WO2011091629A1 - 一种制氧机 - Google Patents

一种制氧机 Download PDF

Info

Publication number
WO2011091629A1
WO2011091629A1 PCT/CN2010/072370 CN2010072370W WO2011091629A1 WO 2011091629 A1 WO2011091629 A1 WO 2011091629A1 CN 2010072370 W CN2010072370 W CN 2010072370W WO 2011091629 A1 WO2011091629 A1 WO 2011091629A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
molecular sieve
passage
automatic control
control valve
Prior art date
Application number
PCT/CN2010/072370
Other languages
English (en)
French (fr)
Inventor
黄淳义
Original Assignee
中山荣杰医疗器材工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山荣杰医疗器材工业有限公司 filed Critical 中山荣杰医疗器材工业有限公司
Publication of WO2011091629A1 publication Critical patent/WO2011091629A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0281Physical processing only by adsorption on solids in getters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40003Methods relating to valve switching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the invention relates to an oxygen generator.
  • the current oxygen generator generally comprises two molecular sieve cylinders, an oxygen storage cylinder and a solenoid valve.
  • the two molecular sieve cylinders are connected by a pipeline, and the oxygen storage cylinder is respectively connected with two molecular sieve cylinders through a pipeline, and the electromagnetic valve is arranged in two molecular sieve cylinders. One end is connected to the two molecular sieve cylinders through a pipe.
  • the operation mode is as follows: the externally supplied gas is sent into one of the molecular sieve cylinders through the control of the electromagnetic valve, and the special internal molecules are used to adsorb nitrogen, and the remaining gas, that is, the high-purity oxygen, enters the oxygen storage tank through the pipeline, and at the same time another
  • the molecular sieve cylinder is also controlled by a solenoid valve to discharge the internal nitrogen to the outside. This operation is repeated, that is, the high-purity oxygen can be continuously output.
  • the components are connected by corresponding pipes between the components, the pipes must be sequentially connected to the corresponding components during assembly, and each component must be inspected after assembly.
  • the present invention provides an oxygen generator which is convenient to use and disassemble and which is low in manufacturing cost.
  • An oxygen generator comprises two molecular sieve cylinders, an automatic control valve and an oxygen storage unit.
  • One end of the molecular sieve cylinder is connected with an automatic control valve, and the other end of the molecular sieve cylinder is connected with an oxygen storage unit, and the end of the molecular sieve cylinder
  • the upper part is fastened with an oxygen system cover and / or the oxygen system lower cover, the oxygen system upper cover and / or the oxygen system lower cover are provided with a gas flow path that can communicate between the above components of the oxygen generator.
  • one side of the upper cover of the oxygen system is in communication with the automatic control valve, and the other side is in communication with an exhaust unit.
  • the upper cover of the oxygen system is fastened to the upper end of the molecular sieve cylinder, and the inner side of the cover of the oxygen system is provided with an exhaust flow passage, an intake flow passage and a supply air passage, and the exhaust flow passage is connected to the exhaust unit.
  • the intake flow passages are respectively connected with the molecular sieve cylinders of the corresponding positions, and the air supply passages are connected with the external air supply devices, and the automatic control valves are respectively connected with the exhaust flow passages and the intake air flow in the upper cover of the oxygen generation system.
  • the channel and the air supply channel are connected.
  • the lower cover of the oxygen system is fastened to the lower end of the molecular sieve cylinder, and an oxygen storage flow channel and a gas flow passage are arranged inside the cover body of the lower cover of the oxygen system, and the molecular sieve cylinder and the oxygen storage unit are connected through the oxygen storage flow channel.
  • the molecular sieve cylinders are connected by a through air passage.
  • the invention has the beneficial effects that the oxygen generator of the invention integrates the fluid pipelines which are originally arranged at the two ends of the molecular sieve cylinder, and is integrated into the upper cover of the oxygen system which is fastened to both ends of the molecular sieve cylinder and/or Or the lower cover of the oxygen system, and replace the function by various gas flow channels hidden inside each module, so that the original need to connect multiple pipeline operations into the combination of the gas flow channel module and the molecular sieve cylinder can be completed, greatly reduced
  • the number of components of the oxygen generator is small, which not only makes assembly and disassembly, production and inspection and maintenance easier, but also can effectively reduce the manufacturing cost.
  • the gas flow channel module is divided into the oxygen system cover and / Or the oxygen system under the cover, can be used together with two parts, or can replace some parts of the old oxygen generator with a single part, play appropriate functions, a large range of use, and strong compatibility.
  • Figure 1 is a schematic structural view of the present invention
  • Figure 2 is a schematic view showing the structure of the upper cover of the oxygen system
  • Figure 3 is a cross-sectional view of the upper cover of the oxygen system
  • Figure 4 is an exploded view of the oxygen capping system and the automatic control valve of the oxygen system of Figure 1 from another angle;
  • Figure 5 is a schematic view showing the structure of the lower cover of the oxygen generating system
  • Figure 6 is a cross-sectional view of the lower cover of the oxygen system.
  • an oxygen generator includes two molecular sieve cylinders 1, 2, and an automatic control valve 3 and an oxygen storage unit 4
  • One end of the molecular sieve cylinders 1 and 2 is in communication with the automatic control valve 3, and the other end of the molecular sieve cylinders 1 and 2 is in communication with the oxygen storage unit 4, the molecular sieve cylinders 1 and 2
  • the top end of the molecular sieve cylinders 1 and 2 is fastened with an oxygen system lower cover 6 , the oxygen system upper cover 5 and the oxygen system lower cover 6
  • a gas flow path capable of communicating between the respective members of the oxygen generator is provided.
  • This structure greatly reduces the number of components of the oxygen generator, and ensures efficient connection between the components of the oxygen generator, which not only makes assembly and disassembly, production, inspection and maintenance easier, but also reduces manufacturing costs. .
  • one side of the upper cover 5 of the oxygen generation system is connected to the automatic control valve 3, and the other side and an exhaust unit 7 Connected.
  • the muffler tube is used as the exhaust unit 7, and the noise generated when the gas is exhausted can be effectively reduced.
  • the inside of the cover of the upper cover 5 of the oxygen system is provided with an exhaust runner 51, an intake runner 52, and a supply passage. 53.
  • the exhaust runner 51 is in communication with the exhaust unit 7, and the intake runner 52 is respectively connected to the molecular sieve cylinders 1 and 2 at corresponding positions for the air passage 53. Then, it is connected to an external air supply device, and the automatic control valve 3 communicates with the exhaust flow path 51, the intake flow path 52 and the supply air flow path 53 in the upper cover 5 of the oxygen generation system, respectively.
  • the oxygen system cover 5 Also provided are exhaust inlets 511 and 512 of the exhaust runner 51, intake inlets 521 and 522 of the intake runner 52, and an air supply outlet 531 of the supply passage 53. .
  • the intake ports 521 and 522 and the air supply outlet 531 are respectively connected to the automatic control valve 3, and the intake air passage 52 allows the outside air to enter the molecular sieve cylinder 1 and 2 Inside, the nitrogen in the molecular sieve cylinders 1 and 2 can also be discharged to the automatic control valve 3 through this.
  • the automatic control valve 3 is provided with a groove 30 at the joint of the upper cover 5 of the oxygen system, and a sealing gasket of a corresponding shape is installed in the groove 30. .
  • the automatic control valve 3 is provided with inlets and outlets 32, 33, 34, 35, 36, and an exhaust inlet 511 of the exhaust runner 51 and an intake inlet of the intake runner 52, respectively. 521, the air supply outlet 531 of the air supply passage 53, the air supply outlet 522 of the air supply passage 53, the exhaust inlet 512 of the exhaust flow passage 51, and the recessed groove 30 are provided at each of the above-mentioned entrances and exits Around 32, 33, 34, 35, 36.
  • the inside of the cover of the lower cover 6 of the oxygen system is provided with an oxygen storage passage 61 and a through air passage 62.
  • the molecular sieve cylinders 1 and 2 are connected to the oxygen storage unit 4 through the oxygen storage passage 61, and the molecular sieve cylinders 1 and 2 are connected by the air flow passage 62.
  • the oxygen storage passage 61 is provided with a check valve for allowing oxygen to enter the oxygen storage unit 4 only through the molecular sieve cylinders 1 and 2 through the oxygen storage passage 61. 610.
  • a flow control valve 620 for controlling the gas flow between the molecular sieve cylinders 1 and 2 is disposed in the air flow passage 62.
  • the one-way valve 610 is a resilient diaphragm covering the inlet of the oxygen storage flow path 61.
  • the gas supply device sends the outside air to the automatic control valve through the gas supply outlet 531 of the air supply passage 53.
  • the intake passage 52 and the supply passage 53 are first communicated, the automatic control valve 3 is internally switched to close the exhaust inlet 511, and the gas is temporarily sent to the molecular sieve cylinder through the intake inlet 521.
  • the nitrogen is adsorbed into the cylinder by using special internal molecules, and the remaining gas is high-purity oxygen, and then enters the oxygen storage unit 4 through the lower oxygen system bottom cover 6 at the same time, and at the same time, another molecular sieve cylinder 2 Due to the control of the automatic control valve 3, the oxygen system upper cover 5 communicates between the two intake flow passages 52, and the molecular sieve cylinder 2 is caused by the exhaust unit 7 communicating with the outside.
  • the nitrogen gas in a high pressure state is naturally discharged to the exhaust unit 7 at atmospheric pressure through the aforementioned flow path, and in the process of nitrogen removal, the air flow passage 62 in the lower cover 6 of the oxygen generation system is throttled by the throttle valve 620.
  • the relationship also provides a small amount of high pressure oxygen from the bottom of the molecular sieve cylinder 2 to accelerate the effective discharge of internal nitrogen.
  • the automatic control valve 3 The circuit is switched again, and the molecular sieve cylinder 2 is subjected to oxygen production according to the same principle as described above, and the molecular sieve cylinder 1 performs the operation of exhausting nitrogen, and the operation is repeated continuously, that is, the high-purity oxygen output can be continuously supplied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

一种制氧机
技术领域
本发明涉及一种制氧机 。
背景技术
目前的制氧机一般包括两个分子筛筒、储氧筒和电磁阀,两个分子筛筒之间通过管道连通,储氧筒通过管道分别和两个分子筛筒连通,电磁阀设于两个分子筛筒的一端并通过管道分别和两个分子筛筒连通。其运行方式为:将外部供应的气体经过电磁阀的控制送入其中一个分子筛筒内,利用内部特殊的分子吸附氮气,剩余气体即高纯度的氧气经管道进入储氧筒内,而同时另外一个分子筛筒也经电磁阀控制将内部的氮气排出至外界。如此反复运作,即可持续输出高纯度的氧气,但此结构由于各构件之间通过相应的管道连接,在组装时须将管道依序连接至相对应的构件处,且组装后也须检测各管道是否有泄漏的情况,杂乱相错的管道分布,增加了日后维修保养的困难度,费时又麻烦;裸露的管道杂乱无章,导致制氧机外形极为难看;而且这种制氧机的构件数目众多,需较多的空间分别存储放置,通常需另外配合一个大型的箱体来存放整体构件,增加了生产成本。
发明内容
为解决上述问题,本发明提供一种使用和拆卸方便、制造成本低的制氧机。
本发明为解决其问题所采用的技术方案是:
一种制氧机,包括两个分子筛筒、一自动控制阀和一储氧单元,分子筛筒的一端与自动控制阀相连通,分子筛筒的另一端与储氧单元连通,所述分子筛筒的端部扣接有制氧系统上盖和 / 或制氧系统下盖,制氧系统上盖和 / 或制氧系统下盖内设置有能够连通制氧机上述各构件之间的气体流道。
作为上述方案的改进,制氧系统上盖的一侧与自动控制阀连通,另一侧与一排气单元相连通。
所述制氧系统上盖扣接于分子筛筒上端,制氧系统上盖的盖体内侧设置有排气流道、进气流道及供气流道,排气流道与所述的排气单元相连通,进气流道分别与对应位置的分子筛筒相连通,供气流道则与外部的供气设备相连通,所述的自动控制阀分别与制氧系统上盖内的排气流道、进气流道及供气流道相连通。
所述制氧系统下盖扣接于分子筛筒下端,制氧系统下盖的盖体内侧设置有储氧流道与通气流道,分子筛筒与储氧单元之间通过储氧流道相连通,分子筛筒之间通过通气流道连通。
本发明的有益效果是:本发明的制氧机将原本设置在分子筛筒两端杂乱分布的流体管道,整合为扣接于分子筛筒两端的制氧系统上盖和 / 或制氧系统下盖,并通过隐藏在各模组内部的各种气体流道取代其功能,让原先需连接多管道作业转变成将气体流道模块与分子筛筒组合固定即可完成,大幅减小了制氧机的构成零件数目,不但使得组装和拆卸、生产及检测维修更为容易,而且能够有效降低制造成本,将气体流道模块分为制氧系统上盖和 / 或制氧系统下盖,既可以两个部件一起使用,也可将单一部件个别取代旧用制氧机的部分构件,发挥适当的功效,使用范围较大,兼容性较强。
附图说明
下面结合附图和实施例对本发明作进一步说明:
图 1 为本发明的结构示意图;
图 2 为为制氧系统上盖的结构示意图;
图 3 制氧系统上盖的剖视图;
图 4 为图 1 中的制氧系统上盖与自动控制阀从另一角度的分解图;
图 5 为制氧系统下盖的结构示意图;
图 6 为制氧系统下盖的剖视图。
具体实施方式
参照图 1 ,一种制氧机,包括两个分子筛筒 1 、 2 ,以及一个自动控制阀 3 和一个储氧单元 4 ,分子筛筒 1 、 2 的一端与自动控制阀 3 相连通,分子筛筒 1 、 2 的另一端与储氧单元 4 连通,所述分子筛筒 1 、 2 的上端扣接扣接有制氧系统上盖 5 ,分子筛筒 1 、 2 的下端扣接有制氧系统下盖 6 ,制氧系统上盖 5 和制氧系统下盖 6 内设置有能够连通制氧机上述各构件之间的气体流道。这种结构大幅减小了制氧机的构成零件数目,在保证能实现制氧机各构件之间有效连通的同时,不但使得组装和拆卸、生产及检测维修更为容易,而且能够降低制造成本。
进一步,制氧系统上盖 5 的一侧与自动控制阀 3 连通,另一侧与一排气单元 7 相连通。作为优选的方式,采用消音管作为排气单元 7 ,能够有效降低排出气体时产生的噪音。
参照图 2 至图 4 ,所述制氧系统上盖 5 的盖体内侧设置有排气流道 51 、进气流道 52 及供气流道 53 ,排气流道 51 与所述的排气单元 7 相连通,进气流道 52 分别与对应位置的分子筛筒 1 、 2 相连通,供气流道 53 则与外部的供气设备相连通,所述的自动控制阀 3 分别与制氧系统上盖 5 内的排气流道 51 、进气流道 52 及供气流道 53 相连通。相应地,制氧系统上盖 5 还设置有排气流道 51 的排气入口 511 和 512 、进气流道 52 的进气入口 521 和 522 、供气流道 53 的供气出口 531 。其中进气入口 521 、 522 以及供气出口 531 分别与自动控制阀 3 连通,进气流道 52 使外界气体能够进入分子筛筒 1 、 2 内,也可以使分子筛筒 1 、 2 内的氮气经此流至自动控制阀 3 排出。
自动控制阀 3 与制氧系统上盖 5 连接处设有嵌沟 30 ,嵌沟 30 内安装有相应形状的密封垫片 31 。自动控制阀 3 上设置有出入口 32 、 33 、 34 、 35 、 36 ,分别与排气流道 51 的排气入口 511 、进气流道 52 的进气入口 521 、供气流道 53 的供气出口 531 、供气流道 53 的供气出口 522 、排气流道 51 的排气入口 512 连通,嵌沟 30 设置于上述各出入口 32 、 33 、 34 、 35 、 36 的周围。
参照图 5 至图 6 ,所述制氧系统下盖 6 的盖体内侧设置有储氧流道 61 与通气流道 62 ,各分子筛筒 1 、 2 与储氧单元 4 之间通过储氧流道 61 相连通,各分子筛筒 1 、 2 之间通过通气流道 62 连通。
储氧流道 61 内设有使氧气仅能由分子筛筒 1 、 2 经储氧流道 61 进入储氧单元 4 内的单向阀 610 。
通气流道 62 内设有一控制分子筛筒 1 、 2 之间气体流量的节流阀 620 。
所述单向阀 610 为一覆盖于储氧流道 61 的入口处的、具有弹性的膜片。
制氧机整体的运作过程为:供气设备将外界气体经过供气流道 53 的供气出口 531 送至自动控制阀 3 处,首先将使进气流道 52 和供气流道 53 连通,自动控制阀 3 经内部切换使排气入口 511 关闭,气体通过进气入口 521 暂时送至分子筛筒 1 内,利用其内部特殊的分子将氮气吸附于筒内,剩余气体即为高纯度的氧气,再经由底部的制氧系统下盖 6 进入储氧单元 4 内,与此同时,另外一个分子筛筒 2 因自动控制阀 3 的控制,使得制氧系统上盖 5 在两个进气流道 52 之间连通,由于排气单元 7 与外界连通,使分子筛筒 2 内处于高压状态的氮气经前述流道自然向处于大气压力下的排气单元 7 方向排出,而在排氮过程中,制氧系统下盖 6 内的通气流道 62 因节流阀 620 的关系,也提供少量高压的氧气由分子筛筒 2 底部进入,加速内部氮气有效排出。当分子筛筒 1 吸附氮气达到饱和时,自动控制阀 3 再次切换回路,依前述相同的原理使分子筛筒 2 进行制氧的动作,而分子筛筒 1 进行排氮气的作业,如此反复不断运作,即可持续提供高纯度的氧气输出。
上述只是对本发明的优选实施例进行了图示和描述,但本发明的实施方式并不受上述实施例的限制,只要其以基本相同的手段达到本发明的技术效果,都应属于本发明的保护范围。

Claims (8)

  1. 一种制氧机,包括两个分子筛筒(1、2)、一自动控制阀(3)和一储氧单元(4),分子筛筒(1、2)的一端与自动控制阀(3)相连通,分子筛筒(1、2)的另一端与储氧单元(4)连通,其特征在于:所述分子筛筒(1、2)的端部扣接有制氧系统上盖(5)和/或制氧系统下盖(6),制氧系统上盖(5)和/或制氧系统下盖(6)内设置有能够连通制氧机上述各构件之间的气体流道。
  2. 根据权利要求1所述的制氧机,其特征在于:制氧系统上盖(5)的一侧与自动控制阀(3)连通,另一侧与一排气单元(7)相连通。
  3. 根据权利要求2所述的制氧机,其特征在于:所述制氧系统上盖(5)扣接于分子筛筒(1、2)上端,制氧系统上盖(5)的盖体内侧设置有排气流道(51)、进气流道(52)及供气流道(53),排气流道(51)与所述的排气单元(7)相连通,进气流道(52)分别与对应位置的分子筛筒(1、2)相连通,供气流道(53)则与外部的供气设备相连通,所述的自动控制阀(3)分别与制氧系统上盖(5)内的排气流道(51)、进气流道(52)及供气流道(53)相连通。
  4. 根据权利要求1所述的制氧机,其特征在于:所述制氧系统下盖(6)扣接于分子筛筒(1、2)下端,制氧系统下盖(6)的盖体内侧设置有储氧流道(61)与通气流道(62),各分子筛筒(1、2)与储氧单元(4)之间通过储氧流道(61)相连通,各分子筛筒(1、2)之间通过通气流道(62)连通。
  5. 根据权利要求4所述的制氧机,其特征在于:储氧流道(61)内设有使氧气仅能由分子筛筒(1、2)经储氧流道(61)进入储氧单元(4)内的单向阀(610)。
  6. 根据权利要求4所述的制氧机,其特征在于:通气流道(62)内设有一控制分子筛筒(1、2)之间气体流量的节流阀(620)。
  7. 根据权利要求5所述的制氧机,其特征在于:所述单向阀(610)为一覆盖于储氧流道(61)的入口处的、具有弹性的膜片。
  8. 据权利要求2所述的制氧机,其特征在于:所述自动控制阀(3)上与制氧系统上盖(5)连接处设有嵌沟(30),嵌沟(30)内安装有相应形状的密封垫片(31)。
PCT/CN2010/072370 2010-01-26 2010-04-30 一种制氧机 WO2011091629A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010201059372U CN201625489U (zh) 2010-01-26 2010-01-26 一种制氧机
CN201020105937.2 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011091629A1 true WO2011091629A1 (zh) 2011-08-04

Family

ID=43056871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072370 WO2011091629A1 (zh) 2010-01-26 2010-04-30 一种制氧机

Country Status (2)

Country Link
CN (1) CN201625489U (zh)
WO (1) WO2011091629A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946671A (zh) * 2018-07-26 2018-12-07 合肥康居人智能科技有限公司 新型制氧机可控出气量的分子筛筒
CN109678117A (zh) * 2019-01-17 2019-04-26 佛山市美客医疗科技有限公司 一种静音制氧装置
CN109721032A (zh) * 2019-01-23 2019-05-07 惠州市集迅电子有限公司 一种分子筛制氧机及其分子筛装置
CN111170281A (zh) * 2020-03-05 2020-05-19 柯尔(苏州)医疗科技有限公司 一种制氧系统
CN111255923A (zh) * 2020-03-09 2020-06-09 柯尔(苏州)医疗科技有限公司 一种制氧机用气动组合阀
CN111271489A (zh) * 2020-03-09 2020-06-12 柯尔(苏州)医疗科技有限公司 一种制氧机用气动组合阀
CN111606306A (zh) * 2020-05-21 2020-09-01 杜庆龙 一种制氧机的模块化结构系统
CN117046260A (zh) * 2023-10-12 2023-11-14 山东新华医用环保设备有限公司 一种模块化制氧系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105174221B (zh) * 2015-08-11 2017-06-20 惠州市美亚飞电器有限公司 一种可更换分子塔及分离阀的制氧机
CN105731383B (zh) * 2015-12-31 2018-01-12 惠州市美亚飞电器有限公司 一种具有空间增氧功能的制氧机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578115A (en) * 1995-07-24 1996-11-26 Devilbiss Health Care, Inc. Molecular sieve container for oxygen concentrator
CN2820828Y (zh) * 2005-08-11 2006-09-27 力豹医材股份有限公司 制氧机分子筛筒的气管模块
CN2828006Y (zh) * 2005-08-31 2006-10-18 合肥永德制氧科技有限公司 分子筛制氧机
CN2928819Y (zh) * 2006-06-27 2007-08-01 联鑫驱动科技股份有限公司 制氧机的气体流道模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578115A (en) * 1995-07-24 1996-11-26 Devilbiss Health Care, Inc. Molecular sieve container for oxygen concentrator
CN2820828Y (zh) * 2005-08-11 2006-09-27 力豹医材股份有限公司 制氧机分子筛筒的气管模块
CN2828006Y (zh) * 2005-08-31 2006-10-18 合肥永德制氧科技有限公司 分子筛制氧机
CN2928819Y (zh) * 2006-06-27 2007-08-01 联鑫驱动科技股份有限公司 制氧机的气体流道模块

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946671A (zh) * 2018-07-26 2018-12-07 合肥康居人智能科技有限公司 新型制氧机可控出气量的分子筛筒
CN109678117A (zh) * 2019-01-17 2019-04-26 佛山市美客医疗科技有限公司 一种静音制氧装置
CN109721032A (zh) * 2019-01-23 2019-05-07 惠州市集迅电子有限公司 一种分子筛制氧机及其分子筛装置
CN111170281A (zh) * 2020-03-05 2020-05-19 柯尔(苏州)医疗科技有限公司 一种制氧系统
CN111255923A (zh) * 2020-03-09 2020-06-09 柯尔(苏州)医疗科技有限公司 一种制氧机用气动组合阀
CN111271489A (zh) * 2020-03-09 2020-06-12 柯尔(苏州)医疗科技有限公司 一种制氧机用气动组合阀
CN111606306A (zh) * 2020-05-21 2020-09-01 杜庆龙 一种制氧机的模块化结构系统
CN117046260A (zh) * 2023-10-12 2023-11-14 山东新华医用环保设备有限公司 一种模块化制氧系统

Also Published As

Publication number Publication date
CN201625489U (zh) 2010-11-10

Similar Documents

Publication Publication Date Title
WO2011091629A1 (zh) 一种制氧机
GB0215649D0 (en) Adsorption gas dryer
CN108883358A (zh) 用于与其相关的变吸附工艺的装置和系统
US20190126188A1 (en) Rotary valve assembly for sieve beds for pressure swing adsorption control
JP6006520B2 (ja) 酸素濃縮装置およびそれに用いるパイロット弁ユニット
CN111992065A (zh) 气体混合装置
CN203212325U (zh) 用于vpsa制氧设备上的分子筛解吸再生结构
TW201520491A (zh) 通電直熱再生式壓縮空氣乾燥裝置及除濕再生單元
US10843120B2 (en) Rotary valve assembly for pressure swing adsorption system
CN105152136B (zh) Psa制氧机
EP4223392A1 (en) Integrated air inlet and outlet valve and pressure swing adsorption air path system
JP4921231B2 (ja) 酸素濃縮装置
CN209688162U (zh) 阀座组件及干燥装置
CN112944086B (zh) 一种用于吸附式干燥器中气动球阀的气路接头中枢
CN103112827B (zh) 高集成度制氧机吸附塔上盖进气及排氮系统
CN212369943U (zh) 气体混合装置
KR101425831B1 (ko) 산소 농축 장치
JPH04122411A (ja) 気体分離装置
JPH07172804A (ja) 吸着型酸素濃縮器
CN220214438U (zh) 一种高度集成的制氧机分子筛吸附塔
CN212028580U (zh) 一种压缩机双气道双向阀体
JP6747479B2 (ja) 酸素濃縮装置
CN216431277U (zh) 一种集成进出气阀及变压吸附气路系统
CN216980110U (zh) 一种制氧机排氮消声器
CN112408330B (zh) 一种制氧机气压平衡装置及应用其的制氧机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844407

Country of ref document: EP

Kind code of ref document: A1