WO2019196563A1 - 光学谐振腔、显示面板 - Google Patents

光学谐振腔、显示面板 Download PDF

Info

Publication number
WO2019196563A1
WO2019196563A1 PCT/CN2019/075922 CN2019075922W WO2019196563A1 WO 2019196563 A1 WO2019196563 A1 WO 2019196563A1 CN 2019075922 W CN2019075922 W CN 2019075922W WO 2019196563 A1 WO2019196563 A1 WO 2019196563A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
optical
resonant cavity
optical resonant
Prior art date
Application number
PCT/CN2019/075922
Other languages
English (en)
French (fr)
Inventor
祝明
董学
陈小川
张世玉
王美丽
梁轩
王英涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19786144.6A priority Critical patent/EP3780301A4/en
Priority to US16/630,270 priority patent/US10965086B2/en
Priority to JP2020536573A priority patent/JP7315557B2/ja
Publication of WO2019196563A1 publication Critical patent/WO2019196563A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • H01L33/465Reflective coating, e.g. dielectric Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/15Function characteristic involving resonance effects, e.g. resonantly enhanced interaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18383Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with periodic active regions at nodes or maxima of light intensity

Definitions

  • Embodiments of the present disclosure relate to an optical resonant cavity, display panel.
  • the optical cavity can select the incoming light and can emit light of a specific wavelength by adjusting the optical path in the cavity.
  • the light of the specific wavelength interferes with the construct in the cavity of the optical cavity to be able to emit with greater brightness, and other wavelengths of light incident into the optical cavity may repeatedly oscillate in the cavity to interfere with cancellation or be otherwise Structure absorption. Therefore, the existing optical cavity has limited utilization of light and a low amount of light.
  • At least one embodiment of the present disclosure provides an optical resonant cavity including a light conversion layer, wherein the optical resonant cavity is configured to emit light of a specific wavelength range, and light of the specific wavelength range in the optical resonant cavity
  • the light conversion layer is disposed at at least one node of the center wavelength.
  • an optical resonant cavity provided by at least one embodiment of the present disclosure further includes: a first functional layer; a second functional layer disposed opposite to the first functional layer; an optical dielectric layer located in the first functional layer and the Between the second functional layers; wherein the light conversion layer is located in the optical medium layer, and light of the specific wavelength range is emitted from the first functional layer.
  • the optical resonant cavity is a transmissive optical resonant cavity, and the first functional layer and the second functional layer are both transflective films; or
  • the optical resonant cavity is a reflective optical resonant cavity, the first functional layer is a transflective film, and the second functional layer is a total reflective film.
  • a sum of an optical thickness of the optical medium layer and an optical thickness of the light conversion layer is a half wavelength of a center wavelength of light of the specific wavelength range. Positive integer multiple.
  • the refractive index of the light conversion layer is greater than the refractive index of the optical dielectric layer.
  • a distance between a center plane of a thickness of the light conversion layer and a node of a center wavelength of light of the specific wavelength range is not more than 1/1 of the center wavelength 30.
  • the thickness of the light conversion layer is not greater than 1/30 of a center wavelength of light of the specific wavelength range.
  • the light of the specific wavelength range is monochromatic light.
  • the monochromatic light is one of red light, green light, and blue light.
  • the material of the light conversion layer includes an up-converting luminescent material and/or a down-converting luminescent material for obtaining the monochromatic light.
  • the up-converting luminescent material comprises an inorganic compound doped with a rare earth ion; the down-converting luminescent material comprises a fluorescent material or a quantum dot material.
  • the optical resonant cavity includes a silver film, a first silicon oxide film, a light conversion material film, a second silicon oxide film, and a titanium dioxide film which are sequentially stacked. a titanium dioxide film as the first functional layer, the silver film as the second functional layer, the first silicon dioxide film and the second silicon dioxide film as the optical medium layer, A light conversion material film is described as the light conversion layer.
  • the optical resonant cavity includes a plurality of the light conversion layers, a plurality of the light conversion layers are spaced apart from each other, and light disposed in the specific wavelength range The center wavelength of the different nodes.
  • an optical resonant cavity provided in at least one embodiment of the present disclosure further includes an anti-reflection film; when the optical resonant cavity is a transmissive optical resonant cavity, the anti-reflective film is disposed at a distance from the second functional layer One side of the first functional layer; when the optical resonant cavity is a reflective optical resonant cavity, the anti-reflective film is disposed on a side of the first functional layer away from the second functional layer.
  • an optical resonant cavity provided in at least one embodiment of the present disclosure further includes a metal absorbing layer; the metal absorbing layer being disposed on one side of the first functional layer or disposed in the first functional layer.
  • At least one embodiment of the present disclosure provides a display panel including the optical resonant cavity in any of the foregoing embodiments.
  • the display panel provided by at least one embodiment of the present disclosure further includes a light intensity control structure that is stacked with the optical resonant cavity and configured to control the intensity of the passing light.
  • the display panel is a reflective display panel, and a light intensity control structure and the optical resonant cavity are sequentially disposed from a display side to a non-display side of the display panel.
  • the optical resonant cavity is a reflective optical resonant cavity to achieve light reflection; or the display panel is a transmissive display panel, and the optical resonant cavity is a transmissive optical resonant cavity.
  • the light intensity control structure is an electrochromic light intensity control structure or a liquid crystal light intensity control structure, wherein the electrochromic light intensity control structure includes the first An electrode, a second electrode, and an electrochromic layer, the first electrode and the second electrode being configured to control the electrochromic layer when an electrical signal is applied;
  • the liquid crystal light intensity control structure comprising a third electrode, a fourth An electrode, a first polarizing layer, a second polarizing layer, and a liquid crystal layer, wherein a first polarizing direction of the first polarizing layer and a second polarizing direction of the second polarizing layer are perpendicular to each other, and the liquid crystal layer is sandwiched between Between the first polarizing layer and the second polarizing layer, the third electrode and the fourth electrode are configured to control the liquid crystal layer when an electrical signal is applied.
  • FIG. 1A is a schematic structural diagram of an optical resonant cavity according to some embodiments of the present disclosure
  • FIG. 1B is an optical path diagram of the optical resonant cavity shown in FIG. 1A;
  • 1C is a schematic structural diagram of another optical resonant cavity according to some embodiments of the present disclosure.
  • FIG. 1D is a schematic structural diagram of another optical resonant cavity according to some embodiments of the present disclosure.
  • FIG. 1E is a schematic structural diagram of another optical resonant cavity according to some embodiments of the present disclosure.
  • 2A is a partial structural diagram of a display panel according to some embodiments of the present disclosure.
  • FIG. 2B is a partial structural diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 3 is a partial structural schematic view of another display panel according to some embodiments of the present disclosure.
  • FIG. 4A is a partial structural diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 4B is a partial structural diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 5 is a reflection spectrum diagram of an optical resonant cavity according to some embodiments of the present disclosure.
  • Figure 6 is a graph of the luminescence spectrum of a converted luminescent material provided by some embodiments of the present disclosure.
  • At least one embodiment of the present disclosure provides an optical resonant cavity including a light conversion layer, wherein the optical resonant cavity is configured to emit light of a specific wavelength range, and the optical conversion layer is located at a central wavelength of light of a specific wavelength range in the optical resonant cavity The festival.
  • the optical cavity is configured to emit light of a specific wavelength range, and thus a wave of light of the specific wavelength range is resident in the optical cavity, so that the optical cavity can be determined according to the wave of the light of the specific wavelength range that resides The position of the medium light conversion layer.
  • the light conversion layer can convert light of other wavelengths into light of the above specific wavelength range, and can increase the amount of light emitted from the optical cavity; further, in the optical cavity, the light conversion layer is located at a node of the center wavelength of light of a specific wavelength range. It is possible to reduce the absorption of light in the above specific wavelength range. Further, in this case, the light conversion layer may be located at the non-node of the light of other wavelengths, which may increase the absorption of light from other portions of the light conversion layer, and may further Increase the amount of light emitted from the optical cavity.
  • the optical resonant cavity includes a resonant cavity (or referred to as a resonant space) that includes two opposite sides that are light reflective (eg, total reflection or transflective), the light being in the resonant cavity
  • the two sides flutter back and forth (reflected back and forth) to achieve resonance, from which light of a specific wavelength range is emitted from a certain side.
  • the two sides may be referred to as resonant sides, and the vertical distance between the resonant sides defines the length of the resonant cavity; accordingly, the node of the central wavelength of the light of a particular wavelength range residing in the optical cavity and the resonant side coincide.
  • Embodiments of the present disclosure do not limit the sides of the resonant cavity that are not used to achieve resonance.
  • the node of the light conversion layer located at the center wavelength of the light of a specific wavelength range means that the light conversion layer coincides with the node in the optical cavity. Or located near the wave festival.
  • the distance between the light conversion layer and the node of the center wavelength is less than the distance between the light conversion layer and the antinode of the center wavelength.
  • the center wavelength of the light of the specific wavelength range described above may be the design wavelength of the optical resonant cavity.
  • the center wavelength of light of the above specific wavelength range is represented by the design wavelength of the optical cavity
  • the specific wavelength range is represented by the design wavelength range.
  • the design wavelength of the optical cavity is 630 nm, that is, the optical cavity can emit red light having a center wavelength of 630 nm, and at least one node of the light of 630 nm wavelength is identical to the antinode of 420 nm blue light.
  • the light conversion layer does not absorb red light of 630 nm, but absorbs the highest light of 420 nm blue light. In this way, not only the absorption of light in the specified wavelength range (light of the above specific wavelength range) in the incident light is minimized, but also the conversion between the light of the non-design wavelength range and the light of the design wavelength range can be maximized. The amount, thereby further increasing the amount of light emitted from the optical cavity.
  • FIG. 1A is a schematic structural view of an optical resonant cavity according to an embodiment of the present disclosure
  • FIG. 1B is an optical path diagram of the optical resonant cavity shown in FIG. 1A.
  • the optical resonant cavity 100 includes a light conversion layer 110 configured to emit light of a particular wavelength range, the light of the particular wavelength range
  • One node of the center wavelength in the resonant cavity of the optical cavity 100 is P, and the light conversion layer 110 may be disposed at the node P.
  • the light conversion layer 110 does not absorb light of a design wavelength range, and absorbs light of a non-design wavelength to convert light of a design wavelength range, and can increase the amount of light emitted by the design wavelength range.
  • the optical resonant cavity may further include a first functional layer, a second functional layer, and an optical dielectric layer, the first functional layer and the second functional layer are oppositely disposed, and the optical medium layer is located at the first function. Between the layer and the second functional layer, the light conversion layer is located in the optical medium layer, and light of a specific wavelength range is emitted from the first functional layer.
  • the optical resonant cavity 100 includes a first functional layer 121, an optical dielectric layer 130, and a second functional layer 122 that are sequentially stacked, and the light conversion layer 110 is located in the optical dielectric layer 130.
  • the first functional layer 121 and the second functional layer 122 are high reflective layers with respect to the optical medium layer 130 such that light incident on the optical resonant cavity 100 is reflected back and forth between the first functional layer 121 and the second functional layer 122, in accordance with The light required by the design wavelength of the optical cavity 100 will interfere constructively during the reflection process, thereby ejecting from the optical cavity 100 with greater brightness.
  • the design wavelength depends on the length L of the resonant cavity 101 of the optical resonant cavity 100 and the optical properties (eg, refractive index) of the resonant cavity 101.
  • the sum of the optical thickness (the product of the actual thickness and the refractive index) of the optical dielectric layer 130 and the optical thickness of the light conversion layer 110 is a half wavelength of the design wavelength.
  • a positive integer multiple, at this time, the length L of the resonant cavity 101 is the sum of the actual thickness of the optical medium layer 130 and the actual thickness of the light conversion layer 110. Therefore, in the above embodiment, the oppositely disposed first functional layer and the second functional layer have light reflectivity, and the first functional layer 121 faces the surface 1211 of the second functional layer 122 and the second functional layer 122 faces the first functional layer.
  • the surface 1221 of the 121 serves as the resonant side of the resonant cavity 101, i.e., the two surfaces (1211 and 1221) define the resonant cavity 101 of the optical resonant cavity 100.
  • the type of the optical resonant cavity is not limited, and accordingly, the first functional layer and the second functional layer may be disposed according to the type of the optical resonant cavity.
  • the optical resonant cavity is a transmissive optical resonant cavity
  • both the first functional layer and the second functional layer are transflective films.
  • the second functional layer has a higher reflectance to the light of the design wavelength than the light of the first functional layer to the design wavelength, such that the light of the design wavelength can be emitted from the first functional layer.
  • the light incident into the transmissive optical cavity may include light that enters the optical cavity from the second functional layer, and may also include light that enters the optical cavity from the first functional layer.
  • the optical resonant cavity is a reflective optical resonant cavity
  • the first functional layer is a transflective film
  • the second functional layer is a total reflective film.
  • the reflectance of the first functional layer is not limited and may be selected as needed.
  • the larger the reflectance of the first functional layer the smaller the half width of the wavelength of the transmission band of the first functional layer, and accordingly, the narrower the wavelength range of the outgoing light, that is, the better the monochromaticity of the emitted light.
  • the optical resonant cavity may further include an anti-reflective film.
  • the anti-reflection film is located on the light incident side of the optical cavity, which can increase the proportion of incident light entering the optical cavity and increase the light output of the optical cavity in the designed wavelength range. For example, as shown in FIG.
  • the anti-reflection film 140 may be disposed on a side of the second functional layer 122 away from the first functional layer 121; As shown, in the case where the optical cavity is a reflective optical cavity, the anti-reflection film 140 may be disposed on a side of the first functional layer 121 remote from the second functional layer 122.
  • the sum of the optical thickness of the optical medium layer and the optical thickness of the light converting layer is a positive integer multiple of a half wavelength of the center wavelength of light of a particular wavelength range.
  • the light of the center wavelength may interfere with the constructive length between the first functional layer 121 and the second functional layer 122.
  • the optical thickness can be the product of the actual thickness of the structural layer and the refractive index.
  • the surface of the first functional layer 121 and the surface of the second functional layer 122 are parallel to each other, and the optical medium layer 130 is in a direction perpendicular to the surface of the first functional layer 121.
  • the sum of the product of the thickness and its refractive index and the product of the thickness of the light conversion layer 110 and its refractive index is a positive integer multiple of a half wavelength of the design wavelength.
  • the material of the optical medium layer is not limited.
  • the material of the optical medium layer may include air, an inorganic material, or an organic material, etc.
  • the inorganic material may be a low refractive index material such as silicon dioxide or magnesium fluoride.
  • one light conversion layer may be disposed in the optical cavity; or a plurality of light conversion layers spaced apart from each other may be disposed.
  • the plurality of light conversion layers are disposed at the nodes of the design wavelength of the optical cavity, which can further increase the absorption of light of the non-design wavelength, and accordingly, the amount of light of the design wavelength light can be further increased.
  • the number of the light conversion layers to be disposed may be designed according to the optical thickness between the first functional layer 121 and the second functional layer 122.
  • the refractive index of the light conversion layer is greater than the refractive index of the optical dielectric layer.
  • the light conversion layer can act as a reflective layer such that light can be reflected between adjacent light conversion layers or between the light conversion layer and the functional layer (the first functional layer or the second functional layer).
  • a plurality of resonant cavities may be formed between the first functional layer or the second functional layer, which may further improve the elimination of light of a non-design wavelength, and further improve the design wavelength.
  • the amount of light and brightness of the light can be configured to have a larger extinction coefficient to increase absorption of light at non-design wavelengths.
  • the specific position of the light conversion layer in the optical cavity is not limited as long as the light conversion layer is located at the node of the design wavelength, and the light conversion layer may coincide with the node, or light.
  • the distance between the conversion layer and the nodes is within an acceptable range.
  • the thickness center plane of the light conversion layer is not more than the center wavelength of the light of the specific wavelength range by more than 1/30 of the center wavelength.
  • the light conversion layer absorbs light in the designed wavelength range very little, and the amount of light emitted by the design wavelength range can be increased. Exemplarily, as shown in FIG.
  • the surface of the first functional layer 121, the surface of the second functional layer 122, and the thickness central plane Q of the light conversion layer are parallel, in a direction perpendicular to the plane of the first functional layer 121 (for example, On the broken line W) shown in Fig. 1B, the distance between the center plane Q of the thickness and the node P is not more than 1/30 of the design wavelength.
  • the specific position of the light conversion layer in the optical cavity is not limited as long as the light conversion layer absorbs light of a designed wavelength range within an acceptable range.
  • the thickness of the light conversion layer is not greater than 1/30 of the center wavelength of light of a particular wavelength range. Within the above range, the main surface of the light conversion layer is far from the antinode of the light of the design wavelength, and the light conversion layer absorbs light in the designed wavelength range very little, and the amount of light emitted by the design wavelength range can be increased.
  • the optical resonant cavity can also include a metal absorbing layer.
  • the metal absorbing layer 150 may be located on one side of the first functional layer 121, or the metal absorbing layer 150 may be disposed in the first functional layer 121.
  • the metal absorbing layer can absorb light in a non-design wavelength range and improve the monochromaticity of the emitted light.
  • a film system configuration of an optical resonant cavity is provided.
  • the optical resonant cavity can emit red light having a center wavelength of 620 nm.
  • the first layer of the chromium film and the second layer of the silver film may serve as a high-reflection layer (second functional layer), in which case the second functional layer is a total reflection layer.
  • the adhesion of the chromium film to the base glass is stronger than the adhesion of the silver film to the base glass, in which case the first layer of chromium film is primarily used to secure the optical cavity to the substrate, in at least one embodiment of the present disclosure It is also possible not to provide a chrome film of the first layer.
  • the silver film of the second layer may be replaced by a film having a high reflectivity such as an aluminum film, a gold film, or a copper film, which is not specifically limited in the embodiment of the present disclosure.
  • the sixth layer of the titanium dioxide film layer, the seventh layer of the chromium film, and the eighth layer of the titanium dioxide film layer may serve as a high reflective layer (first functional layer), and the seventh layer of the chromium film may serve as a metal absorption layer.
  • the third and fifth layers of the silicon dioxide film layer are optical dielectric layers, the fourth layer of light converting material film layer is a light converting layer, and the light converting layer is located in the optical medium layer. Under the film system shown in Table 1, the light conversion layer was located at the node of light at a wavelength of 620 nm.
  • FIG. 5 is a reflection spectrum diagram of a light conversion material layer of the optical cavity shown in Table 1 when no light conversion occurs, in which the abscissa indicates the wavelength of light, and the ordinate indicates the light reflectance.
  • FIG. 6 is a luminescence spectrum of a converted luminescent material, in which the abscissa indicates the wavelength of light, and the ordinate indicates the photoluminescence intensity of the converted luminescent material.
  • the reflection effect of the optical cavity on the light is the superposition effect of the reflection spectrum of FIG. 5 and the luminescence spectrum of the converted luminescent material of FIG. .
  • the optical cavity has a reflectance for light having a wavelength of about 620 nm much higher than that of light of other wavelengths; as shown in FIG. 6, the wavelength of light that has undergone conversion of the luminescent material is also concentrated. Near the 620 nm wavelength.
  • the light conversion material layer of the optical cavity shown in Table 1 is subjected to light conversion, the light transmittance of the optical cavity to light having a wavelength of about 620 nm can be improved.
  • light of a particular wavelength range is monochromatic light.
  • the monochromatic light is generally in the visible range, that is, the wavelength range of light emitted by the optical cavity covers only a single color band, so that the optical cavity can be applied to display or illumination as a monochromatic light emitter.
  • the monochromatic light can also be in the infrared band so that the optical resonator can be applied to the sensor.
  • the wavelength range of light emitted by the optical resonant cavity may cover a plurality of color bands.
  • the monochromatic light may be one of red, green, and blue light.
  • the optical cavity can emit light of three primary colors, and an image can be displayed by combining resonators emitting light of different colors, and thus, the optical cavity can be applied to the display field.
  • the material of the light converting layer includes an up-converting luminescent material and/or a down-converting luminescent material for obtaining monochromatic light.
  • the up-converting luminescent material may convert light having a wavelength greater than a wavelength of the monochromatic light into the monochromatic light
  • the down-converting luminescent material may convert light having a wavelength smaller than a wavelength of the monochromatic light into the monochromatic light.
  • a plurality of types of light-converting luminescent materials may be disposed in the light conversion layer, and the light-converting luminescent materials may be respectively disposed in a plurality of film layers or may be doped in the same film layer.
  • the types of the up-converting luminescent material and the down-converting luminescent material are not limited.
  • the down-converting luminescent material may include an inorganic luminescent material and/or an organic luminescent material, further, such as a fluorescent material or a quantum dot material or the like.
  • the up-converting luminescent material may include an inorganic compound doped with a rare earth ion.
  • a rare earth ion For example, according to a specific wavelength band of blue light emitted from the optical cavity, one or more rare earth ions of a corresponding concentration and ratio may be doped in an inorganic compound such as a fluoride, an oxide, a sulfur compound, a oxyfluoride or a halide.
  • NaYF4 sodium hydride fluoride
  • Yb yttrium
  • Tm yttrium
  • Er yttrium
  • the light exiting the optical cavity is red light.
  • the light conversion layer may include a down-converting luminescent material for converting blue light and green light into red light.
  • the down-converting luminescent material may include red luminescent materials such as red quantum dots, red fluorescent materials, and the like.
  • the down-conversion luminescent material can also convert ultraviolet rays, X-rays, gamma rays, and the like having a wavelength smaller than blue light into red light.
  • the light conversion layer may include an up-conversion luminescent material for converting infrared rays or the like having a wavelength larger than red light into red light.
  • the light emerging from the optical cavity is green.
  • the light conversion layer may include a down-converting luminescent material for converting blue light into green light and/or an up-converting luminescent material for converting red light into green light.
  • the down-converting luminescent material may include a green luminescent material such as a green quantum dot or a green fluorescent material.
  • the up-conversion luminescent material can also convert infrared rays having a wavelength greater than red light into red light
  • the down-conversion luminescent material can also convert ultraviolet rays, X-rays, gamma rays, and the like having a wavelength smaller than blue light into blue light.
  • the light exiting the optical cavity is blue light.
  • the light conversion layer may include an up-converting luminescent material for converting red and green light to blue light.
  • an up-converting luminescent material for converting red and green light to blue light.
  • the up-converting luminescent material can also convert infrared rays or the like having a wavelength greater than red light into red light.
  • the light conversion layer may include a down-converting luminescent material for converting ultraviolet rays, X-rays, gamma rays, or the like having a wavelength smaller than blue light into blue light.
  • the quantum dots are generally spherical or spheroidal in shape, often between 2 and 20 nanometers in diameter.
  • quantum dots include silicon quantum dots, germanium quantum dots, cadmium sulfide quantum dots, cadmium selenide quantum dots, cadmium telluride quantum dots, zinc selenide quantum dots, lead sulfide quantum dots, lead selenide quantum dots, phosphating Indium quantum dots and indium arsenide quantum dots.
  • the refractive index and the extinction coefficient of the light conversion layer are not limited, and the up-conversion luminescent material or the down-conversion luminescent material may be doped with other materials to obtain a corresponding refractive index or extinction coefficient.
  • Light conversion layer may range from 1 to 5, further 2, 3, 4, and the like.
  • the extinction coefficient of the light conversion layer may range from 1 to 5, further 2, 3, 4, and the like.
  • the refractive index and extinction coefficient of the light conversion layer can be set to be equal or approximately equal.
  • the material of the light conversion layer may include quantum dots and silver nanoparticles.
  • the ratio of quantum dots to silver nanoparticles By adjusting the ratio of quantum dots to silver nanoparticles, the refractive index and extinction coefficient of the light conversion layer can be adjusted. For example, the more the silver nanoparticles occupy a ratio in the light conversion layer material, the refractive index of the light conversion layer is decreased and the extinction coefficient is increased.
  • the volume ratio of quantum dots to silver nanoparticles may be 66.94% / 33.06%, such that the light conversion layer has the same or similar refractive index and extinction coefficient as chromium.
  • a specific structural layer in the optical cavity may be replaced by a light conversion layer, which may be located at the design wavelength of the optical cavity.
  • a light conversion layer which may be located at the design wavelength of the optical cavity.
  • an optical resonant cavity is provided with a metal layer (e.g., a chrome layer) that is located at a node of the design wavelength of the optical resonant cavity.
  • the chrome layer has a high reflectivity, which can reflect the light in the designed wavelength range, thereby increasing the light exit rate of the design wavelength range; and the chrome layer has a large extinction coefficient, Absorbs light in a non-designed wavelength range, thereby reducing the exit rate of light in the non-design wavelength range.
  • the chromium layer in the optical cavity described above may be replaced with a light conversion layer, and the optical thickness of the light conversion layer may be set to be the same as the chromium layer.
  • the refractive index, extinction coefficient, film thickness and the like of the light conversion layer are set to be equal to the chromium layer.
  • At least one embodiment of the present disclosure provides a display panel including the optical resonant cavity in any of the foregoing embodiments.
  • the optical cavity can emit monochromatic light, and it is not necessary to provide a color film.
  • the monochromaticity of the light emitted from the optical cavity is good, the effect of displaying an image is improved, and other wavelengths of light can be converted into the monochromatic light to improve the brightness of the emitted light.
  • the display panel can be any product or component having a display function, such as a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc., which is not limited by at least one embodiment of the present disclosure.
  • the display panel provided by at least one embodiment of the present disclosure further includes a light intensity control structure, the light intensity control structure is disposed in a stacked manner with the optical resonant cavity, and configured to control the intensity of the transmitted light.
  • the light intensity control structure can control the intensity of the light, and can adjust the gray level of the display image of the display panel.
  • the light intensity control structure and the optical cavity may be stacked on the optical path of the display light, so that the light intensity control structure adjusts the gray level of the display image.
  • the surface of the light intensity control structure is parallel to the surface of the optical resonant cavity, and the light intensity control structure and the optical resonant cavity at least partially overlap in a direction perpendicular to the plane of the light intensity control structure.
  • the display panel may include a plurality of pixel units, and each of the pixel units may be provided with an optical resonant cavity in any of the above embodiments.
  • FIG. 2A is a partial structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 2B is a partial structural diagram of another display panel according to an embodiment of the present disclosure, and FIGS. 2A and 2B illustrate one of the display panels.
  • the display panel in each pixel unit 1100, includes a light intensity control structure 200, and the light intensity control structure 200 and the optical resonant cavity 100 are stacked on the optical path of the display light.
  • the light intensity control structure 200 is configured to control the intensity of the passing light.
  • the light intensity control structure 200 is configured to control the intensity of light incident on the optical resonant cavity 100 or light exiting the optical resonant cavity 100.
  • the display panel may include a first substrate 310 and a second substrate 320.
  • the first substrate 310 is located on the display side of the display panel with respect to the second substrate 320.
  • the second substrate 320 may be an array substrate.
  • the array substrate may include at least one switching element (eg, a thin film transistor) that is signally coupled to the light intensity control structure 200 to control the switching of the light intensity control structure 200 and the applied voltage in an on state. the size of.
  • the display panel may be a reflective display panel or a transmissive display panel.
  • the positional relationship of the light intensity control structure 200 with the optical resonant cavity 100 and the type of the optical resonant cavity 100 may be selected according to the type of the display panel.
  • the display panel is a reflective display panel, and the light intensity control structure and the optical resonant cavity are sequentially disposed from the display side to the non-display side of the display panel, and the optical resonant cavity is reflected.
  • Optical cavity to achieve light reflection Exemplarily, as shown in FIG. 2A, the display panel is a reflective display panel.
  • the ambient light passes through the light intensity control structure 200 and enters the reflective optical resonant cavity 100.
  • the reflective optical resonant cavity 100 reflects the monochromatic light, and the monochromatic light passes through the light intensity control structure 200, and then exits.
  • the light intensity control structure 200 adjusts the intensity of the monochromatic light. In this way, there is no need to additionally provide a reflective layer in the display panel, which simplifies the structure of the display panel, and the reflective optical resonant cavity 100 can convert light of other wavelengths in the ambient light into the monochromatic light, thereby improving the brightness of the monochromatic light. Compared with the existing reflective display panel, the brightness of the displayed image is improved.
  • the optical resonant cavity may also be configured as a transmissive optical resonant cavity, and accordingly, the second substrate may be configured as a reflective substrate.
  • the positional relationship between the light intensity control structure and the optical cavity is not limited as long as the light intensity control structure and the optical cavity are located on the side of the second substrate facing the display side.
  • the display panel is a transmissive display panel
  • the optical resonant cavity is a transmissive optical resonant cavity.
  • the display panel is a transmissive display panel.
  • the backlight is incident on the transmissive optical cavity 100, and the transmissive optical cavity 100 emits monochromatic light, and the intensity control structure 200 adjusts the intensity of the monochromatic light.
  • the backlight enters the optical resonant cavity 100 and enters the display mode of the light intensity control structure 200, so that the proportion of the backlight converted into the monochromatic light is maximized, and the backlight utilization rate is improved.
  • the light intensity control structure 200 may also be located on the light incident side of the transmissive optical resonant cavity 100, that is, after the light intensity control structure 200 adjusts the brightness of the backlight, the brightness adjusted backlight is incident on the transmissive optical resonance. In the cavity 100.
  • the specific structure of the light intensity control structure is not limited as long as the light intensity control structure can adjust the brightness of the light.
  • the light intensity control structure is an electrochromic light intensity control structure including a first electrode, a second electrode, and an electrochromic layer.
  • the first electrode and the second electrode are configured to control the electrochromic layer when an electrical signal is applied.
  • FIG. 3 is a schematic partial structural diagram of another display panel according to an embodiment of the present disclosure.
  • the light intensity control structure 200 is an electrochromic light intensity control structure
  • the electrochromic light intensity control structure 200 includes a first electrode 210, a second electrode 220 and an electrochromic layer 230.
  • the electrochromic layer 230 is located between the first electrode 210 and the second electrode 220.
  • the electrochromic layer 230 includes an electrochromic material that changes in light transmittance under the action of an electric field, for example, from a transparent state to a dark state.
  • an electrochromic material that changes in light transmittance under the action of an electric field, for example, from a transparent state to a dark state.
  • the potential difference between the first electrode 210 and the second electrode 220 is zero, and the electrochromic layer 230 has a transparent state;
  • the electrochromic layer 230 has a dark state, and the light transmittance of the electrochromic layer 230 decreases as the potential difference increases.
  • the type of electrochromic material in the electrochromic layer is not limited.
  • the electrochromic material may include tungsten trioxide, polythiophenes and derivatives thereof, viologens, tetrathiafulvalene or metal phthalocyanine compounds, and the like.
  • the first electrode and the second electrode may be transparent electrodes or translucent electrodes.
  • the material of the transparent electrode may include indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium zinc oxide (GZO) zinc oxide (ZnO), indium oxide (In 2 O 3 ), Alumina zinc (AZO) and carbon nanotubes.
  • the light intensity control structure is a liquid crystal light intensity control structure
  • the liquid crystal light intensity control structure includes a third electrode, a fourth electrode, a first polarizing layer, and a second polarizing layer.
  • a liquid crystal layer the liquid crystal layer is sandwiched between the first polarizing layer and the second polarizing layer, and the third electrode and the fourth electrode are configured to control the liquid crystal layer when an electrical signal is applied.
  • the first polarizing direction of the first polarizing layer and the second polarizing direction of the second polarizing layer are perpendicular to each other, so that the display panel is in a normally black state, and the contrast of the displayed image can be improved.
  • FIG. 4A is a partial structural diagram of another display panel according to an embodiment of the present disclosure
  • FIG. 4B is a partial structural diagram of another display panel according to an embodiment of the present disclosure.
  • the light intensity control structure 200 is a liquid crystal light intensity control structure
  • the liquid crystal light intensity control structure 200 includes a third electrode 240, a fourth electrode 250, a first polarizing layer 260, and a first
  • the second polarizing layer 270 and the liquid crystal layer 280 are sandwiched between the first polarizing layer 260 and the second polarizing layer 270.
  • the liquid crystal light intensity control structure 200 is caused by the cooperation of the first polarizing layer 260 and the second polarizing layer 270.
  • the third electrode 240 and the fourth electrode 250 may be located on the same side of the liquid crystal layer 280, or may be located on both sides of the liquid crystal layer 280, respectively.
  • the optical resonant cavity in the propagation path of the display light, may be located before the light intensity control structure, that is, the display light passes through the optical resonant cavity and then enters the light intensity control structure. In this way, the ratio of the display light to the desired monochromatic light can be increased, the utilization of light can be increased, and the brightness of the monochromatic light can be increased.
  • the display panel is a transmissive display panel, and the optical resonant cavity 100 is located on the side of the light intensity control structure 200 facing the second substrate 320.
  • the proportion of the backlight converted into monochromatic light can be increased.
  • the display panel is a reflective display panel
  • the optical resonant cavity 100 is located on a side of the light intensity control structure 200 facing the first substrate 320.
  • the ratio of the ambient light to the monochromatic light can be increased.
  • the third electrode 240 may be provided as a transparent electrode or a semi-transparent electrode
  • the fourth electrode 250 may be provided as a reflective electrode.
  • optical resonant cavity provided by the above at least one embodiment of the present disclosure is not limited to application in the field of display, and can also be applied in other optical fields.
  • the above optical cavity can be applied to the field of lasers.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光学谐振腔 (100)包括光转换层(110),光学谐振腔(100)配置为出射特定波长范围的光,并且在光学谐振腔(100)中特定波长范围的光的中心波长的至少一个波节处设置有光转换层(110)。光转换层(110)可以增加特定波长范围的光的出光量。还公开了包括光学谐振腔的显示面板。

Description

光学谐振腔、显示面板
本申请要求于2018年4月8日递交的中国专利申请第201810306414.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种光学谐振腔、显示面板。
背景技术
光学谐振腔可以对射入的光线进行选择,通过调整腔体内的光程可以出射特定波长的光。该特定波长的光在光学谐振腔的腔体中会干涉相长从而能够以更大的亮度出射,射入光学谐振腔中的其它波长的光线会在腔体内反复震荡从而干涉相消或者被其它结构吸收。因此,现有光学谐振腔对光的利用率有限,出光量低。
发明内容
本公开至少一个实施例提供一种光学谐振腔,包括光转换层,其中,所述光学谐振腔配置为出射特定波长范围的光,并且在所述光学谐振腔中所述特定波长范围的光的中心波长的至少一个波节处设置有所述光转换层。
例如,本公开至少一个实施例提供的光学谐振腔还包括:第一功能层;第二功能层,与所述第一功能层相对设置;光学介质层,位于所述第一功能层和所述第二功能层之间;其中,所述光转换层位于所述光学介质层中,所述特定波长范围的光从所述第一功能层出射。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述光学谐振腔为透射式光学谐振腔,所述第一功能层和所述第二功能层都为半透半反射膜;或者所述光学谐振腔为反射式光学谐振腔,所述第一功能层为半透半反射膜,所述第二功能层为全反射膜。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述光学介质层的光学厚度和所述光转换层的光学厚度之和为所述特定波长范围的光的中 心波长的半波长的正整数倍。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述光转换层的折射率大于与所述光学介质层的折射率。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述光转换层的厚度中心面与所述特定波长范围的光的中心波长的波节的距离不大于所述中心波长的1/30。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述光转换层的厚度不大于所述特定波长范围的光的中心波长的1/30。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述特定波长范围的光为单色光。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述单色光为红光、绿光和蓝光之一。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述光转换层的材料包括用于得到所述单色光的上转换发光材料和/或下转换发光材料。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述上转换发光材料包括掺杂稀土离子的无机化合物;所述下转换发光材料包括荧光材料或者量子点材料。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述光学谐振腔包括依次层叠设置的银膜、第一二氧化硅膜、光转换材料膜、第二二氧化硅膜和二氧化钛膜;所述二氧化钛膜作为所述第一功能层,所述银膜作为所述第二功能层,所述第一二氧化硅膜和所述第二二氧化硅膜作为所述光学介质层,所述光转换材料膜作为所述光转换层。
例如,在本公开至少一个实施例提供的光学谐振腔中,所述光学谐振腔包括多个所述光转换层,多个所述光转换层彼此间隔,且设置在所述特定波长范围的光的中心波长的不同波节处。
例如,在本公开至少一个实施例提供的光学谐振腔还包括抗反射膜;当所述光学谐振腔为透射式光学谐振腔时,所述抗反射膜设置在所述第二功能层的远离所述第一功能层的一侧;当所述光学谐振腔为反射式光学谐振腔时,所述抗反射膜设置在所述第一功能层的远离所述第二功能层的一侧。
例如,在本公开至少一个实施例提供的光学谐振腔还包括金属吸收层;所述金属吸收层设置在所述第一功能层的一侧,或者设置在所述第一功能层 中。
本公开至少一个实施例提供一种显示面板,包括前述任一实施例中的光学谐振腔。
例如,本公开至少一个实施例提供的显示面板还包括光强控制结构,所述光强控制结构与所述光学谐振腔层叠设置,且配置为可控制通过的光的强度。
例如,在本公开至少一个实施例提供的显示面板中,所述显示面板为反射式显示面板,从所述显示面板的显示侧至非显示侧,依次设置光强控制结构和所述光学谐振腔,所述光学谐振腔为反射式光学谐振腔以实现光反射;或者所述显示面板为透射式显示面板,所述光学谐振腔为透射式光学谐振腔。
例如,在本公开至少一个实施例提供的显示面板中,所述光强控制结构为电致变色光强控制结构或液晶光强控制结构,其中,所述电致变色光强控制结构包括第一电极、第二电极和电致变色层,所述第一电极和第二电极配置为在施加电信号时可控制所述电致变色层;所述液晶光强控制结构包括第三电极、第四电极、第一偏光层、第二偏光层和液晶层,所述第一偏光层的第一偏光方向与所述第二偏光层的第二偏光方向彼此垂直,所述液晶层夹置在所述第一偏光层和所述第二偏光层之间,所述第三电极和所述第四电极配置为在施加电信号时可控制所述液晶层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为本公开一些实施例提供的一种光学谐振腔的结构示意图;
图1B为图1A所示光学谐振腔的光路图;
图1C为本公开一些实施例提供的另一种光学谐振腔的结构示意图;
图1D为本公开一些实施例提供的另一种光学谐振腔的结构示意图;
图1E为本公开一些实施例提供的另一种光学谐振腔的结构示意图;
图2A为本公开一些实施例提供的一种显示面板的局部结构示意图;
图2B为本公开一些实施例提供的另一种显示面板的局部结构示意图;
图3为本公开一些实施例提供的另一种显示面板的局部结构示意图;
图4A为本公开一些实施例提供的另一种显示面板的局部结构示意图;以及
图4B为本公开一些实施例提供的另一种显示面板的局部结构示意图;
图5为本公开一些实施例提供的一种光学谐振腔的反射光谱图;
图6本公开一些实施例提供的转换发光材料的发光光谱图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开至少一个实施例提供一种光学谐振腔,包括光转换层,其中,光学谐振腔配置为出射特定波长范围的光,并且在光学谐振腔中光转换层位于特定波长范围的光的中心波长的波节处。光学谐振腔配置为出射特定波长范围的光,因此在该光学谐振腔中驻留该特定波长范围的光的波,从而可以根据该驻留的特定波长范围的光的波,确定在光学谐振腔中光转换层的位置。光转换层可以将其它波长的光转换为上述特定波长范围的光,可以提高光学谐振腔的出光量;此外,在光学谐振腔中光转换层位于特定波长范围的光的中心波长的波节处,可以降低对上述特定波长范围的光的吸收,此外,在此情况下,光转换层会位于其它波长的光的非波节处,可以增加光转换层对其 它部分的光的吸收,可以进一步增加光学谐振腔的出光量。光学谐振腔包括谐振腔体(或称为谐振空间),该谐振腔体包括具有光反射性(例如全反射或半透半反射)的相对且平行的两个侧面,光线在谐振腔体的该两个侧面之间往返传播(来回反射)从而实现谐振,由该谐振产生特定波长范围的光从某一侧面出射。该两个侧面可以称为谐振侧面,谐振侧面之间的垂直距离定义了谐振腔体的长度;相应地,在光学谐振腔中驻留的特定波长范围的光的中心波长的波节与谐振侧面重合。本公开的实施例对于谐振腔体非用于实现谐振的侧面不作限制。
需要说明的是,在本公开至少一个实施例中,在光学谐振腔中光转换层位于特定波长范围的光的中心波长的波节处是指:在光学谐振腔中光转换层与波节重合或者位于波节附近。例如,光转换层与该中心波长的波节的距离小于光转换层与该中心波长的波腹的距离。
在本公开至少一个实施例中,上述特定波长范围的光的中心波长可以为光学谐振腔的设计波长。下面,在本公开下述至少一个实施例中的技术方案中,以光学谐振腔的设计波长表示上述特定波长范围的光的中心波长,并且以设计波长范围表示特定波长范围。示例性的,光学谐振腔的设计波长为630纳米,即光学谐振腔可以出射中心波长为630纳米的红光,630纳米波长的光的至少一个波节会与420纳米的蓝光的波腹处于同一位置,如果在该位置设置光转换层,该光转换层不会吸收630纳米的红光,但是对420纳米的蓝光的吸收程度最高。如此,不仅最大程度地降低对入射光中符合设计波长范围的光(上述特定波长范围的光)的吸收,还可以最大程度地提高非设计波长范围的光与设计波长范围的光之间的转换量,从而进一步提高光学谐振腔的出光量。
下面,结合附图对根据本公开至少一个实施例中的光学谐振腔、显示面板进行说明。
图1A为本公开一实施例提供的一种光学谐振腔的结构示意图,图1B为图1A所示光学谐振腔的光路图。
例如,在本公开至少一个实施例中,如图1A和图1B所示,光学谐振腔100包括光转换层110,光学谐振腔100配置为出射特定波长范围的光,该特定波长范围的光的中心波长在光学谐振腔100的谐振腔体中的一个波节为P,光转换层110可以设置在波节P处。光转换层110不会吸收设计波长 范围的光,并且吸收非设计波长的光以转换为设计波长范围的光,可以提高设计波长范围的光的出光量。
例如,在本公开至少一个实施例中,光学谐振腔还可以包括第一功能层、第二功能层和光学介质层,第一功能层和第二功能层相对设置,光学介质层位于第一功能层和第二功能层之间,光转换层位于光学介质层中,特定波长范围的光从第一功能层出射。示例性的,如图1A和图1B所示,光学谐振腔100包括依次叠置的第一功能层121、光学介质层130和第二功能层122,光转换层110位于光学介质层130中。第一功能层121和第二功能层122相对于光学介质层130为高反膜层,使得射入光学谐振腔100的光在第一功能层121和第二功能层122之间来回反射,符合光学谐振腔100的设计波长要求的光线会在反射过程中干涉相长,从而以更大的亮度从光学谐振腔100中射出。该设计波长取决于光学谐振腔100的谐振腔体101的长度L以及谐振腔体101的光学性质(例如折射率)。例如,谐振腔体101中包括光学介质层130以及光转换层110时,光学介质层130的光学厚度(实际厚度与折射率的乘积)和光转换层110的光学厚度之和为设计波长的半波长的正整数倍,此时谐振腔体101的长度L为光学介质层130的实际厚度与光转换层110的实际厚度之和。因此,在上述实施例中,相对设置的第一功能层和第二功能层具有光反射性,第一功能层121朝向第二功能层122的表面1211以及第二功能层122朝向第一功能层121的表面1221作为谐振腔体101的谐振侧面,即该两个表面(1211和1221)界定了光学谐振腔100的谐振腔体101。
在本公开至少一个实施例中,对光学谐振腔的类型不做限制,相应地,第一功能层和第二功能层可以根据光学谐振腔的类型进行设置。
例如,在本公开至少一个实施例提供的光学谐振腔中,光学谐振腔为透射式光学谐振腔,第一功能层和第二功能层都为半透半反射膜。例如,第二功能层对设计波长的光的反射率大于第一功能层对设计波长的光的反射率,使得设计波长的光可以从第一功能层射出。例如,射入透射式光学谐振腔中的光线可以包括从第二功能层射入光学谐振腔中的光线,也可以包括从第一功能层射入光学谐振腔中的光线。
例如,在本公开至少一个实施例提供的光学谐振腔中,光学谐振腔为反射式光学谐振腔,第一功能层为半透半反射膜,第二功能层为全反射膜。
在本公开至少一个实施例中,对第一功能层的反射率不做限制,可以根 据需要进行选择。第一功能层的反射率越大,第一功能层的透射带的波长半宽度越小,相应地,出射光的波长范围越窄,即出射光的单色性越好。
例如,在本公开至少一个实施例提供的光学谐振腔中,光学谐振腔还可以包括抗反射膜。抗反射膜位于光学谐振腔的入光侧,可以增加入射光进入光学谐振腔的比例,提高光学谐振腔的设计波长范围光的出光量。示例性的,如图1C所示,在光学谐振腔为透射式光学谐振腔的情况下,可以在第二功能层122的远离第一功能层121的一侧设置抗反射膜140;如图1D所示,在光学谐振腔为反射式光学谐振腔的情况下,可以在第一功能层121的远离第二功能层122的一侧设置抗反射膜140。
例如,在本公开至少一个实施例提供的光学谐振腔中,光学介质层的光学厚度和光转换层的光学厚度之和为特定波长范围的光的中心波长的半波长的正整数倍。如此,上述中心波长的光在第一功能层121和第二功能层122之间可以干涉相长。光学厚度可以为结构层的实际厚度与折射率的乘积。示例性的,如图1A和图1B所示,第一功能层121所在面和第二功能层122所在面彼此平行,在垂直于第一功能层121所在面的方向上,光学介质层130的厚度和其折射率的乘积与光转换层110的厚度和其折射率的乘积之和为设计波长的半波长的正整数倍。
在本公开至少一个实施例中,对光学介质层的材料不做限制。例如,光学介质层的材料可以包括空气、无机材料或者有机材料等,例如无机材料可以为二氧化硅、氟化镁等低折射率材料。
例如,在本公开至少一个实施例中,光学谐振腔中可以设置一个光转换层;或者可以设置多个彼此间隔的光转换层。例如,该多个光转换层都设置在光学谐振腔的设计波长的波节处,可以进一步增加对非设计波长光的吸收,相应地,可以进一步提高设计波长光线的出光量。光转换层的设置数量可以根据第一功能层121和第二功能层122之间的光学厚度进行设计。
例如,在本公开至少一个实施例提供的光学谐振腔中,光转换层的折射率大于光学介质层的折射率。如此,由于全反射原理,光转换层可以作为反射层,使得光可以在相邻的光转换层之间或者光转换层与功能层(第一功能层或者第二功能层)之间反射。例如,光转换层作为反射层的情况下,可以在第一功能层或者第二功能层之间形成多个谐振腔,可以进一步提高对非设计波长的光的消除程度,并且进一步提高对设计波长的光的出光量和亮度。 例如,光转换层可以设置为具有较大的消光系数,以增加对非设计波长的光的吸收。
在本公开至少一个实施例中,对光转换层在光学谐振腔中的具体位置不做限制,只要光转换层位于设计波长的波节处即可,光转换层可以与波节重合,或者光转换层与波节的间隔距离在可接受的范围内。例如,在本公开至少一个实施例提供的光学谐振腔中,光转换层的厚度中心面与特定波长范围的光的中心波长的波节的距离不大于中心波长的1/30。在上述范围内,光转换层对设计波长范围的光吸收非常少,可以增加设计波长范围的光的出光量。示例性的,如图1B所示,第一功能层121所在面、第二功能层122所在面以及光转换层的厚度中心面Q平行,在垂直于第一功能层121所在面的方向(例如图1B所示的虚线W)上,厚度中心面Q与波节P的距离不大于设计波长的1/30。
在本公开至少一个实施例中,对光转换层在光学谐振腔中的具体位置不做限制,只要光转换层对设计波长范围的光的吸收在可接受的范围内即可。例如,在本公开至少一个实施例提供的光学谐振腔中,光转换层的厚度不大于特定波长范围的光的中心波长的1/30。在上述范围内,光转换层的主表面距离设计波长的光的波腹较远,光转换层对设计波长范围的光吸收非常少,可以增加设计波长范围的光的出光量。
例如,在本公开至少一个实施例中,光学谐振腔还可以包括金属吸收层。例如,如图1E所示,金属吸收层150可以位于第一功能层121的一侧,或者金属吸收层150可以设置于第一功能层121中。金属吸收层可以将非设计波长范围的光吸收,提高出射光的单色性。
示例性的,在本公开至少一个实施例中,提供一种光学谐振腔的膜系构成,如下表1所示,该光学谐振腔可以出射中心波长为620纳米的红光。
表1
Figure PCTCN2019075922-appb-000001
Figure PCTCN2019075922-appb-000002
在表1所示的光学谐振腔中,第一层的铬膜和第二层的银膜可以作为高反膜层(第二功能层),在此情况下,第二功能层为全反射层。铬膜与基底玻璃的粘结性比银膜与基底玻璃的粘结性更强,此时第一层的铬膜主要用于使得光学谐振腔固定在基底上,在本公开至少一个实施例中,也可以不设置第一层的铬膜。例如,在一些示例中,第二层的银膜还可以替换为铝膜、金膜、或者铜膜等具有高反射率的膜层,本公开的实施例对此不做具体限定。例如,第六层的二氧化钛膜层、第七层的铬膜以及第八层的二氧化钛膜层可以作为高反膜层(第一功能层),第七层的铬膜可以作为金属吸收层。第三层和第五层的二氧化硅膜层为光学介质层,第四层的光转换材料膜层为光转换层,光转换层位于光学介质层中。在表1所示的膜系下,光转换层位于620纳米波长的光的波节处。
图5为表1所示的光学谐振腔的光转换材料层在不发生光转换作用时的反射光谱图,该反射光谱图中的横坐标表示光的波长(wavelength),纵坐标表示光反射率(reflectance);图6为转换发光材料的发光光谱图,该发光光谱图中的横坐标表示光的波长(wavelength),纵坐标表示转换发光材料的光致发光强度(photoluminescence intensity)。例如,当表一所示的光学谐振腔的光转换材料层发生光转换作用时,光学谐振腔的对光的反射效果为图5的反射光谱与图6的转换发光材料的发光光谱的叠加效果。
如图5所示,该光学谐振腔对波长约为620纳米的光的反射率远高于对其他波长的光的反射率;如图6所示,经过转换发光材料的光的波长也集中在620纳米波长附近。当表1所示的光学谐振腔的光转换材料层发生光转换作用时,可提高光学谐振腔对波长约为620纳米的光的出光率。
例如,在本公开至少一个实施例提供的光学谐振腔中,特定波长范围的光为单色光。例如,该单色光一般位于可见光范围内,即光学谐振腔出射的光的波长范围仅覆盖单一颜色的波段,以便光学谐振腔可以作为单色光发射器而应用于显示或照明。例如,该单色光也可以位于红外波段,以便光学谐 振腔可以应用于传感器。例如,在本公开至少一个实施例中,光学谐振腔出射的光的波长范围可以覆盖多个颜色的波段。
下面,以光学谐振腔出射的光为单色光为例,对本公开下述至少一个实施例中的技术方案进行说明。
例如,在本公开至少一个实施例提供的光学谐振腔中,单色光可以为红光、绿光和蓝光之一。如此,光学谐振腔可以发射三原色的光线,通过对发射不同颜色光的谐振腔进行组合,可以显示图像,如此,光学谐振腔可以应用于显示领域。
例如,在本公开至少一个实施例提供的光学谐振腔中,光转换层的材料包括用于得到单色光的上转换发光材料和/或下转换发光材料。上转换发光材料可以将波长大于该单色光的波长的光转换为该单色光,下转换发光材料可以将波长小于该单色光的波长的光转换为该单色光。光转换层中可以设置多种类型的光转换发光材料,这些光转换发光材料可以分别设置为多个膜层,也可以掺杂在同一膜层中。
在本公开至少一个实施例中,上转换发光材料和下转换发光材料的种类不做限制。例如,下转换发光材料可以包括无机发光材料和/或有机发光材料,进一步地,例如荧光材料或者量子点材料等。上转换发光材料可以包括:掺杂稀土离子的无机化合物。例如,根据光学谐振腔出射的蓝光的具体波段,可以在氟化物、氧化物、含硫化合物、氟氧化物、卤化物等无机化合物内掺杂相应浓度和比例的一种或多种稀土离子来获得相应的上转换发光材料。例如,上转换发光材料可以以氟化钇钠(NaYF4)作为基质材料,掺杂镱(Yb):铥(Tm):铒(Er)=(18~60):(0~0.2):(0~2)。
示例性的,光学谐振腔出射的光为红光。光转换层可以包括用于将蓝光和绿光转换为红光的下转换发光材料。例如,下转换发光材料可以包括红色量子点,红色荧光材料等红色发光材料。需要说明的是,下转换发光材料还可以将波长小于蓝光的紫外线、X射线、伽马射线等转换为红光。例如,光转换层可以包括用于将波长大于红光的红外线等转换为红光的上转换发光材料。
示例性的,光学谐振腔出射的光为绿光。光转换层可以包括用于将蓝光转换为绿光的下转换发光材料和/或用于将红光转换为绿光的上转换发光材料。例如,下转换发光材料可以包括绿色量子点,绿色荧光材料等绿色发光 材料。例如,上转换发光材料可以以氟化钇钠(NaYF4)作为基质材料,掺杂Yb:Tm:Er=(18~25):0:2。需要说明的是,上转换发光材料还可以将波长大于红光的红外线等转换为红光,下转换发光材料还可以将波长小于蓝光的紫外线、X射线、伽马射线等转换为蓝光。
示例性的,光学谐振腔出射的光为蓝光。光转换层可以包括用于将红光和绿光转换为蓝光的上转换发光材料。例如,以氟化钇钠(NaYF4)作为基质材料,掺杂Yb:Tm:Er=20:0.2:(0~0.5)。需要说明的是,上转换发光材料还可以将波长大于红光的红外线等转换为红光。例如,光转换层可以包括用于将波长小于蓝光的紫外线、X射线、伽马射线等转换为蓝光的下转换发光材料。
例如,在本公开至少一个实施例中,量子点一般为球形或类球形,其直径常在2到20纳米之间。量子点的具体示例包括硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点等。
在本公开至少一个实施例中,对光转换层的折射率以及消光系数等参数不做限制,可以将上转换发光材料或者下转换发光材料与其它材料掺杂以获得相应折射率或者消光系数的光转换层。例如,光转换层的折射率的范围可以为1~5,进一步为2、3、4等。例如,光转换层的消光系数的范围可以为1~5,进一步为2、3、4等。例如,光转换层的折射率和消光系数可以设置为相等或近似相等。
例如,在本公开至少一个实施例中,光转换层的材料可以包括量子点和银纳米粒子。通过调节量子点和银纳米粒子的配比,可以调节光转换层的折射率和消光系数。例如,银纳米粒子在光转换层材料中的占比越多,光转换层的折射率减小并且消光系数增大。例如,量子点和银纳米粒子的体积比可以为66.94%/33.06%,如此可以使得光转换层具有与铬相同或相似的折射率和消光系数。
需要说明的是,在本公开至少一个实施例中,可以利用光转换层取代光学谐振腔中的特定的结构层,该特定的结构层可以位于光学谐振腔的设计波长处。如此,在提高设计波长范围的光的出射率的同时可以简化对光学谐振腔的膜系设计,降低成本。
例如,一种光学谐振腔中设置有金属层(例如铬层),该铬层位于光学 谐振腔的设计波长的波节处。在光学谐振腔的工作过程中,铬层具有较高的反射率,可以对设计波长范围的光进行反射,从而增加设计波长范围的光的出射率;并且铬层具有较大的消光系数,可以将非设计波长范围的光吸收,从而降低非设计波长范围的光的出射率。例如,在本公开至少一个实施例中,可以以光转换层取代上述光学谐振腔中的铬层,该光转换层的光学厚度可以设置为与铬层相同。例如,该光转换层的折射率、消光系数、膜层厚度等参数设置为与铬层相等。如此,在增加设计波长范围的光的出射率的同时,可以不需要对光学谐振腔的膜系结构重新设计,光学谐振腔中的其它膜层的设计参数可以维持不变,简化光学谐振腔的制造工艺,降低成本。
本公开至少一个实施例提供一种显示面板,包括前述任一实施例中的光学谐振腔。在该显示面板中,光学谐振腔可以出射单色光线,可以不需要设置彩膜。此外,光学谐振腔出射光的单色性好,提高显示图像的效果,而且可以将其它波长光线转换为该单色光线,提高出射光的亮度。
例如,该显示面板可以为平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开至少一个实施例对此不作限定。
例如,本公开至少一个实施例提供的显示面板还包括光强控制结构,光强控制结构与光学谐振腔层叠设置,且配置为可控制透过的光的强度。光强控制结构可以对光的强度进行控制,可以调节显示面板的显示图像的灰度。需要说明的是,在本公开至少一个实施例中,光强控制结构与光学谐振腔可以在显示用光的光路上层叠设置,可使得光强控制结构对显示图像的灰度进行调节。例如,光强控制结构所在面与光学谐振腔所在面平行,在垂直于光强控制结构所在面的方向上,光强控制结构与光学谐振腔至少部分重叠。
例如,在本公开至少一个实施例中,显示面板可以包括多个像素单元,每个像素单元中可以设置有一个上述任一实施例中的光学谐振腔。
图2A为本公开一实施例提供的一种显示面板的局部结构示意图,图2B为本公开一实施例提供的另一种显示面板的局部结构示意图,图2A和图2B示出显示面板的一个像素单元的结构。
示例性的,如图2A和图2B所示,在每个像素单元1100中,显示面板包括光强控制结构200,光强控制结构200与光学谐振腔100在显示用光的光路上层叠设置,且光强控制结构200配置为可控制通过的光的强度。例如, 光强控制结构200配置为对射入光学谐振腔100的光或者光学谐振腔100出射的光的强度进行控制。
例如,如图2A和图2B所示,显示面板可以包括第一基板310和第二基板320。例如,相对于第二基板320,第一基板310位于显示面板的显示侧。例如,第二基板320可以为阵列基板。例如,在每个像素单元1100中,阵列基板可以包括至少一个开关元件(例如薄膜晶体管),开关元件与光强控制结构200信号连接以控制光强控制结构200的开关以及开态下被施加电压的大小。
在本公开至少一个实施例中,对显示面板的类型不做限制。例如,显示面板可以为反射式显示面板,也可以为透射式显示面板。此外,光强控制结构200与光学谐振腔100的位置关系以及光学谐振腔100的类型可以根据显示面板的类型进行选择。
例如,在本公开至少一个实施例提供的显示面板中,显示面板为反射式显示面板,从显示面板的显示侧至非显示侧,依次设置光强控制结构和光学谐振腔,光学谐振腔为反射式光学谐振腔以实现光反射。示例性的,如图2A所示,显示面板为反射式显示面板。例如,在显示过程中,外界的环境光经过光强控制结构200后进入反射式光学谐振腔100,反射式光学谐振腔100反射出单色光线,单色光线经过光强控制结构200后出射,期间,光强控制结构200对该单色光线的强度进行调节。如此,显示面板中不需要额外设置反射层,简化显示面板的结构,而且反射式光学谐振腔100可以将环境光中的其他波长的光线转换为该单色光,提高了该单色光的亮度,与现有的反射式显示面板相比,显示图像的亮度提高。
需要说明的是,在显示面板为反射式显示面板的情况下,光学谐振腔也可以设置为透射式光学谐振腔,相应地,第二基板可以设置为反射式基板。在上述情况下,光强控制结构和光学谐振腔的位置关系不做限制,只要光强控制结构和光学谐振腔位于第二基板的面向显示侧的一侧即可。
例如,在本公开至少一个实施例提供的显示面板中,显示面板为透射式显示面板,光学谐振腔为透射式光学谐振腔。示例性的,如图2B所示,显示面板为透射式显示面板。例如,在显示过程中,背光射入透射式光学谐振腔100,透射式光学谐振腔100出射单色光线,光强控制结构200对该单色光线的强度进行调节。背光先进入光学谐振腔100后进入光强控制结构200 的显示方式,使得背光转换为单色光线的比例最大化,提高了背光利用率。需要说明的是,光强控制结构200也可以位于透射式光学谐振腔100的入光侧,即光强控制结构200对背光的亮度进行调节之后,亮度被调节的背光再射入透射式光学谐振腔100中。
在本公开至少一个实施例中,对光强控制结构的具体化结构不做限制,只要光强控制结构可以对光的亮度进行调节即可。
例如,在本公开至少一个实施例提供的显示面板中,光强控制结构为电致变色光强控制结构,该电致变色光强控制结构包括第一电极、第二电极和电致变色层,第一电极和第二电极配置为在施加电信号时可控制电致变色层。图3为本公开一个实施例提供的另一种显示面板的局部结构示意图。示例性的,如图3所示,光强控制结构200为电致变色光强控制结构,该电致变色光强控制结构200包括第一电极210、第二电极220和电致变色层230.例如,电致变色层230位于第一电极210和第二电极220之间。电致变色层230包括电致变色材料,电致变色材料在电场作用下的透光率发生变化,例如可由透明态向深色态转变。例如,第一电极210和第二电极220未被施加电压或者被施加的电压相等的情况下,第一电极210和第二电极220之间的电势差为零,电致变色层230具有透明态;在第一电极210和第二电极220之间的电势差大于零的情况下,电致变色层230具有深色态,且电致变色层230的透光率随着电势差的增加而减小。
在本公开至少一个实施例中,对电致变色层中的电致变色材料的类型不做限制。例如,电致变色材料可以包括三氧化钨、聚噻吩类及其衍生物、紫罗碱类、四硫富瓦烯或金属酞菁类化合物等。
例如,在本公开至少一个实施例中,第一电极和第二电极可以为透明电极或者半透明电极。例如,透明电极的材料可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管等。
例如,在本公开至少一个实施例提供的显示面板中,光强控制结构为液晶光强控制结构,该液晶光强控制结构包括第三电极、第四电极、第一偏光层、第二偏光层和液晶层,液晶层夹置在第一偏光层和第二偏光层之间,第三电极和第四电极配置为在施加电信号时可控制液晶层。例如,第一偏光层的第一偏光方向与第二偏光层的第二偏光方向彼此垂直,可以使得显示面板 为常黑态,可以提高显示图像的对比度。图4A为本公开一个实施例提供的另一种显示面板的局部结构示意图,图4B为本公开一个实施例提供的另一种显示面板的局部结构示意图。示例性的,如图4A和图4B所示,光强控制结构200为液晶光强控制结构,该液晶光强控制结构200包括第三电极240、第四电极250、第一偏光层260、第二偏光层270和液晶层280,液晶层280夹置在第一偏光层260和第二偏光层270之间。通过调节第三电极240和第四电极250之间产生的电场控制液晶层280中的液晶分子的扭转,在第一偏光层260和第二偏光层270的配合下,使得液晶光强控制结构200具有不同的光透过率。例如,第三电极240和第四电极250可以位于液晶层280的同一侧,也可以分别位于液晶层280的两侧。
在本公开至少一个实施例提供的显示面板中,在显示用光的传播路径上,光学谐振腔可以位于光强控制结构之前,即显示用光经过光学谐振腔之后再进入光强控制结构中,如此,可以提高显示用光转换为期望的单色光的比例,提高光的利用率并且增加单色光的亮度。
例如,如图4A所示,显示面板为透射式显示面板,光学谐振腔100位于光强控制结构200的面向第二基板320的一侧,如此,可以增加背光转化为单色光线的比例。
例如,如图4B所示,显示面板为反射式显示面板,光学谐振腔100位于光强控制结构200的面向第一基板320的一侧,如此,可以增加外界环境光线转化为单色光线的比例。例如,第三电极240可以设置为透明电极或者半透明电极,第四电极250可以设置为反射电极。
需要说明的是,在本公开上述至少一个实施例提供的光学谐振腔不限于应用在显示领域中,还可以应用在其它光学领域中。例如,上述光学谐振腔可以应用于激光领域。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种光学谐振腔,包括光转换层,其中,所述光学谐振腔配置为出射特定波长范围的光,并且在所述光学谐振腔中所述特定波长范围的光的中心波长的至少一个波节处设置有所述光转换层。
  2. 根据权利要求1所述的光学谐振腔,还包括:
    第一功能层;
    第二功能层,与所述第一功能层相对设置;
    光学介质层,位于所述第一功能层和所述第二功能层之间;
    其中,所述光转换层位于所述光学介质层中,所述特定波长范围的光从所述第一功能层出射。
  3. 根据权利要求2所述的光学谐振腔,其中,
    所述光学谐振腔为透射式光学谐振腔,所述第一功能层和所述第二功能层都为半透半反射膜;或者
    所述光学谐振腔为反射式光学谐振腔,所述第一功能层为半透半反射膜,所述第二功能层为全反射膜。
  4. 根据权利要求2或3所述的光学谐振腔,其中,
    所述光学介质层的光学厚度和所述光转换层的光学厚度之和为所述特定波长范围的光的中心波长的半波长的正整数倍。
  5. 根据权利要求2-4任一所述的光学谐振腔,其中,
    所述光转换层的折射率大于所述光学介质层的折射率。
  6. 根据权利要求2-5中任一项所述的光学谐振腔,其中,
    所述光转换层的厚度中心面与所述特定波长范围的光的中心波长的波节的距离不大于所述中心波长的1/30。
  7. 根据权利要求1-5中任一项所述的光学谐振腔,其中,
    所述光转换层的厚度不大于所述特定波长范围的光的中心波长的1/30。
  8. 根据权利要求1-7中任一项所述的光学谐振腔,其中,
    所述特定波长范围的光为单色光。
  9. 根据权利要求8所述的光学谐振腔,其中,
    所述单色光为红光、绿光和蓝光之一。
  10. 根据权利要求8所述的光学谐振腔,其中,
    所述光转换层的材料包括用于得到所述单色光的上转换发光材料和/或下转换发光材料。
  11. 根据权利要求10所述的光学谐振腔,其中,所述上转换发光材料包括掺杂稀土离子的无机化合物;
    所述下转换发光材料包括荧光材料或者量子点材料。
  12. 根据权利要求2所述的光学谐振腔,其中,所述光学谐振腔包括依次层叠设置的银膜、第一二氧化硅膜、光转换材料膜、第二二氧化硅膜和二氧化钛膜;
    所述二氧化钛膜作为所述第一功能层,所述银膜作为所述第二功能层,所述第一二氧化硅膜和所述第二二氧化硅膜作为所述光学介质层,所述光转换材料膜作为所述光转换层。
  13. 根据权利要求1所述的光学谐振腔,其中,所述光学谐振腔包括多个所述光转换层,多个所述光转换层彼此间隔,且设置在所述特定波长范围的光的中心波长的不同波节处。
  14. 根据权利要求3所述的光学谐振腔,还包括抗反射膜;
    当所述光学谐振腔为透射式光学谐振腔时,所述抗反射膜设置在所述第二功能层的远离所述第一功能层的一侧;
    当所述光学谐振腔为反射式光学谐振腔时,所述抗反射膜设置在所述第一功能层的远离所述第二功能层的一侧。
  15. 根据权利要求1-14任一所述的光学谐振腔,还包括金属吸收层;
    所述金属吸收层设置在所述第一功能层的一侧,或者设置在所述第一功能层中。
  16. 一种显示面板,包括权利要求1-15中任一项所述的光学谐振腔。
  17. 根据权利要求16所述的显示面板,还包括
    光强控制结构,所述光强控制结构与所述光学谐振腔层叠设置,且配置为可控制通过的光的强度。
  18. 根据权利要求17所述的显示面板,其中,
    所述显示面板为反射式显示面板,从所述显示面板的显示侧至非显示侧,依次设置光强控制结构和所述光学谐振腔,所述光学谐振腔为反射式光学谐振腔以实现光反射;或者
    所述显示面板为透射式显示面板,所述光学谐振腔为透射式光学谐振 腔。
  19. 根据权利要求17所述的显示面板,其中,所述光强控制结构为电致变色光强控制结构或液晶光强控制结构,
    其中,所述电致变色光强控制结构包括第一电极、第二电极和电致变色层,所述第一电极和第二电极配置为在施加电信号时可控制所述电致变色层;
    所述液晶光强控制结构包括第三电极、第四电极、第一偏光层、第二偏光层和液晶层,所述第一偏光层的第一偏光方向与所述第二偏光层的第二偏光方向彼此垂直,所述液晶层夹置在所述第一偏光层和所述第二偏光层之间,所述第三电极和所述第四电极配置为在施加电信号时可控制所述液晶层。
PCT/CN2019/075922 2018-04-08 2019-02-22 光学谐振腔、显示面板 WO2019196563A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19786144.6A EP3780301A4 (en) 2018-04-08 2019-02-22 Optical resonant cavity and display panel
US16/630,270 US10965086B2 (en) 2018-04-08 2019-02-22 Optical resonant cavity and display panel
JP2020536573A JP7315557B2 (ja) 2018-04-08 2019-02-22 光共振器、表示パネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810306414.5 2018-04-08
CN201810306414.5A CN110346859B (zh) 2018-04-08 2018-04-08 光学谐振腔、显示面板

Publications (1)

Publication Number Publication Date
WO2019196563A1 true WO2019196563A1 (zh) 2019-10-17

Family

ID=68163417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075922 WO2019196563A1 (zh) 2018-04-08 2019-02-22 光学谐振腔、显示面板

Country Status (5)

Country Link
US (1) US10965086B2 (zh)
EP (1) EP3780301A4 (zh)
JP (1) JP7315557B2 (zh)
CN (1) CN110346859B (zh)
WO (1) WO2019196563A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112835241A (zh) * 2019-11-25 2021-05-25 中国科学院苏州纳米技术与纳米仿生研究所 基于多彩电致变色结构的电子设备及隐藏功能组件的方法
CN111240096B (zh) * 2020-03-13 2021-07-06 Tcl华星光电技术有限公司 背光模组及具有该背光模组的显示装置
CN111273488A (zh) * 2020-04-10 2020-06-12 Tcl华星光电技术有限公司 背光模组及显示装置
CN113707006A (zh) * 2020-05-20 2021-11-26 元太科技工业股份有限公司 功能性组件及具有功能性组件的显示装置
CN113707684A (zh) * 2020-05-21 2021-11-26 咸阳彩虹光电科技有限公司 一种oled显示结构、显示装置
CN114253039A (zh) * 2020-09-22 2022-03-29 中国科学院苏州纳米技术与纳米仿生研究所 高亮度、饱和度、纯度的多彩电致变色结构、器件及制法
CN112213882A (zh) * 2020-10-26 2021-01-12 京东方科技集团股份有限公司 反射式显示基板及制作方法、显示面板和显示装置
CN113311616A (zh) * 2021-06-30 2021-08-27 上海耕岩智能科技有限公司 液晶显示单元和液晶显示模组
JP7455267B1 (ja) 2022-10-28 2024-03-25 Dowaエレクトロニクス株式会社 紫外線発光素子及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1731635A (zh) * 2004-08-13 2006-02-08 中国科学院长春光学精密机械与物理研究所 电泵浦有机微腔激光器及其制作方法
CN101447644A (zh) * 2007-11-28 2009-06-03 中国科学院长春光学精密机械与物理研究所 电泵浦面发射耦合微腔有机激光器件
CN102751312A (zh) * 2012-07-27 2012-10-24 南京中电熊猫液晶显示科技有限公司 一种oled显示器及其制造方法
US20140023380A1 (en) * 2012-07-23 2014-01-23 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing apparatus
CN107221548A (zh) * 2016-03-22 2017-09-29 上海和辉光电有限公司 Oled显示面板、智能显示玻璃装置及制备方法
CN206757181U (zh) * 2017-06-09 2017-12-15 京东方科技集团股份有限公司 一种反射器件及显示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007053710A2 (en) * 2005-11-01 2007-05-10 Donnelly Corporation Interior rearview mirror with display
US6678297B2 (en) * 2000-03-20 2004-01-13 Chiral Photonics, Inc. Chiral laser utilizing a quarter wave plate
CA2507421A1 (en) * 2004-05-14 2005-11-14 Peter Herman Photonic crystal mirrors for high-resolving-power fabry-perots
US7777233B2 (en) * 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
WO2011145358A1 (ja) * 2010-05-21 2011-11-24 シャープ株式会社 蛍光体基板、発光素子、およびそれを用いた表示装置
US20120113671A1 (en) * 2010-08-11 2012-05-10 Sridhar Sadasivan Quantum dot based lighting
JP2014197163A (ja) * 2013-01-17 2014-10-16 株式会社ダイセル 半透明拡散型偏光積層体及びその用途
CN104078537A (zh) * 2014-06-25 2014-10-01 南京工业大学 一种利用量子点复合荧光微粒制备led的方法
JP6333749B2 (ja) * 2015-02-02 2018-05-30 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
KR101686737B1 (ko) * 2015-04-30 2016-12-14 엘지전자 주식회사 광 변환 플레이트, 이를 포함하는 발광 다이오드 패키지, 백라이트 유닛 및 표시장치
JP2017037121A (ja) * 2015-08-07 2017-02-16 シャープ株式会社 色変換基板および表示装置
KR102480902B1 (ko) * 2015-09-18 2022-12-22 삼성전자주식회사 표시 장치
CN105388668B (zh) * 2015-12-25 2018-06-22 武汉华星光电技术有限公司 反射式液晶面板以及显示装置
WO2017130949A1 (ja) * 2016-01-27 2017-08-03 シャープ株式会社 波長変換基板、液晶素子、液晶モジュールおよび液晶表示装置
CN115808825A (zh) * 2016-03-15 2023-03-17 株式会社半导体能源研究所 显示装置、模块及电子设备
WO2018112267A1 (en) * 2016-12-16 2018-06-21 Tesoro Scientific, Inc. Light emitting diode (led) test apparatus and method of manufacture
CN206671596U (zh) * 2017-04-20 2017-11-24 深圳市光峰光电技术有限公司 发光装置
CN206892500U (zh) * 2017-06-16 2018-01-16 京东方科技集团股份有限公司 一种反射式液晶显示面板及显示装置
CN107357080A (zh) * 2017-08-30 2017-11-17 京东方科技集团股份有限公司 彩膜片及其制作方法和彩膜基板
CN107579147B (zh) * 2017-09-14 2019-05-24 京东方科技集团股份有限公司 显示面板、显示装置及显示装置的操作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1731635A (zh) * 2004-08-13 2006-02-08 中国科学院长春光学精密机械与物理研究所 电泵浦有机微腔激光器及其制作方法
CN101447644A (zh) * 2007-11-28 2009-06-03 中国科学院长春光学精密机械与物理研究所 电泵浦面发射耦合微腔有机激光器件
US20140023380A1 (en) * 2012-07-23 2014-01-23 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing apparatus
CN102751312A (zh) * 2012-07-27 2012-10-24 南京中电熊猫液晶显示科技有限公司 一种oled显示器及其制造方法
CN107221548A (zh) * 2016-03-22 2017-09-29 上海和辉光电有限公司 Oled显示面板、智能显示玻璃装置及制备方法
CN206757181U (zh) * 2017-06-09 2017-12-15 京东方科技集团股份有限公司 一种反射器件及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780301A4

Also Published As

Publication number Publication date
EP3780301A1 (en) 2021-02-17
US10965086B2 (en) 2021-03-30
JP2021517263A (ja) 2021-07-15
CN110346859A (zh) 2019-10-18
CN110346859B (zh) 2023-05-16
JP7315557B2 (ja) 2023-07-26
EP3780301A4 (en) 2021-12-29
US20200235543A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
WO2019196563A1 (zh) 光学谐振腔、显示面板
US10103207B2 (en) Display device
WO2017059630A1 (zh) 量子点液晶显示装置
CN110828699B (zh) 显示面板及电子设备
US10310324B2 (en) Backlight module
CN110824771B (zh) 显示装置及其驱动方法
US8704996B2 (en) Cholesteric liquid crystal device with reflection electrodes and partition structures
WO2016188183A1 (zh) 彩膜基板及其制造方法、显示装置
US20210405400A1 (en) Photonic crystal, display panel, light conversion device and glasses
JP2019512754A (ja) 表示結像システム及び方法、当該システム付き交通ツール
CN109031752B (zh) 一种反射式液晶显示面板及显示装置
CN110824598A (zh) 一种反射膜及其制作方法、显示面板及装置
US10642112B2 (en) Array substrate, display panel and display device
US20220128860A1 (en) Reflective display substrate and method for fabricating the same, display panel and display device
KR20220012995A (ko) 색상 변환 어셈블리, 표시 패널 및 표시 장치
US7667799B2 (en) Liquid crystal display panel and liquid crystal display device using the same
JP2002162510A (ja) 半透過型高反射膜
US20200319515A1 (en) Display device
CN108279522B (zh) 反射器件、像素单元、显示装置及其制作方法
WO2020258608A1 (zh) 显示面板及显示装置
WO2018223655A1 (zh) 反射器件及显示装置
KR19980028433A (ko) 투과형/반사형 겸용의 액정 표시장치
JP2002182020A (ja) 半透過型反射鏡
KR102199495B1 (ko) 색 순도 향상 필터
JP2001305542A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019786144

Country of ref document: EP

Effective date: 20201109