WO2019196487A1 - 一种室内移动机器人的回充控制方法、装置及系统 - Google Patents
一种室内移动机器人的回充控制方法、装置及系统 Download PDFInfo
- Publication number
- WO2019196487A1 WO2019196487A1 PCT/CN2018/121479 CN2018121479W WO2019196487A1 WO 2019196487 A1 WO2019196487 A1 WO 2019196487A1 CN 2018121479 W CN2018121479 W CN 2018121479W WO 2019196487 A1 WO2019196487 A1 WO 2019196487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mobile robot
- refill
- laser ranging
- base
- indoor mobile
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000005070 sampling Methods 0.000 claims abstract description 50
- 230000033001 locomotion Effects 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 abstract 2
- 238000005259 measurement Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 241001417527 Pempheridae Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0242—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
- G06K19/06018—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding
- G06K19/06028—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding using bar codes
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0225—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
Definitions
- the present application relates to the field of robot backfill control, and in particular to a method, device and system for backfill control of an indoor mobile robot.
- the barcode width of the refilling seat is limited, and the barcode is required to be made wider, or when When the machine is relatively close, it can be distinguished, which will reduce the resolution of the robot when scanning in the distance, and will increase the floor space of the refill and the cost of making the refill.
- the embodiment of the present application provides a method, a device and a system for backfilling control of an indoor mobile robot, so as to solve the problem that the mobile robot has low resolution and high production cost of the refilling seat when the remote robot scans at a distance.
- the problem of a large area is a problem that the mobile robot has low resolution and high production cost of the refilling seat when the remote robot scans at a distance.
- a first aspect of the embodiment of the present application provides a backfill control method for an indoor mobile robot, including:
- the movement speed and direction of the mobile robot are controlled according to the position of the refill seat and the orientation of the refill seat.
- a second aspect of the embodiments of the present application provides a backfill control apparatus for an indoor mobile robot for performing a backfill control method of the indoor mobile robot as described above.
- a third aspect of the embodiments of the present application provides a backfill control system for an indoor mobile robot, including a scan sensor, a refill base, and a robot body with a backfill control device of the indoor mobile robot as described above;
- the robot body further includes a base and a housing coupled to the base;
- the scanning sensor is rotatably disposed outside the housing, and the scanning sensor is configured to collect data required to calculate a position of the refill base and an orientation of the refill base;
- the scanning sensor includes a rotating mechanism and a laser ranging mechanism;
- the rotating mechanism includes a rotating electrical machine for providing power required for rotation, the rotating shaft of the rotating electrical machine is perpendicular to the base;
- the laser ranging mechanism is disposed at In the rotating mechanism, the laser ranging mechanism is driven by the rotating shaft to collect data required for calculating the position of the refilling seat and the orientation of the refilling seat;
- the refill base is provided with a barcode for the scanning sensor to identify, and the refill base is used for providing a charging function for the robot;
- the barcode includes a planar pattern and/or a stereo configuration.
- the sampling rate method is used to improve the sampling angle resolution of the laser ranging mechanism, so that the laser ranging mechanism can acquire more data when the barcode on the refilling seat is scanned and scanned, and the refilling seat can be made at the same time.
- the observed distance is improved to further improve the detection efficiency.
- the area of the refill base and the barcode can be made as small as possible, saving space and reducing manufacturing costs.
- 1 is a flow chart of a method for controlling backfilling of an indoor mobile robot in an embodiment
- FIG. 2 is a schematic structural diagram of a backfill control system of an indoor mobile robot in an embodiment
- FIG. 3 is a schematic structural view of a scanning sensor in an embodiment
- FIG. 4 is a schematic structural view of a scanning sensor in still another embodiment
- FIG. 5a is a schematic structural diagram of a barcode of an embodiment
- Fig. 5b is a schematic view showing the structure of a bar code in another embodiment.
- FIG. 1 is a flowchart of a method for back charging control of an indoor mobile robot in an example.
- a method for backfilling control of an indoor mobile robot comprising:
- Step S100 controlling the mobile robot to arrive at the predetermined position according to the planned path according to the received refilling instruction.
- the robot can arrive at the predetermined location according to the pre-planned path according to the backfill command issued by the user through the mobile terminal. It can also be issued based on the current remaining power of the robot.
- the recharge path is pre-planned according to the map of the environment in which the robot is located, or may be a path that the robot itself plans in real time. This is related to the map environment and where the robot is currently located.
- step S200 after reaching the predetermined position, the sampling angle resolution of the laser ranging mechanism is increased to collect data required to calculate the position of the refill base and the orientation of the refill base.
- the mobile robot is controlled to rotate at a slow speed, and then the sampling angle resolution of the laser ranging mechanism is improved, and the sampling angle resolution is defined as the laser ranging mechanism turns one within one second.
- the number of data collected by the circle (360°) divided by the number of revolutions per second of the rotating motor is the sampling angle resolution.
- the data collected by the laser ranging mechanism in one second is 2000, and the rotational speed of the rotating motor is 10 seconds per second, then the sampling angle resolution is 200 points per revolution.
- the following methods can be used:
- Method 1 Reduce the rotational speed of the rotating electrical machine to improve the sampling angle resolution of the laser ranging mechanism.
- reducing the rotational speed of the rotating electrical machine can be understood as applying a PWM wave or a different voltage to the rotating electrical machine, causing the motor to rotate slowly.
- the sampling rate of the laser ranging mechanism can be maintained while the rotational speed of the rotating electrical machine is reduced.
- the sampling rate means the number of data collected by the laser ranging mechanism in one second.
- the sampling rate of the laser ranging mechanism has an upper limit, such as a maximum of 2000 points per second. If the rotating motor rotates at 10 revolutions per second, there are 200 sampling points per revolution (360°). Then, if the rotation speed is reduced to 5 revolutions while maintaining the sampling rate of the laser ranging mechanism, then 400 sampling points are obtained per revolution, which can improve the sampling angle resolution of the laser ranging mechanism.
- Method 2 Improve the sampling rate of the laser ranging mechanism to improve the sampling angle resolution of the laser ranging mechanism.
- the sampling rate of the general laser ranging mechanism is adjustable.
- the laser ranging mechanism can not be sampled according to the upper sampling rate, but can be adjusted according to the actual operation needs. It can be understood here. The specific choice can be selected according to the specific needs of those skilled in the art. For example, for a laser ranging mechanism with an upper sampling rate of 2000 points per second, the sampling rate of the laser ranging mechanism is first adjusted to 1500, and then the sampling rate of the laser ranging mechanism can be selectively increased according to the method of the present application. At the same time, the rotational speed of the rotating electrical machine should be maintained.
- Method 3 reduce the rotation speed of the rotating electrical machine and reduce the sampling rate of the laser ranging mechanism to improve the sampling angle resolution of the laser ranging mechanism.
- Reducing the rotational speed of the rotating electrical machine may be to apply a PWM wave or a different voltage to the rotating electrical machine, causing the motor to rotate slowly, and at the same time reducing the sampling rate of the laser ranging mechanism.
- the sampling rate of the laser ranging mechanism is up to 2000.
- the rotating speed of the rotating motor is 10 per second to 4 revolutions per second
- the sampling angle resolution of 450 points per revolution can still be obtained, compared to the original (the sampling rate is 2000 points per second /
- the rotation speed of 10 turns) 200 points per turn also improves the sampling angle resolution of the laser ranging mechanism.
- the purpose of this is to ensure that there is enough data to calculate the position of the refill seat and the orientation of the refill seat.
- the data required to calculate the position of the refill base and the orientation of the refill base is collected.
- the data required to calculate the position of the refill base and the orientation of the refill base may include distance information between the robot and the refill base and barcode information provided on the refill base.
- Step S300 calculating the position of the refill base and the orientation of the refill base according to the data.
- the position of the refill base and the orientation of the refill base are calculated according to the data collected by the laser ranging mechanism.
- the robot body 10 including the recharging control device 20 of the indoor mobile robot includes a refilling seat (not shown) of the barcode 30, a scanning sensor 40, and a rotating shaft 401.
- the data collected by the laser ranging mechanism includes distance information between the robot and the refill base and bar code information provided on the refill base.
- the principle of calculating the position of the refill seat and the orientation of the refill seat is: by calculating the distance information by the distance information and the acquisition system, it can be known where the data of a certain point is in the robot, and thus the mapping is calculated by the robot.
- the center of the charging stand can be obtained, and the center is the position of the charging stand.
- the orientation of the refill seat is the mid-perpendicular line of the charging stand that can be obtained according to the bar code shape data.
- the angle of the refill seat facing the robot is the orientation of the recharge seat of the charging stand, and the direction of the arrow in FIG. 2 is Recharge the orientation of the seat.
- the scanning sensor 40 is formed in a housing cavity by a support column provided in the robot.
- the robot adopts the support column method to form the accommodating cavity to accommodate the scanning sensor and scan the sensor for data acquisition and processing
- the data of the support column can be eliminated by the following method for calculating the position of the refill seat and the refill seat. The impact of the orientation.
- the scanning sensor is formed in the accommodating cavity by a support column disposed on the robot. Therefore, the data collected by the scanning sensor will contain the data of the supporting column portion, so when calculating the position of the refilling seat and the orientation of the refilling seat, the data of the supporting column portion can be removed, and the remaining data is used for calculation.
- the position of the refill seat and the orientation of the refill seat are such that the calculated position of the refill seat and the orientation of the refill seat are more accurate.
- Method 2 superimposing the collected data.
- the data collected by several frames of scanning sensors is superimposed, and then rotated to eliminate the influence of the data of the supporting column portion on calculating the position of the refilling seat and the orientation of the refilling seat.
- the calculated position of the refill seat and the orientation of the refill seat are more accurate.
- the collected data is subjected to both removal processing and superposition processing, that is, the data of a part of the support columns is removed, and the data of a part of the support columns is superimposed.
- the specific method for which part of the data is adopted the application is not particularly limited, and can be selected according to the actual operation, which is more accurate than the calculation results obtained by the first two methods.
- Step S400 controlling the moving speed and direction of the mobile robot according to the position of the refill base and the orientation of the refill seat.
- the movement speed and direction of the mobile robot are controlled to be back-charged with the refill base.
- the rotation speed of the rotating electrical machine is lowered or the sampling rate of the laser ranging mechanism is decreased or the rotating speed of the rotating electrical machine is lowered, and the sampling of the laser ranging mechanism is reduced.
- the rate method is used to improve the sampling angle resolution of the laser ranging mechanism, so that the laser ranging mechanism can obtain more data when the barcode on the refilling seat is scanned and scanned, and at the same time, the refilling seat can be The observed distance is improved to further improve the detection efficiency.
- the area of the refill base and the barcode can be made as small as possible, saving space and reducing manufacturing costs.
- a refill control device for an indoor mobile robot is also provided.
- the back-filling control device of the indoor mobile robot is built in the robot body and connected to the robot body.
- the indoor mobile robot's backfill control device can also be used to implement mapping, positioning, navigation, and motion planning;
- the indoor charging robot's recharging control device can also be used to set the target rotating speed of the rotating electric machine and output the rotating electric machine speed adjusting signal.
- the target rotating speed of the set rotating motor can be set manually by an external person, or it can be set by the back-filling control device of the indoor mobile robot according to the needs of drawing, positioning, navigation and motion planning.
- the recharging control device of the indoor mobile robot can also be in communication with the router, communicate with the external Internet and/or the mobile terminal through the router, so that the robot 10 (see FIG. 2) can interact with the outside.
- the recharging control device of the indoor mobile robot herein may be a processor, a microcontroller, a CPU or the like.
- a recharging control system of an indoor mobile robot includes an indoor mobile robot built in the foregoing embodiment.
- the back charge control device 20 is configured to control the mobile robot to reach the preset position according to the planned path according to the received back charge command; the back charge control device 20 is configured to reduce the rotation speed of the rotary motor to improve after reaching the preset position.
- the sampling angle resolution of the laser ranging mechanism is used to collect data required to calculate the position of the refill base and the orientation of the refill base; the refill control device 20 is configured to calculate the position of the refill base and the refill seat according to the data.
- the charging and recharging control device 20 is configured to control the moving speed and direction of the mobile robot according to the position of the refilling seat and the orientation of the refilling seat; wherein the robot body 10 further includes a base 110 and a housing 120 coupled to the base 110 for scanning
- the sensor 40 is rotatably disposed on the housing 120, and the scanning sensor 40 is used to collect data required to calculate the position of the refill base (not shown) and the orientation of the refill base.
- the refill seat (not shown) is used to power the robot.
- the scanning sensor 40 includes a rotating mechanism 410 and a laser ranging mechanism 420.
- the rotating mechanism 410 includes a rotary electric machine 412 for providing power required for rotation, and the rotating shaft 401 of the rotary electric machine 412 is perpendicular to the base 110.
- the laser ranging mechanism 420 is disposed on the rotating mechanism 410.
- the laser ranging mechanism 420 is driven by the rotating shaft 401 to collect data required for returning the position of the charging seat (not shown) and the orientation of the charging seat.
- a barcode 30 is provided on the refill base (not shown).
- the barcode 30 can be used as a feature recognition in conjunction with a laser ranging mechanism on the robot.
- the barcode 30 can be in a planar pattern or a stereo configuration or both a planar pattern and a stereo configuration. composition.
- the number of scan sensors 40 may be multiple, such as two, three, etc., scan sensor 40 may be a radar, and scan sensor 40 itself may be rotated.
- scan sensor 40 collects the position of the refilling seat and the data required for the orientation of the refilling seat, including the distance information between the robot and the refilling seat (not shown), and is set back.
- the scan sensor 40 can continuously scan along the axis of rotation 401 to obtain the information needed to establish the map, while also being able to recognize the refill.
- the scanning sensor 40 can identify the stereoscopic feature code according to the measured distance between the surrounding obstacle and the robot, and the scanning sensor 40 can also obtain the received light intensity value according to the color of the obstacle, and thus can be based on the color or The difference in material yields different received light intensity values, and the signatures of different colors or material combinations are identified.
- the use of multiple scan sensors 40 relative to a single scan sensor 40 can reduce the dead zone measured by the robot body 10.
- the case of one scanning sensor 40 is exemplarily enumerated. It can be understood that the number of scanning sensors 40 can be selected according to actual operation needs.
- the measurement parameters of the scan sensor 40 are equal. In other embodiments, the measurement parameters of the scan sensor 40 may also be different. When used, the measurement parameters may be selected according to the requirements of the measurement range, thereby expanding the measurement range of the robot body 10 and reducing the measurement range.
- the measurement dead zone of the sensor 40 is scanned.
- FIG. 3 is a schematic structural diagram of a scanning sensor in an embodiment, which may include: a laser ranging mechanism 410 and a rotating mechanism 420 .
- the rotating mechanism 420 includes a seat body 421, a rotating electrical machine 422, and a turntable 423.
- the rotating electric machine 422 can be disposed in the robot body 10, and the rotating shaft 401 of the rotating electric machine 422 is perpendicular to the base 110, as shown in FIG. 2, and then the rotating shaft 401 of the rotating electric machine 422 is extended to be rotatably connected with the rotating disc 423, and rotated.
- the rotating shaft 401 of the motor 422 rotates the turntable 423 relative to the seat body 421 by a belt drive.
- the present invention is not limited to the belt transmission mode, and may be other mechanical structure type transmission modes, and the turntable 423 is rotatably coupled to the seat body 421.
- the laser ranging mechanism 410 is disposed on the turntable 423, and rotates the turntable 423 through the rotating shaft 401 to acquire data required for calculating the position of the refill base (not shown) and the orientation of the refill base.
- a barcode 30 (see Fig. 2) is provided on the refill base (not shown).
- the number of the laser ranging mechanism 410 may be plural, for example, two, three, etc., and the data required by the laser ranging mechanism 410 to collect the position of the refill base (not shown) and the orientation of the refill base includes the light intensity data and Distance data.
- the scanning sensor by setting the scanning sensor on the top of the mobile robot, more data can be acquired, and there is no blind zone, and the back-filling control device of the indoor mobile robot in the back-charge control system of the indoor mobile robot can be passed.
- Controlling the speed of the rotating motor of the scanning sensor can improve the sampling angle resolution of the laser ranging mechanism in the scanning sensor, thereby improving the distance that the refilling seat can be observed, and ensuring the accuracy of the calculation result, further improving Detection efficiency.
- the area of the refill base and the barcode can be made as small as possible, saving space and reducing manufacturing costs.
- FIG. 4 is a schematic structural diagram of a scanning sensor in another embodiment, which may include: a laser ranging mechanism 410 , a rotating mechanism 420 , and a speed controlling unit 430 .
- the speed control unit 430 is connected to the rotary motor 422 for receiving the rotation motor speed adjustment signal, and adjusting the rotation speed of the rotary motor 422 according to the rotation motor speed adjustment signal.
- a PWM wave or a different voltage may be applied to the rotary motor.
- the description of the robot body and the refilling seat in the recharging control system of the indoor mobile robot composed of the scanning sensor and the robot body and the refilling seat of the embodiment can also refer to the description in the previous embodiment, and no longer here. More details. It can be understood that the speed control unit 430 is electrically connected to the back charge control device of the indoor mobile robot, so that the signal transmission can be realized and the rotary motor in the scan sensor can be indirectly controlled by the back charge control device of the indoor mobile robot in the robot body.
- the scanning sensor by setting the scanning sensor on the top of the mobile robot, more data can be acquired, and there is no blind zone, and the back-filling control device of the indoor mobile robot in the back-charge control system of the indoor mobile robot can be passed.
- Setting the target rotational speed to the speed control unit in the scan sensor thereby controlling the speed of the rotary motor by the speed control unit, can reduce the processing load of the indoor mobile robot's back charge control device, and can improve the sampling angle resolution of the scan sensor
- the distance that can be observed by the refill base is improved, the accuracy of the calculation result is ensured, and the detection efficiency is further improved.
- the area of the refill base and the barcode can be made as small as possible, saving space and reducing manufacturing costs.
- the backfill control system based on the indoor mobile robot includes:
- the robot body 10 scans the sensor 40 and refills the seat (not shown).
- the scanning sensor 40 can be continuously rotated along the rotating shaft, and the refilling seat (not shown) is provided with a feature for the scanning sensor 40 to identify.
- the feature can be a barcode, such as a barcode 30, and the barcode 30 can be a planar pattern or a stereo configuration. Or it can be composed of both a planar pattern and a stereo configuration.
- a method for backfilling control of an indoor mobile robot including the steps of:
- Step S102 controlling the robot body to perform backfill according to the refilling instruction.
- the refill command may be issued according to the user's current mobile terminal or may be based on the current remaining power of the robot body.
- the robot performs a refill operation according to the issued refill command.
- Step S104 after the preset condition is met, reduce the rotation speed of the rotating electrical machine to scan the feature information on the refill base.
- the preset condition may be that the preset position is reached, or the refill instruction is directly started after receiving the instruction, and the rotation speed of the rotating electrical machine is directly reduced, and the rotation speed of the rotating electrical machine is reduced to improve the laser measurement.
- the resolution of the sampling angle from the mechanism can be understood as applying a PWM wave or a different voltage to the rotating electrical machine, causing the motor to rotate slowly. Reducing the rotational speed of the rotating electrical machine does not necessarily improve the angular sampling resolution of the laser ranging mechanism, but this method can be used to assist the laser ranging mechanism in collecting data.
- the rotational speed after the reduction of the rotating electrical machine is less than 90% of the rotational speed of the rotating electrical machine in the non-recharging state, that is, the non-recharging state means that the robot is in the cleaning mode, and the surrounding environment needs to be constructed. It is necessary to scan the sensor to collect the data required for the construction, and the rotation speed at this time is the rotation speed of the rotating electrical machine in the non-recharge state.
- the rotation speed can be 70% of the rotational speed of the rotating motor in the non-recharge state, and 6 rev/sec for the robot in the clean mode, then when the switch is switched to the recharge state, the motor can be rotated after applying the PWM wave.
- the rotation speed is 4 rev / sec. It can be understood that the specific reduction can be selected according to the actual operation needs.
- Step S106 controlling the robot body to move to the refill base according to the scanned feature information.
- the robot body is controlled to move to the position where the refill is located, thereby completing the alignment refill.
- the rotation speed of the rotating electrical machine is reduced to collect the feature information on the refilling seat, more data can be acquired, and the distance that can be observed by the refilling seat can be improved.
- the area of the refill base and the barcode can be made as small as possible, saving space and reducing manufacturing costs.
- the barcode 30 may be a flat barcode 300 or a barcode 310 of a three-dimensional pattern. Barcodes can be made of materials of different colors or different reflection coefficients. Among them, the barcode 300 has a planar shape. It can be seen that the barcode 300 is composed of a plurality of rectangles of the same length and different widths. Of course, the shape of the barcode 300 may also be a square. And it is still arranged in black and white. It can be understood that the width of each block of barcodes 300 can be selected according to actual operation needs. There is no limit here.
- the barcode 300 can be directly sprayed on the refill base by spraying, or can be printed on the printer and then pasted on the refill base.
- the barcode 310 has a three-dimensional shape. It can be seen that the barcode 310 is formed by a combination of a plurality of planar patterns and a three-dimensional pattern. The width of each bar code 310 can be selected according to actual operation needs. There is no limit here.
- the barcode with data can be set on a flat pattern or on a three-dimensional pattern. Preferably, the barcode with data is placed on a three-dimensional shape.
- the barcode 300 and the barcode 310 may be respectively disposed on different refill bases, or may be disposed on the same refill base in a combined manner to represent different data.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种室内移动机器人的回充控制方法、装置及系统。一种室内移动机器人的回充控制方法,包括:根据接收到的回充指令控制移动机器人按照规划的路径到达预设位置;到达预设位置后,提高激光测距机构的采样角度分辨率以采集计算回充座的位置和回充座的朝向所需的数据;根据所述数据计算回充座的位置和回充座的朝向;根据所述回充座的位置和回充座的朝向控制移动机器人的运动速度和方向。还提供一种室内移动机器人的回充控制装置和系统。本申请在机器人达到预定位置后,通过提高激光测距机构的采样角度分辨率的方式,可使得激光测距机构在对回充座上的条形码进行识别扫描时,可以获取到更多的数据,同时可以增大回充座被观测到的距离。
Description
本申请涉及机器人回充控制领域,特别是涉及一种室内移动机器人的回充控制方法、装置及系统。
目前,随着科学技术的不断发展,呈现于世人的眼前的移动机器人的种类也越来越多,如无人车、无人飞机、水下机器人和扫地机等。移动机器人上设有多种传感器,以达到定位、建图和导航等功能。然而,当使用激光雷达作为回充座的检测传感器时,常用条码形式的特征作为装置的识别特征。但由于受限于传感器的采样率(即一秒内传感器旋转一圈所采集到的数据个数),会使得回充座的条码宽度受限,这时就需要条码做得比较宽,或者当机器靠的比较近的时候,才能分辨出来,这样就会降低机器人在远处进行扫描时的分辨率,并且还会增加回充座的占地面积和制作回充座的成本。
本申请实施例提供了一种室内移动机器人的回充控制方法、装置及系统,以解决现有技术中,移动机器人在远处扫描时分辨率低、回充座的制作成本较高、且占地面积较大的问题。
本申请实施例的第一方面提供了一种室内移动机器人的回充控制方法,包括:
根据接收到的回充指令控制移动机器人按照规划的路径到达预设位置;
到达预设位置后,提高激光测距机构的采样角度分辨率以采集计算回充座的位置和回充座的朝向所需的数据;
根据所述数据计算回充座的位置和回充座的朝向;
根据所述回充座的位置和回充座的朝向控制移动机器人的运动速度和方向。
本申请实施例的第二方面提供了一种室内移动机器人的回充控制装置,用于执行如前述所述的室内移动机器人的回充控制方法。
本申请实施例的第三方面提供了一种室内移动机器人的回充控制系统,包括扫描传感器、回充座以及内置有如前述所述的室内移动机器人的回充控制装置的机器人本体;
所述机器人本体还包括底座和与所述底座耦合的壳体;
所述扫描传感器可转动地设置于所述壳体外,所述扫描传感器用于采集计算回充座的位置和回充座的朝向所需的数据;
所述扫描传感器包括旋转机构和激光测距机构;所述旋转机构包括用于提供旋转所需动力的旋转电机,所述旋转电机的旋转轴垂直于所述底座;所述激光测距机构设于所述旋转机构上,所述激光测距机构通过所述旋转轴带动以采集计算回充座的位置和回充座的朝向所需的数据;
所述回充座上设有供所述扫描传感器识别的条形码,所述回充座用于为所述机器人提供充电功能;
所述条形码包括平面图案和/或立体构型。
本申请实施例,通过接收到的根据回充指令控制移动机器人到达预定位置后,降低旋转电机的转速或提高激光测距机构的采样率或降低旋转电机的旋转速度、并降低激光测距机构的采样率的方式来提高激光测距机构的采样角度分辨率,可使得激光测距机构在对回充座上的条形码进行识别扫描时,可以获取到更多的数据,同时可以使得回充座可被观测到的距离得到提高,进一步提高检测效率。更进一步地,可使得回充座和条形码的面积可以做得尽可能的小,节约空间,降低制造成本。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中的室内移动机器人的回充控制方法流程图;
图2为一实施例中的室内移动机器人的回充控制系统结构示意图;
图3为一实施例中的扫描传感器结构示意图;
图4为再一实施例中的扫描传感器结构示意图;
图5a为一实施例中的条形码的组成结构示意图;
图5b为另一实施例中的条形码的组成结构示意图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参照图1,为一实例中的室内移动机器人的回充控制方法流程图。一种室内移动机器人的回充控制方法,包括:
步骤S100,根据接收到的回充指令控制移动机器人按照规划的路径到达预定位置。
具体地,机器人可以根据用户通过移动终端发出的回充指令来按照预先规划的路径到达预定位置。也可以是根据机器人当前剩余的电量情况来发出。其中,回充路径是根据机器人所在环境的地图预先规划的,也可以是机器人自身实时规划出来的路径。这与地图环境和机器人当前所处的位置相关。
步骤S200,到达预定位置后,提高激光测距机构的采样角度分辨率以采集计算回充座的位置和回充座的朝向所需的数据。
具体地,当机器人根据回充指令到达预定位置之后,控制移动机器人处于慢速旋转,然后提高激光测距机构的采样角度分辨率,采样角度分辨率的定义为激光测距机构一秒内转一圈(360°)所采集到的数据个数除以对应旋转电机每秒的转速即为采样角度分辨率,例如,激光测距机构一秒采集的数据为2000,同时旋转电机的旋转速度为每秒10转,那么采样角度分辨率就为200个点每一圈。对于提高激光测距机构的采样角度分辨率可以通过以下方式:
方式一:降低旋转电机的旋转速度以提高激光测距机构的采样角度分辨率。这里降低旋转电机的旋转速度可以理解为对旋转电机施加一个PWM波或者不同的电压,导致电机旋转变慢。同时,在旋转电机的旋转速度降低的同时可以保持激光测距机构的采样率。采样率的意思是激光测距机构在一秒内所采集到的数据个数。例如,激光测距机构的采样率是存在上限的,如最快每秒2000个点,如果旋转电机的转速为每秒10转,那么每圈(360°)就会有200个采样点。那么如果转速降低为5转,同时保持激光测距机构的采样率,那么每圈就会得到400个采样点,这样可以提高激光测距机构的采样角度分辨率。
方式二:提高激光测距机构的采样率以提高激光测距机构的采样角度分辨率。一般的激光测距机构的采样率都是可调的,在最开始使用的时候可以使激光测距机构不按照上限采样率进行采样,而是根据实际操作需要作相应的调整,这里可以理解,具体的选择可以根据本领域技术人员的具体需要进行选择。例如,对于一个上限采样率在每秒2000个点的激光测距机构,首先调整激光测距机构的采样率为1500,然后可以根据本申请的方法,选择性的提高激光测距机构的采样率,同时应当保持旋转电机的旋转速度。
方式三:降低旋转电机的旋转速度、并降低激光测距机构的采样率以提高激光测距机构的采样角度分辨率。降低旋转电机的旋转速度可以是对旋转电机施加一个PWM波或者不同的电压,导致电机旋转变慢,同时降低激光测距机构的采样率,示例性地,激光测距机构的采样率由最高2000,下降到1800,旋转电机的旋转速度为每秒10转变为每秒钟4转,那么仍然可以获得每圈450个点的采样角度分辨率,相对于原来的(采样率每秒2000个点/旋转速度10转)200个点每圈,也是提高了激光测距机构的采样角度分辨率,这样做的目的是保证有足够多的数据来计算回充座的位置和回充座的朝向。通过采取这种方式来采集计算回充座的位置和回充座的朝向所需的数据。其中,计算回充座的位置和回充座的朝向所需的数据可以包括机器人与回充座之间的距离信息以及设于回充座上的条形码信息。
步骤S300,根据所述数据计算回充座的位置和回充座的朝向。
具体地,根据激光测距机构采集到的数据计算回充座的位置和回充座的朝向。请参阅图2,为机器人寻找回充座的示意图。包括室内移动机器人的回充控制装置20的机器人本体10,包含有条形码30的回充座(图未标示),扫描传感器40以及旋转轴401。激光测距机构采集的数据包括机器人与回充座之间的距离信息以及设于回充座上的条形码信息。其中,计算回充座的位置和回充座的朝向的原理是:通过距离信息和采集系统对距离信息的计算就可以知道某个点的数据在机器人的什么位置,从而映射计算出机器人所看到的一条充电座条形码形状的数据。根据这一条数据,就可以得到充电座的中心,而中心处就是充电座的位置。而回充座的朝向是根据条形码形状数据而可以得到的充电座的中垂线,回充座的朝向机器人那一边的角度为充电座的回充座的朝向,图2中箭头的指向即为回充座的朝向。同时,一般的机器人中,扫描传感器40是通过设置在机器人的支撑柱子形成容置腔内。所以,对于机器人采用支撑柱方式来形成容置腔从而容置扫描传感器,扫描传感器进行数据采集和处理的时候,可以采用以下方式消除支撑柱的数据对于计算回充座的位置和回充座的朝向产生的影响。
方式一:对采集到的所述数据进行去除处理。
因为一般的机器人中,扫描传感器是通过设置在机器人的支撑柱子形成容置腔内。所以在扫描传感器采集到的数据当中会包含支撑柱部分的数据,所以在计算回充座的位置和回充座的朝向的时候,可以将支撑柱部分的数据去除,用剩下的数据来计算回充座的位置和回充座的朝向,这样计算出来的回充座的位置和回充座的朝向更加准确。
方式二:对采集到的所述数据进行叠加处理。
这个方式则是将几帧扫描传感器采集到的数据进行叠加,然后进行旋转之后就可以消除支撑柱部分的数据对于计算回充座的位置和回充座的朝向产生的影响,这种方式也可以使得计算出来的回充座的位置和回充座的朝向更加准确。
方式三:对采集到的所述数据进行去除和叠加处理。
这种方式即是说对于采集到的数据既进行去除处理又进行叠加处理,即是说对于一部分支撑柱的数据采取去除处理,一部分支撑柱的数据采取叠加处理。当然,对于具体的哪部分数据采取什么方式,本申请没有特别限制,可以根据实际操作进行选择,这种方式相较于前两种方式来说得到的计算结果更为精确。
步骤S400,根据所述回充座的位置和回充座的朝向控制移动机器人的运动速度和方向。
根据激光测距机构采集到的数据计算出回充座的位置和回充座的朝向之后,通过控制移动机器人的运动速度和方向与回充座进行对准回充。
上述实施例,通过接收到的根据回充指令控制移动机器人到达预定位置后,降低旋转电机的转速或提高激光测距机构的采样率或降低旋转电机的旋转速度、并降低激光测距机构的采样率的方式来提高激光测距机构的采样角度分辨率,可使得激光测距机构在对回充座上的条形码进行识别扫描时,可以获取到更多的数据,同时可以使得回充座可被观测到的距离得到提高,进一步提高检测效率。更进一步地,可使得回充座和条形码的面积可以做得尽可能的小,节约空间,降低制造成本。
在一个实施例中,还提供一种室内移动机器人的回充控制装置。一种室内移动机器人的回充控制装置,用于执行如前述实施例所描述的室内移动机器人的回充控制方法。其中,室内移动机器人的回充控制装置内置于机器人本体内,与机器人本体连接。为了使机器人本体10(参见图2)能够根据接收到的回充指令根据预先规划的路径进行运动,室内移动机器人的回充控制装置还可以用来实现建图、定位、导航及运动规划等;同时室内移动机器人的回充控制装置还可以用来设定旋转电机的目标旋转速度、并输出旋转电机速度调整信号。设定的旋转电机的目标旋转速度可以通过外部人员手动进行设置,也可以通过室内移动机器人的回充控制装置根据建图、定位、导航及运动规划的需要自己进行设定。室内移动机器人的回充控制装置还可以与路由器通信连接,通过路由器与外部互联网和/或移动终端互相通信,从而使得机器人10(参见图2)可以和外部进行交互。可以理解,这里的室内移动机器人的回充控制装置可以为处理器,微控制器,CPU等。可以理解,只要可以执行如前述实施例所描述的室内移动机器人的回充控制方法和本实施例的描述的处理器都可以作为室内移动机器人的回充控制装置,在选择处理器的时候,可以根据实际操作需要来进行改变,本申请对此不作进一步限定。
请参照图2,为一实施例中的室内移动机器人的回充控制系统结构图,同时参照图3,一种室内移动机器人的回充控制系统,包括内置有前述实施例所述的室内移动机器人的回充控制装置20的机器人本体10,扫描传感器40,包含有条形码30的回充座(图未标示)。其中,回充控制装置20用于根据接收到的回充指令控制移动机器人按照规划的路径到达预设位置;回充控制装置20用于在到达预设位置后,降低旋转电机的旋转速度以提高激光测距机构的采样角度分辨率以采集计算回充座的位置和回充座的朝向所需的数据;回充控制装置20用于根据所述数据计算回充座的位置和回充座的朝向;回充控制装置20用于根据回充座的位置和回充座的朝向控制移动机器人的运动速度和方向;其中,机器人本体10还包括底座110和与底座110耦合的壳体120,扫描传感器40可转动地设置于壳体120上,扫描传感器40用于采集计算回充座(图未标示)位置和回充座的朝向所需的数据。回充座(图未标示)用于为机器人提供电能。扫描传感器40包括旋转机构410和激光测距机构420。旋转机构410包括用于提供旋转所需动力的旋转电机412,旋转电机412的旋转轴401垂直于底座110。激光测距机构420设于旋转机构410上,激光测距机构420通过旋转轴401带动以采集回充座(图未标示)位置和回充座的朝向所需的数据。回充座(图未标示)上设有条形码30,条形码30可以作为特征识别与机器人上的激光测距机构配合使用,条形码30可以由平面图案或者立体构型或者既有平面图案也有立体构型组成。
在一个实施例中,扫描传感器40的数量可以为多个,例如两个、三个等,扫描传感器40可以为雷达,并且扫描传感器40自身可以旋转。例如旋转激光测距雷达、光学雷达等,扫描传感器40采集回充座的位置和回充座的朝向所需的数据包括机器人与回充座(图未标示)之间的距离信息、设于回充座(图未标示)上的条形码信息,扫描传感器40能够沿旋转轴401连续旋转扫描来获得建立地图所需要的信息,同时还能够识别回充座。扫描传感器40可以根据测量到的周围障碍物与机器人的距离,根据不同距离的组合可以识别出立体的特征码,扫描传感器40还可以根据障碍物的颜色得到接收光强值,因此可以根据颜色或材质的不同得到不同的接收光强值,识别出不同颜色或材质组合的特征码。相对于单一的扫描传感器40,采用多个扫描传感器40可以减少机器人本体10测量的盲区。在本实施例中,示例性地列举了一个扫描传感器40的情形。可以理解,扫描传感器40的数量可以根据实际操作需要进行选择。扫描传感器40的测量参数相等,在其他实施例中,扫描传感器40的测量参数也可以不相同,使用时,可以根据测量范围的需求进行选择,从而可以扩大机器人本体10测量范围,也能减小扫描传感器40的测量盲区。
具体地,请参照图3,为一实施例中的扫描传感器的结构示意图,可以包括:激光测距机构410,旋转机构420。其中,旋转机构420包括座本体421、旋转电机422和转盘423。可以理解,旋转电机422可以设置在机器人本体10内,旋转电机422的旋转轴401垂直于底座110,如图2所示,然后将旋转电机422的旋转轴401延伸出来与转盘423转动连接,旋转电机422的旋转轴401通过皮带传动使转盘423相对于座本体421转动,可以理解,这里不限于皮带传动的方式,还可以是其他机械结构类的传动方式,同时转盘423转动连接于座本体421上,激光测距机构410设于转盘423上,通过旋转轴401带动转盘423进行旋转以采集计算回充座(图未示)位置和回充座的朝向所需的数据。回充座(图未示)上设有条形码30(参见图2)。激光测距机构410的数量可以为多个,例如两个、三个等,激光测距机构410采集回充座(图未示)位置和回充座的朝向所需的数据包括光强数据和距离数据。
上述实施例,通过将扫描传感器设置在移动机器人的顶部的方式,可以更多的获取到数据,并且不会有盲区,同时通过室内移动机器人的回充控制系统中室内移动机器人的回充控制装置对扫描传感器的旋转电机的速度进行控制,可提高扫描传感器中激光测距机构的采样角度分辨率,进而使得回充座可被观测到的距离得到提高,保证计算的结果的准确性,进一步提高检测效率。更进一步地,可使得回充座和条形码的面积可以做得尽可能的小,节约空间,降低制造成本。
具体地,请参照图4,为另一实施例中的扫描传感器的结构示意图,可以包括:激光测距机构410,旋转机构420,控速单元430。其中,控速单元430与旋转电机422连接,用于接收旋转电机速度调整信号,根据旋转电机速度调整信号调整旋转电机422的旋转速度,这里可以是对旋转电机施加一个PWM波或者不同的电压,导致电机旋转变慢。可以理解,旋转机构420和激光测距机构410的描述可以参照前述扫描传感器实施例的描述,在这里就不再过多赘述。并且由此实施例的扫描传感器和机器人本体、回充座组成的室内移动机器人的回充控制系统中的机器人本体、回充座的描述也可以参照前面实施例中的描述,这里也不再过多赘述。可以理解,控速单元430与室内移动机器人的回充控制装置电性连接,从而可以实现信号的传输以及通过机器人本体中的室内移动机器人的回充控制装置来间接控制扫描传感器中的旋转电机。
上述实施例,通过将扫描传感器设置在移动机器人的顶部的方式,可以更多的获取到数据,并且不会有盲区,同时通过室内移动机器人的回充控制系统中室内移动机器人的回充控制装置对扫描传感器中的控速单元设定目标旋转速度,从而通过控速单元控制旋转电机的速度,可减轻室内移动机器人的回充控制装置的处理负担,并且可使得扫描传感器的采样角度分辨率提高,进而使得回充座可被观测到的距离得到提高,保证计算的结果的准确性,进一步提高检测效率。更进一步地,可使得回充座和条形码的面积可以做得尽可能的小,节约空间,降低制造成本。
在一个实施例中,基于上述室内移动机器人的回充控制系统,包括:
机器人本体10,扫描传感器40,回充座(图未标示)。其中,扫描传感器40可沿旋转轴连续旋转,回充座(图未标示)上设有供扫描传感器40识别的特征,特征可以是条形码,例如条形码30,条形码30可以由平面图案或者立体构型或者既有平面图案也有立体构型组成。
还提供一种室内移动机器人的回充控制方法,包括步骤:
步骤S102,根据回充指令控制所述机器人本体进行回充。
在一个实施例中,回充指令可以是根据用户通过移动终端发出的,也可以是根据机器人本体当前剩余的电量情况来发出。机器人根据发出的回充指令进行回充动作。
步骤S104,在满足预设条件后,降低旋转电机的旋转速度以扫描所述回充座上的特征信息。
在一个实施例中,满足预设条件可以是到达预设的位置,也可以是接收到指令之后直接开始执行回充指令,并且直接降低旋转电机的转速,降低旋转电机的旋转速度以提高激光测距机构的采样角度分辨率。这里降低旋转电机的旋转速度可以理解为对旋转电机施加一个PWM波或者不同的电压,导致电机旋转变慢。降低旋转电机的旋转速度不一定能提高激光测距机构的角度采样分辨率,但是可以采用此方法来辅助激光测距机构采集数据。示例性地,旋转电机降低之后的旋转速度小于非回充状态下旋转电机旋转速度的90%,非回充状态即是说,机器人处于清洁模式下,需要对周围的环境进行建图,这时候就需要扫描传感器采集建图所需的数据,这时的旋转速度即是非回充状态下的旋转电机的旋转速度。例如,可以为非回充状态下旋转电机旋转速度的70%,对于机器人处于清洁模式下的转速为6转/秒,那么换到回充状态下时,就可以通过施加PWM波降低之后旋转电机的转速为4转/秒,可以理解,具体降低多少可以根据实际操作需要进行选择。
步骤S106,根据扫描到的所述特征信息,控制所述机器人本体向所述回充座移动。
在一个实施例中,根据前一步骤扫描到的特征信息,例如条形码上的特征信息,来控制机器人本体向回充座所在的位置移动,从而完成对准回充。
上述实施例,通过在机器人执行回充指令时,降低旋转电机的转速来采集回充座上的特征信息,可以获取到更多的数据,同时可以使得回充座可被观测到的距离得到提高,进一步提高检测效率。更进一步地,可使得回充座和条形码的面积可以做得尽可能的小,节约空间,降低制造成本。
为了使本申请描述的更加详尽,请继续参阅图5a、图5b,为条形码的组成结构图。条形码30(参见图2)可以是平面的条形码300,也可以是立体图案的条形码310。条形码可以用不同的颜色或不同反光系数的材质。其中,条形码300为一个平面形状。可以看出条形码300是由多块长度相同、宽度不同的长方形组成的,当然,条形码300的形状还可以是正方形。并且还是黑白相间排列。可以理解,每一块条形码300的宽度可以根据实际操作需要进行选择。这里不做限定。条形码300可以采用喷涂的方式直接喷涂在回充座上,也可以通过印刷机打印出来之后粘贴在回充座上。条形码310为一个立体的形状。可以看出条形码310是由多块平面图案和立体图案组合形成的。其中,每一块条形码310的宽度可以根据实际操作需要进行选择。这里不做限定。带有数据的条码可以设置在平面图案上,也可以设置在立体图案上。作为优选地,将带有数据的条码设置在立体的形状上。条形码300和条形码310可以分别设置在不同的回充座上,也可以采用组合的方式设置在同一个回充座上以代表不同的数据。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种室内移动机器人的回充控制方法,其特征在于,包括:根据接收到的回充指令控制移动机器人按照规划的路径到达预设位置;到达预设位置后,提高激光测距机构的采样角度分辨率以采集计算回充座的位置和回充座的朝向所需的数据;根据所述数据计算回充座的位置和回充座的朝向;根据所述回充座的位置和回充座的朝向控制移动机器人的运动速度和方向。
- 根据权利要求1所述的室内移动机器人的回充控制方法,其特征在于,所述提高激光测距机构的采样角度分辨率的步骤,包括:降低旋转电机的旋转速度以提高激光测距机构的采样角度分辨率;或提高激光测距机构的采样率以提高激光测距机构的采样角度分辨率;或降低旋转电机的旋转速度、并降低激光测距机构的采样率以提高激光测距机构的采样角度分辨率。
- 根据权利要求1所述的室内移动机器人的回充控制方法,其特征在于,所述计算回充座的位置和回充座的朝向所需的数据包括所述机器人与所述回充座之间的距离信息、设于所述回充座上的条形码信息。
- 一种室内移动机器人的回充控制装置,其特征在于,所述室内移动机器人的回充控制装置用于执行如权利要求1~3任一项所述的室内移动机器人的回充控制方法。
- 根据权利要求4所述的室内移动机器人的回充控制装置,其特征在于,所述装置设置于机器人本体内。
- 根据权利要求4所述的室内移动机器人的回充控制装置,其特征在于,所述装置还用于设定所述旋转电机的目标旋转速度、并输出旋转电机速度调整信号。
- 一种室内移动机器人的回充控制系统,其特征在于,所述室内移动机器人的回充控制系统包括扫描传感器、回充座以及内置有如权利要求4~6任一项所述的室内移动机器人的回充控制装置的机器人本体;所述机器人本体还包括底座和与所述底座耦合的壳体;所述扫描传感器可转动地设置于所述壳体外,所述扫描传感器用于采集计算回充座的位置和回充座的朝向所需的数据;所述扫描传感器包括旋转机构和激光测距机构;所述旋转机构包括用于提供旋转所需动力的旋转电机,所述旋转电机的旋转轴垂直于所述底座;所述激光测距机构设于所述旋转机构上,所述激光测距机构通过所述旋转轴带动以采集计算回充座的位置和回充座的朝向所需的数据;所述回充座上设有供所述扫描传感器识别的条形码,所述回充座用于为所述机器人提供充电功能;所述条形码包括平面图案和/或立体构型。
- 根据权利要求7所述的室内移动机器人的回充控制系统,其特征在于,所述扫描传感器还包括控速单元,与所述旋转电机连接,所述控速单元用于接收所述旋转电机速度调整信号,根据所述旋转电机速度调整信号调整所述旋转电机的旋转速度。
- 一种室内移动机器人的回充控制方法,基于一种室内移动机器人的回充控制系统,所述系统包括:机器人本体、扫描传感器以及回充座;所述扫描传感器可沿旋转轴连续旋转;所述回充座上设有供所述扫描传感器识别的特征;所述方法包括:根据回充指令控制所述机器人本体进行回充;在满足预设条件后,降低旋转电机的旋转速度以扫描所述回充座上的特征信息;根据扫描到的所述特征信息,控制所述机器人本体向所述回充座移动。
- 根据权利要求9所述的室内移动机器人的回充控制方法,其特征在于,所述旋转电机降低之后的旋转速度小于非回充状态下旋转电机旋转速度的90%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810306844.7 | 2018-04-08 | ||
CN201810306844.7A CN108733048B (zh) | 2018-04-08 | 2018-04-08 | 一种室内移动机器人的回充控制方法、装置及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019196487A1 true WO2019196487A1 (zh) | 2019-10-17 |
Family
ID=63941193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/121479 WO2019196487A1 (zh) | 2018-04-08 | 2018-12-17 | 一种室内移动机器人的回充控制方法、装置及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108733048B (zh) |
WO (1) | WO2019196487A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113190016A (zh) * | 2021-05-21 | 2021-07-30 | 南京工业大学 | 一种用于洁净室的移动机器人检测系统与方法 |
CN115969287A (zh) * | 2023-03-21 | 2023-04-18 | 科大讯飞股份有限公司 | 清洁机器人及其电量管理方法、装置及存储介质 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108733048B (zh) * | 2018-04-08 | 2019-08-09 | 深圳乐动机器人有限公司 | 一种室内移动机器人的回充控制方法、装置及系统 |
CN109586360B (zh) * | 2018-11-09 | 2020-09-22 | 深圳市银星智能科技股份有限公司 | 一种机器人自动充电的方法、装置、充电桩和机器人 |
CN111481112B (zh) * | 2019-01-29 | 2022-04-29 | 北京奇虎科技有限公司 | 扫地机的回充对准方法、装置及扫地机 |
CN111697637B (zh) * | 2019-03-11 | 2024-04-16 | 北京奇虎科技有限公司 | 一种扫地机器人的充电控制方法和装置 |
CN111743450B (zh) * | 2019-03-26 | 2021-06-08 | 速感科技(北京)有限公司 | 可移动装置的回充方法及可移动装置 |
CN109901590B (zh) * | 2019-03-30 | 2020-06-05 | 珠海市一微半导体有限公司 | 桌面机器人的回充控制方法 |
CN109991981A (zh) * | 2019-04-04 | 2019-07-09 | 尚科宁家(中国)科技有限公司 | 一种扫地机器人回充方法 |
CN110162047A (zh) * | 2019-05-21 | 2019-08-23 | 福建天泉教育科技有限公司 | 机器人自动充电引导方法及其系统 |
CN110153987A (zh) * | 2019-06-26 | 2019-08-23 | 东北大学秦皇岛分校 | 一种智能识别搬运机器人及其控制方法 |
CN110477808A (zh) * | 2019-08-20 | 2019-11-22 | 深圳乐动机器人有限公司 | 一种机器人 |
CN112748725B (zh) * | 2019-10-31 | 2022-04-01 | 珠海一微半导体股份有限公司 | 一种机器人通用的回充控制方法、芯片及机器人 |
CN111969697A (zh) * | 2020-09-18 | 2020-11-20 | 奇弩(中国)有限公司 | 一种机器人自动充电对准装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203882195U (zh) * | 2014-06-13 | 2014-10-15 | 常州智宝机器人科技有限公司 | 基于多传感器融合的服务机器人及其充电座 |
CN105259918A (zh) * | 2015-09-18 | 2016-01-20 | 莱克电气股份有限公司 | 机器人吸尘器自动充电回归的方法 |
CN106931528A (zh) * | 2017-03-08 | 2017-07-07 | 苏州立瓷智能电器有限公司 | 一种智能空气净化机器人 |
US20180052468A1 (en) * | 2016-08-22 | 2018-02-22 | Lg Electronics Inc. | Moving robot and controlling method thereof |
CN108733048A (zh) * | 2018-04-08 | 2018-11-02 | 深圳乐动机器人有限公司 | 一种室内移动机器人的回充控制方法、装置及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7332890B2 (en) * | 2004-01-21 | 2008-02-19 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
CN106020188B (zh) * | 2016-05-17 | 2018-10-30 | 杭州申昊科技股份有限公司 | 一种基于激光导航的变电站巡检机器人自主充电方法 |
CN106227218A (zh) * | 2016-09-27 | 2016-12-14 | 深圳乐行天下科技有限公司 | 一种智能移动设备的导航避障方法及装置 |
CN106383519B (zh) * | 2016-11-17 | 2023-04-18 | 西安科技大学 | 一种机器人自主定位充电系统及方法 |
CN107092264A (zh) * | 2017-06-21 | 2017-08-25 | 北京理工大学 | 面向银行厅堂环境的服务机器人自主导航与自动充电方法 |
-
2018
- 2018-04-08 CN CN201810306844.7A patent/CN108733048B/zh active Active
- 2018-12-17 WO PCT/CN2018/121479 patent/WO2019196487A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203882195U (zh) * | 2014-06-13 | 2014-10-15 | 常州智宝机器人科技有限公司 | 基于多传感器融合的服务机器人及其充电座 |
CN105259918A (zh) * | 2015-09-18 | 2016-01-20 | 莱克电气股份有限公司 | 机器人吸尘器自动充电回归的方法 |
US20180052468A1 (en) * | 2016-08-22 | 2018-02-22 | Lg Electronics Inc. | Moving robot and controlling method thereof |
CN106931528A (zh) * | 2017-03-08 | 2017-07-07 | 苏州立瓷智能电器有限公司 | 一种智能空气净化机器人 |
CN108733048A (zh) * | 2018-04-08 | 2018-11-02 | 深圳乐动机器人有限公司 | 一种室内移动机器人的回充控制方法、装置及系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113190016A (zh) * | 2021-05-21 | 2021-07-30 | 南京工业大学 | 一种用于洁净室的移动机器人检测系统与方法 |
CN115969287A (zh) * | 2023-03-21 | 2023-04-18 | 科大讯飞股份有限公司 | 清洁机器人及其电量管理方法、装置及存储介质 |
CN115969287B (zh) * | 2023-03-21 | 2023-09-26 | 科大讯飞股份有限公司 | 清洁机器人及其电量管理方法、装置及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN108733048B (zh) | 2019-08-09 |
CN108733048A (zh) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019196487A1 (zh) | 一种室内移动机器人的回充控制方法、装置及系统 | |
CN107167141B (zh) | 基于双一线激光雷达的机器人自主导航系统 | |
JP4864005B2 (ja) | 光レーザ誘導システム装置及び方法 | |
US5903124A (en) | Apparatus for positioning moving body allowing precise positioning of moving body | |
CN104238557B (zh) | 无人驾驶运输车辆和运行无人驾驶运输车辆的方法 | |
WO2019144867A1 (zh) | 一种提高移动机器人边角覆盖率的方法 | |
JP5973608B1 (ja) | 無人作業車の制御装置 | |
CN110477825A (zh) | 清洁机器人、自主充电方法、系统及可读存储介质 | |
US20110046784A1 (en) | Asymmetric stereo vision system | |
JP5310285B2 (ja) | 自己位置推定装置及び自己位置推定方法 | |
EP2128733A2 (en) | Autonomous moving body and method for controlling movement thereof | |
JP2002287824A (ja) | 自律走行ロボット | |
JPWO2020110247A1 (ja) | 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム | |
JP2013031389A (ja) | 自動芝刈り機及びその制御方法 | |
CN111090284B (zh) | 自行走设备返回基站的方法及自行走设备 | |
CN109358342A (zh) | 基于2d激光雷达的三维激光slam系统及控制方法 | |
KR20190123679A (ko) | 이동로봇과 이동로봇의 제어방법 | |
WO2018010130A1 (en) | Programmable motor controller using a motor | |
EP3778146B1 (en) | Mobile robot and method for controlling mobile robot | |
CN109571470A (zh) | 一种机器人 | |
JP2002312035A (ja) | 自律走行ロボット | |
US20240100691A1 (en) | Self-propelled Device | |
CN210061107U (zh) | 一种机器人移动底盘 | |
CN211477014U (zh) | 施工测量设备 | |
CN219070084U (zh) | 清洁装置、自移动装置、应用于激光雷达模组的控制模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18914595 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18914595 Country of ref document: EP Kind code of ref document: A1 |