CN108276350B - 1,2,4-三氮唑及其制备方法 - Google Patents

1,2,4-三氮唑及其制备方法 Download PDF

Info

Publication number
CN108276350B
CN108276350B CN201810291598.2A CN201810291598A CN108276350B CN 108276350 B CN108276350 B CN 108276350B CN 201810291598 A CN201810291598 A CN 201810291598A CN 108276350 B CN108276350 B CN 108276350B
Authority
CN
China
Prior art keywords
mmol
compound
cdcl
nmr
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810291598.2A
Other languages
English (en)
Other versions
CN108276350A (zh
Inventor
李海燕
李辉煌
王亚雄
万小兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Zhangjiagang Institute of Industrial Technologies Soochow University
Original Assignee
Suzhou University
Zhangjiagang Institute of Industrial Technologies Soochow University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University, Zhangjiagang Institute of Industrial Technologies Soochow University filed Critical Suzhou University
Priority to CN201810291598.2A priority Critical patent/CN108276350B/zh
Publication of CN108276350A publication Critical patent/CN108276350A/zh
Application granted granted Critical
Publication of CN108276350B publication Critical patent/CN108276350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/083Syntheses without formation of a Si-C bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种1,2,4‑三氮唑及其制备方法,以氟硼酸芳基重氮盐、重氮酯衍生物和有机腈为反应底物,以过渡金属为催化剂,以无机碱为添加剂,通过环化反应制备得到1,2,4‑三氮唑。本发明所使用的方法具有以下特点:反应更经济、底物普适性更广、后期官能团化更容易,反应条件温和,空气中即可进行,催化剂用量少,后处理简便,有利于产物的纯化和工业化应用。同时,本发明使用的反应物、催化剂等原料廉价易得,反应组成合理,无需配体,反应步骤少,仅需一步反应即可取得较高的产率,符合当代绿色化学和药物化学的要求和方向,适于筛选高活性的1,2,4‑三氮唑药物。

Description

1,2,4-三氮唑及其制备方法
技术领域
本发明涉及一种1,2,4-三氮唑及其制备方法,属于有机合成技术领域。
背景技术
1,2,4-三氮唑作为一种非常有价值的五元含氮杂环骨架,广泛存在于许多功能分子中,被应用于有机催化、材料科学等领域。另外,1,2,4-三氮唑骨架也出现于许多生物活性分子中,在制药业、农药中具有重要的用途。目前,制备1,2,4-三氮唑的方法有着反应步骤多,原料制备繁琐,反应条件复杂、底物范围窄等缺点。例如:
(1)Michael J. Stocks等人报道了伯胺、酰胺二缩醛衍生物、酰肼衍生物制备1,2,4-三氮唑,但是需要多步反应,反应底物范围窄(参见:Michael J. Stocks;Org. Lett.2004, 6, 2969);
(2)Hideko Nagasawa等人报道了脒盐酸盐衍生物、有机腈制备1,2,4-三氮唑,但反应温度高,且底物范围窄(参见:Hideko Nagasawa; J. Am. Chem. Soc.2009, 131,15080);
(3)最近,Bo Tang等人报道了以氮杂环丙烯衍生物、偶氮二羧酸酯和溴化物为反应底物制备1,2,4-三氮唑,但反应需分两步进行,且原料需要多步合成(参见:Bo Tang;Chem. Commun.2017, 53, 9644)。
因此,很有必要研发一种原料来源丰富,反应活性较高、成本低、操作简便的制备方法来有效合成1,2,4-三氮唑化合物。
发明内容
本发明的目的是提供一种制备1,2,4-三氮唑的方法,其反应原料来源丰富、反应底物普适性广,操作简便、便于后期功能化合成潜在的药物分子。
为达到上述发明目的,本发明采用的技术方案是:
一种1,2,4-三氮唑的制备方法,包括以下步骤,以氟硼酸芳基重氮盐、重氮酯衍生物和有机腈为反应底物,以铜盐为催化剂,以无机碱为添加剂,通过环化反应制备得到1,2,4-三氮唑;
其中,所述氟硼酸芳基重氮盐的化学结构通式为,式中,Ar选自未取代芳基、单取代芳基;所述未取代芳基为苯基;所述单取代芳基的化学结构式如下:
R1选自氢、甲基、异丙基、叔丁基、苯基、甲氧基、氟、氯、溴、三氟甲基或者三氟甲氧基;
所述重氮酯衍生物的结构式如下:
式中,R2选自乙基、异丙基、叔丁基、环己基、苯基或者苄基;
所述有机腈的化学结构式如下:
式中,R3选自甲基、异丙基、叔丁基或者苄基;
所述1,2,4-三氮唑的化学结构式如下:
R4为如下结构式的基团:
R5为如下结构式的基团:
R4来自重氮酯衍生物,R5来自有机腈,其中*表示连接位点。
上述技术方案中,所述环化反应的反应温度为40℃,反应时间为1小时;所述环化反应在空气中进行。
上述技术方案中,所述铜盐为卤素铜盐;所述添加剂选自碳酸锂、碳酸钾、碳酸铯、醋酸钠、叔丁醇锂中的一种;优选的,卤素铜盐为溴化亚铜,所述添加剂为碳酸锂。
上述技术方案中,所述未取代芳基为苯基;
所述单取代芳基的化学结构式如下:
R1选自氢、甲基、异丙基、叔丁基、苯基、甲氧基、氟、氯、溴、三氟甲基、三氟甲氧基。
上述技术方案中,所述催化剂用量为氟硼酸芳基重氮盐摩尔量的20%;所述添加剂用量为氟硼酸芳基重氮盐摩尔量的1倍。
上述技术方案中,有机腈的用量为氟硼酸芳基重氮盐摩尔量的20-50倍;所述重氮酯衍生物为氟硼酸芳基重氮盐摩尔量的3倍。
本发明的环化反应在空气中进行,反应完成后先用乙酸乙酯淬灭,然后用旋转蒸发仪除去溶剂、硅胶吸附,最后用乙酸乙酯和石油醚的混合溶剂进行简单的柱层析即可得产物1,2,4-三氮唑。因此本发明还公开了根据上述方法制备得到的1,2,4-三氮唑。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
1.本发明优选溴化亚铜为催化剂,碳酸锂为添加剂实现氟硼酸芳基重氮盐、重氮酯衍生物和有机腈的环化反应来制备1,2,4-三氮唑,与现有技术中的原料预制备、反应步骤多和条件苛刻相比,反应更经济、底物普适性更广、原料易得、后期官能团化更易。
2.本发明公开的方法反应条件温和,空气中即可进行,催化剂用量少,后处理简便,有利于产物的纯化和大规模工业化应用,商品化药物的一步官能团化更易进行。
3.本发明使用的反应物、催化剂等原料廉价易得,反应组成合理,无需配体,反应步骤少,仅需一步反应即可取得较高的产率,符合当代绿色化学和药物化学的要求和方向,适于筛选高活性的1,2,4-三氮唑药物。
具体实施方式
下面结合实施例对本发明作进一步描述:
本发明的原料、催化剂、添加剂皆为市场化商品,可直接购买,也可根据常规技术制备,比如氟硼酸芳基重氮盐可以通过市场化的芳香胺、亚硝酸钠和氟硼酸反应得到;重氮酯衍生物可以通过市场化的醇与溴乙酰溴、对甲苯磺酰肼、对甲苯磺酰氯等简单原料合成。
实施例一
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4a,收率为85%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.33 – 7.25 (m, 4H), 4.36 (q, J = 8.0 Hz,2H), 2.51 (s, 3H), 2.43 (s, 3H), 1.34 (t, J = 8.0 Hz, 3H). 13C NMR (101 MHz,CDCl3) δ 160.79, 157.28, 144.66, 139.60, 135.29, 129.33, 125.31, 62.38,21.15, 13.89, 13.72. HRMS (ESI-TOF): Anal. Calcd. For C13H15N3O2+Na+: 284.1006,Found: 284.1015; IR (neat, cm-1): υ 2936.42, 1731.74, 1519.50, 1255.34,1234.01, 1112.29, 1107.30, 827.78。
实施例二
反应瓶中依次装入化合物1b (0.2 mmol, 43.4 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4b,收率为71%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.33 – 7.25 (m, 4H), 4.36 (q, J = 8.0 Hz,2H), 2.51 (s, 3H), 2.43 (s, 3H), 1.34 (t, J = 8.0 Hz, 3H).13C NMR (101 MHz,CDCl3) δ 160.79, 157.28, 144.66, 139.60, 135.29, 129.33, 125.31, 62.38,21.15, 13.89, 13.72. HRMS (ESI-TOF): Anal. Calcd. For C13H15N3O2+H+: 246.1237,Found: 246.1235; IR (neat, cm-1): υ 2986.72, 1728.32, 1518.54, 1300.80,1229.34, 1118.00, 1052.76, 816.07。
实施例三
反应瓶中依次装入化合物1c (0.2 mmol,49.3 mg),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4c,收率为70%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.38 – 7.30 (m, 4H), 4.36 (q, J = 8.0 Hz,2H), 2.99 (dt, J = 13.8, 6.9 Hz, 1H), 2.51 (s, 3H), 1.33 (t, J = 8.0 Hz, 3H),1.28 (d, J = 6.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 160.80, 157.31, 150.40,144.63, 135.51, 126.77, 125.38, 62.38, 33.82, 23.76, 13.87, 13.72. HRMS (ESI-TOF): Anal. Calcd. For C15H19N3O2+H+: 274.1550, Found: 274.1549; IR (neat, cm-1): υ 2960.85, 1739.54, 1521.23, 1224.84, 1115.14, 1057.49, 853.78, 837.46。
实施例四
反应瓶中依次装入化合物1d (0.2 mmol, 52.3 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4d,收率为66%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.52 – 7.46 (m, 2H), 7.39 – 7.32 (m, 2H),4.37 (q, J = 8.0 Hz, 2H), 2.51 (s, 3H), 1.38 – 1.30 (m, 12H). 13C NMR (101MHz, CDCl3) δ 160.79, 157.32, 152.65, 144.60, 135.21, 125.70, 125.02, 62.37,34.73, 31.16, 13.88, 13.73. HRMS (ESI-TOF): Anal. Calcd. For C16H21N3O2+ Na +:310.1526, Found: 310.1536; IR (neat, cm-1): υ 2962.52, 1740.86, 1523.31,1483.23, 1227.50, 1104.75, 1055.22, 841.35。
实施例五
反应瓶中依次装入化合物1e (0.2 mmol, 56.5 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4e,收率为52%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.74 – 7.67 (m, 2H), 7.62 (m, 2H), 7.54 –7.44 (m, 4H), 7.42 – 7.36 (m, 1H), 4.39 (q, J = 8.0 Hz, 2H), 2.53 (s, 3H),1.36 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 161.07, 157.37, 144.74,142.48, 139.74, 136.86, 128.85, 127.86, 127.46, 127.16, 125.88, 62.56, 13.97,13.80. HRMS (ESI-TOF): Anal. Calcd. For C18H17N3O2+Na+: 330.1213, Found:330.1220; IR (neat, cm-1): υ 2920.13, 1745.02, 1299.15, 1220.32, 1112.49,1055.96, 770.05, 705.14。
实施例六
反应瓶中依次装入化合物1f (0.2 mmol, 40.4 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4f,收率为64%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.51 – 7.46 (m, 3H), 7.46 – 7.41 (m, 2H),4.36 (q, J = 8.0 Hz, 2H), 2.52 (s, 3H), 1.32 (t, J = 8.0 Hz, 3H). 13C NMR (101MHz, CDCl3) δ 160.86, 157.15, 144.66, 137.72, 129.38, 128.70, 125.50, 62.36,13.80, 13.65. HRMS (ESI-TOF): Anal. Calcd. For C12H13N3O2+Na+: 254.0900, Found:254.0903; IR (neat, cm-1): υ 2986.08, 1734.75, 1509.89, 1227.99, 1118.24,1053.52, 765.16, 694.81。
实施例七
反应瓶中依次装入化合物1g (0.2 mmol, 44.2 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4g,收率为60%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.53 – 7.32 (m, 2H), 7.23 – 7.06 (m, 2H),4.37 (q, J = 8.0 Hz, 2H), 2.51 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H). 13C NMR (101MHz, CDCl3) δ 164.00, 161.51, 160.99, 157.10, 144.75, 133.82, 133.79, 127.64,127.55, 115.87, 115.64, 62.52, 13.87, 13.67. HRMS (ESI-TOF): Anal. Calcd. ForC12H12FN3O2+Na+: 272.0806, Found: 272.0801; IR (neat, cm-1): υ 2987.77,1728.00, 1517.03, 1484.20, 1232.15, 1122.99, 1051.12, 834.38。
实施例八
反应瓶中依次装入化合物1h (0.2 mmol, 47.7 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4h,收率为54%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.52 – 7.43 (m, 2H), 7.42 – 7.34 (m, 2H),4.38 (q, J = 8.0 Hz, 2H), 2.51 (s, 3H), 1.36 (t, J = 8.0 Hz, 3H). 13C NMR (101MHz, CDCl3) δ 161.23, 157.20, 144.76, 136.24, 135.48, 129.01, 126.96, 62.66,13.95, 13.75. HRMS (ESI-TOF): Anal. Calcd. For C12H12ClN3O2+Na+: 288.0510,Found: 288.0499; IR (neat, cm-1): υ 2923.78, 1728.88, 1479.44, 1302.47,1235.60, 1100.73, 1051.74, 830.37。
实施例九
反应瓶中依次装入化合物1i (0.2 mmol, 56.0 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4i,收率为53%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.79 – 7.51 (m, 2H), 7.40 – 7.24 (m, 2H),4.38 (q, J = 8.0 Hz, 2H), 2.51 (s, 3H), 1.36 (t, J = 8.0 Hz, 3H). 13C NMR (101MHz, CDCl3) δ 161.3, 157.2, 144.7, 136.7, 132.0, 127.2, 123.5, 62.7, 14.0,13.8. HRMS (ESI-TOF): Anal. Calcd. For C12H12BrN3O2+Na+: 332.0005,333.9985,Found: 332.0006, 333.9983; IR (neat, cm-1): υ 2977.70, 1728.33, 1497.41,1301.34, 1235.41, 1122.10, 1099.21, 827.50。
实施例十
反应瓶中依次装入化合物1j (0.2 mmol, 58.1 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4j,收率为46%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.58 – 7.45 (m, 2H), 7.34 (d, J = 8.4 Hz,2H), 4.38 (q, J = 8.0 Hz, 2H), 2.52 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H). 13C NMR(101 MHz, CDCl3) δ 161.31, 157.18, 149.58, 144.83, 136.13, 127.35, 121.15,62.71, 13.92, 13.76. HRMS (ESI-TOF): Anal. Calcd. For C13H12F3N3O3+Na+:338.0723, Found: 338.0718; IR (neat, cm-1): υ 2990.01, 1741.28, 1517.71,1257.97, 1203.59, 1161.03, 1122.05, 860.53。
实施例十一
反应瓶中依次装入化合物1k (0.2 mmol, 43.4 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4k,收率为69%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.36 (m, 1H), 7.29 (m, 1H), 7.27 – 7.19 (m,1H), 4.36 (q, J = 8.0 Hz, 2H), 2.51 (s, 3H), 2.42 (s, 3H), 1.33 (t, J = 8.0Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 160.87, 157.27, 144.73, 139.01, 137.70,130.24, 128.54, 126.04, 122.66, 62.41, 21.16, 13.89, 13.73. HRMS (ESI-TOF):Anal. Calcd. For C13H15N3O2+Na+: 268.1056, Found: 268.1060; IR (neat, cm-1): υ2925.21, 1732.17, 1504.01, 1231.72, 1115.47, 1062.54, 796.71, 694.59。
实施例十二
反应瓶中依次装入化合物1l (0.2 mmol, 47.7 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4l,收率为46%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.67 – 7.59 (m, 2H), 7.43 – 7.33 (m, 2H),4.38 (q, J = 8.0 Hz, 2H), 2.51 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H).13C NMR (101MHz, CDCl3) δ 161.30, 157.08, 144.83, 138.72, 132.58, 129.96, 128.85, 124.41,122.10, 62.67, 13.91, 13.73. HRMS (ESI-TOF): Anal. Calcd. For C12H12ClN3O2+Na+:288.0510, Found: 288.0519; IR (neat, cm-1): υ 2918.90, 1728.46, 1504.34,1296.90, 1233.04, 1122.62, 786.51, 682.53。
实施例十三
反应瓶中依次装入化合物1m (0.2 mmol, 56.0 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4m,收率为40%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.50 – 7.46 (m, 2H), 7.45 – 7.40 (m, 1H),7.37 – 7.33 (m, 1H), 4.38 (q, J = 8.0 Hz, 2H), 2.51 (s, 3H), 1.35 (t, J = 8.0Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 161.28, 157.08, 144.82, 138.65, 134.50,129.76, 129.72, 126.08, 123.97, 62.73, 13.93, 13.74. HRMS (ESI-TOF): Anal.Calcd. For C12H12BrN3O2+Na+: 332.0005,333.9985, Found: 332.0016, 333.9995; IR(neat, cm-1): υ 2935.73, 1731.12, 1472.25, 1231.83, 1123.08, 867.37, 790.69,682.99。
实施例十四
反应瓶中依次装入化合物1n (0.2 mmol, 54.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4n,收率为31%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.80 – 7.73 (m, 2H), 7.69 – 7.60 (m, 2H),4.38 (q, J = 8.0 Hz, 2H), 2.53 (s, 3H), 1.34 (t, J = 8.0 Hz, 3H). 13C NMR (101MHz, CDCl3) δ 161.48, 157.07, 144.88, 138.17, 131.96, 131.63, 131.30, 130.97,129.41, 129.04, 126.23, 126.20, 126.16, 126.12, 124.59, 122.96, 122.92,122.89, 122.85, 121.88, 62.73, 13.84, 13.70. HRMS (ESI-TOF): Anal. Calcd. ForC13H12F3N3O2+H+: 300.0954, Found: 300.0955; IR (neat, cm-1): υ 2957.27, 1735.31,1329.97, 1282.83, 1187.40, 1167.55, 1121.79, 803.91。
实施例十五
反应瓶中依次装入化合物1o (0.2 mmol, 45.0 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物4o,收率为62%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.48 – 7.41 (m, 1H), 7.39 (m, 1H), 7.07 (m,1H), 7.01 (m, 1H), 4.32 (q, J = 8.0 Hz, 2H), 3.75 (s, 3H), 2.51 (s, 3H), 1.29(t, J = 8.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 160.87, 157.18, 153.34,146.25, 130.74, 127.15, 126.88, 120.57, 111.54, 62.02, 55.53, 13.84, 13.77.HRMS (ESI-TOF): Anal. Calcd. For C13H15N3O3+Na+: 284.1006, Found: 284.0993; IR(neat, cm-1): υ 2919.79, 1731.90, 1494.78, 1290.07, 1248.55, 1100.45,1038.55, 781.89。
实施例十六
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2b(0.6 mmol, 78.5 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5a,收率为85%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.38 – 7.30 (m, 2H), 7.03 – 6.93 (m, 2H),5.19 (dt, J = 12.6, 6.3 Hz, 1H), 3.85 (s, 3H), 2.50 (s, 3H), 1.30 (d, J = 6.3Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 160.60, 160.07, 156.83, 145.08, 130.82,126.82, 113.76, 70.47, 55.38, 21.37, 13.69. HRMS (ESI-TOF): Anal. Calcd. ForC14H17N3O3+H+: 276.1343, Found: 276.1355; IR (neat, cm-1): υ 2984.11, 1722.12,1518.55, 1303.28, 1244.48, 1126.76, 1102.00, 827.13。
实施例十七
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2c(0.6 mmol, 87.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5b,收率为46%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.34 – 7.29 (m, 2H), 7.01 – 6.93 (m, 2H),3.86 (s, 3H), 2.49 (s, 3H), 1.47 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 160.53,160.08, 156.43, 146.13, 131.16, 126.79, 113.90, 84.20, 55.49, 27.73, 13.78.HRMS (ESI-TOF): Anal. Calcd. For C15H19N3O3+H+: 290.1499, Found: 290.1507; IR(neat, cm-1): υ 2924.07, 1732.96, 1516.63, 1250.67, 1234.74, 1114.37,1102.41, 836.77。
实施例十八
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2d(0.6 mmol, 103.0 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5c,收率为70%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.38 – 7.29 (m, 2H), 7.03 – 6.89 (m, 2H),5.02 – 4.86 (m, 1H), 3.86 (s, 3H), 2.56 – 2.46 (s, 3H), 1.94 – 1.85 (m, 2H),1.73 – 1.62 (m, 2H), 1.58 – 1.40 (m, 3H), 1.37 – 1.15 (m, 3H). 13C NMR (101MHz, CDCl3) δ 160.68, 160.13, 156.86, 145.26, 130.94, 126.88, 113.85, 75.60,55.47, 31.18, 24.97, 23.69, 13.76. HRMS (ESI-TOF): Anal. Calcd. For C17H21N3O3+Na+: 338.1475, Found: 338.1463; IR (neat, cm-1): υ 2936.47, 1731.18, 1518.58,1251.82, 1221.23, 1117.26, 1049.51, 839.39。
实施例十九
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2e(0.6 mmol, 99.3 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5d,收率为86%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.43 – 7.33 (m, 4H), 7.27 – 7.21 (m, 1H),7.18 – 7.12 (m, 2H), 6.99 – 6.93 (m, 2H), 3.81 (s, 3H), 2.58 (s, 3H). 13C NMR(101 MHz, CDCl3) δ 161.08, 160.28, 155.79, 149.73, 144.06, 130.50, 129.42,126.89, 126.42, 121.21, 113.96, 55.46, 13.80. HRMS (ESI-TOF): Anal. Calcd.For C17H15N3O3+H+: 310.1186, Found: 310.1177; IR (neat, cm-1): υ 2823.11,1741.42, 1302.15, 1250.80, 1232.35, 830.89, 750.85, 725.17。
实施例二十
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2f(0.6 mmol, 107.9 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5e,收率为72%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.43 – 7.16 (m, 7H), 6.99 – 6.78 (m, 2H),5.30 (s, 2H), 3.83 (s, 3H), 2.49 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 160.81,160.14, 157.10, 144.60, 134.39, 130.66, 128.66, 128.54, 128.45, 126.82,113.88, 67.81, 55.41, 13.72. HRMS (ESI-TOF): Anal. Calcd. For C18H17N3O3+H+:324.1343, Found: 324.1350; IR (neat, cm-1): υ 2992.11, 1728.03, 1517.60,1300.65, 1251.15, 1239.09, 1120.72, 1105.86。
实施例二十一
反应瓶中依次装入化合物1a (0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2g(0.6 mmol, 147.2 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5f,收率为84%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.2 Hz, 1H), 7.87 – 7.82 (m,1H), 7.74 (d, J = 8.1 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.40 – 7.34 (m, 1H), 7.30(d, J = 6.4 Hz, 1H), 7.28 – 7.23 (m, 2H), 6.95 – 6.87 (m, 2H), 4.68 – 4.58(t, J = 8.0 Hz, 2H), 3.80 (s, 3H), 3.48 (t, J = 8.0 Hz, 2H), 2.52 (s, 3H). 13CNMR (101 MHz, CDCl3) δ 160.78, 160.12, 157.19, 144.51, 133.73, 132.57,131.80, 130.60, 128.72, 127.55, 126.97, 126.74, 126.24, 125.64, 125.41,123.27, 113.84, 65.89, 55.40, 31.88, 13.74. HRMS (ESI-TOF): Anal. Calcd. ForC23H21N3O3+H+: 388.1656, Found: 388.1645; IR (neat, cm-1): υ 2964.75, 1732.15,1517.85, 1253.72, 1214.09, 1115.14, 840.27, 809.79。
实施例二十二
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2h(0.6 mmol, 114.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5g,收率为53%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.48 – 7.29 (m, 2H), 7.08 – 6.89 (m, 2H),4.47 – 4.30 (m, 2H), 3.86 (s, 3H), 2.50 (s, 3H), 1.19 – 0.95 (m, 2H), 0.03(2, 9H). 13C NMR (101 MHz, CDCl3) δ 160.71, 160.17, 157.49, 144.87, 130.76,126.88, 113.89, 64.97, 55.46, 17.38, 13.76, -1.73. HRMS (ESI-TOF): Anal.Calcd. For C16H23N3O3Si+H+: 334.1581, Found: 334.1585; IR (neat, cm-1): υ2954.63, 1737.78, 1517.88, 1250.59, 1230.20, 1118.37, 866.69, 829.30。
实施例二十三
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2i(0.6 mmol, 96.9 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5h,收率为85%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.38 – 7.31 (m, 2H), 7.02 – 6.94 (m, 2H),4.38 (t, J = 8.0 Hz, 2H), 3.86 (s, 3H), 3.37 (t, J = 6.2 Hz, 2H), 3.29 (s,3H), 2.50 (s, 3H), 1.99 – 1.91 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 160.79,160.21, 157.31, 144.73, 130.78, 126.88, 113.92, 68.67, 63.68, 58.55, 55.48,28.60, 13.75. HRMS (ESI-TOF): Anal. Calcd. For C15H19N3O4+Na+: 328.1268, Found:328.1266; IR (neat, cm-1): υ 2926.65, 1736.51, 1518.71, 1252.57, 1217.87,1116.87, 1050.56, 837.62。
实施例二十四
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2j(0.6 mmol, 102.9 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5i,收率为65%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.41 – 7.28 (m, 2H), 7.05 – 6.91 (m, 2H),4.66 (q, J = 8.0 Hz, 2H), 3.86 (s, 3H), 2.52 (s, 3H). 13C NMR (101 MHz, CDCl3)δ 161.32, 160.46, 155.74, 143.19, 130.34, 126.82, 123.66, 120.90, 114.08,61.60, 61.23, 60.86, 60.48, 55.52, 13.76. HRMS (ESI-TOF): Anal. Calcd. ForC13H12F3N3O3+H+: 316.0904, Found: 316.0912; IR (neat, cm-1): υ 2924.86, 1754.07,1257.33, 1208.36, 112.98, 1115.47, 985.74, 833.02。
实施例二十五
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2k(0.6 mmol, 109.6 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5j,收率为65%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.40 – 7.32 (m,2H), 7.03 – 6.93 (m, 2H),4.59 (t, J = 6.5 Hz, 2H), 3.86 (s, 3H), 3.54 (t, J = 6.5 Hz, 2H), 2.51 (s,3H). 13C NMR (101 MHz, CDCl3) δ 160.95, 160.31, 156.74, 144.05, 130.55,126.90, 113.97, 65.06, 55.50, 27.23, 13.75. HRMS (ESI-TOF): Anal. Calcd. ForC13H14BrN3O3+H+: 340.0291, 342.0271, Found: 340.0278, 342.0261; IR (neat, cm-1): υ 2918.23, 1726.23, 1519.05, 1300.21, 1219.98, 1122.84, 1035.80, 830.31。
实施例二十六
反应瓶中依次装入化合物1a (0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2l(0.6 mmol, 120.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5k,收率为74%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.34 – 7.28 (m, 2H), 7.15 (m, 1H), 6.94 (m,3H), 6.83 (d, J = 3.4 Hz, 1H), 4.51 (t, J = 7.2 Hz, 2H), 3.85 (s, 3H), 3.23(t, J = 7.2 Hz, 2H), 2.51 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 160.83, 160.18,157.12, 144.43, 138.58, 130.62, 126.92, 126.79, 125.73, 124.12, 113.90,66.15, 55.45, 28.86, 13.75. HRMS (ESI-TOF): Anal. Calcd. For C17H17N3O3S+H+:344.1063, Found: 344.1070; IR (neat, cm-1): υ 2924.64, 1738.29, 1517.78,1252.31, 1222.75, 1115.15, 835.11, 719.94。
实施例二十七
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2m(0.6 mmol, 85.8 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5l,收率为60%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.40 – 7.29 (m, 2H), 7.04 – 6.87 (m, 2H),5.79-5.87 (m, 1H), 5.70 – 5.54 (m, 1H), 4.72 (d, J = 6.7 Hz, 2H), 3.86 (s,3H), 2.50 (s, 3H), 1.78 – 1.58 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 160.74,160.17, 157.11, 144.63, 133.33, 130.68, 126.87, 123.73, 113.87, 66.91, 55.44,17.66, 13.73. HRMS (ESI-TOF): Anal. Calcd. For C15H17N3O3+H+: 288.1343, Found:288.1339; IR (neat, cm-1): υ 2968.55, 1726.51, 1518.78, 1481.51, 1300.97,1247.06, 1121.77, 828.25。
实施例二十八
反应瓶中依次装入化合物1a(0.2 mmol, 45.8g),CuBr (0.04 mmol, 5.8 mg),Li2CO3 (14.8 mmol,),化合物3a (0.5mL), 化合物2n(0.6 mmol, 85.8 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物5m,收率为72%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.37 – 7.31 (m, 2H), 7.05 – 6.94 (m, 2H),5.71 (m, 1H), 5.09 (m, 2H), 4.34 (t, J = 7.0 Hz, 2H), 3.86 (s, 3H), 2.50 (s,3H), 2.49 – 2.41 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 160.77, 160.18, 157.25,144.62, 132.99, 130.72, 126.84, 117.71, 113.89, 65.23, 55.45, 32.63, 13.73.HRMS (ESI-TOF): Anal. Calcd. For C15H17N3O3+H+: 288.1343, Found: 288.1340; IR(neat, cm-1): υ 2962.14, 1736.63, 1518.42, 1292.92, 1252.54, 1215.32,1118.32, 835.48。
实施例二十九
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3b (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6a,收率为76%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.39 – 7.32 (m, 2H), 7.01 – 6.94 (m, 2H),4.36 (q, J = 8.0 Hz, 2H), 3.85 (s, 3H), 3.19 (dt, J = 13.9, 7.0 Hz, 1H), 1.40(d, J = 8.0 Hz, 6H), 1.32 (t, J = 8.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ169.13, 160.11, 157.52, 144.66, 130.93, 126.93, 113.85, 62.34, 55.44, 28.24,21.45, 13.92. HRMS (ESI-TOF): Anal. Calcd. For C15H19N3O3+H+: 290.1499, Found:290.1502; IR (neat, cm-1): υ 2975.31, 1729.47, 1520.10, 1487.75, 1256.44,1288.07, 1121.29, 830.85。
实施例三十
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3c(0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6b,收率为68%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.43 – 7.30 (m, 2H), 7.12 – 6.82 (m, 2H),4.35 (q, J = 8.0 Hz, 2H), 3.85 (s, 3H), 1.45 (s, 9H), 1.30 (t, J = 8.0 Hz,3H). 13C NMR (101 MHz, CDCl3) δ 171.76, 160.10, 157.75, 144.78, 131.11,126.99, 113.89, 62.36, 32.96, 29.49, 13.94. HRMS (ESI-TOF): Anal. Calcd. ForC16H21N3O3+H+: 304.1656, Found: 304.1650; IR (neat, cm-1): υ 2967.49, 1736.00,1518.19, 1252.96, 1208.04, 1104.90, 1045.83, 834.61。
实施例三十一
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3d (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6c,收率为59%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.38 – 7.32 (m, 2H), 7.01 – 6.94 (m, 2H),4.36 (q, J = 8.0 Hz, 2H), 3.86 (s, 3H), 2.86 – 2.79 (m, 2H), 1.80 (dt, J =15.4, 7.6 Hz, 2H), 1.48 – 1.38 (m, 2H), 1.33 (t, J = 8.0 Hz, 3H), 0.95 (t, J= 8.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 164.62, 160.13, 157.41, 144.64,130.83, 126.89, 113.85, 62.36, 55.45, 30.32, 27.91, 22.36, 13.94, 13.69. HRMS(ESI-TOF): Anal. Calcd. For C16H21N3O3+H+: 304.1656, Found: 304.1661; IR (neat,cm-1): υ 2959.06, 1736.30, 1518.20, 1252.29, 1219.22, 1106.85, 1046.59,834.49。
实施例三十二
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3e (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6d,收率为67%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.4 Hz, 2H), 7.37 – 7.26 (m,4H), 7.22 (t, J = 7.3 Hz, 1H), 7.00 – 6.90 (m, 2H), 4.34 (q, J = 8.0 Hz, 2H),4.18 (s, 2H), 3.84 (s, 3H), 1.31 (t, J = 8.0 Hz, 3H). 13C NMR (101 MHz, CDCl3)δ 163.12, 160.21, 157.36, 144.98, 137.37, 130.75, 128.87, 128.45, 126.94,126.57, 113.87, 62.45, 55.48, 34.56, 13.95. HRMS (ESI-TOF): Anal. Calcd. ForC19H19N3O3+H+: 338.1499, Found: 338.1493; IR (neat, cm-1): υ 2918.50, 1728.06,1519.02, 1250.11, 1236.24, 1125.52, 826.20, 139.74。
实施例三十三
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3f (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6e,收率为74%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.45 – 7.28 (m, 2H), 7.06 – 6.88 (m, 2H),4.36 (q, J = 8.0 Hz, 2H), 3.86 (s, 3H), 3.65 (t, J = 6.5 Hz, 2H), 3.14 – 2.93(m, 2H), 2.42 – 2.23 (m, 2H), 1.33 (t, J = 8.0 Hz, 3H). 13C NMR (101 MHz,CDCl3) δ 163.04, 160.22, 157.25, 144.84, 130.66, 126.84, 113.89, 62.47,55.47, 44.11, 30.66, 25.48, 13.91. HRMS (ESI-TOF): Anal. Calcd. ForC15H18ClN3O3+H+: 324.1109, Found: 324.1104; IR (neat, cm-1): υ 2987.72,1736.64, 1519.33, 1251.20, 1221.76, 1126.54, 1109.81, 838.83。
实施例三十四
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3g (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6f,收率为52%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.40 – 7.30 (m, 2H), 7.04 – 6.89 (m, 2H),4.36 (q, J = 8.0 Hz, 2H), 3.91 – 3.81 (m, 5H), 3.39 (s, 3H), 3.12 (t, J = 7.0Hz, 2H), 1.33 (t, J = 8.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 161.68, 160.23,157.35, 144.91, 130.77, 126.96, 113.89, 70.35, 62.48, 58.61, 55.51, 28.80,13.98. HRMS (ESI-TOF): Anal. Calcd. For C15H19N3O4+H+: 306.1448, Found:306.1459; IR (neat, cm-1): υ 2918.89, 1732.21, 1520.34, 1251.13, 1235.39,1109.39, 1033.58, 832.50。
实施例三十五
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3h (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6g,收率为85%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.43 – 7.29 (m, 2H), 7.07 – 6.89 (m, 2H),6.11 (m, 1H), 5.37 – 5.06 (m, 2H), 4.36 (q, J = 8.0 Hz, 2H), 3.86 (s, 3H),3.62 (dt, J = 6.7, 1.3 Hz, 2H), 1.33 (t, J = 8.0 Hz, 3H).13C NMR (101 MHz,CDCl3) δ 162.56, 160.23, 157.32, 144.92, 133.27, 130.72, 126.94, 117.52,113.89, 62.46, 55.48, 32.84, 13.96. HRMS (ESI-TOF): Anal. Calcd. For C15H17N3O3+H+: 288.1343, Found: 288.1337; IR (neat, cm-1): υ 2928.33, 1731.60, 1250.04,1305.39, 1259.80, 1223.27, 1110.08, 853.01。
实施例三十六
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3i (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6h,收率为66%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.39 – 7.32 (m, 2H), 7.01 – 6.95 (m, 2H),6.95 – 6.87 (m, 1H), 6.45 (m, 1H), 4.36 (q, J = 8.0 Hz, 2H), 3.85 (s, 3H),1.93 (dd, J = 6.8, 1.7 Hz, 3H), 1.33 (t, J = 8.0 Hz, 3H). 13C NMR (101 MHz,CDCl3) δ 161.10, 160.19, 157.40, 144.76, 134.04, 130.79, 126.89, 119.68,113.88, 62.43, 55.46, 18.27, 13.91. HRMS (ESI-TOF): Anal. Calcd. For C15H17N3O3+H+: 288.1343, Found: 288.1343; IR (neat, cm-1): υ 2924.92, 1729.18, 1517.26,1249.18, 1226.36, 1124.60, 1023.60, 839.14。
实施例三十七
反应瓶中依次装入化合物1a (0.2 mmol, 45.8 mg),CuBr (0.04 mmol, 5.8mg), Li2CO3 (14.8 mmol,),化合物3j (0.5mL), 化合物2a(0.6 mmol, 72.1 mg)。然后该体系在空气中40℃条件下磁力搅拌反应1小时后,用乙酸乙酯淬灭,用旋转蒸发仪除去溶剂、硅胶吸附,通过简单的柱层析即可得产物6i,收率为71%。所制得产物的主要测试数据如下,通过分析可知,实际合成产物与理论分析一致。
1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 16.4 Hz, 1H), 7.61 – 7.51 (m,2H), 7.44 – 7.27 (m, 5H), 7.13 (d, J = 16.4 Hz, 1H), 7.03 – 6.96 (m, 2H),4.39 (q, J = 8.0 Hz, 2H), 3.86 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H). 13C NMR (101MHz, CDCl3) δ 161.17, 160.30, 157.33, 145.05, 135.98, 135.45, 130.75, 128.69,128.63, 126.99, 126.90, 116.38, 113.96, 62.60, 55.50, 13.96. HRMS (ESI-TOF):Anal. Calcd. For C20H19N3O3+H+: 350.1499, Found: 350.1497; IR (neat, cm-1): υ2956.80, 1732.75, 1516.56, 1247.58, 1218.95, 1134.13, 761.85, 658.87。

Claims (4)

1.一种1,2,4-三氮唑的制备方法,其特征在于,包括以下步骤,以氟硼酸芳基重氮盐、重氮酯衍生物和有机腈为反应底物,以溴化亚铜为催化剂,以碳酸锂为添加剂,通过环化反应制备得到1,2,4-三氮唑;
其中,所述氟硼酸芳基重氮盐的化学结构通式为,式中,Ar选自未取代芳基、单取代芳基;所述未取代芳基为苯基;所述单取代芳基的化学结构式如下:
R1选自氢、甲基、异丙基、叔丁基、苯基、甲氧基、氟、氯、溴、三氟甲基或者三氟甲氧基;
所述重氮酯衍生物的结构式如下:
式中,R2选自乙基、异丙基、叔丁基、环己基、苯基或者苄基;
所述有机腈的化学结构式如下:
式中,R3选自甲基、异丙基、叔丁基或者苄基;
所述1,2,4-三氮唑的化学结构式如下:
R4为如下结构式的基团:
R5为如下结构式的基团:
2.根据权利要求1所述1,2,4-三氮唑的制备方法,其特征在于:所述环化反应的反应温度为40℃,反应时间为1小时;所述环化反应在空气中进行。
3.根据权利要求1所述1,2,4-三氮唑的制备方法,其特征在于:所述催化剂用量为氟硼酸芳基重氮盐摩尔量的20%;所述添加剂用量为氟硼酸芳基重氮盐摩尔量的1倍。
4.根据权利要求1所述1,2,4-三氮唑的制备方法,其特征在于:有机腈的用量为氟硼酸芳基重氮盐摩尔量的20~50倍;所述重氮酯衍生物为氟硼酸芳基重氮盐摩尔量的3倍。
CN201810291598.2A 2018-04-03 2018-04-03 1,2,4-三氮唑及其制备方法 Active CN108276350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810291598.2A CN108276350B (zh) 2018-04-03 2018-04-03 1,2,4-三氮唑及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810291598.2A CN108276350B (zh) 2018-04-03 2018-04-03 1,2,4-三氮唑及其制备方法

Publications (2)

Publication Number Publication Date
CN108276350A CN108276350A (zh) 2018-07-13
CN108276350B true CN108276350B (zh) 2019-11-22

Family

ID=62811244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810291598.2A Active CN108276350B (zh) 2018-04-03 2018-04-03 1,2,4-三氮唑及其制备方法

Country Status (1)

Country Link
CN (1) CN108276350B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019200500A1 (zh) 2018-04-15 2019-10-24 苏州大学张家港工业技术研究院 1,2,4-三氮唑及其制备方法
CN114933570B (zh) * 2022-06-21 2023-05-02 安徽德信佳生物医药有限公司 一种铜催化的1,2,4-三氮唑衍生物的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060207A1 (en) * 2009-11-16 2011-05-19 Schering Corporation FUSED TRICYCLIC COMPOUNDS WITH ADENOSINE A2a RECEPTOR ANTAGONIST ACTIVITY
WO2013087805A1 (en) * 2011-12-14 2013-06-20 Boehringer Ingelheim International Gmbh Piperazine derivatives and their use as positive allosteric modulators of mglu5 receptors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060207A1 (en) * 2009-11-16 2011-05-19 Schering Corporation FUSED TRICYCLIC COMPOUNDS WITH ADENOSINE A2a RECEPTOR ANTAGONIST ACTIVITY
WO2013087805A1 (en) * 2011-12-14 2013-06-20 Boehringer Ingelheim International Gmbh Piperazine derivatives and their use as positive allosteric modulators of mglu5 receptors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cycloaddition reactions of glycine imine anions to phenylazocarboxylic esters-a new acess to 1,3,5-trisubstituted 1,2,4-triazoles;Roman Lasch et al.;《Tetrahedron》;20150425;第71卷;第7958页Scheme7 *
Determinants of Activity at Human Toll-like Receptors 7 and 8: Quantitative Structure-Activity Relationship (QSAR) of Diverse Heterocyclic Scaffolds;Euna Yoo et al.;《J. Med. Chem.》;20140905;第57卷;第4283页Table1 *
Nitrilimine cycloadditions to the cyano group in aqueous media;Giorgio Molteni et al.;《heterocycles》;20050301;第65卷(第5期);第1184页Scheme *

Also Published As

Publication number Publication date
CN108276350A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
Wu et al. Highly efficient enantioselective construction of bispirooxindoles containing three stereocenters through an organocatalytic cascade Michael–cyclization reaction
CN108373453A (zh) 三氮唑衍生物及其制备方法
Mao et al. A general access to 1, 1-cyclopropane aminoketones and their conversion into 2-benzoyl quinolines
CN108276350B (zh) 1,2,4-三氮唑及其制备方法
Boruah et al. KF/Al2O3 mediated 1, 3-dipolar cycloaddition of azomethine ylides: a novel and convenient procedure for the synthesis of highly substituted pyrrolidines
Taily et al. [3+ 3] annulation via ring opening/cyclization of Donor–Acceptor cyclopropanes with (Un) symmetrical ureas: a quick access to highly functionalized tetrahydropyrimidinones
Wang et al. Yb (OTf) 3 catalyzed [3+ 2] annulations of D–A cyclopropanes with β-oxodithioesters: a regioselective synthesis of tetrahydrothiophenes
Guo et al. Construction of Chiral Multi‐Functionalized Polyheterocyclic Benzopyran Derivatives by Using an Asymmetric Organocatalytic Domino Reaction
CN106699632B (zh) 3-亚甲基异吲哚-1-酮衍生物的制备方法
Mun et al. Palladium-Catalyzed Decarboxylative [4+ 2] Cycloaddition of Vinyl Benzoxazinanones with Cyclic N-Sulfimines: Stereoselective Synthesis of Benzosulfamidate-Fused Tetrahydroquinazolines
Li et al. Asymmetric synthesis of isoxazole and trifluoromethyl-containing 3, 2′-pyrrolidinyl dispirooxindoles via squaramide-catalysed [3+ 2] cycloaddition reactions
Shi et al. Lewis Acid Catalyzed Cascade Reactions of Diarylvinylidenecyclopropanes and 1, 1, 3‐Triarylprop‐2‐yn‐1‐ols or Their Methyl Ethers
CN106966948B (zh) 一种偕二氟取代吡咯烷酮化合物的合成方法
Zhu et al. Direct Hydroheteroarylation of Ynamides with 2H‐Tetrazoles: Regio‐and Stereoselective Synthesis of (Z)‐α‐Tetrazole Enamides
CN105348060B (zh) 一种1,2‑二酮衍生物的制备方法
CN108558785A (zh) 一种5-芳基-2-芳硒基-1,3-噁唑化合物及制备方法
CN110317170B (zh) 一种3-菲啶基甲酸丙酯类化合物的绿色合成方法
Chen et al. Cooperative Silver‐and Base‐Catalyzed Diastereoselective Cycloaddition of Nitrones with Methylene Isocyanides: Access to 2‐Imidazolinones
Zheng et al. Visible‐Light‐Catalyzed Formal [3+ 2] Annulation‐Aromatization of Amidines with Isoquinolinium N‐Ylides: Access to Imidazo [2, 1‐a] isoquinolines
CN108484499B (zh) 由羟胺和炔烃制备多取代异喹啉衍生物的方法
CN110256349B (zh) 多取代吡唑及其制备方法
CN111909098A (zh) 六氢-5H-苯并[d]咪唑-5-酮类衍生物及其制备方法和应用
CN110256368B (zh) 一种脒类化合物与氮杂环丙烷化合物环加成的方法
CN108383760A (zh) 一种制备全取代脒的方法
Sandaroos et al. Synthesis of 10-aryl-7, 9-dihydro-3 H-furo [3, 4-b] pyrazolo [4, 3-f] quinolin-9-one using supported ionic liquid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant