WO2019198450A1 - 集光型太陽光発電モジュール及び集光型太陽光発電装置 - Google Patents

集光型太陽光発電モジュール及び集光型太陽光発電装置 Download PDF

Info

Publication number
WO2019198450A1
WO2019198450A1 PCT/JP2019/011750 JP2019011750W WO2019198450A1 WO 2019198450 A1 WO2019198450 A1 WO 2019198450A1 JP 2019011750 W JP2019011750 W JP 2019011750W WO 2019198450 A1 WO2019198450 A1 WO 2019198450A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solar power
concentrating solar
light
lens
Prior art date
Application number
PCT/JP2019/011750
Other languages
English (en)
French (fr)
Inventor
永井 陽一
和正 鳥谷
宗譜 上山
充 稲垣
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019198450A1 publication Critical patent/WO2019198450A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to a concentrating solar power generation module and a concentrating solar power generation apparatus.
  • This application claims priority based on Japanese Patent Application No. 2018-076134 filed on Apr. 11, 2018, and incorporates all the content described in the above Japanese application.
  • the concentrating solar power generation apparatus has a basic unit of an optical system that collects sunlight by a condensing lens and makes it enter a small cell for power generation as a minimum unit.
  • a large number of modules in which the basic configuration is arranged in a matrix form in a housing are arranged to form an array (panel), which is a single concentrating solar power generation device.
  • the tracking platform on which the array is mounted is supported by a support so that it can be driven in two axes of azimuth and elevation (see, for example, Patent Document 1).
  • a spherical secondary lens can be arranged slightly above the cell, and light can be guided to the cell by entering the secondary lens even if the light is slightly shifted. Techniques have been proposed (see, for example, Patent Documents 2 and 3).
  • JP 2014-2226025 A US Patent Application Publication US2010 / 0236603A1 Japanese Patent Laid-Open No. 2014-63779
  • the concentrating solar power generation module of the present disclosure is a concentrating solar power generation module configured by arranging a plurality of concentrating solar power generation units that condense sunlight to generate electric power in a casing.
  • Each of the concentrating solar power generation units includes a primary lens that condenses incident sunlight, a flexible printed wiring board provided on the bottom surface of the housing, and the sun on the flexible printed wiring board.
  • a cell that is provided at a position that coincides with the optical axis of the primary lens when facing directly, performs photoelectric conversion on the collected light, and is located between the primary lens and the cell on the optical axis, and the cell A secondary lens provided at a predetermined position that forms a gap between, a support portion that surrounds the cell and supports the secondary lens at the predetermined position, and the secondary lens inside the support portion,
  • the end surface is widened outside the secondary lens, and the end surface is a reflecting surface that reflects at least a part of the received light.
  • FIG. 1 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side, and shows the solar power generation device in a completed state.
  • FIG. 2 is a perspective view of one example of a concentrating solar power generation device as viewed from the light receiving surface side, and shows the solar power generation device in the middle of assembly.
  • FIG. 3 is a perspective view showing the posture of the array facing the sun as an example.
  • FIG. 4 is a perspective view showing an example of the configuration of the concentrating solar power generation module.
  • FIG. 5 is a cross-sectional view illustrating a configuration example of the light receiving unit of the concentrating solar power generation module as the first embodiment.
  • FIG. 6 is a cross-sectional view showing an example of a concentrating solar power generation unit as a basic configuration of a concentrating power generation optical system constituting the module.
  • FIG. 7 is a cross-sectional view of a concentrating solar power generation unit similar to that in FIG. 6, but shows an example of a state in which a slight tracking shift has occurred.
  • FIG. 8 is a diagram in which a part of the light path is added to the cross-sectional view similar to FIG. 5.
  • FIG. 9 is a cross-sectional view illustrating a configuration example of the light receiving unit of the concentrating solar power generation module as the second embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration example of the light receiving unit of the concentrating solar power generation module as the third embodiment.
  • FIG. 11 is a cross-sectional view illustrating a configuration example of the light receiving unit of the concentrating solar power generation module as the fourth embodiment.
  • FIG. 12 is a cross-sectional view illustrating a configuration example of the light receiving unit of the concentrating solar power generation module as the fifth embodiment.
  • FIG. 13 is sectional drawing which shows the structural example of the light-receiving part of the concentrating solar power generation module as 6th Embodiment.
  • FIG. 14 is a cross-sectional view illustrating a configuration example of the light receiving unit of the concentrating solar power generation module as the seventh embodiment.
  • the conventional concentrating solar power generation has a problem of how to make an OFF-AXIS countermeasure easy and reliable.
  • an OFF-AXIS measure can be taken more easily, reliably and inexpensively in manufacturing.
  • the gist of the embodiment includes at least the following.
  • This is a concentrating solar power generation module in which a plurality of concentrating solar power generation units that condense sunlight to generate electric power are arranged in a housing, and the concentrating solar
  • Each of the photovoltaic units has a primary lens that collects incident sunlight, a flexible printed wiring board provided on the bottom surface of the casing, and the flexible printed wiring board when facing the sun.
  • a cell is provided at a position that coincides with the optical axis of the primary lens and performs photoelectric conversion on the collected light, and a gap is formed between the primary lens and the cell on the optical axis.
  • a secondary lens provided at a predetermined position, a support portion surrounding the cell and supporting the secondary lens at the predetermined position, and between the secondary lens and the cell inside the support portion.
  • the concentrating solar power generation module has an expanded form, and the end surface is a reflecting surface that reflects at least part of the received light.
  • the concentrating solar power generation module configured as described above, when there is no tracking error of the sun, the light condensed by the primary lens passes through the secondary lens and is guided to the cell.
  • a tracking shift occurs such that the collected light deviates from the secondary lens
  • sunlight that does not enter the secondary lens is received by the end face of the support portion.
  • the end face reflects at least a part of the received light and suppresses the incidence and transmission of the light to the support portion. Therefore, damage to the cell periphery due to the OFF-AXIS sunlight can be suppressed.
  • Such a support portion can be easily and inexpensively manufactured, and can be disposed at a position closer to the cell than the metal, and thus is suitable for light shielding during OFF-AXIS. In this way, in the concentrating solar power generation, the OFF-AXIS measure can be taken more easily, reliably and inexpensively in production.
  • the end surface is a rough surface that scatters received light.
  • Such an end face can suppress incidence and transmission by scattering (irregular reflection) of light, and can suppress damage to the periphery of the cell.
  • the end face of the glass support portion can be easily roughened by cutting naturally or by roughening.
  • the secondary lens is a ball lens
  • the support portion has a cylindrical shape.
  • a large number of support portions can be easily manufactured by, for example, cutting glass tubes into a circular shape so as to have a predetermined length in the axial direction.
  • the end surface which is a cut surface, is naturally roughened by cutting with a tool.
  • the secondary lens is a ball lens
  • the support portion has a cylindrical support base and a flange at an end of the support base.
  • a shielding portion whose end surface facing the primary lens is a rough surface that scatters the received light.
  • the bypass diode around the cell can also be shielded and protected from the OFF-AXIS sunlight by the shielding portion.
  • At least one of the outer peripheral surface and the inner peripheral surface of the support base may be a rough surface that scatters received light. In this case, it is possible to contribute to the light guide to the cell by reflecting the light scattered in the secondary lens and emitted in the direction not to the cell by the support unit.
  • the sealing portion is formed of a silicone resin having a refractive index smaller than that of the glass of the support portion. Is preferred. In this case, the light scattered and emitted from the secondary lens and impinging on the support part is suppressed from entering the support part and is easily reflected. Therefore, the power generation efficiency can be further increased by guiding at least part of the reflected light to the cell.
  • the sealing portion is obtained by filling the space by mixing glass microbeads with resin. Also good.
  • the sealing part in this case is superior to the ultraviolet ray over time than the silicone resin.
  • the secondary lens and the support portion may be glass bodies formed integrally with each other.
  • the secondary lens and the support part are simplified as a single part, and the mutual positional relationship is fixed, so that more stable quality can be achieved.
  • a concentrating solar power generation apparatus is configured by arranging a plurality of the concentrating solar power generation modules of (1) on a rack that tracks the sun.
  • the concentrating solar power generation apparatus configured as described above is easier to manufacture, and can take an OFF-AXIS measure more reliably and inexpensively.
  • FIG. 1 and FIG. 2 are perspective views of one example of a concentrating solar power generation device as viewed from the light receiving surface side.
  • FIG. 1 shows the solar power generation device 100 in a completed state
  • FIG. 2 shows the solar power generation device 100 in a state during assembly.
  • FIG. 2 shows a state in which the framework of the tracking base 25 can be seen in the right half, and shows a state in which a concentrating solar power generation module (hereinafter also simply referred to as a module) 1M is attached in the left half.
  • a module 1M concentrating solar power generation module
  • this solar power generation device 100 includes an array (the entire solar power generation panel) 1 having a shape that is continuous on the upper side and divided into left and right on the lower side, and a support device 2.
  • the array 1 is configured by aligning modules 1M on a tracking base 25 (FIG. 2) on the back side.
  • the support device 2 includes a column 21, a base 22, a biaxial drive unit 23, and a horizontal shaft 24 (FIG. 2) that serves as a drive shaft.
  • the column 21 has a lower end fixed to the foundation 22 and a biaxial drive unit 23 at the upper end.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the support column 21 is vertical
  • the horizontal shaft 24 (FIG. 2) is horizontal.
  • the biaxial drive unit 23 can rotate the horizontal axis 24 in two directions, that is, an azimuth angle (an angle with the column 21 as a central axis) and an elevation angle (an angle with the horizontal axis 24 as a central axis).
  • a reinforcing member 25 a that reinforces the tracking base 25 is attached to the horizontal shaft 24.
  • a plurality of horizontal rails 25b are attached to the reinforcing member 25a. Therefore, if the horizontal axis 24 rotates in the direction of azimuth or elevation, the array 1 also rotates in that direction.
  • any support device that can support the array 1 so as to be movable in two axes may be used.
  • the array 1 is vertical as shown in FIG. 1 usually at dawn and before sunset.
  • the biaxial drive unit 23 operates so that the light-receiving surface of the array 1 is always facing the sun, and the array 1 performs the sun tracking operation.
  • FIG. 3 is a perspective view showing the posture of the array 1 facing the sun as an example.
  • the array 1 is in a horizontal posture with the light receiving surface facing the sun.
  • the light receiving surface of the array 1 is in a horizontal posture with the ground surface facing the ground.
  • FIG. 4 is a perspective view showing an example of the configuration of a concentrating solar power generation module 1M (hereinafter also simply referred to as a module). However, only the flexible printed wiring board 13 is shown on the bottom surface 11b side, and other components are omitted here.
  • the module 1M includes, as an external physical form, for example, a metal or resin-made rectangular flat-bottom case 11 and a light collecting unit 12 attached like a lid thereon. Yes.
  • the condensing unit 12 is configured, for example, by attaching a resin-made primary lens (Fresnel lens) 12f to the back surface of a single light-transmissive glass plate 12a.
  • a resin-made primary lens Resnel lens
  • each of the sections of the illustrated square (14 ⁇ 10 in this example, but the quantity is only an example for explanation) is the primary lens 12f, and converges sunlight on the focal position. be able to.
  • one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing its direction as illustrated.
  • the flexible printed wiring board 13 has a relatively wide portion and a narrow portion.
  • a cell (not shown) is mounted in a wide part. The cell is disposed at a position corresponding to each optical axis of the Fresnel lens 12f.
  • a metal shielding plate 14 is attached between the flexible printed wiring board 13 and the condensing part 12, for example.
  • a square opening 14a similar to the square of the primary lens 12f is formed at a position corresponding to the center of each primary lens 12f. If the array 1 accurately tracks the sun and the incident angle of sunlight on the module 1M is 0 degree, the light collected by the primary lens 12f can pass through the opening 14a. When the tracking is greatly deviated, the collected light is shielded by the shielding plate 14. However, when the tracking deviation is slight, the condensed light passes through the opening 14a.
  • FIG. 5 is a cross-sectional view illustrating a configuration example of the light receiving unit R of the concentrating solar power generation module as the first embodiment. Note that each part shown in FIG. 5 is enlarged as appropriate for convenience of explanation of the structure, and is not necessarily proportional to the actual dimensions (the same applies to FIG. 6 and subsequent figures).
  • the light receiving portion R includes a secondary lens 30, a support portion 31, a package 32, a cell 33, a lead frame (P side) 34, a gold wire 35, a lead frame 36 (N side), and a sealing portion 37. It has.
  • the light receiving portion R is mounted on the flexible printed wiring board 13.
  • a bypass diode is connected in parallel to the cell 33, where the bypass diode is provided is not particularly limited in this embodiment.
  • the secondary lens 30 is, for example, a ball lens.
  • the secondary lens 30 is supported by an upper end inner peripheral edge 31 e of the support portion 31 so that a gap in the optical axis Ax direction is formed between the secondary lens 30 and the cell 33.
  • the support part 31 is, for example, cylindrical and made of glass.
  • the support portion 31 is fixed on the flat package 32.
  • the package 32 is made of resin, and holds the cell 33 together with its lead frames 34 and 36.
  • the output of the cell 33 is drawn out to the lead frame 34 on the P side and to the lead frame 36 via the gold wire 35 on the N side.
  • the sealing portion 37 is a light transmissive silicone resin, and is provided so as to fill a space formed between the secondary lens 30 and the cell 33 inside the support portion 31.
  • the upper end portion of the support portion 31 has a form in which an end surface 31 a is expanded outside the secondary lens 30 with the optical axis Ax as the center.
  • a support part 31 can be manufactured easily and inexpensively by, for example, cutting a glass tube into a ring shape with a predetermined length.
  • the end surface 31a becomes a rough cutting surface, but this is rather convenient. That is, such an end surface 31a reflects (including total reflection and scattering (diffuse reflection)) at least a part of the received light, and suppresses the incidence and transmission of light from the end surface 31a into the support portion 31.
  • the glass of the support portion 31 may basically be either transparent / opaque or colorless / colored. That is, even if it is colorless and transparent, the end face 31a has a certain effect of suppressing incidence and transmission. Moreover, the glass support part 31 has a stable insulating performance that is unlikely to deteriorate over time. Therefore, it is not necessary to secure an insulating distance such as metal, and there is no particular problem even if it is close to the lead frames 34 and 36 and the gold wire 35.
  • FIG. 6 is a cross-sectional view showing an example of a concentrating solar power generation unit 1U as a basic configuration of a concentrating power generation optical system constituting the module 1M.
  • the secondary lens 30 and the cell of the light receiving unit R are placed on the optical axis Ax of the primary lens 12f.
  • the light condensed by the primary lens 12 f passes through the opening 14 a of the shielding plate 14, is taken into the secondary lens 30 of the light receiving unit R, and is guided to the cell 33.
  • FIG. 7 is a cross-sectional view of the concentrating solar power generation unit 1U similar to FIG. 6, but shows an example of a state in which a slight tracking shift has occurred.
  • the shielding plate 14 With a slight tracking shift.
  • Light that has entered the secondary lens 30 is guided to the cell 33, but light that has not fully entered the secondary lens 30 strikes the end surface 31 a of the support portion 31. However, at least a part of the light hitting the end face 31a is reflected or scattered. Therefore, the incidence of light from the end surface 31a into the support portion 31 is suppressed. Even if a certain amount of light enters the support portion 31, the light reaching the package 32 is weakened due to scattering and attenuation inside. Therefore, the package 32 can be prevented from being damaged by the OFF-AXIS light.
  • FIG. 8 is a diagram in which the path of a part of the light Lx is added to the cross-sectional view similar to FIG. In the figure, the light that has entered the secondary lens 30 is basically guided to the cell 33, but the light Lx may be emitted, for example, in the optical path as shown in the figure due to light scattering in the secondary lens 30. .
  • the refractive index of the silicone resin of the sealing part 37 is smaller than the refractive index of the glass of the support part 31, the light Lx becomes difficult to enter the support part 31 and is easily reflected. At least a part of the light reflected by the inner surface of the support portion 31 is guided to the cell 33. In this way, the power generation efficiency can be further improved by guiding at least a part of the light leaking due to scattering to the cell 33 even though the amount is small.
  • FIG. 9 is a cross-sectional view illustrating a configuration example of the light receiving unit R of the concentrating solar power generation module as the second embodiment.
  • the sealing portion 37B of the second embodiment is obtained by pouring light-transmitting glass microbeads into a light-transmitting resin and hardening it.
  • the sealing part 37B in this case is superior to the sealing part 37 (FIG. 5) of the first embodiment over time with respect to ultraviolet rays.
  • FIG. 10 is a cross-sectional view illustrating a configuration example of the light receiving unit R of the concentrating solar power generation module as the third embodiment.
  • the portions other than the upper end portion of the support portion 31 are the same as those in the first embodiment (FIG. 5), the description thereof is omitted.
  • the support part 31 of 3rd Embodiment is a product made from light-transmitting glass, the end surface 31a of an upper end part is a polished glass-like rough surface. The OFF-AXIS light is scattered by the end surface 31 a of the support portion 31 and is prevented from entering the support portion 31.
  • the end surface of the support portion 31 on the side receiving the OFF-AXIS light is a rough surface that scatters the received light.
  • Such an end surface can scatter light and suppress the incidence and transmission of light into the support portion 31 and suppress damage to the periphery of the cell 33.
  • the processing to make a frosted glass is easy, and such a support portion 31 can be manufactured at low cost.
  • channel, may be given.
  • a high reflection coat (HR coat) may be applied instead of the rough surface processing.
  • FIG. 11 is a cross-sectional view illustrating a configuration example of the light receiving unit R of the concentrating solar power generation module as the fourth embodiment.
  • the light receiving portion R includes a secondary lens 30, a support portion 31, a package 32, a cell 33, a lead frame (P side) 34, a gold wire 35, a lead frame 36 (N side), a sealing portion 37, and a bypass.
  • a diode 38 and a potting unit 39 are provided.
  • the light receiving portion R is mounted on the flexible printed wiring board 13.
  • the secondary lens 30, the package 32, the cell 33, the lead frame (P side) 34, the gold wire 35, the lead frame 36 (N side), and the sealing portion 37 are the same as in the first embodiment (FIG. 5). Therefore, explanation is omitted.
  • a bypass diode 38 is provided on the flexible printed wiring board 13 outside the package 32 and covered with a potting portion 39.
  • the potting portion 39 enhances the sealing and insulating properties of the lower portion of the light receiving portion R and the bypass diode 38 on the flexible printed wiring board 13.
  • the support portion 31 includes a cylindrical support base portion 31s and a flange-shaped shielding portion 31f.
  • the shielding part 31f is integrally formed at the upper end part of the support base part 31s, and the end face 31a (surface) facing the primary lens 12f is subjected to roughening processing for scattering light, for example, in the form of polished glass.
  • the shielding part 31f extends so as to have a larger diameter than the support base part 31s with the optical axis Ax as a center, and can shield and protect the bypass diode 38 and the potting part 39 from sunlight of OFF-AXIS.
  • FIG. 12 is a cross-sectional view illustrating a configuration example of the light receiving unit R of the concentrating solar power generation module as the fifth embodiment.
  • the parts other than the support base 31s of the support part 31 are the same as those in the fourth embodiment (FIG. 11), and thus the description thereof is omitted.
  • a roughened surface processing such as frosted glass is performed on the outer peripheral surface 31b.
  • the light emitted from the secondary lens 30 is difficult to enter the support base 31s.
  • the light Ly is transmitted through the roughened surface of the outer peripheral surface 31b. It is suppressed by. Therefore, it is possible to suppress the light from hitting the potting unit 39 and the bypass diode 38 and causing deterioration.
  • the outer peripheral surface 31b of the support base 31s is roughened.
  • the inner peripheral surface of the support base 31s is roughened. It may be. In that case, the light itself entering the support base 31s is further reliably suppressed. However, in manufacturing, it is easier to roughen the outer peripheral surface.
  • FIG. 13 is sectional drawing which shows the structural example of the light-receiving part R of the concentrating solar power generation module as 6th Embodiment.
  • the support unit 31 is directly placed on the flexible printed wiring board 13.
  • the package 32 is in a state where it is fitted inside the support portion 31, or conversely, the support portion 31 is in a state where it is fitted outside the package 32. According to such a configuration, the package 32 can be made small. Further, the package 32 and the support portion 31 can be easily positioned with respect to each other.
  • FIG. 14 is a cross-sectional view illustrating a configuration example of the light receiving unit R of the concentrating solar power generation module as the seventh embodiment.
  • the difference from FIG. 13 is that the secondary lens 30 and the support portion 31 are integrated.
  • the support portion 31 is formed with a concave portion 31 c that accommodates the cell 33 and the package 32.
  • the end surface 31a of the upper end part of the support part 31 is a frosted glass-like rough surface.
  • the secondary lens 30 and the support portion 31 are simplified as a single component, and the mutual positional relationship is also fixed, so that more stable quality can be achieved.
  • the support portion 31 is made of glass, and the end portion that supports the secondary lens 30 has an end surface 31a that extends outside the secondary lens 30 around the optical axis Ax.
  • the end surface 31a is a reflecting surface that reflects at least part of the received light.
  • the concentrating solar power generation module having such a light receiving portion R
  • the light condensed by the primary lens 12f passes through the secondary lens 30 and is guided to the cell 33.
  • a tracking deviation occurs such that the condensed light deviates from the secondary lens 30
  • sunlight that does not enter the secondary lens 30 is received by the end surface 31 a of the support portion 31.
  • the end surface 31 a reflects at least a part of the received light, and suppresses the incidence and transmission of light to the support portion 31. Therefore, damage to the cell periphery due to the OFF-AXIS sunlight can be suppressed.
  • Such a support portion 31 can be easily and inexpensively manufactured, and can be disposed at a position closer to the cell 33 than the metal, and thus is suitable for light shielding during OFF-AXIS. In this way, in the concentrating solar power generation, the OFF-AXIS measure can be taken more easily, reliably and inexpensively in production.
  • the shape of the secondary lens 30 in each of the above-described embodiments is an example of a ball (sphere) or a dome shape as shown in FIG. 14, but in addition, an ellipsoid type (elliptical rotating body), a hemisphere Inverted cone type (upper is hemisphere, lower is inverted cone), homogenizer type (upper surface is square, lower is a quadrangular pyramid), saddle type (upper is cone, lower is hemisphere), plano-convex type (upper surface Is a circular plane with a hemisphere below it).
  • ellipsoid type elliptical rotating body
  • a hemisphere Inverted cone type upper is hemisphere, lower is inverted cone
  • homogenizer type upper surface is square, lower is a quadrangular pyramid
  • saddle type upper is cone, lower is hemisphere
  • plano-convex type upper surface Is a circular plane with a hemisphere below it).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

集光型太陽光発電モジュール(1M)における集光型太陽光発電ユニット(1U)の各々は、一次レンズ(12f)と、筐体(11)の底面に設けられたフレキシブルプリント配線板(13)と、その上の、太陽と正対したときの一次レンズ(12f)の光軸(Ax)と一致する位置に設けられ、集光した光について光電変換を行うセル(33)と、光軸(Ax)上で一次レンズ(12f)とセル(33)との間にあって、セル(33)との間に隙間を形成する所定位置に設けられた二次レンズ(30)と、セル(33)を囲み、二次レンズ(30)を所定位置に支持するサポート部(31)と、サポート部(31)の内側の、二次レンズ(30)とセル(33)との間に形成される空間を光透過性の材料により満たした封止部(37)と、を備え、サポート部(31)はガラス製であり、二次レンズ(30)を支持する端部が、光軸(Ax)を中心として二次レンズ(30)の外側に端面(31a)を拡げた形態となっており、かつ、当該端面(31a)は、受けた光の少なくとも一部を反射する反射面となっている。

Description

集光型太陽光発電モジュール及び集光型太陽光発電装置
 本開示は、集光型太陽光発電モジュール及び集光型太陽光発電装置に関する。
 本出願は、2018年4月11日出願の日本出願第2018-076134号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 集光型太陽光発電装置は、集光レンズにより太陽光を集めて発電用の小さなセルに入射させる光学系の基本構成を最小単位としている。この基本構成を、筐体内にマトリクス状に並べてなるモジュールを、さらに多数並べてアレイ(パネル)となり、1基の集光型太陽光発電装置となる。太陽を追尾するため、アレイを載せる追尾架台は、方位角及び仰角の2軸駆動が可能なように支柱に支持されている(例えば、特許文献1参照。)
 太陽の追尾が理想的に行われていれば、太陽光を正確にセル上の狙った位置に集めることができるが、実際には僅かなずれが生じる場合もある。このような僅かなずれを吸収するために、球状の二次レンズをセルの少し上に配置し、光が僅かにずれても二次レンズに入りさえすれば、光をセルに導くことができるようにする技術も提案されている(例えば、特許文献2及び3参照。)。
特開2014-226025号公報 米国特許出願公開US2010/0236603A1 特開2014-63779号公報
 本開示は、以下の発明を含む。但し、本発明は、請求の範囲によって定められるものである。
 本開示の集光型太陽光発電モジュールは、太陽光を集光して発電する集光型太陽光発電ユニットが複数個、筐体内に並んで構成された集光型太陽光発電モジュールであって、前記集光型太陽光発電ユニットの各々は、入射する太陽光を集光する一次レンズと、前記筐体の底面に設けられたフレキシブルプリント配線板と、前記フレキシブルプリント配線板上の、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、集光した光について光電変換を行うセルと、前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、前記セルを囲み、前記二次レンズを前記所定位置に支持するサポート部と、前記サポート部の内側の、前記二次レンズと前記セルとの間に形成される空間を光透過性の材料により満たした封止部と、を備え、前記サポート部はガラス製であり、前記二次レンズを支持する端部が、前記光軸を中心として前記二次レンズの外側に端面を拡げた形態となっており、かつ、当該端面は、受けた光の少なくとも一部を反射する反射面となっている。
図1は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、完成した状態での太陽光発電装置を示している。 図2は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、組立途中の状態での太陽光発電装置を示している。 図3は、一例として、太陽に正対しているアレイの姿勢を示す斜視図である。 図4は、集光型太陽光発電モジュールの構成の一例を示す斜視図である。 図5は、第1実施形態としての、集光型太陽光発電モジュールの受光部の構成例を示す断面図である。 図6は、モジュールを構成する集光型発電の光学系の基本構成としての集光型太陽光発電ユニットの一例を示す断面図である。 図7は、図6と同様の集光型太陽光発電ユニットの断面図であるが、僅かな追尾のずれが発生した状態の一例を示している。 図8は、図5と同様の断面図に、一部の光の進路を追記した図である。 図9は、第2実施形態としての、集光型太陽光発電モジュールの受光部の構成例を示す断面図である。 図10は、第3実施形態としての、集光型太陽光発電モジュールの受光部の構成例を示す断面図である。 図11は、第4実施形態としての、集光型太陽光発電モジュールの受光部の構成例を示す断面図である。 図12は、第5実施形態としての、集光型太陽光発電モジュールの受光部の構成例を示す断面図である。 図13は、第6実施形態としての、集光型太陽光発電モジュールの受光部の構成例を示す断面図である。 図14は、第7実施形態としての、集光型太陽光発電モジュールの受光部の構成例を示す断面図である。
 [本開示が解決しようとする課題]
 追尾ずれにより太陽光の入射方向と光軸とがずれたOFF-AXISの状態で集光する太陽光が、二次レンズを支持している樹脂製のサポート部に当たると、サポート部が損傷を受ける可能性がある。サポート部の材質を金属とすれば損傷は防止できるが、高電圧になるセルの近くにあるので、絶縁距離の確保及び放電防止対策が必要となる煩わしさがある。また、サポート部の材質をセラミックとすれば損傷は防止でき、絶縁も確保できるが、コストアップになる。
 このように、従来の集光型太陽光発電では、OFF-AXISの対策を、いかにして容易で確実な構成にするか、という課題がある。
 かかる課題に鑑み、本開示は、集光型太陽光発電において、製造上、より容易で、確実かつ安価に、OFF-AXIS対策を施すことを目的とする。
 [本開示の効果]
 本開示によれば、集光型太陽光発電において、製造上、より容易で、確実かつ安価に、OFF-AXIS対策を施すことができる。
 [実施形態の要旨]
 実施形態の要旨としては、少なくとも以下のものが含まれる。
 (1)これは、太陽光を集光して発電する集光型太陽光発電ユニットが複数個、筐体内に並んで構成された集光型太陽光発電モジュールであって、前記集光型太陽光発電ユニットの各々は、入射する太陽光を集光する一次レンズと、前記筐体の底面に設けられたフレキシブルプリント配線板と、前記フレキシブルプリント配線板上の、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、集光した光について光電変換を行うセルと、前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、前記セルを囲み、前記二次レンズを前記所定位置に支持するサポート部と、前記サポート部の内側の、前記二次レンズと前記セルとの間に形成される空間を光透過性の材料により満たした封止部と、を備え、前記サポート部はガラス製であり、前記二次レンズを支持する端部が、前記光軸を中心として前記二次レンズの外側に端面を拡げた形態となっており、かつ、当該端面は、受けた光の少なくとも一部を反射する反射面となっている、集光型太陽光発電モジュールである。
 上記のように構成された集光型太陽光発電モジュールでは、太陽の追尾ずれが無いときは、一次レンズにより集光する光が二次レンズを通り、セルに導かれる。一方、集光する光が二次レンズから外れるような追尾ずれが発生したときには、二次レンズに入らない太陽光を、サポート部の端面によって受けることになる。このとき端面は、受けた光の少なくとも一部を反射し、サポート部への光の入射及び透過を抑制する。従って、OFF-AXISの太陽光による、セル周辺への損傷を抑制することができる。このようなサポート部は、容易に、かつ、安価に作製することができ、しかも、金属よりもセルに近い位置に配置することができるのでOFF-AXIS時の遮光には好適である。こうして、集光型太陽光発電において、製造上、より容易で、確実かつ安価に、OFF-AXIS対策を施すことができる。
 (2)また、(1)の集光型太陽光発電モジュールにおいて、前記端面は、受けた光を散乱させる粗面となっていることが好ましい。
 このような端面は、光を散乱(乱反射)させることで入射及び透過を抑制し、セル周辺への損傷を抑制することができる。なお、ガラス製のサポート部の端面は、切削により自然に、又は、粗面加工により、容易に粗面とすることができる。
 (3)また、(1)の集光型太陽光発電モジュールにおいて、例えば、前記二次レンズはボールレンズであり、前記サポート部は円筒状の形状である。
 この場合、サポート部は、例えばガラスチューブを、軸方向に所定の長さになるよう輪切り状に切断することにより、容易に多数、製造することができる。また、一般に、切断面である端面は、工具による切断により自然に粗面となる。
 (4)また、(1)の集光型太陽光発電モジュールにおいて、例えば、前記二次レンズはボールレンズであり、前記サポート部は、円筒状の支持基部と、前記支持基部における端部にフランジ状に形成され、前記一次レンズに対向する端面が、受けた光を散乱させる粗面となっている遮蔽部と、を備えたものであってもよい。
 この場合、遮蔽部により、セル周辺の例えばバイパスダイオードも、OFF-AXISの太陽光から遮蔽し、保護することができる。
 (5)また、(4)の集光型太陽光発電モジュールにおいて、前記支持基部の外周面及び内周面の少なくとも一方は、受けた光を散乱させる粗面となっていてもよい。
 この場合、二次レンズ内で散乱してセルへ向かわない方向へ出射した光を、サポート部により反射させることにより、セルへの導光に寄与することができる。
 (6)また、(1)から(5)のいずれかの集光型太陽光発電モジュールにおいて、前記封止部は、前記サポート部のガラスよりも屈折率の小さいシリコーン樹脂で形成されていることが好ましい。
 この場合、二次レンズ内で散乱して出射しサポート部に当たった光が、サポート部に入ることは抑制され、反射しやすくなる。従って、反射した光の少なくとも一部がセルへ導かれることにより、発電効率をさらに高めることができる。
 (7)また、(1)から(5)のいずれかの集光型太陽光発電モジュールにおいて、前記封止部は、ガラス製のマイクロビーズを樹脂に混ぜて前記空間に充填したものであってもよい。
 この場合の封止部は、シリコーン樹脂よりも、紫外線に対する経年耐久性に優れている。
 (8)また、(1)の集光型太陽光発電モジュールにおいて、前記二次レンズ及び前記サポート部は、互いに一体に形成されたガラス体であってもよい。
 この場合、二次レンズとサポート部とが1つの部品となり簡素化され、かつ、相互の位置関係も固定され、より安定した品質とすることができる。
 (9)また、(1)の集光型太陽光発電モジュールを、太陽を追尾する架台上に複数個並べてアレイを構成したものが、集光型太陽光発電装置である。
 このようにアレイを構成した集光型太陽光発電装置は、製造上、より容易で、確実かつ安価に、OFF-AXIS対策を施すことができる。
 [実施形態の詳細]
 以下、本発明の一実施形態に係る集光型太陽光発電装置及び集光型太陽光発電モジュールについて、図面を参照して説明する。
 《太陽光発電装置》
 図1及び図2はそれぞれ、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。図1は、完成した状態での太陽光発電装置100を示し、図2は、組立途中の状態での太陽光発電装置100を示している。図2は、追尾架台25の骨組みが見える状態を右半分に示し、集光型太陽光発電モジュール(以下、単にモジュールとも言う。)1Mが取り付けられた状態を左半分に示している。なお、実際にモジュール1Mを追尾架台25に取り付ける際は、追尾架台25を地面に寝かせた状態で取り付けを行う。
 図1において、この太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた形状のアレイ(太陽光発電パネル全体)1と、その支持装置2とを備えている。アレイ1は、背面側の追尾架台25(図2)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。
 支持装置2は、支柱21と、基礎22と、2軸駆動部23と、駆動軸となる水平軸24(図2)とを備えている。支柱21は、下端が基礎22に固定され、上端に2軸駆動部23を備えている。
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24(図2)は水平となる。2軸駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。図2において、水平軸24には、追尾架台25を補強する補強材25aが取り付けられている。また、補強材25aには、複数本の水平方向へのレール25bが取り付けられている。従って、水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。
 なお、図1,図2では1本の支柱21でアレイ1を支える支持装置2を示したが、支持装置2の構成は、これに限られるものではない。要するに、アレイ1を、2軸(方位角、仰角)で可動なように支持できる支持装置であればよい。
 図1のようにアレイ1が鉛直になっているのは、通常、夜明け及び日没前である。
 日中は、アレイ1の受光面が常に太陽に正対する姿勢となるよう、2軸駆動部23が動作し、アレイ1は太陽の追尾動作を行う。
 図3は、一例として、太陽に正対しているアレイ1の姿勢を示す斜視図である。また、例えば赤道付近の南中時刻であれば、アレイ1は受光面を太陽に向けて水平な姿勢となる。夜間は、例えば、アレイ1の受光面を地面に向けて水平な姿勢となる。
 《集光型太陽光発電モジュールの構成例》
 図4は、集光型太陽光発電モジュール1M(以下、単にモジュールともいう。)の構成の一例を示す斜視図である。但し、底面11b側はフレキシブルプリント配線板13のみ示し、ここでは、他の構成要素は省略している。
 モジュール1Mは、外観上の物理的な形態としては、例えば金属製又は樹脂製で長方形の平底容器状の筐体11と、その上に蓋のように取り付けられる集光部12と、を備えている。集光部12は、例えば1枚の光透過性のガラス板12aの裏面に樹脂製の一次レンズ(フレネルレンズ)12fが貼り付けられて構成されている。例えば図示の正方形(この例では14個×10個であるが、数量は説明上の一例に過ぎない。)の区画の1つ1つが、一次レンズ12fであり、太陽光を焦点位置に収束させることができる。
 筐体11の底面11b上には、例えば筐体11の左半分及び右半分の各々において、1本の細長いフレキシブルプリント配線板13が図示のように方向転換しながら整列するように配置されている。フレキシブルプリント配線板13には相対的に幅広な部位と幅狭な部位とがある。セル(図示せず。)が実装されるのは幅広な部位である。セルはフレネルレンズ12fの各々の光軸に対応する位置に配置される。
 フレキシブルプリント配線板13と集光部12との間には、例えば金属製の遮蔽板14が取り付けられている。遮蔽板14には、個々の一次レンズ12fの中心に対応した位置に、一次レンズ12fの正方形に相似な正方形の開口14aが形成されている。アレイ1が太陽を正確に追尾し、モジュール1Mに対する太陽光の入射角が0度であれば、一次レンズ12fにより集光された光は開口14aを通過することができる。追尾が大きくずれた場合は、集光された光は遮蔽板14により遮蔽される。但し、追尾のずれが僅かな場合は、集光された光は開口14aを通過する。
 《受光部の構成例:第1実施形態》
 図5は、第1実施形態としての、集光型太陽光発電モジュールの受光部Rの構成例を示す断面図である。なお、図5に示す各部は、構造説明の都合上、適宜拡大して描いており、必ずしも実際の寸法に比例した図ではない(図6以降も同様である。)。
 図5において、受光部Rは、二次レンズ30、サポート部31、パッケージ32、セル33、リードフレーム(P側)34、金ワイヤー35、リードフレーム36(N側)、及び、封止部37を備えている。受光部Rは、フレキシブルプリント配線板13上に実装されている。なお、セル33には並列にバイパスダイオードが接続されるが、バイパスダイオードがどこに設けられるかは、本実施形態では特に限定していない。
 二次レンズ30は例えばボールレンズである。二次レンズ30はサポート部31の上端部内周エッジ31eにより、セル33との間に光軸Ax方向の隙間が形成されるように支持されている。サポート部31は、例えば円筒状であり、ガラス製である。サポート部31は、フラットなパッケージ32の上に固着されている。パッケージ32は樹脂製であり、セル33を、そのリードフレーム34,36と共に保持している。セル33の出力は、P側がリードフレーム34に、N側が金ワイヤー35を介してリードフレーム36に、それぞれ引き出される。封止部37は、光透過性のシリコーン樹脂であり、サポート部31の内側の、二次レンズ30とセル33との間に形成される空間を満たすように設けられている。
 図5において、サポート部31の上端部は、光軸Axを中心として二次レンズ30の外側に端面31aを拡げた形態となっている。このようなサポート部31は、例えばガラスチューブを所定の長さで輪切り状に切断することにより容易に、かつ、安価に、作製することができる。通常、切削工具により切断すると、端面31aは、ざらざらした切削面となるが、むしろ、これが好都合である。すなわち、このような端面31aは、受けた光の少なくとも一部を反射(全反射、散乱(乱反射)を含む。)させ、端面31aからサポート部31内への光の入射及び透過を抑制する。
 サポート部31のガラスは、基本的には、透明/不透明のいずれでもよいし、無色/有色のいずれでもよい。すなわち、仮に無色透明であっても、端面31aに一定の、入射及び透過を抑制する作用効果があるからである。
 また、ガラス製のサポート部31は、経年劣化しにくい安定した絶縁性能を有する。従って、金属のような絶縁距離を確保する必要は無く、リードフレーム34,36や、金ワイヤー35と近接しても、特に問題は無い。
 《集光型太陽光発電ユニットの構成例》
 図6は、モジュール1Mを構成する集光型発電の光学系の基本構成としての集光型太陽光発電ユニット1Uの一例を示す断面図である。
 図において、集光型太陽光発電ユニット1Uが、太陽と正対し、太陽光の入射角が0度であると、一次レンズ12fの光軸Ax上に、受光部Rの二次レンズ30及びセル33がある。一次レンズ12fにより集光する光は遮蔽板14の開口14aを通り、受光部Rの二次レンズ30に取り込まれ、セル33に導かれる。
 図7は、図6と同様の集光型太陽光発電ユニット1Uの断面図であるが、僅かな追尾のずれが発生した状態の一例を示している。前述のように、僅かな追尾ずれでは、遮蔽板14による光の遮蔽はない。二次レンズ30に入った光はセル33に導かれるが、二次レンズ30に入りきらなかった光は、サポート部31の端面31aに当たる。しかし、端面31aに当たった光の少なくとも一部は、反射若しくは散乱する。従って、端面31aから、サポート部31内への光の入射は抑制される。また、ある程度の光がサポート部31内に入ったとしても、内部での散乱や減衰により、パッケージ32に届く光は弱められる。従って、OFF-AXISの光によりパッケージ32が損傷を受けることを、抑制することができる。
 なお、図5における封止部37のシリコーン樹脂としては、その屈折率がサポート部31のガラスの屈折率より小さいものが選定されている。このことの作用効果について説明する。
 図8は、図5と同様の断面図に、一部の光Lxの進路を追記した図である。図において、二次レンズ30に入った光は基本的にはセル33に導かれるが、二次レンズ30内での光の散乱により、例えば図示のような光路で光Lxが出射する場合がある。ここで、封止部37のシリコーン樹脂の屈折率が、サポート部31のガラスの屈折率より小さいことにより、光Lxは、サポート部31に入りにくくなり、反射しやすくなる。サポート部31の内面に当たって反射した光の少なくとも一部は、セル33に導かれる。こうして、少量ではあるが散乱により漏れ出る光の少なくとも一部をセル33に導くことにより、発電効率を、より高めることができる。
 《受光部の構成例:第2実施形態》
 図9は、第2実施形態としての、集光型太陽光発電モジュールの受光部Rの構成例を示す断面図である。図において、封止部37B以外は、第1実施形態(図5)と同様であるので説明を省略する。第2実施形態の封止部37Bは、光透過性のガラスのマイクロビーズを光透過性の樹脂に流し込み、固めたものである。
 この場合の封止部37Bは、第1実施形態の封止部37(図5)よりも、紫外線に対する経年耐久性に優れている。
 《受光部の構成例:第3実施形態》
 図10は、第3実施形態としての、集光型太陽光発電モジュールの受光部Rの構成例を示す断面図である。図において、サポート部31の上端部以外は、第1実施形態(図5)と同様であるので説明を省略する。第3実施形態のサポート部31は、光透過性のガラス製であるが、上端部の端面31aが磨りガラス状の粗面となっている。OFF-AXISの光は、サポート部31の端面31aにより散乱し、サポート部31内に入ることは抑制される。
 このように、サポート部31の、OFF-AXISの光を受ける側の端面は、受けた光を散乱させる粗面となっていることが好ましい。このような端面は、光を散乱させることでサポート部31内への光の入射及び透過を抑制し、セル33周辺への損傷を抑制することができる。磨りガラス状にする加工は容易であり、このようなサポート部31は、安価に作製することができる。なお、磨りガラス状にするのは一例であり、細かい溝を付ける等、他の形態の粗面加工が施されていてもよい。また、粗面加工の代わりに、高反射コート(HRコート)が施されていてもよい。
 《受光部の構成例:第4実施形態》
 図11は、第4実施形態としての、集光型太陽光発電モジュールの受光部Rの構成例を示す断面図である。図11において、受光部Rは、二次レンズ30、サポート部31、パッケージ32、セル33、リードフレーム(P側)34、金ワイヤー35、リードフレーム36(N側)、封止部37、バイパスダイオード38、及び、ポッティング部39を備えている。受光部Rは、フレキシブルプリント配線板13上に実装されている。
 二次レンズ30、パッケージ32、セル33、リードフレーム(P側)34、金ワイヤー35、リードフレーム36(N側)、封止部37については、第1実施形態(図5)と同様であるので説明を省略する。図において、バイパスダイオード38はパッケージ32の外側の、フレキシブルプリント配線板13上に設けられ、ポッティング部39により覆われている。ポッティング部39は、フレキシブルプリント配線板13上での、受光部Rの下部及びバイパスダイオード38の密封性及び絶縁性を高めている。
 また、本実施形態の受光部Rでは、サポート部31は、円筒状の支持基部31sと、フランジ状の遮蔽部31fとを備えている。遮蔽部31fは、支持基部31sの上端部に一体形成され、一次レンズ12fに対向する端面31a(表面)には、例えば磨りガラス状に、光を散乱させる粗面加工が施されている。遮蔽部31fは、光軸Axを中心に支持基部31sよりも大径になるよう拡がっており、バイパスダイオード38及びポッティング部39を、OFF-AXISの太陽光から遮蔽し、保護することができる。
 《受光部の構成例:第5実施形態》
 図12は、第5実施形態としての、集光型太陽光発電モジュールの受光部Rの構成例を示す断面図である。図において、サポート部31の支持基部31s以外は、第4実施形態(図11)と同様であるので説明を省略する。本実施形態の支持基部31sは、外周面31bに、例えば磨りガラス状の粗面加工が施されている。このような支持基部31sには、図8において説明したように、二次レンズ30からの出射光は入りにくいが、若干入ったとしても、その光Lyの透過は、外周面31bの粗面加工により抑制される。従って、ポッティング部39やバイパスダイオード38に光が当たって劣化の原因となることを、抑制することができる。
 なお、図12では、支持基部31sの外周面31bに粗面加工が施されているとしたが、これに代えて、又は追加的に、支持基部31sの内周面に粗面加工が施されていてもよい。その場合には、支持基部31sへ光が入ること自体が、さらに確実に抑制される。但し、製造上は、外周面に粗面加工を施す方が容易である。
 《受光部の構成例:第6実施形態》
 図13は、第6実施形態としての、集光型太陽光発電モジュールの受光部Rの構成例を示す断面図である。図において、サポート部31及びパッケージ32以外は、第1実施形態(図5)と同様であるので説明を省略する。本実施形態では、サポート部31が、フレキシブルプリント配線板13に直接、載っている。パッケージ32は、サポート部31に内嵌されたような状態、逆に言えば、サポート部31は、パッケージ32に外嵌されたような状態となっている。このような構成によれば、パッケージ32を小さくすることができる。また、パッケージ32とサポート部31とを、相互に容易に、位置決めすることができる。
 《受光部の構成例:第7実施形態》
 図14は、第7実施形態としての、集光型太陽光発電モジュールの受光部Rの構成例を示す断面図である。図13との違いは、二次レンズ30と、サポート部31とが一体化している点である。サポート部31には、セル33及びパッケージ32を収容する凹部31cが形成されている。また、サポート部31の上端部の端面31aは、磨りガラス状の粗面となっている。
 この場合、二次レンズ30とサポート部31とが1つの部品となり簡素化され、かつ、相互の位置関係も固定され、より安定した品質とすることができる。
 《まとめ》
 以上の各実施形態に示したように、サポート部31はガラス製であり、二次レンズ30を支持する端部が、光軸Axを中心として二次レンズ30の外側に端面31aを拡げた形態となっており、かつ、当該端面31aは、受けた光の少なくとも一部を反射する反射面となっている。
 かかる受光部Rを有する集光型太陽光発電モジュールでは、太陽の追尾ずれが無いときは、一次レンズ12fにより集光する光が二次レンズ30を通り、セル33に導かれる。一方、集光する光が二次レンズ30から外れるような追尾ずれが発生したときには、二次レンズ30に入らない太陽光を、サポート部31の端面31aによって受けることになる。このとき端面31aは、受けた光の少なくとも一部を反射し、サポート部31への光の入射及び透過を抑制する。従って、OFF-AXISの太陽光による、セル周辺への損傷を抑制することができる。このようなサポート部31は、容易に、かつ、安価に作製することができ、しかも、金属よりもセル33に近い位置に配置することができるのでOFF-AXIS時の遮光には好適である。こうして、集光型太陽光発電において、製造上、より容易で、確実かつ安価に、OFF-AXIS対策を施すことができる。
 《その他》
 なお、上述の各実施形態については、その少なくとも一部を、相互に任意に組み合わせてもよい。
 また、上述の各実施形態における二次レンズ30の形状は、ボール(球)状若しくは図14のようなドーム状の例を示したが、他にも、楕円体型(楕円の回転体)、半球逆円錐型(上が半球体で、下が逆円錐)、ホモジナイザ型(上面が正方形で、その下が四角錐)、雫型(上部が円錐で、下部が半球体)、平凸型(上面が円形の平面で、その下が半球体)等が知られている。
 《補記》
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1 アレイ
 1M 集光型太陽光発電モジュール(モジュール)
 1U 集光型太陽光発電ユニット
 2 支持装置
 11 筐体
 11b 底面
 12 集光部
 12a ガラス板
 12f 一次レンズ
 13 フレキシブルプリント配線板
 14 遮蔽板
 14a 開口
 21 支柱
 22 基礎
 23 2軸駆動部
 24 水平軸
 25 追尾架台
 25a 補強材
 25b レール
 30 二次レンズ
 31 サポート部
 31a 端面
 31b 外周面
 31c 凹部
 31e 上端部内周エッジ
 31f 遮蔽部
 31s 支持基部
 32 パッケージ
 33 セル
 34 リードフレーム
 35 金ワイヤー
 36 リードフレーム
 37,37B 封止部
 38 バイパスダイオード
 39 ポッティング部
 100 太陽光発電装置
 Ax 光軸
 Lx,Ly 光
 R 受光部

Claims (9)

  1.  太陽光を集光して発電する集光型太陽光発電ユニットが複数個、筐体内に並んで構成された集光型太陽光発電モジュールであって、前記集光型太陽光発電ユニットの各々は、
     入射する太陽光を集光する一次レンズと、
     前記筐体の底面に設けられたフレキシブルプリント配線板と、
     前記フレキシブルプリント配線板上の、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、集光した光について光電変換を行うセルと、
     前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、
     前記セルを囲み、前記二次レンズを前記所定位置に支持するサポート部と、
     前記サポート部の内側の、前記二次レンズと前記セルとの間に形成される空間を光透過性の材料により満たした封止部と、を備え、
     前記サポート部はガラス製であり、前記二次レンズを支持する端部が、前記光軸を中心として前記二次レンズの外側に端面を拡げた形態となっており、かつ、当該端面は、受けた光の少なくとも一部を反射する反射面となっている、集光型太陽光発電モジュール。
  2.  前記端面は、受けた光を散乱させる粗面となっている請求項1に記載の集光型太陽光発電モジュール。
  3.  前記二次レンズはボールレンズであり、前記サポート部は円筒状の形状である請求項1に記載の集光型太陽光発電モジュール。
  4.  前記二次レンズはボールレンズであり、前記サポート部は、
     円筒状の支持基部と、
     前記支持基部における端部にフランジ状に形成され、前記一次レンズに対向する端面が、受けた光を散乱させる粗面となっている遮蔽部と、
     を有する請求項1に記載の集光型太陽光発電モジュール。
  5.  前記支持基部の外周面及び内周面の少なくとも一方は、受けた光を散乱させる粗面となっている請求項4に記載の集光型太陽光発電モジュール。
  6.  前記封止部は、前記サポート部のガラスよりも屈折率の小さいシリコーン樹脂で形成されている請求項1から請求項5のいずれか1項に記載の集光型太陽光発電モジュール。
  7.  前記封止部は、ガラス製のマイクロビーズを樹脂に混ぜて前記空間に充填したものである請求項1から請求項5のいずれか1項に記載の集光型太陽光発電モジュール。
  8.  前記二次レンズ及び前記サポート部は、互いに一体に形成されたガラス体である請求項1に記載の集光型太陽光発電モジュール。
  9.  請求項1の集光型太陽光発電モジュールを、太陽を追尾する架台上に複数個並べてアレイを構成した集光型太陽光発電装置。
PCT/JP2019/011750 2018-04-11 2019-03-20 集光型太陽光発電モジュール及び集光型太陽光発電装置 WO2019198450A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-076134 2018-04-11
JP2018076134 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198450A1 true WO2019198450A1 (ja) 2019-10-17

Family

ID=68163160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011750 WO2019198450A1 (ja) 2018-04-11 2019-03-20 集光型太陽光発電モジュール及び集光型太陽光発電装置

Country Status (2)

Country Link
TW (1) TW201944611A (ja)
WO (1) WO2019198450A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100460A1 (ja) * 2019-11-18 2021-05-27 住友電気工業株式会社 太陽光発電装置及び太陽光発電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163963A (ja) * 1992-11-17 1994-06-10 Canon Inc 太陽電池封止用樹脂組成物
US20100236603A1 (en) * 2009-02-09 2010-09-23 Etienne Menard Concentrator-Type Photovoltaic (CPV) Modules, Receiver and Sub-Receivers and Methods of Forming Same
JP2011071400A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 光電変換装置、光電変換素子収納用パッケージ、及び光電変換モジュール
WO2013105488A1 (ja) * 2012-01-11 2013-07-18 パナソニック株式会社 太陽電池素子
WO2015064178A1 (ja) * 2013-10-31 2015-05-07 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
JP2017034116A (ja) * 2015-08-03 2017-02-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163963A (ja) * 1992-11-17 1994-06-10 Canon Inc 太陽電池封止用樹脂組成物
US20100236603A1 (en) * 2009-02-09 2010-09-23 Etienne Menard Concentrator-Type Photovoltaic (CPV) Modules, Receiver and Sub-Receivers and Methods of Forming Same
JP2011071400A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 光電変換装置、光電変換素子収納用パッケージ、及び光電変換モジュール
WO2013105488A1 (ja) * 2012-01-11 2013-07-18 パナソニック株式会社 太陽電池素子
WO2015064178A1 (ja) * 2013-10-31 2015-05-07 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
JP2017034116A (ja) * 2015-08-03 2017-02-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100460A1 (ja) * 2019-11-18 2021-05-27 住友電気工業株式会社 太陽光発電装置及び太陽光発電システム

Also Published As

Publication number Publication date
TW201944611A (zh) 2019-11-16

Similar Documents

Publication Publication Date Title
TWI523245B (zh) Secondary lens and collector type solar power generation module
JP6319318B2 (ja) 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
WO2009096267A1 (ja) 太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法
EP2971950B1 (en) Light panel, optical assembly with improved interface and light panel with improved manufacturing tolerances
JP6228135B2 (ja) 軸外カセグレン太陽光コレクタ
CN107851679B (zh) 聚光型光伏单元、聚光型光伏模块、聚光型光伏面板以及聚光型光伏装置
JP6507915B2 (ja) 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
CN101849251A (zh) 用于检测器的辐射导向器、散射辐射检测器
JP2006332113A (ja) 集光型太陽光発電モジュール及び集光型太陽光発電装置
JP2013211487A (ja) 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュール
WO2019198450A1 (ja) 集光型太陽光発電モジュール及び集光型太陽光発電装置
US20140090692A1 (en) Concentrated solar cell and manufacturing method for the same
JP2014010251A (ja) 二次レンズ、太陽電池実装体、集光型太陽光発電装置、および集光型太陽光発電モジュール
WO2019159554A1 (ja) 集光型太陽光発電モジュール及び集光型太陽光発電装置
EP2966491B1 (en) Lens assembly, optoelectronic package and method of producing an optoelectronic package with lens assembly
EP2487728A2 (en) Light-collecting device and light-collecting method thereof
WO2020004148A1 (ja) 集光型太陽光発電モジュール及び集光型太陽光発電装置
JP2014175318A (ja) 集光型太陽光発電モジュール用レシーバ
KR20190096263A (ko) 집광식 태양광 발전 모듈
JP2014170861A (ja) 集光型太陽光発電モジュール用レシーバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP