, 3H), 1.28 (t, J = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.96, 156.60, 146.00, 137.50, 135.30, 131.80, 130.53, 129.05, 127.32, 62.43, 17.68, 13.95, 13.82. HRMS (ESI-TOF): Anal. Calcd. For C 13H 14C1N 30 2+Na +
: 302.0667, Found: 302.0677; IR (neat, cm-1): u 2969.18, 1729.02, 1448.87, 1231.15, 1119.39, 1086.66, 1039.00, 800.42。
[0084] 实施例十七
[]
Figure imgf000016_0002
iti
Figure imgf000016_0001
0.2 rnmoi 0,6
Figure imgf000016_0004
Figure imgf000016_0003
[0085] 反应瓶中依次装入化合物 lq (0.2 mmol, 52.9 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4q, 收率为 41%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一
[0086] >H NMR (400 MHz, CDC1 3) 6 8.15 (d, / = 2.2 Hz, 1H), 7.64 (dd, / = 8.2, 2.2 Hz, 1H), 7.49 (d, /= 8.3 Hz, 1H), 4.41 (q, / = 8.0 Hz, 2H), 2.70 (s, 3H), 2.52 (s, 3H), 1.38 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.58, 157.13, 148.59, 144.79, 136.25, 135.09, 133.11, 129.91, 122.26, 62.88, 20.41, 13.94, 13.73. HRMS
(ESI-TOF): Anal. Calcd. For C 13H 14N 40 4+Na +: 313.0907, Found: 313.0915; IR (neat, cm-1): u 2922.97, 1726.18, 1532.44, 1483.18, 1349.06, 1295.79, 1123.24, 1079.32。
[0087] 实施例十八 []
Figure imgf000017_0001
[0088] 反应瓶中依次装入化合物 lr (0.2 mmol, 55.6 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4r, 收率为 39%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一
[0089] 'H NMR (400 MHz, CDC1 3) 6 8.03 (d, / = 2.3 Hz, 1H), 7.48 (dd, / = 8.2, 2.4 Hz,
1H), 7.38 (d, / = 8.2 Hz, 1H), 4.38 (q, / = 8.0 Hz, 2H), 3.90 (s, 3H), 2.69 (s, 3H), 2.52 (s, 3H), 1.35 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 166.47, 161.15, 157.22, 144.77, 142.09, 135.57, 132.16, 129.86, 128.82, 127.87, 62.59, 52.04, 21.55,
13.93, 13.76. HRMS (ESI-TOF): Anal. Calcd. For C 15H 17N 30 4+Na +: 326.1111,
Found: 326.1123; IR (neat, cm-1): u 2921.53, 1723.83, 1509.26, 1310.41, 1222.22,
1119.70, 1086.25, 781.90
[0090] 实施例十九
[]
Figure imgf000017_0002
Figure imgf000017_0003
[0091] 反应瓶中依次装入化合物 Is (0.2 mmol, 51.0 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 4s, 收率为 61%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一 [0092] >H NMR (400 MHz, CDC1 3) 6 7.91 (m, 4H), 7.62 - 7.46 (m, 3H), 4.36 (q, / = 8.0
Hz, 2H), 2.55 (s, 3H), 1.30 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.08, 157.33, 144.95, 135.14, 133.19, 132.66, 128.75, 128.28, 127.80, 127.23, 127.02,
124.43, 123.25, 62.51, 13.92, 13.81. HRMS (ESI-TOF): Anal. Calcd. For C 16H 15N 30 2+Na +: 304.1056, Found: 304.1066; IR (neat, cm-1): u 2935.17, 1727.51, 1302.74,
1246.98, 1109.87, 1057.21, 811.15, 745.81
[0093] 实施例二十
Figure imgf000018_0001
Is 2b M 5 s
[0094] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2b (0.6 mmol, 78.5 mg) 。 然后该 体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸发 仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5 , 收率为 85%。 所制 得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致。
[0095] 'H NMR (400 MHz, CDC1 3) 6 7.38 - 7.30 (m, 2H), 7.03 - 6.93 (m, 2H), 5.19 (dt, / = 12.6, 6.3 Hz, 1H), 3.85 (s, 3H), 2.50 (s, 3H), 1.30 (d, / = 6.3 Hz, 6H). 13C NMR (101 MHz, CDC1 3) 6 160.60, 160.07, 156.83, 145.08, 130.82, 126.82, 113.76, 70.47, 55.38, 21.37, 13.69. HRMS (ESI-TOF): Anal. Calcd. For C 14H 17N 30 3+H +: 276.1343, Found: 276.1355; IR (neat, cm-1): u 2984.11, 1722.12, 1518.55, 1303.28, 1244.48, 1126.76, 1102.00, 827.13。
[0096] 实施例二十一
Figure imgf000018_0002
U 2c 3: m
[0097] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2c (0.6 mmol, 87.1 mg) 。 然后该 体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸发 仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5b, 收率为 46%。 所制 得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致。
[0098] 'H NMR (400 MHz, CDC1 3) 6 7.34 - 7.29 (m, 2H), 7.01 - 6.93 (m, 2H), 3.86 (s, 3H), 2.49 (s, 3H), 1.47 (s, 9H). 13C NMR (101 MHz, CDC1 3) 6 160.53, 160.08,
156.43, 146.13, 131.16, 126.79, 113.90, 84.20, 55.49, 27.73, 13.78. HRMS
(ESI-TOF): Anal. Calcd. For C 15H 19N 30 3+H +: 290.1499, Found: 290.1507; IR (neat, cm-1): u 2924.07, 1732.96, 1516.63, 1250.67, 1234.74, 1114.37, 1102.41, 836.77。
[0099]
Figure imgf000019_0001
[]
Figure imgf000019_0002
[0100] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3a (0.5mL),化合物 2d (0.6 mmol, 103.0 mg) 。 然后 该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸 发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5c, 收率为 70%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0101] 'H NMR (400 MHz, CDC1 3) 6 7.38 - 7.29 (m, 2H), 7.03 - 6.89 (m, 2H), 5.02 - 4.86 (m, 1H), 3.86 (s, 3H), 2.56 - 2.46 (s, 3H), 1.94 - 1.85 (m, 2H), 1.73 - 1.62 (m, 2H), 1.58 - 1.40 (m, 3H), 1.37 - 1.15 (m, 3H). 13C NMR (101 MHz, CDC1 3) 6 160.68, 160.13, 156.86, 145.26, 130.94, 126.88, 113.85, 75.60, 55.47, 31.18, 24.97, 23.69, 13.76. HRMS (ESI-TOF): Anal. Calcd. For C 17H 21N 30 3+Na +: 338.1475, Found: 338.1463; IR (neat, cm-1): u 2936.47, 1731.18, 1518.58, 1251.82, 1221.23, 1117.26, 1049.51, 839.39。
[0102] 实施例二十三
[]
Figure imgf000020_0001
[0103] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,), 化合物 3a (0.5mL),化合物 2e (0.6 mmol, 99.3 mg) 。 然后该 体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸发 仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5d, 收率为 86%。 所制 得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致。
[0104] >H NMR (400 MHz, CDC1 3) 6 7.43 - 7.33 (m, 4H), 7.27 - 7.21 (m, 1H), 7.18 - 7.12 (m, 2H), 6.99 - 6.93 (m, 2H), 3.81 (s, 3H), 2.58 (s, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.08, 160.28, 155.79, 149.73, 144.06, 130.50, 129.42, 126.89, 126.42, 121.21,
113.96, 55.46, 13.80. HRMS (ESI-TOF): Anal. Calcd. For C 17H 15N 30 3+H +:
310.1186, Found: 310.1177; IR (neat, cm-1): u 2823.11, 1741.42, 1302.15, 1250.80, 1232.35, 830.89, 750.85, 725.17。
[0105] 实施例二十四
[]
Figure imgf000020_0002
[0106] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,), 化合物 3a (0.5mL),化合物 2f (0.6 mmol, 107.9 mg) 。 然后 该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸 发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5e, 收率为 72%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0107] 'H NMR (400 MHz, CDC1 3) 6 7.43 - 7.16 (m, 7H), 6.99 - 6.78 (m, 2H), 5.30 (s, 2H), 3.83 (s, 3H), 2.49 (s, 3H). 13C NMR (101 MHz, CDC1 3) 6 160.81, 160.14, 157.10, 144.60, 134.39, 130.66, 128.66, 128.54, 128.45, 126.82, 113.88, 67.81, 55.41, 13.72. HRMS (ESI-TOF): Anal. Calcd. For C 18H 17N 30 3+H +: 324.1343, Found: 324.1350; IR (neat, cm-1): u 2992.11, 1728.03, 1517.60, 1300.65, 1251.15, 1239.09,
1120.72, 1105.86。
[0108] 实施例二十五
Figure imgf000021_0001
[0109] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,), 化合物 3a (0.5mL),化合物 2g (0.6 mmol, 147.2 mg) 。 然后 该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸 发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5f, 收率为 84%。 所制 得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致。
[0110] >H NMR (400 MHz, CDC1 3) 6 8.03 (d, / = 8.2 Hz, 1H), 7.87 - 7.82 (m, 1H), 7.74 (d, / = 8.1 Hz, 1H), 7.53 - 7.44 (m, 2H), 7.40 - 7.34 (m, 1H), 7.30 (d, / = 6.4 Hz, 1H), 7.28 - 7.23 (m, 2H), 6.95 - 6.87 (m, 2H), 4.68 - 4.58 (t, /= 8.0 Hz, 2H), 3.80 (s, 3H), 3.48 (t, / = 8.0 Hz, 2H), 2.52 (s, 3H). 13C NMR (101 MHz, CDC1 3) 6 160.78, 160.12, 157.19, 144.51, 133.73, 132.57, 131.80, 130.60, 128.72, 127.55, 126.97, 126.74, 126.24, 125.64, 125.41, 123.27, 113.84, 65.89, 55.40, 31.88, 13.74. HRMS
(ESI-TOF): Anal. Calcd. For C 23H 21N 30 3+H +: 388.1656, Found: 388.1645; IR (neat, cm-1): u 2964.75, 1732.15, 1517.85, 1253.72, 1214.09, 1115.14, 840.27, 809.79。
[0111] 实施例二十六
Figure imgf000021_0002
1a Sh 3s %
[0112] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,), 化合物 3a (0.5mL),化合物 2h (0.6 mmol, 114.1 mg) 。 然后 该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸 发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5g 收率为 53%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0113] 'H NMR (400 MHz, CDC1 3) 6 7.48 - 7.29 (m, 2H), 7.08 - 6.89 (m, 2H), 4.47 - 4.30 (m, 2H), 3.86 (s, 3H), 2.50 (s, 3H), 1.19 - 0.95 (m, 2H), 0.03 (2, 9H). 13C NMR (101 MHz, CDC1 3) 6 160.71, 160.17, 157.49, 144.87, 130.76, 126.88, 113.89, 64.97, 55.46, 17.38, 13.76, -1.73. HRMS (ESI-TOF): Anal. Calcd. For C 16H 23N 30 3Si+H +:
334.1581, Found: 334.1585; IR (neat, cm-1): u 2954.63, 1737.78, 1517.88, 1250.59, 1230.20, 1118.37, 866.69, 829.30。
[0114] 实施例二十七
Figure imgf000022_0001
[0115] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li
2CO 3 (14.8 mmol,), 化合物 3a (0.5mL),化合物 2i (0.6 mmol, 96.9 mg) 。 然后该 体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸发 仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5h, 收率为 85%。 所制 得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致。
[0116] >H NMR (400 MHz, CDC1 3) 6 7.38 - 7.31 (m, 2H), 7.02 - 6.94 (m, 2H), 4.38 (t, / = 8.0 Hz, 2H), 3.86 (s, 3H), 3.37 (t, / = 6.2 Hz, 2H), 3.29 (s, 3H), 2.50 (s, 3H), 1.99 - 1.91 (m, 2H). 13C NMR (101 MHz, CDC1 3) 6 160.79, 160.21, 157.31, 144.73, 130.78, 126.88, 113.92, 68.67, 63.68, 58.55, 55.48, 28.60, 13.75. HRMS (ESI-TOF): Anal. Calcd. For C 15H 19N 30 4+Na +: 328.1268, Found: 328.1266; IR (neat, cm-1): v 2926.65, 1736.51, 1518.71, 1252.57, 1217.87, 1116.87, 1050.56, 837.62。
[0117] 实施例二十八
[]
Figure imgf000023_0001
[0118] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8g) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,), 化合物 3a (0.5mL),化合物 21 (0.6 mmol, 120.1 mg) 。 然后 该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转蒸 发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 5k, 收率为 74%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0119] 'H NMR (400 MHz, CDC1 3) 6 7.34 - 7.28 (m, 2H), 7.15 (m, 1H), 6.94 (m, 3H), 6.83 (d, / = 3.4 Hz, 1H), 4.51 (t, / = 7.2 Hz, 2H), 3.85 (s, 3H), 3.23 (t, / = 7.2 Hz, 2H), 2.51 (s, 3H). 13C NMR (101 MHz, CDC1 3) 6 160.83, 160.18, 157.12, 144.43, 138.58, 130.62, 126.92, 126.79, 125.73, 124.12, 113.90, 66.15, 55.45, 28.86, 13.75. HRMS (ESI-TOF): Anal. Calcd. For C 17H 17N 30 3S+H +: 344.1063, Found: 344.1070; IR (neat, cm-1): u 2924.64, 1738.29, 1517.78, 1252.31, 1222.75, 1115.15, 835.11, 719.94
[0120] 实施例二十九
[]
Figure imgf000023_0002
[0121] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3b (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 6a, 收率为 76%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一 致。 [0122] >H NMR (400 MHz, CDC1 3) 6 7.39 - 7.32 (m, 2H), 7.01 - 6.94 (m, 2H), 4.36 (q, / = 8.0 Hz, 2H), 3.85 (s, 3H), 3.19 (dt, / = 13.9, 7.0 Hz, 1H), 1.40 (d, /= 8.0 Hz, 6H), 1.32 (t, / = 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 169.13, 160.11, 157.52, 144.66, 130.93, 126.93, 113.85, 62.34, 55.44, 28.24, 21.45, 13.92. HRMS (ESI-TOF): Anal. Calcd. For C 15H 19N 30 3+H +: 290.1499, Found: 290.1502; IR (neat, cm-1): v
2975.31, 1729.47, 1520.10, 1487.75, 1256.44, 1288.07, 1121.29, 830.85。
[0123] 实施例三十
Figure imgf000024_0001
[0124] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3g (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 6f, 收率为 52%。 所 制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一致
[0125] 'H NMR (400 MHz, CDC1 3) 6 7.40 - 7.30 (m, 2H), 7.04 - 6.89 (m, 2H), 4.36 (q, / = 8.0 Hz, 2H), 3.91 - 3.81 (m, 5H), 3.39 (s, 3H), 3.12 (t, / = 7.0 Hz, 2H), 1.33 (t, /= 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 161.68, 160.23, 157.35, 144.91, 130.77, 126.96, 113.89, 70.35, 62.48, 58.61, 55.51, 28.80, 13.98. HRMS (ESI-TOF): Anal. Calcd. For C 15H 19N 30 4+H +: 306.1448, Found: 306.1459; IR (neat, cm-1): v
2918.89, 1732.21, 1520.34, 1251.13, 1235.39, 1109.39, 1033.58, 832.50。
[0126] 实施例三十一
[]
Figure imgf000025_0001
[0127] 反应瓶中依次装入化合物 la (0.2 mmol, 45.8 mg) , CuBr (0.04 mmol, 5.8 mg), Li 2CO 3 (14.8 mmol,) , 化合物 3h (0.5mL),化合物 2a (0.6 mmol, 72.1 mg) 。 然 后该体系在空气中 40°C条件下磁力搅拌反应 1小时后, 用乙酸乙酯淬灭, 用旋转 蒸发仪除去溶剂、 硅胶吸附, 通过简单的柱层析即可得产物 6g 收率为 85%。 所制得产物的主要测试数据如下, 通过分析可知, 实际合成产物与理论分析一
[0128] 'H NMR (400 MHz, CDC1 3) 6 7.43 - 7.29 (m, 2H), 7.07 - 6.89 (m, 2H), 6.11 (m, 1H), 5.37 - 5.06 (m, 2H), 4.36 (q, / = 8.0 Hz, 2H), 3.86 (s, 3H), 3.62 (dt, /= 6.7, 1.3 Hz, 2H), 1.33 (t, /= 8.0 Hz, 3H). 13C NMR (101 MHz, CDC1 3) 6 162.56, 160.23, 157.32, 144.92, 133.27, 130.72, 126.94, 117.52, 113.89, 62.46, 55.48, 32.84, 13.96. HRMS (ESI-TOF): Anal. Calcd. For C 15H 17N 30 3+H +: 288.1343, Found: 288.1337; IR (neat, cm-1): u 2928.33, 1731.60, 1250.04, 1305.39, 1259.80, 1223.27, 1110.08, 853.01。

Claims

权利要求书
[权利要求 1] 一种 1,2, 4 -三氮唑的制备方法, 其特征在于, 包括以下步骤, 以氟硼 酸芳基重氮盐、 重氮酯衍生物和有机腈为反应底物, 以铜盐为催化剂 , 以无机碱为添加剂, 通过环化反应制备得到 1,2, 4 -三氮唑; 其中, 所述氟硼酸芳基重氮盐的化学结构通式为
Figure imgf000026_0001
, 式中, Ar选自芳基、 单取代芳基、 双取代芳基、 萘基;
所述重氮酯衍生物的结构式如下:
Figure imgf000026_0002
式中, R 2选自乙基、 异丙基、 叔丁基、 环己基、 苯基、 苄基; 所述有机腈的化学结构式如下:
Figure imgf000026_0003
式中, R 3选自甲基、 异丙基、 叔丁基、 苄基;
所述 1,2, 4 -三氮唑的化学结构式如下:
Figure imgf000026_0004
[权利要求 2] 根据权利要求 1所述 1,2, 4 -三氮唑的制备方法, 其特征在于: 所述环化 反应的反应温度为 40°C, 反应时间为 1小时; 所述环化反应在空气中 进行。
[权利要求 3] 根据权利要求 1所述 1,2, 4 -三氮唑的制备方法, 其特征在于: 所述铜盐 为卤素铜盐; 所述添加剂选自碳酸锂、 碳酸钾、 碳酸铯、 醋酸钠、 叔 丁醇锂中的一种。
[权利要求 4] 根据权利要求 3所述 1,2, 4 -三氮唑的制备方法, 其特征在于: 所述铜盐 选自溴化亚铜; 所述添加剂选自碳酸锂。
[权利要求 5] 根据权利要求 1所述 1,2, 4 -三氮唑的制备方法, 其特征在于: 所述芳基 为苯基; 所述单取代芳基的化学结构式如下:
Figure imgf000027_0001
1^选自氢、 甲基、 异丙基、 叔丁基、 苯基、 甲氧基、 氟、 氯、 溴 三氟甲基、 三氟甲氧基;
所述双取代芳基的化学结构式如下:
Figure imgf000027_0002
[权利要求 6] 根据权利要求 1所述 1,2, 4 -三氮唑的制备方法, 其特征在于: 所述催化 剂用量为氟硼酸芳基重氮盐摩尔量的 20% ; 所述添加剂用量为氟硼酸 芳基重氮盐摩尔量的 1倍。
[权利要求 7] 根据权利要求 1所述 1,2, 4 -三氮唑的制备方法, 其特征在于: 有机腈的 用量为氟硼酸芳基重氮盐摩尔量的 20〜 50倍; 所述重氮酯衍生物为氟 硼酸芳基重氮盐摩尔量的 3倍。
[权利要求 8] 根据权利要求 1〜 7所述任意一种方法制备得到的 1,2, 4 -三氮唑。
[权利要求 9] 氟硼酸芳基重氮盐、 重氮酯衍生物和有机腈作为原料在制备 1,2, 4 -三 氮唑中的应用; 所述 1,2, 4 -三氮唑的化学结构式如下:
Figure imgf000028_0001
[权利要求 10] 卤素铜盐催化剂和 /或无机碱添加剂在制备 1,2, 4 -三氮唑中的应用; 或 者金属溴盐催化剂和 /或无机碱添加剂在催化氟硼酸芳基重氮盐、 重 氮酯衍生物和有机腈环化反应中的应用; 所述 1,2, 4 -三氮唑的化学结 构式如下:
Figure imgf000028_0002
PCT/CN2018/083136 2018-04-15 2018-04-15 1,2,4-三氮唑及其制备方法 WO2019200500A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/083136 WO2019200500A1 (zh) 2018-04-15 2018-04-15 1,2,4-三氮唑及其制备方法
US17/067,721 US11072589B2 (en) 2018-04-15 2020-10-11 1,2,4-triazole and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/083136 WO2019200500A1 (zh) 2018-04-15 2018-04-15 1,2,4-三氮唑及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/067,721 Continuation US11072589B2 (en) 2018-04-15 2020-10-11 1,2,4-triazole and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2019200500A1 true WO2019200500A1 (zh) 2019-10-24

Family

ID=68240485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083136 WO2019200500A1 (zh) 2018-04-15 2018-04-15 1,2,4-三氮唑及其制备方法

Country Status (2)

Country Link
US (1) US11072589B2 (zh)
WO (1) WO2019200500A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060207A1 (en) * 2009-11-16 2011-05-19 Schering Corporation FUSED TRICYCLIC COMPOUNDS WITH ADENOSINE A2a RECEPTOR ANTAGONIST ACTIVITY
CN102388044A (zh) * 2008-09-10 2012-03-21 凯利普西斯公司 用于治疗疾病的组胺受体的杂环抑制剂
CN108276350A (zh) * 2018-04-03 2018-07-13 苏州大学张家港工业技术研究院 1,2,4-三氮唑及其制备方法
CN108373453A (zh) * 2018-04-03 2018-08-07 苏州大学张家港工业技术研究院 三氮唑衍生物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388044A (zh) * 2008-09-10 2012-03-21 凯利普西斯公司 用于治疗疾病的组胺受体的杂环抑制剂
WO2011060207A1 (en) * 2009-11-16 2011-05-19 Schering Corporation FUSED TRICYCLIC COMPOUNDS WITH ADENOSINE A2a RECEPTOR ANTAGONIST ACTIVITY
CN108276350A (zh) * 2018-04-03 2018-07-13 苏州大学张家港工业技术研究院 1,2,4-三氮唑及其制备方法
CN108373453A (zh) * 2018-04-03 2018-08-07 苏州大学张家港工业技术研究院 三氮唑衍生物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry CAS; 27 August 2017 (2017-08-27), AMERICAN CHEMICAL SOCIETY, retrieved from STN Database accession no. RN-2120488-67-5 *

Also Published As

Publication number Publication date
US11072589B2 (en) 2021-07-27
US20210024472A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
Lu et al. Copper-mediated C–H amination of imidazopyridines with N-fluorobenzenesulfonimide
CN108373453B (zh) 三氮唑衍生物及其制备方法
Zhu et al. Copper‐Catalyzed Acyloxycyanation of Alkynes with Acetonitrile: Regioselective Construction of Cyclic Acrylonitriles by 6‐endo or 5‐exo Cyclization
JP2017141274A (ja) ピロール誘導体の結晶
Zhu et al. NIS/CHP-mediated reaction of isocyanides with hydrazones: access to aminopyrazoles
Guo et al. C3-Arylation of indoles with aryl ketones via C–C/C–H activations
WO2022206010A1 (zh) 一种异噁唑啉的简单制备方法
CN108276350B (zh) 1,2,4-三氮唑及其制备方法
CN104961684A (zh) 一种1,3,5-三芳基-4-三氟甲基-1-h吡唑系列化合物的制备方法
WO2019200500A1 (zh) 1,2,4-三氮唑及其制备方法
Saikia et al. Revisiting the synthesis of aryl nitriles: A pivotal role of CAN
Datta Dowex 50W: A Green Mild Reusable Catalyst for the Synthesis of 2-Aryl Benoxazole Derivatives in Aqueous Medium
CN105294476A (zh) 2-酰氧基丙烯酰胺类化合物及其合成方法
Durham et al. Iron‐Mediated C− H Functionalization of Unactivated Alkynes for the Synthesis of Derivatized Dihydropyrrolones: Regioselectivity Under Thermodynamic Control
Mandal et al. A room temperature one-pot Knoevenagel-Chan-Evans-Lam coupling reaction for synthesis of N-aryl-2-Iminocoumarins in bio-mass-derived green solvent 2-methylTHF
WO2010098396A1 (ja) フェニル置換複素環誘導体の製造方法
Hebbache et al. Iron salts catalyzed synthesis of β-N-substituted aminoacrylates
Hou et al. Organocatalytic domino annulation of in situ generated tert-butyl 2-hydroxybenzylidenecarbamates with 2-isothiocyanato-1-indanones for synthesis of bridged and fused ring heterocycles
Yang et al. Rh (III)-catalyzed C–H/C–C activation of benzoylacetonitriles and cyclization with CF3-imidoyl sulfoxonium ylides to 3-trifluoromethyl-isoquinolones
Wright et al. Synthesis of alkylpyrroles by use of a vinamidinium salt
Ping et al. Carbene insertion into acyl CH bonds: Rh (III)-catalyzed cross-coupling of 2-aminobenzaldehydes with conjugated enynones
Tang et al. I2-DMSO mediated N1/C5 difunctionalization of anthranils with aryl methyl ketones: A facile access to multicarbonyl compounds
CN114195726B (zh) 一种1,2,4-三氮唑基取代的芳胺化合物的制备方法
CN112661700B (zh) 一种3-(1h-吡唑-1-基)丙烯酸乙酯类化合物的制备方法
Wang et al. Catalytic Nucleophilic Addition of 3, 5-Dialkyl-4-nitroisoxazoles to Trifluoromethyl Ketones on Water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915671

Country of ref document: EP

Kind code of ref document: A1