WO2018223655A1 - 反射器件及显示装置 - Google Patents

反射器件及显示装置 Download PDF

Info

Publication number
WO2018223655A1
WO2018223655A1 PCT/CN2017/116535 CN2017116535W WO2018223655A1 WO 2018223655 A1 WO2018223655 A1 WO 2018223655A1 CN 2017116535 W CN2017116535 W CN 2017116535W WO 2018223655 A1 WO2018223655 A1 WO 2018223655A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
band
wavelength range
reflective device
converting
Prior art date
Application number
PCT/CN2017/116535
Other languages
English (en)
French (fr)
Inventor
祝明
董学
王美丽
王飞
王维
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/618,638 priority Critical patent/US11579345B2/en
Publication of WO2018223655A1 publication Critical patent/WO2018223655A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a reflective device and a display device.
  • some reflective display devices utilize a Fabry-Perot cavity structure to achieve light reflection.
  • Embodiments of the present disclosure provide a reflective device including: a resonant cavity for reflecting light of a set wavelength range, a light converting structure disposed in the resonant cavity, the light converting structure for not incident Light of a set wavelength range is converted into light of the set wavelength range.
  • the resonant cavity includes: a cavity, a light absorbing layer disposed on one side of the cavity, and a distance away from the cavity a mirror on one side of the light absorbing layer; an optical path matching the light of the set wavelength range between the light absorbing layer and the mirror, wherein the optical path is filled with a medium, and the light conversion structure is disposed on Between the absorbing layer and the mirror.
  • N is a light conversion junction
  • L is the center wavelength of the set wavelength range
  • R is the material refractive index of the light converting structure
  • the set wavelength range light is a first band light in a visible light band
  • the light conversion structure includes The third band light and the second band light are converted into the down-converting material of the first band light, wherein the band of the first band of light is smaller than the band of the second band of light and the third band of light, and the band of the second band of light
  • the band of the first band of light and the band of the third band of light, and the band of the third band of light is higher than the band of the first band of light and the second band of light.
  • the set wavelength range light is a third band light in a visible light band
  • the light conversion structure includes Converting the first band light and the second band light into the upconversion material of the third band light, wherein the band of the first band of light is smaller than the band of the second band of light and the third band of light, and the band of the second band of light
  • the band of the first band of light and the band of the third band of light, and the band of the third band of light is higher than the band of the first band of light and the second band of light.
  • the set wavelength range light is a second band light in a visible light band
  • the light conversion structure includes a first band of light converted into an upconversion material of the second band of light, and/or a downconverting material for converting a third band of light in the visible band to the second band of light, wherein the first band The light band is smaller than the second band light and the third band light band, and the second band light band is between the first band light band and the third band light band, and the third band light band is higher than the third band light band A band of light and a band of light of the second band.
  • the up-conversion material includes: an inorganic compound doped with rare earth ions.
  • the set wavelength range light includes light in a range of visible light covering only a single color band.
  • the set wavelength range light includes light in a range of an infrared band.
  • the resonant cavity further includes: an anti-reflection film disposed on a surface of the light absorbing layer facing the light-emitting side of the reflective device.
  • the medium includes one or any combination of air, an inorganic thin film and an organic thin film.
  • the medium includes air, and the light conversion structure is disposed on a surface of the light absorbing layer facing the mirror; or the light conversion structure is disposed on The mirror faces the surface of the light absorbing layer.
  • the medium further includes an inorganic thin film layer and/or an organic thin film layer, and the light conversion structure is disposed on the light absorbing layer and the mirror. Between any two layers.
  • the inorganic compound includes at least one of a fluoride, an oxide, a sulfur-containing compound, a oxyfluoride, and a halide.
  • an embodiment of the present disclosure further provides a display device including a plurality of pixel units, each of which includes a plurality of the above-mentioned reflective devices provided by the embodiments of the present disclosure, and each of the reflective devices belonging to the same pixel unit reflects The wavelength range of light is different.
  • each of the pixel units includes a red sub-pixel unit, a green sub-pixel unit, and a blue sub-pixel unit, and is respectively used for the red sub-pixel
  • the pixel unit, the green sub-pixel unit and each of the reflective devices of the blue sub-pixel unit have different wavelength ranges of reflected light.
  • the set wavelength range light of the reflective device for the red sub-pixel unit is a first wavelength band in a visible light band.
  • the light conversion structure includes a third for use in a visible light band The band light and the second band light are converted into the down-conversion material of the first band light, wherein the band of the first band of light is smaller than the band of the second band of light and the third band of light, and the band of the second band of light is between The band of the one band of light and the band of the third band of light, and the band of the third band of light is higher than the band of the first band of light and the second band of light.
  • the set wavelength range light of the reflective device for the blue sub-pixel unit is the third in the visible light band Band light
  • the light conversion structure comprising an upconversion material for converting first band light and second band light in a visible light band into the third band light, wherein a band of the first band of light is smaller than the second band The band of light and the third band of light, the band of the second band of light is between the band of the first band of light and the band of the third band of light, and the band of the third band of light is higher than the band of the first band and the second band The band of light.
  • the set wavelength range light of the reflective device for the green sub-pixel unit is a second wavelength band in a visible light band Light
  • the light conversion structure comprising an up-conversion material for converting light of a first wavelength band in a visible light band to light of the second wavelength band, and/or for converting a third wavelength band light in the visible light band into the a second-band light down-conversion material, wherein a band of the first band of light is smaller than a band of the second band of light and a third band of light, and a band of the second band of light is between the band of the first band of light and the band of the third band of light
  • the bands of the third band of light are higher than the bands of the first band of light and the second band of light.
  • 1 is a schematic structural view of a reflective device
  • FIG. 2 is a schematic structural diagram of a reflective device according to an embodiment of the present disclosure
  • 3a and 3b are respectively a schematic structural diagram of a reflective device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • a reflecting device realizes reflection by using a Fabry-Perot cavity as shown in FIG. 1.
  • the reflecting device has an anti-reflection layer 103, a thin metal light absorbing layer 101 and a mirror 102; by adjusting the optical path in the cavity b, the reflection of light of a specific wavelength in the incident light can be realized, and the light of other wavelengths in the incident light is repeatedly oscillated in the cavity and absorbed by the thin metal light absorbing layer 101, and finally the energy is exhausted.
  • such reflective devices have low light utilization.
  • the embodiment of the present disclosure provides a reflective device, as shown in FIG. 2, including: a resonant cavity 100 for reflecting light of a set wavelength range, and a light converting structure 200 disposed in the resonant cavity 100. The light of the incident non-set wavelength range is converted into the set wavelength range light.
  • the resonant cavity 100 in the above reflective device may adopt various implementation structures, for example, a Fabry-Perot resonant cavity may be employed.
  • the resonant cavity 100 generally includes a cavity 100a disposed on the cavity 100a. a light absorbing layer 110 on the side, and a mirror 120 disposed on a side of the cavity 100a away from the light absorbing layer 110; the light absorbing layer 110 and the mirror 120 have an optical path a matching the light of the set wavelength range, and the light
  • the conversion structure 200 is disposed between the light absorbing layer 110 and the mirror 120, and is filled with the medium 130 in the optical path a, that is, the light conversion structure 200 is disposed in the medium 130.
  • the medium 130 filled in the optical path a may include one or any combination of air, an inorganic thin film and an organic thin film, for example, only air may be filled as the medium 130, and Can fill part of the inorganic film and part of the air as The medium 130 is not limited herein.
  • the light conversion structure 200 may be disposed on the surface of the light absorbing layer 110 facing the mirror 120; or, for example, As shown in FIG. 3b, the light conversion structure 200 is disposed on the surface of the mirror 120 facing the light absorbing layer 110, which is not limited herein.
  • the light conversion structure 200 may be disposed on any two layers between the light absorbing layer 110 and the mirror 120 according to the manufacturing requirements. There is no limit here. Further, the light absorbing layer 110 may have a thin metal layer structure.
  • the thickness of the light conversion structure 200 is related to the set wavelength range of the set wavelength range light and the material of the light conversion structure, and specifically, the relationship between them is
  • Material refractive index is the thickness of the light conversion structure 200.
  • the resonant cavity 100 may further include: disposed on the light absorbing layer An anti-reflection film 140 facing the surface of the light-emitting side of the reflective device to increase the ratio of incident light entering the optical path a between the light-absorbing layer 110 and the mirror 120, and reducing the surface of the light-absorbing layer 110 facing the light-emitting side of the reflective device directly The ratio of incident light is reflected, thereby increasing the light reflectance by increasing the utilization of incident light.
  • the set wavelength range light that can be reflected by the reflective device provided by the embodiment of the present disclosure is generally in the visible light range, and the wavelength range reflected by the reflective device covers only the single The range of wavelengths of one color, so that the reflective device can be used as a monochromatic light emitter for display or illumination, and the set wavelength range of light can also be in the infrared range so that the reflective device is applied to the sensor.
  • the wavelength range reflected by the reflective device may be set to cover a plurality of color band ranges according to actual needs, which is not limited herein.
  • the light conversion structure 200 in order to enable the light conversion structure 200 to convert the incident non-set wavelength range of light into a set wavelength range of light, to improve light utilization.
  • the rate, material selected by the light conversion structure 200 is related to the set wavelength range of the reflected light.
  • the specific material selection of the light conversion structure 200 is illustrated by taking a wavelength range in which the reflected light of the reflective device covers only a single color band.
  • the light conversion structure 200 when the set wavelength range light that the reflective device needs to reflect is the first band light in the visible light band, the light conversion structure 200 generally includes a visible light band.
  • the third band light and the second band light within are converted into a down conversion material of the first band of light.
  • the down conversion material may include one or a combination of the inorganic light emitting material and the organic light emitting material, and may be, for example, a quantum dot material, a fluorescent material, or the like.
  • the organic luminescent material may be an organic small molecule luminescent material or an organic high molecular polymer luminescent material, which is not limited herein.
  • various material separation layers may be disposed, and each of the film layers may be adjacent or spaced, or various materials may be mixed in the same film layer. There is no limit here.
  • a band of the first band of light is smaller than a band of the second band of light and a band of the third band of light, and a band of the second band of light is between the band of the first band of light and the band of the third band of light, and
  • the band of the third band of light is higher than the band of the first band of light and the second band of light.
  • the first band of light is red light
  • the second band of light is green light
  • the third band of light is blue light.
  • the material of the light converting structure 200 is a down-converting material for converting blue light and green light into red light.
  • the down conversion material may select a red luminescent material such as a red quantum dot or a red fluorescent material, which is not limited herein.
  • the light conversion structure 200 when the reflective device When the set wavelength range light to be reflected is the third band light in the visible light band, the light conversion structure 200 generally includes up-conversion for converting the first band light and the second band light in the visible light band into the third band light.
  • the up-conversion material may include an inorganic compound doped with a rare earth ion.
  • the rare earth ions of respective concentrations and ratios may be doped in an inorganic compound such as a fluoride, an oxide, a sulfur-containing compound, a oxyfluoride, or a halide according to the third-wavelength light to be converted.
  • NaYF4 which has the highest up-conversion luminescence efficiency
  • can be selected as a host material, and is doped with Yb, Tm and Er, wherein the doping ratio ranges from Yb:Tm:Er 18-60:0-0.2:0-2.
  • various material layer layers may be disposed, and each film layer may be adjacent or spaced, or various materials may be mixed in the same film layer. There is no limit here.
  • the material of the light conversion structure 200 is an up-conversion material for converting red and green light into blue light.
  • the light conversion structure 200 when the set wavelength range light that the reflective device needs to reflect is the second band light in the visible light band, the light conversion structure 200 generally includes a visible light band.
  • the first band of light therein is converted into an upconversion material of the second band of light, and/or a down conversion material for converting the third band of light in the visible band into the second band of light.
  • the light conversion structure 200 includes both an up-conversion material and a down-conversion material.
  • the down conversion material may include one or a combination of the inorganic light emitting material and the organic light emitting material, and may be, for example, a quantum dot material, a fluorescent material, or the like.
  • the organic luminescent material may be an organic small molecule luminescent material or an organic high molecular polymer luminescent material, which is not limited herein.
  • the up-conversion material may include an inorganic compound doped with a rare earth ion.
  • one or more rare earth ions of respective concentrations and ratios may be doped in an inorganic compound such as a fluoride, an oxide, a sulfur-containing compound, a oxyfluoride, or a halide according to the third-wavelength light to be converted.
  • each material layer may be disposed, and each film layer may be adjacent or spaced apart, or each material may be mixed in the same film layer. Not limited.
  • the material of the light conversion structure 200 may include both an up-conversion material for converting red light into green light and a down-conversion material for converting blue light into green light.
  • the down-conversion material may select a green organic light-emitting material such as a green quantum dot or a green fluorescent material, which is not limited herein.
  • the light conversion structure 200 disposed in the resonant cavity 100 can improve the utilization of incident light, and effectively utilize the device that is not reflected by the resonant cavity 100.
  • Light in a non-set wavelength range that is repeatedly oscillated and absorbed in the resonant cavity 100 other than the constant wavelength range converts the incident non-set wavelength range of light into a set wavelength range of light, thereby increasing the reflection of the reflective device The ratio of light to improve the reflection efficiency of the reflective device.
  • an embodiment of the present disclosure further provides a display device, which may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display device which may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display device includes a plurality of pixel units 01, and each of the pixel units 01 includes a plurality of the reflective devices 02 provided by the embodiments of the present disclosure as sub-pixel units.
  • the respective reflective devices 02 belonging to the same pixel unit 01 have different wavelength ranges of reflected light.
  • a reflective device that reflects red light R, a reflective device that reflects green light G, and a reflective device that reflects blue light B may be selected to constitute a pixel unit.
  • each pixel unit includes a red sub-pixel unit, a green sub-pixel unit, and a blue sub-pixel unit.
  • the set wavelength range light of the reflective device for the red sub-pixel unit is the first band light in the visible light band
  • the light conversion structure includes the third band light and the second band light in the visible light band converted into the first band Light down conversion material.
  • the set wavelength range light of the reflective device for the blue sub-pixel unit is the third band light in the visible light band
  • the light conversion structure includes for converting the first band light and the second band light in the visible light band into the third band Upconverting material for band light.
  • the set wavelength range light of the reflective device for the green sub-pixel unit is the second band light in the visible light band
  • the light conversion structure includes the up-conversion material for converting the first band light in the visible light band into the second band light. And/or a down-converting material for converting the third band light in the visible light band into the second band light.
  • the first band of light is red light
  • the second band of light is green light
  • the third band of light is blue light. Since the above-mentioned reflective device provided by the embodiment of the present disclosure with high reflection efficiency is used as the sub-pixel composition display device, the ambient light can be better utilized for reflective display, and a better reflectance is ensured.
  • the light conversion structure disposed in the resonant cavity can improve the utilization ratio of the incident light, and effectively utilize the set wavelength range that is not reflected by the resonant cavity.
  • Light in a non-set wavelength range that is repeatedly oscillated and absorbed in the cavity other than light converts the incident non-set wavelength range of light into a set wavelength range of light, thereby increasing the proportion of reflected light of the reflective device, To improve the reflection efficiency of the reflective device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

一种反射器件及显示装置,包括:用于反射设定波长范围光的谐振腔(100),和设置于谐振腔(100)内的光转换结构(200),光转换结构(200)用于将入射的非设定波长范围的光转换为设定波长范围光。

Description

反射器件及显示装置
相关申请的交叉引用
本申请要求于2017年6月9日向中国国家知识产权局递交的中国专利申请201710434058.0的权益,该申请的公开内容通过引用整体并入本文中。
技术领域
本公开涉及显示技术领域,尤其涉及一种反射器件及一种显示装置。
背景技术
在显示技术领域中,有些反射显示器件利用法布里-珀罗谐振腔结构实现光的反射。
发明内容
本公开实施例提供了一种反射器件,包括:用于反射设定波长范围光的谐振腔,设置于所述谐振腔内的光转换结构,所述光转换结构用于将入射的非所述设定波长范围的光转换为所述设定波长范围光。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述谐振腔包括:腔体,设置于腔体一侧的光吸收层,以及设置于腔体的远离所述光吸收层一侧的反射镜;所述光吸收层与反射镜之间具有与所述设定波长范围光匹配的光程,在所述光程内填充有介质,所述光转换结构设置于所述吸收层与反射镜之间。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述光转换结构的厚度为N;其中,N=(L/2)/R,其中,N为光转换结 构的厚度,L为所述设定波长范围的中心波长,而R为光转换结构的材料折射率。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述设定波长范围光为可见光波段内的第一波段光,所述光转换结构包括用于将可见光波段内的第三波段光和第二波段光转换为所述第一波段光的下转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述设定波长范围光为可见光波段内的第三波段光,所述光转换结构包括用于将可见光波段内的第一波段光和第二波段光转换为所述第三波段光的上转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述设定波长范围光为可见光波段内的第二波段光,所述光转换结构包括用于将可见光波段内的第一波段光转换为所述第二波段光的上转换材料,和/或用于将可见光波段内的第三波段光转换为所述第二波段光的下转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述上转换材料包括:掺杂稀土离子的无机化合物。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述设定波长范围光包括位于可见光范围内的仅覆盖单一颜色的波段范围的光。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述设定波长范围光包括位于红外波段范围的光。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述谐振腔还包括:设置于所述光吸收层面向反射器件的出光侧的表面的抗反射膜。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述介质包括空气,无机薄膜和有机薄膜之一或任意组合。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述介质包括空气,所述光转换结构设置于光吸收层面向反射镜的表面;或者,光转换结构设置于反射镜面向光吸收层的表面。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述介质还包括无机薄膜层和/或有机薄膜层,所述光转换结构设置于光吸收层与反射镜之间的任何两层之间。
在一种可能的实现方式中,在本公开实施例提供的上述反射器件中,所述无机化合物包括氟化物、氧化物、含硫化合物、氟氧化物和卤化物中的至少一种。
另一方面,本公开实施例还提供了一种显示装置,包括多个像素单元,每个像素单元包括多个本公开实施例提供的上述反射器件,属于同一像素单元的各所述反射器件反射光的波长范围不同。
在一种可能的实现方式中,在本公开实施例提供的上述显示装置中,每个像素单元包括红色亚像素单元,绿色亚像素单元和蓝色亚像素单元,并且分别用于所述红色亚像素单元,所述绿色亚像素单元和所述蓝色亚像素单元的各所述反射器件反射光的波长范围不同。
在一种可能的实现方式中,在本公开实施例提供的上述显示装置中,用于所述红色亚像素单元的所述反射器件的所述设定波长范围光为可见光波段内的第一波段光,所述光转换结构包括用于将可见光波段内的第三 波段光和第二波段光转换为所述第一波段光的下转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
在一种可能的实现方式中,在本公开实施例提供的上述显示装置中,用于所述蓝色亚像素单元的所述反射器件的所述设定波长范围光为可见光波段内的第三波段光,所述光转换结构包括用于将可见光波段内的第一波段光和第二波段光转换为所述第三波段光的上转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
在一种可能的实现方式中,在本公开实施例提供的上述显示装置中,用于所述绿色亚像素单元的所述反射器件的所述设定波长范围光为可见光波段内的第二波段光,所述光转换结构包括用于将可见光波段内的第一波段光转换为所述第二波段光的上转换材料,和/或用于将可见光波段内的第三波段光转换为所述第二波段光的下转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
附图说明
图1为一种反射器件的结构示意图;
图2为本公开实施例提供的一种反射器件的结构示意图;
图3a和图3b分别为本公开实施例提供的一种反射器件的具体结构示意图;
图4为本公开实施例提供的一种显示装置的结构示意图。
具体实施方式
下面结合附图,对本公开实施例提供的反射器件及显示装置的具体实施方式进行详细地说明。
附图中各部件的形状和大小不反映反射器件的真实比例,目的只是示意说明本公开内容。其中,附图中的宽线箭头表示光的方向。
一种反射器件是利用如图1所示的法布里-珀罗谐振腔实现反射,该反射器件具有抗反射层103、薄金属光吸收层101和反射镜102;通过调整腔体内的光程b,可以实现入射光中特定波长的光的反射,而入射光中其他波长的光在腔里反复震荡被薄金属光吸收层101吸收,最终能量耗尽。实践中,这种反射器件光利用率较低。
本公开实施例提供了一种反射器件,如图2所示,包括:用于反射设定波长范围光的谐振腔100,和设置于谐振腔100内的光转换结构200,光转换结构200用于将入射的非设定波长范围的光转换为设定波长范围光。
在具体实施时,在本公开实施例提供的上述反射器件中的谐振腔100可以采用多种实现结构,例如可以采用法布里-珀罗谐振腔。
具体地,在本公开实施例提供的上述反射器件中,不管采用何种结构的谐振腔100,如图3a和图3b所示,谐振腔100一般包括:腔体100a,设置于腔体100a一侧的光吸收层110,以及设置于腔体100a的远离光吸收层110一侧的反射镜120;光吸收层110与反射镜120之间具有与设定波长范围光匹配的光程a,光转换结构200设置于光吸收层110与反射镜120之间,在光程a内填充有介质130,也就是说,光转换结构200设置于介质130中。
具体地,在本公开实施例提供的上述反射器件中,在光程a内填充的介质130可以包括空气,无机薄膜和有机薄膜中的一个或任意组合,例如可以仅填充空气作为介质130,也可以填充部分无机薄膜和部分空气作为 介质130,在此不做限定。当仅采用空气作为介质130时,为了便于制作反射器件,在具体实施时,如图3a所示,可以将光转换结构200设置于光吸收层110面向反射镜120的表面;或者,也可以如图3b所示,将光转换结构200设置于反射镜120面向光吸收层110的表面,在此不做限定。当采用部分或全部无机薄膜和/或有机薄膜作为介质130时,在具体实施时,可以根据制作需要将光转换结构200设置于光吸收层110与反射镜120之间的任何两层膜层之间,在此不做限定。此外,光吸收层110可以采用薄金属层结构。
具体地,在本公开实施例提供的上述反射器件中,在光吸收层110与反射镜120之间的光程a的大小和设定波长范围光的设定波长范围、介质130的材料与厚度均有关,具体地,它们之间的关系为:a=(n1*d1+n2*d2...)*L/2;其中,d1、d2......为各层介质130的厚度,n1、n2......为各介质130的材料折射率,而L为设定波长范围的中心波长。
并且,具体地,在本公开实施例提供的上述反射器件中,光转换结构200的厚度与设定波长范围光的设定波长范围和光转换结构的材料有关,具体地,它们之间的关系为:光转换结构200的厚度为N;这里,N=(L/2)/R,其中,N为光转换结构的厚度,L为设定波长范围的中心波长,而R为光转换结构200的材料折射率。
在具体实施时,在本公开实施例提供的上述反射器件中,为了提高光吸收层110处的光反射效率,如图3a和图3b所示,谐振腔100还可以包括:设置于光吸收层110面向反射器件的出光侧的表面的抗反射膜140,以提高入射光进入光吸收层110与反射镜120之间光程a的比例,降低光吸收层110面向反射器件的出光侧的表面直接将入射光反射的比例,从而通过提高入射光的利用率来提高光反射率。
在具体实施时,本公开实施例提供的上述反射器件可以反射的设定波长范围光一般位于可见光范围内,而且反射器件反射的波长范围仅覆盖单 一颜色的波段范围,以便反射器件可以作为单色光发射器而应用于显示或照明,该设定波长范围光也可以位于红外波段范围,以便反射器件应用于传感器。当然,在具体实施时,根据实际需要也可以设置为反射器件反射的波长范围覆盖多个颜色的波段范围,在此不做限定。
并且,在具体实施时,在本公开实施例提供的上述反射器件中,为了能够实现光转换结构200将入射的非设定波长范围的光转换为设定波长范围光的作用,以提高光利用率,光转换结构200选择的材料与反射光的设定波长范围有关。下面是以反射器件反射光的波长范围仅覆盖单一颜色的波段为例对应说明光转换结构200的具体材料选择。
在具体实施时,在本公开实施例提供的上述反射器件中,当反射器件需要反射的设定波长范围光为可见光波段内的第一波段光时,光转换结构200一般包括用于将可见光波段内的第三波段光和第二波段光转换为第一波段光的下转换材料。具体地,下转换材料可以包括:无机发光材料和有机发光材料之一或组合,例如可以是量子点材料和荧光材料等。其中有机发光材料可以为有机小分子发光材料也可以为有机高分子聚合物发光材料,在此不做限定。并且,当选择多种下转换材料作为光转换结构200时,可以将各种材料分膜层设置,且各膜层可以相邻也可以间隔设置,也可以将各种材料混合在同一膜层,在此不做限定。
根据本公开实施例,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。例如,第一波段光为红光,第二波段光为绿光,而第三波段光为蓝光。
例如,反射器件需要反射红光时,光转换结构200的材料为用于将蓝光和绿光转换为红光的下转换材料。具体地,下转换材料可以选择红色量子点,红色荧光材料等红色发光材料,在此不做限定。
在具体实施时,在本公开实施例提供的上述反射器件中,当反射器件 需要反射的设定波长范围光为可见光波段内的第三波段光时,光转换结构200一般包括用于将可见光波段内的第一波段光和第二波段光转换为第三波段光的上转换材料。具体地,上转换材料可以包括:掺杂稀土离子的无机化合物。例如,根据所需转换的第三波段光,可以在氟化物、氧化物、含硫化合物、氟氧化物、卤化物等无机化合物内掺杂相应浓度和比例的一种或多种稀土离子。例如,可以选择目前上转换发光效率最高的NaYF4作为基质材料,掺杂有Yb,Tm和Er,其中,掺杂比例范围为Yb∶Tm∶Er=18~60∶0~0.2∶0~2。并且,当选择多种上转换材料作为光转换结构200时,可以将各种材料分膜层设置,且各膜层可以相邻也可以间隔设置,也可以将各种材料混合在同一膜层,在此不做限定。
例如,反射器件需要反射蓝光时,光转换结构200的材料为用于将红光和绿光转换为蓝光的上转换材料。具体地,上转换材料可以选择以无机化合物NaYF4为基质材料,掺杂有Yb,Tm和Er,其中,掺杂比例范围为Yb∶Tm∶Er=20∶0.2∶0~0.5。
在具体实施时,在本公开实施例提供的上述反射器件中,当反射器件需要反射的设定波长范围光为可见光波段内的第二波段光时,光转换结构200一般包括用于将可见光波段内的第一波段光转换为第二波段光的上转换材料,和/或用于将可见光波段内的第三波段光转换为第二波段光的下转换材料。并且,为了最大限度的提高光利用率,在具体实施时,光转换结构200同时包括上转换材料和下转换材料。具体地,下转换材料可以包括:无机发光材料和有机发光材料之一或组合,例如可以是量子点材料和荧光材料等。其中有机发光材料可以为有机小分子发光材料也可以为有机高分子聚合物发光材料,在此不做限定。具体地,上转换材料可以包括:掺杂稀土离子的无机化合物。例如,根据所需转换的第三波段光,可以在氟化物、氧化物、含硫化合物、氟氧化物、卤化物等无机化合物内掺杂相应浓度和比例的一种或多种稀土离子。例如可以选择目前上转换发光效率最高 的NaYF4作为基质材料,掺杂有Yb,Tm和Er,其中,掺杂比例范围为Yb∶Tm∶Er=18~60∶0~0.2∶0~2。并且,当选择多种上转换材料作为光转换结构200时,可以将各材料分膜层设置,且各膜层可以相邻也可以间隔设置,也可以将各材料混合在同一膜层,在此不做限定。
例如,反射器件需要反射绿光时,光转换结构200的材料可以同时包括用于将红光转换为绿光的上转换材料和用于将蓝光转换为绿光的下转换材料。具体地,下转换材料可以选择绿色量子点,绿色荧光材料等绿色有机发光材料,在此不做限定。具体地,上转换材料可以选择以无机化合物NaYF4为基质材料,掺杂有Yb,Tm和Er,其中,掺杂比例范围为Yb∶Tm∶Er=18~25∶0∶2。
在本公开实施例提供的上述反射器件中,由于增加了设置于谐振腔100内的光转换结构200,该光转换结构200可以提高入射光的利用率,有效利用不被谐振腔100反射的设定波长范围光之外的在谐振腔100内被反复震荡吸收的非设定波长范围的光,将此入射的非设定波长范围的光转换为设定波长范围光,从而增加反射器件的反射光的比例,以提高反射器件的反射效率。
基于同一发明构思,本公开实施例还提供了一种显示装置,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述反射器件的实施例,重复之处不再赘述。
具体地,本公开实施例提供的一种显示装置,如图4所示,包括多个像素单元01,每个像素单元01包括多个本公开实施例提供的上述反射器件02作为亚像素单元,且属于同一像素单元01的各反射器件02反射光的波长范围不同。例如,如图4所示,可以选择反射红光R的反射器件、反射绿光G的反射器件和反射蓝光B的反射器件构成一像素单元。具体地,每个像素单元包括红色亚像素单元、绿色亚像素单元和蓝色亚像素单 元,并且分别用于红色亚像素单元、绿色亚像素单元和蓝色亚像素单元的各反射器件反射光的波长范围不同。用于红色亚像素单元的反射器件的设定波长范围光为可见光波段内的第一波段光,光转换结构包括用于将可见光波段内的第三波段光和第二波段光转换为第一波段光的下转换材料。用于蓝色亚像素单元的反射器件的设定波长范围光为可见光波段内的第三波段光,光转换结构包括用于将可见光波段内的第一波段光和第二波段光转换为第三波段光的上转换材料。用于绿色亚像素单元的反射器件的设定波长范围光为可见光波段内的第二波段光,光转换结构包括用于将可见光波段内的第一波段光转换为第二波段光的上转换材料,和/或用于将可见光波段内的第三波段光转换为第二波段光的下转换材料。例如,第一波段光为红光,第二波段光为绿光,而第三波段光为蓝光。由于采用反射效率较高的本公开实施例提供的上述反射器件作为亚像素组成显示装置,因此可以更好的利用环境光进行反射型显示,保证较好反射率。
本公开实施例提供的上述反射器件及显示装置,由于增加了设置于谐振腔内的光转换结构,该光转换结构可以提高入射光的利用率,有效利用不被谐振腔反射的设定波长范围光之外的在谐振腔内被反复震荡吸收的非设定波长范围的光,将此入射的非设定波长范围的光转换为设定波长范围光,从而增加反射器件的反射光的比例,以提高反射器件的反射效率。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (19)

  1. 一种反射器件,包括:用于反射设定波长范围光的谐振腔,和设置于所述谐振腔内的光转换结构,所述光转换结构用于将入射的非所述设定波长范围的光转换为所述设定波长范围光。
  2. 如权利要求1所述的反射器件,其中,所述谐振腔包括:腔体,设置于腔体一侧的光吸收层,以及设置于腔体的远离所述光吸收层一侧的反射镜;所述光吸收层与反射镜之间具有与所述设定波长范围光匹配的光程,在所述光程内填充有介质,所述光转换结构设置于所述光吸收层与反射镜之间。
  3. 如权利要求1所述的反射器件,其中,所述光转换结构的厚度为N,其中,N=(L/2)/R,其中,N为光转换结构的厚度,L为所述设定波长范围的中心波长,而R为光转换结构的材料折射率。
  4. 如权利要求3所述的反射器件,其中,所述设定波长范围光为可见光波段内的第一波段光,所述光转换结构包括用于将可见光波段内的第三波段光和第二波段光转换为所述第一波段光的下转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
  5. 如权利要求3所述的反射器件,其中,所述设定波长范围光为可见光波段内的第三波段光,所述光转换结构包括用于将可见光波段内的第一波段光和第二波段光转换为所述第三波段光的上转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
  6. 如权利要求3所述的反射器件,其中,所述设定波长范围光为可见光波段内的第二波段光,所述光转换结构包括用于将可见光波段内的第一波段光转换为所述第二波段光的上转换材料,和/或用于将可见光波段内的第三波段光转换为所述第二波段光的下转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
  7. 如权利要求5所述的反射器件,其中,所述上转换材料包括:掺杂稀土离子的无机化合物。
  8. 如权利要求6所述的反射器件,其中,所述上转换材料包括:掺杂稀土离子的无机化合物。
  9. 如权利要求1所述的反射器件,其中,所述设定波长范围光包括位于可见光范围内的仅覆盖单一颜色的波段范围的光。
  10. 如权利要求1所述的反射器件,其中,所述设定波长范围光包括位于红外波段范围的光。11、如权利要求2所述的反射器件,其中,所述谐振腔还包括:设置于所述光吸收层面向反射器件的出光侧的表面的抗反射膜。
  11. 如权利要求2所述的反射器件,其中,所述介质包括空气,无机薄膜和有机薄膜之一或组合中的一个或任意组合。
  12. 如权利要求12所述的反射器件,其中,所述介质包括空气,所述光转换结构设置于光吸收层面向反射镜的表面;或者,光转换结构设置于反射镜面向光吸收层的表面。
  13. 如权利要求13所述的反射器件,其中,所述介质还包括无机薄膜层和/或有机薄膜层,所述光转换结构设置于光吸收层与反射镜之间的任何两层之间。
  14. 如权利要求8所述的反射器件,其中,所述无机化合物包括氟化 物、氧化物、含硫化合物、氟氧化物和卤化物中的至少一种。
  15. 一种显示装置,包括多个像素单元,每个像素单元包括多个如权利要求1-15任一项所述的反射器件,其中,属于同一像素单元的各所述反射器件反射光的波长范围不同。
  16. 如权利要求16所述的显示装置,其中,每个像素单元包括红色亚像素单元、绿色亚像素单元和蓝色亚像素单元,并且分别用于所述红色亚像素单元,所述绿色亚像素单元和所述蓝色亚像素单元的各所述反射器件反射光的波长范围不同。
  17. 如权利要求17所述的显示装置,其中,用于所述红色亚像素单元的所述反射器件的所述设定波长范围光为可见光波段内的第一波段光,所述光转换结构包括用于将可见光波段内的第三波段光和第二波段光转换为所述第一波段光的下转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
  18. 如权利要求17所述的显示装置,其中,用于所述蓝色亚像素单元的所述反射器件的所述设定波长范围光为可见光波段内的第三波段光,所述光转换结构包括用于将可见光波段内的第一波段光和第二波段光转换为所述第三波段光的上转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
  19. 如权利要求17所述的显示装置,其中,用于所述绿色亚像素单元的所述反射器件的所述设定波长范围光为可见光波段内的第二波段光,所述光转换结构包括用于将可见光波段内的第一波段光转换为所述第二 波段光的上转换材料,和/或用于将可见光波段内的第三波段光转换为所述第二波段光的下转换材料,其中,第一波段光的波段小于第二波段光和第三波段光的波段,第二波段光的波段介于第一波段光的波段和第三波段光的波段之间,而第三波段光的波段高于第一波段光和第二波段光的波段。
PCT/CN2017/116535 2017-06-09 2017-12-15 反射器件及显示装置 WO2018223655A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/618,638 US11579345B2 (en) 2017-06-09 2017-12-15 Reflective device and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710434058.0A CN109031649A (zh) 2017-06-09 2017-06-09 一种反射器件及显示装置
CN201710434058.0 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018223655A1 true WO2018223655A1 (zh) 2018-12-13

Family

ID=64566226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116535 WO2018223655A1 (zh) 2017-06-09 2017-12-15 反射器件及显示装置

Country Status (3)

Country Link
US (1) US11579345B2 (zh)
CN (1) CN109031649A (zh)
WO (1) WO2018223655A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581562A (zh) * 2019-01-02 2019-04-05 京东方科技集团股份有限公司 光子晶体复合彩膜、制作方法、彩色滤光基板
CN112086526B (zh) * 2020-09-01 2023-11-28 深圳市华星光电半导体显示技术有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090323751A1 (en) * 2008-06-30 2009-12-31 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Method and device for using optical feedback to overcome bandwidth limitations caused by relaxation oscillation in vertical cavity surface emitting lasers (vcsels)
CN103620894A (zh) * 2011-05-16 2014-03-05 维尔雷思科技有限公司 谐振器增强型光电装置及其制造方法
CN104466026A (zh) * 2014-12-29 2015-03-25 北京维信诺科技有限公司 一种具有颜色转换功能的光转换单元及其应用
US20150177510A1 (en) * 2010-07-13 2015-06-25 Seiko Epson Corporation Optical filter, optical filter module, spectrometric measurement apparatus, and optical apparatus
CN106409876A (zh) * 2016-11-11 2017-02-15 京东方科技集团股份有限公司 一种显示器件
CN206757181U (zh) * 2017-06-09 2017-12-15 京东方科技集团股份有限公司 一种反射器件及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205928A (ja) * 2008-02-27 2009-09-10 Fuji Electric Holdings Co Ltd 微小共振器色変換el素子およびそれを用いた有機elディスプレイ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090323751A1 (en) * 2008-06-30 2009-12-31 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Method and device for using optical feedback to overcome bandwidth limitations caused by relaxation oscillation in vertical cavity surface emitting lasers (vcsels)
US20150177510A1 (en) * 2010-07-13 2015-06-25 Seiko Epson Corporation Optical filter, optical filter module, spectrometric measurement apparatus, and optical apparatus
CN103620894A (zh) * 2011-05-16 2014-03-05 维尔雷思科技有限公司 谐振器增强型光电装置及其制造方法
CN104466026A (zh) * 2014-12-29 2015-03-25 北京维信诺科技有限公司 一种具有颜色转换功能的光转换单元及其应用
CN106409876A (zh) * 2016-11-11 2017-02-15 京东方科技集团股份有限公司 一种显示器件
CN206757181U (zh) * 2017-06-09 2017-12-15 京东方科技集团股份有限公司 一种反射器件及显示装置

Also Published As

Publication number Publication date
US11579345B2 (en) 2023-02-14
CN109031649A (zh) 2018-12-18
US20200183063A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US10103207B2 (en) Display device
US10965086B2 (en) Optical resonant cavity and display panel
US9146419B1 (en) Quantum rod based color pixel backlight for LCD
CN109920938B (zh) Oled显示面板及oled显示装置
WO2019042151A1 (zh) 彩膜片及其制作方法、彩膜基板和显示装置
US20180341055A1 (en) Color Liquid Crystal Displays and Display Backlights
CN111183315B (zh) 彩色液晶显示器及显示器背光
US20230363230A1 (en) Array substrate, method for preparing array substrate, display panel and display apparatus
CN109031752B (zh) 一种反射式液晶显示面板及显示装置
CN108288640B (zh) Oled显示器及其制作方法
US20230176275A1 (en) Color Liquid Crystal Displays and Display Backlights
WO2018223655A1 (zh) 反射器件及显示装置
US10642112B2 (en) Array substrate, display panel and display device
CN112670328A (zh) 显示面板以及显示装置
CN206757181U (zh) 一种反射器件及显示装置
KR20220012995A (ko) 색상 변환 어셈블리, 표시 패널 및 표시 장치
CN107240647A (zh) 一种有机发光二极管器件、灯具
US11237310B2 (en) Display component and display apparatus
CN105841097A (zh) 光波长转换装置及其适用的光源系统
US20080297705A1 (en) Liquid crystal display panel and liquid crystal display device using the same
WO2019000973A1 (zh) 彩膜基板、显示装置
WO2022033510A1 (zh) 一种显示面板、增强型偏光片模组及显示装置
US10527888B2 (en) Liquid crystal display panel and liquid crystal display device
CN113140590B (zh) Oled器件、显示面板及显示装置
US20220069017A1 (en) Display panel and method for manufacturing same, and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/04/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17912702

Country of ref document: EP

Kind code of ref document: A1