WO2019194819A2 - Station thermique pour le refroidissement d'un cryogène en circulation - Google Patents

Station thermique pour le refroidissement d'un cryogène en circulation Download PDF

Info

Publication number
WO2019194819A2
WO2019194819A2 PCT/US2018/026482 US2018026482W WO2019194819A2 WO 2019194819 A2 WO2019194819 A2 WO 2019194819A2 US 2018026482 W US2018026482 W US 2018026482W WO 2019194819 A2 WO2019194819 A2 WO 2019194819A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
expander
accordance
housing
Prior art date
Application number
PCT/US2018/026482
Other languages
English (en)
Other versions
WO2019194819A3 (fr
Inventor
Ralph C. Longsworth
Original Assignee
Sumitomo (Shi) Cryogenics Of America, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo (Shi) Cryogenics Of America, Inc. filed Critical Sumitomo (Shi) Cryogenics Of America, Inc.
Priority to KR1020207031905A priority Critical patent/KR102398432B1/ko
Priority to EP18913476.0A priority patent/EP3775717A4/fr
Priority to JP2020552189A priority patent/JP7022221B2/ja
Priority to CN201880092077.2A priority patent/CN111936802B/zh
Priority to PCT/US2018/026482 priority patent/WO2019194819A2/fr
Publication of WO2019194819A2 publication Critical patent/WO2019194819A2/fr
Publication of WO2019194819A3 publication Critical patent/WO2019194819A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor

Definitions

  • This invention relates to improving the configuration of a heat station that transfers heat from a circulating cryogen cooling an external load to the reciprocating flow of gas internal to the cold end of a high capacity expander operating on the GM or Stirling cycle, producing refrigeration at cryogenic temperatures.
  • GM and Stirling cycle refrigerators produce refrigeration at cryogenic temperatures in an expander by flowing gas at a high pressure through a regenerator type heat exchanger to the cold end of a piston reciprocating in a cylinder as the displaced volume is increasing, then lowering the pressure and flowing the gas back through the regenerator as the piston reduces the displaced volume.
  • Refrigeration is made available to cool a load by conduction of heat through the walls of the cold end cap of the cylinder, that encloses the cold displaced volume.
  • the cold end cap and means for transferring heat to the gas in the expander is referred to as the cold heat station.
  • cryogenic refrigerators that are used to cool cryopumps, superconducting MRI magnets, and laboratory research instruments use GM type refrigerators. Most of these applications require relatively small amounts of cooling, 1 to 50 W, at temperatures between 4 and 70 K that is transferred to the refrigerator heat station by conduction. There is now a growing need for refrigerators that can cool loads of 300 to 1,000 W at temperatures near 75 K, which can be cooled most practically by a circulating cryogen.
  • the cryogen can be circulated as a gas by a cold fan or room temperature compressor, as a liquid by a pump, or as a gas or liquid by natural convection.
  • the simplest form of natural convection is to condense a cryogen and have the liquid drain to a load where it evaporates, then returns to the condensing surface as a gas. It is the object of this invention to provide a high capacity GM expander with a cold heat station that can cool or condense a cryogen, is compact, efficient, and easy to mount and connect to the circulating piping. This requires minimizing the temperature difference between the circulating cryogen and the gas in the expander while minimizing the pressure drop of the circulating cryogen that is flowing through the heat station. Minimizing the pressure drop is important because the power input to a cold fan or pump becomes part of the heat load on the refrigerator. Minimizing the temperature difference involves the design of the internal and external heat exchangers that transfers heat from the circulating gas, through the cold end cap to the internal heat exchanger, which transfers heat to the gas in the expander.
  • US patent 4,277,949 to Longsworth shows a system that transfers heat from a remote load using helium that is circulated by a compressor at room temperature cooled by tubes wrapped around the expander heat stations. Loads at different temperatures are connected to the circulating helium by convective couplings which enable the load to be thermally disconnected from the refrigerator.
  • An example of a system that cools a remote load by natural convection of a condensing cryogen is described in US patent 8,375,742 to Wang.
  • Figure 7 shows an expander with an extended surface on the cold end mounted in an insulated sleeve.
  • a dewar where it could cool a load
  • boil-off gas returns up the insulated tube to be recondensed The option of bringing a small stream of gas to room temperature (to intercept heat leaks) then recondensing it, all by natural convection is also shown.
  • the heat station of this invention involves the novel combination of several components that enable an advantageous way to mount the expander.
  • Heat exchangers that have been known to be used between the regenerator and expansion space in regenerative expanders include an annular gap, perforated plates, wire screens, corrugated sheet metal, and slots that are cut by wire electric discharge machining (EDM), milling or sawing. Narrow slots that create fins between the slots can be sized to have the best heat transfer relative to pressure drop and void volume.
  • the ribbon can be formed to have a good balance between the three functional properties, heat transfer, pressure drop, and void volume, at a much lower cost than any of the machining methods. It can even be formed into narrower gaps than can be machined and can be stretched or compressed to change the relationships between the three functional properties.
  • Folded ribbons can be used to optimize heat transfer in the expander cold end, and more advantageously can be optimized for transferring heat from the circulating flow of cryogen that is bringing heat from a remote load to the outside of the expander cold end.
  • An optimum geometry has been found to be to have an external folded ribbon, that is removing heat from the load, thermally bonded to the outside of a cylindrical cold heat station, and have fins, formed by machined slots or an internal folded ribbon, thermally bonded to the inside of the cold heat station. Heat is thus transferred radially directly from the external folded ribbon on the (copper) heat station shell to the internal fins with a minimal temperature difference.
  • fins formed by a folded ribbon are more advantageous on the outside of the cold heat station than the inside is because there is no concern for void volume in the external fins thus the surface area and the flow area can be large and the cost advantage is much greater.
  • the folded ribbon requires less material than machined fins and thus is more compact.
  • This arrangement of internal and external heat exchangers enables the diameter of the cold end to be minimized and thus the mounting hole in the vacuum housing can be minimized.
  • a small mounting hole is only possible however if there are no radial fittings on the cold heat station.
  • a novel way of circulating cryogen within the outer housing enables having the tubes that connect to the circulating cryogen mounted on the bottom.
  • Heat is transferred most efficiently from a load if the circulating cryogen condenses in the external fins and evaporates at the load.
  • Nitrogen can be used to condense and evaporate for loads in the temperature range of about 65 K to 85 K and neon can be used for loads in the temperature range of about 22 K to 35 K.
  • Helium can be used at any temperature within the range of the refrigerators that use helium as a refrigerant.
  • the present invention comprises a heat station on a GM expander, for cooling a circulating cryogen, that is compact, efficient, and easy to mount and connect to the circulating piping.
  • the heat station comprises a shell that has external and internal fins thermally connected to it that are aligned parallel to the axis of the shell, in a cylindrical housing that has inlet and outlet ports that connect to the circulating gas piping.
  • the diameter of the housing is minimized by using folded ribbon on the external heat exchanger and locating the inlet and outlet ports on the bottom of the housing so that the diameter of the hole for mounting the expander on the warm flange of the cryostat is minimized.
  • the fins in the external heat exchanger can be configured to allow different circulation patterns in the housing for different cryogens and orientations.
  • FIG 1A shows a schematic of a prior art pneumatically driven GM cycle expander which has an internal cold end heat exchanger like the one described in US patent 6,256,997. The area that is circled is shown for the new designs shown in FIGS. 3-5.
  • FIG IB illustrates a plan view of a cold end having machined slots which form fins as the external heat exchanger and a partial section of an outer housing.
  • FIG 2 shows a section of folded ribbon.
  • FIG 3a shows a schematic of the cold end of GM expander 100 with a tube that brings gas from the regenerator to the bottom of the cylinder, then back up through an annular space with machined fins inside a circular shell, and into the expansion space. External to the shell is a folded ribbon in a housing designed to recondense a cryogen such as nitrogen.
  • FIG 3b shows an enlarged view of a section of the cold end heat exchanger of GM expander 100 with machined fins internal to the circular shell and folded ribbon fins externally.
  • FIG 4a shows a schematic of the cold end of GM expander 200 which has folded ribbon fins in both the internal and external heat exchangers and a housing with two ports. A break in the external folded ribbon allows gas to enter from the bottom then flow to the top where it is distributed to flow back down to the bottom through the fins. This configuration can be used to cool a circulating gas or a condensing cryogen.
  • FIG 4b shows an enlarged view of a section of the annular gaps of GM expander 200 with the folded ribbons and the break in the outer folded ribbon where the return gas flows to the top.
  • FIG 5a shows a schematic of the cold end of GM expander 300 that has the same inner and outer folded ribbon heat exchangers as GM expander 200 but an extension of the displacer and a seal forces gas from the regenerator to flow down through the inner annular space in the cold end to the expansion space.
  • the housing has a partition across the bottom that causes the gas entering the bottom through a port on one side of the partition to flow up through about half of the external fins and down through the other half, then through the outlet port.
  • FIG 5b shows an enlarged view of a section of the annular gaps of GM expander 300 with the folded ribbons and the sleeve inside the inner folded ribbon that the seal rides against.
  • FIG 6 shows a schematic of the cold end of GM expander 400 with a single port in the end of the housing located such that a cryogen gas that flows into the housing can condense in the external fins and drain out through the port as a liquid when the expander is oriented between cold end down and horizontal.
  • FIG 1 shows a schematic of a prior art pneumatically driven GM cycle expander which has the cold end heat exchanger design that is most widely used today.
  • the present invention describes new designs for transferring heat from a load to the gas in the expander in the area that is circled at the cold end of the expander.
  • FIG 1 shows a typical pneumatically driven GM expander in its entirety in order to describe the cycle and put the cold end in context.
  • the system comprises or preferably consists of compressor 40 which supplies gas at a high pressure through line 31 to the expander which admits the gas through warm inlet valve 44 to warm displaced volume 30, then into regenerator 3 in displacer 1, through the regenerator and into expansion space 5 at the cold end of displacer extension 12a.
  • Displacer 1 moves up inside cylinder 2 filling displaced volume 5 with cold gas at high pressure. Inlet valve 44 is then closed and outlet valve 45 is opened causing the gas in displaced volume 5 to drop to a lower temperature as it drops to low pressure. The cold gas at low pressure is pushed out of cold displaced volume 5 as displacer 1 moves down. Heat from a load that is connected to cold end 37 is transferred to the cold gas as it flows through annular gap 7, between displacer extension 12a and cold end 22, and then through radial ports 15, regenerator 3, warm displaced volume 30, outlet valve 45, and low pressure line 32 to compressor 40. Cylinder 2 has a warm cylinder flange 46 which mounts on cryostat flange 47.
  • Displacer 1 has drive stem 35 attached to the top which reciprocates in drive stem bore 36 in warm head 41. Reciprocation of displacer 1 is caused by opening and closing valves 42 and 43 out of phase with valves 44 and 45 thus causing gas to alternate between high and low pressure as it flows through line 34 to drive stem volume 36.
  • FIG 1A includes a schematic of a system presently being built that circulates a cryogen to cool a device, 25, in cryostat 26.
  • Cold end 37 has machined slots which form fins as the external heat exchanger on the outside of cold end cap 22, (shown in
  • FIG lb and outer housing 16 which has inlet port 21a bringing circulating gas in radially above the fins and outlet port 21b below the fins on the bottom of outer housing 16.
  • Circulator 27 which may be a fan or a pump, drives a cryogen through connecting tubes 28 and 29, which are vacuum insulated.
  • This cold end is very effective at transferring heat with a low pressure drop but the radial inlet port results in assembly complexity because it has to be added to cold end 37 after the rest of the expander has been inserted through the port in cryostat flange 47. Also the machined fins add to the cost and size.
  • the main advantage of this invention is to minimize the diameter of cold end 37 so that it fits through a port in cryostat flange 47 that is reasonably small and does not require additional assembly work before the piping that connects to the load, is connected to cold end 37.
  • FIG 2 shows a section of folded ribbon 13 which is usually formed from a sheet of copper.
  • the shape of the folded ribbon is defined by the thickness T, the width W, the height H, and the gap G.
  • Folded copper ribbons are presently being manufactured using sheets that are thinner and have narrower gaps than can be machined. Sheets with thicknesses in the range of 0.3 to 1.0 mm can be folded to a H/T ratio of about 15 and a G/(G+T) ratio > 0.6.
  • the gaps can be further reduced after the sheet is folded by pushing the folds together. They can alternately be increased by stretching the folded ribbon.
  • FIG. 3a is comprised of cylindrical shell 4 and end plate 10.
  • FIG. 3b shows details of internal heat exchanger 6, formed by machined slots in core 9, press fit into shell 4, and external heat exchanger 14 comprising a folded ribbon which is thermally bonded to the outside of shell 4.
  • Core 9 has a close enough fit with tube 8 to bring most of the gas from regenerator 3 to the top of end plate 10, then radially through flow channel
  • Housing 16 encloses external folded ribbon 14, has inlet port 21 and outlet port 22 on the bottom, and is mounted to cold flange 48 on cylinder 2. These are arranged so that a cryogen gas, such as nitrogen, can flow through inlet port 21 into manifold 20 which distributes it to folded ribbon 14, where it condenses, then drains as a liquid through outlet port 22 to a load that is being cooled.
  • a cryogen gas such as nitrogen
  • Manifold 19 above folded ribbon 14 plays a minor roll in distributing gas to the coldest surfaces. Heat flows from the
  • the components that are conducting heat, internal and external heat exchangers 6 and 14, and shell 4, are made of materials having high thermal conductivity, copper being preferred, while housing 16 and ports 22 and 21 might preferably be made from SS. While the process of thermally bonding metals having high thermal conductivity usually involves soldering or brazing, it can be done by other means, such as a press fit, as long as the temperature difference across the joint is small relative to the temperature difference between the external and internal gas streams. Not shown is the option of wrapping a heater around housing 16 to facilitate warming the load.
  • Expander 200 shown in FIG’s 4a and 4b, shows folded ribbon as the internal heat exchanger 14 and is otherwise similar to expander 100 except the external components are designed to cool a circulating gaseous cryogen, rather than condensing a cryogen. This is done by having return port 21a, which brings gas that has cooled a load, through the bottom of housing 16, into flow passage 18 which connects to manifold 19 at the top of external folded ribbon 14, and distributes the gas to flow back down through the folded ribbons. Cooled gas then flows out through outlet port 21b. Flow passage 18 is separated from outlet manifold 20 by barrier 23.
  • FIG. 5a Another means of directing a circulating gaseous cryogen through external heat exchanger 14 is shown in FIG. 5a for the cold end of expander 300.
  • Gas flowing through inlet port 21a is distributed in lower plenum 20a to flow up through the fins on one side of external heat exchanger 14 to the top plenum space 19 and return down through the fins on the other side, the bottom plenum space 20b, and the outlet port.
  • Expander 300 has an extension 12b below regenerator 3 that has a close fit inside sleeve 17 which in turn has a close fit inside internal heat exchanger 6.
  • Extension 12b has a smaller diameter than displacer 1 and thus divides the cold displaced volume into an inner displaced volume, 5a, and an outer displaced volume, 5b.
  • Seal 49 prevents gas from leaking between displaced volumes 5a and 5b and forces gas to flow through radial passages 15 into cold displaced volume 5b, where some of it remains, and the balance flows through internal heat exchanger 6 into cold displaced volume 5a.
  • Volume 5b is approximately 15% of the total cold displaced volume, which means that only about 85% of the gas that would flow through internal heat exchanger 6 in expanders 100 and 200, flows internal heat exchanger 6 in expander 300. This might be thermodynamically advantageous because the last 15% of the gas that flows out of regenerator 3 is significantly warmer than the first 85% so even though less gas flows through internal heat exchanger 6 it is colder on average.
  • FIG 6 shows a schematic of the cold end of expander 400 which has a single port, 21, on the outer bottom of housing 16.
  • Expander 400 can be mounted horizontally such that liquid cryogen 39b can drain out through port 21 while gaseous cryogen 39a flows in. If the device being cooled is located below port 21 then a cryogen such as nitrogen can circulate by natural convection.
  • Table 1 has an example that compares an external heat exchanger made by machining fins on the outside of shell 4 with a folded ribbon.
  • the design is based on transferring 400 W of cooling at 80 K by circulating 5 g/s of helium at 200 kPa in which both designs have the same temperature differences, in the gas and the fins, and the same pressure drop.
  • the thickness of the machined fin is at its root and the weight of copper for the machined fin includes the material removed from the groove.
  • Width of Fin W - mm 100 100
  • the folded ribbon is seen to provide a significant reduction in the diameter of housing 16 and the amount of material needed to make the fins.
  • top and bottom, and up and down refer to the expander when the axis is vertical with the cold end down.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

Une station thermique pour un détendeur de cycle GM ou de Stirling fournit un moyen polyvalent, efficace et rentable de transfert de chaleur à partir d'une charge à distance à des températures cryogéniques qui est refroidie par un cryogène en circulation vers le gaz dans un détendeur de cycle GM ou de Stirling à mesure qu'il s'écoule entre un régénérateur et un volume déplacé. L'échangeur de chaleur comprend une coque à laquelle sont reliées thermiquement des ailettes externes et internes qui sont alignées parallèlement à l'axe de la coque et enfermées dans un boîtier ayant un orifice d'entrée et un orifice de sortie sur le fond du boîtier.
PCT/US2018/026482 2018-04-06 2018-04-06 Station thermique pour le refroidissement d'un cryogène en circulation WO2019194819A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207031905A KR102398432B1 (ko) 2018-04-06 2018-04-06 순환하는 한제를 냉각하기 위한 히트 스테이션
EP18913476.0A EP3775717A4 (fr) 2018-04-06 2018-04-06 Station thermique pour le refroidissement d'un cryogène en circulation
JP2020552189A JP7022221B2 (ja) 2018-04-06 2018-04-06 循環冷媒の冷却用ヒートステーション
CN201880092077.2A CN111936802B (zh) 2018-04-06 2018-04-06 冷却循环制冷剂的热站
PCT/US2018/026482 WO2019194819A2 (fr) 2018-04-06 2018-04-06 Station thermique pour le refroidissement d'un cryogène en circulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/026482 WO2019194819A2 (fr) 2018-04-06 2018-04-06 Station thermique pour le refroidissement d'un cryogène en circulation

Publications (2)

Publication Number Publication Date
WO2019194819A2 true WO2019194819A2 (fr) 2019-10-10
WO2019194819A3 WO2019194819A3 (fr) 2019-12-19

Family

ID=68101380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/026482 WO2019194819A2 (fr) 2018-04-06 2018-04-06 Station thermique pour le refroidissement d'un cryogène en circulation

Country Status (5)

Country Link
EP (1) EP3775717A4 (fr)
JP (1) JP7022221B2 (fr)
KR (1) KR102398432B1 (fr)
CN (1) CN111936802B (fr)
WO (1) WO2019194819A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023076043A1 (fr) * 2021-10-26 2023-05-04 Sumitomo (Shi) Cryogenics Of America, Inc. Joint d'étanchéité alimenté par gaz pour détendeur gifford-mcmahon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256997B1 (en) 2000-02-15 2001-07-10 Intermagnetics General Corporation Reduced vibration cooling device having pneumatically-driven GM type displacer
JP2003166768A (ja) 2001-11-30 2003-06-13 Sharp Corp スターリング機関およびその運転方法
CN1760604A (zh) 2005-10-27 2006-04-19 中国科学院上海技术物理研究所 一种用于斯特林制冷机的热端散热器
WO2012047838A1 (fr) 2010-10-08 2012-04-12 Sumitomo Cryogenics Of America, Inc. Réfrigérateur cryogénique à refroidissement rapide
US20160097567A1 (en) 2014-10-07 2016-04-07 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerator
US20180023849A1 (en) 2016-07-25 2018-01-25 Sumitomo (Shi) Cryogenics Of America, Inc. Cryogenic expander with collar bumper for reduced noise and vibration characteristics

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW426798B (en) * 1998-02-06 2001-03-21 Sanyo Electric Co Stirling apparatus
JP3563703B2 (ja) * 2001-02-19 2004-09-08 シャープ株式会社 スターリング冷凍機用熱交換器及びその製造方法
US7225859B2 (en) * 2000-09-01 2007-06-05 Sharp Kabushiki Kaisha Heat exchanger element and heat exchanger member for a stirling cycle refrigerator and method of manufacturing such a heat exchanger member
KR100523776B1 (ko) * 2000-09-01 2005-10-26 샤프 가부시키가이샤 열 교환기체 및 열 교환기체의 제조 방법
JP3563679B2 (ja) * 2000-09-01 2004-09-08 シャープ株式会社 スターリング冷凍機用熱交換器及び熱交換器体
JP2003028527A (ja) * 2001-07-16 2003-01-29 Sharp Corp スターリング機関用内部熱交換器及びスターリング冷凍機
CN1959298A (zh) * 2006-11-24 2007-05-09 中国科学院上海技术物理研究所 一种可作为低温冰箱冷源的斯特林制冷机
US8375742B2 (en) * 2007-08-21 2013-02-19 Cryomech, Inc. Reliquifier and recondenser with vacuum insulated sleeve and liquid transfer tube
JP2015117885A (ja) * 2013-12-18 2015-06-25 住友重機械工業株式会社 極低温冷凍機
JP6403539B2 (ja) * 2014-10-29 2018-10-10 住友重機械工業株式会社 極低温冷凍機
JP6629222B2 (ja) * 2014-10-30 2020-01-15 住友重機械工業株式会社 極低温冷凍機
CN104534715A (zh) * 2014-12-09 2015-04-22 中国科学院上海技术物理研究所 一种低振动大冷量的自由活塞式斯特林制冷机膨胀机
CN206238523U (zh) * 2016-10-14 2017-06-13 上海朗旦制冷技术有限公司 利用斯特林制冷的人体空调装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256997B1 (en) 2000-02-15 2001-07-10 Intermagnetics General Corporation Reduced vibration cooling device having pneumatically-driven GM type displacer
JP2003166768A (ja) 2001-11-30 2003-06-13 Sharp Corp スターリング機関およびその運転方法
CN1760604A (zh) 2005-10-27 2006-04-19 中国科学院上海技术物理研究所 一种用于斯特林制冷机的热端散热器
WO2012047838A1 (fr) 2010-10-08 2012-04-12 Sumitomo Cryogenics Of America, Inc. Réfrigérateur cryogénique à refroidissement rapide
KR20130041395A (ko) 2010-10-08 2013-04-24 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 고속 냉각 극저온 냉동기
US20160097567A1 (en) 2014-10-07 2016-04-07 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerator
US20180023849A1 (en) 2016-07-25 2018-01-25 Sumitomo (Shi) Cryogenics Of America, Inc. Cryogenic expander with collar bumper for reduced noise and vibration characteristics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3775717A4

Also Published As

Publication number Publication date
WO2019194819A3 (fr) 2019-12-19
CN111936802A (zh) 2020-11-13
EP3775717A4 (fr) 2022-01-26
EP3775717A2 (fr) 2021-02-17
KR20200128758A (ko) 2020-11-16
CN111936802B (zh) 2022-10-14
JP7022221B2 (ja) 2022-02-17
KR102398432B1 (ko) 2022-05-13
JP2021519407A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
US8418479B2 (en) Co-axial multi-stage pulse tube for helium recondensation
US4432216A (en) Cryogenic cooling apparatus
US4366676A (en) Cryogenic cooler apparatus
US5107683A (en) Multistage pulse tube cooler
US7568351B2 (en) Multi-stage pulse tube with matched temperature profiles
US20090049863A1 (en) Reliquifier and recondenser
US9897350B2 (en) MRI cool down apparatus
US11649989B2 (en) Heat station for cooling a circulating cryogen
US20090049862A1 (en) Reliquifier
US7114341B2 (en) Cryopump with two-stage pulse tube refrigerator
US5735127A (en) Cryogenic cooling apparatus with voltage isolation
JPS60117061A (ja) 液体冷凍剤の気化流出の凝縮装置
US5609034A (en) Cooling system
JP5882110B2 (ja) 蓄冷器式冷凍機、蓄冷器
KR102046020B1 (ko) 하이브리드 브레이튼-기퍼드-맥마흔 팽창기
KR20010083614A (ko) 맥동관 냉동기의 에프터 쿨러 및 그 제조방법
EP3775717A2 (fr) Station thermique pour le refroidissement d'un cryogène en circulation
JP5908324B2 (ja) 蓄冷式冷凍機
JP3293538B2 (ja) 蓄冷冷凍機
US7305835B2 (en) Pulse tube cooling by circulation of buffer gas
CN112611133A (zh) 一种回热制冷机及采用该回热制冷机的冰箱
US7165406B2 (en) Integral pulse tube refrigerator and cryopump
WO2024111338A1 (fr) Réfrigérateur joule-thomson
JPH07269967A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913476

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020552189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207031905

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018913476

Country of ref document: EP