WO2019196444A1 - 封装方法、电子装置和封装设备 - Google Patents

封装方法、电子装置和封装设备 Download PDF

Info

Publication number
WO2019196444A1
WO2019196444A1 PCT/CN2018/119561 CN2018119561W WO2019196444A1 WO 2019196444 A1 WO2019196444 A1 WO 2019196444A1 CN 2018119561 W CN2018119561 W CN 2018119561W WO 2019196444 A1 WO2019196444 A1 WO 2019196444A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electric field
capsule
electrophoretic particles
encapsulation method
Prior art date
Application number
PCT/CN2018/119561
Other languages
English (en)
French (fr)
Inventor
卢梦梦
冯莎
周波
宋勇志
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/475,429 priority Critical patent/US11482689B2/en
Publication of WO2019196444A1 publication Critical patent/WO2019196444A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • Embodiments of the present disclosure relate to a packaging method, an electronic device, and a packaging device.
  • OLED Organic Light-Emitting Diode
  • OLED has self-luminous, no backlight, high contrast, thin thickness, wide viewing angle, low power consumption, fast response, and can be used for flexible panels. Excellent characteristics such as wide temperature range, simple structure and simple process, and widely used in display technology.
  • water vapor and oxygen can cause erosion of the OLED display device and affect its service life. Therefore, the OLED display device needs to be strictly packaged to protect it.
  • the sealant is the key material in the cell-assemble process.
  • the position of the sealant is different.
  • the Dam&Fill package is a commonly used package, which uses a rubber with a higher viscosity to form a cofferdam, and then forms a less viscous filler in the enclosed area of the cofferdam.
  • the filling glue is diffused, and then the filling glue fills the inner space of the cofferdam, and finally the filling adhesive is completed to complete the encapsulation.
  • At least one embodiment of the present disclosure provides a packaging method including: providing a first substrate and a second substrate; and aligning the first substrate and the second substrate to sandwich a filler between the two for Forming a package structure, wherein the filler is mixed with a capsule-coated electrophoresis liquid, the electrophoresis liquid comprising electrophoretic particles; and an electric field control device is applied during the process of aligning the first substrate and the second substrate The electrophoretic particles are orientated to deform the capsule.
  • the electrophoresis liquid is an electrophoretic suspension or an electrophoresis colloidal solution.
  • the electrophoretic particles include positively charged inorganic particles, positively charged organic particles, negatively charged inorganic particles, or negatively charged organic particles.
  • the electrophoretic fluid further includes a dispersion medium, a charge control agent, and a stabilizer.
  • the material of the dispersion medium includes octane, heptane, toluene, ethylbenzene, o-xylene, n-butanol, carbon tetrachloride, tetrachloroethylene, Styrene, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, divinylbenzene, ethylene glycol diacrylate, butanediol diacrylate, 1,6- At least one of hexanediol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate One.
  • the charge control agent includes at least one of an organic sulfate, an organic amide, and an organic phosphate.
  • the stabilizer includes polyoxyethylene, alkyl dimethylamine oxide, sodium dodecylbenzenesulfonate or propyltrimethoxyhydrochloride.
  • the material of the capsule includes a urea formaldehyde resin, a polyaniline or a melamine resin.
  • the packaging method provided by at least one embodiment of the present disclosure further includes: forming a closed gutta percha on the first substrate, wherein the filling glue is applied in a filling region formed by the dam.
  • the packaging method provided by at least one embodiment of the present disclosure further includes: curing the filler.
  • the curing treatment of the filler comprises performing heat treatment or ultraviolet illumination treatment on the filler.
  • the process of combining the first substrate and the second substrate includes: providing a first pressing plate stage, and placing the first substrate on the first a pressing plate table; a second pressing plate table is provided to fix the second substrate on the second pressing plate table, wherein the first pressing plate table and the second pressing plate table are directly disposed Providing one or more electric field control elements configured to apply an electric field during the aligning process to control the directional movement of the electrophoretic particles to deform the capsule; controlling the fixation of the second substrate The second press plate table is pressed downward toward a direction in which the first press plate table of the first substrate is placed.
  • the electric field control element is disposed on a side of the first press-bonding plate stage where the first substrate is not disposed.
  • the electric field control element is disposed on a left side and/or a right side of the first substrate and the second substrate.
  • a direction in which an electric field is applied is parallel to a plane direction of the first substrate and the second substrate.
  • At least one embodiment of the present disclosure further provides an electronic device including: a first substrate and a second substrate that are opposite to each other; a filling glue between the first substrate and the second substrate, wherein The filling gel is mixed with a capsule-coated electrophoresis liquid, and the electrophoresis liquid includes electrophoretic particles, and the electrophoretic particles can be directionally moved under the action of an electric field to deform the capsule.
  • the electronic device further includes: a closed tampon provided on the first substrate, wherein the filling glue is disposed in a filling area formed by the dam gum .
  • At least one embodiment of the present disclosure further provides a packaging apparatus comprising: a glue applying component configured to form a filling glue on a first substrate or a second substrate, wherein the filling glue is mixed with a capsule-coated electrophoresis liquid,
  • the electrophoretic fluid includes electrophoretic particles; a mating component configured to couple the first substrate and the second substrate; and an electric field control component configured to apply an electric field during the concatenation to control the orientation of the electrophoretic particles Move to deform the capsule.
  • FIG. 1 is a flowchart of a packaging method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a matching process according to an embodiment of the present disclosure
  • FIG. 4 are schematic diagrams showing a matching process according to an embodiment of the present disclosure
  • FIG. 5 is an enlarged schematic view showing deformation of a capsule according to an embodiment of the present disclosure
  • FIG. 6 is a schematic cross-sectional view of an organic light emitting device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view of an organic light emitting device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a packaging device according to an embodiment of the present disclosure.
  • the OLED display device is usually packaged under a vacuum environment, in the process of pressing the opposite two substrates, a small amount of gas remains in the filler to form bubbles, and most of these bubbles are concentrated in the circumference.
  • the corner of the silicone is difficult to remove. Residual bubbles easily lead to the phenomenon that the filling glue is glued or even broken, which makes the distribution of the filling glue uneven, which directly affects the display effect of the display device and also leads to a decrease in the yield of the product.
  • the bubbles formed at the corners of the bib rubber do not block the water and oxygen, and cannot prevent water and oxygen from entering the organic light-emitting element, thereby affecting the packaging effect and reducing the life of the product.
  • At least one embodiment of the present disclosure provides a packaging method including: providing a first substrate and a second substrate; aligning the first substrate and the second substrate to sandwich a filler between the two for Forming a package structure, wherein the filling glue is mixed with a capsule-coated electrophoresis liquid, and the electrophoresis liquid comprises electrophoretic particles; in the process of aligning the first substrate and the second substrate, an electric field is applied to control the directional movement of the electrophoretic particles to deform the capsule .
  • a certain pressing effect is exerted on the surrounding filling glue.
  • the filling glue is uniformly diffused to Filling various parts of the area and extruding bubbles from the inside of the filling, which improves the packaging effect, and the packaging method is simple and low in cost.
  • FIG. 1 is a flowchart of a packaging method according to an embodiment of the present disclosure.
  • the packaging method can be applied to, for example, an organic light emitting diode device (OLED), such as an OLED display device, and can also be applied to other electronic devices, such as liquid crystal. Display device, electronic paper display device, and the like.
  • OLED organic light emitting diode
  • the encapsulation method includes the following steps:
  • the first substrate and the second substrate may be cleaned by a standard method, and the first substrate and the second substrate may be a glass substrate, a quartz substrate, a plastic substrate, or an ultra-thin metal substrate, etc., and are formed thereon. Parts or circuits, etc.
  • the first substrate may be a package substrate (cover plate), a color filter substrate, or the like;
  • the second substrate may be an array substrate or the like, and a light emitting device, a driving circuit, or the like may be formed thereon.
  • the first substrate and the second substrate may have a polarizer or the like attached to one side thereof.
  • the first substrate and the second substrate are paired to sandwich the filler between the two for forming a package structure, wherein the filler is mixed with a capsule-coated electrophoresis liquid, and the electrophoresis liquid comprises electrophoretic particles;
  • an electric field is applied to control the directional movement of the electrophoretic particles to deform the capsule.
  • the filler may be an ultraviolet curable resin material or a thermosetting resin material.
  • the filler material may be epoxy resin, glycidyl acrylate, glycidyl methacrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl polyacrylic acid.
  • the capsule is insoluble in the filling gel and does not chemically react with the filling gel, and the capsule functions to isolate the electrophoresis liquid and the filling gel.
  • the electrophoresis liquid is an electrophoretic suspension or an electrophoresis colloidal solution.
  • the size of the solid particles may be greater than 100 nm, for example, 100 nm to 500 nm; and in the colloidal solution, the size of the solid particles may be between 1 nm and 100 nm.
  • the viscosity of the filler at room temperature ranges from 10 mPa ⁇ s to 100 mPa ⁇ s. Since the electrophoretic particles have a certain mass, the filler in the viscosity range can cause the capsule to be hit by the electrophoretic particles under the action of the electric field. Deformation occurs while also meeting the viscosity required to achieve the package.
  • the filler may have a viscosity of 10 mPa ⁇ s, 20 mPa ⁇ s, 30 mPa ⁇ s, 50 mPa ⁇ s, 70 mPa ⁇ s or 90 mPa ⁇ s.
  • the filler may be subjected to a curing treatment, which may be heat curing or ultraviolet light curing.
  • a curing treatment which may be heat curing or ultraviolet light curing.
  • the temperature of the heat-curing filler is 100 to 120 ° C, and the curing time is 100 to 120 minutes.
  • the curing time by ultraviolet light irradiation is 5 minutes, and the intensity of ultraviolet light irradiation is 360 to 500 W/m 2 .
  • the capsule coated with the electrophoresis liquid accounts for 0.5%-10% by volume in the filling gel, and the ratio can ensure that the electrophoretic particles move in the direction of the electric field to deform the capsule and accelerate the flow of the filling glue. Therefore, the bubbles in the filling rubber are removed, and the encapsulation effect and viscosity of the filling rubber itself are not affected.
  • the electrophoretic particles are including positively charged inorganic particles, positively charged organic particles, negatively charged inorganic particles, or negatively charged organic particles.
  • the inorganic particles include titanium dioxide, aluminum oxide, chlorate, silicon oxide, chrome yellow, ultramarine blue, manganese violet, iron blue, cobalt blue, iron red or cadmium red, etc.; the organic particles include red powder, toluidine red, Phthalocyanine blue, phthalocyanine green or quinacridone.
  • the surface modification treatment of the above inorganic particles or organic particles may be positively or negatively charged, and the surface modification treatment may adopt a method in the related art, and details are not described herein again.
  • the electrophoretic particles are exemplified as titanium oxide, but the embodiment of the present disclosure is not limited thereto.
  • the reagent used is tetra-butyl titanate (analytical grade), anhydrous ethanol (analytical grade), glacial acetic acid (analytical grade), hydrochloric acid (analytical grade), distilled water;
  • the instruments used were a thermostatic magnetic stirrer, a stir bar, a three-neck bottle (250 ml), a constant pressure funnel (50 ml), a graduated cylinder (10 ml, 50 ml), and a beaker (100 ml).
  • titanium dioxide is prepared by using n-butyl titanate [Ti(OC 4 H 9 ) 4 ] as a precursor, anhydrous ethanol (C 2 H 5 OH) as a solvent, and glacial acetic acid (CH 3 COOH) as a chelating agent.
  • n-butyl titanate [Ti(OC 4 H 9 ) 4 ]
  • C 2 H 5 OH anhydrous ethanol
  • CH 3 COOH glacial acetic acid
  • the surface of the titanium dioxide is modified by polyvinyl alcohol: 100 mg of titanium dioxide prepared by the above method is dispersed in water in which 35 mg of polyvinyl alcohol is dissolved, and stirred for a certain period of time, when the polyvinyl alcohol is adsorbed on the surface of the titanium dioxide, and then Add ethanol to the system, mix it evenly, filter out the solution, repeat several times, and then slowly add tetrachloroethylene which is miscible with ethanol to the system by the same method, because the polyethyl alcohol does not dissolve in tetrachloroethylene. Will be wrapped in the surface of titanium dioxide and slowly precipitated; or
  • titanium dioxide was modified with stearic acid: 50 g of titanium dioxide was dispersed in 200 ml of a toluene solution of stearic acid at a concentration of 3% by weight, heated to 100 ° C with stirring for 20 minutes, and kept at a constant temperature for one hour. It was filtered hot and washed with n-hexane at least 3 times and finally dried in a forced air oven at 50 °C.
  • tetrachloroethylene is a dispersion medium
  • organic amide is a charge control agent
  • sodium dodecylbenzene sulfonate is a stabilizer.
  • urethane resin by in-situ polymerization is described as an example: mixing urea and formaldehyde with a molar ratio between 1:1 and 1:2, adding a certain amount of triethanolamine to adjust the pH to 8 to 9.5.
  • the prepolymer (monomethylolurea and dimethylolurea) was prepared by reacting at 60 to 90 °C.
  • the prepolymer is added to the aqueous solution of the OP-10 emulsifier, stirred uniformly, and then the electrophoresis liquid is added, and the pH is adjusted to 2.0 to 4.5 with a hydrochloric acid aqueous solution having a mass percentage of 3%, and the reaction is carried out at 20 to 90 ° C.
  • the reaction system is centrifuged, the supernatant is decanted, and the residual tetrachloroethylene is washed away with a solvent such as ethanol, acetone, glacial acetic acid, etc., which is miscible with tetrachloroethylene and water, and the capsule is separated.
  • a solvent such as ethanol, acetone, glacial acetic acid, etc.
  • FIG. 2 is a flowchart of a process of merging according to an embodiment of the present disclosure.
  • FIG. 3 and FIG. 4 are schematic diagrams of a process of merging according to an embodiment of the present disclosure. Referring to FIG. 2 and FIG. 3 and FIG. The process includes the following steps:
  • S121 The first pressing plate stage 10 is provided, and the first substrate 11 is placed on the first pressing plate stage 10.
  • S122 providing a second pressing plate table 20, and fixing the second substrate 21 on the second pressing plate table 20, wherein the first pressing plate table 10 and the second pressing plate table 20 are disposed opposite to each other.
  • the second substrate 21 may be fixed to the second press plate table 20 by vacuum suction, robot gripping or the like.
  • One or more electric field control elements 30 are provided that are configured to apply an electric field during the aligning process to control the directional movement of the electrophoretic particles 41 to deform the capsule 40.
  • the electric field control element 30 may be disposed on a side of the first platen stage 10 where the first substrate 11 is not disposed, or may be provided on the left side and/or the right side of the first substrate 11 and the second substrate 21 in isolation.
  • the electric field control element 30 applies an electric field to the electrophoretic particles 41 by controlling the voltage between the first electric field control electrode 31 and the second electric field control electrode 32.
  • the first electric field control electrode 31 and the second electric field control electrode 32 are, for example, a plurality of appropriate structures such as a plate electrode, for example, a high voltage (for example, a positive voltage) and a low voltage (for example, a negative voltage) are applied, respectively, or a high voltage is alternately applied. low voltage.
  • the direction in which the electric field is applied may be substantially parallel to the plate surface direction of the first substrate 11 and the second substrate 21.
  • the embodiment of the present disclosure is not limited thereto, and for example, the direction in which the electric field is applied may be inclined with respect to the plate faces of the first substrate 11 and the second substrate 21, for example, the first substrate 11 and the second substrate 21 constitute the front surface of the case ( That is, the plate surface of the first substrate 11 or the second substrate 21 is provided with at least one first electrode, and at least two second electrodes are provided on the side of the case such that the direction of the electric field is applied with respect to the first substrate 11 and the second substrate 21 The surface of the board is inclined.
  • Figure 4 is a schematic illustration of an electrophoretic particle striking a capsule to deform the capsule.
  • the electrophoretic particles 41 are orientated, and the capsule 40 is changed from a spherical shape to an ellipsoidal shape.
  • the capsule 40 will exert an squeezing effect on the surrounding filling glue 50.
  • the capsule is not limited as long as it can be deformed to the surrounding filler, and the shape of the capsule before and after the deformation of the capsule is not limited, and the above capsule is changed from a spherical shape to an ellipsoidal shape.
  • the bubble 51 is usually formed in the edge region of the filling glue 50.
  • the capsule under the action of the electric field force, the capsule is deformed to squeeze the filling glue, thereby applying pressure to the bubble to remove the bubble from the filling glue. Exhaust so that the bubbles disappear.
  • FIG. 5 is an enlarged schematic view showing deformation of a capsule according to an embodiment of the present disclosure.
  • a positively charged electrophoretic particle moves along a direction of an electric field line under the action of an electric field force.
  • the electrophoretic particles are negatively charged, the negatively charged electrophoretic particles move in a direction opposite to the direction of the electric field lines under the action of the electric field force.
  • the electrophoretic particles have a certain quality, and the adhesive of the embodiment of the present disclosure has a small viscosity, so that the electrophoretic particles can deform the capsule.
  • the sealing method further comprises forming a closed squeegee on the first substrate.
  • the closed tampon 60 includes a filling area.
  • a filling glue 50 is formed in the filling region.
  • the air bubbles 51 in FIG. 3 are mostly formed at the periphery of the dam rubber 60.
  • the material of the cocoon rubber may be an ultraviolet curable resin glue or a thermosetting resin glue.
  • epoxy resin glycidyl acrylate, glycidyl methacrylate, methyl methacrylate, methyl group may be used.
  • the viscosity of the gutta percha is in the range of 10,000 to 400,000 mPa ⁇ s, and the viscosity of the gutta percha is 10,000 mPa ⁇ s, 150,000 mPa ⁇ s, 200,000 mPa ⁇ s, 300,000 mPa ⁇ s or 400,000 mPa ⁇ s.
  • the organic light emitting diode element 70, its driving circuit, and the like are formed on the second substrate 21.
  • At least one embodiment of the present disclosure also provides an electronic device that is packaged by the above packaging method.
  • the electronic device include an organic light emitting diode device (OLED display device), a liquid crystal display device, an electronic paper display device, and the like.
  • the electronic device includes: a first substrate and a second substrate that are opposite to each other; a filling glue between the first substrate and the second substrate.
  • the filling gel is mixed with a capsule-coated electrophoresis liquid, and the electrophoresis liquid includes electrophoretic particles, and the electrophoretic particles can be directionally moved under the action of an electric field to deform the capsule.
  • FIG. 6 is a schematic cross-sectional view of an organic light emitting diode device according to an embodiment of the present disclosure.
  • the organic light emitting diode device includes: a first substrate 11 and a second substrate 21 that are adjacent to each other; a filling glue 50 between the first substrate 11 and the second substrate 21, which is mixed in the filling glue 50.
  • the electrophoresis liquid coated with the capsule 40 includes electrophoretic particles 41, and the electrophoretic particles 41 can be directionally moved under the action of an applied electric field to deform the capsule 40.
  • the organic light emitting diode device further includes a closed dam rubber 60 disposed on the first substrate 11, wherein a filling glue 50 is disposed in a filling region formed by the squeegee 60.
  • the organic light emitting diode element 70, its driving circuit, and the like are disposed on the second substrate 21.
  • FIG. 7 is a schematic cross-sectional view of an organic light emitting device according to an embodiment of the present disclosure.
  • the organic light emitting diode device 70 includes a first electrode 71, an organic material functional layer 72, and a first layer. Two electrodes 73.
  • the organic material functional layer 72 may include a light emitting layer 721, an electron injection layer 722, an electron transport layer 723, a hole injection layer 724, and a hole transport layer 725.
  • a hole transport layer 725 may be disposed between the first electrode 71 and the light emitting layer 721 with the first electrode 71 as an anode.
  • the hole transport layer 725 can be formed using a solution process.
  • the second electrode 73 is used as a cathode, and an electron transport layer 723 is disposed between the second electrode 73 and the light-emitting layer 721.
  • the electron transport layer 723 can be formed by a vacuum thermal evaporation process.
  • the hole transport layer 725 has a thickness of 10 to 180 nm, and for example, the hole transport layer 725 has a thickness of 10 nm, 50 nm, 100 nm, 150 nm, or 180 nm.
  • the material of the hole transport layer 725 includes polytriphenylamine, which is not limited by the embodiments of the present disclosure.
  • the thickness of the electron transport layer 723 is 10 to 35 nm, and for example, the thickness of the electron transport layer 723 is 10 nm, 20 nm, 25 nm, 30 nm, or 35 nm.
  • the material of the electron transport layer 723 is octahydroxyquinoline aluminum, and the embodiment of the present disclosure does not limit this.
  • the organic material functional layer 72 may further include an electron injection layer 722 disposed between the second electrode 73 and the electron transport layer 723; disposed between the first electrode 71 and the hole transport layer 725.
  • the hole injection layer 724 may further include an electron injection layer 722 disposed between the second electrode 73 and the electron transport layer 723; disposed between the first electrode 71 and the hole transport layer 725.
  • the hole injection layer 724 has a thickness of 10 to 180 nm, and for example, the hole injection layer 724 has a thickness of 10 nm, 50 nm, 100 nm, 150 nm, or 180 nm.
  • the material of the hole injection layer 724 includes any one of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT/PSS), polythiophene, and polyaniline.
  • the material of the hole injection layer may also be tris-[4-(5-phenyl-2-thienyl)benzene]amine, 4,4',4"-tris[2-naphthyl(phenyl)amino]tri Aniline (2-TNATA), 4,4',4"-tris-(3-methylphenylanilino)triphenylamine (m-MTDATA), beryllium copper (CuPc) or TPD, examples of the present disclosure This is not a limitation.
  • the thickness of the electron injection layer 722 is 1 to 5 nm, and for example, the thickness of the electron injection layer 722 is 1 nm, 2 nm, 4 nm, or 5 nm.
  • the material of the electron injection layer 722 includes any one or a combination of LiF, 8-hydroxyquinoline-lithium.
  • the electron injecting layer may also be an alkali metal oxide or another alkali metal fluoride or the like.
  • the alkali metal oxide includes lithium oxide (Li 2 O), lithium boron oxide (LiBO 2 ), potassium oxychloride (K 2 SiO 3 ), cesium carbonate (Cs 2 CO 3 ), and the like; alkali metal fluoride includes sodium fluoride ( NaF) and the like, the embodiments of the present disclosure do not limit this.
  • first electrode 71 and the second electrode 73 are an anode, and the other is a cathode.
  • first electrode 71 serves as a cathode
  • second electrode 73 serves as an anode.
  • the electrode material as the anode includes a transparent conductive material such as indium tin oxide or zinc oxide; and the electrode material as the cathode includes aluminum, magnesium or an alloy material formed by the two, which is not limited in the embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional structural diagram of a package device according to an embodiment of the present disclosure, as shown in FIG.
  • the packaging device 80 includes: a glue applying member 81 configured to form a filling glue on the first substrate or the second substrate, wherein the filling glue is mixed with a capsule-coated electrophoresis liquid, and the electrophoresis liquid comprises electrophoretic particles;
  • the component 82 is configured to align the first substrate and the second substrate;
  • the electric field control component 30 is configured to apply an electric field during the aligning process to control the directional movement of the electrophoretic particles to deform the capsule.
  • the gumming component is further configured to form a closed dam gum on the first substrate or the second substrate and form a filler in the filled region surrounded by the gutta percha.
  • the rubberized component includes a nozzle, a glue take-up passage, a pressurized passage, and the like.
  • the glue passage is communicated with the glue storage container for sucking the glue or the like to be coated from the glue storage container and applying it to the nozzle;
  • the pressure passage is in communication with the air pump or the gas tank for guiding the high pressure gas to the nozzle Thereby, the sucked filler is extruded from the nozzle to perform a coating operation.
  • the mating component includes a first press plate stage for placing the first substrate and a second press plate stage for fixing the second substrate.
  • Embodiments of the present disclosure provide a packaging method, an electronic device, and a packaging device having at least one of the following beneficial effects:
  • the packaging method provided by at least one embodiment of the present disclosure is simple and easy to operate, and has low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种封装方法、电子装置和封装设备,该封装方法包括:提供第一基板(11)和第二基板(21);对合第一基板(11)和第二基板(21)以将填充胶(50)夹置在二者之间以用于形成封装结构,其中,所述填充胶(50)中混合有胶囊(40)包覆的电泳液,所述电泳液包括电泳粒子(41),在对合所述第一基板(11)和所述第二基板(21)的过程中,施加电场控制所述电泳粒子(41)定向移动以使所述胶囊(40)变形。该封装方法可以提高电子装置的封装效果,并且该封装方法简单,成本较低。

Description

封装方法、电子装置和封装设备
本申请要求于2018年4月11日递交的中国专利申请第201810321828.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种封装方法、电子装置和封装设备。
背景技术
有机电致发光器件(Organic Light-Emitting Diode,OLED)由于同时具备自发光、不需要背光源、对比度高、厚度薄、视角广、功耗低、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程简单等优异的特性,在显示技术领域得到了广泛的应用。但是,水汽和氧气会对OLED显示器件造成侵蚀,影响其使用寿命,因此,需要对OLED显示器件进行严格的封装,以对其进行保护。
封框胶是有机发光二极管对合(cell-assemble)工艺中的关键材料,封框胶涂覆的位置不同其作用也不相同。对于大尺寸的OLED,围堰式(Dam&Fill)封装是比较常用的一种封装方式,即利用粘度较大的胶形成围堰,再在围堰的封闭区域中形成粘度较小的填充胶,利用上下基板压合时,使得填充胶扩散,然后使得填充胶充满围堰的内部空间,最后固化填充胶完成封装。
发明内容
本公开至少一实施例提供一种封装方法,包括:提供第一基板和第二基板;对合所述第一基板和所述第二基板以将填充胶夹置在二者之间以用于形成封装结构,其中,所述填充胶中混合有胶囊包覆的电泳液,所述电泳液包括电泳粒子;在对合所述第一基板和所述第二基板的过程中,施加电场控制所述电泳粒子定向移动以使所述胶囊变形。
例如,在本公开至少一实施例提供的封装方法中,所述电泳液为电泳悬浮液或者电泳胶体溶液。
例如,在本公开至少一实施例提供的封装方法中,所述电泳粒子包括带正电荷的无机颗粒、带正电荷的有机颗粒、带负电荷的无机颗粒或者带负电荷的有机颗粒。
例如,在本公开至少一实施例提供的封装方法中,所述电泳液还包括分散介质、电荷控制剂和稳定剂。
例如,在本公开至少一实施例提供的封装方法中,所述分散介质的材料包括辛烷、庚烷、甲苯、乙苯、邻二甲苯、正丁醇、四氯化碳、四氯乙烯、苯乙烯、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、二乙烯基苯、乙二醇双丙烯酸酯、丁二醇双丙烯酸酯、1,6-己二醇双丙烯酸酯、二缩丙二醇双丙烯酸酯、三缩丙二醇双丙烯酸酯、三羟甲基丙烷三丙烯酸酯、季戊四醇四丙烯酸酯、双季戊四醇五丙烯酸酯、和双季戊四醇六丙烯酸酯中至少之一。
例如,在本公开至少一实施例提供的封装方法中,所述电荷控制剂包括有机硫酸盐、有机酰胺和有机磷酸盐中至少之一。
例如,在本公开至少一实施例提供的封装方法中,所述稳定剂包括聚氧乙烯、烷基二甲胺氧化物、十二烷基苯磺酸钠或丙基三甲氧基氢氯化物。
例如,在本公开至少一实施例提供的封装方法中,所述胶囊的材料包括尿甲醛树脂、聚苯胺或三聚氰胺树脂。
例如,本公开至少一实施例提供的封装方法,还包括:在所述第一基板上形成闭合的围堰胶,其中,在所述围堰胶形成的填充区域内施加所述填充胶。
例如,本公开至少一实施例提供的封装方法,还包括:对所述填充胶进行固化处理。
例如,在本公开至少一实施例提供的封装方法中,对所述填充胶进行固化处理包括对所述填充胶进行加热处理或者紫外光照处理。
例如,在本公开至少一实施例提供的封装方法中,对合所述第一基板和所述第二基板的过程包括:提供第一压合板台,将所述第一基板放置于所述第一压合板台上;提供第二压合板台,将所述第二基板固定在所述第 二压合板台上,其中,所述第一压合板台和所述第二压合板台正对设置;提供一个或者多个电场控制元件,所述电场控制元件配置为在对合过程中施加电场以控制所述电泳粒子定向移动以使所述胶囊变形;控制固定有所述第二基板的所述第二压合板台朝向放置有所述第一基板的所述第一压合板台的方向向下压。
例如,在本公开至少一实施例提供的封装方法中,所述电场控制元件设置于所述第一压合板台的未设置所述第一基板的一面。
例如,在本公开至少一实施例提供的封装方法中,所述电场控制元件设置在所述第一基板和所述第二基板的左侧和/或右侧。
例如,在本公开至少一实施例提供的封装方法中,施加电场的方向为平行于所述第一基板和所述第二基板的板面方向。
本公开至少一实施例还提供一种电子装置,该电子装置包括:彼此对合的第一基板和第二基板;位于所述第一基板和所述第二基板之间的填充胶,其中,所述填充胶中混合有胶囊包覆的电泳液,所述电泳液包括电泳粒子,所述电泳粒子可在电场的作用下定向移动以使所述胶囊变形。
例如,本公开至少一实施例提供的电子装置,还包括:设置在所述第一基板上的闭合的围堰胶,其中,在所述围堰胶形成的填充区域内设置有所述填充胶。
本公开至少一实施例还提供一种封装设备,包括:涂胶部件,配置为在第一基板或第二基板上形成填充胶,其中,所述填充胶中混合有胶囊包覆的电泳液,所述电泳液包括电泳粒子;对合部件,配置为对所述第一基板和所述第二基板进行对合;电场控制元件,配置为在对合过程中施加电场以控制所述电泳粒子定向移动以使所述胶囊变形。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一实施例提供的一种封装方法的流程图;
图2为本公开一实施例提供的对合过程的流程图;
图3-图4为本公开一实施例提供的对合过程的示意图;
图5为本公开一实施例提供的胶囊变形的放大示意图;
图6为本公开一实施例提供的一种有机发光器件的截面结构示意图;
图7为本公开一实施例提供的一种有机发光元件的截面结构示意图;以及
图8为本公开一实施例提供的一种封装设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,虽然通常在真空环境下对OLED显示器件进行封装,但是在压合对置的两个基板的过程中,填充胶中仍然会残留少量的气体以形成气泡,并且,这些气泡大多集中在围堰胶的角落,很难去除。残留的气泡容易导致填充胶产生挂胶甚至断胶的现象,使得填充胶的分布不均匀,从而直接影响显示器件的显示效果,也导致产品的良率降低。而且,形成在围堰胶的角落的气泡对水和氧气没有阻隔作用,无法阻止水和氧气进入有机发光元件中,从而影响了封装效果,降低了产品的寿命。
本公开至少一实施例提供了一种封装方法,该封装方法包括:提供第一基板和第二基板;对合第一基板和第二基板以将填充胶夹置在二者之间 以用于形成封装结构,其中,该填充胶中混合有胶囊包覆的电泳液,电泳液包括电泳粒子;在对合第一基板和第二基板的过程中,施加电场控制电泳粒子定向移动以使胶囊变形。在胶囊发生形变的过程中,例如,在胶囊由球形变成椭球形的过程中,会对周围的填充胶产生一定的挤压作用,由于填充胶的粘度较低,会促使填充胶均匀扩散至填充区域的各个部分,并可将气泡从填充胶的内部挤出,这提高了封装效果,并且该封装方法简单,成本较低。
例如,图1为本公开一实施例提供的一种封装方法的流程图,该封装方法可以适用于例如有机发光二极管器件(OLED),例如OLED显示装置,也可以适用于其他电子装置,例如液晶显示装置、电子纸显示装置等。如图1所示,该封装方法包括如下步骤:
S11、提供第一基板和第二基板。
例如,如果需要可以对该第一基板和第二基板采用标准方法进行清洗,该第一基板和第二基板可以为玻璃基板、石英基板、塑料基板或者超薄金属基板等,其上形成所需的部件或电路等。例如,第一基板可以为封装基板(盖板)、彩膜基板等;第二基板可以为阵列基板等,其上可以形成有发光器件、驱动电路等。例如,对于液晶显示装置而言,第一基板和第二基板还可以在其一侧贴附有偏光片等。
S12、对合第一基板和第二基板以将填充胶夹置在二者之间以用于形成封装结构,其中,填充胶中混合有胶囊包覆的电泳液,电泳液包括电泳粒子;在对合第一基板和第二基板的过程中,施加电场控制电泳粒子定向移动以使胶囊变形。
例如,该填充胶可以为紫外固化型树脂材料或热固化型树脂材料。
例如,该填充胶的材料可以为环氧树脂、丙烯酸环氧丙酯、甲基丙烯酸环氧丙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基聚丙烯酸6,7-环氧庚酯、甲基丙烯酸-2-羟基乙酯等单体的均聚物或共聚物、三聚氰胺甲醛树脂、不饱和聚酯树脂、有机硅树脂和呋喃树脂中的任意一种或多种的组合。
例如,该胶囊既不溶于填充胶,也不会与填充胶发生化学反应,胶囊起到了隔绝电泳液和填充胶的作用。
例如,该电泳液为电泳悬浮液或者电泳胶体溶液,在电泳悬浮液中, 固体粒子的尺寸可以大于100nm,例如100nm~500nm;在胶体溶液中,固体粒子的尺寸在1nm~100nm之间。
例如,该填充胶在室温下的粘度范围为10mPa·s~100mPa·s,由于电泳粒子有一定的质量,该粘度范围内的填充胶可以使得在电场的作用下,胶囊受到电泳粒子的撞击而发生形变,同时也可以满足实现封装所需要的粘度。
例如,该填充胶的粘度可以为10mPa·s、20mPa·s、30mPa·s、50mPa·s、70mPa·s或者90mPa·s。
例如,在对合之后,可以对填充胶进行固化处理,该固化处理可以是加热固化或者紫外光照固化。
例如,在加热固化的情况下,加热固化填充胶的温度为100~120℃,固化的时间为100~120分钟。
例如,对填充胶进行紫外光照固化的情况下,紫外光照射固化的时间为5分钟,紫外光照射的强度为360~500W/m 2
例如,该包覆有电泳液的胶囊在填充胶中所占的体积比为0.5%-10%,该比例既可以保证电泳粒子在电场的作用下定向移动使得胶囊发生形变,加快填充胶的流动,从而赶走填充胶中的气泡,又不会影响填充胶本身的封装效果和粘性。
例如,该电泳粒子为包括带正电荷的无机颗粒、带正电荷的有机颗粒、带负电荷的无机颗粒或者带负电荷的有机颗粒。
例如,该无机颗粒包括二氧化钛、氧化铝、氯酸盐、氧化硅、铬黄、群青、锰紫、铁蓝、钴蓝、铁红或者镉红等;该有机颗粒包括大红粉、甲苯胺红、酞菁蓝、酞菁绿或者喹吖啶酮等。
例如,对上述无机颗粒或者有机颗粒进行表面改性处理可以使其带正电荷或者负电荷,表面改性处理可以采用相关领域中的方法,这里不再赘述。
以下以电泳粒子为二氧化钛为例加以说明,但是本公开的实施例不限于此。
1、纳米二氧化钛颗粒的制备
(1)采用溶胶凝胶法制备纳米二氧化钛:所用到的试剂为钛酸正四丁脂(分析纯),无水乙醇(分析纯),冰醋酸(分析纯),盐酸(分析纯), 蒸馏水;所用到的仪器为恒温磁力搅拌器,搅拌子,三口瓶(250ml),恒压漏斗(50ml),量筒(10ml,50ml),烧杯(100ml)。实验步骤如下:以钛酸正丁酯[Ti(OC 4H 9) 4]为前驱物,无水乙醇(C 2H 5OH)为溶剂,冰醋酸(CH 3COOH)为螯合剂,制备二氧化钛溶胶。室温下量取10ml钛酸丁酯,缓慢滴入到35ml无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。将4ml冰醋酸和10ml蒸馏水加到另外35ml无水乙醇中,剧烈搅拌,得到溶液B,调节pH值使pH≤3。在剧烈搅拌下将已移入分液漏斗中的溶液A缓慢滴入溶液B中滴速大约3ml/min。水浴加热30℃,滴加完毕后得浅黄色溶液,继续搅拌在40℃的水浴中加热,2h后得到白色凝胶,置于80℃下烘干,大约20h。在研钵里磨碎成粉末状,在400℃下煅烧2h。
(2)采用聚甲基丙烯酸甲酯(PMMA)对二氧化钛表面进行改性:将采用上述方法制备的25g二氧化钛分散在150ml水中,加入甲基丙烯酸甲酯13.5ml、甲基丙烯酸1.5ml,将体系在20分钟左右的时间内加热到60℃,15分钟后加入0.075mol/ml的亚硫酸氢钠水溶液30ml,反应2h(小时),用10分钟升温到70℃,再加入15ml亚硫酸氢钠水溶液以使反应完全,保温1h(小时),取出后用大量水冲洗,在80℃下烘干4h(小时),取出磨碎即可;或者
采用聚乙烯醇对二氧化钛表面进行改性:将采用上述方法制备的100mg二氧化钛分散在溶有35mg聚乙烯醇的水中,搅拌一定的时间,这时聚乙烯醇就会吸附在二氧化钛的表面上,然后在体系内加入乙醇,混合均匀后,将溶液过滤掉,反复几次,再用同样的方法将能够与乙醇互溶的四氯乙烯缓慢加入到体系中,因为聚乙醇在四氯乙烯中不溶解,就会包裹在二氧化钛的表面慢慢沉淀出来;或者
采用硬脂酸对二氧化钛表面进行改性:将50g二氧化钛分散在200ml重量百分比浓度为3%的硬脂酸的甲苯溶液中,在20分钟内边搅拌边加热至100℃,恒温一小时,然后趁热过滤,并用正己烷洗涤至少3次,最后在50℃的鼓风干燥箱中干燥。
2、电泳基液的制备
称取表面改性的Ti0 2 0.1g分散于5ml的四氯乙烯中,再加入50微升的有机酰胺和0.05g的十二烷基硫酸钠超声30min(分钟),得到电泳液。 例如,四氯乙烯为分散介质,有机酰胺为电荷控制剂,十二烷基苯磺酸钠为稳定剂。
3、胶囊的制备
以原位聚合法制备尿甲酸树脂为例进行说明:将摩尔比在1:1到1:2之间的尿素和甲醛混溶在一起,加入一定量的三乙醇胺调节PH值到8~9.5之间,在60~90℃下反应制成预聚体(一羟甲基脲和二羟甲基脲)。将预聚体加入到OP-10乳化剂的水溶液中,搅拌均匀,再加入前述电泳液,用质量百分含量为3%的盐酸水溶液调节PH值为2.0~4.5,在20~90℃下反应若干时间,去除反应体系离心,倒掉上层清液,再用乙醇、丙酮、冰醋酸等与四氯乙烯和水均互溶的溶剂洗去残留的四氯乙烯,分离出胶囊。
例如,图2为本公开一实施例提供的对合过程的流程图,图3和图4为本公开一实施例提供的对合过程的示意图,结合图2和图3、图4,该对合过程包括以下步骤:
S121:提供第一压合板台10,将第一基板11放置于该第一压合板台10上。
S122:提供第二压合板台20,将第二基板21固定在该第二压合板台20上,其中,第一压合板台10和第二压合板台20正对设置。
例如,可以通过真空吸附、机械手抓取等方式将第二基板21固定在第二压合板台20上。
S123:提供一个或者多个电场控制元件30,该电场控制元件30配置为在对合过程中施加电场以控制电泳粒子41定向移动以使胶囊40变形。
例如,该电场控制元件30可以设置于第一压合板台10的未设置第一基板11的一面,也可以孤立地设置在第一基板11和第二基板21的左侧和/或右侧。
S124:控制固定有第二基板21的第二压合板台20朝向放置有第一基板11的第一压合板台10的方向向下压;在压合的过程中,使得电场控制元件30对电泳粒子41施加电场以使电泳粒子41移动撞击胶囊40,进而使得胶囊40发生形变以进一步挤压填充胶,从而将填充胶50中的气泡51挤出。
例如,该电场控制元件30通过控制第一电场控制电极31和第二电场控制电极32之间的电压来对电泳粒子41施加电场。第一电场控制电极31 和第二电场控制电极32例如为板状电极等多种适当结构,例如分别被施加高电压(例如正电压)和低电压(例如负电压),或者交替施加高电压和低电压。
例如,施加电场的方向可以为基本平行于第一基板11和第二基板21的板面方向。本公开的实施例不限于此,例如施加电场的方向也可以相对于第一基板11和第二基板21的板面相倾斜,例如,在第一基板11和第二基板21构成盒体的正面(即第一基板11或第二基板21的板面)提供至少一个第一电极,在盒体的侧面提供至少两个第二电极,使得施加电场的方向相对于第一基板11和第二基板21的板面相倾斜。
例如,图4为电泳粒子撞击胶囊使得胶囊发生变形的示意图。如图4所示,在电场力的作用下,电泳粒子41定向移动,胶囊40由球形变成了椭球形。这样,胶囊40就会对周围的填充胶50产生挤压作用。
需要说明的是,胶囊只要能够发生形变对其周围的填充胶产生挤压即可,对胶囊发生形变之前和之后的形状不做限定,以上胶囊由球形变成了椭球形只是一个示例。
如图3所示,气泡51通常形成在填充胶50的边缘区域,如图4所示,在电场力的作用下胶囊发生形变挤压填充胶,从而对气泡施加压力以将气泡从填充胶中排出而使得气泡消失。
例如,图5为本公开一实施例提供的胶囊变形的放大示意图,以电泳粒子带正电荷为例加以说明,在电场力的作用下,带正电荷的电泳粒子沿着电场线的方向移动,对应地,当电泳粒子带负电荷时,在电场力的作用下,带负电荷的电泳粒子沿着与电场线的方向相反的方向移动。该电泳粒子有一定的质量,本公开的实施例提供的填充胶的粘度较小,因此电泳粒子可以使得胶囊变形。
需要说明的是,在对合第一基板和第二基板之前,该密封方法还包括在第一基板上形成闭合的围堰胶,如图4所示,该闭合的围堰胶60包括填充区域,在该填充区域内形成有填充胶50,例如,图3中的气泡51大多形成在围堰胶60的周边。
例如,围堰胶的材料可以为紫外固化型树脂胶或热固化树脂胶,例如,可以采用环氧树脂、丙烯酸环氧丙酯、甲基丙烯酸环氧丙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基聚丙烯酸6,7-环氧庚 酯、甲基丙烯酸-2-羟基乙酯等单体的均聚物或共聚物、三聚氰胺甲醛树脂、不饱和聚酯树脂、有机硅树脂和呋喃树脂中至少之一。
例如,该围堰胶的粘度范围为10000-400000mPa·s,该围堰胶的粘度范围为10000mPa·s、150000mPa·s、200000mPa·s、300000mPa·s或者400000mPa·s。
例如,对于用于OLED的封装方法,在对合第一基板和第二基板之前,如图4所示,在第二基板21上形成有机发光二极管元件70及其驱动电路等。
本公开至少一实施例还提供一种电子装置,其采用上述封装方法进行封装。该电子装置的示例包括有机发光二极管器件(OLED显示装置)、液晶显示装置、电子纸显示装置等。该电子装置包括:彼此对合的第一基板和第二基板;位于第一基板和第二基板之间的填充胶。填充胶中混合有胶囊包覆的电泳液,电泳液包括电泳粒子,电泳粒子可在电场的作用下定向移动以使胶囊变形。
下面以有机发光二极管器件为例进行说明。例如,图6为本公开一实施例提供的一种有机发光二极管器件的截面结构示意图。如图6所示,该有机发光二极管器件包括:彼此对合的第一基板11和第二基板21;位于第一基板11和第二基板21之间的填充胶50,该填充胶50中混合有胶囊40包覆的电泳液,电泳液包括电泳粒子41,电泳粒子41可在外加电场的作用下定向移动以使胶囊40变形。
例如,该有机发光二极管器件还包括:设置在第一基板11上的闭合的围堰胶60,其中,在围堰胶60形成的填充区域内设置有填充胶50。
例如,在本公开至少一实施例提供的有机发光二极管器件中,第二基板21上设置有机发光二极管元件70及其驱动电路等。
例如,图7为本公开一实施例提供的一种有机发光元件的截面结构示意图,如图7所示,该有机发光二极管元件70包括层叠设置的第一电极71、有机材料功能层72和第二电极73。有机材料功能层72可以包括发光层721、电子注入层722、电子传输层723、空穴注入层724和空穴传输层725。
例如,如图7所示,为了有效提高OLED器件中有机材料功能层72的发光效率,可以以第一电极71作为阳极,在第一电极71和发光层721 之间设置空穴传输层725,空穴传输层725可以采用溶液制程形成。以第二电极73作为阴极,在第二电极73和发光层721之间设置有电子传输层723,电子传输层723可以采用真空热蒸镀制程形成。
例如,空穴传输层725的厚度为10~180nm,例如,空穴传输层725的厚度为10nm、50nm、100nm、150nm或者180nm。
例如,该空穴传输层725的材料包括聚三苯胺,本公开的实施例对此不作限制。
例如,电子传输层723的厚度为10~35nm,例如,电子传输层723的厚度为10nm、20nm、25nm、30nm或者35nm。
例如,该电子传输层723材料为八羟基喹啉铝,本公开的实施例对此不作限制。
例如,如图7所示,该有机材料功能层72还可以包括设置于第二电极73和电子传输层723之间的电子注入层722;设置于第一电极71和空穴传输层725之间的空穴注入层724。
例如,空穴注入层724的厚度为10~180nm,例如,空穴注入层724的厚度为10nm、50nm、100nm、150nm或者180nm。
例如,空穴注入层724的材料包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT/PSS)、聚噻吩和聚苯胺中的任意一种。空穴注入层的材料也可以为三-[4-(5-苯基-2-噻吩基)苯]胺、4,4’,4”-三[2-萘基(苯基)氨基]三苯胺(2-TNATA)、4,4’,4”-三-(3-甲基苯基苯胺基)三苯胺(m-MTDATA)、酞箐铜(CuPc)或TPD,本公开的实施例对此不作限制。
例如,电子注入层722的厚度为1~5nm,例如,电子注入层722的厚度为1nm、2nm、4nm或者5nm。
例如,电子注入层722的材料包括LiF、8-羟基喹啉-锂中的任意一种或组合。电子注入层还可以采用碱金属氧化物、或者其他的碱金属氟化物等。碱金属氧化物包括氧化锂(Li 2O)、氧化锂硼(LiBO 2)、硅氧化钾(K 2SiO 3)、碳酸铯(Cs 2CO 3)等;碱金属氟化物包括氟化钠(NaF)等,本公开的实施例对此不作限制。
需要说明的是,第一电极71和第二电极73中的一个为阳极,另一个为阴极,除上述第一电极71作为阳极,第二电极73作为阴极的实施方式外,也可以是第一电极71作为阴极,第二电极73作为阳极。作为阳极的 电极材料包括氧化铟锡、氧化锌等透明导电材料;作为阴极的电极材料包括铝、镁或者二者形成的合金材料,本公开的实施例对此不作限制。
本公开至少一实施例还提供一种封装设备,可以用于实施上述用于电子装置的封装方法,例如,图8为本公开一实施例提供的一种封装设备的截面结构示意图,如图8所示,该封装设备80包括:涂胶部件81,配置为在第一基板或第二基板上形成填充胶,该填充胶中混合有胶囊包覆的电泳液,该电泳液包括电泳粒子;对合部件82,配置为对第一基板和第二基板进行对合;电场控制元件30,配置为在对合过程中施加电场以控制电泳粒子定向移动以使胶囊变形。例如,该涂胶部件还配置为在第一基板或第二基板上形成闭合的围堰胶,并在围堰胶所围的填充区域内形成填充胶。
例如,该涂胶部件包括喷嘴、取胶通道、加压通道等。取胶通道与储胶容器相通,用于从储胶容器中吸取要涂覆的填充胶等并将其施加至喷嘴;加压通道与气泵或储气罐相通,用于将高压气体引导至喷嘴,从而将吸取的填充胶从喷嘴挤压出,以进行涂覆操作。
例如,该对合部件包括:用于放置第一基板的第一压合板台以及用于固定第二基板的第二压合板台。
本公开的实施例提供一种封装方法、电子装置和封装设备具有以下至少一项有益效果:
(1)在本公开至少一实施例提供的封装方法中,在胶囊在发生形变的过程中,会对周围的填充胶产生一定的挤压作用,由于填充胶的粘度较低,会促使填充胶均匀扩散至填充区域的各个角落,并可将气泡从填充胶的内部挤出,从而提高了电子装置的封装效果;
(2)本公开至少一实施例提供的封装方法,简单易操作,且成本较低。
有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中 间元件。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种封装方法,包括:
    提供第一基板和第二基板;
    对合所述第一基板和所述第二基板以将填充胶夹置在二者之间以用于形成封装结构,其中,所述填充胶中混合有胶囊包覆的电泳液,所述电泳液包括电泳粒子;
    在对合所述第一基板和所述第二基板的过程中,施加电场控制所述电泳粒子定向移动以使所述胶囊变形。
  2. 根据权利要求1所述的封装方法,其中,所述电泳液为电泳悬浮液或者电泳胶体溶液。
  3. 根据权利要求1或2所述的封装方法,其中,所述电泳粒子包括带正电荷的无机颗粒、带正电荷的有机颗粒、带负电荷的无机颗粒或者带负电荷的有机颗粒。
  4. 根据权利要求2所述的封装方法,其中,所述电泳液还包括分散介质、电荷控制剂和稳定剂。
  5. 根据权利要求4所述的封装方法,其中,所述分散介质的材料包括辛烷、庚烷、甲苯、乙苯、邻二甲苯、正丁醇、四氯化碳、四氯乙烯、苯乙烯、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、二乙烯基苯、乙二醇双丙烯酸酯、丁二醇双丙烯酸酯、1,6-己二醇双丙烯酸酯、二缩丙二醇双丙烯酸酯、三缩丙二醇双丙烯酸酯、三羟甲基丙烷三丙烯酸酯、季戊四醇四丙烯酸酯、双季戊四醇五丙烯酸酯、和双季戊四醇六丙烯酸酯中至少之一。
  6. 根据权利要求4所述的封装方法,其中,所述电荷控制剂包括有机硫酸盐、有机酰胺和有机磷酸盐中至少之一。
  7. 根据权利要求4所述的封装方法,其中,所述稳定剂包括聚氧乙烯、烷基二甲胺氧化物、十二烷基苯磺酸钠或丙基三甲氧基氢氯化物。
  8. 根据权利要求1-7中任一项所述的封装方法,其中,所述胶囊的材料包括尿甲醛树脂、聚苯胺或三聚氰胺树脂。
  9. 根据权利要求1-7中任一项所述的封装方法,还包括:
    在所述第一基板上形成闭合的围堰胶,以及在所述围堰胶形成的填充区 域内施加所述填充胶。
  10. 根据权利要求9所述的封装方法,还包括:对所述填充胶进行固化处理。
  11. 根据权利要求10所述的封装方法,其中,对所述填充胶进行固化处理包括对所述填充胶进行加热处理或者紫外光照处理。
  12. 根据权利要求1-11任一项所述的封装方法,其中,对合所述第一基板和所述第二基板的过程包括:
    提供第一压合板台,将所述第一基板放置于所述第一压合板台上;
    提供第二压合板台,将所述第二基板固定在所述第二压合板台上,其中,所述第一压合板台和所述第二压合板台正对设置;
    提供一个或者多个电场控制元件,所述电场控制元件配置为在对合过程中施加电场以控制所述电泳粒子定向移动以使所述胶囊变形;
    控制固定有所述第二基板的所述第二压合板台朝向放置有所述第一基板的所述第一压合板台的方向向下压。
  13. 根据权利要求12所述的封装方法,其中,所述电场控制元件设置于所述第一压合板台的未设置所述第一基板的一面。
  14. 根据权利要求12所述的封装方法,其中,所述电场控制元件设置在所述第一基板和所述第二基板的左侧和/或右侧。
  15. 根据权利要求13或14所述的封装方法,其中,施加电场的方向为平行于所述第一基板和所述第二基板的板面方向。
  16. 一种电子装置,包括:
    彼此对合的第一基板和第二基板;
    位于所述第一基板和所述第二基板之间的填充胶,其中,所述填充胶中混合有胶囊包覆的电泳液,所述电泳液包括电泳粒子,所述电泳粒子可在电场的作用下定向移动以使所述胶囊变形。
  17. 根据权利要求16所述的电子装置,还包括:设置在所述第一基板上的闭合的围堰胶,其中,在所述围堰胶形成的填充区域内设置有所述填充胶。
  18. 一种封装设备,包括:
    涂胶部件,配置为在第一基板或第二基板上形成填充胶,其中,所述填充胶中混合有胶囊包覆的电泳液,所述电泳液包括电泳粒子;
    对合部件,配置为对所述第一基板和所述第二基板进行对合;
    电场控制元件,配置为在对合过程中施加电场以控制所述电泳粒子定向移动以使所述胶囊变形。
PCT/CN2018/119561 2018-04-11 2018-12-06 封装方法、电子装置和封装设备 WO2019196444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,429 US11482689B2 (en) 2018-04-11 2018-12-06 Packaging method, electronic device, and packaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810321828.5A CN108470846B (zh) 2018-04-11 2018-04-11 封装方法、电子装置和封装设备
CN201810321828.5 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019196444A1 true WO2019196444A1 (zh) 2019-10-17

Family

ID=63263169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119561 WO2019196444A1 (zh) 2018-04-11 2018-12-06 封装方法、电子装置和封装设备

Country Status (3)

Country Link
US (1) US11482689B2 (zh)
CN (1) CN108470846B (zh)
WO (1) WO2019196444A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470846B (zh) * 2018-04-11 2019-09-10 京东方科技集团股份有限公司 封装方法、电子装置和封装设备
CN113741113A (zh) * 2021-09-23 2021-12-03 广东志慧芯屏科技有限公司 一种可承压电子纸膜及其制作工艺
CN115055335A (zh) * 2022-06-02 2022-09-16 中国电子科技集团公司第十一研究所 一种多功能自动封胶设备及其封胶方法
CN116699911B (zh) * 2023-08-03 2023-11-14 惠科股份有限公司 显示面板、显示面板的邦定方法及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253502A (zh) * 2011-04-18 2011-11-23 广州奥翼电子科技有限公司 粘合剂及其电光学组件和电泳介质
CN103091926A (zh) * 2013-02-06 2013-05-08 广州奥翼电子科技有限公司 电泳显示组件、电泳显示器及其制备方法
US20130188239A1 (en) * 2012-01-23 2013-07-25 Vlyte Innovations Limited Reflective display device
CN105607333A (zh) * 2016-01-05 2016-05-25 京东方科技集团股份有限公司 显示基板及其制造方法、显示屏、显示装置和显示方法
CN105957977A (zh) * 2016-05-13 2016-09-21 京东方科技集团股份有限公司 一种封装材料、封装盖板、烧结设备、烧结方法及显示装置
CN106784360A (zh) * 2017-01-20 2017-05-31 京东方科技集团股份有限公司 一种有机发光二极管器件及其封装方法、封装设备
CN108470846A (zh) * 2018-04-11 2018-08-31 京东方科技集团股份有限公司 封装方法、电子装置和封装设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242513B2 (en) * 1997-08-28 2007-07-10 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
CN202443226U (zh) * 2012-01-20 2012-09-19 京东方科技集团股份有限公司 一种掩模板及其电压控制系统
JP2015018209A (ja) * 2013-04-12 2015-01-29 株式会社リコー 記録媒体、画像記録装置、画像記録セット
JP2017111270A (ja) * 2015-12-16 2017-06-22 セイコーエプソン株式会社 表示装置、電子機器および表示装置の製造方法
CN105789256A (zh) * 2016-03-18 2016-07-20 京东方科技集团股份有限公司 一种 oled 双面显示基板、制作方法及显示器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253502A (zh) * 2011-04-18 2011-11-23 广州奥翼电子科技有限公司 粘合剂及其电光学组件和电泳介质
US20130188239A1 (en) * 2012-01-23 2013-07-25 Vlyte Innovations Limited Reflective display device
CN103091926A (zh) * 2013-02-06 2013-05-08 广州奥翼电子科技有限公司 电泳显示组件、电泳显示器及其制备方法
CN105607333A (zh) * 2016-01-05 2016-05-25 京东方科技集团股份有限公司 显示基板及其制造方法、显示屏、显示装置和显示方法
CN105957977A (zh) * 2016-05-13 2016-09-21 京东方科技集团股份有限公司 一种封装材料、封装盖板、烧结设备、烧结方法及显示装置
CN106784360A (zh) * 2017-01-20 2017-05-31 京东方科技集团股份有限公司 一种有机发光二极管器件及其封装方法、封装设备
CN108470846A (zh) * 2018-04-11 2018-08-31 京东方科技集团股份有限公司 封装方法、电子装置和封装设备

Also Published As

Publication number Publication date
US20210367182A1 (en) 2021-11-25
CN108470846B (zh) 2019-09-10
US11482689B2 (en) 2022-10-25
CN108470846A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2019196444A1 (zh) 封装方法、电子装置和封装设备
JP3865245B2 (ja) 有機elディスプレイの製造方法および製造装置
JP5527329B2 (ja) 有機エレクトロルミネッセンス素子及びこれを用いる照明装置
CN103700685B (zh) 一种显示面板、显示装置
KR100990337B1 (ko) 발광 장치 제조 장비
US20170243916A1 (en) Capsule Quantum Dot Composition, Light-Emitting Diode, Preparation Methods and Display Apparatus
KR102659865B1 (ko) 디스플레이 모듈 및 디스플레이 모듈의 제조 방법
CN106848093B (zh) Oled封装方法与oled封装结构
JP2014017233A (ja) 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置
CN103959504B (zh) 有机发光器件及其制备方法
CN107946480A (zh) Oled封装方法与oled封装结构
TW576125B (en) OLED device and a method for fabricating the same
JP2005005166A (ja) 有機elディスプレイの製造方法および製造装置
CN106159060A (zh) 一种led封装工艺
Qie et al. Ligand-Nondestructive Direct Photolithography Assisted by Semiconductor Polymer Cross-Linking for High-Resolution Quantum Dot Light-Emitting Diodes
CN1638545A (zh) 有机电致发光显示器件及其制作方法
JP2011085882A (ja) 電子ペーパ表示素子及びその製造方法
CN108565351B (zh) Oled显示装置及其制作方法
JP6127791B2 (ja) 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置
JP6331681B2 (ja) 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置
JP2005026186A (ja) 有機elディスプレイの製造方法
WO2021088203A1 (zh) 显示面板及其制备方法、显示装置
US11332661B2 (en) Modified perovskite quantum dot material, fabricating method thereof, and display device
CN110176554B (zh) 封装方法和封装结构
JP6322914B2 (ja) 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21-01-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914121

Country of ref document: EP

Kind code of ref document: A1