WO2019198600A1 - 尿素の製造方法 - Google Patents

尿素の製造方法 Download PDF

Info

Publication number
WO2019198600A1
WO2019198600A1 PCT/JP2019/014847 JP2019014847W WO2019198600A1 WO 2019198600 A1 WO2019198600 A1 WO 2019198600A1 JP 2019014847 W JP2019014847 W JP 2019014847W WO 2019198600 A1 WO2019198600 A1 WO 2019198600A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea
carbon dioxide
control method
supply amount
lines
Prior art date
Application number
PCT/JP2019/014847
Other languages
English (en)
French (fr)
Inventor
英紀 長島
政志 ▲高▼橋
Original Assignee
東洋エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋エンジニアリング株式会社 filed Critical 東洋エンジニアリング株式会社
Priority to JP2020513226A priority Critical patent/JP7279020B2/ja
Priority to CN201980025641.3A priority patent/CN112154138A/zh
Priority to EA202092468A priority patent/EA202092468A1/ru
Priority to US17/046,432 priority patent/US20210107866A1/en
Priority to CA3094945A priority patent/CA3094945A1/en
Priority to GB2014758.3A priority patent/GB2586370B/en
Publication of WO2019198600A1 publication Critical patent/WO2019198600A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/04Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/0013Controlling the temperature by direct heating or cooling by condensation of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/02Salts; Complexes; Addition compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a method for producing urea.
  • Japanese Patent No. 3987607 describes the invention of a urea synthesis method and a urea synthesis apparatus, and describes that anticorrosive air is introduced into a condenser, a synthesis tower, and a stripper (paragraph numbers 0028, 0046, 0055, 0070).
  • WO2014 / 192823 describes an invention of a urea synthesis method.
  • the urea synthesizing apparatus for performing the urea synthesis method at least a part of the urea synthesizing tower A, the stripper B, the condenser C, and the portion where the pipe connecting them is in contact with the corrosive fluid. It is described that it can be made of austenite-ferrite duplex stainless steel with a specific composition, and that S31603 general-purpose stainless steel can be used for piping, valves, etc., depending on the corrosive environment.
  • WO 2014/192823 describes that the amount of anticorrosive oxygen to be supplied can be reduced, the inert gas is reduced, and the reaction yield is improved (effect of the invention). Summary of the Invention
  • This invention makes it a subject to provide the manufacturing method of urea which can raise the reaction yield of urea by suppressing the corrosion of the processing apparatus and line of the said plant at the time of manufacturing urea by a urea plant.
  • the present invention is a method for producing urea from a production raw material containing ammonia and carbon dioxide in a urea production plant
  • the urea production plant has a plurality of processing apparatuses including a reactor, a stripper, and a condenser, and a plurality of lines connecting the plurality of processing apparatuses.
  • Inner wall surfaces of the plurality of processing devices and the plurality of lines are made of stainless steel, and at least a part of the plurality of lines is made of austenitic stainless steel,
  • a passive film is formed on the inner wall surfaces of the plurality of processing devices and the plurality of lines by supplying oxygen to the carbon dioxide which is the manufacturing raw material, and from austenitic stainless steel.
  • the thickness of the line is continuously measured, and the corrosion rate and the reaction yield of urea are controlled by adjusting the supply amount of oxygen according to the measured value of the thickness (control method (A))
  • a method for producing urea is provided.
  • the present invention is a method for producing urea from a production raw material containing ammonia and carbon dioxide in a urea production plant
  • the urea production plant has a plurality of processing apparatuses including a reactor, a stripper, and a condenser, and a plurality of lines connecting the plurality of processing apparatuses.
  • Inner wall surfaces of the plurality of processing devices and the plurality of lines are made of stainless steel, and at least a part of the plurality of lines is made of austenitic stainless steel,
  • a passive film is formed on the inner wall surfaces of the plurality of treatment devices and the plurality of lines by supplying oxygen to the carbon dioxide which is the production raw material, and in urea or ammonia.
  • Control method (B) Measures the concentration and operating temperature of dissolved iron, chromium or nickel, and controls the corrosion rate and the reaction yield of urea by adjusting the oxygen supply amount according to the measured value of the concentration and the operating temperature (Control method (B)) to provide a method for producing urea.
  • the present invention is a method for producing urea from a production raw material containing ammonia and carbon dioxide in a urea production plant
  • the urea production plant is A reactor for producing a urea synthesis solution using carbon dioxide and ammonia as raw materials;
  • a plurality of processing apparatuses including a condenser that absorbs at least a part of the mixed gas obtained by the stripper by an absorption medium and condenses, and generates low-pressure steam using heat generated during the condensation; It has a plurality of lines connecting the plurality of processing devices, Inner wall surfaces of the plurality of processing devices and the plurality of lines are made of stainless steel, and at least a part of the plurality of lines is made of austenitic stainless steel, Provided is a urea production method for carrying out any one of the following control methods
  • a passive film is formed on the inner wall surfaces of the plurality of treatment devices and the plurality of lines by supplying oxygen to the production raw material carbon dioxide, and an austenitic system
  • a control method for controlling the corrosion rate and the reaction yield of urea by continuously measuring the thickness of the line made of stainless steel and adjusting the oxygen supply amount according to the measured value of the thickness.
  • the yield of urea can be maintained by suppressing corrosion of the processing equipment and line of the urea production plant in the urea production process.
  • FIG. 1 illustrates the urea production method of the present invention.
  • the urea production plant shown in FIG. 1 is an embodiment for carrying out the urea production method of the present invention, and is not limited to this.
  • the urea production flow itself in the urea plant shown in FIG. 1 is publicly known.
  • the production flow shown in FIG. 3 of Japanese Patent No. 3987607 is substantially the same as the production flow shown in FIG. 2 of WO2014 / 192823. It is.
  • Reactor 1, stripper 2, condenser 3, heat exchanger 5, and ejector 6 shown in FIG. 1 are urea synthesis tower A, stripper C, and condenser B (including scrubber F) shown in FIG. 3 of Japanese Patent No. 3987607, respectively.
  • Heat exchanger D and ejector G are urea synthesis tower A, stripper C, and condenser B (including scrubber F) shown in FIG. 3 of Japanese Patent No. 3987607, respectively.
  • the corrosion rate and the reaction yield of urea are controlled by adjusting the supply amount of oxygen according to a specific measurement value.
  • the production method including specific production procedures and reaction conditions is not particularly limited.
  • the same production procedure as the production method described in Paragraph No. 0052 to Paragraph No. 0062 or Example 3 using the urea production plant shown in FIG. 3 of Japanese Patent No. 3987607 Urea can also be produced by a production method using the same production procedure and conditions as in the production method described in paragraph No. 0040 to paragraph No. 0048 or paragraph No. 0060 of WO2014 / 192823. .
  • ammonia is supplied to the lower part of the reactor 1 from the ammonia supply line 10, and in parallel with this, carbon dioxide is supplied to the lower part of the reactor 1 from the carbon dioxide supply lines 11, 11a.
  • the reactor 1 is an apparatus for generating a urea synthesis solution using carbon dioxide and ammonia as raw materials.
  • the reactor 1 is made of, for example, carbon steel, and a lining layer made of duplex stainless steel is formed on a portion corresponding to the inner wall surface. For this reason, the reactor 1 cannot measure the thickness from the outside with an ultrasonic thickness measuring device.
  • urea, ammonium carbamate which is a reaction intermediate, water, unreacted ammonia are present as a liquid phase, and some unreacted ammonia, unreacted carbon dioxide and inert gas are present. It exists as a gas phase.
  • the inert gas is an impurity such as air (oxygen) supplied for the purpose of anticorrosion and hydrogen contained in the raw carbon dioxide.
  • the reaction conditions in the reactor 1 can be the same as when using the urea production plant shown in FIG. 3 of Japanese Patent No. 3987607.
  • the pressure is 130 to 250 bar (13,000 to 25, 000 kPa)
  • N / C molar ratio of ammonia to carbon dioxide
  • H / C molar ratio of water to carbon dioxide
  • residence time is 10 to 40 minutes
  • the temperature is preferably 180 to 200 ° C.
  • the pressure is increased by a compressor (connected to the carbon dioxide supply lines 11 and 11a, but not shown), and an adjusted amount of oxygen is mixed.
  • the oxygen may be pure oxygen or air.
  • air it is preferable to supply air through an air filter or the like.
  • the ammonia is preheated to about 70 to 90 ° C. via the heat exchanger 5, and then supplied to the reactor 1 together with the ammonia recovered from the condenser 3 by the ejector 6. Is done.
  • the gas-liquid mixture obtained in the reactor 1 is sent from the gas-liquid mixture line 12 to the top of the stripper 2.
  • the stripper 2 is an apparatus for separating a mixed gas containing unreacted ammonia and unreacted carbon dioxide from the urea synthesis solution by heating the urea synthesis solution generated in the reactor 1.
  • the stripper 2 is made of, for example, carbon steel, and a lining layer made of a duplex stainless steel is formed in a portion corresponding to the inner wall surface. For this reason, the stripper 2 cannot measure the thickness from the outside by an ultrasonic thickness measuring device.
  • carbon dioxide gas that functions as a stripping agent is supplied from the carbon dioxide supply lines 11 and 11b.
  • the stripper 2 is heated by a heating device (not shown) so that the temperature inside can be raised.
  • the operating conditions in the stripper 2 can be the same as when the urea production plant shown in FIG. 3 of Japanese Patent No. 3987607 is used.
  • the pressure is 130 to 250 bar (13,000 to 25,000 kPa).
  • 140 to 200 bar (14,000 to 20,000 kPa) and a temperature of 160 to 200 ° C.
  • ammonium carbamate in the gas-liquid mixture is decomposed into ammonia and carbon dioxide by introducing carbon dioxide that functions as a heating and stripping agent, and high temperatures of unreacted ammonia, carbon dioxide, inert gas, and water (steam).
  • the mixed gas is sent from the return gas line 14 to the bottom of the condenser 3.
  • Urea in the gas-liquid mixture, a trace amount of ammonium carbamate that has not been decomposed, ammonia that has not been separated, carbon dioxide, and the like are recovered from the urea recovery line 13 at the bottom of the stripper 2.
  • Urea recovered from the urea recovery line 13 is further refined in a later step (low pressure decomposition step) to increase the purity, and a small amount of residual ammonium carbamate is decomposed to a low temperature recycle liquid containing ammonia and carbon dioxide ( (Including unreacted ammonia and carbon dioxide), and sent from the recycling line 17 to the top (scrubber) of the condenser 3 as an absorption medium.
  • the condenser 3 is a device for absorbing at least a part of the mixed gas obtained by the stripper 2 by the absorption medium and condensing it, and generating low-pressure steam using heat generated during the condensation.
  • Ammonia contained in the high-temperature mixed gas supplied to the bottom of the condenser 3 is cooled and condensed, and then sent to the raw material ammonia supply line 10 from the down pipe 15 by the suction action by the ejector 6, and urea. Reused as manufacturing raw material.
  • the ammonia and carbon dioxide are absorbed and removed, and the inert gas is discharged from the exhaust line 16.
  • the capacitor 3 is made of, for example, carbon steel, and a lining layer made of a duplex stainless steel is formed on a portion corresponding to the inner wall surface. For this reason, the capacitor 3 cannot measure the thickness from the outside with an ultrasonic thickness measuring device.
  • the operating condition of the condenser 3 can be the same as that in the case of using the urea production plant shown in FIG. 3 of Japanese Patent No. 3987607.
  • the pressure is 140 to 250 bar (14,000 to 25,000 kPa).
  • the temperature is 130 to 250 ° C. (preferably 170 to 190 ° C.)
  • N / C is 2.5 to 3.5
  • H / C is 1.0 or less
  • the residence time is preferably 10 to 30 minutes.
  • each line having the thickness measuring portions 30 to 37 by the ultrasonic thickness measuring device is made of an austenitic stainless steel pipe.
  • S31603 (316L SS) can be used as the austenitic stainless steel, and as the duplex stainless steel, for example, 25Cr duplex stainless steel (S31260), 28Cr duplex stainless steel (S32808: DP28W). Can be used. Since each line is made of a single material, the thickness can be measured from the outside with an ultrasonic thickness measuring instrument.
  • oxygen is mixed in the raw carbon dioxide to form a passive film on the surface of the stainless steel, thereby suppressing the contact between the ammonium carbamate and the stainless steel, and suppressing the corrosion of the stainless steel.
  • austenitic stainless steel has a property that more oxygen is required because a passive film is formed as compared with duplex stainless steel.
  • the oxygen concentration in the raw carbon dioxide is too high, the temperature inside the reactor 1 and the condenser 3 cannot be raised sufficiently, and the reaction rate cannot be increased. If the oxygen concentration is too low, the corrosion of stainless steel proceeds excessively.
  • FIG. 5 of WO2014 / 192823 shows the relationship between the oxygen concentration in the gas phase (horizontal axis) and the corrosion rate (vertical axis).
  • Austenitic stainless steel (S31603) is a 25Cr duplex stainless steel. Compared to steel (S31260) and 28Cr duplex stainless steel (S32808), it is difficult to form a passive film. Therefore, when the oxygen concentration is low, the corrosion rate increases. It has been shown that the rate of corrosion is reduced due to the formation of a dynamic film.
  • control methods (A) to (C) it is preferable to implement any one of the following control methods (A) to (C), any two control methods, or three control methods.
  • Control method (A) is a urea production method in which oxygen is added to carbon dioxide, which is a production raw material, and supplied to supply a plurality of processing devices (including reactor 1, stripper 2, and condenser 3) and a plurality of lines. Corrosion rate and urea reaction by forming a passive film on the wall and continuously measuring the wall thickness of austenitic stainless steel lines and adjusting the oxygen supply according to the measured thickness This is a control method for controlling the yield.
  • s The corrosion rate s (mm / year) is obtained from (t1-t2) / (operation time) (t1 indicates the initial thickness of each line at the thickness measurement sites 30 to 37 before operation).
  • the initial thickness t1 of each line is known (measured value or standard value), and the value obtained by dividing the difference from the thickness t2 after operation of each line by the operation time is the corrosion rate s.
  • the change in the corrosion rate s can be continuously confirmed.
  • the control method (A) if the corrosion rate s becomes too large, the oxygen supply amount (the amount of air in an oxygen conversion amount when air is used) is increased, and if the corrosion rate s is sufficiently small, oxygen is increased.
  • the supply amount By reducing the supply amount, it becomes possible to suppress the increase / decrease range of the reaction yield of urea as small as possible, so that urea can be produced with a stable reaction yield.
  • the corrosion rate s in each line when operating the urea production plant shown in FIG. 1 is preferably controlled to be not more than 0.2 mm / year from the relationship with the reaction yield of urea, and 0.15 mm / More preferably, it is controlled below year.
  • Control method (B) measures corrosion by measuring the concentration and operating temperature of iron, chromium or nickel dissolved in urea or ammonia, and adjusting the supply amount of oxygen according to the measured value of concentration and operating temperature. It is a control method that controls the rate and the reaction yield of urea.
  • sampling can be performed at sampling positions 40 to 42, for example.
  • sampling position 40 for example, after sampling the gas-liquid mixture containing urea flowing through the gas-liquid mixture line 12, ammonium carbamate as a reaction intermediate, and unreacted gas (ammonia and carbon dioxide), and measuring the temperature together, Measure the concentration of each ion of iron, chromium or nickel.
  • urea and a small amount of ammonium carbamate flowing through the urea recovery line 13 are sampled, and the temperature is measured at the same time, and then each ion concentration of iron, chromium and nickel in the sample is measured.
  • a liquid containing ammonia flowing through the down pipe 15 is sampled, and the temperature is measured at the same time, and then each ion concentration of iron, chromium or nickel in the sample is measured.
  • the number of iron, chromium, or nickel ions to be measured may be any one, a combination of any two, or all three.
  • the sampling location is not particularly limited, and a plurality of locations (preferably 3 locations or more) can be selected.
  • a plurality of locations preferably 3 locations or more
  • the outlet side line (urea recovery line 13) and the condenser 3 outlet side line (down pipe 15) are preferable.
  • the operation temperature of the reactor 1, the stripper 2, and the condenser 3 in the vicinity of each sampling location.
  • the temperature can be measured using a known thermometer such as a thermocouple or a resistance temperature detector.
  • control method (B) When the concentration of iron, chromium and nickel is high and the temperature at the sampling position is high, the oxygen supply amount is increased to form a passive film (the first form of the control method (B)), When the concentration of iron, chromium and nickel is low and the temperature at the sampling position is low, the oxygen supply amount is decreased (second form of control method (B)), When the concentration of iron, chromium and nickel is high and the temperature at the sampling position is low, the oxygen supply amount is increased (however, the increase amount is less than in the first embodiment) to form a passive film (control method (B ) Third form)), When the concentration of iron, chromium and nickel is low and the temperature at the sampling position is high, the oxygen supply amount is decreased (however, the decrease amount is smaller than that in the second mode) (the fourth mode of the control method (B)). By implementing either one, it becomes possible to suppress the increase / decrease width of the reaction yield of urea, so that urea can be produced with
  • Control method (C) The control method (C) is introduced as operating pressures and operating temperatures of a plurality of processing apparatuses (reactors, strippers, condensers), a flow rate of carbon dioxide introduced as a raw material, an oxygen amount in the raw carbon dioxide, and a raw material.
  • a processing apparatuses reactors, strippers, condensers
  • a flow rate of carbon dioxide introduced as a raw material
  • an oxygen amount in the raw carbon dioxide and a raw material.
  • the corrosion rate of each of a plurality of processing devices and the corrosion rate of a plurality of lines connecting a plurality of processing devices are calculated, and the rate of corrosion is adjusted by adjusting the oxygen supply rate. This is a control method for controlling the reaction yield of urea.
  • the operating temperature of the reactor 1 can be measured, for example, at the measurement site (measurement device) 51 in the upper part (preferably near the top) of the reactor 1 or the measurement site (measurement device) 54 in the lower part.
  • the operating temperature of the stripper 2 can be measured, for example, at a measurement site (measuring instrument) 52 in the upper part (preferably near the top) of the stripper 2 or a measurement site (measuring instrument) 55 in the lower part.
  • the operating temperature of the condenser 3 can be measured, for example, at a measurement part (measuring instrument) 53 in the upper part (preferably near the top) of the condenser 3 or a measurement part (measuring instrument) 56 in the lower part.
  • reactor 1, stripper 2 and condenser 3 are almost the same. These pressures can be measured by, for example, an ammonia injection line to the line 11b or the condenser 3 (not shown).
  • the flow rate of carbon dioxide introduced as a raw material can be measured, for example, in the carbon dioxide supply lines 11 and 11a.
  • the amount of oxygen in the raw carbon dioxide can be calculated from, for example, the amount of air introduced into the compressor, since the pressure is raised by the compressor and the adjusted amount of oxygen is mixed when supplying carbon dioxide to the reactor 1.
  • the flow rate of ammonia introduced as a raw material can be measured, for example, in the ammonia supply line 10.
  • the corrosion rates of the reactor 1, the stripper 2 and the condenser 3, and the corrosion rates of the plurality of lines (the gas-liquid mixture line 12, the return gas line 14, and the down pipe 15) connecting the reactor 1, the stripper 2 and the condenser 3 are as described above. Can be obtained as follows from the operation data, the operation pressure, the flow rate of carbon dioxide, the oxygen concentration in carbon dioxide, and the flow rate of ammonia. Based on the relationship between the measurement data and the corrosion rate in the control method of (A), the corrosion rate increases as the operating temperature increases, the corrosion rate increases as the ammonium carbamate concentration increases, and the oxygen concentration in carbon dioxide increases. It can be determined considering that the corrosion rate decreases as the value increases.
  • control method (A), the control method (B), and the control method (C) are performed in this order.
  • step (1) urea production is started, for example, according to the production flow shown in FIG. After the start of the production of urea, control methods (A) to (C) for controlling the corrosion rate and the reaction yield of urea are performed by adjusting the oxygen supply rate.
  • step (2) it is determined whether to increase or maintain the supply amount of air (oxygen) in the raw carbon dioxide by the control method (A).
  • the process proceeds to step (3).
  • the corrosion rate obtained in the control method (A) exceeds the allowable value (No)
  • the process proceeds to step (5) to increase the anticorrosion effect, and the supply amount of air (oxygen) in the raw carbon dioxide
  • the production of urea is continued in a state in which In the step (2), when the flow shifts to the step (5) and the supply amount of air (oxygen) in the raw carbon dioxide is increased, the step (3) and the subsequent steps are not performed.
  • step (3) it is determined whether to increase or maintain the supply amount of air (oxygen) in the raw carbon dioxide by the control method (B).
  • the process proceeds to step (4).
  • the corrosion rate obtained in the control method (B) exceeds the allowable value (No)
  • the process proceeds to step (5) to increase the anticorrosion effect, and the supply amount of air (oxygen) in the raw carbon dioxide
  • the production of urea is continued in a state in which In the step (3), when the flow shifts to the step (5) and the supply amount of air (oxygen) in the raw carbon dioxide is increased, the step (4) and the subsequent steps are not performed.
  • step (4) it is determined whether to increase or maintain the supply amount of air (oxygen) in the raw carbon dioxide by the control method (C).
  • the process proceeds to step (5).
  • the corrosion rate obtained in the control method (C) exceeds the allowable value (No)
  • the process proceeds to step (5) to increase the anticorrosion effect, and the supply amount of air (oxygen) in the raw carbon dioxide
  • step (4) when the flow proceeds to step (5) and the supply amount of air (oxygen) in the raw carbon dioxide is increased, step (6) and subsequent steps are not performed.
  • step (6) the control methods (A) to (C) are comprehensively evaluated to determine whether to reduce or maintain the supply amount of air (oxygen) in the raw carbon dioxide.
  • the corrosion rates obtained in the control methods (A) to (C) if any of the corrosion rates is less than or equal to the allowable value, but is close to the allowable value (for example, 95 of the allowable value of the corrosion rate) %), The process proceeds to step (7), and the supply amount of air (oxygen) in the raw carbon dioxide is maintained as it is.
  • the corrosion rates obtained in the control methods (A) to (C) are all far below the allowable value (for example, when the corrosion rate is 95% or less of the allowable value)
  • go to step (8) the supply amount of air (oxygen) in the raw carbon dioxide is reduced.
  • the present invention includes the following embodiments in addition to the embodiments described above.
  • the processing apparatus such as the reactor 1, the stripper 2, and the condenser 3 in the urea production plant shown in FIG. 1 is made of carbon steel, and a lining layer made of a duplex stainless steel is formed on a portion corresponding to the inner wall surface. Therefore, the thickness cannot be measured from the outside by an ultrasonic thickness measuring device.
  • the processing devices such as the reactor 1, the stripper 2, and the condenser 3 are in a high temperature and high pressure state during operation, and the inside cannot be observed, the corrosion state of the processing device during the operation of the urea production plant is not observed. It cannot be confirmed directly.
  • each line shown in FIG. 1 is made of a single material stainless steel, the thickness can be measured from the outside with an ultrasonic thickness measuring instrument, so that the corrosion state can be confirmed. .
  • operation data such as the temperature, pressure, and operation time of the processing devices such as the reactor 1, the stripper 2, and the condenser 3 during operation are acquired, and acquisition of those data is performed.
  • the thickness of each line can be measured and accumulated as related data.
  • the operation of the urea production plant shown in FIG. 1 is periodically stopped, and the corrosion state of the lining layer made of a duplex stainless steel inside the processing apparatus such as the reactor 1, the stripper 2 and the condenser 3 is observed and data is obtained.
  • the thickness data of each line can be used to compare It becomes possible to estimate the corrosion state of the steel. By doing in this way, the state of corrosion inside each processing apparatus can be estimated from the change data of the wall thickness of each line while the urea production plant is continuously operated. Without stopping, it becomes possible to check the replacement time and maintenance time of each processing apparatus, and a stable urea production operation can be performed.
  • this embodiment does not increase or decrease the oxygen supply amount (the amount of oxygen in terms of oxygen when using air) as in the control method (A) and control method (B) described above, but does not produce urea. It is suitable for producing urea in a state where a certain amount of oxygen is introduced into the raw material (when air is used, an oxygen equivalent amount of air).
  • the control method (A) and the control method (B) described above are suitable. It can also be implemented in combination with one or both.
  • Example 1 Test pieces made of stainless steel (28Cr type duplex stainless steel; S32808, austenitic stainless steel; S31603) were immersed in the urea solution synthesized in the autoclave. In this state, oxygen was gradually introduced into the autoclave, and the amount of oxygen when a passive film was formed on the test piece (Passive Corrosion) was measured. The test temperature was 195 ° C. The results are shown in FIG.
  • a passive film is formed on the inner wall surfaces of the plurality of processing apparatuses and the plurality of lines constituting the urea plant shown in FIG. 1, and dissolved in urea or ammonia. It was confirmed that the corrosion rate can be controlled by measuring the concentration of iron, chromium and nickel and the operating temperature, and adjusting the oxygen supply amount according to the measured values of the concentration and the operating temperature. Furthermore, since it is a well-known fact that the reaction yield of urea decreases when the amount of oxygen (air amount) is large in the urea production process, this is combined with controlling the corrosion rate by adjusting the oxygen supply amount. Thus, it was confirmed that the reaction yield of urea can also be controlled.
  • Example 2 In the process of producing urea by the production flow of the urea production plant shown in FIG. 1, the following control methods (A), (B) and (C) were carried out.
  • Control method (A) 60 days after the start of urea production operation, the wall thickness (wall thickness measurement) of the return gas line 14 (initial wall thickness 23.01 mm) made of S31603 general-purpose stainless steel (austenitic stainless steel) connecting the stripper 2 and the condenser 3
  • the part 35) was measured with an ultrasonic thickness gauge (an ultrasonic thickness gauge manufactured by GE Sensing & Inspection Technologies Co., Ltd., compact, simple operation, high performance ultrasonic thickness gauge DM5E series).
  • the corrosion rate obtained from the difference between the measured thickness and the initial thickness and the elapsed time was 0.12 mm / year.
  • the concentration of oxygen supplied in the raw carbon dioxide between the start of operation and the time of measurement was 5500 ppm, and the operating temperature (average value) was 183 ° C.
  • Control method (B) The iron concentration in the solution at the outlet of the stripper 2 (sampling position 41) was 0.8 ppm, and the operating temperature at that time was 171 ° C. From the obtained iron concentration, it was determined that a passive film was formed on each inner wall surface of the reactor 1, the gas-liquid mixture line 12, and the stripper 2 located upstream from the sampling position 41. This indicates that the step (3) is “Yes” in the embodiment shown in FIG.
  • Control method (C) The operating temperature and operating pressure of the measurement parts 51 to 53 were as follows. Measurement site 51: temperature 186 ° C., pressure 151 kg / cm 2 G Measurement site 52: temperature 188 ° C., pressure 151 kg / cm 2 G Measurement site 53: temperature 180 ° C., pressure 151 kg / cm 2 G
  • the flow rate of carbon dioxide (measured in the carbon dioxide supply lines 11 and 11a) was 45000 Nm 3 / h.
  • the amount of oxygen in the raw carbon dioxide was 250 Nm 3 / h (calculated from the amount of air introduced into the compressor).
  • the flow rate of ammonia (measured with the ammonia supply line 10) was 69 t / h. From the above measurement results and data including the corrosion rate in the control method (A), the corrosion rate of each device and each line was calculated as follows.
  • Capacitor 3 (inner wall surface is S31603 general-purpose stainless steel): 0.09 mm / year, temperature (180 ° C.)
  • Stripper 2 (inner wall surface is duplex stainless steel): 0.10 mm / year, temperature (188 ° C.)
  • Reactor 1 (inner wall surface is S31603 general-purpose stainless steel): 0.14 mm / year, temperature (186 ° C.)
  • Return gas line 14 from the stripper 2 to the condenser 3 (the inner wall surface is S31603 general-purpose stainless steel): 0.16 mm / year, temperature (188 ° C.)
  • Down pipe 15 from condenser 3 to reactor 1 (inner wall surface is S31603 general-purpose stainless steel): 0.09 mm / year, temperature (180 ° C.)
  • Gas-liquid mixture line 12 from the reactor 1 to the stripper 2 (inner wall surface is S31603 general-purpose stainless steel): 0.14 mm
  • step (4) is “Yes” in the embodiment shown in FIG.
  • the corrosion rate was less than the allowable value and the amount of oxygen could be reduced, and the oxygen concentration in the raw carbon dioxide was reduced to 4500 ppm (step (6) ⁇ step (8) shown in FIG. 2).
  • the urea production method of the present invention can produce urea with a good reaction yield while extending the plant life when producing urea using a known urea production plant. And it can be used as a production method capable of reducing the production cost of urea.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】尿素プラントの腐食を抑制し反応収率を高められる尿素の製造方法の提供。 【解決手段】尿素製造プラントにおいてNHとCOを含む製造原料から尿素を製造する方法であって、尿素製造プラントが、リアクター、ストリッパーおよびコンデンサーを含む処理装置と複数本のラインを有しており、複数の処理装置および複数本のラインの内壁面がステンレス鋼からなり、複数本のラインのうち少なくとも一部がオーステナイト系ステンレス鋼からなり、尿素製造方法において、製造原料であるCOに酸素を加えて供給することで複数の処理装置および複数本のラインの内壁面に不動態皮膜を形成させると共に、オーステナイト系ステンレス鋼からなるラインの肉厚を連続的に測定し、肉厚の測定値に応じて酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する、尿素の製造方法。

Description

尿素の製造方法
 本発明は、尿素の製造方法に関する。
背景技術
 尿素製造プラントでは、アンモニアと二酸化炭素から尿素を合成する過程において、中間物質として腐食性の強いアンモニウムカーバメイトが生成される。そのため、プラントの種々の処理装置やラインに耐食性が要求される。
 特許第3987607号公報には、尿素合成方法と尿素合成装置の発明が記載されており、凝縮器、合成塔、ストリッパーに防食用空気を導入することが記載されている(段落番号0028、0046、0055、0070参照)。
 WO2014/192823には、尿素合成方法の発明が記載されている。尿素合成方法を実施するための尿素合成装置において、尿素合成塔A、ストリッパーB、及び凝縮器C、並びにこれらをつなぐ配管が腐食性を有する流体と接触する箇所のうち、少なくとも一部の箇所を特定組成のオーステナイト-フェライト二相系ステンレス鋼からなるものにすることができること、また配管、バルブなどには腐食環境に応じて、S31603系汎用ステンレス鋼を用いることもできることが記載されている。WO2014/192823では、供給する防食用酸素量を少なくすることができ、イナートガスが減少され、反応収率が向上されることが記載されている(発明の効果)。
発明の概要
 本発明は、尿素プラントにより尿素を製造する際の前記プラントの処理装置およびラインの腐食を抑制することで尿素の反応収率を高めることができる尿素の製造方法を提供することを課題とする。
 本発明は、尿素製造プラントにおいてアンモニアと二酸化炭素を含む製造原料から尿素を製造する方法であって、
 前記尿素製造プラントが、リアクター、ストリッパーおよびコンデンサーを含む複数の処理装置および前記複数の処理装置を接続する複数本のラインを有しているものであり、
 前記複数の処理装置および前記複数本のラインの内壁面がステンレス鋼からなり、前記複数本のラインのうち少なくとも一部がオーステナイト系ステンレス鋼からなるものであり、
 前記尿素製造方法において、前記製造原料である二酸化炭素に酸素を加えて供給することで前記複数の処理装置および前記複数本のラインの内壁面に不動態皮膜を形成させると共に、オーステナイト系ステンレス鋼からなる前記ラインの肉厚を連続的に測定し、前記肉厚の測定値に応じて前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する(制御方法(A))、尿素の製造方法を提供する。
 また本発明は、尿素製造プラントにおいてアンモニアと二酸化炭素を含む製造原料から尿素を製造する方法であって、
 前記尿素製造プラントが、リアクター、ストリッパーおよびコンデンサーを含む複数の処理装置および前記複数の処理装置を接続する複数本のラインを有しているものであり、
 前記複数の処理装置および前記複数本のラインの内壁面がステンレス鋼からなり、前記複数本のラインのうち少なくとも一部がオーステナイト系ステンレス鋼からなるものであり、
 前記尿素製造方法において、前記製造原料である二酸化炭素に酸素を加えて供給することで前記複数の処理装置および前記複数本のラインの内壁面に不動態皮膜を形成させると共に、尿素またはアンモニア中に溶存している鉄、クロムまたはニッケルの濃度と運転温度を測定し、前記濃度と前記運転温度の測定値に応じて前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する(制御方法(B))、尿素の製造方法を提供する。
 さらに本発明は、尿素製造プラントにおいてアンモニアと二酸化炭素を含む製造原料から尿素を製造する方法であって、
 前記尿素製造プラントが、
 二酸化炭素とアンモニアを原料として尿素合成液を生成させるためのリアクターと、
 前記リアクターで生成させた尿素合成液を加熱することによって、アンモニウムカーバメートを分解し、かつアンモニアと二酸化炭素を含む混合ガスを前記尿素合成液から分離するためのストリッパーと、
 前記ストリッパーで得られる前記混合ガスの少なくとも一部を吸収媒体に吸収させて凝縮させ、この凝縮の際に生じる熱を用いて低圧スチームを発生させるコンデンサーを含む複数の処理装置と、
 前記複数の処理装置を接続する複数本のラインを有しているものであり、
 前記複数の処理装置および前記複数本のラインの内壁面がステンレス鋼からなり、前記複数本のラインのうち少なくとも一部がオーステナイト系ステンレス鋼からなるものであり、
 下記の制御方法(A)~(C)のいずれか一つの制御方法、いずれか二つの制御方法、または三つの制御方法を実施する、尿素の製造方法を提供する。
 (A)前記尿素製造方法において、前記製造原料である二酸化炭素に酸素を加えて供給することで前記複数の処理装置および前記複数本のラインの内壁面に不動態皮膜を形成させると共に、オーステナイト系ステンレス鋼からなる前記ラインの肉厚を連続的に測定し、前記肉厚の測定値に応じて前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法。
 (B)尿素またはアンモニア中に溶存している鉄、クロムまたはニッケルの濃度と運転温度を測定し、前記濃度と前記運転温度の測定値に応じて前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法。
 (C)前記複数の処理装置の運転圧力とそれぞれの運転温度、前記原料として導入される二酸化炭素の流量、前記原料二酸化炭素中の酸素量、前記原料として導入されるアンモニアの流量を測定することで、前記複数の処理装置のそれぞれの腐食速度と、前記複数の処理装置を接続する複数のラインの腐食速度を算定して、前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法。
 本発明の尿素の製造方法によれば、尿素の製造過程における尿素製造プラントの処理装置およびラインの腐食を抑制して、尿素の収量を維持することができる。
尿素製造プラントにおける尿素の製造フローを示す概略図。 尿素製造プラントを使用した尿素製造方法の一実施形態を説明するための図。 実施例1において不動態皮膜層が形成されたパイプと不動態皮膜層が形成されていないパイプの腐食速度の違いを示す図。
 図1により本発明の尿素の製造方法を説明する。図1に示す尿素製造プラントは、本発明の尿素製造方法を実施するための一実施形態であり、これに限定されるものではない。
 また、図1に示す尿素プラントにおける尿素の製造フロー自体は公知であり、例えば、特許第3987607号公報の図3に示す製造フロー、WO2014/192823の図2に示す製造フローと実質的に同じものである。図1に示すリアクター1、ストリッパー2、コンデンサー3、熱交換器5、エジェクター6は、それぞれ特許第3987607号公報の図3に示す尿素合成塔A、ストリッパーC、凝縮器B(スクラバーFを含む)、熱交換器D、エジェクターGと同じものである。
 本発明の尿素の製造方法は、例えば図1に示す尿素製造プラントにおいて尿素を製造する際、特定の測定値に応じて酸素の供給量を調整することで腐食速度と尿素の反応収率を制御することが一つの特徴であり、具体的な製造手順、反応条件を含む製造方法は特に制限されるものではない。
 本発明の尿素の製造方法では、例えば、特許第3987607号公報の図3に示す尿素製造プラントを使用した、段落番号0052~段落番号0062、または実施例3に記載された製造方法と同じ製造手順や条件を用いた製造方法、或いはWO2014/192823の段落番号0040~段落番号0048、または段落番号0060に記載された製造方法と同じ製造手順や条件を用いた製造方法により尿素を製造することもできる。
 図1に示す製造フロー例では、アンモニア供給ライン10からリアクター1の下部にアンモニアを供給し、それと並行して二酸化炭素供給ライン11、11aからリアクター1の下部に二酸化炭素を供給し、リアクター1内部で反応させて尿素を含む気液混合物を得る。リアクター1は、二酸化炭素とアンモニアを原料として尿素合成液を生成させるための装置である。
 リアクター1は例えば炭素鋼からなるものであり、内壁面に相当する部分には二相系ステンレス鋼からなる内張層が形成されている。このためリアクター1は、超音波肉厚測定器により外部から肉厚を測定することはできない。
 リアクター1で得られた気液混合物には、尿素、反応中間体であるアンモニウムカーバメート、水、未反応のアンモニアが液相として存在し、一部の未反応アンモニア、未反応の二酸化炭素、イナートガスが気相として存在している。イナートガスは、防食目的で供給された空気(酸素)、原料二酸化炭素中に含まれている水素などの不純物である。
 リアクター1における反応条件は、上記したとおり、特許第3987607号公報の図3に示す尿素製造プラントを使用した場合と同じにすることができ、例えば圧力は130~250バール(13,000~25,000kPa)、N/C(アンモニアと二酸化炭素のモル比)は3.5~5.0、H/C(水と二酸化炭素のモル比)は1.0以下、滞留時間は10~40分、温度は180~200℃が好ましい。
 リアクター1に二酸化炭素を供給するとき、圧縮機(二酸化炭素供給ライン11、11aに接続されているが、図示していない)により昇圧すると共に、調整量の酸素を混入させる。前記酸素は、純酸素でもよいし、空気でもよい。空気を使用するときは、エアフィルターなどを介して空気を供給することが好ましい。
 アンモニアは、アンモニア供給ライン10からリアクター1に供給される途中において、熱交換器5を介して70~90℃程度に予熱された後、エジェクター6によりコンデンサー3から回収されたアンモニアと共にリアクター1に供給される。
 リアクター1で得られた気液混合物は、気液混合物ライン12からストリッパー2の頂部に送られる。ストリッパー2は、リアクター1で生成させた尿素合成液を加熱することによって、未反応のアンモニアと未反応の二酸化炭素を含む混合ガスを前記尿素合成液から分離するための装置である。
 ストリッパー2は例えば炭素鋼からなるものであり、内壁面に相当する部分には二相系ステンレス鋼からなる内張層が形成されている。このためストリッパー2は、超音波肉厚測定器により外部から肉厚を測定することはできない。
 ストリッパー2の下部からは、二酸化炭素供給ライン11、11bから、ストリッピング剤として機能する二酸化炭素ガスが供給される。ストリッパー2は、図示していない加熱装置により加熱され、内部が昇温できるようになっている。
 ストリッパー2における運転条件は、上記したとおり、特許第3987607号公報の図3に示す尿素製造プラントを使用した場合と同じにすることができ、例えば圧力130~250バール(13,000~25,000kPa)、好ましくは140~200バール(14,000~20,000kPa)、温度160~200℃が好ましい。
 ストリッパー2では、加熱とストリッピング剤として機能する二酸化炭素の導入によって、気液混合物中のアンモニウムカーバメートはアンモニアと二酸化炭素に分解され、未反応のアンモニア、二酸化炭素、イナートガス、水(水蒸気)の高温混合ガスとして返送ガスライン14からコンデンサー3の底部に送られる。
 気液混合物中の尿素、分解されなかった微量のアンモニウムカーバメート、分離されなかったアンモニア、二酸化炭素などは、ストリッパー2の底部の尿素回収ライン13から回収される。尿素回収ライン13から回収された尿素は後工程(低圧分解工程)でさらに精製処理されて純度が高められ、残留した微量のアンモニウムカーバメートは分解処理されてアンモニアと二酸化炭素を含む低温のリサイクル液(未反応のアンモニアと二酸化炭素も含む)となり、リサイクルライン17からコンデンサー3の頂部(スクラバー)に吸収媒体として送られる。
 コンデンサー3は、ストリッパー2で得られる混合ガスの少なくとも一部を吸収媒体に吸収させて凝縮させ、この凝縮の際に生じる熱を用いて低圧スチームを発生させるための装置である。コンデンサー3の底部に供給された高温状態の混合ガスに含まれているアンモニアは、冷却されて凝縮された後、エジェクター6による吸引作用によって、ダウンパイプ15から原料アンモニア供給ライン10に送られ、尿素製造原料として再利用される。
 コンデンサー3の底部に供給された高温状態のイナートガスと同伴する一部のアンモニア、二酸化炭素、水(水蒸気)は、冷却されて低温ガスとして排気ライン16から排出される過程で吸収媒体と接触して、アンモニア、二酸化炭素は吸収除去され、イナートガスは排気ライン16から排出される。
 コンデンサー3は例えば炭素鋼からなるものであり、内壁面に相当する部分には二相系ステンレス鋼からなる内張層が形成されている。このためコンデンサー3は、超音波肉厚測定器により外部から肉厚を測定することはできない。
 コンデンサー3内には、冷却水ライン21から冷却水が導入され、内部で熱交換して気化された水蒸気は水蒸気ライン22から採取され、高温の水蒸気として再利用される。コンデンサー3の運転条件は、上記したとおり、特許第3987607号公報の図3に示す尿素製造プラントを使用した場合と同じにすることができ、例えば圧力140~250バール(14,000~25,000kPa)、温度130~250℃(好ましくは170~190℃)であり、N/Cは2.5~3.5、H/Cは1.0以下、滞留時間は10~30分が好ましい。
 上記した各ラインとしては、オーステナイト系ステンレス鋼(単相)のパイプまたは二相系ステンレス鋼(オーステナイト-フェライト二相系ステンレス鋼)のパイプを使用することができるが、図1に示す尿素プラントの例では、超音波肉厚測定器による肉厚測定部位30~37がある各ラインは、オーステナイト系ステンレス鋼のパイプからなるものである。
 オーステナイト系ステンレス鋼としては、例えばS31603(316L SS)を使用することができ、二相系ステンレス鋼としては、例えば25Cr系二相ステンレス鋼(S31260)、28Cr系二相ステンレス鋼(S32808:DP28W)を使用することができる。各ラインは、単一材からなるものであるため、超音波肉厚測定器により外部から肉厚を測定することができる。
 図1に示す尿素製造プラントにおける尿素の製造過程では、アンモニアと二酸化炭素を反応させたときに金属腐食性の大きなアンモニウムカーバメートが副生することによって、リアクター1、ストリッパー2、コンデンサー3の内壁面を腐食させたり、各ラインの内壁面を腐食させたりすることが知られている。
 本発明の製造方法では、原料二酸化炭素中に酸素を混入させてステンレス鋼の表面に不動態皮膜を形成させることで、アンモニウムカーバメートとステンレス鋼の接触を抑制し、ステンレス鋼の腐食を抑制している。なお、オーステナイト系ステンレス鋼は、二相系ステンレス鋼と比べると不動態皮膜が形成するためにより多くの酸素が必要となるという性質を持っている。しかし、原料二酸化炭素中の酸素濃度が高すぎると、リアクター1内部とコンデンサー3内部の温度を十分に上昇させることができず、反応速度も大きくできないため、尿素の反応収率が低下し(収量が低下し)、前記酸素濃度が低すぎるとステンレス鋼の腐食が過度に進行することになる。
 なお、WO2014/192823の図5には、ガス相中の酸素濃度(横軸)と腐食速度(縦軸)の関係が示されており、オーステナイト系ステンレス鋼(S31603)は、25Cr系二相ステンレス鋼(S31260)および28Cr系二相ステンレス鋼(S32808)と比べると不動態皮膜が形成され難いため、酸素濃度が低いと腐食速度が大きくなること、いずれのステンレス鋼も酸素濃度を増加させると不動態皮膜が形成されるため、腐食速度が小さくなることが示されている。
 本発明の製造方法では、下記の制御方法(A)~(C)のいずれか一つの制御方法、いずれか二つの制御方法、または三つの制御方法を実施することが好ましい。
 制御方法(A)
 制御方法(A)は、尿素製造方法において、製造原料である二酸化炭素に酸素を加えて供給することで複数の処理装置(リアクター1、ストリッパー2、コンデンサー3を含む)および複数本のラインの内壁面に不動態皮膜を形成させると共に、オーステナイト系ステンレス鋼からなるラインの肉厚を連続的に測定し、肉厚の測定値に応じて酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法である。
 図1に示す尿素製造プラントの例では、例えば肉厚測定部位30~37における各ラインの運転中の厚さt2を超音波肉厚測定器により連続的に測定することで、次式:s=(t1-t2)/(運転時間)(t1は、運転する前の肉厚測定部位30~37における各ラインの初期厚さを示す)から腐食速度s(mm/year)を求める。
 各ラインの初期厚さt1は分かっており(測定値または規格値)、各ラインの運転後の厚さt2との差を運転時間で除した値が腐食速度sとなるから、運転中に各ラインの厚さt2を連続的に測定することで腐食速度sの変化を連続的に確認できるようになる。
 このため、制御方法(A)の例として、腐食速度sが大きくなりすぎたら酸素供給量(空気を使用するときは酸素換算量の空気量)を増加させ、腐食速度sが十分に小さければ酸素供給量を減少させることで、尿素の反応収率の増減幅ができるだけ小さくなるように抑制することができるようになるため、安定した反応収率で尿素を製造できるようになる。
 図1に示す尿素製造プラントを運転するときの各ラインにおける腐食速度sは、尿素の反応収率との関係からは、0.2mm/year以下に制御されていることが好ましく、0.15mm/year以下に制御されていることがより好ましい。
 制御方法(B)
 制御方法(B)は、尿素またはアンモニア中に溶存している鉄、クロムまたはニッケルの濃度と運転温度を測定し、濃度と運転温度の測定値に応じて酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法である。
 図1に示す尿素製造プラントの例では、例えばサンプリング位置40~42においてサンプリングをすることができる。サンプリング位置40では、例えば気液混合物ライン12を流れる尿素、反応中間体であるアンモニウムカーバメート、未反応ガス(アンモニアと二酸化炭素)を含む気液混合物をサンプリングし、併せて温度を測定した後、サンプル中の鉄、クロムまたはニッケルの各イオン濃度を測定する。
 サンプリング位置41では、例えば尿素回収ライン13を流れる尿素、微量のアンモニウムカーバメートなどをサンプリングし、併せて温度を測定した後、サンプル中の鉄、クロムおよびニッケルの各イオン濃度を測定する。
 サンプリング位置42では、例えばダウンパイプ15を流れるアンモニアを含む液体をサンプリングし、併せて温度を測定した後、サンプル中の鉄、クロムまたはニッケルの各イオン濃度を測定する。
 測定の結果、サンプル中の鉄、クロムおよびニッケルの各イオン濃度が高いときは、不動態皮膜の形成が不十分で、腐食が進行していることになり、サンプル中の鉄、クロムまたはニッケルの各イオン濃度が低いときは、不動態皮膜の形成が十分で、腐食が進行していないことになる。測定対象となる鉄、クロムまたはニッケルのイオンは、いずれか一つでもよいし、いずれか二つの組み合わせでもよいし、三つ全てでもよい。また測定の結果、サンプリング位置の温度が高いときは、腐食の進行が速くなることになり、サンプリング位置の温度が低いときは、腐食の進行が遅くなることになる。
 制御方法(B)を実施するときは、尿素製造プラントの複数箇所にてサンプリングし、前記複数のサンプリング箇所の運転温度を測定することが好ましい。サンプリング箇所(温度測定箇所)は特に制限されるものではなく、複数箇所(好ましくは3箇所以上)を選択することができ、例えば、リアクター1の出口側ライン(気液混合物ライン12)、ストリッパー2の出口側ライン(尿素回収ライン13)、コンデンサー3の出口側ライン(ダウンパイプ15)が好ましい。
 なお、運転温度はそれぞれのサンプリング箇所の近傍のリアクター1、ストリッパー2、コンデンサー3の機器内部の温度を測定することも好ましい。温度測定は、熱電対や測温抵抗体などの公知の温度計を用いて測定することができる。
 このため、制御方法(B)として、
 鉄、クロムおよびニッケルの濃度が高く、サンプリング位置の温度が高いときは酸素供給量を増加させて不動態皮膜を形成させる(制御方法(B)の第1形態)、
 鉄、クロムおよびニッケルの濃度が低く、サンプリング位置の温度が低いときは酸素供給量を減少させる(制御方法(B)の第2形態)、
 鉄、クロムおよびニッケルの濃度が高く、サンプリング位置の温度が低いときは酸素供給量を増加させて(但し、第1形態よりも増加量は少なくする)不動態皮膜を形成させる(制御方法(B)の第3形態)、
 鉄、クロムおよびニッケルの濃度が低く、サンプリング位置の温度が高いときは酸素供給量を減少(但し、第2形態よりも減少量は少なくする)させる(制御方法(B)の第4形態)のいずれかを実施することで、尿素の反応収率の増減幅を抑制することができるようになるため、安定した反応収率で尿素を製造できるようになる。
 制御方法(C)
 制御方法(C)は、複数の処理装置(リアクター、ストリッパー、コンデンサー)の運転圧力とそれぞれの運転温度、原料として導入される二酸化炭素の流量、原料二酸化炭素中の酸素量、原料として導入されるアンモニアの流量を測定することで、複数の処理装置のそれぞれの腐食速度と、複数の処理装置を接続する複数のラインの腐食速度を算定して、酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法である。
 リアクター1の運転温度は、例えばリアクター1の上部(好ましくは頂部付近)の測定部位(測定器)51、あるいは下部の測定部位(測定器)54において測定することができる。ストリッパー2の運転温度は、例えばストリッパー2の上部(好ましくは頂部付近)の測定部位(測定器)52、あるいは下部の測定部位(測定器)55において測定することができる。コンデンサー3の運転温度は、例えばコンデンサー3の上部(好ましくは頂部付近)の測定部位(測定器)53、あるいは下部の測定部位(測定器)56において測定することができる。
 リアクター1、ストリッパー2、コンデンサー3の圧力はほぼ同じである。これらの圧力は例えばライン11bもしくは不図示のコンデンサー3へのアンモニアのインジェクションラインで測定することができる。
 原料として導入される二酸化炭素の流量は、例えば二酸化炭素供給ライン11、11aにおいて測定することができる。原料二酸化炭素中の酸素量は、リアクター1に二酸化炭素を供給するとき、圧縮機により昇圧すると共に調整量の酸素を混入させるため、例えば圧縮機に導入する空気量から算出することができる。原料として導入されるアンモニアの流量は、例えばアンモニア供給ライン10において測定することができる。
 リアクター1、ストリッパー2およびコンデンサー3のそれぞれの腐食速度、リアクター1、ストリッパー2およびコンデンサー3を接続する複数のライン(気液混合物ライン12、返送ガスライン14、ダウンパイプ15)の腐食速度は、上記の測定データである、運転温度、運転圧力、二酸化炭素の流量、二酸化炭素中の酸素濃度、アンモニアの流量から、次のようにして求めることができる。(A)の制御方法における測定データと腐食速度の関係をベースとして、運転温度が高くなるほど腐食速度が大きくなること、アンモニウムカーバメート濃度が高くなるほど腐食速度が大きくなること、二酸化炭素中の酸素濃度が高くなるほど腐食速度が小さくなることを考慮して求めることができる。
 本発明の尿素の製造方法のさらに好ましい実施形態を図2により説明する。図2に示す実施形態は、制御方法(A)、制御方法(B)および制御方法(C)をこの順序で実施する。
 段階(1)において、例えば図1に示す製造フローにより尿素の製造を開始する。尿素の製造開始後、酸素の供給量を調整することで腐食速度と尿素の反応収率を制御するための制御方法(A)~(C)を実施する。
 段階(2)では、制御方法(A)により原料二酸化炭素中の空気(酸素)の供給量を増加するか、またはそのまま維持するかを決定する。制御方法(A)において求めた腐食速度が許容値以内であるときは(Yes)、段階(3)に移行する。制御方法(A)において求めた腐食速度が許容値を超えているときは(No)、防食効果を高めるために段階(5)に移行して、原料二酸化炭素中の空気(酸素)の供給量を増加した状態で尿素の製造を継続する。段階(2)において段階(5)に移行して原料二酸化炭素中の空気(酸素)の供給量を増加させたときは、段階(3)以降は実施しない。
 段階(3)では、制御方法(B)により原料二酸化炭素中の空気(酸素)の供給量を増加するか、またはそのまま維持するかを決定する。制御方法(B)において求めた腐食速度が許容値以内であるときは(Yes)、段階(4)に移行する。制御方法(B)において求めた腐食速度が許容値を超えているときは(No)、防食効果を高めるために段階(5)に移行して、原料二酸化炭素中の空気(酸素)の供給量を増加した状態で尿素の製造を継続する。段階(3)において段階(5)に移行して原料二酸化炭素中の空気(酸素)の供給量を増加させたときは、段階(4)以降は実施しない。
 段階(4)では、制御方法(C)により原料二酸化炭素中の空気(酸素)の供給量を増加するか、またはそのまま維持するかを決定する。制御方法(C)において求めた腐食速度が許容値以内であるときは(Yes)、段階(5)に移行する。制御方法(C)において求めた腐食速度が許容値を超えているときは(No)、防食効果を高めるために段階(5)に移行して、原料二酸化炭素中の空気(酸素)の供給量を増加した状態で尿素の製造を継続する。段階(4)において段階(5)に移行して原料二酸化炭素中の空気(酸素)の供給量を増加させたときは、段階(6)以降は実施しない。
 段階(6)では、制御方法(A)~(C)を総合的に評価して、原料二酸化炭素中の空気(酸素)の供給量を減少するか、またはそのまま維持するかを決定する。制御方法(A)~(C)において求めた腐食速度の内、いずれかの腐食速度が許容値以下であるが、許容値に近接する数値であるときは(例えば、腐食速度の許容値の95%を超えている場合)、段階(7)に移行して、原料二酸化炭素中の空気(酸素)の供給量をそのまま維持する。制御方法(A)~(C)において求めた腐食速度がいずれも許容値を大きく下回っているときは(例えば、腐食速度の許容値の95%以下である場合)、段階(8)に移行して、原料二酸化炭素中の空気(酸素)の供給量を減少させる。
 本発明は、上記した各実施形態のほか、次の実施形態も含むものである。
 図1に示す例の尿素製造プラントにおけるリアクター1、ストリッパー2、コンデンサー3などの処理装置は、炭素鋼からなり、内壁面に相当する部分には二相系ステンレス鋼からなる内張層が形成されているものであるため、超音波肉厚測定器により外部から肉厚を測定することはできない。また、リアクター1、ストリッパー2、コンデンサー3などの処理装置は、運転中は高温および高圧状態であり、内部を観察することもできないため、尿素製造プラントの運転中においては前記処理装置の腐食状態を直接確認することはできない。一方、図1に示す各ラインは、単一材のステンレス鋼からなるものであるため、超音波肉厚測定器により外部から肉厚を測定することができるため、腐食状態を確認することができる。
 このため、図1に示す尿素製造プラントの運転中において、運転時におけるリアクター1、ストリッパー2、コンデンサー3などの処理装置の温度、圧力、運転時間などの運転データを取得し、それらのデータの取得に併せて各ラインの肉厚(肉厚測定部位30~37の肉厚)を測定して、関連データとして蓄積しておくことができる。さらに定期的に図1に示す尿素製造プラントの運転を停止して、リアクター1、ストリッパー2、コンデンサー3などの処理装置内部の二相系ステンレス鋼からなる内張層の腐食状態を観察してデータとして蓄積しておくことができる。
 各処理装置の温度、圧力、運転時間などの運転データ、各ラインの肉厚データ、および各処理装置の腐食状態の観察データを対比評価することで、各ラインの肉厚データから各処理装置内部の腐食状態を推定することができるようになる。このようにすることで、尿素製造プラントを連続的に運転した状態のまま、各ラインの肉厚の変化データから各処理装置内部の腐食状態を推定することができるため、尿素製造プラントの運転を停止することなく、各処理装置の交換時期やメンテナンス時期を確認することができるようになり、安定した尿素製造運転ができるようになる。
 なお、この実施形態は、上記した制御方法(A)および制御方法(B)のように酸素供給量(空気を使用するときは酸素換算量の空気量)を増減させるのではなく、尿素の製造原料中に一定量の酸素(空気を使用するときは酸素換算量の空気)を導入した状態で尿素を製造する場合に適しているが、上記した制御方法(A)および制御方法(B)の一方または両方と組み合わせて実施することもできる。
実施例
 実施例1
 オートクレーブ内にて合成した尿素液中にステンレス鋼(28Cr系二相ステンレス鋼;S32808、オーステナイト系ステンレス鋼;S31603)製の試験片をそれぞれ浸漬した。この状態で、オートクレーブに徐々に酸素を導入して、試験片に不動態皮膜が形成された時(Passive Corrosion)の酸素量を測定した。試験温度は、195℃で実施した。結果を図3に示す。
 図3から明らかなとおり、S31603に不動態皮膜を形成させた場合(Passive Corrosion)では、腐食部分は0.1mmとごく僅かであったが、不動態皮膜の形成が不十分な場合(Active Corrosion)の腐食部分は10mmを大きく超えていた。なお、S32808は、S31603と比べ、不働態皮膜の形成に必要となる酸素量が小さいことが、同実験を通じて確認できた。
 この結果から、本発明の尿素の製造方法において、図1に示す尿素プラントを構成する複数の処理装置および複数本のラインの内壁面に不動態皮膜を形成させると共に、尿素またはアンモニア中に溶存している鉄、クロムおよびニッケルの濃度と運転温度を測定し、前記濃度と前記運転温度の測定値に応じて酸素の供給量を調整することで腐食速度を制御できることが確認された。さらに尿素の製造過程において、酸素量(空気量)が多いと尿素の反応収率が低下することは周知の事実であるから、前記酸素の供給量を調整して腐食速度を制御することと併せて、尿素の反応収率も制御できることが確認された。
 実施例2
 図1に示す尿素製造プラントの製造フローにより尿素を製造する過程において、下記の制御方法(A)、(B)および(C)を実施した。
 制御方法(A)
 尿素の製造運転開始から60日後において、ストリッパー2とコンデンサー3をつなぐ、S31603系汎用ステンレス鋼(オーステナイト系ステンレス鋼)からなる返送ガスライン14(初期肉厚23.01mm)の肉厚(肉厚測定部位35)を超音波肉厚計(GEセンシング&インスペクション・テクノロジーズ株式会社の超音波厚さ計、小型・シンプル操作・高性能 超音波厚さ計DM5Eシリーズ)にて測定した。前記測定肉厚と初期肉厚の差と経過時間から求められる腐食速度は0.12mm/yearであった。運転開始から測定時点の間における原料二酸化炭素中に供給された酸素濃度は5500ppm、運転温度(平均値)は183℃であった。
 得られた腐食速度から、返送ガスライン14の内壁面には、不働態皮膜が形成されていると判断した。これは図2に示す実施形態において、段階(2)が「Yes」であることを示すから、段階(3)に移行する。
 制御方法(B)
 ストリッパー2の出口(サンプリング位置41)における溶液中の鉄濃度は0.8ppm、その時の運転温度は171℃であった。得られた鉄の濃度から、サンプリング位置41よりも上流に位置する、リアクター1、気液混合物ライン12、ストリッパー2のそれぞれの内壁面には、不働態皮膜が形成されていると判断した。これは図2に示す実施形態において、段階(3)が「Yes」であることを示すから、段階(4)に移行する。
 制御方法(C)
 測定部位51~53の運転温度と運転圧力は、次のとおりであった。
 測定部位51:温度186℃、圧力151kg/cm
 測定部位52:温度188℃、圧力151kg/cm
 測定部位53:温度180℃、圧力151kg/cm
 二酸化炭素の流量(二酸化炭素供給ライン11、11aにおいて測定)は、45000Nm/hであった。原料二酸化炭素中の酸素量は250Nm/hであった(圧縮機に導入する空気量から算出)。アンモニアの流量(アンモニア供給ライン10にて測定)は69t/hであった。以上の測定結果と制御方法(A)における腐食速度を含むデータから、各装置および各ラインの腐食速度を以下のように算出した。
 (i)コンデンサー3(内壁面がS31603系汎用ステンレス鋼):0.09mm/year、温度(180℃)
 (ii)ストリッパー2(内壁面が二相系ステンレス鋼):0.10mm/year、温度(188℃)
 (iii)リアクター1(内壁面がS31603系汎用ステンレス鋼):0.14mm/year、温度(186℃)
 (iv)ストリッパー2からコンデンサー3への返送ガスライン14(内壁面がS31603系汎用ステンレス鋼):0.16mm/year、温度(188℃)
 (v)コンデンサー3からリアクター1へのダウンパイプ15(内壁面がS31603系汎用ステンレス鋼):0.09mm/year、温度(180℃)
 (vi)リアクター1からストリッパー2への気液混合物ライン12(内壁面がS31603系汎用ステンレス鋼):0.14mm/year、温度(186℃)
 (i)~(vi)では、いずれの場合も原料二酸化炭素中に供給された酸素濃度は5525ppmであり、得られた腐食速度から、各機器の内壁面、各ラインの内壁面には不働態皮膜が形成されていると判断された。これは図2に示す実施形態において、段階(4)が「Yes」であることを示すから、段階(6)に移行する。その結果、腐食速度が許容値未満であり酸素量を減らせると判断し、原料二酸化炭素中の酸素濃度を4500ppmまで減少させた(図2に示す段階(6)→段階(8))。
産業上の利用可能性
 本発明の尿素の製造方法は、公知の尿素製造プラントを使用して、尿素を製造する際の前記プラント寿命を延長しながら、反応収率良く尿素を製造することができるため、プラントの運転コストおよび尿素の製造コストを低下できる製造方法として利用することができる。
符号の説明
 1 リアクター
 2 ストリッパー
 3 コンデンサー
 5 熱交換器
 6 エジェクター
 30~37 肉厚測定部位
 40~42 サンプリング位置
 51~56 温度測定部位

Claims (4)

  1.  尿素製造プラントにおいてアンモニアと二酸化炭素を含む製造原料から尿素を製造する方法であって、
     前記尿素製造プラントが、リアクター、ストリッパーおよびコンデンサーを含む複数の処理装置および前記複数の処理装置を接続する複数本のラインを有しているものであり、
     前記複数の処理装置および前記複数本のラインの内壁面がステンレス鋼からなり、前記複数本のラインのうち少なくとも一部がオーステナイト系ステンレス鋼からなるものであり、
     前記尿素製造方法において、前記製造原料である二酸化炭素に酸素を加えて供給することで前記複数の処理装置および前記複数本のラインの内壁面に不動態皮膜を形成させると共に、オーステナイト系ステンレス鋼からなる前記ラインの肉厚を連続的に測定し、前記肉厚の測定値に応じて前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する、尿素の製造方法。
  2.  尿素製造プラントにおいてアンモニアと二酸化炭素を含む製造原料から尿素を製造する方法であって、
     前記尿素製造プラントが、リアクター、ストリッパーおよびコンデンサーを含む複数の処理装置および前記複数の処理装置を接続する複数本のラインを有しているものであり、
     前記複数の処理装置および前記複数本のラインの内壁面がステンレス鋼からなり、前記複数本のラインのうち少なくとも一部がオーステナイト系ステンレス鋼からなるものであり、
     前記尿素製造方法において、前記製造原料である二酸化炭素に酸素を加えて供給することで前記複数の処理装置および前記複数本のラインの内壁面に不動態皮膜を形成させると共に、尿素またはアンモニア中に溶存している鉄、クロムまたはニッケルの濃度と運転温度を測定し、前記濃度と前記運転温度の測定値に応じて前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する、尿素の製造方法。 
  3.  尿素製造プラントにおいてアンモニアと二酸化炭素を含む製造原料から尿素を製造する方法であって、
     前記尿素製造プラントが、
     二酸化炭素とアンモニアを原料として尿素合成液を生成させるためのリアクターと、
     前記リアクターで生成させた尿素合成液を加熱することによって、未反応のアンモニアと未反応の二酸化炭素を含む混合ガスを前記尿素合成液から分離するためのストリッパーと、
     前記ストリッパーで得られる前記混合ガスの少なくとも一部を吸収媒体に吸収させて凝縮させ、この凝縮の際に生じる熱を用いて低圧スチームを発生させるコンデンサーを含む複数の処理装置と、前記複数の処理装置を接続する複数本のラインを有しているものであり、
     前記複数の処理装置および前記複数本のラインの内壁面がステンレス鋼からなり、前記複数本のラインのうち少なくとも一部がオーステナイト系ステンレス鋼からなるものであり、
     下記の制御方法(A)~(C)のいずれか一つの制御方法、いずれか二つの制御方法、または三つの制御方法を実施する、尿素の製造方法。
     (A)前記尿素製造方法において、前記製造原料である二酸化炭素に酸素を加えて供給することで前記複数の処理装置および前記複数本のラインの内壁面に不動態皮膜を形成させると共に、オーステナイト系ステンレス鋼からなる前記ラインの肉厚を連続的に測定し、前記肉厚の測定値に応じて前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法。
     (B)尿素またはアンモニア中に溶存している鉄、クロムまたはニッケルの濃度と運転温度を測定し、前記濃度と前記運転温度の測定値に応じて前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法。
     (C)前記複数の処理装置の運転圧力とそれぞれの運転温度、前記原料として導入される二酸化炭素の流量、前記原料二酸化炭素中の酸素量、前記原料として導入されるアンモニアの流量を測定することで、前記複数の処理装置のそれぞれの腐食速度と、前記複数の処理装置を接続する複数のラインの腐食速度を算定して、前記酸素の供給量を調整することで腐食速度と尿素の反応収率を制御する制御方法。
  4.  前記制御方法(A)、前記制御方法(B)および前記制御方法(C)をこの順序で実施するとき、
     前記制御方法(A)における腐食速度から原料二酸化炭素中の酸素供給量を増加するかどうかを決定し、前記酸素供給量を増加したときは、前記制御方法(B)および前記制御方法(C)は実施せず、前記酸素供給量を増加しなかったときは、前記制御方法(B)に移行し、
     前記制御方法(B)に移行したときは、前記制御方法(B)における腐食速度から原料二酸化炭素中の酸素供給量を増加するかどうかを決定し、前記酸素供給量を増加したときは、前記制御方法(C)は実施せず、前記酸素供給量を増加しなかったときは、前記制御方法(C)に移行し、
     前記制御方法(C)に移行したときは、前記制御方法(C)における腐食速度から原料二酸化炭素中の酸素供給量を増加するかどうかを決定し、前記酸素供給量を増加したときはそれ以降の実施はなく、前記酸素供給量を増加しなかったときは、制御方法(A)~(C)のそれぞれにおける腐食速度から原料二酸化炭素中の酸素供給量を現状維持するか、または原料二酸化炭素中の酸素供給量を減少させるかを決定する、請求項3記載の尿素の製造方法。
PCT/JP2019/014847 2018-04-13 2019-04-03 尿素の製造方法 WO2019198600A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020513226A JP7279020B2 (ja) 2018-04-13 2019-04-03 尿素の製造方法
CN201980025641.3A CN112154138A (zh) 2018-04-13 2019-04-03 尿素的制造方法
EA202092468A EA202092468A1 (ru) 2018-04-13 2019-04-03 Способ получения мочевины
US17/046,432 US20210107866A1 (en) 2018-04-13 2019-04-03 Urea manufacturing method
CA3094945A CA3094945A1 (en) 2018-04-13 2019-04-03 Urea manufacturing method
GB2014758.3A GB2586370B (en) 2018-04-13 2019-04-03 Urea manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018077244 2018-04-13
JP2018-077244 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019198600A1 true WO2019198600A1 (ja) 2019-10-17

Family

ID=68164129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014847 WO2019198600A1 (ja) 2018-04-13 2019-04-03 尿素の製造方法

Country Status (7)

Country Link
US (1) US20210107866A1 (ja)
JP (1) JP7279020B2 (ja)
CN (1) CN112154138A (ja)
CA (1) CA3094945A1 (ja)
EA (1) EA202092468A1 (ja)
GB (1) GB2586370B (ja)
WO (1) WO2019198600A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145821A1 (ja) * 2022-01-26 2023-08-03 東洋エンジニアリング株式会社 尿素合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163250A (ja) * 2002-11-13 2004-06-10 Shinryo Corp 超音波による配管劣化診断方法
JP2005249550A (ja) * 2004-03-03 2005-09-15 Nippon Kogyo Kensa Kk 二探触子法による腐食及び減肉の検査方法
WO2014192823A1 (ja) * 2013-05-28 2014-12-04 東洋エンジニアリング株式会社 尿素合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096151B1 (en) * 1982-06-03 1986-07-23 Montedison S.p.A. Method for avoiding the corrosion of strippers in urea manufacturing plants
NL1013394C2 (nl) * 1999-10-26 2001-05-01 Dsm Nv Werkwijze voor de bereiding van ureum.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163250A (ja) * 2002-11-13 2004-06-10 Shinryo Corp 超音波による配管劣化診断方法
JP2005249550A (ja) * 2004-03-03 2005-09-15 Nippon Kogyo Kensa Kk 二探触子法による腐食及び減肉の検査方法
WO2014192823A1 (ja) * 2013-05-28 2014-12-04 東洋エンジニアリング株式会社 尿素合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OSOZAWA KOICHIRO: "Characteristics of Stainless Steel and Main Issues in Regard to Its Use", CORROSION CENTER NEWS, vol. 48, January 2009 (2009-01-01), pages 1 - 18 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145821A1 (ja) * 2022-01-26 2023-08-03 東洋エンジニアリング株式会社 尿素合成方法

Also Published As

Publication number Publication date
JPWO2019198600A1 (ja) 2021-05-13
CN112154138A (zh) 2020-12-29
GB2586370B (en) 2022-11-23
US20210107866A1 (en) 2021-04-15
JP7279020B2 (ja) 2023-05-22
GB2586370A (en) 2021-02-17
GB202014758D0 (en) 2020-11-04
CA3094945A1 (en) 2019-10-17
EA202092468A1 (ru) 2021-01-20

Similar Documents

Publication Publication Date Title
EP1728783B1 (en) Method and apparatus for synthesizing urea
JP7094453B2 (ja) 尿素製造プロセス及び低圧回収部における熱統合を有するプラント
TWI406813B (zh) 由尿素製造氨之改良方法
JPS6036310A (ja) 硫酸の製造方法
KR20150042797A (ko) 공기 분사에 의한 암모니아 추출에서의 부식 제어
WO2014192823A1 (ja) 尿素合成方法
AU2020311257B2 (en) Ferritic steel parts in urea plants
RU2420451C2 (ru) Пассивация металла
WO2019198600A1 (ja) 尿素の製造方法
UA123549C2 (uk) Контролювання кількості біурету, що виробляється під час виробництва карбаміду
CN108290080B (zh) 利用高温汽提的尿素工艺
CN104619641B (zh) 利用排出控制腐蚀的氨的回收
JPH03103311A (ja) 硫化水素の製造方法およびその製造装置
EA019803B1 (ru) Способ получения мочевины
EA040025B1 (ru) Способ получения мочевины
JPS5827350B2 (ja) キンゾクフシヨクボウシザイ
EA045846B1 (ru) Детали из ферритной стали в установках по производству карбамида
JP2015042600A (ja) トリクロロシラン製造方法
WO2023158314A1 (en) Low biuret urea production
CN113952752A (zh) 酸性水汽提装置塔顶防腐蚀冷凝方法
CN118742536A (zh) 尿素合成方法
MXPA06013105A (es) Proceso para la produccion de urea y planta relacionada.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513226

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202014758

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190403

ENP Entry into the national phase

Ref document number: 3094945

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 139950140003006049

Country of ref document: IR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784361

Country of ref document: EP

Kind code of ref document: A1