WO2019194332A1 - 모듈형 산소발생기 - Google Patents

모듈형 산소발생기 Download PDF

Info

Publication number
WO2019194332A1
WO2019194332A1 PCT/KR2018/004021 KR2018004021W WO2019194332A1 WO 2019194332 A1 WO2019194332 A1 WO 2019194332A1 KR 2018004021 W KR2018004021 W KR 2018004021W WO 2019194332 A1 WO2019194332 A1 WO 2019194332A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
tank
block
assembly
manifold
Prior art date
Application number
PCT/KR2018/004021
Other languages
English (en)
French (fr)
Inventor
홍승훈
Original Assignee
홍승훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍승훈 filed Critical 홍승훈
Priority to PCT/KR2018/004021 priority Critical patent/WO2019194332A1/ko
Priority to US17/040,976 priority patent/US11779875B2/en
Priority to JP2021503682A priority patent/JP7250293B2/ja
Priority to CN201880092179.4A priority patent/CN111936726B/zh
Priority to PE2020001526A priority patent/PE20211338A1/es
Priority to CA3095459A priority patent/CA3095459C/en
Priority to EP18913821.7A priority patent/EP3779133B1/en
Publication of WO2019194332A1 publication Critical patent/WO2019194332A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating

Definitions

  • the present invention relates to an oxygen generator, and more particularly, to a modular oxygen generator consisting of a tank assembly having a plurality of oxygen collection tanks and piping assemblies disposed respectively above and below.
  • Oxygen generators are devices that generate oxygen by chemical reactions or by separating oxygen from the air, and are widely used in various fields such as industrial, medical, and home.
  • Figure 1 schematically shows the structure of a conventional oxygen generator, showing an exemplary structure using a pressure circulation adsorption (PSA) method of separating oxygen from the air.
  • the oxygen generator uses an air tank (1) for supplying compressed air, two oxygen collection tanks (2, 3) for separating nitrogen and oxygen from the air supplied from the air tank (1), and oxygen generated in the oxygen collection tank.
  • An oxygen tank 4 for storing.
  • the oxygen collection tanks 2 and 3 contain an adsorbent such as zeolite and separate and concentrate oxygen using the principle that nitrogen in the air is adsorbed to the adsorbent by pressure.
  • the valve V1 and the valve V3 are opened so that the compressed air is supplied from the air tank 1 to the first oxygen collection tank 2 through the pipe P1.
  • nitrogen is adsorbed to the adsorbent and oxygen is discharged to the oxygen tank 4.
  • the valve V2 When nitrogen is sufficiently adsorbed to the adsorbent of the first oxygen collection tank 2, the valve V2 is opened to supply air to the second oxygen collection tank 3.
  • the valve V3 is switched so that oxygen is discharged from the second oxygen collecting tank 3 to the oxygen tank 4, whereby nitrogen is adsorbed to the adsorbent in the second oxygen collecting tank 3 and oxygen is absorbed from the oxygen tank 4. Will be discharged.
  • the cleaning process is performed in the first oxygen collection tank 2. That is, the valve V1 is switched so that nitrogen adsorbed to the adsorbent is discharged to the outside of the first oxygen collection tank 2.
  • the pressure of the first oxygen collection tank 2 is reduced, the valve V4 is partially opened, and a part of the oxygen generated in the second oxygen collection tank 3 is used as the purge gas. To release nitrogen quickly.
  • a pair of oxygen collection tanks are provided, and oxygen is continuously generated by alternately repeating a cleaning process while the other generates oxygen in one collection tank.
  • the conventional oxygen generator there is a disadvantage in that it takes a long time to supply sufficient high concentration oxygen, that is, a warm-up time, after operating the oxygen generator device.
  • a warm-up time Immediately after the start of the operation, the oxygen concentration in the air, ie approximately 20% oxygen, is discharged from the oxygen collection tanks 2 and 3, and then over time the concentration of oxygen released gradually increases to discharge high concentration oxygen. Done.
  • such a warm-up time takes about several tens of minutes to 1 hour, so there is a problem in that necessary oxygen cannot be used sufficiently during this time.
  • an oxygen generator that can significantly reduce the warm-up time compared to the prior art.
  • the load on the oxygen collection tank can be greatly reduced compared to the conventional Provide a generator.
  • a modular oxygen generator comprising: a tank assembly in which a plurality of tanks are coupled; A lower piping assembly disposed below the tank assembly and having a piping for supplying air to the tank assembly and for discharging nitrogen; And an upper piping assembly disposed above the tank assembly and having a piping for discharging oxygen generated in the tank assembly, wherein the tank assembly comprises: a plurality of beds each comprising a pair of oxygen collection tanks; An air tank for storing air to be supplied to the oxygen collection tank; And an oxygen tank configured to receive and store oxygen from the oxygen collection tank, wherein the lower pipe assembly includes an air supply passage for supplying air from the air tank to each of the oxygen collection tanks, and each of the oxygen collection tanks.
  • the manifold may include: first to third flow paths disposed side by side in the manifold; First and second upper openings formed on an upper surface of the manifold and configured to communicate with each of the pair of oxygen trap tanks of each bed; And a lower opening region formed on the lower surface of the manifold by the number of the beds and formed of a plurality of openings, each of the lower opening regions communicating with each of the first to third flow paths. To third lower openings; And fourth and fifth lower openings communicating with the first and second upper openings, respectively.
  • the upper pipe assembly includes a pipe block installed on the tank assembly as many times as the number of beds, wherein each of the pipe blocks, a pair of oxygen collection tank of the bed
  • a lower block including a first through hole communicating with each of the first through holes, a check valve installed at each of the first through holes, and a first connection channel connecting the first through holes;
  • An upper block disposed above the lower block and including a second connection channel connecting the first through hole; And a second valve operative to open and close the first connection channel, wherein the upper blocks of the respective pipe blocks are in communication with each other.
  • the pipes respectively installed on the upper and lower portions of the oxygen collection tank assembly may be integrated into a manifold or a block to reduce the complexity of the pipe and stabilize the supply flow rate and flow rate.
  • the modular oxygen generator of the present invention can be installed by attaching a plurality of parallel wires in parallel, so the installation is simple and the maintenance is easy.
  • 1 is a view for explaining a conventional oxygen generator
  • FIG. 2 is a view for explaining a modular oxygen generator according to an embodiment of the present invention.
  • Figure 3 is a view for explaining the lower structure of the modular oxygen generator of the present invention.
  • FIG. 4 is a perspective view of a modular oxygen generator according to one embodiment
  • FIG. 5 is a front view of a modular oxygen generator according to one embodiment
  • FIG. 6 is a rear view of the modular oxygen generator according to one embodiment
  • FIG. 7 is a plan view of a modular oxygen generator according to one embodiment
  • FIG. 8 is a bottom view of a modular oxygen generator according to one embodiment
  • FIG. 9 is an exploded perspective view of a modular oxygen generator according to one embodiment
  • FIG. 10 is a perspective view of a manifold of the lower piping assembly of a modular oxygen generator according to one embodiment
  • FIG. 11 is a perspective view from another perspective of a manifold according to one embodiment
  • FIG. 12 is a cross-sectional view taken along the line AA ′ of FIG. 10;
  • FIG. 13 is a cross-sectional view taken along the line BB ′ of FIG. 10;
  • FIG. 15 is a perspective view of the upper piping assembly of the modular oxygen generator according to one embodiment
  • FIG. 16 is a cross-sectional view taken along the line CC ′ of FIG. 15;
  • 17 is a view for explaining the effect of the modular oxygen generator according to an embodiment.
  • FIG. 2 is a view for explaining a modular oxygen generator according to an embodiment of the present invention, for convenience of description, the oxygen collection tank, the air tank, the oxygen tank and the pipes and valves connected between them in the oxygen generator Bay is shown schematically.
  • the modular oxygen generator may be implemented by connecting a plurality of beds (B) consisting of a pair of oxygen collection tank.
  • the leftmost pair of oxygen collection tanks T1 and T2 constitute the first bed B1.
  • a pair of oxygen trap tanks T3 and T4 next to it constitute a second bed
  • a pair of oxygen trap tanks T5 and T6 next to it constitute a third bed. That is, it will be understood that the oxygen generator of the illustrated embodiment is composed of five beds.
  • the oxygen generator is composed of five beds B, but this is an exemplary embodiment and the number of beds may vary depending on the actual embodiment.
  • the bed (B1) is composed of the first oxygen collection tank (T1), the second oxygen collection tank (T2), the bed (B1) and air It includes a plurality of pipes and valves connecting between the tank (TA) and the oxygen tank (TO).
  • the air tank TA stores air to be supplied to the oxygen collection tanks T1 and T2 and supplies air to the oxygen collection tanks T1 and T2 as necessary.
  • the first and second oxygen collection tanks T1 and T2 alternately receive air from the air tank TA and generate oxygen by separating oxygen from the air.
  • each oxygen collection tank (T1, T2) is filled with a nitrogen adsorbent, such as zeolite, and when the air passes through the oxygen collection tank (T1, T2), the nitrogen components are adsorbed to separate oxygen to generate oxygen. Can be.
  • valves V11 and V12 for controlling the fluid flow are disposed.
  • the first supply valve V11 controls the opening and closing of the pipe between the air tank TA and the first oxygen collection tank T1
  • the second supply valve V12 is the air tank TA and the second oxygen collection tank ( Control opening and closing of pipes between T2).
  • Oxygen trap tanks T1 and T2 may discharge nitrogen in the tank to the outside in the state in which the air supply from the air tank TA is stopped.
  • the valve V11 is switched to discharge nitrogen from the first oxygen collection tank T1 to the outside, and at the same time, air flows into the second oxygen collection tank T2.
  • the valve V12 may be switched to flow in.
  • Oxygen generated in each oxygen collection tank (T1, T2) is discharged to the oxygen tank (TO).
  • the first discharge valve V13 is opened and the second discharge valve V14 is closed. Accordingly, oxygen generated in the first oxygen collection tank T1 may be supplied to the oxygen tank TO through the first discharge valve V13, and at this time, nitrogen in the second oxygen collection tank T2 may be It is discharged to the outside through the first supply valve (V12).
  • valve V15 provided in the bypass path connecting the two oxygen collection tanks T1 and T2 is partially written and partially opened, and partial oxygen of the first oxygen collection tank T1 is transferred to the second oxygen collection tank T2. ) May be supplied to function as a purging gas.
  • the oxygen generator includes a plurality of beds B that are the same as or similar to the first bed B1 described above.
  • the oxygen generator is composed of a plurality of beds (B) connected in parallel. That is, oxygen collection tanks T1 to T10 of the beds B are connected to the air tank TA and the oxygen tank TO, respectively.
  • the first oxygen collection tank and the second oxygen collection tank of each bed B alternately perform oxygen collection and cleaning operations, but may operate with a slight time difference between the plurality of beds B.
  • each of the first to second beds B2 to B5 includes the first first.
  • the oxygen collection tanks T3, T5, T7, and T9 perform the oxygen collection operation, and the oxygen collection and cleaning operations between the first and second oxygen collection tanks T3 and T4 of the second bed B2 are switched.
  • Each of the first oxygen collection tanks T1, T5, T7, and T9 in the first and third to fifth beds B1, B3 to B5 performs an oxygen trapping operation, and in this way, the first and the third and fifth beds in each bed.
  • the remaining bed may control the first or second oxygen collection tank to perform the oxygen collection operation.
  • the device volume can be significantly reduced compared to the conventional oxygen generator.
  • the conventional 5 Nm 3 / only having a pair of oxygen collection tank as shown in FIG. Compared to the h-capacity oxygen generator, the device volume can be reduced by 1/10 or more, and by reducing the volume of the oxygen collection tank, the warm-up time can be significantly reduced compared to the conventional method.
  • each of the plurality of beds (B) and when switching the operation between the first and second oxygen collection tank in one bed in the remaining bed in the first or second oxygen collection tank Since the oxygen collection operation is performed, the operation switching occurs only in one bed at any one time, so that the pressure change of the oxygen tank is not large and a continuous and stable oxygen supply is possible.
  • FIG 3 shows the lower structure of the prototype implementing the oxygen generator of Figure 2 described above.
  • the illustrated product includes ten oxygen collection tanks T1 to T10 arranged in a 5 * 2 arrangement, and a plurality of valves and pipes are installed on the upper and lower portions of the oxygen collection tank.
  • the oxygen generator of the present invention has the advantage of greatly reducing the overall device volume and continuously and stably produce oxygen, many valves in the upper and lower portions of the oxygen collection tank (T1 to T10) And piping must be connected and installed.
  • one valve V11 to V52
  • three pipes are connected to each valve, so at least 10 valves and 30 pipes are provided under the 10 oxygen collection tanks (T1 to T10). Should be connected.
  • the oxygen collection tank (T1 to T10) is reduced in volume, while a large number of valves and pipes are installed there is a problem that the device is complicated and difficult to maintain.
  • FIGS. 5 to 8 show a front view, a rear view, a top view, and a bottom view, respectively, of the modular oxygen generator.
  • the modular oxygen generator according to an embodiment of the tank assembly 10, the lower piping assembly 20 disposed on the lower portion of the tank assembly 10, and the upper piping assembly 30 disposed on the upper portion Include.
  • the tank assembly 10 may include a plurality of oxygen collection tanks 100, one air tank TA, and one oxygen tank TO.
  • a total of ten oxygen collection tanks 100 are configured in a 5 * 2 arrangement by connecting five beds composed of a pair of oxygen collection tanks.
  • the number of beds can vary depending on the specific embodiment.
  • the first bed includes a first oxygen capture tank T1 and a second oxygen capture tank T2, and the second bed includes a third oxygen capture tank T3 and a fourth oxygen capture tank T4.
  • the third bed includes a fifth oxygen collection tank (T5) and a sixth oxygen collection tank (T6)
  • the fourth bed includes a seventh oxygen collection tank (T7) and an eighth oxygen collection tank (T8).
  • the fifth bed includes a ninth oxygen collection tank T9 and a tenth oxygen collection tank T10.
  • the lower piping assembly 20 is disposed below the tank assembly 10 and includes a flow path and a valve for supplying air to the tank assembly 10 and discharging nitrogen.
  • the lower pipe assembly 20 may include a manifold 200 having a plurality of flow paths formed therein and a plurality of valves 250 attached to a lower surface of the manifold 200.
  • the lower piping assembly 20 will be described later with reference to FIGS. 10 to 15.
  • the upper piping assembly 30 is disposed above the tank assembly 10 and includes a flow path and a valve for discharging oxygen generated in the tank assembly 10.
  • the upper pipe assembly 30 includes a pipe block 300 installed on the tank assembly 10 by the number of beds, and each pipe block 300 has at least one flow path therein.
  • Each of the plurality of lower blocks 310, the intermediate block 320, the upper block 330, and the valve 340 may be formed.
  • the plurality of piping blocks 300 may be connected by one connection block 350.
  • the upper pipe assembly 30 will be described later with reference to FIGS. 16 and 17.
  • air inlet 411 external air is supplied to the modular oxygen generator through the air inlet 411.
  • Air supplied to the air inlet 411 passes through the U-shaped pipe 413 and is supplied to the upper portion of the air tank TA.
  • Air stored in the air tank TA may be branched inside the manifold 200 of the lower pipe assembly 20 and supplied to each oxygen collection tank 100.
  • Oxygen generated in the oxygen collection tank 100 is supplied to the oxygen tank TO through the connection block 350 of the upper pipe assembly 30 and the oxygen transfer pipe 421 connected thereto.
  • Oxygen collected in the oxygen tank (TO) may be supplied to the outside through the discharge pipe (423,425,427).
  • the nitrogen discharged from the oxygen collection tank 100 by the cleaning operation of the oxygen collection tank 100 may be discharged to the outside through the discharge pipes 431 and 435 after collecting into the manifold 200 of the lower pipe assembly 30. have.
  • FIG. 9 is an exploded perspective view of the modular oxygen generator according to one embodiment, showing a state in which the tank assembly 10, the lower piping assembly 20, and the upper piping assembly 30 are separated, and for convenience of description. , Oxygen, and nitrogen inlet and outlet tubes 411, 413, 423, 425, 427, 431, 435 are omitted.
  • the tank assembly 10 includes five beds, each of which consists of a pair of oxygen collection tanks T1, T2; T3, T4; T5, T6; T7, T8; T9, T10.
  • a pair of oxygen collection tanks are fastened to the upper connecting plate 110 and the lower connecting plate 130 to be integrally coupled to each other, and the plurality of beds connect the upper connecting plate 110 to the upper connecting frame 120.
  • the entire bed is integrally coupled by being fastened to the lower connecting frame 140 for connecting the lower connecting plate (130).
  • Each upper connecting plate 110 coupled to the upper part of the oxygen collection tank includes through holes 111 and 112 so that the oxygen collection tank and the upper piping assembly 30 communicate with each other, and the air tank TA and the oxygen tank TO
  • the upper connection plate 110 coupled to also includes through holes 115 and 116.
  • each of the lower connecting plates 130 coupled to the lower portion of the oxygen collection tank includes a through hole so that the oxygen collection tank and the lower piping assembly 20 can communicate with each other.
  • the lower connecting plate 130 coupled to the oxygen tank TO also includes a through hole.
  • FIGS. 10-13 An exemplary structure of the manifold 200 of the lower piping assembly 20 will now be described with reference to FIGS. 10-13.
  • 10 and 11 are perspective views of the manifold 200 of the lower piping assembly 20 viewed from different perspectives
  • FIG. 12 is a cross-sectional view taken along line AA ′ of FIG. 10
  • FIG. 13 is FIG. 10. Sectional drawing cut along the line B-B 'of the figure.
  • the manifold 200 has a long block shape.
  • the manifold 200 includes three flow paths, that is, first to third flow paths 211, 212 and 213, which are disposed in parallel with each other in the length direction.
  • the first and second flow paths 211 and 212 may be a nitrogen discharge flow path for collecting nitrogen discharged from the oxygen collection tank 100 and discharging them to the outside
  • the third flow path 213 may be an oxygen collection tank 100. It can function as an oxygen supply flow path for supplying oxygen.
  • a plurality of openings 201, 202, 203, and 204 are formed in the upper surface of the manifold 200.
  • the first and second openings 201 and 202 are for communicating with each of the pair of oxygen collection tanks of each bed of the tank assembly 10 and are formed at positions aligned with each oxygen collection tank 100.
  • ten openings 201 and 202 are formed in the upper surface of the manifold 200.
  • the five first openings 201 are connected to the first oxygen collection tanks T1, T3, T5, T7, and T9 of the first to fifth beds, respectively, and the five second openings 202 are respectively It may be connected to the second oxygen collection tank (T2, T4, T6, T8, T10) of the first to fifth beds, respectively.
  • the third opening 203 formed on the upper surface of the manifold 200 is for communicating with the air tank TA and is formed at a position aligned with the air tank TA.
  • the third opening 203 and the third flow path 213 are configured to communicate within the manifold 200.
  • the fourth opening 204 formed on the upper surface of the manifold 200 is for communicating with the oxygen tank TO and is formed at a position aligned with the oxygen tank TO.
  • a side opening 205 is formed at a side surface of the manifold 200 adjacent to the fourth opening 204, and the fourth opening 204 and the side opening 205 are inside the manifold 200.
  • Figure 14 schematically shows a cross section of a lower piping assembly 20 coupled to and below a first bed consisting of a pair of oxygen collection tanks T1 and T2.
  • the manifold 200 is attached to the lower portion of the lower connecting plate 130 connecting the pair of oxygen collection tank (T1, T2).
  • the first oxygen collection tank T1 communicates with the first opening 201 of the upper surface of the manifold 200 through the first through hole 131 of the lower connecting plate 130.
  • the second oxygen collection tank T2 communicates with the second opening 202 of the upper surface of the manifold 200 through the second through hole 132 of the lower connecting plate 130.
  • the valve 251 is attached to the lower surface of the manifold 200.
  • the valve may be a solenoid valve, for example, but is not limited thereto. Also, for convenience of description, detailed components such as wires for controlling the valve are omitted.
  • the valve 251 operates to connect or close the first and second openings 201 and 202 and the first to third flow paths 211, 212 and 213.
  • the first opening 201 And the third flow path 213 communicate with each other, and the second opening 202 and the second flow path 212 communicate with each other. Accordingly, the air stored in the air tank TA is supplied to the first oxygen collection tank T1 and the nitrogen discharged from the second oxygen collection tank T2 is discharged to the outside through the discharge pipe 431.
  • the first oxygen collection tank T1 performs the cleaning operation and the second oxygen collection tank T2 is generating oxygen
  • the first opening 201 and the first flow path. 211 communicates with each other
  • the second opening 202 and the third flow path 213 communicate with each other. Accordingly, the air stored in the air tank TA is supplied to the second oxygen collection tank T2, and nitrogen discharged from the first oxygen collection tank T1 is discharged to the outside through the discharge pipe 431.
  • an additional through hole or opening is formed inside the manifold 200 to connect or close the first and second openings 201 and 202 and the first to third flow paths 211, 212 and 213 by the operation of the valve 251 as described above. Can be.
  • FIG. 15 is a perspective view of the upper piping assembly 30 according to an embodiment
  • FIG. 16 is a cross-sectional view taken along the line CC ′ of FIG. 15.
  • FIG. 16 also shows an upper portion of the first bed composed of a pair of oxygen collection tanks T1 and T2 for ease of explanation.
  • the upper piping assembly 30 includes as many piping blocks 300 as the number of beds of the tank assembly 10.
  • Each piping block 300 may be composed of a lower block 310, an intermediate block 320, an upper block 330, and a valve 340, the plurality of piping block 300 is one connection block ( 350).
  • the lower block 310 includes through holes 311 and 312 communicating with each of the pair of oxygen trap tanks T1 and T2 of the bed, check valves 313 and 314 installed in the respective through holes 311 and 312, and through holes 311 and 312. It may include a connection channel 315 for connecting.
  • the intermediate block 320 is interposed between the lower block 310 and the upper block 330.
  • two intermediate blocks 320 are installed on one lower block 310.
  • Each intermediate block 320 includes a through hole 321 penetrating in the vertical direction.
  • Each intermediate block 320 is arranged such that the through holes 321 of the intermediate block 320 are aligned with the through holes 311 and 312 of the lower block 310 one by one.
  • the upper block 330 is disposed above the intermediate block 320 and includes a connection passage 331 therein. Both ends of the connection passage 331 communicate with the through holes 321 of the intermediate block 320, respectively.
  • connection block 350 is coupled to one side of the upper block 330.
  • the connection block 350 is combined with all of the plurality of upper blocks 330.
  • the connection block 350 includes a connection flow path 351 formed therein along the longitudinal direction, and communicates with the connection flow path 331 of each upper block 330 through the connection pipe 333. Therefore, all the upper block 330 is in communication with each other by the connection block 350.
  • valve 340 is installed to open and close the connection passage 315 of the lower block 310.
  • the valve 340 is disposed between the lower block 310 and the upper block 330, but the installation position of the valve 340 may vary.
  • the first check valve 313 is opened and the second check valve ( 314 is closed. Therefore, oxygen generated in the first oxygen collection tank T1 is transferred to the connection flow path 351 of the connection block 350 through the through hole 321, the connection flow path 331, and the connection pipe 333. After it is supplied to the oxygen tank (TO) through the oxygen transfer pipe 421 is stored. At this time, the connection flow path 315 may be at least partially opened by the valve 340, and when opened, a part of the oxygen of the first oxygen collection tank T1 may be a purging gas to the second oxygen collection tank T2. Can be supplied.
  • the first check valve 313 is closed and the second check valve 314 is opened. do. Therefore, oxygen generated in the second oxygen collection tank T2 is transferred to the connection flow path 351 of the connection block 350 through the through hole 321, the connection flow path 331, and the connection pipe 333 to transfer oxygen. It is supplied to the oxygen tank TO through the pipe 421.
  • the connection flow path 315 may be at least partially opened by the valve 340, and when opened, a part of the oxygen of the second oxygen collection tank T2 is purged into the first oxygen collection tank T1. Can be supplied.
  • each of the modular oxygen having one, two, three, four, and five beds of the tank assembly 10, respectively Oxygen generation performance curve of generator.
  • the X axis represents oxygen yield and the Y axis represents oxygen purity.
  • the increase in the amount of oxygen generated decreases drastically.
  • the purity decreases slowly even if the oxygen generation amount increases, and when five beds are installed, the amount of oxygen generated may be higher than that of one to four oxygen generators as shown in the rightmost graph.
  • the purity of the oxygen can be represented as high as approximately 85% without a significant decrease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Valve Housings (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 모듈형 산소발생기에 관한 것으로, 일 실시예에 따르면, 다수의 탱크가 결합된 탱크 어셈블리; 상기 탱크 어셈블리의 하부에 배치되며 상기 탱크 어셈블리로 공기를 공급하고 질소를 배출하는 배관을 구비한 하부 배관 어셈블리; 및 상기 탱크 어셈블리의 상부에 배치되며 상기 탱크 어셈블리에서 생성되는 산소를 배출하는 배관을 구비한 상부 배관 어셈블리;를 포함하고, 상기 탱크 어셈블리는, 각각이 한 쌍의 산소포집 탱크로 이루어진 복수개의 베드; 상기 산소포집 탱크로 공급할 공기를 저장하는 공기 탱크; 및 상기 산소포집 탱크로부터 산소를 공급받아 저장하는 산소 탱크;를 포함하고, 상기 하부 배관 어셈블리는, 다수의 유로가 내부에 형성된 매니폴드; 및 상기 베드의 개수만큼 상기 매니폴드에 결합되는 복수개의 밸브;를 포함하는 것을 특징으로 하는 모듈형 산소발생기를 제공한다.

Description

모듈형 산소발생기
본 발명은 산소발생기에 관한 것으로, 보다 상세하게는, 복수개의 산소포집 탱크를 구비한 탱크 어셈블리 및 그 상부와 하부에 각각 배치되는 배관 어셈블리로 구성되는 모듈형 산소발생기에 관한 것이다.
산소발생기는 화학반응 또는 공기에서 산소를 분리하는 방식 등에 의해 산소를 생성하는 장치로서 오늘날 산업용, 의료용, 가정용 등 여러 분야에서 많이 사용되고 있다. 도1은 종래의 산소발생기의 구조를 개략적으로 도시한 것으로, 공기에서 산소를 분리하는 압력순환흡착(PSA) 방식을 사용하는 예시적 구조를 나타낸다. 산소발생기는 압축 공기를 공급하는 공기 탱크(1), 공기 탱크(1)에서 공급받은 공기에서 질소와 산소를 분리하는 두 개의 산소 포집 탱크(2,3), 및 산소 포집 탱크에서 생성된 산소를 저장하는 산소 탱크(4)를 포함한다.
산소 포집 탱크(2,3)는 제올라이트와 같은 흡착제를 포함하고 있으며 압력에 의해 공기중의 질소가 흡착제에 흡착되는 원리를 이용하여 산소를 분리 및 농축한다. 밸브(V1)와 밸브(V3)를 개방하여 공기 탱크(1)에서 압축 공기가 배관(P1)을 통해 제1 산소 포집 탱크(2)로 공급되도록 한다. 공기가 제1 산소 포집 탱크(2)를 통과함에 따라 질소가 흡착제에 흡착되고 산소가 산소 탱크(4)로 배출된다.
제1 산소 포집 탱크(2)의 흡착제에 질소가 충분히 흡착되면 밸브(V2)를 개방하여 공기가 제2 산소 포집 탱크(3)로 공급되도록 한다. 밸브(V3)는 제2 산소 포집 탱크(3)에서 산소 탱크(4)로 산소가 배출되도록 전환되며, 이에 따라 제2 산소 포집 탱크(3)에서 질소가 흡착제에 흡착되고 산소가 산소 탱크(4)로 배출되게 된다. 이 때 제1 산소 포집 탱크(2)에서는 클리닝 공정이 수행된다. 즉 밸브(V1)를 전환하여, 흡착제에 흡착된 질소가 제1 산소 포집 탱크(2) 외부로 배출되도록 한다. 이를 위해 제1 산소 포집 탱크(2)의 압력을 감압시키고, 밸브(V4)를 일부 개방하여 제2 산소 포집 탱크(3)에서 생성되고 있는 산소 중 일부를 퍼지 가스로서 제1 산소 포집 탱크(2)로 주입함으로써 질소를 신속히 배출하도록 한다.
이와 같이 종래 산소발생기에서는 한 쌍의 산소 포집 탱크를 마련하여, 하나의 포집 탱크에서 산소를 생성하는 동안 다른 하나는 클리닝을 하는 공정을 교대로 반복함으로써 산소를 계속적으로 생성한다.
그런데 이러한 종래 산소발생기에 따르면 산소발생기 장치를 작동시킨 후 충분한 고농도 산소를 공급하기까지의 시간, 즉 워밍업 시간이 오래 걸리는 단점이 있다. 장치의 작동 개시 직후에는 공기 중의 산소 농도, 즉 대략 20% 농도의 산소가 산소 포집 탱크(2,3)로부터 배출되고 그 후 시간이 지남에 따라 배출되는 산소의 농도가 서서히 증가하여 고농도 산소를 배출하게 된다. 종래 산소발생기의 경우 이러한 워밍업 시간이 수십분 내지 1시간 가량 소요되므로 이 시간 동안에는 필요한 산소를 충분히 사용할 수 없는 문제가 있다.
또한 종래 산소발생기의 경우 용량이 커질수록 산소발생기의 장치 부피와 무게가 크게 증가하므로 설치 공간의 많이 차지하고 설치 및 유지보수가 용이하지 않은 문제점도 있다.
본 발명의 일 실시예에 따르면 종래에 비해 워밍업 시간을 대폭 줄일 수 있는 산소발생기를 제공한다.
본 발명의 일 실시예에 따르면, 클리닝 중인 산소포집 탱크에 퍼지 가스로서 공급할 산소를 위해 각 산소포집 탱크가 부담해야 할 산소 생산량을 줄임으로써 산소포집 탱크에 걸리는 부하를 종래 대비 크게 감소할 수 있는 산소발생기를 제공한다.
또한 본 발명의 일 실시예에 따르면 산소포집 탱크 어셈블리의 상부와 하부에 각각 설치되는 배관을 매니폴드나 블록으로 일체화하여 구성함으로써 배관의 복잡성을 해소하고 공급유량 및 유속을 안정화할 수 있는 산소발생기를 제공한다.
본 발명의 일 실시예에 따르면, 모듈형 산소발생기로서, 다수의 탱크가 결합된 탱크 어셈블리; 상기 탱크 어셈블리의 하부에 배치되며 상기 탱크 어셈블리로 공기를 공급하고 질소를 배출하는 배관을 구비한 하부 배관 어셈블리; 및 상기 탱크 어셈블리의 상부에 배치되며 상기 탱크 어셈블리에서 생성되는 산소를 배출하는 배관을 구비한 상부 배관 어셈블리;를 포함하고, 상기 탱크 어셈블리는, 각각이 한 쌍의 산소포집 탱크로 이루어진 복수개의 베드; 상기 산소포집 탱크로 공급할 공기를 저장하는 공기 탱크; 및 상기 산소포집 탱크로부터 산소를 공급받아 저장하는 산소 탱크;를 포함하고, 상기 하부 배관 어셈블리는, 상기 공기 탱크로부터 상기 산소포집 탱크의 각각으로 공기를 공급하는 공기공급 유로 및 상기 산소포집 탱크의 각각에서 생성되는 질소를 외부로 배출하는 질소배출 유로가 내부에 형성된 매니폴드; 및 상기 베드의 개수만큼 상기 매니폴드에 결합되며 각 베드의 한 쌍의 산소포집 탱크와 상기 공기공급 유로 및 질소배출 유로 사이를 개폐하는 복수개의 제1 밸브;를 포함하는 것을 특징으로 하는 모듈형 산소발생기를 제공한다.
본 발명의 일 실시예에 따르면, 상기 매니폴드가, 상기 매니폴드 내부에서 서로 나란히 배치된 제1 내지 제3 유로; 상기 매니폴드의 상부면에 형성되고 각 베드의 한 쌍의 산소포집 탱크의 각각과 연통하도록 형성된 제1 및 제2 상부 개구부; 및 상기 매니폴드의 하부면에 상기 베드의 개수만큼 형성되고 다수의 개구부로 이루어진 하부 개구부 영역;를 포함하고, 상기 하부 개구부 영역의 각각은, 상기 제1 내지 제3 유로의 각각과 연통하는 제1 내지 제3 하부 개구부; 및 상기 제1 및 제2 상부 개구부와 각각 연통하는 제4 및 제5 하부 개구부;를 포함하는 것을 특징으로 하는 모듈형 산소발생기를 제공한다.
본 발명의 일 실시예에 따르면, 상기 상부 배관 어셈블리가, 상기 탱크 어셈블리의 상부에 상기 베드의 개수만큼 설치되는 배관 블록을 포함하되, 각각의 상기 배관 블록은, 상기 베드의 한 쌍의 산소포집 탱크의 각각과 연통하는 제1 관통구, 각각의 제1 관통구에 설치된 체크밸브, 및 제1 관통구를 연결하는 제1 연결유로를 포함하는 하부블록; 상기 하부블록의 상부에 배치되며, 상기 제1 관통구를 연결하는 제2 연결유로를 포함하는 상부블록; 및 상기 제1 연결유로를 개폐하도록 동작하는 제2 밸브;를 포함하고, 상기 각 배관블록의 상부블록들끼리 서로 연통되어 있는 것을 특징으로 하는 모듈형 산소발생기를 제공한다.
본 발명의 일 실시예에 따르면, 산소포집 탱크의 체적을 줄임으로써 종래에 비해 워밍업 시간을 대폭 줄일 수 있는 이점이 있다.
본 발명의 일 실시예에 따르면 산소포집 탱크 어셈블리의 상부와 하부에 각각 설치되는 배관을 매니폴드나 블록으로 일체화하여 구성함으로써 배관의 복잡성을 해소하고 공급유량 및 유속을 안정화할 수 있다.
본 발명의 일 실시예에 따르면, 생성해야 할 산소량이 많아지더라도 종래 대비 작은 용량의 산소포집 탱크를 사용할 수 있으므로 산소포집 탱크의 전체 체적을 감소시키는 이점이 있다. 또한 산소 생산 용량을 증가시킬 경우 본 발명의 모듈형 산소발생기를 복수개 병렬로 이어 붙여서 설치하면 되므로 설치가 간단하고 유지보수도 간편한 이점이 있다.
도1은 종래의 산소발생기를 설명하기 위한 도면,
도2는 본 발명의 일 실시예에 따른 모듈형 산소발생기를 설명하기 위한 도면,
도3은 본 발명의 모듈형 산소발생기의 하부 구조를 설명하기 위한 도면,
도4는 일 실시예에 따른 모듈형 산소발생기의 사시도,
도5는 일 실시예에 따른 모듈형 산소발생기의 정면도,
도6은 일 실시예에 따른 모듈형 산소발생기의 배면도,
도7은 일 실시예에 따른 모듈형 산소발생기의 평면도,
도8은 일 실시예에 따른 모듈형 산소발생기의 저면도,
도9는 일 실시예에 따른 모듈형 산소발생기의 분해 사시도,
도10은 일 실시예에 따른 모듈형 산소발생기의 하부 배관 어셈블리의 매니폴드의 사시도,
도11은 일 실시예에 따른 매니폴드의 다른 관점에서 본 사시도,
도12는 도10의 A-A'선을 따라 절단한 단면도,
도13은 도10의 B-B'선을 따라 절단한 단면도,
도14는 일 실시예에 따른 하부 배관 어셈블리의 동작을 설명하기 위한 도면,
도15는 일 실시예에 따른 모듈형 산소발생기의 상부 배관 어셈블리의 사시도,
도16은 도15의 C-C'선을 따라 절단한 단면도,
도17은 일 실시예에 따른 모듈형 산소발생기의 효과를 설명하기 위한 도면이다.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소의 ““위””(또는 ““아래””, ““오른쪽””, 또는 ““왼쪽””)에 있다고 언급되는 경우에 그것은 다른 구성요소의 위(또는 아래, 오른쪽, 또는 왼쪽)에 직접 위치될 수 있거나 또는 그들 사이에 제3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한 본 명세서에서 구성요소간의 위치 관계를 설명하기 위해 사용되는 ‘상부(위)’, ‘하부(아래)’, ‘좌측’, ‘우측’, '전면', '후면' 등의 표현은 절대적 기준으로서의 방향이나 위치를 의미하지 않으며, 각 도면을 참조하여 본 발명을 설명할 때 해당 도면을 기준으로 설명의 편의를 위해 사용되는 상대적 표현일 수 있다.
본 명세서에서 제1, 제2 등의 용어가 구성요소들을 기술하기 위해서 사용된 경우, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprise)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 도면을 참조하여 본 발명을 상세히 설명하도록 한다. 아래의 특정 실시예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는 데 있어 혼돈을 막기 위해 기술하지 않음을 미리 언급해 둔다.
도2는 본 발명의 일 실시예에 따른 모듈형 산소발생기를 설명하기 위한 도면으로, 설명의 편의를 위해, 산소발생기 중 산소포집 탱크, 공기탱크, 및 산소탱크와 이들 사이를 연결하는 배관과 밸브만을 도식적으로 나타내었다.
도면을 참조하면, 일 실시예에 따른 모듈형 산소발생기는 한 쌍의 산소포집 탱크로 이루어진 베드(B)를 복수개 연결하여 구현될 수 있다. 도시한 실시예에서 가장 왼쪽의 한 쌍의 산소포집 탱크(T1,T2)가 첫번째 베드(B1)를 구성한다. 도면에 표기하지 않았지만, 그 옆의 한 쌍의 산소포집 탱크(T3,T4)가 두번째 베드를 구성하며, 또 그 옆의 한 쌍의 산소포집 탱크(T5,T6)가 세번째 베드를 구성한다. 즉 도시한 실시예의 산소발생기는 5개의 베드로 구성되어 있음을 이해할 것이다. 도시한 실시예에서 산소발생기가 5개의 베드(B)로 구성되지만 이것은 예시적인 실시예이며 실제의 실시 형태에 따라 베드의 개수가 달라질 수 있음은 물론이다.
도시한 모듈형 산소발생기의 첫번째 베드(B1)를 기준으로 설명하자면, 베드(B1)는 제1 산소포집 탱크(T1), 제2 산소포집 탱크(T2)로 구성되고, 베드(B1)와 공기 탱크(TA) 및 산소 탱크(TO) 사이를 연결하는 다수의 배관과 밸브를 포함한다.
공기 탱크(TA)는 산소포집 탱크(T1,T2)에 공급할 공기를 저장하고 필요에 따라 공기를 산소포집 탱크(T1,T2)에 공급한다. 제1 및 제2 산소포집 탱크(T1,T2)는 공기 탱크(TA)로부터 공기를 각각 교대로 공급받고 공기에서 산소를 분리함으로써 산소를 생성한다. 일 실시예에서 각 산소포집 탱크(T1,T2)는 제올라이트와 같은 질소 흡착제로 충진되고, 공기가 산소포집 탱크(T1,T2)를 통과할 때 질소 성분이 흡착됨으로써 산소가 분리되어 산소를 생성할 수 있다.
공기 탱크(TA)에서 산소포집 탱크(T1,T2)로의 공기 공급을 위해 배관이 각각 연결되어 있고 유체 흐름을 제어하는 밸브(V11,V12)가 배치된다. 제1 공급밸브(V11)는 공기 탱크(TA)와 제1 산소포집 탱크(T1) 사이의 배관의 개폐를 제어하고 제2 공급밸브(V12)는 공기 탱크(TA)와 제2 산소포집 탱크(T2) 사이의 배관의 개폐를 제어한다.
공기 탱크(TA)로부터의 공기 공급이 중단된 상태에서 산소포집 탱크(T1,T2)는 탱크 내부의 질소를 외부로 배출할 수 있다. 예를 들어 제1 산소포집 탱크(T1)를 클리닝할 경우 제1 산소포집 탱크(T1)에서 외부로 질소를 배출하도록 밸브(V11)가 전환되고 이와 동시에 제2 산소포집 탱크(T2)로 공기가 유입되도록 밸브(V12)가 전환될 수 있다.
각각의 산소포집 탱크(T1,T2)에서 생성되는 산소는 산소 탱크(TO)로 배출된다. 예를 들어 제1 산소포집 탱크(T1)에서 산소를 포집하고 제2 산소포집 탱크(T2)를 클리닝하는 경우 제1 배출밸브(V13)를 개방하고 제2 배출밸브(V14)를 폐쇄한다. 이에 따라, 제1 산소포집 탱크(T1)에서 생성되는 산소가 제1 배출밸브(V13)를 통과하여 산소 탱크(TO)로 공급될 수 있고, 이 때 제2 산소포집 탱크(T2)의 질소는 제1 공급밸브(V12)를 통해 외부로 배출된다.
또한 이 때 두 개의 산소포집 탱크(T1,T2)를 연결하는 바이패스 경로에 설치된 밸브(V15)를 적어 일부 개방하여, 제1 산소포집 탱크(T1)의 일부 산소를 제2 산소포집 탱크(T2)로 공급하여 퍼징 가스로서 기능하도록 할 수 있다.
일 실시예에서 산소발생기는 상술한 제1 베드(B1)와 동일 또는 유사한 베드(B)를 복수개 포함한다. 바람직하게는 산소발생기는 복수개의 베드(B)가 병렬로 연결되어 구성된다. 즉 각 베드(B)의 산소포집 탱크(T1 내지 T10)가 공기 탱크(TA)와 산소 탱크(TO)에 각각 연결된다.
이러한 구성에서, 각 베드(B)의 제1 산소포집 탱크와 제2 산소포집 탱크가 각각 교대로 산소포집과 클리닝 동작을 수행하되, 복수개의 베드(B) 간에는 약간의 시간차를 두고 동작할 수 있다. 예를 들어, 제1 베드(B1)의 제1 및 제2 산소포집 탱크(T1,T2)간 산소포집과 클리닝 동작이 전환될 때 제2 내지 제5 베드(B2~B5)에서는 각각의 제1 산소포집 탱크(T3,T5,T7,T9)가 산소포집 동작을 수행하고, 제2 베드(B2)의 제1 및 제2 산소포집 탱크(T3,T4)간 산소포집과 클리닝 동작이 전환될 때 제1 및 제3 내지 제5 베드(B1, B3~B5)에서 각각의 제1 산소포집 탱크(T1,T5,T7,T9)가 산소포집 동작을 수행하고, 이런 방식으로 각 베드 내의 제1 및 제2 산소포집 탱크간 동작 전환시에 나머지 베드에서는 제1 또는 제2 산소포집 탱크가 산소포집 동작을 수행하도록 제어할 수 있다.
이와 같이 도시한 실시예와 같이 한 쌍의 산소포집 탱크를 구비한 베드를 복수개 연결하여 모듈형 산소발생기를 구성함으로써, 종래 산소발생기에 비해 장치 부피를 현저히 줄일 수 있다. 예를 들어 1 N㎥/h 용량의 베드(B)를 5개 연결하여 5 N㎥/h 모듈형 산소발생기를 구성한 경우, 도1과 같이 한 쌍의 산소포집 탱크만 갖는 종래의 5 N㎥/h 용량 산소발생기에 비해 장치 부피를 1/10 이상 줄일 수 있고, 산소포집 탱크의 체적을 줄임으로써 종래에 비해 워밍업 시간을 대폭 줄일 수 있는 이점이 있다.
또한 도1의 경우 제1 및 제2 산소포집 탱크(2,3)간 동작 전환을 할 경우 예컨대 제1 산소포집 탱크(2)로의 공기 공급을 중단하고 제2 산소포집 탱크(3)로 공기 공급을 전환하는 순간 산소 생성이 일시적으로 줄어들거나 중단되기 때문에 산소 탱크에서 측정되는 압력이 급격히 감소하였다가 증가한다. 그러나 본 발명의 실시예에 따르면, 각 복수개의 베드(B)를 구비하고 하나의 베드에서 제1 및 제2 산소포집 탱크간 동작을 전환할 때 나머지 베드들에서는 제1 또는 제2 산소포집 탱크에서 산소포집 동작을 수행하기 때문에, 임의의 한 시점에서 하나의 베드에서만 동작 전환이 일어나므로 산소 탱크의 압력 변화가 크지 않고 지속적이고 안정적인 산소 공급이 가능해진다.
도3은 상술한 도2의 산소발생기를 구현한 시제품의 하부 구조를 나타낸다. 도시한 제품은 5*2 배열로 배치된 10개의 산소포집 탱크(T1 내지 T10)를 포함하고 산소포집 탱크의 상부와 하부에 다수의 밸브와 배관이 설치되어 있다.
도2를 참조하여 설명한 것처럼 본 발명의 산소발생기 구성에 의하면 전체 장치 부피를 크게 감소시키고 산소를 지속적이고 안정적으로 생성할 수 있는 이점이 있지만, 산소포집 탱크(T1 내지 T10) 상부와 하부에 많은 밸브와 배관이 연결되고 설치되어야 한다. 예컨대 산소포집 탱크 하부의 경우 탱크 하나마다 하나씩 밸브(V11 내지 V52)가 필요하고 각 밸브마다 3개씩 배관이 연결되어 있으므로 10개의 산소포집 탱크(T1 내지 T10) 하부에 적어도 10개의 밸브와 30개의 배관이 연결되어야 한다.
따라서 도3에 보여지는 바와 같이, 산소포집 탱크(T1 내지 T10)가 부피가 줄어든 반면 그 하부에 많은 수의 밸브와 배관이 설치되어 있어 장치가 복잡하고 유지보수의 어려움이 발생하는 문제가 있다.
도4 내지 도17은 이 문제를 해결할 수 있는 바람직한 일 실시예에 따른 모듈형 산소발생기를 나타낸다.
도4는 바람직한 일 실시예에 따른 모듈형 산소발생기의 사시도이고, 도5 내지 도8은 모듈형 산소발생기의 정면도, 배면도, 평면도, 및 저면도를 각각 나타낸다.
도면을 참조하면, 일 실시예에 따른 모듈형 산소발생기는 탱크 어셈블리(10), 탱크 어셈블리(10)의 하부에 배치되는 하부 배관 어셈블리(20), 및 상부에 배치되는 상부 배관 어셈블리(30)를 포함한다.
탱크 어셈블리(10)는 복수개의 산소포집 탱크(100), 하나의 공기 탱크(TA), 및 하나의 산소 탱크(TO)를 포함할 수 있다. 도시한 실시예에서는 한 쌍의 산소포집 탱크로 구성된 베드를 5개 연결하여 총 10개의 산소포집 탱크(100)가 5*2 배열로 구성된 것으로 예시하였다. 그러나 베드의 개수는 구체적 실시 형태에 따라 달라질 수 있음은 물론이다.
도시한 실시예에서 제1 베드는 제1 산소포집 탱크(T1)와 제2 산소포집 탱크(T2)를 포함하고, 제2 베드는 제3 산소포집 탱크(T3)와 제4 산소포집 탱크(T4)를 포함하고, 제3 베드는 제5 산소포집 탱크(T5)와 제6 산소포집 탱크(T6)를 포함하고, 제4 베드는 제7 산소포집 탱크(T7)와 제8 산소포집 탱크(T8)를 포함하고, 제5 베드는 제9 산소포집 탱크(T9)와 제10 산소포집 탱크(T10)를 포함한다.
하부 배관 어셈블리(20)는 탱크 어셈블리(10)의 하부에 배치되며 탱크 어셈블리(10)로 공기를 공급하고 질소를 배출하는 유로 및 밸브를 포함한다. 일 실시예에서 하부 배관 어셈블리(20)는 내부에 다수의 유로가 형성된 매니폴드(200) 및 매니폴드(200)의 하부면에 부착된 복수개의 밸브(250)로 구성될 수 있다. 하부 배관 어셈블리(20)에 대해서는 도10 내지 도15를 참조하여 후술하기로 한다.
상부 배관 어셈블리(30)는 탱크 어셈블리(10)의 상부에 배치되며 탱크 어셈블리(10)에서 생성되는 산소를 배출하는 유로와 밸브를 포함한다. 일 실시예에서 상부 배관 어셈블리(30)는 탱크 어셈블리(10)의 상부에 베드의 개수만큼 설치되는 배관 블록(300)을 포함하며, 각각의 배관 블록(300)은 내부에 하나 이상씩의 유로가 각각 형성된 복수개의 하부블록(310), 중간블록(320), 상부블록(330), 및 밸브(340)로 구성될 수 있다. 또한 복수개의 배관 블록(300)은 하나의 연결 블록(350)에 의해 연결될 수 있다. 상부 배관 어셈블리(30)에 대해서는 도16 및 도17을 참조하여 후술하기로 한다.
도시한 실시예에서 외부의 공기는 공기 유입구(411)를 통해 모듈형 산소발생기로 공급된다. 공기 유입구(411)로 공급되는 공기는 U자형 배관(413)을 통과하여 공기 탱크(TA)의 상부로 공급된다. 공기 탱크(TA)에 저장된 공기는 하부 배관 어셈블리(20)의 매니폴드(200) 내부에서 분기되어 각 산소포집 탱크(100)로 공급될 수 있다.
산소포집 탱크(100)에서 생성되는 산소는 상부 배관 어셈블리(30)의 연결 블록(350) 및 이에 연결된 산소 이송관(421)을 통과하여 산소 탱크(TO)로 공급된다. 산소 탱크(TO)에 모인 산소는 배출관(423,425,427)을 통해 외부로 공급될 수 있다.
한편 산소포집 탱크(100)의 클리닝 동작에 의해 산소포집 탱크(100)에서 배출되는 질소는 하부 배관 어셈블리(30)의 매니폴드(200) 내부로 모인 후 배출관(431,435)을 통해 외부로 배출될 수 있다.
도9는 일 실시예에 따른 모듈형 산소발생기의 분해 사시도로서, 탱크 어셈블리(10), 하부 배관 어셈블리(20), 및 상부 배관 어셈블리(30)로 분리된 모습을 나타내고, 설명의 편의를 위해 공기, 산소, 및 질소 유입관과 배출관들(411,413,423,425,427,431,435)을 생략하였다.
상술한 것처럼 탱크 어셈블리(10)는 5개의 베드를 포함하며, 각 베드는 한 쌍의 산소포집 탱크(T1,T2; T3,T4; T5,T6; T7,T8; T9,T10)로 구성된다. 각 베드에서 한 쌍의 산소포집 탱크는 상부 연결판(110) 및 하부 연결판(130)에 체결되어 일체로 결합되고, 복수개의 베드는 상부 연결판(110)들을 연결하는 상부 연결 프레임(120) 및 하부 연결판(130)들을 연결하는 하부 연결 프레임(140)에 체결됨으로써 전체 베드가 일체로 결합된다.
산소포집 탱크 상부에 결합된 각각의 상부 연결판(110)은 산소포집 탱크와 상부 배관 어셈블리(30)가 연통할 수 있도록 관통구(111,112)를 포함하고, 공기 탱크(TA)와 산소 탱크(TO)에 결합된 상부 연결판(110)도 관통구(115,116)를 포함한다.
마찬가지로, 도면에 도시하지 않았지만 산소포집 탱크 하부에 결합된 각각의 하부 연결판(130)은 산소포집 탱크와 하부 배관 어셈블리(20)가 연통할 수 있도록 관통구를 포함하고, 공기 탱크(TA)와 산소 탱크(TO)에 결합된 하부 연결판(130)도 관통구를 포함한다.
이제 도10 내지 도13을 참조하여 하부 배관 어셈블리(20)의 매니폴드(200)의 예시적 구조를 설명하기로 한다. 도10과 도11은 하부 배관 어셈블리(20)의 매니폴드(200)를 각기 다른 관점에서 본 사시도이고, 도12는 도10의 A-A'선을 따라 절단한 단면도, 그리고 도13은 도10의 B-B'선을 따라 절단한 단면도이다.
도면들을 참조하면 일 실시예에 따른 매니폴드(200)는 길다란 블록 형상을 갖는다. 매니폴드(200)는 길이 방향을 따라 내부에서 서로 나란히 배치된 3개의 유로, 즉 제1 내지 제3 유로(211,212,213)를 포함한다. 일 실시예에서 제1 및 제2 유로(211,212)는 산소포집 탱크(100)에서 배출되는 질소를 모아서 외부로 배출하는 질소 배출 유로로서 가능하고 제3 유로(213)는 산소포집 탱크(100)로 산소를 공급하는 산소공급 유로로서 기능할 수 있다.
도10 및 도11에 도시한 것처럼 매니폴드(200)의 상부면에는 다수의 개구부(201,202,203,204)가 형성되어 있다. 제1 및 제2 개구부(201,202)는 탱크 어셈블리(10)의 각 베드의 한 쌍의 산소포집 탱크의 각각과 연통하기 위한 것으로, 각 산소포집 탱크(100)와 정렬되는 위치에 형성된다.
도시한 실시예의 경우 10개의 산소포집 탱크(100)를 구비하므로 매니폴드(200)의 상부면에 10개의 개구부(201,202)가 형성되어 있다. 예를 들어 5개의 제1 개구부(201)는 각각 제1 내지 제5 베드의 첫번째 산소포집 탱크(T1,T3,T5,T7,T9)와 각각 연결되고 5개의 제2 개구부(202)는 각각 제1 내지 제5 베드의 두번째 산소포집 탱크(T2,T4,T6,T8,T10)와 각각 연결될 수 있다.
매니폴드(200)의 상부면에 형성된 제3 개구부(203)는 공기 탱크(TA)와 연통하기 위한 것이며 공기 탱크(TA)와 정렬되는 위치에 형성된다. 일 실시예에서 제3 개구부(203)와 제3 유로(213)가 매니폴드(200) 내부에서 연통하도록 구성된다.
매니폴드(200)의 상부면에 형성된 제4 개구부(204)는 산소 탱크(TO)와 연통하기 위한 것이며 산소 탱크(TO)와 정렬되는 위치에 형성된다. 도10에 도시하였듯이 제4 개구부(204)와 인접한 매니폴드(200)의 측면에 측면 개구부(205)가 형성되어 있으며, 제4 개구부(204)와 측면 개구부(205)가 매니폴드(200) 내부에서 서로 연통하도록 구성된다. 즉 산소 탱크(TO)에서 배출되는 산소가 제4 개구부(204)를 통해 매니폴드(200) 내부로 유입된 후 측면 개구부(205)를 통해 곧바로 외부로 배출되도록 구성된다.
이제 도14를 참조하여 하부 배관 어셈블리(20)의 동작을 설명하기로 한다. 도14는 한 쌍의 산소포집 탱크(T1,T2)로 구성된 제1 베드의 하부와 그 아래에 결합된 하부 배관 어셈블리(20)의 단면을 도식적으로 나타내었다.
도면을 참조하면, 한 쌍의 산소포집 탱크(T1,T2)를 연결하는 하부 연결판(130)의 하부에 매니폴드(200)가 부착된다. 제1 산소포집 탱크(T1)는 하부 연결판(130)의 제1 관통구(131)를 통해 매니폴드(200) 상부면의 제1 개구부(201)와 연통한다. 제2 산소포집 탱크(T2)는 하부 연결판(130)의 제2 관통구(132)를 통해 매니폴드(200) 상부면의 제2 개구부(202)와 과 연통한다.
매니폴드(200)의 하부면에는 밸브(251)가 부착된다. 밸브는 예컨대 솔레노이드 밸브가 사용될 수 있으나 이에 한정되는 것은 아니다. 또한 설명의 편의를 위해 밸브를 제어하는 전선 등 세부적 구성요소를 생략하였다. 밸브(251)는 제1 및 제2 개구부(201,202)와 제1 내지 제3 유로(211,212,213) 사이를 연결하거나 폐쇄하도록 동작한다.
일 실시예에서, 제1 산소포집 탱크(T1)가 산소를 생성하고 제2 산소포집 탱크(T2)가 클리닝 동작을 수행하고 있을 때, 밸브(251)의 동작에 의해, 제1 개구부(201)와 제3 유로(213)가 연통하고 제2 개구부(202)와 제2 유로(212)가 연통하게 된다. 이에 따라, 공기 탱크(TA)에 저장된 공기가 제1 산소포집 탱크(T1)로 공급되고 제2 산소포집 탱크(T2)에서 배출되는 질소는 배출관(431)을 통해 외부로 배출된다.
만일 제1 산소포집 탱크(T1)가 클리닝 동작을 수행하고 제2 산소포집 탱크(T2)가 산소를 생성하고 있을 때, 밸브(251)의 동작에 의해, 제1 개구부(201)와 제1 유로(211)가 연통하고 제2 개구부(202)와 제3 유로(213)가 연통하게 된다. 이에 따라, 공기 탱크(TA)에 저장된 공기는 제2 산소포집 탱크(T2)로 공급되고 제1 산소포집 탱크(T1)에서 배출되는 질소는 배출관(431)을 통해 외부로 배출된다.
한편 위와 같은 밸브(251) 동작에 의해 제1 및 제2 개구부(201,202)와 제1 내지 제3 유로(211,212,213) 사이를 연결하거나 폐쇄하기 위해 매니폴드(200) 내부에 추가의 관통구나 개구부가 형성될 수 있다.
이제 도15와 도16을 참조하여 상부 배관 어셈블리(30)의 예시적 구조를 설명하기로 한다. 도15는 일 실시예에 따른 상부 배관 어셈블리(30)의 사시도이고 도16은 도15의 C-C'선을 따라 절단한 단면도이다. 도16에서는 설명의 편의를 위해 한 쌍의 산소포집 탱크(T1,T2)로 구성된 제1 베드의 상부 일부분도 도시하였다.
도면을 참조하면 일 실시예에 따른 상부 배관 어셈블리(30)는 탱크 어셈블리(10)의 베드의 개수만큼의 배관 블록(300)을 포함한다. 각각의 배관 블록(300)은 하부블록(310), 중간블록(320), 상부블록(330), 및 밸브(340)로 구성될 수 있고, 복수개의 배관 블록(300)은 하나의 연결 블록(350)에 의해 연결될 수 있다.
하부블록(310)은 베드의 한 쌍의 산소포집 탱크(T1,T2)의 각각과 연통하는 관통구(311,312), 각각의 관통구(311,312)에 설치된 체크밸브(313,314), 및 관통구(311,312)를 연결하는 연결유로(315)를 포함할 수 있다.
중간블록(320)은 하부블록(310)과 상부블록(330) 사이에 개재되어 배치된다. 일 실시예에서 하나의 하부블록(310) 위에 2개의 중간블록(320)이 설치된다. 각 중간블록(320)은 상하방향으로 관통하는 관통구(321)를 포함한다. 각 중간블록(320)은 중간블록(320)의 관통구(321)가 하부블록(310)의 관통구(311,312)와 하나씩 정렬되도록 배치된다.
상부블록(330)은 중간블록(320)의 상부에 배치되며 내부에 연결유로(331)를 포함한다. 연결유로(331)의 양 단부는 각각 중간블록(320)의 관통구(321)와 연통한다.
상부블록(330)의 일 측면에는 연결블록(350)이 결합된다. 연결블록(350)은 복수개의 상부블록(330)과 모두 결합되어 있다. 연결블록(350)은 내부에 길이방향을 따라 형성된 연결유로(351)를 포함하고, 연결관(333)을 통해 각각의 상부블록(330)의 연결유로(331)와 연통한다. 따라서 모든 상부블록(330)은 연결블록(350)에 의해 서로 연통되어 있다.
한편 밸브(340)는 하부블록(310)의 연결유로(315)의 개폐를 위해 설치된다. 일 실시예에서 밸브(340)가 하부블록(310)과 상부블록(330) 사이에 배치되지만 밸브(340)의 설치 위치는 달라질 수 있다.
일 실시예에서, 제1 산소포집 탱크(T1)가 산소를 생성하고 제2 산소포집 탱크(T2)가 클리닝 동작을 수행하고 있을 때, 제1 체크밸브(313)가 개방되고 제2 체크밸브(314)가 폐쇄된다. 따라서 제1 산소포집 탱크(T1)에서 생성되는 산소는 관통구(321), 연결유로(331), 및 연결관(333)을 통해 연결블록(350)의 연결유로(351)로 이송되고, 그 후 산소 이송관(421)을 통해 산소 탱크(TO)로 공급되어 저장된다. 이 때 밸브(340)에 의해 연결유로(315)가 적어도 부분적으로 개방될 수 있으며, 개방된 경우 제1 산소포집 탱크(T1)의 산소의 일부가 제2 산소포집 탱크(T2)에 퍼징 가스로서 공급될 수 있다.
만일 제1 산소포집 탱크(T1)가 클리닝 동작을 수행하고 제2 산소포집 탱크(T2)가 산소를 생성하고 있을 때, 제1 체크밸브(313)가 폐쇄되고 제2 체크밸브(314)가 개방된다. 따라서 제2 산소포집 탱크(T2)에서 생성되는 산소가 관통구(321), 연결유로(331), 및 연결관(333)을 통해 연결블록(350)의 연결유로(351)로 이송되어 산소 이송관(421)을 통해 산소 탱크(TO)로 공급된다. 이 때 밸브(340)에 의해 연결유로(315)가 적어도 부분적으로 개방될 수 있으며, 개방된 경우 제2 산소포집 탱크(T2)의 산소의 일부가 제1 산소포집 탱크(T1)에 퍼징 가스로서 공급될 수 있다.
도17은 상술한 모듈형 산소발생기의 효과를 설명하기 위한 도면으로, 탱크 어셈블리(10)의 베드를 각각 1개, 2개, 3개, 4개, 및 5개를 구비한 각각의 모듈형 산소발생기의 산소발생 성능곡선을 나타낸다.
도면에서 X축은 산소 생산량이고 Y축은 산소의 순도를 나타낸다. 베드를 1개만 구비한 산소발생기의 경우, 가장 왼쪽 그래프로 도시한 것처럼 산소 발생량이 증가하면 순도가 많이 급격히 감소한다. 그러나 설치하는 베드 개수를 점차 늘리면 산소 발생량의 증가에도 순도가 완만하게 떨어지며, 베드를 5개 설치한 경우 가장 오른쪽 그래프로 도시한 것처럼 베드를 1개 내지 4개 설치한 산소발생기에 비해 산소 발생량이 많을 뿐만 아니라 산소 발생량을 증가시켜도 산소 순도가 크게 감소하지 않고 대략 85%의 높은 순도를 나타낼 수 있다.
이와 같이 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 상술한 명세서의 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (11)

  1. 모듈형 산소발생기로서,
    다수의 탱크가 결합된 탱크 어셈블리(10);
    상기 탱크 어셈블리(10)의 하부에 배치되며 상기 탱크 어셈블리로 공기를 공급하고 질소를 배출하는 배관을 구비한 하부 배관 어셈블리(20); 및
    상기 탱크 어셈블리의 상부에 배치되며 상기 탱크 어셈블리에서 생성되는 산소를 배출하는 배관을 구비한 상부 배관 어셈블리(30);를 포함하고,
    상기 탱크 어셈블리(10)는, 각각이 한 쌍의 산소포집 탱크로 이루어진 복수개의 베드; 상기 산소포집 탱크로 공급할 공기를 저장하는 공기 탱크(TA); 및 상기 산소포집 탱크로부터 산소를 공급받아 저장하는 산소 탱크(TO);를 포함하고,
    상기 하부 배관 어셈블리(20)는, 상기 공기 탱크(TA)로부터 상기 산소포집 탱크의 각각으로 공기를 공급하는 공기공급 유로 및 상기 산소포집 탱크의 각각에서 생성되는 질소를 외부로 배출하는 질소배출 유로가 내부에 형성된 매니폴드(200); 및 상기 베드의 개수만큼 상기 매니폴드에 결합되며 각 베드의 한 쌍의 산소포집 탱크와 상기 공기공급 유로 및 질소배출 유로 사이를 개폐하는 복수개의 제1 밸브(250);를 포함하는 것을 특징으로 하는 모듈형 산소발생기.
  2. 제 1 항에 있어서, 상기 매니폴드(200)가,
    상기 매니폴드 내부에서 서로 나란히 배치된 제1 내지 제3 유로(211,212,213); 및
    상기 매니폴드의 상부면에 형성되고 각 베드의 한 쌍의 산소포집 탱크의 각각과 연통하도록 형성된 제1 및 제2 상부 개구부(201,202);를 포함하는 것을 특징으로 하는 모듈형 산소발생기.
  3. 제 2 항에 있어서,
    상기 매니폴드의 상기 제1 및 제2 유로(211,212)가 상기 질소배출 유로이고 상기 제3 유로(213)가 상기 산소공급 유로인 것을 특징으로 하는 모듈형 산소발생기.
  4. 제 3 항에 있어서,
    상기 제1 밸브(250)가 상기 매니폴드의 하부면에 부착된 것을 특징으로 하는 모듈형 산소발생기.
  5. 제 4 항에 있어서,
    상기 제1 밸브(250)는, 제1 개구부(201)와 제3 유로(213)가 연통하고 제2 개구부(202)와 제2 유로(212)가 연통하도록 동작하거나 또는 제1 개구부(201)와 제1 유로(211)가 연통하고 제2 개구부(202)와 제3 유로(213)가 연통하도록 동작하는 것을 특징으로 하는 모듈형 산소발생기.
  6. 제 4 항에 있어서,
    상기 매니폴드는, 상부면에 형성되고 상기 공기 탱크(TA)와 연통하도록 형성된 제3 상부 개구부(203)를 더 포함하고,
    상기 제3 상부 개구부(203)와 상기 제3 유로(213)가 매니폴드 내부에서 연통하도록 구성된 것을 특징으로 하는 모듈형 산소발생기.
  7. 제 6 항에 있어서,
    상기 매니폴드(200)가, 상부면에 형성되고 상기 산소 탱크(TO)와 연통하도록 형성된 제4 상부 개구부(204) 및 측면에 형성된 측면 개구부(205)를 더 포함하고,
    상기 제4 상부 개구부와 상기 측면 개구부가 매니폴드 내부에서 연통하도록 구성된 것을 특징으로 하는 모듈형 산소발생기.
  8. 제 2 항에 있어서,
    상기 상부 배관 어셈블리(30)가, 상기 탱크 어셈블리(10)의 상부에 상기 베드의 개수만큼 설치되는 배관 블록(300)을 포함하되, 각각의 상기 배관 블록(300)은,
    상기 베드의 한 쌍의 산소포집 탱크의 각각과 연통하는 제1 관통구(311,312), 각각의 제1 관통구(311,312)에 설치된 체크밸브(313,314), 및 제1 관통구(311,312)를 연결하는 제1 연결유로(315)를 포함하는 하부블록(310);
    상기 하부블록(310)의 상부에 배치되며, 상기 제1 관통구(311,312)를 연결하는 제2 연결유로(331)를 포함하는 상부블록(330); 및
    상기 제1 연결유로(315)를 개폐하도록 동작하는 제2 밸브(340);를 포함하고,
    상기 각 배관블록(300)의 상부블록(330)들끼리 서로 연통되어 있는 것을 특징으로 하는 모듈형 산소발생기.
  9. 제 8 항에 있어서,
    상기 상부 배관 어셈블리(30)가, 복수개의 상기 상부블록(330)들끼리 연결하는 연결블록(350)을 더 포함하고,
    상기 연결블록(350)은 내부에 길이방향을 따라 형성된 제3 연결유로(351)를 포함하고, 각각의 상기 상부블록(330)의 제2 연결유로(331)가 상기 제3 연결유로(351)와 연통하도록 구성된 것을 특징으로 하는 모듈형 산소발생기.
  10. 제 9 항에 있어서,
    상기 하부블록(310)과 상부블록(330) 사이에 개재되어 상기 하부블록과 상부블록을 이격시키는 중간블록(320)을 더 포함하고,
    상기 중간블록(320)은 상기 하부블록(310)의 제1 관통구(311,312)와 상기 상부블록(330)의 제2 연결유로(331)를 연결하는 제2 관통구(321)를 포함하는 것을 특징으로 하는 모듈형 산소발생기.
  11. 제 9 항에 있어서, 상부 배관 어셈블리(30)가,
    상기 연결블록(350)의 제3 연결유로(351)와 상기 탱크 어셈블리(10)의 산소 탱크(TO)를 연결하는 산소 이송관(421)을 포함하는 것을 특징으로 하는 모듈형 산소발생기.
PCT/KR2018/004021 2018-04-05 2018-04-05 모듈형 산소발생기 WO2019194332A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/KR2018/004021 WO2019194332A1 (ko) 2018-04-05 2018-04-05 모듈형 산소발생기
US17/040,976 US11779875B2 (en) 2018-04-05 2018-04-05 Modular oxygen generator
JP2021503682A JP7250293B2 (ja) 2018-04-05 2018-04-05 モジュール型酸素発生器
CN201880092179.4A CN111936726B (zh) 2018-04-05 2018-04-05 模块化制氧机
PE2020001526A PE20211338A1 (es) 2018-04-05 2018-04-05 Generador de oxigeno modular
CA3095459A CA3095459C (en) 2018-04-05 2018-04-05 Modular oxygen generator
EP18913821.7A EP3779133B1 (en) 2018-04-05 2018-04-05 Modular oxygen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/004021 WO2019194332A1 (ko) 2018-04-05 2018-04-05 모듈형 산소발생기

Publications (1)

Publication Number Publication Date
WO2019194332A1 true WO2019194332A1 (ko) 2019-10-10

Family

ID=68101040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004021 WO2019194332A1 (ko) 2018-04-05 2018-04-05 모듈형 산소발생기

Country Status (7)

Country Link
US (1) US11779875B2 (ko)
EP (1) EP3779133B1 (ko)
JP (1) JP7250293B2 (ko)
CN (1) CN111936726B (ko)
CA (1) CA3095459C (ko)
PE (1) PE20211338A1 (ko)
WO (1) WO2019194332A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200359140Y1 (ko) * 2004-03-26 2004-08-21 (주)산소테크 산소발생기용 조립모듈
KR20040094515A (ko) * 2003-05-02 2004-11-10 도우넷테크 주식회사 산소발생기용 공기분산 밸브와 분자체 베드의 통합시스템
KR20060009991A (ko) * 2004-07-27 2006-02-02 (주)씨엔에스 산소발생기용 유로절환밸브
US20080047426A1 (en) * 2006-08-28 2008-02-28 Dolensky Joseph T Oxygen concentration system and method
KR20110019022A (ko) * 2009-08-19 2011-02-25 주식회사 엔케이 산소발생기용 다중흡착탑 장치 및 그 운전방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578115A (en) * 1995-07-24 1996-11-26 Devilbiss Health Care, Inc. Molecular sieve container for oxygen concentrator
US6176897B1 (en) * 1996-12-31 2001-01-23 Questor Industries Inc. High frequency pressure swing adsorption
JP3481462B2 (ja) * 1997-10-28 2003-12-22 日本特殊陶業株式会社 酸素濃縮装置
US5997612A (en) * 1998-07-24 1999-12-07 The Boc Group, Inc. Pressure swing adsorption process and apparatus
US6755895B2 (en) * 2002-04-09 2004-06-29 H2Gen Innovations, Inc. Method and apparatus for pressure swing adsorption
US6918953B2 (en) 2003-07-09 2005-07-19 H2Gen Innovations, Inc. Modular pressure swing adsorption process and apparatus
JP4365403B2 (ja) 2006-12-26 2009-11-18 株式会社アドバン理研 圧力スイング吸着式ガス発生装置
US7763102B2 (en) 2007-02-05 2010-07-27 Lummus Technology Inc. Pressure swing adsorption modules with integrated features
US20110315140A1 (en) * 2010-06-29 2011-12-29 Precision Medical, Inc. Portable oxygen concentrator
CN203781834U (zh) 2014-01-27 2014-08-20 湖南泰瑞医疗科技有限公司 医用模块化psa制氧机
KR102119378B1 (ko) * 2015-10-27 2020-06-08 엑손모빌 업스트림 리서치 캄파니 능동 제어식 공급물 포핏 밸브 및 수동 제어식 생성물 밸브를 갖는 관련 스윙 흡착 공정용 장치 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040094515A (ko) * 2003-05-02 2004-11-10 도우넷테크 주식회사 산소발생기용 공기분산 밸브와 분자체 베드의 통합시스템
KR200359140Y1 (ko) * 2004-03-26 2004-08-21 (주)산소테크 산소발생기용 조립모듈
KR20060009991A (ko) * 2004-07-27 2006-02-02 (주)씨엔에스 산소발생기용 유로절환밸브
US20080047426A1 (en) * 2006-08-28 2008-02-28 Dolensky Joseph T Oxygen concentration system and method
KR20110019022A (ko) * 2009-08-19 2011-02-25 주식회사 엔케이 산소발생기용 다중흡착탑 장치 및 그 운전방법

Also Published As

Publication number Publication date
JP2021524834A (ja) 2021-09-16
US20210039038A1 (en) 2021-02-11
EP3779133B1 (en) 2023-07-19
US11779875B2 (en) 2023-10-10
JP7250293B2 (ja) 2023-04-03
PE20211338A1 (es) 2021-07-26
EP3779133A1 (en) 2021-02-17
CN111936726B (zh) 2023-06-23
CA3095459C (en) 2023-03-28
EP3779133A4 (en) 2022-01-05
CN111936726A (zh) 2020-11-13
CA3095459A1 (en) 2019-10-10
EP3779133C0 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
CN101437592B (zh) 过滤器组件
US6858065B2 (en) High recovery PSA cycles and apparatus with reduced complexity
WO2015163631A1 (ko) 유로가 측면에 형성되는 역삼투막 필터
WO2013065935A1 (ko) 수소분리용 다층 모듈
WO2017052100A1 (ko) 웨이퍼 처리장치의 배기장치
WO2011091629A1 (zh) 一种制氧机
WO2021177585A1 (ko) 열 폭주 현상 발생 시 냉각수가 배터리 모듈의 내부로 투입될 수 있는 구조를 갖는 배터리 팩 및 이를 포함하는 ess
WO2011013868A1 (ko) 연료 전지용 공냉식 금속 분리판 및 이를 이용한 연료 전지 스택
WO2019194332A1 (ko) 모듈형 산소발생기
WO2020226373A1 (ko) 수처리 설비의 유량 분배 장치
WO2010137763A1 (ko) 폐수의 열회수장치 및 방법
EP2802399A1 (en) Water purifying filter assembly module and water purifier having the same
CN111841244B (zh) 一种变压吸附氢气提纯系统
WO2019054630A1 (ko) 필터 조립체 및 이를 구비한 공기청정기
JP4718037B2 (ja) パージ用気体分配装置
WO2018199533A1 (ko) 물배출장치
WO2012093777A2 (ko) 퀵-릴리즈 진공펌프
KR20190116765A (ko) 모듈형 산소발생기
DK1049499T3 (da) Apparat til brug ved fjernelse af bestanddele, især eksogene antistoffer, fra blod eller plasma
WO2014021541A1 (ko) 여과수 압력제어형 막여과장치 및 그의 막세척방법
WO2017007041A1 (ko) 집진 장치
WO2019124780A1 (ko) 가스 분배 장치
WO2019240528A1 (ko) 배가스를 포함하는 유체의 흐름을 제어하기 위한 매니폴드
WO2013100479A1 (en) Water discharging apparatus
WO2022270819A1 (ko) 정수기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3095459

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021503682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018913821

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018913821

Country of ref document: EP

Effective date: 20201105