WO2019194380A1 - 단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 입체 단위 모스펫 - Google Patents

단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 입체 단위 모스펫 Download PDF

Info

Publication number
WO2019194380A1
WO2019194380A1 PCT/KR2018/012031 KR2018012031W WO2019194380A1 WO 2019194380 A1 WO2019194380 A1 WO 2019194380A1 KR 2018012031 W KR2018012031 W KR 2018012031W WO 2019194380 A1 WO2019194380 A1 WO 2019194380A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
resistant
drain
unit mosfet
mosfet
Prior art date
Application number
PCT/KR2018/012031
Other languages
English (en)
French (fr)
Inventor
이희철
노영탁
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2019194380A1 publication Critical patent/WO2019194380A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823493MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/027Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66803Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with a step of doping the vertical sidewall, e.g. using tilted or multi-angled implants

Definitions

  • the present invention relates to radiation resistant three-dimensional MOSFETs, and more particularly to a three-dimensional MOSFET having cumulative ionization effects and radiation resistance that is robust to a single event phenomenon.
  • Radiation refers to the energy flow emitted when members of an atom or molecule are unstable at a high energy level, and appear in the form of radiation such as X-rays, gamma rays, alpha rays, beta rays, neutrons, and protons. Radiation forms are classified into particle forms or electromagnetic forms, particle forms are referred to as particle radiation, and electromagnetic forms are referred to as electromagnetic radiation.
  • ionizing radiation Radiation from which radiation is incident to generate ions is called ionizing radiation, and others are called non-arranged radiation.
  • the ionizing radiation causes damage by ionizing or ionizing atoms of the semiconductor material of the unit MOSFET (MOSFET) constituting the electronic component, and thus the semiconductor device does not guarantee normal operation and suffers temporary or permanent damage.
  • MOSFET unit MOSFET
  • Damage in semiconductor devices due to radiation incident is largely classified into a total ionizing effect and a single event effect.
  • the oxide film thickness of the transistor is 10 nm or more and ionizing radiation is incident on a portion where an electric field is formed, trapping of holes occurs at an interface between the oxide film and silicon. More specifically, when ionizing radiation is incident to a gate while voltage is applied, hole trapping occurs at an oxide interface between a source and a drain, thereby causing channel inversion. ) To form a leakage current path through which current flows.
  • the leakage current path formed by the ionizing radiation causes abnormal operation of the unit MOSFET (MOSFET), which is called a total ionizing effect.
  • MOSFET unit MOSFET
  • FIG. 1 is a block diagram of a conventional planar unit MOSFET
  • FIG. 2 is a block diagram of a finFET, which is one of three-dimensional MOSFETs
  • GAA MOSFET gate-all-around MOSFET
  • the planar unit MOSFET of FIG. 1 includes a gate that controls the operation of a transistor and a source, a drain, and a body through which a current signal flows.
  • the three-dimensional MOSFET of FIGS. 2 and 3 has a gate portion surrounded by three sides (in the case of the pinpet of FIG. 2) or a slope (in the case of the gate all-around MOSFET of FIG. 3) (surround form). Consists of In addition, the source and the drain of the three-dimensional unit MOSFET are located at both sides of the gate, so that the current signal by the gate flows to the source and the drain as in the conventional planar unit MOSFET.
  • the unit MOSFETs shown in FIGS. 1 to 3 are formed on a silicon substrate, and the source, drain, and body of each unit MOSFET are composed of PN junctions. .
  • the electron hole pair are generated, and the electron holes caused by the electromagnetic field formed by the reverse bias flow in the source and drain directions and the body directions, respectively.
  • the current pulse when the reverse via is applied at the PN junction, the current pulse is higher than the equilibrium state of the built-in potential, so that the carriers cannot move to the opposite region so that current does not flow. Do not.
  • the current pulse generated by the incident radiation incident on the circuit formed by the unit MOSFET (MOSFET) to cause problems such as modulating the stored data. This phenomenon is called a single event effect.
  • the gate capacitance is reduced and the influence of the current pulse generated by the single event effect is prominent.
  • the unit MOSFET MOSFET
  • a circuit or a system composed of the unit MOSFETs also causes abnormal operation in the radiation environment.
  • an object of the present invention is to provide a radiation resistant three-dimensional MOSFET for blocking the leakage current path by the fixed charge generated in the field oxide (Field Oxide) by the cumulative ionization effect.
  • a gate, a source and a drain, and the source and drain It is connected to and positioned on the fin structure of the radiation-resistant solid-state unit MOSFET, and includes a dummy drain (DD) for distributing a current pulse generated by a single event effect can be applied to the voltage.
  • DD dummy drain
  • the dummy drain may be connected to a neutral region connected to at least one of the source and the drain.
  • the dummy drain may be connected to any one or more sides of the left side and the right side of the source and the drain to form a 'T' type, ' ⁇ ' type, or 'I' type.
  • the dummy drain may apply a voltage to the source and drain to disperse current flowing to the source and drain due to a single event, and may reduce an influence on a circuit region or a system connected to the device.
  • the radiation-resistant three-dimensional unit MOSFET according to an embodiment of the present invention further comprises an N-well layer (N-well layer) formed to be spaced apart a predetermined distance to the source and drain, the gate, and the dummy drain. Can be.
  • the N-well layer may be formed on a surface of a substrate that surrounds a fin structure of the radiation resistant unit MOSFET.
  • the radiation-resistant three-dimensional unit MOSFET according to an embodiment of the present invention further comprises an N-well / Metal-1 via (N-well / Metal-1 via) for separately applying a voltage to the N-well layer,
  • the N-well / Metal-1 via may be formed on the surface of the substrate to overlap the N-well layer.
  • the radiation-resistant three-dimensional unit MOSFET according to an embodiment of the present invention may further include a deep N-well layer formed under the fin structure of the radiation-resistant three-dimensional unit MOSFET. have.
  • the deep N-well layer is formed under the gate, the source and drain, the dummy drain, and the N-well layer positioned in the fin structure of the radiation resistant stereoscopic unit MOSFET, and the N-well layer It may be formed to a length including.
  • a gate, a source and a drain, and a gate and a substrate And a P + layer positioned on a side of a field oxide film positioned at a contact to block a leakage current path generated by cumulative ionization effects.
  • the P + layer may block the leakage current path generated by a fixed charge at an interface of the field oxide layer due to a cumulative ionization effect.
  • the radiation-resistant three-dimensional unit MOSFET according to an embodiment of the present invention is connected to the source and drain is located on the fin structure of the radiation-resistant three-dimensional unit MOSFET (Dummy Drain; DD) that can be applied voltage It may further include.
  • DD dedicated Drain
  • the radiation-resistant three-dimensional unit MOSFET is an N-well layer and the radiation-resistant three-dimensional unit formed to be spaced apart from the gate, the source and drain and the dummy drain by a predetermined distance Further, a deep N-well layer formed under the fin structure of the MOSFET may be further included to disperse or block current pulses generated by a single event effect flowing to the source and drain at all times.
  • the deep N-well layer may block a collection of electron hole pairs generated by a single event effect.
  • the radiation-resistant stereoscopic unit MOSFET described above may be implemented as a PMOS with a PMOS gate electrode pattern or an NMOS with an NMOS gate electrode pattern.
  • an N-active layer, an N + layer, an N-well layer, a deep N-well layer Radiation including the layout of at least some of N + / Metal-1 vias, N-well / Metal-1 vias, and p + layers
  • a three-dimensional MOSFET attenuates the current pulse due to a single event effect, and the effect on the circuit by blocking the leakage current path due to the fixed charge generated in the field oxide film by the cumulative ionization effect
  • a radiation-resistant solid-state unit MOSFET (3D MOSFET) modified to the transistor layout (Silicon on Insulator (SOI) and silicon on sapphire (Silicon) Without a separate substrate such as on Sapphire (SOS), it can be applied to the existing silicon substrate process.
  • 3D MOSFET radiation-resistant solid-state unit MOSFET
  • MOSFET planar unit MOSFET
  • FIG. 2 illustrates a configuration diagram of a FinFET, which is one of three-dimensional MOSFETs.
  • FIG. 3 illustrates a schematic diagram of a gate-all-around MOSFET (GAA MOSFET), which is one of three-dimensional MOSFETs.
  • GAA MOSFET gate-all-around MOSFET
  • FIGS. 4A and 4B illustrate a block diagram of a radiation resistant solid unit MOSFET according to an embodiment of the present invention.
  • 5A to 5C illustrate a radiation resistant solid unit MOSFET according to Embodiment 1 of the present invention.
  • 6A to 6C illustrate a radiation resistant solid unit MOSFET according to Embodiment 2 of the present invention.
  • FIG. 7A to 7C illustrate a radiation resistant solid unit MOSFET according to Embodiment 3 of the present invention.
  • 8A to 8C illustrate a radiation resistant solid unit MOSFET according to Embodiment 4 of the present invention.
  • Embodiment 9 illustrates a radiation resistant solid unit MOSFET according to Embodiment 5 of the present invention.
  • FIG. 10 illustrates a radiation resistant solid unit MOSFET according to Embodiment 6 of the present invention.
  • FIG. 11 illustrates a radiation resistant stereoscopic unit MOSFET according to a seventh embodiment of the present invention.
  • FIG. 12 illustrates a radiation resistant solid unit MOSFET according to Embodiment 8 of the present invention.
  • FIG. 13 illustrates a radiation resistant stereoscopic unit MOSFET according to Embodiment 9 of the present invention.
  • FIG. 14 illustrates a radiation resistant stereoscopic unit MOSFET according to a tenth embodiment of the present invention.
  • FIG. 15 illustrates a result graph of a drain current waveform between a conventional stereoscopic unit MOSFET and a radiation resistant stereoscopic unit MOSFET according to an embodiment of the present invention.
  • 16A and 16B illustrate graphs of drain currents according to gate voltages between a conventional stereoscopic unit MOSFET and a radiation resistant stereoscopic unit MOSFET according to an exemplary embodiment of the present invention.
  • 17A and 17B illustrate graphs of drain currents according to drain voltages between a conventional stereoscopic unit MOSFET and a radiation resistant stereoscopic unit MOSFET according to an exemplary embodiment of the present invention.
  • any part of the specification is to “include” any component, this means that it may further include other components, except to exclude other components unless otherwise stated.
  • a part is “connected” with another part, this includes not only the case where it is “directly connected” but also the case where it is “electrically connected” with another element between them.
  • part refers to a hardware component, such as software, FPGA or ASIC, and “part” plays certain roles. However, “part” is not meant to be limited to software or hardware.
  • the “unit” may be configured to be in an addressable storage medium and may be configured to play one or more processors.
  • a “part” refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, procedures, Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays and variables.
  • the functionality provided within the components and “parts” may be combined into a smaller number of components and “parts” or further separated into additional components and “parts”.
  • planar MOSFET planar MOSFET
  • a planar unit MOSFET is composed of N-active (N-active), gate (Gate), N + layer (N + layer).
  • N-active N-active
  • Gate gate
  • N + layer N + layer
  • An N-active layer designates an active region of a transistor and prevents isolation field oxides from forming in the region in the process.
  • the gate layer defines a gate region by forming a gate oxide.
  • the N + layer is formed by a self-align technique, and it is possible to generate a source and a drain having a high doping concentration of n-type. This is a layer.
  • FIGS. 2 and 3 illustrate a schematic diagram of a three-dimensional MOSFET.
  • the three-dimensional MOSFETs of the FinFET and the Gate-All-Around MOSFET (GAA MOSFET) are gated.
  • GAA MOSFET Gate-All-Around MOSFET
  • the stereo unit MOSFET is composed of an N-active, a poly gate, and an N + layer in the same manner as a conventional planar unit MOSFET.
  • a 3-dimensional MOSFET has an insulating layer (Oxide) at the bottom of the fin to distinguish between the MOSFETs, and due to the fixed charge generated by the radiation, A leakage current path is included in the lower portion of the gate.
  • Oxide insulating layer
  • annealing by Joule heating generated from resistive component of fin by applying high voltage to both ends of drain and source temporarily )
  • the fixed charges in the insulating film were removed.
  • the existing method cannot actively cope with the radiation environment, and requires a separate configuration for annealing.
  • gate capacitance and junction capacitance are reduced as the process is miniaturized, resulting in data inversion, which also reduces the critical charge. . Even if a relatively small amount of current pulses are generated due to such a single event effect, there is a problem that causes malfunction of an electronic component composed of a three-dimensional MOSFET.
  • a dummy drain (DD), an N-well layer (NW), a deep N-well layer (Deep N-well) in order to minimize the cumulative event effect and the single event effect as described above.
  • a radiation resistant three-dimensional MOSFET is added which selectively adds at least one of a layer DNW and a P + layer. Each layer reduces single event current pulses generated by radiation and flowing to the source and drain and suppresses the generation of leakage current paths due to cumulative ionization effects. .
  • the radiation-resistant stereoscopic unit MOSFET (3-Dimensional MOSFET) is classified as an NMOS having an NMOS gate electrode pattern having a source and a drain of an N-type semiconductor region and a substrate of a P-type semiconductor region
  • the present invention is not limited to the NMOS, but may be implemented as a PMOS including a PMOS gate electrode pattern (eg, a source and a drain are P-type semiconductor regions and a substrate is an N-type semiconductor region).
  • the radiation resistant solid unit MOSFET which is robust against the cumulative ionization effect and the single event phenomenon of the present invention utilizes the following three effects.
  • the present invention distributes current by using a dummy drain (DD).
  • the radiation resistant three-dimensional unit MOSFET Due to the electromagnetic field formed by the reverse bias applied to the PN junction of the transistor, electron holes generate a current pulse in the source and drain directions and the body direction. Accordingly, the radiation resistant three-dimensional unit MOSFET according to an embodiment of the present invention uses a dummy drain DD capable of applying voltage to the source and drain sides, and thus, the source and drain ( Drain) can reduce the current.
  • the radiation resistant three-dimensional unit MOSFET Extend the active area through the N-active layer, use the N + layer as the dummy drain (DD), and through the N + / Metal-1 via By applying a voltage, the current pulse generated by the single event can flow in the direction of the upper dummy drain DD, thereby reducing the single event effect.
  • the present invention suppresses the leakage current path by using a P + layer.
  • the radiation-resistant stereoscopic unit MOSFET includes a P + layer at the bottom of a fin structure surrounding a gate in which a channel is formed.
  • the P + layer located on the side of the oxide layer at the bottom of the fin structure is located at the interface of the insulation layer generated by the cumulative ionization effect, thereby suppressing the leakage current path due to the fixed charge, and as the leakage current path is suppressed, Cumulative ionization effects can be reduced.
  • the present invention uses an N-well layer and a Deep N-well layer to reduce the single incident effect.
  • a PN junction is formed between the source and drain of the transistor and the substrate, and the electron hole pairs generated by a single event are collected.
  • the depth is about three times the Depletion width formed at the PN junction.
  • the radiation-resistant stereoscopic unit MOSFET allows a pair of electron holes generated in a substrate portion to flow through a wall or a bottom to reduce current flowing to a source and a drain connected to a circuit. You can.
  • the radiation-resistant three-dimensional unit MOSFET may include a deep N-well layer formed on the bottom surface and the N-well layer formed to surround the side.
  • the N-well layer is connected to the deep N-well layer on the bottom surface, and N-well / Metal-1 vias may be formed on the N-well layer.
  • the radiation-resistant stereoscopic unit MOSFET according to another embodiment of the present invention applies a separate voltage through the N-well / Metal-1 via to flow current pulses generated by a single event to the side and the bottom surface. This can reduce the impact of single events.
  • Figures 4a and 4b is a block diagram of a radiation resistant three-dimensional unit MOSFET according to an embodiment of the present invention
  • Figures 5a to 5c is a block diagram of a radiation-resistant three-dimensional unit MOSFET according to an embodiment of the present invention It is.
  • the radiation resistant three-dimensional unit MOSFET 400 of the present invention includes dummy drains 423 on the left and right sides, and an N-well layer 431 formed at an outer side thereof. ) And a deep N-well layer 432 formed under the N-well layer 431.
  • a configuration is illustrated in more detail in FIGS. 5B and 5C, and the N-well layer 431 and the deep N-well layer 432 surround the side and bottom surfaces of the radiation-resistant stereoscopic unit MOSFET 400. Can be configured.
  • the radiation-resistant three-dimensional unit MOSFET 400 including the gates 420 may include a P + layer 451 in the side surface of the fin structure.
  • the P + layer 451 of the side surface of the substrate suppresses the threshold voltage change due to the fixed charge generated by the accumulated radiation. And can block the formation of a leakage current path.
  • the radiation resistant three-dimensional unit MOSFET 400 includes a gate (Gate, 420), a source (Source, 421), a drain (422), and a dummy drain (Dummy Drain). DD, 423).
  • the dummy drain 423 is connected to the source 421 and the drain 422 and is positioned on the fin structure of the radiation-resistant stereoscopic unit MOSFET 400, and is capable of applying a voltage to generate a current pulse generated by a single event effect. Disperse
  • the dummy drain 423 may be located in connection with a neutral region 425 connected to at least one of the source 421 and the drain 422.
  • the dummy drain 423 may be a 'T' type, a 'c' type, or an 'I' Can be formed into a 'shape.
  • the dummy drain 423 formed in a T 'type,' c 'type, or' I 'type on at least one side of the left and right sides of the source 421 and the drain 422 will be described with reference to FIGS. It will be described in detail through.
  • the dummy drain 423 applies a voltage to the source 421 and the drain 422, distributes current flowing to the source 421 and the drain 422 due to a single event, and is a circuit area or system connected to the device.
  • the radiation-resistant three-dimensional unit MOSFET 400 is the P-active layer 440 of the gate, the N-active layer 427 of the fin structure as shown in Figure 4a and 4b And an N + layer 426 and an N + / Metal-1 via (424).
  • the P-active layer 440 of the gate is located at a portion where the bottom portion of the gate 420 and the thick oxide layer 410 are combined, and the P-active layer 440-the P + layer 451-
  • the radiation-resistant stereoscopic unit MOSFET 400 according to the embodiment of the present invention including the N-active layer 427-N + layer 426 structure can suppress a change in the threshold voltage that may occur due to the fixed charge.
  • Electron hole pairs generated by a single event are caused by an electromagnetic field formed by a reverse bias applied to a PN junction of a transistor, and the source and the body 421 and drain 422, respectively, 411) to generate a current pulse.
  • the radiation-resistant stereoscopic unit MOSFET 400 includes an N-well layer 431 and a Deep N-well layer DNW 432.
  • the N-well layer 431 and the deep N-well layer 432 are used to cause current pulses to flow through the side or bottom surface to reduce current pulses flowing to the source 421 and drain 422.
  • the radiation-resistant three-dimensional unit MOSFET 400 according to an embodiment of the present invention is an N-well layer 431, a deep N-well layer 432 and an N-well as shown in Figs. 4a and 4b. And N-well / Metal-1 via (433).
  • the N-well layer 431 is formed to be spaced apart from the gate 420, the source 421, the drain 422, and the dummy drain 423 by a predetermined distance, and fins of the radiation resistant unit MOSFET 400 may be formed. It may be formed on the surface of the substrate 410 that surrounds the structure.
  • the radiation-resistant three-dimensional unit MOSFET 400 is an N-well / Metal-1 via to apply a voltage to the N-well layer 431 separately (N-well / Metal-1 via And 433, and the N-well / Metal-1 via 433 may be formed on the surface of the substrate 410 to overlap the N-well layer 431.
  • the deep N-well layer 432 includes a gate 420, a source 421 and a drain 422, a dummy drain 423, and an N-well disposed in the fin structure of the radiation-resistant solid-state unit 400. It may be formed under the layer 431 and have a length including the N-well layer 431.
  • the radiation-resistant stereoscopic unit MOSFET 400 to which the Deep N-well layer; DNW 432 is applied, and the radiation-resistant stereoscopic unit MOSFET to which only the Deep N-well layer DNW 432 is applied 400) will be described as Example 4.
  • Embodiment 6 the radiation-resistant solid-state unit MOSFET 400 to which the single dummy drain (DD, 423) located on the left or right side of the source 421 and the drain 422 is applied.
  • the radiation-resistant stereoscopic unit MOSFET 400 is applied to the left and right side surfaces of the source 421 and the drain 422 to which the dummy drains DD and 423 having a 'T' type are applied.
  • the radiation-resistant solid-state unit MOSFET 400 located on each of the left and right sides of the source 421 and the drain 422 is positioned on both the left and right sides of the source 421 and the drain 422, respectively.
  • the radiation-resistant three-dimensional unit MOSFET 400 to which the dummy drains DD and 423 representing the 'I' type are applied will be described as a tenth embodiment.
  • 5A to 5C illustrate a radiation resistant solid unit MOSFET according to Embodiment 1 of the present invention.
  • FIG. 5A illustrates a three-dimensional schematic diagram of the radiation-resistant three-dimensional unit MOSFET according to Example 1 of the present invention
  • FIG. 5B illustrates a XX ′ cross section of FIG. 5A
  • FIG. 5C illustrates YY of FIG. 5A. 'Shows a cross section.
  • the radiation-resistant stereoscopic unit MOSFET 400 includes dummy drains DD and 423, an N-well layer 431, and a deep N-well layer. A DNW 432 and a P + layer 451. At this time, the structure of each layer and the radiation-resistant solid-state unit MOSFET 400 has been described above, it will be omitted.
  • 6A to 6C illustrate a radiation resistant solid unit MOSFET according to Embodiment 2 of the present invention.
  • FIG. 6A illustrates a three-dimensional schematic diagram of the radiation-resistant three-dimensional unit MOSFET according to Embodiment 2 of the present invention
  • FIG. 6B illustrates a XX ′ cross section of FIG. 6A
  • FIG. 6C illustrates YY of FIG. 6A. 'Shows a cross section.
  • FIGS. 6A-6C show the P + layer 451 and the P-active layer 440 of the gate, the N-active layer 427 of the fin structure, the N + layer 426 and the N + / Metal-1 vias (N +).
  • the structure of the radiation-resistant three-dimensional unit MOSFET 400 shown in Figures 6a to 6c can be implemented in a relatively narrow area compared to the first embodiment, when the same structure as the first embodiment is not available due to the nature of the process Alternatively, it may be easy to use when a deep N-well layer (DNW, 432) is not available.
  • DGW deep N-well layer
  • FIG. 7A to 7C illustrate a radiation resistant solid unit MOSFET according to Embodiment 3 of the present invention.
  • Figure 7a shows a three-dimensional schematic diagram of the radiation-resistant three-dimensional unit MOSFET according to the third embodiment of the present invention
  • Figure 7b is a cross-sectional view XX 'of Figure 7a
  • Figure 7c is a YY of Figure 7a 'Shows a cross section.
  • the radiation-resistant solid-state unit MOSFET 400 may include a P + layer (P + layer) 451, a dummy drain 423, and a deep N-well layer (DNW) of the bottom surface. 432) only.
  • the N-well layer 431 is not used to surround the radiation steric unit MOSFET 400, but a deep N-well layer (DWW) is formed on the bottom surface of the N-well layer 431. 432) is arranged.
  • the radiation-resistant three-dimensional unit MOSFET 400 cannot apply a separate voltage to the bottom surface due to the PN junction formed between the substrate 410 and the deep N-well layer (DNW, 432), Current pulses caused by a single event do not flow through the floor. In addition, since the electron hole pairs generated by a single event at the bottom of the Deep N-well layer (DNW) 432 are not collected, a single event effect can be reduced. .
  • the radiation-resistant three-dimensional unit MOSFET 400 shown in FIGS. 7A to 7C can be implemented in a relatively narrow area compared to the first embodiment, and the first embodiment violates a specific design rule of a commercial process. In this case, the N-well layer 431 surrounding the radiation steric unit MOSFET 400 may not be used.
  • 8A to 8C illustrate a radiation resistant solid unit MOSFET according to Embodiment 4 of the present invention.
  • FIG. 8A illustrates a three-dimensional schematic diagram of the radiation-resistant three-dimensional unit MOSFET according to Embodiment 4 of the present invention
  • FIG. 8B illustrates a XX ′ cross section of FIG. 8A
  • FIG. 8C illustrates YY of FIG. 8A. 'Shows a cross section.
  • the radiation-resistant stereoscopic unit MOSFET 400 may include only a P + layer (P + layer) 451 and a deep N-well layer (DNW) 432.
  • the radiation resistant stereoscopic unit MOSFET 400 does not include an N-well layer 431 surrounding the dummy drain 423 and the fin structure.
  • the radiation-resistant three-dimensional unit MOSFET 400 cannot apply a separate voltage to the bottom surface due to the PN junction formed between the substrate 410 and the deep N-well layer (DNW, 432), Current pulses caused by a single event do not flow through the floor. In addition, since the electron hole pairs generated by a single event at the bottom of the Deep N-well layer (DNW) 432 are not collected, a single event effect can be reduced. .
  • the radiation resistant three-dimensional unit MOSFET 400 shown in FIGS. 8A to 8C can be used in an environment in which unit devices are designed to have a smaller area than that of the first embodiment, and the first embodiment is based on a specific design rule of a commercial process. In this case, it may be easy to use when the N-well layer 431 surrounding the radiation steric unit MOSFET 400 cannot be used.
  • Embodiment 9 illustrates a radiation resistant solid unit MOSFET according to Embodiment 5 of the present invention.
  • the radiation steric unit MOSFET 400 may include a dummy drain 423 disposed on a straight line of the source 421, the gate 420, and the drain 422.
  • the dummy drain 423 may be located in a single side of the source 421 or the drain 422.
  • the radiation-resistant solid-state unit MOSFET 400 illustrated in FIG. 9 has a dummy drain 423 and an N-well layer in the P + layer 451 as in the first, second and third embodiments.
  • both the (N-well layer 431) and the deep N-well layer (DNW, 432) are applied, when only the dummy drain 423 is applied, the dummy drain 423 and the deep N-well layer If (Deep N-well layer; DNW, 432) is applied, all may be applied.
  • FIG. 10 illustrates a radiation resistant solid unit MOSFET according to Embodiment 6 of the present invention.
  • the radiation-resistant three-dimensional unit MOSFET 400 may include a single dummy drain 423 disposed on the left or right side of the source 421 and the drain 422.
  • the radiation resistant three-dimensional unit MOSFET 400 illustrated in FIG. 10 is a dummy drain 423 and an N-well layer in the P + layer 451 as in the first, second and third embodiments.
  • both the (N-well layer 431) and the deep N-well layer (DNW, 432) are applied, when only the dummy drain 423 is applied, the dummy drain 423 and the deep N-well layer If (Deep N-well layer; DNW, 432) is applied, all may be applied.
  • FIG. 11 illustrates a radiation resistant stereoscopic unit MOSFET according to a seventh embodiment of the present invention.
  • the radiation-resistant stereoscopic unit MOSFET 400 may include at least one dummy drain 423 disposed on a side of the source 421 and the left or right side of the drain 422. According to the seventh embodiment, at least one dummy drain 423 may be positioned at the sides of the source 421 and the drain 422 to have a 'T' shape.
  • the radiation resistant three-dimensional unit MOSFET 400 illustrated in FIG. 11 has a dummy drain 423 and an N-well layer in the P + layer 451 as in the first, second and third embodiments.
  • both the (N-well layer 431) and the deep N-well layer (DNW, 432) are applied, when only the dummy drain 423 is applied, the dummy drain 423 and the deep N-well layer If (Deep N-well layer; DNW, 432) is applied, all may be applied.
  • FIG. 12 illustrates a radiation resistant solid unit MOSFET according to Embodiment 8 of the present invention.
  • the radiation-resistant stereoscopic unit MOSFET 400 may include at least one dummy drain 423 disposed on each of the left and right sides of the source 421 and the drain 422.
  • at least one dummy drain 423 may be positioned on each of the side surfaces of the source 421 and the drain 422 to have a '-' shape.
  • the radiation resistant three-dimensional unit MOSFET 400 shown in FIG. 12 is a dummy drain 423 and an N-well layer in the P + layer 451 as in the first, second and third embodiments.
  • both the (N-well layer 431) and the deep N-well layer (DNW, 432) are applied, when only the dummy drain 423 is applied, the dummy drain 423 and the deep N-well layer If (Deep N-well layer; DNW, 432) is applied, all may be applied.
  • FIG. 13 illustrates a radiation resistant stereoscopic unit MOSFET according to Embodiment 9 of the present invention.
  • the radiation-resistant stereoscopic unit MOSFET 400 may include a dummy drain 423 disposed in a single piece on each of the left and right sides of the source 421 and the drain 422.
  • at least one dummy drain 423 may have a shape located one on each of the left and right sides of the source 421 and the drain 422.
  • the radiation resistant three-dimensional unit MOSFET 400 illustrated in FIG. 13 has a dummy drain 423 and an N-well layer in the P + layer 451 as in the first, second and third embodiments.
  • both the (N-well layer 431) and the deep N-well layer (DNW, 432) are applied, when only the dummy drain 423 is applied, the dummy drain 423 and the deep N-well layer If (Deep N-well layer; DNW, 432) is applied, all may be applied.
  • FIG. 14 illustrates a radiation resistant stereoscopic unit MOSFET according to a tenth embodiment of the present invention.
  • the radiation-resistant three-dimensional unit MOSFET 400 may include at least one dummy drain 423 disposed on both the left and right sides of the source 421 and the drain 422. According to the tenth embodiment, at least one dummy drain 423 may be located on both the left and right sides of the source 421 and the drain 422 to have an “I” shape.
  • the radiation resistant three-dimensional unit MOSFET 400 illustrated in FIG. 14 has a dummy drain 423 and an N-well layer in the P + layer 451 as in the first, second and third embodiments.
  • both the (N-well layer 431) and the deep N-well layer (DNW, 432) are applied, when only the dummy drain 423 is applied, the dummy drain 423 and the deep N-well layer If (Deep N-well layer; DNW, 432) is applied, all may be applied.
  • FIG. 15 is a graph showing results of drain current waveforms between a conventional stereoscopic unit MOSFET and a radiation resistant stereoscopic unit MOSFET according to an embodiment of the present invention
  • FIGS. 16A and 16B illustrate a conventional stereoscopic unit MOSFET and an embodiment of the present invention
  • FIG. 17A and FIG. 17B illustrate drain graphs of drain currents according to gate voltages between radiation resistant stereoscopic unit MOSFETs
  • FIGS. 17A and 17B illustrate drains between conventional stereoscopic unit MOSFETs and radiation resistant stereoscopic unit MOSFETs according to embodiments of the present invention.
  • a graph of the results for drain current versus voltage is shown.
  • FIG. 15 shows the results of the drain current waveform shown after applying radiation to each conventional Conventional 3D NMOS (NMOS) and a Proposed 3D NMOS (Dummy Drain) according to an embodiment of the present invention. Is shown as a comparison graph.
  • FIG. 16A illustrates a result of a drain current that appears while changing a gate voltage after applying radiation to a conventional 3D NMOS (NMOS)
  • FIG. 16B illustrates a stereoscopic NMOS according to an embodiment of the present invention. The result of the drain current appearing while changing the gate voltage after applying radiation to a 3D dummy drain (NMOS) is shown.
  • NMOS 3D dummy drain
  • FIG. 17A illustrates a result of a drain current generated by changing a drain voltage after applying radiation to a conventional 3D NMOS (NMOS)
  • FIG. 17B illustrates a stereoscopic NMOS according to an embodiment of the present invention. The result of the drain current which appears while changing the drain voltage after applying radiation to a 3D dummy drain (NMOS) is shown.
  • NMOS 3D dummy drain
  • the radiation-resistant three-dimensional structure according to an embodiment of the present invention is proposed. It can be seen that unit MOSFETs are robust to single event phenomena. Also, referring to FIGS. 16 and 17, the experimental results show that the change in the current is suppressed even when the cumulative radiation is irradiated in the three-dimensional NMOS according to the embodiment of the present invention, compared to the conventional NMOS. Radiation-resistant three-dimensional unit MOSFET according to the embodiment can be confirmed that the robust to the cumulative ionization effect.
  • the radiation-resistant stereoscopic unit MOSFET according to an embodiment of the present invention is robust to both cumulative ionization effects and single event phenomena.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명은 내방사선 입체 단위 모스펫(3-dimensional MOSFET)에 관한 것으로, 누적 사건 영향과 단일 사건 영향을 최소화하기 위하여 더미 드레인(Dummy Drain; DD), N-웰 레이어(N-well layer; NW), 딥 N-웰 레이어(Deep N-well layer; DNW) 및 P+ 레이어(P+ layer) 중 적어도 어느 하나 이상을 선택적으로 추가한 내방사선 입체 단위 모스펫을 제안한다.

Description

단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 입체 단위 모스펫
본 발명은 내방사선 입체 단위 모스펫(3-dimensional MOSFET)에 관한 것으로, 보다 상세하게는 누적 이온화 효과 및 단일 사건 현상에 강인한 내방사선 특성을 갖는 입체 단위 모스펫에 관한 것이다.
방사선이란, 원자나 분자의 구성원들이 높은 에너지 준위의 상태로 불안정한 경우에 발산하는 에너지 흐름을 말하며, 엑스선, 감마선, 알파선, 베타선, 중성자, 양성자 등의 방사선 형태로 나타난다. 방사선 형태는 입자 형태 또는 전자파 형태로 구분되며, 입자 형태는 입자 방사선으로, 전자파 형태는 전자파 방사선이라 일컫는다.
이 때, 각기 다른 방사선이라도 에너지의 흐름이라는 본질로부터 에너지의 전달 또는 흡수되는 양의 크기에 따라, 방사선의 세기나 물체와 작용한 영향을 평가할 수 있다. 방사선이 입사하여 이온(Ion)을 생성하는 방사선을 전리 방사선이라 하며, 그 외의 것들은 비정리 방사선이라 한다. 특히, 전리 방사선은 전자부품을 구성하는 단위 모스펫(MOSFET)의 반도체 물질의 원자를 전리 또는 이온화 시켜 손상을 야기하므로, 반도체 소자는 정상적인 동작을 보장하지 못하고, 일시적 또는 영구적인 손상을 받게 된다.
방사선 입사에 의한 반도체 소자에서의 손상은 크게 누적 이온화 효과(Total Ionizing Dose Effect)와 단일 사건 효과(Single Event Effect)로 구분된다.
트랜지스터의 산화막 두께가 10nm 이상이고, 전기장이 형성되어 있는 부분에 전리 방사선이 입사하게 되면, 정공(Hole)이 산화막과 실리콘 간의 경계면에서 트래핑(Trapping)이 일어나게 된다. 보다 구체적으로, 게이트(Gate)에 전압이 인가된 상태로 전리 방사선이 입사하게 되면, 소스(Source)와 드레인(Drain) 사이의 산화막 경계면에 정공 트래핑(Hole trapping)이 발생하여 채널 반전(Channel inversion)이 일어나 전류가 흐르게 되는 누설 전류 경로(Leakage current path)가 형성된다. 전리 방사선에 의해 형성되는 누설 전류 경로는 단위 모스펫(MOSFET)의 비 정상적인 동작을 야기시키며, 이러한 현상을 누적 이온화 효과(Total Ionizing Dose Effect)이라 한다
.
도 1은 종래의 평면형 단위 모스펫(MOSFET)의 구성도를 도시한 것이고, 도 2는 입체 단위 모스펫(3-dimensional MOSFET) 중 하나인 핀펫(FinFET)의 구성도를 도시한 것이며, 도 3은 입체 단위 모스펫(3-dimensional MOSFET) 중 하나인 게이트 올 어라운드 모스펫(Gate-All-Around MOSFET; GAA MOSFET)의 구성도를 도시한 것이다.
도 1의 평면형 단위 모스펫은 트랜지스터(Transistor)의 동작을 제어하는 게이트(Gate)와 게이트에 의해 전류 신호가 흐르는 소스(Source), 드레인(Drain) 및 바디(Body)로 구성된다.
도 2 및 도 3의 입체 단위 모스펫은 게이트(Gate) 부분이 삼면(도 2의 핀펫의 경우) 또는 사면(도 3의 게이트 올 어라운드 모스펫의 경우)이 둘러 쌓여 있는 형태(서라운드(surround) 형태)로 구성되어 있다. 또한, 입체 단위 모스펫의 소스(Source) 및 드레인(Drain)은 게이트(Gate)의 양쪽 각각에 위치하며, 이로 인해 게이트에 의한 전류 신호는 기존의 평면형 단위 모스펫과 동일하게 소스 및 드레인으로 흐르게 된다.
도 1 내지 도 3에 도시된 단위 모스펫은 실리콘 기판(Silicon substrate) 상에 형성되며, 각 단위 모스펫의 소스(Source) 및 드레인(Drain)과 바디(Body)는 PN 접합(PN junction)으로 구성된다. 일 예로, 단위 모스펫의 PN 접합에서 N형 부분에 양 전압, P형 부분에 음 전압이 인가되는 역방향 바이어스(Reverse bias)가 형성될 때, 입자 방사선이 입사하게 되면, 전자 정공 쌍(Electron hole pair)들이 생성되고, 역방향 바이어스로 인해 형성된 전자장에 의한 전자 정공이 각기 소스(Source) 및 드레인(Drain) 방향과 바디(Body) 방향으로 흐르게 된다.
일반적으로는 PN 접합에서 역방향 바이어가 인가된 상태에서는 전류 펄스(Pulse)가 내부 전위(Built-in potential)의 평형상태보다 높으므로, 캐리어(Carrier)들이 반대영역으로의 이동이 불가능하여 전류가 흐르지 않는다. 반면에, 입사 방사선이 입사하여 발생하는 전류 펄스(Pulse)는 단위 모스펫(MOSFET)으로 구성된 회로에 영향을 주어 저장된 데이터를 변조시키는 등의 문제를 야기시킨다. 이러한 현상을 단일 사건 효과(Single Event Effect)라 한다. 특히 최근에는, 공정이 미세화해짐에 따라 게이트 커패시턴스(Capacitance)가 감소하여 단일 사건 효과로 발생된 전류 펄스에 의한 영향이 두드러지는 추세이다.
이러한 누적 이온화 효과와 단일 사건 효과에 의해 방사선 환경에서의 단위 모스펫(MOSFET)은 정상적인 동작을 보장할 수 없게 되며, 단위 모스펫으로 구성된 회로나 시스템 또한 방사선 환경에서 비정상적으로 동작하는 원인이 된다.
본 발명의 목적은 단일 사건 현상에 의해 생성되는 전류 펄스(Current pulse)에 의한 영향을 최소화하는 내방사선 입체 단위 모스펫(3-dimensional MOSFET)을 제공하고자 한다.
또한, 본 발명의 목적은 누적 이온화 효과에 의해 필드 산화막(Field Oxide)에 발생하는 고정전하에 의한 누설전류 경로를 차단하는 내방사선 입체 단위 모스펫(3-dimensional MOSFET)을 제공하고자 한다.
본 발명의 일 실시예에 따른 단일 사건으로 발생한 전류 펄스의 영향 및 누적 이온화 영향을 감소시키는 내방사선 입체 단위 모스펫에 있어서, 게이트(gate), 소스(source) 및 드레인(drain) 및 상기 소스 및 드레인에 연결되어 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조 상에 위치하며, 전압 인가가 가능하여 단일 사건 영향으로 발생하는 전류 펄스를 분산시키는 더미 드레인(Dummy Drain; DD)을 포함한다.
상기 더미 드레인은 상기 소스 및 상기 드레인 중 적어도 어느 하나 이상에 연결된 중립영역(Neutral Region)과 연결되어 위치할 수 있다.
상기 더미 드레인은 상기 소스 및 드레인의 좌측 및 우측 중 어느 하나 이상의 측면에 연결되어 ‘T’형, ‘ㄷ’형 또는 ‘I’형으로 형성될 수 있다.
상기 더미 드레인은 상기 소스 및 드레인에 전압 인가하여 단일 사건으로 인해 상기 소스 및 드레인으로 흐르는 전류를 분산시키며, 소자와 연결되어 있는 회로 영역 또는 시스템에 미치는 영향을 감소시킬 수 있다.
또한, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫은 상기 소스 및 드레인, 상기 게이트, 및 상기 더미 드레인에 일정 거리로 이격되어 형성되는 N-웰 레이어(N-well layer)를 더 포함할 수 있다.
상기 N-웰 레이어는 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조를 서라운드(surround)하는 기판(substrate)의 표면에 형성될 수 있다.
또한, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫은 상기 N-웰 레이어에 별도로 전압을 인가하는 N-웰/Metal-1 비아(N-well/Metal-1 via)를 더 포함하며, 상기 N-웰/Metal-1 비아는 상기 기판의 표면에 형성되어 상기 N-웰 레이어와 중첩될 수 있다.
또한, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫은 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조의 하부에 형성되는 딥 N-웰 레이어(Deep N-well layer)를 더 포함할 수 있다.
상기 딥 N-웰 레이어는 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조에 위치하는 상기 게이트, 상기 소스 및 드레인, 상기 더미 드레인 및 상기 N-웰 레이어의 하부에 형성되며, 상기 N-웰 레이어를 포함하는 길이로 형성될 수 있다.
본 발명의 실시예에 따른 단일 사건으로 발생한 전류 펄스의 영향 및 누적 이온화 영향을 감소시키는 내방사선 입체 단위 모스펫에 있어서, 게이트(gate), 소스(source) 및 드레인(drain) 및 상기 게이트 및 기판의 접점에 위치하는 필드 산화막(Field Oxide)의 측면에 위치하여 누적 이온화 영향에 의해 발생하는 누설 전류 경로를 차단하는 P+ 레이어(P+ layer)를 포함한다.
상기 P+ 레이어는 누적 이온화 영향에 의해 상기 필드 산화막의 계면(Interface)에서의 고정 전하(Fixed charge)에 의해 발생하는 상기 누설 전류 경로를 차단할 수 있다.
또한, 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫은 상기 소스 및 드레인에 연결되어 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조 상에 위치하여 전압 인가가 가능한 더미 드레인(Dummy Drain; DD)을 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫은 상기 게이트, 상기 소스 및 드레인 및 상기 더미 드레인에 일정 거리로 이격되어 형성되는 N-웰 레이어(N-well layer) 및 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조의 하부에 형성되는 딥 N-웰 레이어(Deep N-well layer)를 더 포함하여 상시 소스 및 드레인으로 흐르는 단일 사건 영향으로 발생하는 전류 펄스를 분산 또는 차단할 수 있다.
본 발명의 다른 실시예에 따른 단일 사건으로 발생한 전류 펄스의 영향 및 누적 이온화 영향을 감소시키는 내방사선 입체 단위 모스펫에 있어서, 게이트(gate), 소스(source) 및 드레인(drain), 상기 게이트 및 기판의 접점에 위치하는 필드 산화막(Field Oxide)의 측면에 위치하여 누적 이온화 영향에 의해 발생하는 누설 전류 경로를 차단하는 P+ 레이어(P+ layer) 및 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조의 하부에 형성되는 딥 N-웰 레이어(Deep N-well layer)를 포함할 수 있다.
상기 딥 N-웰 레이어는 단일 사건 영향으로 발생하는 전자 정공 쌍(Electron hole pair)들의 수집(Collection)을 차단할 수 있다.
전술한 상기 내방사선 입체 단위 모스펫은 PMOS 게이트 전극패턴이 구비된 PMOS, 또는 NMOS 게이트 전극패턴이 구비된 NMOS로 구현될 수 있다.
본 발명의 일 실시예에 따르면, N-액티브 레이어(N-active layer), N+ 레이어(N+ layer), N-웰 레이어(N-well layer), 딥 N-웰 레이어(Deep N-well layer), N+/Metal-1 비아(n+/Metal-1 via), N-웰/Metal-1 비아(N-well/Metal-1 via) 및 p+ 레이어(p+ layer) 중 적어도 일부의 레이아웃을 포함한 내방사선 입체 단위 모스펫을 제공하여, 단일 사건 영향에 따른 전류 펄스(Current pulse)를 감쇠시키고, 누적 이온화 효과에 의해 필드 산화막(Field oxide)에 발생하는 고정전하에 의한 누설전류 경로를 차단하여 회로에 미치는 영향을 최소화함으로써, 입자 방사선과 전자파 방사선이 존재하는 방사선 환경의 우주 공간, 타행성 탐사 및 원자력 발전소의 원자로에서 정상적으로 동작하는 전자부품 설계에 활용할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 트랜지스터 레이아웃(Transistor layout)에 변형을 가한 내방사선 입체 단위 모스펫(3D MOSFET)을 제공함으로써, 실리콘 온 인슐레이터(Silicon on Insulator: SOI) 및 실리콘 온 사파이어(Silicon on Sapphire: SOS)와 같은 별도의 기판 없이도, 기존의 실리콘 기판 공정에 적용이 가능할 수 있다.
도 1은 종래의 평면형 단위 모스펫(MOSFET)의 구성도를 도시한 것이다.
도 2는 입체 단위 모스펫(3-dimensional MOSFET) 중 하나인 핀펫(FinFET)의 구성도를 도시한 것이다.
도 3은 입체 단위 모스펫(3-dimensional MOSFET) 중 하나인 게이트 올 어라운드 모스펫(Gate-All-Around MOSFET; GAA MOSFET)의 구성도를 도시한 것이다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫의 구성도를 도시한 것이다.
도 5a 내지 도 5c는 본 발명의 실시예 1에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 6a 내지 도 6c는 본 발명의 실시예 2에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 7a 내지 도 7c는 본 발명의 실시예 3에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 8a 내지 도 8c는 본 발명의 실시예 4에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 9는 본 발명의 실시예 5에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 10은 본 발명의 실시예 6에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 11은 본 발명의 실시예 7에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 12는 본 발명의 실시예 8에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 13은 본 발명의 실시예 9에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 14는 본 발명의 실시예 10에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 15는 종래의 입체 단위 모스펫과 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫 간의 드레인 전류 파형에 대한 결과 그래프를 도시한 것이다.
도 16a 및 도 16b는 종래의 입체 단위 모스펫과 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫 간의 게이트 전압에 따른 드레인 전류에 대한 결과 그래프를 도시한 것이다.
도 17a 및 도 17b는 종래의 입체 단위 모스펫과 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫 간의 드레인 전압에 따른 드레인 전류에 대한 결과 그래프를 도시한 것이다.
이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 다만, 하기의 설명 및 첨부된 도면에서 본 발명의 요지를 흐릴 수 있는 공지 기능 또는 구성에 대한 상세한 설명은 생략한다. 또한, 도면 전체에 걸쳐 동일한 구성 요소들은 가능한 한 동일한 도면 부호로 나타내고 있음에 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위한 용어로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 본 발명은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되어지지 않는다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 발명의 실시예를 설명하기에 앞서, 단위 모스펫의 원리에 대해 간략하게 설명한다.
도 1은 종래의 평면형 단위 모스펫(planar MOSFET)의 구성도를 나타낸 것으로, 평면형 단위 모스펫은 N-액티브(N-active), 게이트(Gate), N+ 레이어(N+ layer)로 구성된다. 이 때, 각각의 레이아웃(layout)는 다음과 같은 역할을 수행한다.
N-액티브 레이어(N-active layer)는 트랜지스터(Transistor)의 액티브(Active) 영역을 지정하며, 공정 상에서 격리 필드 산화층(Isolation field oxide)이 영역 내에 생성되지 않도록 한다. 게이트 레이어(Gate layer)는 게이트 산화막(Gate oxide)을 형성시켜 게이트(Gate) 영역을 지정한다. N+ 레이어(N+ layer)는 셀프 얼라인(Self-align) 기법으로 형성되며, n-타입(n-type)의 높은 도핑 농도(Doping Concentration)를 갖는 소스(Source) 및 드레인(Drain)의 생성을 위한 레이어(layer)이다.
최근에는 공정이 미세화됨에 따라, 종래의 평면형 단위 모스펫은 게이트(Gate)를 통해 동작을 제어하는 데에 문제가 발생하게 되었다. 이를 해결하기 위해 게이트(Gate)를 입체화한 입체 단위 모스펫(3-Dimensional MOSFET)이 개발되었다.
도 2 및 도 3은 입체 단위 모스펫(3-dimensional MOSFET)의 구성도를 나타낸 것으로, 핀펫(FinFET) 및 게이트 올 어라운드 모스펫(Gate-All-Around MOSFET; GAA MOSFET)의 입체 단위 모스펫은 게이트(Gate) 영역의 구조에 따라 구분된다. 입체 단위 모스펫은 종래의 평면형 단위 모스펫(Planar MOSFET)과 동일하게 N-액티브(N-active), 폴리 게이트(Poly Gate) 및 N+ 레이어(N+ layer)로 구성된다.
입체 단위 모스펫(3-dimensional MOSFET)은 평면형 단위 모스펫과 달리 핀(Fin)의 하단 부에 모스펫 간의 구분을 위한 절연막(Oxide)이 존재하며, 방사선에 의해 발생되는 고정전하로 인해 핀(Fin)에서 게이트(Gate) 하단 부분에 누설 전류 경로를 포함한다. 고정전하의 문제를 해결하기 위해, 기존에는 일시적으로 드레인(Drain)과 소스(Source)의 양단에 고전압을 인가하여 핀(Fin)의 저항체 성분으로부터 발생하는 줄 히팅(Jole heating)에 의한 어닐링(Annealing) 기법으로 절연막에 존재하는 고정전하를 제거하였다. 다만, 기존의 방법으로는 방사선 환경에서 능동적으로 대처할 수 없으며, 어닐링(Annealing)을 위한 별도의 구성이 요구된다는 단점이 존재한다.
또한, 단일 사건 효과의 측면에서, 공정이 미세화됨에 따라 게이트 커패시턴스(Gate capacitance) 및 접합 커패시턴스(Junction capacitance)가 감소하므로, 데이터 반전(Upset)이 발생하게 되어 임계 전하량(Critical charge) 또한 감소하게 된다. 이러한 단일 사건 영향으로 인하여 발생하는 전류 펄스가 비교적 적은 양일지라도 입체 단위 모스펫으로 구성된 전자부품의 오작동을 야기시키는 문제가 된다.
본 발명에서는 전술한 바와 같은 누적 사건 영향과 단일 사건 영향을 최소화하기 위하여 더미 드레인(Dummy Drain; DD), N-웰 레이어(N-well layer; NW), 딥 N-웰 레이어(Deep N-well layer; DNW) 및 P+ 레이어(P+ layer) 중 적어도 어느 하나 이상을 선택적으로 추가한 내방사선 입체 단위 모스펫(3-dimensional MOSFET)을 제안한다. 각각의 레이어(layer)들은 방사선에 의해 발생하여 소스(Source) 및 드레인(Drain)으로 흐르는 단일 사건 전류 펄스(Single event current pulse)를 감소시키며, 누적 이온화 영향으로 인한 누설 전류 경로의 생성을 억제한다.
이하에서는 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫(3-Dimensional MOSFET)을 소스 및 드레인이 N형 반도체 영역이고, 기판이 P형 반도체 영역인 NMOS 게이트 전극 패턴이 구비된 NMOS으로 구분 정의하여 설명하였으나, 이는 NMOS에 한정하지 않으며, PMOS 게이트 전극패턴이 구비된 PMOS(예를 들면, 소스 및 드레인이 P형 반도체 영역이고, 기판이 N형 반도체 영역임)으로 구현될 수 있다.
본 발명의 누적 이온화 효과 및 단일 사건 현상에 강인한 내방사선 입체 단위 모스펫은 하기의 3가지 효과를 이용한다.
첫 번째, 본 발명은 더미 드레인(Dummy Drain; DD)을 이용하여 전류를 분산시킨다.
트랜지스터(Transistor)의 PN 접합에 인가되는 역방향 바이어스로 형성되는 전자장에 의해, 전자 정공이 소스(Source) 및 드레인(Drain) 방향과 바디(Body) 방향으로 전류 펄스(Pulse)를 발생시킨다. 이에, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫은 소스(Source) 및 드레인(Drain) 측면에 전압 인가가 가능한 더미 드레인(DD)을 이용하여 단일 사건으로 인해 소스(Source) 및 드레인(Drain)으로 흐르는 전류를 감소시킬 수 있다.
다만, 더미 드레인(DD)이 기존의 트랜지스터(Transistor)와 격리 필드 산화층(Isolation field oxide)으로 구분되어 위치하는 경우에는 그 효과가 감쇠하므로, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫은 N-액티브 레이어(N-active layer)를 통해 액티브 영역을 확장시키고, 더미 드레인(DD)으로 N+ 레이어(N+ layer)를 사용하며, N+Metal-1 비아(N+/Metal-1 via)를 통해 전압을 인가함으로써, 단일 사건으로 인해 발생하는 전류 펄스(Current pulse)를 상부의 더미 드레인(DD) 방향으로 흐르도록 하여 단일 사건 영향을 감소시킬 수 있다.
두 번째, 본 발명은 P+ 레이어(P+ layer)를 이용하여 누설 전류 경로를 억제한다.
본 발명의 실시예에 따른 내방사선 입체 단위 모스펫은 채널(Channel)이 형성된 게이트(Gate)를 둘러싼 핀(Fin) 구조 하단에 P+ 레이어를 포함한다. 핀 구조 하단의 절연층(Oxide) 측면부에 위치하는 P+ 레이어는 누적 이온화 영향으로 발생하는 절연층 경계(Interface)에 위치하여 고정전하에 의한 누설 전류 경로를 억제하며, 누설 전류 경로가 억제됨에 따라, 누적 이온화 영향을 감소시킬 수 있다.
세 번째, 본 발명은 N-웰 레이어(N-well layer) 및 딥 N-웰 레이어(Deep N-well layer)를 이용하여 단일 사건 영향을 감소시킨다.
트랜지스터(Transistor)의 소스(Source) 및 드레인(Drain)과 기판(Substrate) 간에는 PN 접합(PN Junction)이 형성되는데, 단일 사건에 의해 발생하는 전자 정공 쌍(Electron hole pair)들이 수집(collection)되는 깊이는 PN 접합 시, 형성되는 결핍 폭(Depletion width)의 약 3배 가량이 된다.
본 발명의 다른 실시예에 따른 내방사선 입체 단위 모스펫은 기판 부분에서 발생하는 전자 정공 쌍을 벽면이나 바닥면을 통해 흐르게 하여 회로와 연결되어 있는 소스(Source) 및 드레인(Drain)으로 흐르는 전류를 감소시킬 수 있다.
보다 구체적으로, 본 발명의 다른 실시예에 따른 내방사선 입체 단위 모스펫은 바닥면에 형성된 딥 N-웰 레이어 및 측면을 감싸는 형태로 형성된 N-웰 레이어를 포함할 수 있다. N-웰 레이어는 바닥면의 딥 N-웰 레이어와 연결되며, N-웰 레이어 상단에는 N-웰/Metal-1 비아(N-well/Metal-1 via)가 형성될 수 있다. 본 발명의 다른 실시예에 따른 내방사선 입체 단위 모스펫은 N-웰/Metal-1 비아를 통해 별도의 전압을 인가하여 단일 사건으로 인해 발생하는 전류 펄스(Current pulse)를 측면 및 바닥면으로 흐르도록 하며, 이에 따라 단일 사건 영향을 감소시킬 수 있다.
이하에서는 도 4a 내지 도 15를 참조하여 전술한 내방사선 입체 단위 모스펫(3-dimensional MOSFET)에 대해 상세히 설명하고자 한다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫의 구성도를 도시한 것이고, 도 5a 내지 도 5c는 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫의 구성도를 도시한 것이다.
도 4a 및 도 5a를 참조하면, 본 발명의 내방사선 입체 단위 모스펫(400)은 좌우측의 더미 드레인(Dummy Drain, 423)을 포함하며, 그 외곽에 형성된 N-웰 레이어(N-well layer, 431) 및 N-웰 레이어(431)의 하부에 형성된 딥 N-웰 레이어(Deep N-well layer, 432)를 포함한다. 이와 같은 구성은 도 5b 및 도 5c에 보다 자세하게 도시되어 있으며, N-웰 레이어(431) 및 딥 N-웰 레이어(432)는 내방사선 입체 단위 모스펫(400)의 측면 및 하면을 둘러싸도록(surround) 구성될 수 있다.
또한, 게이트(Gate, 420)를 포함하는 내방사선 입체 단위 모스펫(400)은 핀(Fin) 구조 내부의 측면부에 P+ 레이어(P+ layer, 451)을 포함할 수 있다. 도 5b를 참조하면, 게이트(420)가 둘러싼 핀(Fin) 구조 하단에서, 기판(또는 절연층, 410) 측면부의 P+ 레이어(451)는 누적 방사선으로 발생하는 고정전하로 인한 문턱전압 변화를 억제시키며, 누설 전류 경로의 형성을 차단할 수 있다.
다시 도 4a를 참조하면, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫(400)은 게이트(Gate, 420), 소스(Source, 421) 및 드레인(Drain, 422)과 더미 드레인(Dummy Drain; DD, 423)을 포함한다.
더미 드레인(423)은 소스(421) 및 드레인(422)에 연결되어 내방사선 입체 단위 모스펫(400)의 핀(Fin) 구조 상에 위치하며, 전압 인가가 가능하여 단일 사건 영향으로 발생하는 전류 펄스를 분산시킨다.
더미 드레인(423)은 소스(421) 및 드레인(422) 중 적어도 어느 하나 이상에 연결된 중립영역(Neutral Region, 425)과 연결되어 위치할 수 있으며, ‘T’형, ‘ㄷ’형 또는 ‘I’형으로 형성될 수 있다. 소스(421) 및 드레인(422)의 좌측 및 우측 중 어느 하나 이상의 측면에서 T’형, ‘ㄷ’형 또는 ‘I’형으로 형성되는 더미 드레인(423)에 대해서는 이하의 도 9 내지 도 14를 통해 상세히 설명한다.
더미 드레인(423)은 소스(421) 및 드레인(422)에 전압을 인가하며, 단일 사건으로 인해 소스(421) 및 드레인(422)으로 흐르는 전류를 분산시키고, 소자와 연결되어 있는 회로 영역 또는 시스템에 미치는 영향을 감소시킬 수 있다. 이를 위해, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫(400)은 도 4a 및 도 4b에 도시된 바와 같이 게이트의 P-액티브 레이어(440), 핀 구조의 N-액티브 레이어(427)와 N+ 레이어(426) 및 N+/Metal-1 비아(N+/Metal-1 via, 424)를 포함할 수 있다. 보다 구체적으로, 게이트의 P-액티브 레이어(440)는 게이트(420)의 하단부분과 두꺼운 산화막층(410)이 결합된 부분에 위치하며, P-액티브 레이어(440) - P+ 레이어(451) - N-액티브 레이어(427) - N+ 레이어(426) 구조를 포함한 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫(400)은 고정전하로 인해 발생할 수 있는 문턱전압의 변화를 억제시킬 수 있다.
단일 사건으로 생성되는 전자 정공 쌍(Electron hole pair)은 트랜지스터(Transistor)의 PN 접합에 인가되는 역방향 바이어스에 의해 형성된 전자장에 의한 것으로, 각기 소스(421) 및 드레인(422) 방향 및 바디(Body, 411) 방향으로 전류 펄스를 발생시킨다.
본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫(400)은 N-웰 레이어(N-well layer, 431) 및 딥 N-웰 레이어(Deep N-well layer, DNW, 432)을 포함하며, N-웰 레이어(431) 및 딥 N-웰 레이어(432)를 이용하여 전류 펄스를 옆면이나 바닥면을 통해 흐르도록 하여 소스(421) 및 드레인(422)으로 흐르는 전류 펄스를 감소시킨다. 이를 위해, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫(400)은 도 4a 및 도 4b에 도시된 바와 같이 N-웰 레이어(431), 딥 N-웰 레이어(432) 및 N-웰/Metal-1 비아(N-well/Metal-1 via, 433)를 포함할 수 있다.
N-웰 레이어(431)는 게이트(420), 소스(421) 및 드레인(422), 더미 드레인(423)에 일정 거리로 이격되어 형성되며, 내방사선 입체 단위 모스펫(400)의 핀(Fin) 구조를 서라운드(surround)하는 기판(substrate, 410)의 표면에 형성될 수 있다.
이 때, 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫(400)은 N-웰 레이어(431)에 별도로 전압을 인가하는 N-웰/Metal-1 비아(N-well/Metal-1 via, 433)를 더 포함할 수 있으며, N-웰/Metal-1 비아(433)는 기판(410)의 표면에 형성되어 N-웰 레이어(431)와 중첩될 수 있다.
딥 N-웰 레이어(432)는 내방사선 입체 단위 모스펫(400)의 핀(Fin) 구조에 위치하는 게이트(420), 소스(421) 및 드레인(422), 더미 드레인(423) 및 N-웰 레이어(431)의 하부에 형성되며, N-웰 레이어(431)를 포함하는 길이로 형성될 수 있다.
이하에서는 도면을 참조하여 본 발명의 다양한 실시형태에 대해 설명하고자 한다.
더미 드레인(DD, 423), N-웰 레이어(N-well layer, 431), 딥 N-웰 레이어(Deep N-well layer; DNW, 432), P+ 레이어(P+ layer, 451)를 모두 적용한 내방사선 입체 단위 모스펫(400)을 실시예 1로, 더미 드레인(DD, 423)만 적용한 내방사선 입체 단위 모스펫(400)을 실시예 2로, 더미 드레인(DD, 423)과 딥 N-웰 레이어(Deep N-well layer; DNW, 432)를 적용한 내방사선 입체 단위 모스펫(400)을 실시예 3으로, 딥 N-웰 레이어(Deep N-well layer; DNW, 432)만 적용한 내방사선 입체 단위 모스펫(400)을 실시예 4로 설명한다.
또한, 소스(421), 게이트(420), 드레인(422)의 일직선 상으로, 소스(421) 또는 드레인(422)의 측면에 위치하는 단일 개의 더미 드레인(DD, 423)을 적용한 내방사선 입체 단위 모스펫(400)을 실시예 5로, 소스(421) 및 드레인(422)의 좌측 또는 우측 측면에 위치하는 단일 개의 더미 드레인(DD, 423)을 적용한 내방사선 입체 단위 모스펫(400)을 실시예 6으로 설명한다.
또한, 소스(421) 및 드레인(422)의 좌측 및 우측 측면에 위치하여 ‘T’ 형을 나타내는 더미 드레인(DD, 423)을 적용한 내방사선 입체 단위 모스펫(400)을 실시예 7로, 소스(421) 및 드레인(422)의 좌측 또는 우측에 위치하여 ‘ㄷ’ 형을 나타내는 더미 드레인(DD, 423)을 적용한 내방사선 입체 단위 모스펫(400)을 실시예 8로, 더미 드레인(DD, 423)이 소스(421) 및 드레인(422)의 좌측 및 우측 각각에 하나씩 위치한 내방사선 입체 단위 모스펫(400)을 실시예 9로, 소스(421) 및 드레인(422)의 좌측 및 우측 각각에 모두 위치하여 ‘I’ 형을 나타내는 더미 드레인(DD, 423)을 적용한 내방사선 입체 단위 모스펫(400)을 실시예 10으로 설명한다.
[실시예 1]
도 5a 내지 도 5c는 본 발명의 실시예 1에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
보다 상세하게는, 도 5a는 본 발명의 실시예 1에 따른 내방사선 입체 단위 모스펫의 입체 모식도를 도시한 것이고, 도 5b는 도 5a의 XX’ 단면을 도시한 것이며, 도 5c는 도 5a의 YY’ 단면을 도시한 것이다.
도 5a 내지 도 5c를 참조하면, 내방사선 입체 단위 모스펫(400)은 더미 드레인(DD, 423), N-웰 레이어(N-well layer, 431), 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 및 P+ 레이어(P+ layer, 451)를 모두 포함할 수 있다. 이 때, 각 레이어 및 내방사선 입체 단위 모스펫(400)의 구조는 앞서 전술하였으므로, 생략하기로 한다.
[실시예 2]
도 6a 내지 도 6c는 본 발명의 실시예 2에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
보다 상세하게는, 도 6a는 본 발명의 실시예 2에 따른 내방사선 입체 단위 모스펫의 입체 모식도를 도시한 것이고, 도 6b는 도 6a의 XX’ 단면을 도시한 것이며, 도 6c는 도 6a의 YY’ 단면을 도시한 것이다.
도 6a 내지 도 6c는 P+ 레이어(P+ layer, 451)와 게이트의 P-액티브 레이어(440), 핀 구조의 N-액티브 레이어(427), N+ 레이어(426) 및 N+/Metal-1 비아(N+/Metal-1 via, 424)를 이용하여 더미 드레인(DD, 423)을 적용한 내방사선 입체 단위 모스펫(400)일 수 있다.
도 6a 내지 도 6c에 도시된 내방사선 입체 단위 모스펫(400)의 구조는 실시예 1과 비교하여 상대적으로 좁은 면적으로의 구현이 가능하며, 공정의 특성상 실시예 1과 같은 구조를 사용할 수 없는 경우 또는 딥 N-웰 레이어(Deep N-well layer; DNW, 432)를 사용할 수 없는 경우에 사용이 용이할 수 있다.
[실시예 3]
도 7a 내지 도 7c는 본 발명의 실시예 3에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
보다 상세하게는, 도 7a는 본 발명의 실시예 3에 따른 내방사선 입체 단위 모스펫의 입체 모식도를 도시한 것이고, 도 7b는 도 7a의 XX’ 단면을 도시한 것이며, 도 7c는 도 7a의 YY’ 단면을 도시한 것이다.
도 7a 내지 도 7c를 참조하면, 내방사선 입체 단위 모스펫(400)은 P+ 레이어(P+ layer, 451), 더미 드레인(423) 및 바닥면의 딥 N-웰 레이어(Deep N-well layer; DNW, 432)만 포함할 수 있다. 이는 N-웰 레이어(N-well layer, 431)을 이용하여 내방사선 입체 단위 모스펫(400)을 둘러싼(surround) 형태는 아니지만, 바닥면에 딥 N-웰 레이어(Deep N-well layer; DNW, 432)를 배치시킨 형태이다.
내방사선 입체 단위 모스펫(400)은 기판(410)과 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 사이에 형성되는 PN 접합으로 인하여 바닥면에 별도의 전압을 인가할 수 없으므로, 단일 사건으로 인해 발생하는 전류 펄스(Current pulse)는 바닥면을 통해 흐르지 않는다. 또한, 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 하단부에서 단일 사건으로 인하여 발생하는 전자 정공 쌍(Electron hole pair)들은 수집(collection)되지 않으므로, 단일 사건 영향을 감소시킬 수 있다.
도 7a 내지 도 7c에 도시된 내방사선 입체 단위 모스펫(400)은 실시예 1과 비교하여 상대적으로 좁은 면적으로의 구현이 가능하며, 상용 공정의 특정 디자인 룰(design rule) 상에서 실시예 1이 위배되는 경우 또는 내방사선 입체 단위 모스펫(400)을 둘러싸는(surround) N-웰 레이어(N-well layer, 431)를 사용할 수 없는 경우에 사용이 용이할 수 있다.
[실시예 4]
도 8a 내지 도 8c는 본 발명의 실시예 4에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
보다 상세하게는, 도 8a는 본 발명의 실시예 4에 따른 내방사선 입체 단위 모스펫의 입체 모식도를 도시한 것이고, 도 8b는 도 8a의 XX’ 단면을 도시한 것이며, 도 8c는 도 8a의 YY’ 단면을 도시한 것이다.
도 8a 내지 도 8c를 참조하면, 내방사선 입체 단위 모스펫(400)은 P+ 레이어(P+ layer, 451) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432)만 포함할 수 있다. 실시예 4에서 내방사선 입체 단위 모스펫(400)은 더미 드레인(423) 및 핀(fin) 구조를 둘러싸는(surround) N-웰 레이어(N-well layer, 431)를 포함하지 않는다.
내방사선 입체 단위 모스펫(400)은 기판(410)과 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 사이에 형성되는 PN 접합으로 인하여 바닥면에 별도의 전압을 인가할 수 없으므로, 단일 사건으로 인해 발생하는 전류 펄스(Current pulse)는 바닥면을 통해 흐르지 않는다. 또한, 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 하단부에서 단일 사건으로 인하여 발생하는 전자 정공 쌍(Electron hole pair)들은 수집(collection)되지 않으므로, 단일 사건 영향을 감소시킬 수 있다.
도 8a 내지 도 8c에 도시된 내방사선 입체 단위 모스펫(400)은 실시예 1보다 작은 면적으로 단위 소자를 설계하여야 하는 환경에서 사용 가능하며, 상용 공정의 특정 디자인 룰(design rule) 상에서 실시예 1이 위배되는 경우 또는 내방사선 입체 단위 모스펫(400)을 둘러싸는(surround) N-웰 레이어(N-well layer, 431)를 사용할 수 없는 경우에 사용이 용이할 수 있다.
[실시예 5]
도 9는 본 발명의 실시예 5에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 9를 참조하면, 내방사선 입체 단위 모스펫(400)은 소스(421) - 게이트(420) - 드레인(422)의 일직선 상에 배치된 더미 드레인(423)을 포함할 수 있다. 이 때, 더미 드레인(423)은 소스(421) 또는 드레인(422)의 측면에 단일 개로 위치할 수 있다.
도 9에 도시된 내방사선 입체 단위 모스펫(400)은 앞서 전술한 실시예 1, 실시예 2 및 실시예 3에서와 같이 P+ 레이어(P+ layer, 451)에 더미 드레인(423), N-웰 레이어(N-well layer, 431) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 모두를 적용한 경우, 더미 드레인(423)만 적용한 경우, 더미 드레인(423) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432)을 적용한 경우, 모두를 적용할 수 있다.
[실시예 6]
도 10은 본 발명의 실시예 6에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 10을 참조하면, 내방사선 입체 단위 모스펫(400)은 소스(421) 및 드레인(422)의 좌측 또는 우측의 측면에 배치된 단일 개의 더미 드레인(423)을 포함할 수 있다.
도 10에 도시된 내방사선 입체 단위 모스펫(400)은 앞서 전술한 실시예 1, 실시예 2 및 실시예 3에서와 같이 P+ 레이어(P+ layer, 451)에 더미 드레인(423), N-웰 레이어(N-well layer, 431) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 모두를 적용한 경우, 더미 드레인(423)만 적용한 경우, 더미 드레인(423) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432)을 적용한 경우, 모두를 적용할 수 있다.
[실시예 7]
도 11은 본 발명의 실시예 7에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 11을 참조하면, 내방사선 입체 단위 모스펫(400)은 소스(421) 및 드레인(422)의 좌측 또는 우측의 측면에 배치된 적어도 하나 이상의 더미 드레인(423)을 포함할 수 있다. 실시예 7에 따라서, 적어도 하나 이상의 더미 드레인(423)이 소스(421) 및 드레인(422)의 측면에 위치하여 ‘T’자 형태를 나타낼 수 있다.
도 11에 도시된 내방사선 입체 단위 모스펫(400)은 앞서 전술한 실시예 1, 실시예 2 및 실시예 3에서와 같이 P+ 레이어(P+ layer, 451)에 더미 드레인(423), N-웰 레이어(N-well layer, 431) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 모두를 적용한 경우, 더미 드레인(423)만 적용한 경우, 더미 드레인(423) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432)을 적용한 경우, 모두를 적용할 수 있다.
[실시예 8]
도 12는 본 발명의 실시예 8에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 12를 참조하면, 내방사선 입체 단위 모스펫(400)은 소스(421) 및 드레인(422)의 좌측 또는 우측 각각에 배치된 적어도 하나 이상의 더미 드레인(423)을 포함할 수 있다. 실시예 8에 따라서, 적어도 하나 이상의 더미 드레인(423)이 소스(421) 및 드레인(422)의 측면 각각에 위치하여 ‘ㄷ’자 형태를 나타낼 수 있다.
도 12에 도시된 내방사선 입체 단위 모스펫(400)은 앞서 전술한 실시예 1, 실시예 2 및 실시예 3에서와 같이 P+ 레이어(P+ layer, 451)에 더미 드레인(423), N-웰 레이어(N-well layer, 431) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 모두를 적용한 경우, 더미 드레인(423)만 적용한 경우, 더미 드레인(423) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432)을 적용한 경우, 모두를 적용할 수 있다.
[실시예 9]
도 13은 본 발명의 실시예 9에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 13를 참조하면, 내방사선 입체 단위 모스펫(400)은 소스(421) 및 드레인(422)의 좌측 및 우측 각각에 단일 개로 배치된 더미 드레인(423)을 포함할 수 있다. 실시예 9에 따라서, 적어도 하나 이상의 더미 드레인(423)이 소스(421) 및 드레인(422)의 좌측과 우측 각각에 하나씩 위치한 형태를 나타낼 수 있다.
도 13에 도시된 내방사선 입체 단위 모스펫(400)은 앞서 전술한 실시예 1, 실시예 2 및 실시예 3에서와 같이 P+ 레이어(P+ layer, 451)에 더미 드레인(423), N-웰 레이어(N-well layer, 431) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 모두를 적용한 경우, 더미 드레인(423)만 적용한 경우, 더미 드레인(423) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432)을 적용한 경우, 모두를 적용할 수 있다.
[실시예 10]
도 14는 본 발명의 실시예 10에 따른 내방사선 입체 단위 모스펫을 도시한 것이다.
도 14를 참조하면, 내방사선 입체 단위 모스펫(400)은 소스(421) 및 드레인(422)의 좌측 및 우측 모두에 배치된 적어도 하나 이상의 더미 드레인(423)을 포함할 수 있다. 실시예 10에 따라서, 적어도 하나 이상의 더미 드레인(423)이 소스(421) 및 드레인(422)의 좌측 및 우측 모두에 위치하여 ‘I’자 형태를 나타낼 수 있다.
도 14에 도시된 내방사선 입체 단위 모스펫(400)은 앞서 전술한 실시예 1, 실시예 2 및 실시예 3에서와 같이 P+ 레이어(P+ layer, 451)에 더미 드레인(423), N-웰 레이어(N-well layer, 431) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432) 모두를 적용한 경우, 더미 드레인(423)만 적용한 경우, 더미 드레인(423) 및 딥 N-웰 레이어(Deep N-well layer; DNW, 432)을 적용한 경우, 모두를 적용할 수 있다.
도 15는 종래의 입체 단위 모스펫과 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫 간의 드레인 전류 파형에 대한 결과 그래프를 도시한 것이고, 도 16a 및 도 16b는 종래의 입체 단위 모스펫과 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫 간의 게이트 전압에 따른 드레인 전류에 대한 결과 그래프를 도시한 것이며, 도 17a 및 도 17b는 종래의 입체 단위 모스펫과 본 발명의 실시예에 따른 내방사선 입체 단위 모스펫 간의 드레인 전압에 따른 드레인 전류에 대한 결과 그래프를 도시한 것이다.
보다 상세하게는, 도 15는 종래의 NMOS(Conventional 3D NMOS)와 본 발명의 일 실시예에 따른 입체 NMOS(Proposed 3D NMOS(Dummy Drain)) 각각에 방사선을 인가한 후, 나타나는 드레인 전류 파형의 결과를 비교 그래프로 도시한 것이다.
또한, 도 16a는 종래의 NMOS(Conventional 3D NMOS)에 방사선을 인가한 후, 게이트 전압을 변경시키면서 나타나는 드레인 전류의 결과를 도시한 것이며, 도 16b는 본 발명의 일 실시예에 따른 입체 NMOS(Proposed 3D NMOS(Dummy Drain))에 방사선을 인가한 후, 게이트 전압을 변경시키면서 나타나는 드레인 전류의 결과를 도시한 것이다.
또한, 도 17a는 종래의 NMOS(Conventional 3D NMOS)에 방사선을 인가한 후, 드레인 전압을 변경시키면서 나타나는 드레인 전류의 결과를 도시한 것이며, 도 17b는 본 발명의 일 실시예에 따른 입체 NMOS(Proposed 3D NMOS(Dummy Drain))에 방사선을 인가한 후, 드레인 전압을 변경시키면서 나타나는 드레인 전류의 결과를 도시한 것이다.
도 15를 참조하면, 실험 결과로부터, 본 발명의 일 실시예에 따른 입체 NMOS가 종래의 NMOS에 비해 원활한 드레인 전류 파형(아래쪽 그래프)을 나타내므로, 제안한 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫은 단일 사건 현상에 강인 것을 확인 할 수 있다. 또한, 도 16과 도 17을 참조하면, 실험 결과로부터, 본 발명의 일 실시예에 따른 입체 NMOS가 종래의 NMOS에 비해 누적 방사선이 조사되더라도 전류의 변화가 억제됨을 나타내므로, 제안한 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫은 누적이온화 효과에 강인한 것을 확인 할 수 있다.
도 15 내지 도 17b를 통해 전술한 바와 같이, 제안한 본 발명의 일 실시예에 따른 내방사선 입체 단위 모스펫은 누적 이온화 효과 및 단일 사건 현상에 모두 강인한 것을 알 수 있다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (16)

  1. 단일 사건으로 발생한 전류 펄스의 영향 및 누적 이온화 영향을 감소시키는 내방사선 입체 단위 모스펫에 있어서,
    게이트(gate);
    소스(source) 및 드레인(drain); 및
    상기 소스 및 드레인에 연결되어 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조 상에 위치하며, 전압 인가가 가능하여 단일 사건 영향으로 발생하는 전류 펄스를 분산시키는 더미 드레인(Dummy Drain; DD)
    을 포함하는 내방사선 입체 단위 모스펫.
  2. 제1항에 있어서,
    상기 더미 드레인은
    상기 소스 및 상기 드레인 중 적어도 어느 하나 이상에 연결된 중립영역(Neutral Region)과 연결되어 위치하는 내방사선 입체 단위 모스펫.
  3. 제2항에 있어서,
    상기 더미 드레인은
    상기 소스 및 드레인의 좌측 및 우측 중 어느 하나 이상의 측면에 연결되어 ‘T’형, ‘ㄷ’형 또는 ‘I’형으로 형성되는 내방사선 입체 단위 모스펫.
  4. 제1항에 있어서,
    상기 더미 드레인은
    상기 소스 및 드레인에 전압 인가하여 단일 사건으로 인해 상기 소스 및 드레인으로 흐르는 전류를 분산시키며, 소자와 연결되어 있는 회로 영역 또는 시스템에 미치는 영향을 감소시키는 내방사선 입체 단위 모스펫.
  5. 제1항에 있어서,
    상기 소스 및 드레인, 상기 게이트, 및 상기 더미 드레인에 일정 거리로 이격되어 형성되는 N-웰 레이어(N-well layer)
    를 더 포함하는 내방사선 입체 단위 모스펫.
  6. 제5항에 있어서,
    상기 N-웰 레이어는
    상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조를 서라운드(surround)하는 기판(substrate)의 표면에 형성되는 내방사선 입체 단위 모스펫.
  7. 제6항에 있어서,
    상기 N-웰 레이어에 별도로 전압을 인가하는 N-웰/Metal-1 비아(N-well/Metal-1 via)를 더 포함하며,
    상기 N-웰/Metal-1 비아는
    상기 기판의 표면에 형성되어 상기 N-웰 레이어와 중첩되는 것을 특징으로 하는 내방사선 입체 단위 모스펫.
  8. 제5항에 있어서,
    상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조의 하부에 형성되는 딥 N-웰 레이어(Deep N-well layer)
    를 더 포함하는 내방사선 입체 단위 모스펫.
  9. 제8항에 있어서,
    상기 딥 N-웰 레이어는
    상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조에 위치하는 상기 게이트, 상기 소스 및 드레인, 상기 더미 드레인 및 상기 N-웰 레이어의 하부에 형성되며, 상기 N-웰 레이어를 포함하는 길이로 형성되는 것을 특징으로 하는 내방사선 입체 단위 모스펫.
  10. 단일 사건으로 발생한 전류 펄스의 영향 및 누적 이온화 영향을 감소시키는 내방사선 입체 단위 모스펫에 있어서,
    게이트(gate);
    소스(source) 및 드레인(drain); 및
    상기 게이트 및 기판의 접점에 위치하는 필드 산화막(Field Oxide)의 측면에 위치하여 누적 이온화 영향에 의해 발생하는 누설 전류 경로를 차단하는 P+ 레이어(P+ layer)
    를 포함하는 내방사선 입체 단위 모스펫.
  11. 제10항에 있어서,
    상기 P+ 레이어는
    누적 이온화 영향에 의해 상기 필드 산화막의 계면(Interface)에서의 고정 전하(Fixed charge)에 의해 발생하는 상기 누설 전류 경로를 차단하는 것을 특징으로 하는 내방사선 입체 단위 모스펫.
  12. 제10항에 있어서,
    상기 소스 및 드레인에 연결되어 상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조 상에 위치하여 전압 인가가 가능한 더미 드레인(Dummy Drain; DD)
    을 더 포함하는 내방사선 입체 단위 모스펫.
  13. 제12항에 있어서,
    상기 게이트, 상기 소스 및 드레인 및 상기 더미 드레인에 일정 거리로 이격되어 형성되는 N-웰 레이어(N-well layer); 및
    상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조의 하부에 형성되는 딥 N-웰 레이어(Deep N-well layer)
    를 더 포함하여 상시 소스 및 드레인으로 흐르는 단일 사건 영향으로 발생하는 전류 펄스를 분산 또는 차단하는 것을 특징으로 하는 내방사선 입체 단위 모스펫.
  14. 단일 사건으로 발생한 전류 펄스의 영향 및 누적 이온화 영향을 감소시키는 내방사선 입체 단위 모스펫에 있어서,
    게이트(gate);
    소스(source) 및 드레인(drain);
    상기 게이트 및 기판의 접점에 위치하는 필드 산화막(Field Oxide)의 측면에 위치하여 누적 이온화 영향에 의해 발생하는 누설 전류 경로를 차단하는 P+ 레이어(P+ layer); 및
    상기 내방사선 입체 단위 모스펫의 핀(Fin) 구조의 하부에 형성되는 딥 N-웰 레이어(Deep N-well layer)
    를 포함하는 내방사선 입체 단위 모스펫.
  15. 제14항에 있어서,
    상기 딥 N-웰 레이어는
    단일 사건 영향으로 발생하는 전자 정공 쌍(Electron hole pair)들의 수집(Collection)을 차단하는 내방사선 입체 단위 모스펫.
  16. 제1항, 제10항 및 제14항 중 어느 한 항에 있어서,
    상기 내방사선 입체 단위 모스펫은
    PMOS 게이트 전극패턴이 구비된 PMOS, 또는 NMOS 게이트 전극패턴이 구비된 NMOS로 구현되는 내방사선 입체 단위 모스펫.
PCT/KR2018/012031 2018-04-04 2018-10-12 단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 입체 단위 모스펫 WO2019194380A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180039296 2018-04-04
KR10-2018-0039296 2018-04-04
KR10-2018-0101106 2018-08-28
KR1020180101106A KR101948481B1 (ko) 2018-04-04 2018-08-28 단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 입체 단위 모스펫

Publications (1)

Publication Number Publication Date
WO2019194380A1 true WO2019194380A1 (ko) 2019-10-10

Family

ID=65366163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012031 WO2019194380A1 (ko) 2018-04-04 2018-10-12 단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 입체 단위 모스펫

Country Status (6)

Country Link
US (1) US10756167B2 (ko)
EP (1) EP3565006A1 (ko)
KR (1) KR101948481B1 (ko)
CN (2) CN110350033B (ko)
TW (1) TWI703676B (ko)
WO (1) WO2019194380A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927667B1 (ko) * 2018-03-15 2018-12-10 한국과학기술원 단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 단위 모스펫
CN112002642A (zh) * 2019-05-27 2020-11-27 北京大学 一种抗总剂量辐射效应的FinFET器件设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497171B1 (en) * 2012-07-05 2013-07-30 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET method and structure with embedded underlying anti-punch through layer
KR20140050700A (ko) * 2011-08-05 2014-04-29 수볼타, 인크. 핀 구조물을 갖는 반도체 디바이스 및 그 제조 방법
KR20150002029A (ko) * 2013-06-28 2015-01-07 한국과학기술원 내방사선 모조 게이트를 이용한 단위 모스펫
US20160027911A1 (en) * 2013-04-03 2016-01-28 Peking University A Radiation-Hardened-by-Design (RHBD) Multi-Gate Device and a Fabrication Method Thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147676A (ja) * 1990-10-11 1992-05-21 Nec Corp 半導体装置及びその製造方法
JPH04373161A (ja) * 1991-06-22 1992-12-25 Nec Corp 半導体装置
JP3149920B2 (ja) * 1998-04-14 2001-03-26 日本電気株式会社 Mosトランジスタ及びその製造方法
US8735990B2 (en) * 2007-02-28 2014-05-27 International Business Machines Corporation Radiation hardened FinFET
US8451028B2 (en) 2011-03-22 2013-05-28 University Of Saskatchewan Methods and devices for detecting single-event transients
US8877594B2 (en) 2011-11-14 2014-11-04 Peking University CMOS device for reducing radiation-induced charge collection and method for fabricating the same
US10256325B2 (en) 2012-11-08 2019-04-09 Infineon Technologies Austria Ag Radiation-hardened power semiconductor devices and methods of forming them
US8907380B1 (en) 2013-06-28 2014-12-09 Korea Advanced Institute Of Science Radiation tolerant dummy gate-assisted n-MOSFET, and method and apparatus for modeling channel of semiconductor device
US10896852B2 (en) * 2015-09-17 2021-01-19 Intel Corporation Methods for doping a sub-fin region of a semiconductor fin structure and devices containing the same
US9515171B1 (en) * 2015-10-22 2016-12-06 International Business Machines Corporation Radiation tolerant device structure
US10038058B2 (en) * 2016-05-07 2018-07-31 Silicon Space Technology Corporation FinFET device structure and method for forming same
US9960086B2 (en) * 2016-09-23 2018-05-01 Globalfoundries Inc. Methods, apparatus and system for self-aligned retrograde well doping for finFET devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140050700A (ko) * 2011-08-05 2014-04-29 수볼타, 인크. 핀 구조물을 갖는 반도체 디바이스 및 그 제조 방법
US8497171B1 (en) * 2012-07-05 2013-07-30 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET method and structure with embedded underlying anti-punch through layer
US20160027911A1 (en) * 2013-04-03 2016-01-28 Peking University A Radiation-Hardened-by-Design (RHBD) Multi-Gate Device and a Fabrication Method Thereof
KR20150002029A (ko) * 2013-06-28 2015-01-07 한국과학기술원 내방사선 모조 게이트를 이용한 단위 모스펫

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAO ZHANG: "Research on single-event transient mechanism in a novel SOI CMOS technology", IEICE ELECTRONICS EXPRESS, 3 September 2014 (2014-09-03), pages 1 - 10, XP055645644 *

Also Published As

Publication number Publication date
EP3565006A1 (en) 2019-11-06
CN116895698A (zh) 2023-10-17
US20190312102A1 (en) 2019-10-10
US10756167B2 (en) 2020-08-25
TW201943023A (zh) 2019-11-01
CN110350033A (zh) 2019-10-18
KR101948481B1 (ko) 2019-02-14
TWI703676B (zh) 2020-09-01
CN110350033B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US8354722B2 (en) SCR/MOS clamp for ESD protection of integrated circuits
WO2019194380A1 (ko) 단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 입체 단위 모스펫
US4660065A (en) Hall effect device with surface potential shielding layer
WO2018101770A1 (ko) 2단자 수직형 1t-디램 및 그 제조 방법
CN110190121A (zh) 具有瞬时剂量率辐射加固结构的横向soi高压器件
WO2019177210A1 (ko) 단일 사건 현상과 누적 이온화 현상에 강인한 내방사선 단위 모스펫
Hara et al. Radiation Resistance of SOI Pixel Devices Fabricated With OKI 0.15$\mu {\rm m} $ FD-SOI Technology
JP3348782B2 (ja) 半導体装置の製造方法
Lee et al. Radiation-tolerance analysis of I-gate n-MOSFET according to isolation oxide module in the CMOS bulk process
JPS61290753A (ja) 相補形mis半導体集積回路装置
WO2020036327A1 (ko) 쇼트 채널 tft 제작 방법 및 쇼트채널 tft 구조
JP2596340B2 (ja) 半導体装置
WO2015034147A1 (ko) 식별키 생성 장치 및 방법
JP3259395B2 (ja) 半導体集積回路
WO2021137433A1 (ko) 터널 전계효과트랜지스터 및 이를 포함하는 삼진 인버터
WO2023239181A1 (ko) 고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법
JPS63307757A (ja) 耐放射線型半導体装置
Chan et al. SOI/bulk hybrid technology on SIMOX wafers for high performance circuits with good ESD immunity
JPH06140502A (ja) 半導体装置の製造方法
WO2020141757A1 (ko) 트랜지스터 소자, 이를 포함하는 삼진 인버터 장치, 및 이의 제조 방법
JP2701853B2 (ja) Mis型半導体装置
US5675171A (en) Integrated insulated gate field effect transistors with thin insulation region between field insulation regions
JP2676769B2 (ja) 半導体装置
El-Kareh et al. Field-induced instabilities in polyimide passivated lateral PNP transistors
JPH05335565A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913630

Country of ref document: EP

Kind code of ref document: A1