WO2019193916A1 - 歩行者保護デバイスの制御方法および保護制御装置 - Google Patents

歩行者保護デバイスの制御方法および保護制御装置 Download PDF

Info

Publication number
WO2019193916A1
WO2019193916A1 PCT/JP2019/009090 JP2019009090W WO2019193916A1 WO 2019193916 A1 WO2019193916 A1 WO 2019193916A1 JP 2019009090 W JP2019009090 W JP 2019009090W WO 2019193916 A1 WO2019193916 A1 WO 2019193916A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
vehicle
type
occurrence
protection device
Prior art date
Application number
PCT/JP2019/009090
Other languages
English (en)
French (fr)
Inventor
和久 橋本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018220164A external-priority patent/JP6897658B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019001795.0T priority Critical patent/DE112019001795B4/de
Publication of WO2019193916A1 publication Critical patent/WO2019193916A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/48Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/20Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • B60R21/36Protecting non-occupants of a vehicle, e.g. pedestrians using airbags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • B60R21/38Protecting non-occupants of a vehicle, e.g. pedestrians using means for lifting bonnets

Definitions

  • the present disclosure relates to a protection control device configured to control the operation of a pedestrian protection device and a method of controlling the operation of the pedestrian protection device.
  • the vehicle may be equipped with an occupant protection device and a pedestrian protection device.
  • the operation of the occupant protection device is controlled based on the output of a collision detection sensor for an obstacle for detecting a collision with an obstacle such as another vehicle.
  • the operation of the pedestrian protection device is controlled based on the output of a pedestrian collision detection sensor for detecting a collision with a pedestrian or the like.
  • “Pedestrians” includes two-wheeled vehicles with passengers.
  • the “two-wheeled vehicle” is typically a bicycle, for example.
  • Patent Document 1 is known.
  • this indication aims at optimizing operation control of a pedestrian protection device when a crew member protection device and a pedestrian protection device are carried in vehicles.
  • the protection control device is configured to control the operation of the pedestrian protection device.
  • the pedestrian protection device is provided so as to protect a protection target, which is the pedestrian or the occupant, from an impact caused by a collision with a vehicle body when a specific object including the pedestrian and the two-wheeled vehicle with the occupant collides with the vehicle. Yes.
  • the protection control device comprises: A first collision determination unit provided to determine occurrence of a first-type collision that is a collision between the specific object and the vehicle and requires activation of the pedestrian protection device; A second collision determination unit provided to determine occurrence of a second-type collision that is a collision between an obstacle different from the specific object and the vehicle and requires activation of an occupant protection device; The second collision determination unit did not determine the occurrence of the second type collision between the time when the first collision determination unit determined the occurrence of the first type collision and the elapse of a predetermined delay time. On the condition that the activation signal generator provided to generate an activation signal for activating the pedestrian protection device, It has.
  • the control method includes the following procedure. Determining whether or not the first type of collision is required to be activated when the pedestrian protection device is a collision between the specific object and the vehicle; Determining whether or not the second-type collision occurs, which is a collision between the vehicle and the obstacle different from the specific object and requires activation of the occupant protection device; The activation signal is generated on the condition that the occurrence of the second type collision is not determined between the time when the occurrence of the first type collision is determined and the time until the delay time elapses.
  • FIG. 7 is a graph for explaining the operation of the functional configuration shown in FIG. 6.
  • FIG. 7 is a graph for explaining the operation of the functional configuration shown in FIG. 6.
  • a vehicle 1 is a so-called automobile and has a box-shaped vehicle body 10.
  • a front bumper 12 constituting a part of the vehicle body 10 is provided on the front surface 11 of the vehicle 1.
  • the front bumper 12 includes a bumper cover 13, a bumper reinforcing member 14, and a bumper absorber 16.
  • the bumper cover 13 constituting the outermost shell of the front bumper 12 is made of a synthetic resin such as polypropylene.
  • the bumper reinforcing member 14 and the bumper absorber 16 are provided inside the bumper cover 13.
  • the bumper reinforcement member 14 called “bumper reinforcement” is a rod-like rigid member, and is arranged with the vehicle width direction as a longitudinal direction. Specifically, the bumper reinforcing member 14 is formed of a metal material such as an aluminum alloy. The bumper reinforcing member 14 is fixed to the front end portions of the pair of side members 15 that extend along the entire length of the vehicle.
  • the bumper absorber 16 is disposed between the bumper cover 13 and the bumper reinforcing member 14. Specifically, the bumper absorber 16 is fixed to the front surface of the bumper reinforcing member 14, that is, the surface of the bumper reinforcing member 14 facing the back surface of the bumper cover 13.
  • the bumper absorber 16 that is an impact absorbing member is formed of a foaming synthetic resin such as foamed polypropylene.
  • a front hood 17, a front window 18, and a front pillar 19 are provided at the front of the vehicle body 10 and behind the front bumper 12.
  • the front hood 17 is formed of a metal plate material such as a steel plate.
  • the front window 18 is a transparent plate made of glass or the like, and is arranged behind the front hood 17.
  • the front pillar 19 is a rod-shaped member formed of a metal plate material such as a steel plate, and is provided on both sides of the front window 18 in the vehicle width direction. That is, the front pillar 19 extends rearward and upward while supporting both ends of the front window 18 in the vehicle width direction.
  • a protection system 20 is mounted on the vehicle 1.
  • the protection system 20 is configured to protect a person who has collided with the vehicle 1.
  • “Human who collided with vehicle 1” includes, for example, a pedestrian who collided directly with vehicle 1 and a passenger such as a motorcycle or a wheelchair colliding with vehicle 1.
  • motorcycles include bicycles and motorcycles.
  • an object that directly collides with the vehicle 1 may be a two-wheeled vehicle instead of an occupant.
  • the passenger of the motorcycle collided with the vehicle 1 “indirectly”. The same applies to passengers such as wheelchairs.
  • the protection system 20 is configured to protect a protection target from an impact caused by a collision with the vehicle body 10 when the vehicle 1 and a specific object collide.
  • the “specific object” includes a pedestrian, a motorcycle with a passenger, a wheelchair with a passenger, and the like.
  • the “protection target” includes a pedestrian in addition to a passenger in a motorcycle with a passenger.
  • the “protection target” may also be referred to as “traffic weak person”.
  • the protection system 20 is configured to protect the occupant of the vehicle 1 when the vehicle 1 collides with an “obstacle” different from the specific object.
  • the “obstacle” includes walls, pillars, other vehicles, and the like.
  • the protection system 20 includes a pedestrian protection device 21, an occupant protection device 22, and a protection control device 23.
  • the pedestrian protection device 21 is provided to protect a protection target from an impact caused by a collision with the vehicle body 10 when a specific object collides with the vehicle 1. Specifically, the pedestrian protection device 21 is configured to protect the protection target from an impact caused by a secondary collision.
  • Secondary collision means that an object to be protected, such as a motorcycle or a pedestrian, collides with the vehicle body 10 after the “primary collision”.
  • Primary collision means that a specific object first collides with the vehicle body 10, that is, the front bumper 12.
  • a hood pop-up device 24 and a pedestrian airbag device 25 are provided as the pedestrian protection device 21.
  • the hood pop-up device 24 is configured to raise the front hood 17 after the primary collision and before the secondary collision.
  • the hood pop-up device 24 is configured to push up the rear end portion of the front hood 17 during operation.
  • the pedestrian airbag device 25 is configured to protect the protection target by being deployed on the vehicle body 10 after the primary collision and before the secondary collision.
  • the specific configurations of the hood pop-up device 24 and the pedestrian airbag device 25 are already known or known at the time of filing of the present application, and thus further description thereof is omitted.
  • the occupant protection device 22 includes at least a front seat airbag 26.
  • the front seat airbag 26 is configured to protect the front seat occupant by deploying in front of the front seat occupant when the vehicle 1 collides frontward with an obstacle.
  • the specific configuration of the occupant protection device 22 is already known or known at the time of filing of the present application, and thus further description thereof is omitted.
  • the protection control device 23 is configured to control the operation of the pedestrian protection device 21 and the occupant protection device 22. That is, the protection control device 23 is configured to detect whether or not the specific object has collided with the front surface 11 of the vehicle 1 and to activate the pedestrian protection device 21 when the collision of the specific object is detected. The protection control device 23 is configured to detect whether or not an obstacle has collided with the front surface 11 of the vehicle 1 and to activate the occupant protection device 22 when an obstacle collision is detected.
  • each part which comprises the protection control apparatus 23 is demonstrated.
  • Protection control ECU30 which comprises the principal part of the protection control apparatus 23 is comprised so that the whole action
  • ECU is an abbreviation for Electronic Control Unit.
  • the protection control ECU 30 is a so-called in-vehicle microcomputer, and includes a CPU, a ROM, a RAM, and a nonvolatile RAM (not shown).
  • the non-volatile RAM is, for example, a flash ROM.
  • the CPU, ROM, RAM, and nonvolatile RAM of the protection control ECU 30 are hereinafter simply referred to as “CPU”, “ROM”, “RAM”, and “nonvolatile RAM”.
  • Protection control ECU30 is comprised so that various control operation
  • This program includes a program corresponding to a routine described later.
  • various data used for executing the program is stored in advance in the ROM or the nonvolatile RAM.
  • Various types of data include, for example, initial values, look-up tables, maps, and the like. Details of the functional configuration of the protection control ECU 30 will be described later.
  • the protection control ECU 30 is provided behind the front bumper 12. Specifically, for example, the protection control ECU 30 is disposed below the rear end of the front hood 17 or in the passenger compartment.
  • a floor G sensor 31 is mounted on the protection control ECU 30.
  • the floor G sensor 31 is an acceleration sensor, and is configured to generate an output (for example, voltage) corresponding to the acceleration in the front-rear direction.
  • the acceleration sensor constituting the floor G sensor 31 may also be referred to as a “deceleration sensor”.
  • a satellite G sensor 32 is mounted at a position on the tip side of each of the pair of side members 15.
  • the satellite G sensor 32 is an acceleration sensor, and is configured to generate an output (for example, a voltage) corresponding to the acceleration in the front-rear direction and / or the left-right direction.
  • the front bumper 12 is provided with a collision sensor 33.
  • the collision sensor 33 is configured to generate an output (for example, a voltage) corresponding to an impact applied to the front bumper 12 due to a collision between an object and the front surface 11 of the vehicle 1.
  • the collision sensor 33 is a pressure tube sensor formed in a long shape having a longitudinal direction along the vehicle width direction, and extends in the vehicle width direction along the bumper reinforcing member 14. ing.
  • the collision sensor 33 includes a tube member 33a and a pair of pressure sensors 33b.
  • the tube member 33a is a tubular member extending along the vehicle width direction, and is formed of a synthetic resin such as synthetic rubber. Most of the tube member 33a except the both ends in the vehicle width direction is embedded in the bumper absorber 16.
  • the pressure sensor 33b is attached to both ends of the tube member 33a in the vehicle width direction.
  • the pressure sensor 33b is configured to generate an output (for example, voltage) corresponding to the pressure in the tube member 33a.
  • the specific configuration and arrangement of the collision sensor 33 which is a pressure tube type sensor, is already known or well known at the time of filing of the present application, and will not be described further.
  • the collision prediction unit 34 is provided to detect a target existing around the vehicle 1. That is, the collision prediction unit 34 is configured to acquire the possibility of collision between the type of the target existing in front of the vehicle 1 and the target of the vehicle 1. Specifically, the collision prediction unit 34 is configured to detect the type of the object in a recognizable manner before the object collides with the front bumper 12 and acquire various parameters such as the distance to the object. Yes.
  • the collision prediction unit 34 may also be referred to as a “preventive sensor”.
  • the collision prediction unit 34 may be configured as a so-called stereo camera including two camera sensors.
  • the collision prediction unit 34 may be configured as a so-called fusion sensor including a camera sensor and a millimeter wave radar sensor. Since the specific configuration and arrangement of the collision prediction unit 34 are already known or well known at the time of filing of the present application, further description is omitted in this specification.
  • the vehicle speed sensor 35 is configured to generate an output (for example, a voltage) corresponding to the traveling speed of the vehicle 1.
  • an output for example, a voltage
  • vehicle speed the traveling speed of the vehicle 1 is simply referred to as “vehicle speed”.
  • the protection control ECU 30 is electrically connected to the pedestrian protection device 21, the occupant protection device 22, the satellite G sensor 32, and the collision sensor 33 via an in-vehicle communication line corresponding to an in-vehicle LAN standard such as Safe-by-Wire. Yes. Further, the protection control ECU 30 is electrically connected to the collision prediction unit 34 and the vehicle speed sensor 35 via an in-vehicle communication line corresponding to an in-vehicle LAN standard such as CAN.
  • CAN is an abbreviation for Controller Area Network and is a registered trademark.
  • FIG. 2 shows a functional component for activating the pedestrian protection device 21 in the protection control ECU 30. Therefore, in FIG. 2, illustration of a functional component for activating the occupant protection device 22 is omitted. The same applies to the second and subsequent embodiments described later.
  • the protection control ECU 30 includes a first collision determination unit 301, a second collision determination unit 302, and an activation signal generation unit 303 as functional configurations realized by the CPU. .
  • the first collision determination unit 301 is provided so as to determine the occurrence of the first type collision based on the output of the collision sensor 33.
  • the “first type collision” is a collision between the front surface 11 of the vehicle 1, that is, the front bumper 12 and a specific object, and requires a pedestrian protection device 21 to be activated. That is, the first collision determination unit 301 outputs a logical value “0” while the determination condition for occurrence of the first type collision is not satisfied, and outputs a logical value “1” while the determination condition is satisfied. ing.
  • the second collision determination unit 302 is provided so as to determine the occurrence of the second type collision based on the output of the floor G sensor 31.
  • the “second-type collision” is a collision between the front surface 11 of the vehicle 1 and an obstacle such as a wall, and is a collision that requires the occupant protection device 22 to be activated. That is, the second collision determination unit 302 outputs a logical value “0” while the determination condition for the occurrence of the second type collision is not satisfied, and outputs a logical value “1” while the determination condition is satisfied. ing.
  • the activation signal generator 303 is provided so as to generate an activation signal for activating the pedestrian protection device 21 when the first collision determination unit 301 determines the occurrence of the first type collision and a predetermined condition is satisfied. It has been.
  • the “predetermined condition” is that the second collision determination unit 302 did not determine the occurrence of the second type collision between the determination time and the elapse of the predetermined delay time.
  • the determination time point is a time point when the first collision determination unit 301 determines the occurrence of the first type collision.
  • the activation signal generation unit 303 includes a delay unit 304, a signal holding unit 305, a signal inversion unit 306, and an arithmetic output unit 307.
  • the delay unit 304 is provided to perform a delay process on the output of the first collision determination unit 301. That is, when the first collision determination unit 301 determines the occurrence of the first type collision and outputs a logical value “1” and receives such output, the delay unit 304 receives the logic after the delay time has elapsed from the determination time point. The value “1” is output.
  • the delay unit 304 can be configured by, for example, a known digital delay circuit.
  • the signal holding unit 305 is provided to perform a holding process on the output of the second collision determination unit 302. That is, the signal holding unit 305 outputs the logical value “1” when the second collision determination unit 302 determines the occurrence of the second type collision and outputs the logical value “1” and receives the output. Is held for a predetermined period.
  • the signal holding unit 305 can be configured by, for example, a known latch circuit.
  • the signal inversion unit 306 is provided to invert the output of the signal holding unit 305. That is, the signal inverting unit 306 outputs a logical value “1” when the output of the signal holding unit 305 is a logical value “0”. The signal inverting unit 306 outputs a logical value “0” when the output of the signal holding unit 305 is a logical value “1”.
  • the signal inverting unit 306 can be configured by a known NOT gate, that is, an inverter.
  • the calculation output unit 307 is provided so as to generate an activation signal based on the output of the delay unit 304 and the output of the signal inversion unit 306.
  • the arithmetic output unit 307 is a so-called two-input AND gate, and one of a pair of input terminals is connected to the output of the delay unit 304 and the other is connected to the output of the signal inverting unit 306. ing. That is, the arithmetic output unit 307 is configured to generate a start signal when both the output of the delay unit 304 and the output of the signal inversion unit 306 are “1”, and not generate a start signal in other cases. Has been.
  • the first collision determination unit 301 determines, based on the output of the collision sensor 33, whether or not there is a first-type collision that is a collision between the specific object and the vehicle 1 and that requires activation of the pedestrian protection device 21. Based on the output of the floor G sensor 31, the second collision determination unit 302 is a collision between an obstacle different from the specific object and the vehicle 1 and the occurrence of a second type collision that requires the occupant protection device 22 to be activated. Determine presence or absence.
  • FIG. 3 is a graph comparing the sensor output time lapse when the first type collision occurs and when the second type collision occurs.
  • t0 indicates the collision start time
  • the broken line indicates the output of the floor G sensor 31
  • the solid line indicates the output of the collision sensor 33.
  • the output of the floor G sensor 31 and the collision sensor are obtained by using the vertical axis E that is standardized so that the first type collision determination threshold and the second type collision determination threshold are both E0.
  • the illustration with 33 outputs is shared.
  • the floor G sensor 31 detects a second-type collision in which a relatively large impact value is generated, that is, a collision between the vehicle 1 and a wall or another vehicle.
  • the floor G sensor 31 is disposed behind the collision sensor 33.
  • the collision sensor 33 detects an impact at the time of collision caused by a relatively light specific object such as a pedestrian. For this reason, the collision sensor 33 has high sensitivity.
  • the collision sensor 33 is attached to the front surface 11 of the vehicle body 10, that is, the front bumper 12.
  • the output of the collision sensor 33 rises relatively early and reaches the threshold value at time t1. Therefore, the occurrence of the first type collision is determined at time t1.
  • the time t1 corresponds to the above “determination time point”. However, the output of the floor G sensor 31 does not reach the threshold value due to the impact caused by the first type collision.
  • the output of the collision sensor 33 rises relatively early and reaches the threshold value at time t1 regardless of whether the first type collision occurs or the second type collision occurs. Therefore, it is accurately determined which of the first-class collision and the second-class collision has occurred only by whether or not the output of the collision sensor 33 has exceeded a predetermined threshold value corresponding to E0 in FIG. It is difficult. For this reason, in the prior art, for example, the output waveform of the collision sensor 33 is analyzed in detail to accurately determine which of the first type collision and the second type collision has occurred.
  • the determination of the occurrence of the second type collision is established prior to the determination of the occurrence of the first type collision.
  • the output of the collision sensor 33 rises earlier than the output of the floor G sensor 31. Therefore, in practice, the determination of the occurrence of the first type collision is established earlier than the determination of the occurrence of the second type collision.
  • the activation signal generation unit 303 is provided with a delay unit 304 to delay the generation of the effect of the first collision determination by the first collision determination unit 301. . That is, the activation signal generation unit 303 waits for generation of the activation signal from the determination time t1 when the first collision determination unit 301 determines the occurrence of the first type collision until a predetermined delay time elapses. Then, the activation signal generator 303 generates an activation signal for activating the pedestrian protection device 21 on condition that the second collision determination unit 302 has not determined the occurrence of the second type collision.
  • the delay unit 304 provided in the activation signal generation unit 303 includes a delay time setting unit 308.
  • the delay time setting unit 308 is provided so as to set a delay time in accordance with the traveling state including the traveling state of the vehicle 1. Specifically, in the present embodiment, the delay time setting unit 308 sets the delay time according to the vehicle speed as the traveling state of the vehicle 1 detected by the vehicle speed sensor 35.
  • the delay time can be appropriately set according to the traveling state of the vehicle 1. That is, for example, the delay time is set shorter during high speed travel than during low speed travel. Therefore, according to this configuration, it is possible to determine earlier and more accurately which one of the first type collision and the second type collision has occurred.
  • the delay unit 304 includes a delay time setting unit 308.
  • the delay time setting unit 308 is provided so as to set the delay time according to the relative speed detected by the collision prediction unit 34. Specifically, the delay time setting unit 308 sets the delay time to be shorter when the relative speed is higher than when the relative speed between the vehicle 1 and the collision object is low. That is, the delay time setting unit 308 reduces the delay time when the relative speed between the vehicle 1 and the collision target is high.
  • the collision prediction unit 34 detects the target, that is, the type of the collision object immediately before the collision with the vehicle 1. For this reason, when the type of the collision target is a specific object, the collision between the specific object and the vehicle 1 is certain. For this reason, it is necessary to operate the pedestrian protection device 21 reliably in this case.
  • the type of the collision target is an obstacle such as another vehicle
  • the collision between the obstacle and the vehicle 1 is certain. For this reason, in this case, it is necessary to reliably operate the occupant protection device 22 and to prohibit the activation of the pedestrian protection device 21.
  • the delay time setting unit 308 sets a delay time according to the acquisition result by the collision prediction unit 34, that is, the prediction result. Specifically, for example, the delay time setting unit 308 sets the delay time longer when the collision target is an obstacle than when the type of the collision target is a specific object. That is, the delay time setting unit 308 reduces the delay time when the type of the collision target is a specific object.
  • the delay time can be appropriately set according to the traveling state of the vehicle 1.
  • the “traveling situation” may include the possibility of a collision between an object around the vehicle 1 and the vehicle 1. Therefore, according to this configuration, it is possible to determine earlier and more accurately which one of the first type collision and the second type collision has occurred.
  • the first type collision between the specific object and the vehicle 1 is certain.
  • the activation signal generation unit 303 may be configured to invalidate the determination of the second collision determination unit 302 when the collision prediction unit 34 predicts the occurrence of the first type collision. Specifically, as illustrated in FIG. 5, the activation signal generation unit 303 may further include a prohibition release unit 309.
  • the prohibition canceling unit 309 is a two-input OR gate, and is provided between the signal inverting unit 306 and the calculation output unit 307.
  • One of the pair of input terminals in the prohibition release unit 309 is configured to receive the result obtained by the collision prediction unit 34.
  • the other of the pair of input terminals in the prohibition release unit 309 receives the output of the signal inversion unit 306.
  • the prohibition canceling unit 309 determines whether the collision predicting unit 34 predicts the occurrence of the first type collision, so that when the logical value “1” is input to one of the pair of input terminals, Instead, a logical value “1” is output.
  • the output of the delay unit 304 is input to one of the pair of input terminals in the calculation output unit 307.
  • the output of the prohibition release unit 309 is input to the other of the pair of input terminals in the calculation output unit 307. That is, in the present embodiment, the calculation output unit 307 generates a start signal when both the output of the delay unit 304 and the output of the prohibition release unit 309 are “1”, while in other cases the start signal Is supposed not to occur.
  • the collision prediction unit 34 predicts the occurrence of the first type collision
  • a logical value “1” is input to one of the pair of input terminals in the prohibition release unit 309.
  • the prohibition release unit 309 outputs a logical value “1” regardless of the output of the signal inverting unit 306, that is, the determination result by the second collision determination unit 302. Therefore, when the collision prediction unit 34 predicts the occurrence of the first type collision, the calculation output unit 307 is accompanied by the output of the logical value “1” by the delay unit 304 regardless of the determination result by the second collision determination unit 302. Output a start signal.
  • the collision prediction unit 34 predicts the occurrence of the first type collision between the specific object and the vehicle 1
  • the determination of the second collision determination unit 302 is invalidated. That is, the activation prohibition of the pedestrian protection device 21 based on the determination by the second collision determination unit 302 is released. Therefore, it is possible to operate the pedestrian protection device 21 more quickly and reliably when a collision with the specific object actually occurs under a traveling situation where the risk of collision between the vehicle 1 and the specific object is high. .
  • the second collision determination unit 302 is provided to determine the occurrence of the second type collision based on the output of the collision sensor 33. . Specifically, the second collision determination unit 302 determines the occurrence of the second type collision when the state where the output of the collision sensor 33 reaches a predetermined value continues for a predetermined time. More specifically, the second collision determination unit 302 determines the occurrence of the second type collision when the integrated value of the output of the collision sensor 33 exceeds a threshold value.
  • FIG. 7 is a graph comparing the time lapse of the output of the collision sensor 33 when the first type collision occurs and when the second type collision occurs.
  • the vertical axis P indicates the pressure value corresponding to the output of the collision sensor 33
  • the solid line indicates the case of the first type collision
  • the broken line indicates the case of the second type collision.
  • FIG. 8 is a graph comparing the elapsed time of the integrated value of the output of the collision sensor 33 when the first type collision occurs and when the second type collision occurs.
  • the vertical axis SP indicates the integrated value of the pressure values corresponding to the output of the collision sensor 33
  • the solid line indicates the case of the first type collision
  • the broken line indicates the case of the second type collision.
  • the time t2 shown in FIG. 3 is also shown in FIGS.
  • the collision sensor 33 has high sensitivity in order to detect an impact at the time of collision by a relatively light specific object such as a pedestrian. For this reason, even when the second type collision occurs, the output of the collision sensor 33 reaches the peak value Pmax after reaching the threshold value Pth, as in the case where the first type collision occurs.
  • the peak value Pmax corresponds to the maximum value in the dynamic range of the output of the collision sensor 33. Accordingly, there is no difference in whether the output of the collision sensor 33 reaches the peak value Pmax between the case where the first type collision occurs and the case where the second type collision occurs.
  • the time during which the output of the collision sensor 33 reaches the peak value Pmax continues longer than when the first type collision occurs. Specifically, when the first type collision occurs, the output of the collision sensor 33 decreases immediately after reaching the peak value Pmax. For this reason, the state of reaching the peak value Pmax is almost instantaneous.
  • the second type collision occurs, the output of the collision sensor 33 continues to reach the peak value Pmax for a predetermined time. For this reason, as shown in FIG. 8, when the second type collision occurs, the integral value SP exceeds the predetermined value SPth in the vicinity of time t2.
  • the integral value SP is less than the predetermined value SPth.
  • the second collision determination unit 302 includes an integral value calculation unit 321 and a determination output unit 322.
  • the integral value calculation unit 321 is provided so as to calculate the integral value of the output of the collision sensor 33.
  • the integral value calculation unit 321 calculates a section integral value in a predetermined time section.
  • the predetermined time interval is, for example, a time interval from the time when the output of the collision sensor 33 reaches the threshold value Pth until the time when the output starts to decrease from the peak value Pmax.
  • the determination output unit 322 is provided to determine whether or not the integral value exceeds the threshold value SPth and output the determination result to the signal holding unit 305.
  • an attempt to improve the structure or function of the protection system 20 may be made by acquiring and analyzing a lot of information related to the accident occurrence situation of the actual vehicle 1.
  • the vehicle 1 may collide with a specific object such as a pedestrian after colliding with an obstacle such as a utility pole.
  • Such a collision is referred to as a “compound collision”.
  • Information regarding the occurrence of such complex collisions is extremely useful for improving the structure or function of the protection system 20.
  • information on the collision occurrence state when the activation of the pedestrian protection device 21 is prohibited by the determination of the second collision determination unit 302 is also extremely useful for improving the structure or function of the protection system 20.
  • the protection control ECU 30 performs an information holding operation in a predetermined case.
  • the “predetermined case” is a case where activation of the pedestrian protection device 21 is prohibited by the determination of the second collision determination unit 302 or a case where both the pedestrian protection device 21 and the occupant protection device 22 are activated. .
  • the information holding operation is an operation for holding driving environment information before and after the collision.
  • the travel environment information is information corresponding to the travel environment of the vehicle 1.
  • the “traveling environment” includes at least the traveling state of the vehicle 1, that is, the vehicle speed, the steering angle, and the like.
  • the protection control ECU 30 can obtain the steering angle and the like via the in-vehicle communication line.
  • the “traveling environment” includes the environment around the vehicle 1, specifically, the presence state of the target around the vehicle 1.
  • the information corresponding to the environment around the vehicle 1 is, for example, image information around the vehicle 1 acquired by the collision prediction unit 34.
  • the protection control ECU 30 holds the traveling state information such as the vehicle speed and the image information around the vehicle 1 before and after the collision in the predetermined case as described above. That is, the protection control ECU 30 acquires travel environment information such as vehicle speed and image information from before the occurrence of a collision for the start control of the pedestrian protection device 21.
  • the acquired travel environment information is stored in a predetermined amount from the latest in time series in the nonvolatile RAM in order to acquire the type of target existing in front of the vehicle 1 and the possibility of collision with the target of the vehicle 1. Is done. Therefore, the protection control ECU 30 holds, in the non-volatile RAM, traveling environment information for a predetermined time period from before the collision occurrence to after the collision occurrence in the predetermined case.
  • FIG. 9 is a flowchart for explaining the above operation.
  • step is abbreviated as “S”.
  • the CPU of the protection control ECU 30 repeatedly starts the routine shown in FIG. 9 at predetermined intervals.
  • this routine is started, first, in step 901, the CPU determines whether or not the vehicle 1 has collided with any object. Specifically, for example, the CPU determines whether or not the output of the floor G sensor 31 has exceeded a predetermined value.
  • the “predetermined value” in this case is, for example, a value slightly smaller than the collision determination threshold value E0 in FIG.
  • step 901 NO
  • step 901 determines whether the activation of the pedestrian protection device 21 is prohibited by the determination of the second collision determination unit 302. Specifically, in the first embodiment and the like, when the second collision determination unit 302 determines the occurrence of the second type collision, the activation of the pedestrian protection device 21 is prohibited. In this case, the determination in step 902 is “YES”.
  • step 902 determines whether the determination in step 902 is “YES”. If the determination in step 902 is “YES”, the CPU advances the process to step 903 and then ends this routine.
  • step 903 the CPU executes an information holding operation. That is, the CPU holds the travel environment information for a predetermined time from the occurrence of the collision to the time after the collision in the nonvolatile RAM of the protection control ECU 30.
  • step 902 determines whether or not the pedestrian protection device 21 has been activated in the current collision.
  • step 904 NO
  • the CPU skips the process of step 905 and ends this routine.
  • step 904 YES
  • the delay unit 304 includes a delay time setting unit 308.
  • the delay time setting unit 308 sets a delay time according to the relative speed detected by the collision prediction unit 34.
  • the delay time setting unit 308 sets a delay time according to the acquisition result by the collision prediction unit 34, that is, the prediction result.
  • This embodiment is a partial modification of the third embodiment.
  • This embodiment differs from the third embodiment described above in the usage mode of the collision object type determination result by the collision prediction unit 34. That is, the present embodiment and the third embodiment differ in the relationship between the collision object type determination result by the collision prediction unit 34 and the determination output of the second collision determination unit 302.
  • the activation signal generation unit 303 invalidates the determination of the second collision determination unit 302 when the collision prediction unit 34 predicts the occurrence of the first type collision.
  • the result obtained by the collision prediction unit 34 is input to one of the pair of input terminals in the prohibition release unit 309 that is a two-input OR gate.
  • the other of the pair of input terminals in the prohibition canceling unit 309 receives the output of the signal inverting unit 306.
  • the activation signal generation unit 303 includes a prohibition setting unit 323 as illustrated in FIG. 10 instead of the prohibition release unit 309 illustrated in FIG.
  • the prohibition setting unit 323 is a two-input OR gate, and is provided between the second collision determination unit 302 and the signal holding unit 305.
  • An output terminal in the prohibition setting unit 323 is configured to output a signal to the signal holding unit 305.
  • an acquisition result by the collision prediction unit 34 is input.
  • the other of the pair of input terminals in the prohibition setting unit 323 receives the output of the second collision determination unit 302.
  • the prohibition setting unit 323 determines whether the other input is input. Instead, a logical value “1” is output to the signal holding unit 305.
  • the activation signal generation unit 303 invalidates the determination of the first collision determination unit 301 when the collision prediction unit 34 predicts the occurrence of the second type collision.
  • the determination of the occurrence of the second type collision by the second collision determination unit 302 is performed based on the output of the floor G sensor 31.
  • the determination of the occurrence of the second type collision by the second collision determination unit 302 can also be performed using the output of the satellite G sensor 32.
  • the outputs of the floor G sensor 31 and the satellite G sensor 32 are less likely to rise as the vehicle speed decreases. For this reason, the determination of the occurrence of the second type collision based on the output of the floor G sensor 31 and / or the satellite G sensor 32 is delayed as the vehicle speed decreases.
  • the activation signal generation unit 303 waits for the determination of the determination result by the second collision determination unit 302 when determining the activation of the pedestrian protection device 21. For this reason, when the vehicle speed is in the low speed range, the determination of the occurrence of the second-type collision based on the outputs of the floor G sensor 31 and / or the satellite G sensor 32 can be a problem.
  • the collision sensor 33 is provided in the front bumper 12. For this reason, the output of the collision sensor 33 rises early even if the vehicle speed is in the low speed range, regardless of the type of collision, such as a first-class collision such as an interpersonal collision or a second-type collision such as a front collision. On the other hand, in the low speed range, there is a large difference in the output of the collision sensor 33 between the first type collision and the second type collision.
  • the second collision determination unit 302 is configured to determine the occurrence of the second type collision with a determination logic different from that in the high speed region when the vehicle speed is in the low speed region. Yes.
  • the second collision determination unit 302 includes a high speed determination unit 324, a low speed determination unit 325, a first integration unit 326, a second integration unit 327, and a determination result output unit 328. ing.
  • the high speed determination unit 324 is provided to determine the occurrence of the second type collision based on the acceleration acting on the vehicle 1, that is, the output of the floor G sensor 31, when the vehicle speed is in the high speed range.
  • the low speed determination unit 325 is provided to determine the occurrence of the second type collision based on the output of the collision sensor 33 when the vehicle speed is in the low speed range.
  • the high speed range and the low speed range are set so that the upper limit range of the low speed range and the lower limit range of the high speed range overlap each other.
  • the high-speed determination unit 324 indicates that the state where the output of the collision sensor 33 has reached a predetermined value has continued for a predetermined time in the same manner as in the fourth embodiment described above. Judgment conditions are used. That is, in the present embodiment, the high-speed determination unit 324 uses the following conditions H1, H2, and H3 as determination conditions for occurrence of the second-type collision.
  • Condition H1 The vehicle speed is within a predetermined high speed range.
  • Condition H2 The output of the floor G sensor 31 and / or its integrated value has reached a predetermined threshold value.
  • Condition H3 The state where the output of the collision sensor 33 has reached a predetermined value has continued for a predetermined time.
  • the low speed determination unit 325 uses, as a determination condition for the occurrence of the second type collision, that the state in which the output of the collision sensor 33 has reached a predetermined value continues for a predetermined time. That is, in the present embodiment, the low speed determination unit 325 uses the following conditions L1, L2, and L3 as the determination conditions for the occurrence of the second type collision.
  • Condition L1 The vehicle speed is in a predetermined low speed range.
  • Condition L2 The output of the collision sensor 33 and / or its integrated value has reached a predetermined threshold value.
  • Condition L3 The state where the output of the collision sensor 33 has reached a predetermined value has continued for a predetermined time.
  • the high-speed determination unit 324 and the low-speed determination unit 325 are provided so that outputs of the floor G sensor 31, the collision sensor 33, and the vehicle speed sensor 35 are input, respectively.
  • the high speed determination unit 324 and the low speed determination unit 325 are provided in parallel.
  • the output of the high-speed determination unit 324 and the output of the low-speed determination unit 325 are respectively input to different input terminals in the first integration unit 326 that is a two-input OR gate. That is, one of the pair of input terminals in the first integration unit 326 receives the output of the high-speed determination unit 324.
  • the other of the pair of input terminals in the first integration unit 326 is configured to receive the output of the low speed determination unit 325.
  • the second integration unit 327 is a two-input OR gate, and is provided between the first integration unit 326 and the determination result output unit 328. One of the pair of input terminals in the second integration unit 327 receives the output of the first integration unit 326. Further, the other of the pair of input terminals in the second integration unit 327 is input with the operating state of the occupant protection device 22. That is, in the present embodiment, the second collision determination unit 302 determines the occurrence of the second type collision regardless of the output of the first integration unit 326 when the occupant protection device 22 is activated.
  • the determination result output unit 328 is provided to generate the output of the second collision determination unit 302 based on the output of the second integration unit 327.
  • the determination result output unit 328 is a two-input AND gate and has a pair of input terminals. One of the pair of input terminals in the determination result output unit 328 is configured to receive the output of the second integration unit 327.
  • the diagnosis result of the occupant protection device 22 is input to the other of the pair of input terminals in the determination result output unit 328. That is, in the present embodiment, the second collision determination unit 302 uses the normal condition of the occupant protection device 22 as a determination condition for the occurrence of the second type collision.
  • the second collision determination unit 302 determines the occurrence of the second type of collision with a determination logic different from that in the high speed region. Specifically, when the vehicle speed is in the high speed range, the second collision determination unit 302 uses the high speed determination unit 324 to determine the occurrence of the second type collision. On the other hand, when the vehicle speed is in the low speed range, the second collision determination unit 302 uses the low speed determination unit 325 to determine the occurrence of the second type collision.
  • the second collision determination unit 302 uses the output of the floor G sensor 31 to determine the occurrence of the second type collision.
  • the second collision determination unit 302 considers the output state of the collision sensor 33 when determining the occurrence of the second type collision. That is, the high speed determination unit 324 outputs a logical value “1” when the above-described conditions H1, H2, and H3 are satisfied.
  • the second collision determination unit 302 determines the occurrence of the second type collision by using the output of the collision sensor 33 instead of the output of the floor G sensor 31.
  • the output of the collision sensor 33 rises early regardless of the type of collision.
  • the low speed determination unit 325 outputs a logical value “1” when the above conditions L1, L2, and L3 are satisfied.
  • the determination result output unit 328 When one of the high speed determination unit 324 and the low speed determination unit 325 outputs a logical value “1”, the determination result output unit 328 outputs a logical value “1” unless an abnormality occurs in the occupant protection device 22. 1 "is output. That is, the second collision determination unit 302 determines the occurrence of the second type collision.
  • the determination result output unit 328 performs the logic regardless of the outputs of the high speed determination unit 324 and the low speed determination unit 325.
  • the value “1” is output. That is, the second collision determination unit 302 determines the occurrence of the second type collision.
  • the occurrence of the second type collision is determined early even in the low speed region. Therefore, according to this embodiment, it becomes possible to optimize the operation control of the pedestrian protection device 21 regardless of the vehicle speed range.
  • the present disclosure is not limited to the specific apparatus configuration shown in the above embodiment.
  • the configurations of the pedestrian protection device 21 and the occupant protection device 22 are not limited to the specific example shown in FIG. That is, for example, only one of the hood pop-up device 24 and the pedestrian airbag device 25 may be provided as the pedestrian protection device 21.
  • the protection control ECU 30 may be configured as a so-called ASIC.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • the number and arrangement of the satellite G sensors 32 are not limited to the specific example shown in FIG.
  • the configuration of the collision sensor 33 is not limited to the above specific example. That is, for example, the collision sensor 33 may be an optical fiber sensor or a piezoelectric film sensor instead of the pressure chamber sensor.
  • the piezoelectric film type sensor is formed of a piezoelectric polymer film element and is configured to generate an output (for example, a voltage) corresponding to an applied stress. Since the specific configuration and arrangement of the piezoelectric film type collision sensor 33 are already known or well known at the time of filing of the present application, further explanation is omitted.
  • the configuration of the collision prediction unit 34 is not limited to the above specific example. That is, the collision prediction unit 34 can be configured by including one or more known sensors selected from a camera sensor, a laser radar sensor, a millimeter wave radar sensor, an ultrasonic sensor, and the like.
  • the collision prediction unit 34 may have only a camera sensor.
  • the front bumper 12 may be provided with a distance measuring sensor.
  • the distance measuring sensor is a known sensor selected from a laser radar sensor, a millimeter wave radar sensor, an ultrasonic sensor, and the like, and is configured to generate an output corresponding to the distance to the target. .
  • the vehicle 1 is normally equipped with sensors other than the vehicle speed sensor 35, such as an outside air temperature sensor, a raindrop sensor, a yaw rate sensor, and the like. Therefore, the protection control device 23 can be configured to control the operation of the pedestrian protection device 21 and the like using the outputs of these other sensors.
  • sensors other than the vehicle speed sensor 35 such as an outside air temperature sensor, a raindrop sensor, a yaw rate sensor, and the like. Therefore, the protection control device 23 can be configured to control the operation of the pedestrian protection device 21 and the like using the outputs of these other sensors.
  • the first collision determination unit 301 may determine the occurrence of the first type collision based on the output of the collision sensor 33 and the acquisition result by the collision prediction unit 34. The same applies to FIGS. 4 to 6.
  • the acquisition result by the collision prediction unit 34 may include, for example, the type of collision object predicted to collide with the front surface 11 of the vehicle 1 and the possibility of collision.
  • the collision possibility may include, for example, information regarding whether or not the collision margin time TTC is less than a predetermined value.
  • TTC is an abbreviation for Time To Collision.
  • a collision margin distance can be used.
  • the collision margin time TTC and the collision margin distance are included in the above-described various parameters acquired by the collision prediction unit 34.
  • the second collision determination unit 302 may determine the occurrence of the second-type collision based on the output of the satellite G sensor 32 instead of or together with the output of the floor G sensor 31. The same applies to FIGS. 4 to 6, FIG. 10, and FIG. Alternatively, the second collision determination unit 302 may determine the occurrence of the second-type collision based on outputs from sensors different from the floor G sensor 31, the satellite G sensor 32, and the collision sensor 33.
  • the result obtained by the collision prediction unit 34 may be used for the determination of the occurrence of the second type collision in the second collision determination unit 302.
  • the second collision determination unit 302 may determine the occurrence of the second-type collision based on whether or not the collision allowance time TTC is less than a predetermined value. The same applies to FIGS. 4 to 6, FIG. 10, and FIG.
  • the result of the collision prediction unit 34 predicting the occurrence of the first type collision has been input to both the delay time setting unit 308 and the prohibition release unit 309, but may be input to only one of them. That is, in FIG. 5, either one of the delay time setting unit 308 and the prohibition release unit 309 can be omitted.
  • the prohibition release unit 309 may be an AND gate.
  • the collision prediction unit 34 does not predict the occurrence of the first type collision, the activation of the pedestrian protection device 21 is prohibited. Thereby, generation
  • the integral value calculation unit 321 may be omitted.
  • the second collision determination unit 302 determines the occurrence of the second-type collision when the state where the output of the collision sensor 33 reaches the predetermined value, that is, the peak value Pmax, continues for a predetermined time. “Continuous time” can be determined using a timer or a counter.
  • the CPU may determine whether or not the collision allowance time TTC is less than a predetermined value.
  • step 901 can be omitted.
  • the CPU may transmit the travel environment information to an external device provided outside the vehicle 1, for example, an external server connected to the vehicle 1 by wireless communication.
  • the condition H3 in the determination condition of the high-speed determination unit 324 can be omitted. That is, the second collision determination unit 302 may be configured to switch the sensor used for determining the occurrence of the second type collision according to the speed range. Specifically, the second collision determination unit 302 uses the output of the floor G sensor 31 and / or the satellite G sensor 32 in the high speed range, and uses the output of the collision sensor 33 in the low speed range. Also good.
  • One of the conditions L2 and L3 in the determination condition of the low speed determination unit 325 may be omitted.
  • the second integration unit 327 and / or the determination result output unit 328 can be omitted. That is, for example, the output of the first integration unit 326 may be the output of the second collision determination unit 302. Alternatively, for example, the output of the second integration unit 327 may be the output of the second collision determination unit 302. Alternatively, for example, an AND condition between the output of the first integration unit 326 and the diagnosis result of the occupant protection device 22 may be the output of the second collision determination unit 302.
  • the acquisition of image information around the vehicle 1 is not limited to the mode by the collision prediction unit 34. That is, other cameras that can be mounted on the vehicle body 10, for example, a front view camera, a side view camera, a rear view camera, and the like can be used.
  • the method for determining the presence or absence of the first type collision by the first collision determination unit 301 that is, the method for determining the presence or absence of a collision that requires the activation of the pedestrian protection device 21
  • the delay time setting unit 308 may be provided outside the delay unit 304.
  • the part constituted by the digital circuit in each element can be replaced by an analog circuit.
  • acquisition can be replaced by other terms such as “estimation”, “detection”, “detection”, “calculation”, “generation”, “reception” depending on the content, that is, within a technically consistent range. .
  • the inequality sign in each determination process may be with or without an equal sign. That is, “above threshold value” and “exceeding threshold value” can be replaced with each other. Similarly, “below threshold” and “below threshold” may be interchanged.
  • modified examples are not limited to the above examples. For example, multiple embodiments can be combined with each other. A plurality of modifications may be combined with each other. Furthermore, all or a part of the above-described embodiment and all or a part of the modified examples can be combined with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

保護制御装置は、第一衝突判定部(301)と第二衝突判定部(302)と起動信号発生部(303)とを備える。第一衝突判定部は、歩行者および乗員付き二輪車を含む特定物体と車両との衝突であって歩行者保護デバイスの起動が必要な第一種衝突の発生を判定する。第二衝突判定部は、特定物体とは異なる障害物と車両との衝突であって乗員保護デバイスの起動が必要な第二種衝突の発生を判定する。起動信号発生部は、第一衝突判定部が第一種衝突の発生を判定した時点から所定の遅延時間が経過するまでの間に、第二衝突判定部が第二種衝突の発生を判定しなかったことを条件として、歩行者保護デバイスを起動する起動信号を発生する。

Description

歩行者保護デバイスの制御方法および保護制御装置 関連出願への相互参照
 本出願は、2018年4月3日に出願された日本特許出願番号2018-71780号および2018年11月26日に出願された日本特許出願番号2018-220164号に基づくもので、ここにこれらの記載内容が参照により組み入れられる。
 本開示は、歩行者保護デバイスの作動を制御するように構成された保護制御装置、および、歩行者保護デバイスの作動を制御する方法に関する。
 車両に、乗員保護デバイスと歩行者保護デバイスとが搭載されることがある。乗員保護デバイスは、他車両等の障害物との衝突を検知するための、障害物用の衝突検知センサの出力に基づいて、作動が制御される。歩行者保護デバイスは、歩行者等との衝突を検知するための、歩行者用の衝突検知センサの出力に基づいて、作動が制御される。「歩行者等」には、乗員付き二輪車が含まれる。「二輪車」は、典型的には、例えば、自転車である。この種の構成を開示する従来技術として、例えば、特許文献1等が知られている。
特開2009-12549号公報
 上記のように、乗員保護デバイスと歩行者保護デバイスとが車両に搭載される場合、それぞれを衝突形態に応じて適切に起動することが必要である。本開示は、上記に例示した事情等に鑑みてなされたものである。すなわち、本開示は、乗員保護デバイスと歩行者保護デバイスとが車両に搭載される場合の、歩行者保護デバイスの作動制御を最適化することを目的とする。
 保護制御装置は、歩行者保護デバイスの作動を制御するように構成されている。歩行者保護デバイスは、歩行者および乗員付き二輪車を含む特定物体が車両と衝突した場合に、前記歩行者または前記乗員である保護対象を、車体との衝突による衝撃から保護するように設けられている。
 本開示の1つの観点によれば、この保護制御装置は、
 前記特定物体と前記車両との衝突であって前記歩行者保護デバイスの起動が必要な第一種衝突の発生を判定するように設けられた、第一衝突判定部と、
 前記特定物体とは異なる障害物と前記車両との衝突であって乗員保護デバイスの起動が必要な第二種衝突の発生を判定するように設けられた、第二衝突判定部と、
 前記第一衝突判定部が前記第一種衝突の発生を判定した時点から所定の遅延時間が経過するまでの間に、前記第二衝突判定部が前記第二種衝突の発生を判定しなかったことを条件として、前記歩行者保護デバイスを起動する起動信号を発生するように設けられた、起動信号発生部と、
 を備えている。
 本開示の他の1つの観点によれば、制御方法は、以下の手順を有する。
 前記特定物体と前記車両との衝突であって前記歩行者保護デバイスの起動が必要な前記第一種衝突の発生の有無を判定し、
 前記特定物体とは異なる前記障害物と前記車両との衝突であって前記乗員保護デバイスの起動が必要な前記第二種衝突の発生の有無を判定し、
 前記第一種衝突の発生を判定した時点から前記遅延時間が経過するまでの間に、前記第二種衝突の発生を判定しなかったことを条件として、前記起動信号を発生する。
 なお、出願書類中の各欄において、各要素に括弧付きの参照符号が付されている場合、かかる参照符号は、単に、同要素と後述する実施形態に記載の具体的構成との対応関係の一例を示すものである。よって、本発明は、かかる参照符号の記載によって、何ら限定されるものではない。
乗員保護デバイスと歩行者保護デバイスとを搭載した車両の概略構成を示す平面図である。 図1に示された保護制御ECUの機能構成の第一実施形態を示すブロック図である。 図2に示された機能構成の動作説明のためのグラフである。 図1に示された保護制御ECUの機能構成の第二実施形態を示すブロック図である。 図1に示された保護制御ECUの機能構成の第三実施形態を示すブロック図である。 図1に示された保護制御ECUの機能構成の第四実施形態を示すブロック図である。 図6に示された機能構成の動作説明のためのグラフである。 図6に示された機能構成の動作説明のためのグラフである。 図1に示された保護制御ECUの機能構成の第五実施形態を示すフローチャートである。 図1に示された保護制御ECUの機能構成の第六実施形態を示すブロック図である。 図1に示された保護制御ECUの機能構成の第七実施形態を示すブロック図である。
 (実施形態)
 以下、本開示の実施形態を、図面に基づいて説明する。なお、一つの実施形態に対して適用可能な各種の変形例については、当該実施形態に関する一連の説明の途中に挿入されると当該実施形態の理解が妨げられるおそれがあるため、当該実施形態の説明の後にまとめて記載する。
 (車両の概略構成)
 まず、図1を用いて、車両1の概略構成について説明する。なお、説明の便宜上、車両1における、「前」、「後」、「左」、および「右」の概念を、図1にて矢印で示した通りに定義する。また、以下の説明において、前後方向を「車両全長方向」を称し、左右方向を「車幅方向」と称することがある。
 図1を参照すると、車両1は、いわゆる自動車であって、箱状の車体10を有している。車両1の前面11には、車体10の一部を構成するフロントバンパ12が設けられている。フロントバンパ12は、バンパカバー13と、バンパ補強部材14と、バンパアブソーバ16とを備えている。
 フロントバンパ12の最外殻を構成するバンパカバー13は、ポリプロピレン等の合成樹脂によって形成されている。バンパ補強部材14およびバンパアブソーバ16は、バンパカバー13の内側に設けられている。
 「バンパーリインフォースメント」と称されるバンパ補強部材14は、棒状の剛性部材であって、車幅方向を長手方向として配設されている。具体的には、バンパ補強部材14は、アルミニウム合金等の金属材料によって形成されている。バンパ補強部材14は、車両全長方向に沿って延設された一対のサイドメンバ15の前端部に固定されている。
 バンパアブソーバ16は、バンパカバー13とバンパ補強部材14との間に配置されている。具体的には、バンパアブソーバ16は、バンパ補強部材14の前側表面、すなわち、バンパカバー13の裏面と対向するバンパ補強部材14の表面に固定されている。衝撃吸収部材であるバンパアブソーバ16は、発泡ポリプロピレン等の、発泡性の合成樹脂によって形成されている。
 車体10の前部であって且つフロントバンパ12よりも後方には、フロントフード17と、フロントウィンドゥ18と、フロントピラー19とが設けられている。フロントフード17は、鋼板等の金属板材によって形成されている。
 フロントウィンドゥ18は、ガラス等によって形成された透明な板材であって、フロントフード17よりも後方に配置されている。フロントピラー19は、鋼板等の金属板材によって形成された棒状部材であって、車幅方向におけるフロントウィンドゥ18の両側に設けられている。すなわち、フロントピラー19は、フロントウィンドゥ18の車幅方向における両端部を支持しつつ、後方且つ上方に延設されている。
 (保護システムの構成)
 車両1には、保護システム20が搭載されている。保護システム20は、車両1と衝突した人間を保護するように構成されている。
 「車両1と衝突した人間」には、例えば、車両1と直接的に衝突した歩行者の他に、車両1と衝突した二輪車、車椅子等の乗員が含まれる。二輪車には、自転車および自動二輪車が含まれる。例えば、車両1と乗員付き二輪車との衝突においては、車両1と直接的に衝突した物体は、乗員ではなく二輪車である場合がある。但し、この場合であっても、二輪車の乗員は、車両1と「間接的」に衝突したということが可能である。車椅子等の乗員についても同様である。
 すなわち、保護システム20は、車両1と特定物体とが衝突した場合に、保護対象を車体10との衝突による衝撃から保護するように構成されている。「特定物体」には、歩行者、乗員付き二輪車、乗員付き車椅子、等が含まれる。「保護対象」には、乗員付き二輪車等における乗員の他に、歩行者が含まれる。「保護対象」は、「交通弱者」とも称され得る。
 また、保護システム20は、車両1が特定物体とは異なる「障害物」と衝突した場合に、車両1の乗員を保護するように構成されている。「障害物」には、壁、柱、他車両、等が含まれる。
 具体的には、保護システム20は、歩行者保護デバイス21と、乗員保護デバイス22と、保護制御装置23とを備えている。
 歩行者保護デバイス21は、特定物体が車両1と衝突した場合に、保護対象を、車体10との衝突による衝撃から保護するように設けられている。具体的には、歩行者保護デバイス21は、二次衝突による衝撃から、保護対象を保護するように構成されている。「二次衝突」とは、「一次衝突」の後に、二輪車等の乗員または歩行者である保護対象が、車体10に衝突することをいう。「一次衝突」とは、特定物体が、最初に車体10すなわちフロントバンパ12と衝突することをいう。
 本実施形態においては、歩行者保護デバイス21として、フードポップアップ装置24と、歩行者エアバッグ装置25とが設けられている。フードポップアップ装置24は、一次衝突発生後且つ二次衝突発生前に、フロントフード17を上昇させるように構成されている。具体的には、フードポップアップ装置24は、作動時にフロントフード17の後端部を上方に押し上げるように構成されている。歩行者エアバッグ装置25は、一次衝突発生後且つ二次衝突発生前に、車体10上にて展開することで、保護対象を保護するように構成されている。フードポップアップ装置24および歩行者エアバッグ装置25の具体的な構成については、本願の出願時点ですでに公知あるいは周知であるので、これ以上の説明は省略する。
 乗員保護デバイス22は、少なくとも前席エアバッグ26を備えている。前席エアバッグ26は、車両1が障害物と前面衝突した場合に前席乗員の前方にて展開することで、前席乗員を保護するように構成されている。乗員保護デバイス22の具体的な構成については、本願の出願時点ですでに公知あるいは周知であるので、これ以上の説明は省略する。
 (保護制御装置の構成)
 保護制御装置23は、歩行者保護デバイス21および乗員保護デバイス22の作動を制御するように構成されている。すなわち、保護制御装置23は、特定物体が車両1の前面11と衝突した否かを検知するとともに、特定物体の衝突を検知した場合に歩行者保護デバイス21を起動するように構成されている。また、保護制御装置23は、障害物が車両1の前面11と衝突した否かを検知するとともに、障害物の衝突を検知した場合に乗員保護デバイス22を起動するように構成されている。以下、保護制御装置23を構成する各部について説明する。
 保護制御装置23の主要部を構成する保護制御ECU30は、各種センサ等から受信した各種信号に基づいて、保護システム20の全体の作動を制御するように構成されている。ECUはElectronic Control Unitの略である。
 保護制御ECU30は、いわゆる車載マイクロコンピュータであって、不図示のCPU、ROM、RAM、および不揮発性RAMを備えている。不揮発性RAMは、例えば、フラッシュROM等である。保護制御ECU30のCPU、ROM、RAMおよび不揮発性RAMを、以下単に「CPU」、「ROM」、「RAM」および「不揮発性RAM」と略称する。
 保護制御ECU30は、CPUがROMまたは不揮発性RAMからプログラムを読み出して実行することで、各種の制御動作を実現可能に構成されている。このプログラムには、後述のルーチンに対応するものが含まれている。また、ROMまたは不揮発性RAMには、プログラムの実行の際に用いられる各種のデータが、あらかじめ格納されている。各種のデータには、例えば、初期値、ルックアップテーブル、マップ、等が含まれている。保護制御ECU30の機能構成の詳細については後述する。
 保護制御ECU30は、フロントバンパ12よりも後方に設けられている。具体的には、例えば、保護制御ECU30は、フロントフード17の後端部の下方、あるいは、車室内に配置されている。保護制御ECU30には、フロアGセンサ31が搭載されている。フロアGセンサ31は、加速度センサであって、前後方向の加速度に対応した出力(例えば電圧)を発生するように構成されている。フロアGセンサ31を構成する加速度センサは「減速度センサ」とも称され得る。
 一対のサイドメンバ15のそれぞれにおける先端側の位置には、サテライトGセンサ32が装着されている。サテライトGセンサ32は、加速度センサであって、前後方向および/または左右方向の加速度に対応した出力(例えば電圧)を発生するように構成されている。
 フロントバンパ12には、衝突センサ33が設けられている。衝突センサ33は、物体と車両1の前面11との衝突によりフロントバンパ12に印加された衝撃に応じた出力(例えば電圧)を発生するように構成されている。
 本実施形態においては、衝突センサ33は、車幅方向に沿った長手方向を有する長尺状に形成された圧力チューブ式センサであって、バンパ補強部材14に沿って車幅方向に延設されている。本実施形態においては、衝突センサ33は、チューブ部材33aと、一対の圧力センサ33bとを有している。
 チューブ部材33aは、車幅方向に沿って延設された管状部材であって、合成ゴム等の合成樹脂によって形成されている。チューブ部材33aの、車幅方向における、両端部を除く大部分は、バンパアブソーバ16に埋設されている。
 チューブ部材33aの車幅方向における両端部には、圧力センサ33bが装着されている。圧力センサ33bは、チューブ部材33a内の圧力に対応する出力(例えば電圧)を発生するように構成されている。このような、圧力チューブ式センサである衝突センサ33の具体的な構成および配置については、本願の出願時点ですでに公知あるいは周知であるので、これ以上の説明は省略する。
 衝突予知部34は、車両1の周囲に存在する物標を検知するように設けられている。すなわち、衝突予知部34は、車両1の前方に存在する物標の種別と、車両1の物標との衝突可能性を取得するように構成されている。具体的には、衝突予知部34は、フロントバンパ12に対する物体の衝突前に、当該物体の種別を認識可能に検知するとともに、当該物体までの距離等の各種パラメータを取得するように構成されている。衝突予知部34は、「予防センサ」とも称され得る。
 より詳細には、例えば、衝突予知部34は、二個のカメラセンサを備えた、いわゆるステレオカメラとして構成され得る。あるいは、衝突予知部34は、カメラセンサとミリ波レーダセンサとを備えた、いわゆるフュージョンセンサとして構成され得る。このような衝突予知部34の具体的な構成および配置については、本願の出願時点ですでに公知あるいは周知であるので、本明細書においてはこれ以上の説明は省略する。
 車速センサ35は、車両1の走行速度に対応する出力(例えば電圧)を発生するように構成されている。車両1の走行速度を、以下単に「車速」と称する。
 保護制御ECU30は、Safe-by-Wire等の車載LAN規格に対応した車載通信回線を介して、歩行者保護デバイス21、乗員保護デバイス22、サテライトGセンサ32、および衝突センサ33と電気接続されている。また、保護制御ECU30は、CAN等の車載LAN規格に対応した車載通信回線を介して、衝突予知部34および車速センサ35と電気接続されている。CANは、Controller Area Networkの略であって、登録商標である。
 (第一実施形態)
 以下、保護制御ECU30の機能構成の第一実施形態について、図2を参照しつつ説明する。すなわち、図2は、保護制御ECU30のうちの、歩行者保護デバイス21を起動するための機能構成部分を示す。よって、図2においては、乗員保護デバイス22を起動するための機能構成部分は、図示が省略されている。後述する第二実施形態以降についても同様である。図2を参照すると、保護制御ECU30は、CPUにて実現される機能上の構成として、第一衝突判定部301と、第二衝突判定部302と、起動信号発生部303とを有している。
 第一衝突判定部301は、衝突センサ33の出力に基づいて、第一種衝突の発生を判定するように設けられている。「第一種衝突」とは、車両1の前面11すなわちフロントバンパ12と特定物体との衝突であって、歩行者保護デバイス21の起動が必要な衝突である。すなわち、第一衝突判定部301は、第一種衝突発生の判定条件が不成立中は論理値「0」を出力する一方、かかる判定条件の成立中は論理値「1」を出力するようになっている。
 第二衝突判定部302は、フロアGセンサ31の出力に基づいて、第二種衝突の発生を判定するように設けられている。「第二種衝突」とは、車両1の前面11と壁等の障害物との衝突であって、乗員保護デバイス22の起動が必要な衝突である。すなわち、第二衝突判定部302は、第二種衝突発生の判定条件が不成立中は論理値「0」を出力する一方、かかる判定条件の成立中は論理値「1」を出力するようになっている。
 起動信号発生部303は、第一衝突判定部301が第一種衝突の発生を判定し、且つ、所定条件が成立した場合に、歩行者保護デバイス21を起動する起動信号を発生するように設けられている。「所定条件」とは、判定時点から所定の遅延時間が経過するまでの間に、第二衝突判定部302が第二種衝突の発生を判定しなかったことである。判定時点とは、第一衝突判定部301が第一種衝突の発生を判定した時点である。
 具体的には、本実施形態においては、起動信号発生部303は、遅延部304と、信号保持部305と、信号反転部306と、演算出力部307とを有している。
 遅延部304は、第一衝突判定部301の出力に対して遅延処理を実行するように設けられている。すなわち、遅延部304は、第一衝突判定部301が第一種衝突の発生を判定して論理値「1」を出力して、かかる出力を受信した場合に、判定時点から遅延時間経過後に論理値「1」を出力するようになっている。遅延部304は、例えば、周知のデジタル遅延回路等によって構成され得る。
 信号保持部305は、第二衝突判定部302の出力に対して保持処理を実行するように設けられている。すなわち、信号保持部305は、第二衝突判定部302が第二種衝突の発生を判定して論理値「1」を出力して、かかる出力を受信した場合に、論理値「1」の出力を所定期間保持するようになっている。信号保持部305は、例えば、周知のラッチ回路等によって構成され得る。
 信号反転部306は、信号保持部305の出力を反転するように設けられている。すなわち、信号反転部306は、信号保持部305の出力が論理値「0」の場合に論理値「1」を出力するようになっている。また、信号反転部306は、信号保持部305の出力が論理値「1」の場合に論理値「0」を出力するようになっている。信号反転部306は、周知のNOTゲートすなわちインバータ等によって構成され得る。
 演算出力部307は、遅延部304の出力と信号反転部306の出力とに基づいて、起動信号を発生するように設けられている。具体的には、演算出力部307は、いわゆる二入力ANDゲートであって、一対の入力端子のうちの一方が遅延部304の出力と接続されるとともに他方が信号反転部306の出力と接続されている。すなわち、演算出力部307は、遅延部304の出力と信号反転部306の出力とがともに「1」の場合に起動信号を発生する一方、それ以外の場合には起動信号を発生しないように構成されている。
 (動作概要)
 以下、本実施形態の構成による動作、すなわち、本実施形態における歩行者保護デバイス21の制御方法の概要について、同構成および方法により奏される効果とともに説明する。
 第一衝突判定部301は、衝突センサ33の出力に基づいて、特定物体と車両1との衝突であって歩行者保護デバイス21の起動が必要な第一種衝突の発生の有無を判定する。第二衝突判定部302は、フロアGセンサ31の出力に基づいて、特定物体とは異なる障害物と車両1との衝突であって乗員保護デバイス22の起動が必要な第二種衝突の発生の有無を判定する。
 図3は、第一種衝突が発生した場合と、第二種衝突が発生した場合との、センサ出力の時間経過を比較したグラフである。図3において、t0は衝突開始時点を示し、破線はフロアGセンサ31の出力を示し、実線は衝突センサ33の出力を示す。また、説明の都合上、第一種衝突の判定閾値と第二種衝突の判定閾値とがともにE0となるように標準化した縦軸Eを用いることで、フロアGセンサ31の出力と、衝突センサ33の出力との図示が共通化されている。
 フロアGセンサ31は、比較的大きな衝撃値が発生する第二種衝突、すなわち、車両1と壁あるいは他車両等との衝突を検知する。また、フロアGセンサ31は、衝突センサ33よりも後方に配置されている。一方、衝突センサ33は、歩行者等の比較的軽量な特定物体による衝突時の衝撃を検知する。このため、衝突センサ33は、高い感度を有している。また、衝突センサ33は、車体10の前面11すなわちフロントバンパ12に装着されている。
 このため、第一種衝突が発生した場合、衝突センサ33の出力は、比較的早期に立ち上がり、時刻t1にて閾値に達する。したがって、時刻t1にて、第一種衝突の発生が判定される。時刻t1は、上記の「判定時点」に相当する。但し、第一種衝突による衝撃では、フロアGセンサ31の出力は閾値には達しない。
 第二種衝突が発生した場合も、第一種衝突が発生した場合と同様に、衝突センサ33に衝撃が印加される。このため、第二種衝突が発生した場合も、衝突センサ33の出力は、比較的早期に立ち上がり、時刻t1にて閾値に達する。一方、フロアGセンサ31の出力は、衝突センサ33の出力よりも立ち上がりが遅く、時刻t1よりも後の時刻t2にて閾値に達する。
 上記の通り、第一種衝突が発生した場合も、第二種衝突が発生した場合も、衝突センサ33の出力は、比較的早期に立ち上がり、時刻t1にて閾値に達する。したがって、衝突センサ33の出力が、図3におけるE0に対応する所定の閾値を超えたか否かのみでは、第一種衝突と第二種衝突とのうちのいずれが発生したかを正確に判定することは困難である。このため、従来技術においては、例えば、衝突センサ33の出力波形を詳細に解析することで、第一種衝突と第二種衝突とのうちのいずれが発生したかを正確に判定していた。
 また、第二種衝突が発生した場合、車体10の前部のクラッシャブルゾーンにおける剛性確保等の観点から、歩行者保護デバイス21の起動を禁止する必要がある。このため、第二種衝突発生の判定の方が、第一種衝突発生の判定よりも先に成立することが、理想的である。しかしながら、上記の通り、フロアGセンサ31の出力よりも衝突センサ33の出力の方が早期に立ち上がる。したがって、実際には、第一種衝突発生の判定の方が、第二種衝突発生の判定よりも、先に成立する。
 この点、本実施形態の構成は、上記の事情を考慮し、起動信号発生部303に遅延部304を設けて、第一衝突判定部301による第一種衝突発生の判定の効果発生を遅延させる。すなわち、起動信号発生部303は、第一衝突判定部301が第一種衝突の発生を判定した判定時点t1から、所定の遅延時間が経過するまでの間、起動信号の発生を待機する。そして、起動信号発生部303は、第二衝突判定部302が第二種衝突の発生を判定しなかったことを条件として、歩行者保護デバイス21を起動する起動信号を発生する。
 上記のように、本実施形態によれば、衝突センサ33の出力が図3におけるE0に対応する所定の閾値を超えたか否かという単純な判定により、第一種衝突と第二種衝突とのうちのいずれが発生したかを正確に判定することが可能となる。また、第二種衝突が発生した場合の歩行者保護デバイス21の起動禁止を、簡略なロジック構成および処理手順により実現することが可能となる。したがって、かかる構成によれば、歩行者保護デバイス21と乗員保護デバイス22とが車両1に搭載される場合の、歩行者保護デバイス21の作動制御を、最適化することが可能となる。
 (第二実施形態)
 以下、保護制御ECU30の機能構成の第二実施形態について、図1および図4を参照しつつ説明する。以下の第二実施形態の説明においては、上記の第一実施形態と異なる部分についてのみ説明する。また、第一実施形態と第二実施形態とにおいて、互いに同一または均等である部分には、同一符号が付されている。後述する第三実施形態、第四実施形態、および変形例についても同様である。
 したがって、以下の第二実施形態の説明において、第一実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、第一実施形態における説明が適宜援用され得る。後述する第三実施形態、第四実施形態、および変形例についても同様である。
 車両1と衝突対象物との相対速度が大きい場合、第一種衝突と第二種衝突とのうちのいずれが発生したかを、より早期且つ正確に判定することが求められる。この点、車両1と障害物との相対速度が増加した場合、フロアGセンサ31の出力は、より早期に立ち上がる。よって、この場合、図3における時刻t2が、より早期に到来する。
 そこで、本実施形態においては、起動信号発生部303に設けられた遅延部304は、遅延時間設定部308を備えている。遅延時間設定部308は、車両1の走行状態を含む走行状況に応じて遅延時間を設定するように設けられている。具体的には、本実施形態においては、遅延時間設定部308は、車速センサ35によって検知された、車両1の走行状態としての車速に応じて、遅延時間を設定するようになっている。
 かかる構成によれば、車両1の走行状態に応じて、遅延時間が適切に設定され得る。すなわち、例えば、高速走行中は、低速走行中よりも、遅延時間が短く設定される。したがって、かかる構成によれば、第一種衝突と第二種衝突とのうちのいずれが発生したかを、より早期且つ正確に判定することが可能となる。
 (第三実施形態)
 以下、保護制御ECU30の機能構成の第三実施形態について、図1および図5を参照しつつ説明する。本実施形態は、上記の第二実施形態を一部変容したものである。
 すなわち、図5に示されているように、本実施形態においても、遅延部304は、遅延時間設定部308を備えている。但し、本実施形態においては、遅延時間設定部308は、衝突予知部34によって検知された相対速度に応じて、遅延時間を設定するように設けられている。具体的には、遅延時間設定部308は、車両1と衝突対象物との相対速度が小さい場合よりも、相対速度が大きい場合の方が、遅延時間を短く設定する。すなわち、遅延時間設定部308は、車両1と衝突対象物との相対速度が大きい場合、遅延時間を短縮する。
 また、衝突予知部34は、車両1と衝突する直前にて、物標すなわち衝突対象物の種別を検知している。このため、衝突対象物の種別が特定物体である場合、特定物体と車両1との衝突が確実である。このため、この場合、歩行者保護デバイス21を確実に作動させる必要がある。
 一方、衝突対象物の種別が他車両等の障害物である場合、障害物と車両1との衝突が確実である。このため、この場合、乗員保護デバイス22を確実に作動させるとともに、歩行者保護デバイス21の起動を確実に禁止する必要がある。
 そこで、本実施形態においては、遅延時間設定部308は、衝突予知部34による取得結果すなわち予知結果に応じて、遅延時間を設定する。具体的には、例えば、遅延時間設定部308は、衝突対象物の種別が特定物体である場合よりも、障害物である場合の方が、遅延時間を長く設定する。すなわち、遅延時間設定部308は、衝突対象物の種別が特定物体である場合、遅延時間を短縮する。
 かかる構成によれば、車両1の走行状況に応じて、遅延時間が適切に設定され得る。「走行状況」には、車両1の走行状態の他に、車両1の周囲の物体と車両1との衝突可能性が含まれ得る。したがって、かかる構成によれば、第一種衝突と第二種衝突とのうちのいずれが発生したかを、より早期且つ正確に判定することが可能となる。
 ところで、特定物体と車両1との第一種衝突の発生が確実な場合があり得る。この場合、第二衝突判定部302による判定結果に基づいて歩行者保護デバイス21の起動を禁止する必要はない。すなわち、歩行者保護デバイス21の起動判定に際して、第二衝突判定部302による判定結果の確定を待機することは不要である。
 そこで、起動信号発生部303は、衝突予知部34が第一種衝突の発生を予知した場合に、第二衝突判定部302の判定を無効化するように構成されていてもよい。具体的には、図5に示されているように、起動信号発生部303は、禁止解除部309をさらに備えていてもよい。
 禁止解除部309は、二入力ORゲートであって、信号反転部306と演算出力部307との間に設けられている。禁止解除部309における一対の入力端子のうちの一方は、衝突予知部34による取得結果が入力されるようになっている。禁止解除部309における一対の入力端子のうちの他方は、信号反転部306の出力が入力されるようになっている。すなわち、禁止解除部309は、衝突予知部34が第一種衝突の発生を予知することで一対の入力端子のうちの一方に論理値「1」が入力された場合に、他方の入力にかかわらず、論理値「1」を出力するようになっている。
 上記の各実施形態と同様に、演算出力部307における一対の入力端子のうちの一方は、遅延部304の出力が入力されるようになっている。これに対し、本実施形態においては、演算出力部307における一対の入力端子のうちの他方は、禁止解除部309の出力が入力されるようになっている。すなわち、本実施形態においては、演算出力部307は、遅延部304の出力と禁止解除部309の出力とがともに「1」の場合に起動信号を発生する一方、それ以外の場合には起動信号を発生しないようになっている。
 かかる構成においては、衝突予知部34が第一種衝突の発生を予知した場合、禁止解除部309における一対の入力端子のうちの一方に、論理値「1」が入力される。この場合、禁止解除部309は、信号反転部306の出力すなわち第二衝突判定部302による判定結果にかかわらず、論理値「1」を出力する。したがって、衝突予知部34が第一種衝突の発生を予知した場合、演算出力部307は、第二衝突判定部302による判定結果にかかわらず、遅延部304による論理値「1」の出力に伴って、起動信号を出力する。
 かかる構成によれば、衝突予知部34が特定物体と車両1との第一種衝突の発生を予知した場合、第二衝突判定部302の判定が無効化される。すなわち、第二衝突判定部302の判定による、歩行者保護デバイス21の起動禁止が、解除される。したがって、車両1と特定物体との衝突リスクが高い走行状況下において、実際に特定物体との衝突が発生した場合に、歩行者保護デバイス21をよりいっそう迅速且つ確実に作動させることが可能となる。
 (第四実施形態)
 以下、保護制御ECU30の機能構成の第四実施形態について、図1および図6~図8を参照しつつ説明する。本実施形態は、上記の第一実施形態を一部変容したものである。
 すなわち、図6に示されているように、本実施形態においては、第二衝突判定部302は、衝突センサ33の出力に基づいて、第二種衝突の発生を判定するように設けられている。具体的には、第二衝突判定部302は、衝突センサ33の出力が所定値に達している状態が所定時間継続した場合に、第二種衝突の発生を判定するようになっている。より詳細には、第二衝突判定部302は、衝突センサ33の出力の積分値が閾値を超えた場合に、第二種衝突の発生を判定するようになっている。
 図7は、第一種衝突が発生した場合と、第二種衝突が発生した場合との、衝突センサ33の出力の時間経過を比較したグラフである。図7において、縦軸Pは、衝突センサ33の出力に対応した圧力値を示し、実線は第一種衝突の場合を示し、破線は第二種衝突の場合を示す。
 図8は、第一種衝突が発生した場合と、第二種衝突が発生した場合との、衝突センサ33の出力の積分値の時間経過を比較したグラフである。図8において、縦軸SPは、衝突センサ33の出力に対応した圧力値の積分値を示し、実線は第一種衝突の場合を示し、破線は第二種衝突の場合を示す。なお、参考までに、図3に示されていた時刻t2も、図7および図8中に示されている。
 上記の通り、第二種衝突が発生した場合も、第一種衝突が発生した場合と同様に、衝突センサ33に衝撃が印加される。このため、第二種衝突が発生した場合も、衝突センサ33の出力は、比較的早期に立ち上がり、時刻t1にて閾値Pthに達する。したがって、衝突センサ33の出力が閾値Pthに達したか否かに関しては、第一種衝突が発生した場合と、第二種衝突が発生した場合とで、差異が生じない。
 また、上記の通り、衝突センサ33は、歩行者等の比較的軽量な特定物体による衝突時の衝撃を検知するため、高い感度を有している。このため、第二種衝突が発生した場合も、第一種衝突が発生した場合と同様に、衝突センサ33の出力は、閾値Pthに達した後、ピーク値Pmaxに達する。ピーク値Pmaxは、衝突センサ33の出力のダイナミックレンジにおける最大値に相当する。したがって、衝突センサ33の出力がピーク値Pmaxに達したか否かに関しても、第一種衝突が発生した場合と、第二種衝突が発生した場合とで、差異が生じない。
 しかしながら、第二種衝突が発生した場合は、第一種衝突が発生した場合よりも、衝突センサ33の出力がピーク値Pmaxに達している時間が長く継続する。具体的には、第一種衝突が発生した場合、衝突センサ33の出力は、ピーク値Pmaxに達した直後に低下する。このため、ピーク値Pmaxに達している状態は、ほぼ一瞬である。これに対し、第二種衝突が発生した場合、衝突センサ33の出力は、ピーク値Pmaxに達している状態が所定時間継続する。このため、図8に示されているように、第二種衝突が発生した場合は、積分値SPは、時刻t2近辺にて所定値SPthを超える。一方、第一種衝突が発生した場合は、積分値SPは、所定値SPth未満となる。このように、積分値SPに関しては、第一種衝突が発生した場合と、第二種衝突が発生した場合とで、差異が生じる。
 そこで、本実施形態においては、第二衝突判定部302は、積分値算出部321と、判定出力部322とを有している。積分値算出部321は、衝突センサ33の出力の積分値を算出するように設けられている。具体的には、積分値算出部321は、所定時間区間での、区間積分値を算出するようになっている。所定時間区間は、例えば、衝突センサ33の出力が、閾値Pthに達した時点から、ピーク値Pmaxから低下し始めた時点までの時間区間である。判定出力部322は、積分値が閾値SPthを超えたか否かを判定して、判定結果を信号保持部305に出力するように設けられている。
 かかる構成によれば、そもそも乗員保護デバイス22の起動の有無を判定するためのフロアGセンサ31の出力を、歩行者保護デバイス21の起動の有無を判定するロジック構成に用いる必要がなくなる。すなわち、歩行者保護デバイス21の起動の有無を判定するロジック構成と、乗員保護デバイス22の起動の有無を判定するロジック構成とを、峻別することが可能となる。したがって、保護制御装置23におけるロジック構成の複雑化が、良好に回避され得る。
 (第五実施形態)
 例えば、実際の車両1の事故発生状況に関する情報を多数取得して解析することで、保護システム20の構造あるいは機能を改善する試みがなされることがあり得る。特に、例えば、車両1が、電柱等の障害物に衝突した後に、歩行者等の特定物体と衝突する場合があり得る。かかる態様の衝突は、「複合衝突」と称される。このような複合衝突の発生状況に関する情報は、保護システム20の構造あるいは機能を改善するために、きわめて有用である。また、第二衝突判定部302の判定により歩行者保護デバイス21の起動が禁止された場合の、衝突発生状況に関する情報も、保護システム20の構造あるいは機能を改善するために、きわめて有用である。
 上記の事情等に鑑み、保護制御ECU30は、所定の場合に情報保持動作を実行するようになっている。「所定の場合」は、第二衝突判定部302の判定により歩行者保護デバイス21の起動が禁止された場合、または、歩行者保護デバイス21および乗員保護デバイス22の双方が起動された場合である。
 情報保持動作とは、衝突前後における走行環境情報を保持する動作である。走行環境情報とは、車両1の走行環境に対応する情報である。「走行環境」には、少なくとも、車両1の走行状態、すなわち、車速、操舵角等が含まれる。操舵角等については、保護制御ECU30は、車載通信回線を介して取得可能である。また、「走行環境」には、車両1の周囲の環境、具体的には、車両1の周囲における物標の存在状態等が含まれる。車両1の周囲の環境に対応する情報は、例えば、衝突予知部34により取得された、車両1の周囲の画像情報等である。
 具体的には、保護制御ECU30は、上記のような所定の場合に、衝突前後における、車速等の走行状態情報と車両1の周囲の画像情報とを保持する。すなわち、保護制御ECU30は、歩行者保護デバイス21の起動制御のために、衝突発生前から、車速および画像情報等の走行環境情報を取得している。取得した走行環境情報は、車両1の前方に存在する物標の種別と、車両1の物標との衝突可能性を取得するために、不揮発性RAMに時系列で最新のものから所定量格納される。そこで、保護制御ECU30は、上記の所定の場合に、衝突発生前から衝突発生後に至る所定時間分の走行環境情報を、不揮発性RAMに保持する。
 図9は、上記の動作を説明するフローチャートである。なお、図9において、「ステップ」を「S」と略記している。
 保護制御ECU30のCPUは、車両1のイグニッションスイッチがオンされると、図9に示されているルーチンを所定間隔で繰り返し起動する。かかるルーチンが起動されると、まず、ステップ901にて、CPUは、車両1が何らかの物体と衝突したか否かを判定する。具体的には、例えば、CPUは、フロアGセンサ31の出力が所定値を超えたか否かを判定する。この場合の「所定値」は、例えば、図3における衝突判定閾値E0よりも若干小さな値である。
 車両1が何らの物体とも衝突していない場合(すなわちステップ901=NO)、CPUは、ステップ902以降のすべての処理をスキップして、本ルーチンを一旦終了する。したがって、以下、車両1が何らかの物体と衝突したものとして(すなわちステップ901=YES)、本ルーチンの説明を続行する。
 ステップ901の判定が「YES」である場合、CPUは、処理をステップ902に進行させる。ステップ902にて、CPUは、第二衝突判定部302の判定により歩行者保護デバイス21の起動が禁止されたか否かを判定する。具体的には、上記の第一実施形態等において、第二衝突判定部302が第二種衝突の発生を判定すると、歩行者保護デバイス21の起動が禁止される。この場合、ステップ902の判定が「YES」となる。
 ステップ902の判定が「YES」である場合、CPUは、処理をステップ903に進行させた後、本ルーチンを終了する。ステップ903にて、CPUは、情報保持動作を実行する。すなわち、CPUは、衝突発生前から衝突発生後に至る所定時間分の走行環境情報を、保護制御ECU30の不揮発性RAMに保持する。
 ステップ902の判定が「NO」である場合、CPUは、処理をステップ904に進行させる。ステップ904にて、CPUは、今回の衝突にて歩行者保護デバイス21が起動されたか否かを判定する。
 今回の衝突にて歩行者保護デバイス21が起動されなかった場合(すなわちステップ904=NO)、CPUは、ステップ905の処理をスキップして、本ルーチンを終了する。一方、今回の衝突にて歩行者保護デバイス21が起動された場合(すなわちステップ904=YES)、CPUは、処理をステップ905に進行させる。
 ステップ905にて、CPUは、今回の衝突にて乗員保護デバイス22が起動されたか否かを判定する。今回の衝突にて乗員保護デバイス22が起動されなかった場合(すなわちステップ905=NO)、CPUは、本ルーチンを終了する。一方、今回の衝突にて乗員保護デバイス22が起動された場合(すなわちステップ905=YES)、CPUは、処理をステップ903に進行させた後、本ルーチンを終了する。
 (第六実施形態)
 以下、保護制御ECU30の機能構成の第六実施形態について、図1および図10を参照しつつ説明する。図10に示されているように、本実施形態においても、遅延部304は、遅延時間設定部308を備えている。遅延時間設定部308は、衝突予知部34によって検知された相対速度に応じて、遅延時間を設定する。また、遅延時間設定部308は、衝突予知部34による取得結果すなわち予知結果に応じて、遅延時間を設定する。
 本実施形態は、上記の第三実施形態を一部変容したものである。本実施形態と上記の第三実施形態とでは、衝突予知部34による衝突対象物の種別判定結果の利用態様が異なる。すなわち、本実施形態と上記の第三実施形態とでは、衝突予知部34による衝突対象物の種別判定結果と第二衝突判定部302の判定出力との関係が異なる。
 第三実施形態においては、図5に示されているように、起動信号発生部303は、衝突予知部34が第一種衝突の発生を予知した場合に第二衝突判定部302の判定を無効化するように、禁止解除部309を備えている。二入力ORゲートである禁止解除部309における一対の入力端子のうちの一方は、衝突予知部34による取得結果が入力される。禁止解除部309における一対の入力端子のうちの他方は、信号反転部306の出力が入力される。
 これに対し、本実施形態においては、起動信号発生部303は、図5に示された禁止解除部309に代えて、図10に示されているように禁止設定部323を有している。禁止設定部323は、二入力ORゲートであって、第二衝突判定部302と信号保持部305との間に設けられている。禁止設定部323における出力端子は、信号保持部305に信号を出力するようになっている。
 禁止設定部323における一対の入力端子のうちの一方は、衝突予知部34による取得結果が入力されるようになっている。禁止設定部323における一対の入力端子のうちの他方は、第二衝突判定部302の出力が入力されるようになっている。すなわち、禁止設定部323は、衝突予知部34が第二種衝突の発生を予知することで一対の入力端子のうちの一方に論理値「1」が入力された場合に、他方の入力にかかわらず、論理値「1」を信号保持部305に出力するようになっている。
 かかる構成においては、衝突予知部34が前突等の第二種衝突の発生を予知した場合、歩行者保護デバイス21の起動が禁止される。すなわち、起動信号発生部303は、衝突予知部34が第二種衝突の発生を予知した場合に、第一衝突判定部301の判定を無効化する。これにより、第二種衝突が発生した場合の、車体10の前部のクラッシャブルゾーンにおける剛性確保等の効果が、良好に奏され得る。
 (第七実施形態)
 以下、保護制御ECU30の機能構成の第六実施形態について、主として図11を参照しつつ説明する。本実施形態は、上記の各実施形態における第二衝突判定部302の機能構成を具体化あるいは変容したものである。したがって、本実施形態における第二衝突判定部302の機能構成は、技術的に矛盾しない限りにおいて、図2等に示された他の実施形態にも良好に適用され得る。
 上記の第一~第三実施形態においては、第二衝突判定部302による第二種衝突の発生の判定は、フロアGセンサ31の出力に基づいて行われている。なお、後述する通り、第二衝突判定部302による第二種衝突の発生の判定は、サテライトGセンサ32の出力を用いて行うことも可能である。フロアGセンサ31およびサテライトGセンサ32の出力は、車速が低くなるほど、立ち上がりにくい。このため、フロアGセンサ31および/またはサテライトGセンサ32の出力に基づく第二種衝突の発生の判定は、車速が低くなるほど遅れる。
 一方、図2等に対応する他の実施形態にて説明した通り、起動信号発生部303は、歩行者保護デバイス21の起動判定に際して、第二衝突判定部302による判定結果の確定を待機する。このため、車速が低速域にある場合、フロアGセンサ31および/またはサテライトGセンサ32の出力に基づく第二種衝突の発生の判定の遅さが問題となり得る。
 この点、衝突センサ33は、フロントバンパ12に設けられている。このため、対人衝突等の第一種衝突か前突等の第二種衝突かという衝突種別にかかわらず、衝突センサ33の出力は、車速が低速域にあっても早期に立ち上がる。一方、低速域においては、第一種衝突の場合と第二種衝突の場合とで、衝突センサ33の出力に大きな差が生じる。
 そこで、本実施形態においては、第二衝突判定部302は、車速が低速域にある場合に、高速域にある場合とは異なる判定ロジックで第二種衝突の発生を判定するように構成されている。具体的には、第二衝突判定部302は、高速時判定部324と、低速時判定部325と、第一統合部326と、第二統合部327と、判定結果出力部328とを有している。
 高速時判定部324は、車速が高速域にある場合に、車両1に作用する加速度すなわちフロアGセンサ31の出力に基づいて第二種衝突の発生を判定するように設けられている。一方、低速時判定部325は、車速が低速域にある場合に、衝突センサ33の出力に基づいて第二種衝突の発生を判定するように設けられている。なお、制御のハンチングを防止するため、低速域の上限域と高速域の下限域とが互いにオーバーラップするように、高速域および低速域が設定されている。
 本実施形態においては、高速時判定部324は、上記の第四実施形態と同様に、衝突センサ33の出力が所定値に達している状態が所定時間継続したことを第二種衝突の発生の判定条件としている。すなわち、本実施形態においては、高速時判定部324は、以下の条件H1,H2,およびH3を、第二種衝突の発生の判定条件としている。
  条件H1:車速が所定の高速域にあること。
  条件H2:フロアGセンサ31の出力および/またはその積分値が所定の閾値に達したこと。
  条件H3:衝突センサ33の出力が所定値に達している状態が所定時間継続したこと。
 本実施形態においては、低速時判定部325は、衝突センサ33の出力が所定値に達している状態が所定時間継続したことを第二種衝突の発生の判定条件としている。すなわち、本実施形態においては、低速時判定部325は、以下の条件L1,L2,およびL3を、第二種衝突の発生の判定条件としている。
  条件L1:車速が所定の低速域にあること。
  条件L2:衝突センサ33の出力および/またはその積分値が所定の閾値に達したこと。
  条件L3:衝突センサ33の出力が所定値に達している状態が所定時間継続したこと。
 したがって、高速時判定部324および低速時判定部325は、それぞれ、フロアGセンサ31、衝突センサ33、および車速センサ35の出力が入力されるように設けられている。また、高速時判定部324と低速時判定部325とは、並列に設けられている。高速時判定部324の出力と、低速時判定部325の出力とは、それぞれ、二入力ORゲートである第一統合部326における異なる入力端子に入力されるようになっている。すなわち、第一統合部326における一対の入力端子のうちの一方は、高速時判定部324の出力が入力されるようになっている。また、第一統合部326における一対の入力端子のうちの他方は、低速時判定部325の出力が入力されるようになっている。
 第二統合部327は、二入力ORゲートであって、第一統合部326と判定結果出力部328との間に設けられている。第二統合部327における一対の入力端子のうちの一方は、第一統合部326の出力が入力されるようになっている。また、第二統合部327における一対の入力端子のうちの他方は、乗員保護デバイス22の作動状態が入力されるようになっている。すなわち、本実施形態においては、第二衝突判定部302は、乗員保護デバイス22が起動される場合に、第一統合部326の出力にかかわらず、第二種衝突の発生を判定する。
 判定結果出力部328は、第二統合部327の出力に基づいて、第二衝突判定部302の出力を生成するように設けられている。具体的には、判定結果出力部328は、二入力ANDゲートであって、一対の入力端子を有している。判定結果出力部328における一対の入力端子のうちの一方は、第二統合部327の出力が入力されるようになっている。判定結果出力部328における一対の入力端子のうちの他方は、乗員保護デバイス22の診断結果が入力されるようになっている。すなわち、本実施形態においては、第二衝突判定部302は、乗員保護デバイス22が正常であることを、第二種衝突の発生の判定条件としている。
 かかる構成においては、第二衝突判定部302は、車速が低速域にある場合に、高速域にある場合とは異なる判定ロジックで第二種衝突の発生を判定する。具体的には、第二衝突判定部302は、車速が高速域にある場合、高速時判定部324を用いて第二種衝突の発生を判定する。一方、第二衝突判定部302は、車速が低速域にある場合、低速時判定部325を用いて第二種衝突の発生を判定する。
 車速が高速域にある場合、第二衝突判定部302は、フロアGセンサ31の出力を用いて、第二種衝突の発生を判定する。また、第二衝突判定部302は、第二種衝突の発生の判定に際して、衝突センサ33の出力状態を考慮する。すなわち、高速時判定部324は、上記の条件H1,H2,およびH3が成立する場合に、論理値「1」を出力する。
 一方、車速が低速域にある場合、第二衝突判定部302は、フロアGセンサ31の出力の代わりに衝突センサ33の出力を用いて、第二種衝突の発生を判定する。上記の通り、衝突センサ33の出力は、衝突種別にかかわらず早期に立ち上がる。また、低速域においては、対人衝突等の第一種衝突の場合と、前突等の第二種衝突の場合とで、衝突センサ33の出力に大きな差が生じる。そこで、低速時判定部325は、上記の条件L1,L2,およびL3が成立する場合に、論理値「1」を出力する。
 高速時判定部324と低速時判定部325とのうちの一方が論理値「1」を出力した場合、乗員保護デバイス22に異常が発生していない限り、判定結果出力部328は、論理値「1」を出力する。すなわち、第二衝突判定部302は、第二種衝突の発生を判定する。
 また、乗員保護デバイス22が起動される場合、乗員保護デバイス22に異常が発生していない限り、判定結果出力部328は、高速時判定部324および低速時判定部325の出力にかかわらず、論理値「1」を出力する。すなわち、第二衝突判定部302は、第二種衝突の発生を判定する。
 本実施形態の構成においては、低速域においても、第二種衝突の発生の判定が早期に行われる。したがって、本実施形態によれば、車速域にかかわらず、歩行者保護デバイス21の作動制御を、より最適化することが可能となる。
 (変形例)
 本開示は、上記実施形態に限定されるものではない。故に、上記実施形態に対しては、適宜変更が可能である。以下、代表的な変形例について説明する。以下の変形例の説明においては、上記実施形態との相違点を主として説明する。
 本開示は、上記実施形態にて示された具体的な装置構成に限定されない。具体的には、例えば、歩行者保護デバイス21および乗員保護デバイス22の構成は、図1に示された具体例に限定されない。すなわち、例えば、歩行者保護デバイス21として、フードポップアップ装置24と、歩行者エアバッグ装置25とのうちのいずれか一方のみが設けられていてもよい。
 保護制御ECU30は、いわゆるASICとして構成されていてもよい。ASICはApplication Specific Integrated Circuitの略である。
 サテライトGセンサ32の個数および配置は、図1に示された具体例に限定されない。
 衝突センサ33の構成は、上記の具体例に限定されない。すなわち、例えば、衝突センサ33は、圧力チャンバ式センサに代えて、光ファイバ式センサであってもよいし、圧電フィルム式センサであってもよい。圧電フィルム式センサは、圧電性高分子フィルム素子によって形成されていて、印加された応力に対応する出力(例えば電圧)を発生するように構成されている。圧電フィルム式の衝突センサ33の具体的な構成および配置については、本願の出願時点ですでに公知あるいは周知であるので、これ以上の説明は省略する。
 衝突予知部34の構成は、上記の具体例に限定されない。すなわち、衝突予知部34は、カメラセンサ、レーザレーダセンサ、ミリ波レーダセンサ、および超音波センサ等の中から選択される周知のセンサを、一種以上または一個以上備えることで構成され得る。
 衝突予知部34がカメラセンサのみを有している場合があり得る。この場合、フロントバンパ12には、測距センサが設けられ得る。測距センサは、レーザレーダセンサ、ミリ波レーダセンサ、および超音波センサ等の中から選択される周知のセンサであって、物標との距離に対応する出力を発生するように構成されている。
 車両1には、車速センサ35以外の他のセンサ、例えば、外気温センサ、雨滴センサ、ヨーレートセンサ、等が、通常搭載されている。よって、保護制御装置23は、これらの他のセンサの出力を用いて、歩行者保護デバイス21等の作動を制御するように構成され得る。
 本開示は、上記実施形態にて示された、具体的な機能構成、動作例および処理態様に限定されない。例えば、図2において、第一衝突判定部301は、衝突センサ33の出力と、衝突予知部34による取得結果とに基づいて、第一種衝突の発生を判定するようになっていてもよい。図4~図6においても同様である。
 衝突予知部34による取得結果には、例えば、車両1の前面11に衝突することが予測される衝突対象物の種別と、衝突可能性とが含まれ得る。衝突可能性には、例えば、衝突余裕時間TTCが所定値未満か否かに関する情報が含まれ得る。TTCはTime To Collisionの略である。衝突余裕時間TTCに代えて、あるいは,これとともに、衝突余裕距離が用いられ得る。衝突余裕時間TTCおよび衝突余裕距離は、衝突予知部34によって取得される上記の各種パラメータに含まれる。
 図2において、第二衝突判定部302は、フロアGセンサ31の出力に代えて、あるいはこれとともに、サテライトGセンサ32の出力に基づいて、第二種衝突の発生を判定してもよい。図4~図6,図10,および図11においても同様である。あるいは、第二衝突判定部302は、フロアGセンサ31,サテライトGセンサ32,および衝突センサ33とは異なるセンサの出力に基づいて、第二種衝突の発生を判定してもよい。
 図2において、第二衝突判定部302における第二種衝突発生の判定には、衝突予知部34による取得結果が用いられてもよい。具体的には、例えば、第二衝突判定部302は、衝突余裕時間TTCが所定値未満となったか否かに基づいて、第二種衝突の発生を判定してもよい。図4~図6,図10,および図11においても同様である。
 図5において、衝突予知部34が第一種衝突の発生を予知した結果は、遅延時間設定部308と禁止解除部309との双方に入力されていたが、一方のみに入力されてもよい。すなわち、図5において、遅延時間設定部308と禁止解除部309とのうちのいずれか一方は、省略され得る。
 図5において、禁止解除部309は、ANDゲートであってもよい。かかる構成においては、衝突予知部34が第一種衝突の発生を予知しない場合、歩行者保護デバイス21の起動が禁止される。これにより、悪路走行中の誤作動等の不具合の発生が、良好に抑制され得る。
 図6において、積分値算出部321は、省略され得る。この場合、第二衝突判定部302は、衝突センサ33の出力が所定値すなわちピーク値Pmaxに達している状態が、所定時間継続した場合に、第二種衝突の発生を判定する。「所定時間継続」は、タイマあるいはカウンタを用いて判定され得る。
 図9におけるステップ901にて、CPUは、衝突余裕時間TTCが所定値未満か否かを判定してもよい。
 図9において、ステップ901は、省略され得る。
 図9におけるステップ903にて、CPUは、車両1の外部に設けられた外部装置、例えば、車両1と無線通信接続された外部サーバ等に、走行環境情報を送信してもよい。
 図11を参照すると、高速時判定部324の判定条件における条件H3は、省略され得る。すなわち、第二衝突判定部302は、第二種衝突の発生の判定に用いるセンサを、速度域に応じて切り替えるように構成されていてもよい。具体的には、第二衝突判定部302は、高速域にてフロアGセンサ31および/またはサテライトGセンサ32の出力を用いる一方、低速域にて衝突センサ33の出力を用いるようになっていてもよい。
 低速時判定部325の判定条件における条件L2およびL3のうちの一方は、省略され得る。
 第二統合部327および/または判定結果出力部328は、省略され得る。すなわち、例えば、第一統合部326の出力が第二衝突判定部302の出力とされてもよい。あるいは、例えば、第二統合部327の出力が第二衝突判定部302の出力とされてもよい。あるいは、例えば、第一統合部326の出力と乗員保護デバイス22の診断結果とのAND条件が第二衝突判定部302の出力とされてもよい。
 車両1の周囲の画像情報の取得は、衝突予知部34による態様に限定されない。すなわち、車体10に装着され得る他のカメラ、例えば、フロントビューカメラ、サイドビューカメラ、リヤビューカメラ、等も用いられ得る。
 第一衝突判定部301による第一種衝突の有無の判定手法、すなわち、歩行者保護デバイス21の起動が必要な衝突の発生の有無の判定手法については、本願の出願時点において、多数の周知あるいは公知技術が存在する。例えば、米国特許第7,541,917号明細書、同7,721,838号明細書、同8,935,087号明細書、等参照。よって、第一衝突判定部301による第一種衝突の有無の判定に関する構成および方法については、これらの周知あるいは公知技術が適宜用いられ得る。第一種衝突発生の判定条件についても同様である。
 第二衝突判定部302による第二種衝突の有無の判定手法、すなわち、乗員保護デバイス22の起動が必要な衝突の発生の有無の判定手法については、本願の出願時点において、多数の周知あるいは公知技術が存在する。例えば、米国特許第6,167,335号明細書、同7,092,806号明細書、同7,286,920号明細書、同7,930,080号明細書、米国特許出願公開第2003/0114972号明細書、等参照。よって、第二衝突判定部302による第二種衝突の有無の判定に関する構成および方法については、これらの周知あるいは公知技術が適宜用いられ得る。第二種衝突発生の判定条件についても同様である。
 図4等において、遅延時間設定部308は、遅延部304の外部に設けられていてもよい。
 各要素における、デジタル回路によって構成された部分は、アナログ回路によって置き換えられ得る。
 「取得」という表現は、内容に応じて、すなわち、技術的に矛盾しない範囲内において、「推定」「検出」「検知」「算出」「生成」「受信」等の他の用語に置換され得る。
 各判定処理における不等号は、等号付きであってもよいし、等号無しであってもよい。すなわち、「閾値以上」と「閾値を超える」とは、相互に置換され得る。同様に、「閾値未満」と「閾値以下」とは、相互に置換され得る。
 上記実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に本開示が限定されることはない。同様に、構成要素等の形状、方向、位置関係等が言及されている場合、特に必須であると明示した場合および原理的に特定の形状、方向、位置関係等に限定される場合等を除き、その形状、方向、位置関係等に本開示が限定されることはない。
 変形例も、上記の例示に限定されない。例えば、複数の実施形態が、互いに組み合わされ得る。また、複数の変形例が、互いに組み合わされ得る。さらに、上記実施形態の全部または一部と、変形例の全部または一部とが、互いに組み合わされ得る。

Claims (20)

  1.  歩行者および乗員付き二輪車を含む特定物体が車両(1)と衝突した場合に前記歩行者または前記乗員である保護対象を車体(10)との衝突による衝撃から保護するように設けられた歩行者保護デバイス(21)の、作動を制御するように構成された、保護制御装置(23)であって、
     前記特定物体と前記車両との衝突であって前記歩行者保護デバイスの起動が必要な第一種衝突の発生を判定するように設けられた、第一衝突判定部(301)と、
     前記特定物体とは異なる障害物と前記車両との衝突であって乗員保護デバイス(22)の起動が必要な第二種衝突の発生を判定するように設けられた、第二衝突判定部(302)と、
     前記第一衝突判定部が前記第一種衝突の発生を判定した時点から所定の遅延時間が経過するまでの間に、前記第二衝突判定部が前記第二種衝突の発生を判定しなかったことを条件として、前記歩行者保護デバイスを起動する起動信号を発生するように設けられた、起動信号発生部(303)と、
     を備えた保護制御装置。
  2.  前記起動信号発生部は、前記車両の走行状態を含む走行状況に応じて前記遅延時間を設定するように設けられた遅延時間設定部(308)を備えた、
     請求項1に記載の保護制御装置。
  3.  前記遅延時間設定部は、前記車両の走行速度または前記車両と衝突対象物との相対速度に応じて、前記遅延時間を設定するように設けられた、
     請求項2に記載の保護制御装置。
  4.  前記遅延時間設定部は、前記車両の前方に存在する物標の種別と前記車両の前記物標との衝突可能性とを取得する衝突予知部(34)による取得結果に応じて、前記遅延時間を設定するように設けられた、
     請求項2または3に記載の保護制御装置。
  5.  前記起動信号発生部は、前記車両の前方に存在する物標の種別と前記車両の前記物標との衝突可能性とを取得する衝突予知部(34)が前記第一種衝突の発生を予知した場合に、前記第二衝突判定部の判定を無効化するように構成された、
     請求項1~4のいずれか1つに記載の保護制御装置。
  6.  前記第一衝突判定部は、前記車体の一部を構成するフロントバンパ(12)に設けられていて物体と前記車両との衝突により前記フロントバンパに印加された衝撃に応じた出力を発生する衝突センサ(33)の前記出力に基づいて、前記第一種衝突の発生を判定するように設けられ、
     前記第二衝突判定部は、前記衝突センサの前記出力が所定値に達している状態が所定時間継続した場合に、前記第二種衝突の発生を判定するように設けられた、
     請求項1~5のいずれか1つに記載の保護制御装置。
  7.  前記第二衝突判定部は、前記衝突センサの前記出力の積分値が閾値を超えた場合に、前記第二種衝突の発生を判定するように設けられた、
     請求項6に記載の保護制御装置。
  8.  前記第二衝突判定部は、前記車両の走行速度が低速域にある場合に、高速域にある場合とは異なる判定ロジックで前記第二種衝突の発生を判定するように構成された、
     請求項1~5のいずれか1つに記載の保護制御装置。
  9.  前記第一衝突判定部は、前記車体の一部を構成するフロントバンパ(12)に設けられていて物体と前記車両との衝突により前記フロントバンパに印加された衝撃に応じた出力を発生する衝突センサ(33)の前記出力に基づいて、前記第一種衝突の発生を判定するように設けられ、
     前記第二衝突判定部は、
     前記走行速度が前記高速域にある場合に、前記車両に作用する加速度に基づいて前記第二種衝突の発生を判定するように設けられた、高速時判定部(324)と、
     前記走行速度が前記低速域にある場合に、前記衝突センサの前記出力に基づいて前記第二種衝突の発生を判定するように設けられた、低速時判定部(325)と、
     を有する、
     請求項8に記載の保護制御装置。
  10.  前記歩行者保護デバイスの起動が禁止された場合、または、前記歩行者保護デバイスおよび前記乗員保護デバイスの双方が起動された場合に、衝突前後における前記車両の走行状態を含む走行環境に対応する情報を保持する情報保持動作を実行するように設けられた、情報保持動作部(30)をさらに備えた、
     請求項1~9のいずれか1つに記載の保護制御装置。
  11.  歩行者および乗員付き二輪車を含む特定物体が車両(1)と衝突した場合に前記歩行者または前記乗員である保護対象を車体(10)との衝突による衝撃から保護するように設けられた歩行者保護デバイス(21)の、作動を制御する方法であって、
     前記特定物体と前記車両との衝突であって前記歩行者保護デバイスの起動が必要な第一種衝突の発生の有無を判定し、
     前記特定物体とは異なる障害物と前記車両との衝突であって乗員保護デバイス(22)の起動が必要な第二種衝突の発生の有無を判定し、
     前記第一種衝突の発生を判定した時点から所定の遅延時間が経過するまでの間に、前記第二種衝突の発生を判定しなかったことを条件として、前記歩行者保護デバイスを起動する起動信号を発生する、
     歩行者保護デバイスの制御方法。
  12.  前記車両の走行状態を含む走行状況に応じて前記遅延時間を設定する、
     請求項11に記載の歩行者保護デバイスの制御方法。
  13.  前記車両の走行速度または前記車両と衝突対象物との相対速度に応じて、前記遅延時間を設定する、
     請求項12に記載の歩行者保護デバイスの制御方法。
  14.  前記車両の前方に存在する物標の種別と前記車両の前記物標との衝突可能性とを取得する衝突予知部(34)による取得結果に応じて、前記遅延時間を設定する、
     請求項12または13に記載の歩行者保護デバイスの制御方法。
  15.  前記車両の前方に存在する物標の種別と前記車両の前記物標との衝突可能性とを取得する衝突予知部(34)が前記第一種衝突の発生を予知した場合に、前記第二種衝突の判定を無効化する、
     請求項11~14のいずれか1つに記載の歩行者保護デバイスの制御方法。
  16.  前記車体の一部を構成するフロントバンパ(12)に設けられていて物体と前記車両との衝突により前記フロントバンパに印加された衝撃に応じた出力を発生する衝突センサ(33)の前記出力に基づいて、前記第一種衝突の発生を判定し、
     前記衝突センサの前記出力が所定値に達している状態が所定時間継続した場合に、前記第二種衝突の発生を判定する、
     請求項11~15のいずれか1つに記載の歩行者保護デバイスの制御方法。
  17.  前記衝突センサの前記出力の積分値が閾値を超えた場合に、前記第二種衝突の発生を判定する、
     請求項16に記載の歩行者保護デバイスの制御方法。
  18.  前記車両の走行速度が低速域にある場合に、高速域にある場合とは異なる判定ロジックで前記第二種衝突の発生を判定する、
     請求項11~15のいずれか1つに記載の歩行者保護デバイスの制御方法。
  19.  前記車体の一部を構成するフロントバンパ(12)に設けられていて物体と前記車両との衝突により前記フロントバンパに印加された衝撃に応じた出力を発生する衝突センサ(33)の前記出力に基づいて、前記第一種衝突の発生を判定し、
     前記走行速度が前記高速域にある場合に、前記車両に作用する加速度に基づいて前記第二種衝突の発生を判定し、
     前記走行速度が前記低速域にある場合に、前記衝突センサの前記出力に基づいて前記第二種衝突の発生を判定する、
     請求項18に記載の歩行者保護デバイスの制御方法。
  20.  前記歩行者保護デバイスの起動が禁止された場合、または、前記歩行者保護デバイスおよび前記乗員保護デバイスの双方が起動された場合に、衝突前後における前記車両の走行状態を含む走行環境に対応する情報を保持する情報保持動作を実行する、
     請求項11~19のいずれか1つに記載の歩行者保護デバイスの制御方法。
PCT/JP2019/009090 2018-04-03 2019-03-07 歩行者保護デバイスの制御方法および保護制御装置 WO2019193916A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019001795.0T DE112019001795B4 (de) 2018-04-03 2019-03-07 Schutzsteuervorrichtung und Fußgängerschutzvorrichtungs-Steuerverfahren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018071780 2018-04-03
JP2018-071780 2018-04-03
JP2018-220164 2018-11-26
JP2018220164A JP6897658B2 (ja) 2018-04-03 2018-11-26 歩行者保護デバイスの制御方法および保護制御装置

Publications (1)

Publication Number Publication Date
WO2019193916A1 true WO2019193916A1 (ja) 2019-10-10

Family

ID=68100305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009090 WO2019193916A1 (ja) 2018-04-03 2019-03-07 歩行者保護デバイスの制御方法および保護制御装置

Country Status (1)

Country Link
WO (1) WO2019193916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511161A (zh) * 2021-08-09 2021-10-19 福瑞泰克智能系统有限公司 行人保护方法、装置、感知设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161191A (ja) * 2002-11-15 2004-06-10 Fujitsu Ten Ltd 衝突予測制御装置、エアバッグ制御装置、及びエアバッグシステム
JP2004317247A (ja) * 2003-04-15 2004-11-11 Denso Corp 車両用衝突物体判別装置
JP2006347263A (ja) * 2005-06-14 2006-12-28 Toyota Motor Corp 車両用衝撃吸収構造
JP2008024095A (ja) * 2006-07-19 2008-02-07 Toyota Infotechnology Center Co Ltd 車載システム
JP2015157499A (ja) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 車両用ポップアップフード装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161191A (ja) * 2002-11-15 2004-06-10 Fujitsu Ten Ltd 衝突予測制御装置、エアバッグ制御装置、及びエアバッグシステム
JP2004317247A (ja) * 2003-04-15 2004-11-11 Denso Corp 車両用衝突物体判別装置
JP2006347263A (ja) * 2005-06-14 2006-12-28 Toyota Motor Corp 車両用衝撃吸収構造
JP2008024095A (ja) * 2006-07-19 2008-02-07 Toyota Infotechnology Center Co Ltd 車載システム
JP2015157499A (ja) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 車両用ポップアップフード装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511161A (zh) * 2021-08-09 2021-10-19 福瑞泰克智能系统有限公司 行人保护方法、装置、感知设备和存储介质

Similar Documents

Publication Publication Date Title
US10843687B2 (en) Arrangement and method for mitigating a forward collision between road vehicles
US9409535B2 (en) Control device for occupant protection device
US11897405B2 (en) Collision prediction determination device and vulnerable road user protection system
US8060280B2 (en) Vision system for deploying safety systems
JP2015003589A (ja) 車両用制御装置
JP6485417B2 (ja) 車両用衝突検出装置及び車両用衝突検出方法
US20200377053A1 (en) Vehicle-use object protection device
JP6131925B2 (ja) 車両用衝突検出装置及び車両用衝突検出方法
JP5803852B2 (ja) 衝突検知装置及び乗員保護システム
WO2019193916A1 (ja) 歩行者保護デバイスの制御方法および保護制御装置
JP6265181B2 (ja) 車両用エアバッグ制御システム
JP2017087926A (ja) 車両用衝突検出装置
JP6565653B2 (ja) 車両用衝突対象保護装置
JP6897658B2 (ja) 歩行者保護デバイスの制御方法および保護制御装置
JP7196759B2 (ja) 保護デバイス制御装置
JP7120086B2 (ja) 駆動制御装置
JP6806018B2 (ja) 保護制御装置及び保護システム
JP2007302173A (ja) 車両衝突装置、車両
JP6248914B2 (ja) 車両用衝突検出装置及び車両用衝突検出方法
JP6825539B2 (ja) 保護制御装置
JP2014133448A (ja) 車両用衝突検知装置
JP2012166619A (ja) 衝突検知装置及び乗員保護システム
KR101596995B1 (ko) 차량의 충격완화 방법
JP7125918B2 (ja) 車両用保護装置
JP6680147B2 (ja) アクティブデバイス作動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780988

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19780988

Country of ref document: EP

Kind code of ref document: A1