WO2019192373A1 - 一种利用钛矿直接生产钛及钛合金的方法 - Google Patents

一种利用钛矿直接生产钛及钛合金的方法 Download PDF

Info

Publication number
WO2019192373A1
WO2019192373A1 PCT/CN2019/079942 CN2019079942W WO2019192373A1 WO 2019192373 A1 WO2019192373 A1 WO 2019192373A1 CN 2019079942 W CN2019079942 W CN 2019079942W WO 2019192373 A1 WO2019192373 A1 WO 2019192373A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
alloy
metal
active metals
metals
Prior art date
Application number
PCT/CN2019/079942
Other languages
English (en)
French (fr)
Inventor
王武生
Original Assignee
王武生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王武生 filed Critical 王武生
Publication of WO2019192373A1 publication Critical patent/WO2019192373A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/04Making slag of special composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1218Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the invention relates to a method for directly producing titanium and titanium alloy by using titanium ore, and belongs to the technical field of metal material preparation.
  • Titanium is an important structural metal developed in the 1950s. Titanium alloys are widely used in various fields due to their high strength, good corrosion resistance and high heat resistance. Titanium and titanium alloys are the most important engineering materials because of their small specific gravity, good plasticity, high specific strength and heat strength, good low temperature performance, excellent corrosion resistance, and good affinity with human tissues. One. In recent decades, with the development of science and technology, the role of titanium and titanium alloys has become more and more important. In the aerospace, aviation, navigation and other sectors, they are the basic materials and key materials for industrial development, in chemical, petrochemical, medical, and mechanical. They also play an important role in other industries.
  • titanium and titanium alloys have been widely used to make shells for spacecraft such as missiles, rockets, and spacecraft, aircraft shells, wings and engine blades, ships, warships, submarine shells, desalination plants, and chemical reactors. , pipes, containers, artificial teeth, bones, joints, splints, as well as instruments, precision machinery, golf clubs, eyeglass frames, clocks, jewelry and decorations.
  • titanium is also used to make important functional materials such as superconducting materials, hydrogen storage materials, getter materials, piezoelectric materials and shape memory alloys.
  • the mainstream production process of titanium metal is Kroll process, which mainly uses metal Mg to reduce TiCl 4 process and vacuum separation process to manufacture titanium metal.
  • the process consists of three parts: one is made of titanium-containing minerals. Fine TiCl 4 ; Second is the reduction process of magnesium to reduce TiCl 4 to produce titanium sponge; third is vacuum distillation, purification and regeneration of magnesium.
  • liquid TiCl 4 is added from above the reactor and flows through the molten Mg to be reduced, and a sponge Ti is deposited at the bottom of the reactor; the vacuum separation process mainly removes the Mg element and the reduced product MgCl 2 contained therein.
  • the process can produce high-purity metal titanium, the process has high production cost of titanium due to long thermal reduction process, complicated process, continuous production, etc., and environmental pollution in the production process greatly restricts titanium. widely used.
  • the patent application number published by the Chinese Patent Office on January 16, 2018 is 201710711128.2
  • the invention name is "a method for directly producing titanium and titanium alloy by using titanium dioxide", which is a production provided by the inventor.
  • a new method of titanium dioxide because the patented technology must first produce titanium dioxide to implement the method, and the titanium dioxide production process itself generates a large amount of pollution, which requires consumption of a large amount of chemical reagents, so that there is still a problem of high production cost and environmental protection. Therefore, there is an urgent need in the art to develop a method for producing titanium and titanium alloys which can greatly reduce production costs, is clean and environmentally friendly, and is easy to industrialize.
  • an object of the present invention is to provide a method for directly producing titanium and a titanium alloy by using titanium ore to realize low-cost, clean and environmentally friendly industrial production of titanium and titanium alloy.
  • a method for directly producing titanium and titanium alloy using titanium ore comprising the following steps:
  • Titanium is an important national defense and industrial material and has always been the focus of scientific research in the world.
  • the chemical bond between titanium and oxygen of titanium ore is very strong, the chemical properties are very stable and metal titanium cannot be directly formed. Therefore, the direct formation of titanium metal by using titanium ore has become a world problem in human materials science. Therefore, it is only possible to reduce titanium tetrachloride by using magnesium metal to obtain a sponge metal titanium.
  • the production cost of titanium tetrachloride is very high and serious pollution occurs during the production process.
  • the product at the bottom of the high temperature furnace is discharged, and then a mixture of a single active metal or a plurality of active metals or an alloy formed of a plurality of active metals is added to the high temperature furnace.
  • a mixture of a single active metal or a plurality of reactive metals or an alloy of a plurality of reactive metals reacts with the high-titanium slag in a molten state to form titanium metal.
  • Titanium ore is mixed with a reducing agent such as coke and bitumen and then reacted in a high-temperature furnace to produce high-titanium slag, which also generates iron. Since the specific gravity of iron is larger than that of high titanium slag, the generated iron is located at the bottom of the high-temperature furnace, and the iron is first discharged from below, on the one hand, the iron product can be obtained, and on the other hand, the environment for the next step of producing titanium can be simplified to facilitate the titanium. The formation of the reaction proceeds.
  • a reducing agent such as coke and bitumen
  • the generated high-titanium slag is discharged into a high-temperature reaction furnace, and then a mixture of a single active metal or a plurality of active metals or an alloy formed of a plurality of active metals is added to the high-temperature furnace, so that A mixture of a single active metal or a plurality of reactive metals or an alloy of a plurality of reactive metals reacts with the high-titanium slag in a molten state to form titanium metal.
  • the composition of the titanium ore and the reducing agent is very complicated, in order to obtain a high-purity titanium product, the generated high-titanium slag is discharged from the reaction furnace and enters a special reaction furnace, thereby avoiding the introduction of impurities into the reaction furnace. Improve the quality of the product.
  • the single active metal is aluminum and the alloy is an aluminum alloy.
  • the alloy is an aluminum alloy.
  • metals that are more reactive than titanium mainly aluminum and magnesium.
  • Active metals include, but are not limited to, magnesium metal, aluminum, etc., among which metal aluminum is preferred because aluminum releases a large amount of thermal energy during the reaction with titanium ore, so that the chemical reaction can be continued, especially the high boiling point of aluminum. There is no problem of gasification during the chemical reaction.
  • the single active metal or a mixture of a plurality of active metals or an alloy formed of a plurality of reactive metals is added to the molten high-titanium slag in a molten state. Since the high titanium slag is in a molten state, and the reaction itself is an exothermic reaction, when the reactants are all in a liquid state, the reaction can be ensured smoothly.
  • the amount of titanium dioxide formed by reacting a mixture of a single active metal or a plurality of active metals or an alloy formed of a plurality of active metals with titanium oxide is chemically reacted in a stoichiometric ratio to obtain a titanium metal.
  • the amount of high titanium slag can be effectively controlled, so that the amount of active metal required can be accurately calculated, and the metal titanium can be accurately controlled by chemical reaction according to the stoichiometric ratio of the chemical reaction equation. quality.
  • a mixture of a single active metal or a plurality of active metals or an alloy of a plurality of reactive metals is chemically reacted with an excess of titanium ore to obtain a high purity titanium metal. Because of this condition, the active metal completely undergoes a chemical reaction, which ensures that all the active metals participate in the chemical reaction, thereby ensuring that there is no active metal in the obtained metal titanium.
  • an alloy formed by a single active metal or a plurality of active metals or a plurality of active metals which chemically react with a high-titanium slag in a molten state is excessively obtained to obtain titanium containing a single active metal or a plurality of active metals.
  • alloy. Titanium is used in a wide variety of applications, one of which is the use of titanium to form titanium alloys with reactive metals. By adopting such a scheme, an alloy of titanium and an active metal can be directly obtained without further melting the pure titanium and the active metal to form an alloy, which not only can significantly simplify the preparation process of the titanium alloy, but also can significantly reduce the preparation cost of the titanium alloy.
  • the metal component required to form the target titanium alloy is first added to a mixture of a single active metal or a plurality of active metals or an alloy formed of a plurality of active metals, and then it is caused to be in a molten state of high titanium slag. Chemical reaction to obtain the desired titanium alloy has significant industrial value.
  • the metal component required to form the target titanium alloy is first added to the molten high-titanium slag, and then a single active metal or a mixture of a plurality of active metals or an alloy formed of a plurality of active metals is added to cause the occurrence.
  • the chemical reaction gives the desired titanium alloy. Because there are so many kinds of titanium alloys, if this scheme can be used to form the required titanium alloy in one step, it has significant industrial value.
  • the reactions in step a) and step b) are carried out under anaerobic conditions, for example under an inert atmosphere or under vacuum. Because the titanium that has just been produced is very active, it is easy to chemically react with oxygen, and the quality of the product can be guaranteed through an oxygen-free environment.
  • step a) and step b) are carried out with stirring.
  • the present invention has the following significant benefits:
  • 1 is a schematic diagram of a batch production process for directly producing titanium and titanium alloy by using titanium ore provided by the embodiment.
  • a method for directly producing titanium and a titanium alloy by using titanium ore is provided by a batch production process, that is, first mixing titanium ore with a reducing agent coke and asphalt, and then at a high temperature furnace.
  • the reduction reaction is carried out by heating in 1 to form molten iron 3 and high titanium slag 2.
  • the liquid metal aluminum 6 is added to the high temperature furnace 1 to chemically react the liquid metal aluminum 6 with the molten high titanium slag 2 to form titanium metal. Since the specific gravity of titanium is larger than that of the produced aluminum oxide, the generated titanium is located at the bottom of the high temperature furnace 1, and the opening of the discharge port 4 is again opened to discharge the generated titanium from the high temperature furnace 1.
  • liquid metal aluminum 6 and the molten high-titanium slag 2 are chemically reacted in a stoichiometric ratio, metallic titanium is obtained; if the molten high-titanium slag 2 is slightly excessively, the liquid metal aluminum 6 is sufficiently reacted. Completely, high-purity metal titanium is obtained; if the liquid metal aluminum 6 is excessive, the excess metal aluminum 6 and the formed metal titanium are formed into a titanium aluminum alloy, thereby obtaining a titanium aluminum alloy.
  • metal titanium can be obtained by chemically reacting liquid metal aluminum 6 with molten high titanium slag 2 in a stoichiometric ratio, and then adding The formed metal titanium is a stoichiometric ratio of metal iron, thereby directly obtaining a titanium-iron alloy; or a stoichiometric ratio of metallic iron may be first added to the molten high-titanium slag 2, and then a stoichiometric amount of metallic aluminum 6 is added thereto. Stirring causes the reaction to take place, thereby directly obtaining a titanium-iron alloy.
  • the melting point of pure titanium is 1678 ° C, and the melting point of titanium alloy is generally lower than 1678 ° C, the melting point of titanium dioxide is about 1850 ° C, so the metal titanium or titanium alloy obtained by the reaction is also liquid, and thus can be bottomed by the high temperature furnace 1
  • the discharge port 4 is discharged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种利用钛矿直接生产钛及钛合金的方法,所述方法包括如下步骤:a)使钛矿与还原剂混合后在高温炉中进行反应,生成高钛渣;b)向熔融状态的高钛渣里加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,通过单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与高钛渣的反应生成金属钛。本发明实现了直接由钛矿生产钛及钛合金,不仅生产工艺明显简化,而且反应过程清洁环保,对实现低成本、清洁环保的工业化生产钛及钛合金,具有显著价值。

Description

一种利用钛矿直接生产钛及钛合金的方法 技术领域
本发明是涉及一种利用钛矿直接生产钛及钛合金的方法,属于金属材料制备技术领域。
背景技术
钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。钛和钛合金以其比重小,塑性好,比强度和热强性高,低温性能好,抗腐蚀性优良,以及同人体组织有良好的亲合性等优越性能,成为最重要的工程材料之一。近几十年以来,随着科技发展,钛和钛合金的作用显得越来越重要,在航天、航空、航海等部门它们是产业发展的基础材料、关键材料,在化工、石化、医疗、机械等行业它们也有重要作用。现在,钛和钛合金已大量用于制作导弹、火箭、飞船等航天器的壳体,飞机的壳体、机翼和发动机叶片,轮船、军舰、潜艇的壳体,海水淡化装置,化工反应器、管道、容器,人造牙齿、骨骼、关节、夹板,以及仪表、精密机械、高尔夫球头、眼镜框、钟表、首饰和装饰品等。此外,钛还用于制作超导材料、贮氢材料、吸气材料、压电材料和形状记忆合金等重要功能材料。
目前,金属钛的主流生产工艺为克罗尔(Kroll)工艺,主要是采用金属Mg还原TiCl 4工序、真空分离工序制造金属钛,该工艺由三部分组成:一是由含钛矿物质制取精TiCl 4;二是镁还原TiCl 4生产海绵钛的还原工序;三是真空蒸馏、提纯和镁的再生。在还原工序中,液态TiCl 4从反应器上方加入并流经熔融Mg发生还原,在反应器底部沉积得到海绵Ti;真空分离工序主要是除去其中夹杂的Mg单质和还原产物MgCl 2。虽然该工艺可制得高纯度的金属钛,但该工艺由于热还原过程长、工序复杂、不能连续生产等原因使钛生产成本居高不下,加之生产过程中的环境污染,大大制约了钛的广泛应用。又如中国专利局于2018年01月16日公布的专利申请号为201710711128.2、发明名称为《一种利用二氧化钛直接生产钛及钛合金的方法》,该专利技术是本发明人提供的一种生产二氧化钛的新方法,由于该专利技术必须要先生产二氧化钛才能实施所述方法,而二氧化钛生产过程本身会产生大量污染,需要消耗大量化学试剂,以致仍然存在生产成本高、不环保的问题。因此,本领域急需研发一种既可以大幅度降低生产成本,又清洁环保、易于实现工业化的生产钛及钛合金的方法。
发明内容
针对现有技术存在的上述问题和需求,本发明的目的是提供一种利用钛矿直接生产钛及钛合金的方法,以实现低成本、清洁环保的工业化生产钛及钛合金。
为实现上述发明目的,本发明采用的技术方案如下:
一种利用钛矿直接生产钛及钛合金的方法,所述方法包括如下步骤:
a)使钛矿与还原剂混合后在高温炉中进行反应,生成高钛渣;
b)向熔融状态的高钛渣里加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,通过单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与高钛渣的反应生成金属钛。
钛是重要的国防和工业材料,一直是世界科技研究的重点。但由于钛矿的钛和氧之间的化学键非常牢固,导致化学性质非常稳定,无法直接生成金属钛,所以利用钛矿直接生成金属钛已经成为人类材料科学的世界难题。所以现在就只能采用金属镁还原四氯化钛,得到海绵金属钛。但四氯化钛的生产成本非常高,并且在生产过程中会产生严重的污染。本发明通过采用上述方法,首次破解了人类直接利用钛矿生成金属钛的材料学的技术瓶颈。
一种实施方案,在钛矿与还原剂反应后,先排放高温炉底部的生成物,再向高温炉中加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,使单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与熔融状态的高钛渣反应生成金属钛。
钛矿与还原剂如焦炭、沥青混合后在高温炉中进行反应,会生成高钛渣,同时也会生成铁。由于铁的比重大于高钛渣,所以生成的铁位于高温炉的底部,先将铁从下面进行排放,一方面可以获得铁产品,另一方面可以为下一步生产钛进行环境简化,以利于钛的生成反应的进行。
在钛矿与还原剂反应后,将生成的高钛渣排入到高温反应炉中,再向高温炉中加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,使单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与熔融状态的高钛渣反应生成金属钛。因为钛矿与还原剂反应生成的物质成份非常复杂,为了得到高纯度的钛产品,将生成的高钛渣从反应炉中排出,进入到专门的反应炉中,从而避免将杂质带入反应炉中,提高产品的质量。
作为优选方案,上述单一活泼金属为铝,上述合金为铝合金。比钛的化学性质活泼的 金属非常多,主要是铝和镁。活泼金属包括但不限于金属镁、铝等,其中优选金属铝,因为铝在与钛矿反应过程中会释放出大量热能,从而可保持化学反应的持续进行,尤其是铝的沸点高,可保证在化学反应过程中不会发生气化产生污染问题。
一种实施方案,所述单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金以熔化状态加入熔融状态的高钛渣中。因为高钛渣是处于熔融状态,且反应本身是放热反应,因此,当反应物都为液态时,可保证反应顺利进行。
一种实施方案,使单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与钛矿反应后生成的二氧化钛的量按化学反应方程式的计量比发生化学反应,得到金属钛。根据钛矿里的钛的含量,可以有效地控制高钛渣的量,从而可以准确地计算需要多少活泼金属的量,通过按化学反应方程式的计量比发生化学反应,可以准确地控制金属钛的质量。
一种实施方案,使单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与过量钛矿发生化学反应,得到高纯度金属钛。因为此种条件下,活泼金属完全发生了化学反应,可保证活泼金属全部参与化学反应,从而保证得到的金属钛里面没有活泼金属。
一种实施方案,使与熔融状态的高钛渣发生化学反应的单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金过量,得到含单一活泼金属或多种活泼金属的钛合金。钛的用途非常广泛,其中一个用途之一就是以钛与活泼金属形成钛合金。采用这种方案可以直接得到钛与活泼金属的合金,而不需要将纯钛与活泼金属再进行熔化生成合金,这样不仅可明显简化钛合金的制备工艺,而且可显著降低钛合金的制备成本。
一种实施方案,先将形成目标钛合金所需要的金属组分加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金中,然后使其与熔融状态的高钛渣发生化学反应,得到所需钛合金,具有显著工业化价值。
一种实施方案,先将形成目标钛合金所需要的金属组分加入熔融状态的高钛渣中,然后加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,使发生化学反应得到所需钛合金。因为钛合金种类非常多,如果采用本方案可以一步就形成所需的钛合金,具有显著工业化价值。
作为优选方案,步骤a)和步骤b)中的反应均在无氧条件下进行,例如:在惰性气氛下或真空下进行。因为刚生产出来的钛非常活泼,容易与氧发生化学反应,通过无氧环境可保证产品的品质。
作为优选方案,步骤a)和步骤b)中的反应均在搅拌下进行。
与现有技术相比,本发明具有如下显著性有益效果:
1、实现了直接由钛矿生产钛及钛合金,不仅生产工艺明显简化,易于实现规模化,而且生产成本得到显著降低;
2、由于可直接生产得到金属钛及钛合金,无需中间提纯处理,因此操作简单,成本低,具有显著的工业化价值。
附图说明
图1是实施例提供的一种利用钛矿直接生产钛及钛合金的间歇式生产工艺流程示意图。
图中标号示意如下:1、高温炉;2、高钛渣;3、铁水;4、出料口;5、熔铝炉;6、金属铝;7、阀门。
具体实施方式
下面结合实施例和附图对本发明技术方案做进一步详细、完整地说明。
实施例1
参照图1所示,本实施例提供的一种利用钛矿直接生产钛及钛合金的方法,是采用间歇式生产工艺,即:先将钛矿与还原剂焦炭、沥青混合,然后在高温炉1里加热进行还原反应,生成铁水3和高钛渣2。开启高温炉1下面的出料口4将反应生成的铁水3从下面先排放出,然后将金属铝6放置在熔铝炉5里,通过加热使金属铝6熔化成液态;再开启阀门7使液态的金属铝6加入到高温炉1里,使液态的金属铝6与熔融态的高钛渣2发生化学反应生成金属钛。由于钛的比重比生成的三氧化二铝大,因此生成的钛位于高温炉1的底部,再次开启出料口4可将产生的钛从高温炉1里放出。
若液态的金属铝6与熔融态的高钛渣2是按化学计量比发生化学反应,则得到金属钛;若使熔融态的高钛渣2稍稍过量,则可保证液态的金属铝6充分反应完全,从而得到高纯度金属钛;若使液态的金属铝6过量,则会使过量的金属铝6与形成的金属钛形成钛铝合金,从而得到钛铝合金。
若要生产与发生反应的活泼金属不同元素的钛合金,例如钛铁合金,可通过先使液态的金属铝6与熔融态的高钛渣2按化学计量比发生化学反应得到金属钛,然后加入与形成的金属钛为化学计量比的金属铁,从而直接得到钛铁合金;也可以先将化学计量比的金属铁加入熔融态的高钛渣2中,然后向其中加入化学计量比的金属铝6,搅拌使其发生反应, 从而直接得到钛铁合金。
由于纯钛的熔点为1678℃,而钛合金的熔点一般会低于1678℃,二氧化钛的熔点为1850℃左右,因此反应得到的金属钛或钛合金也为液态,因而可以由高温炉1的底部出料口4排出。
最后需要在此指出的是:以上仅是本发明的部分优选应用例,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (12)

  1. 一种利用钛矿直接生产钛及钛合金的方法,其特征在于,所述方法包括如下步骤:
    a)使钛矿与还原剂混合后在高温炉中进行反应,生成高钛渣;
    b)向熔融状态的高钛渣里加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,通过单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与高钛渣的反应生成金属钛。
  2. 根据权利要求1所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:在钛矿与还原剂反应后,先排放高温炉底部的生成物,再向高温炉中加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,使单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与熔融状态的高钛渣反应生成金属钛。
  3. 根据权利要求1所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:在钛矿与还原剂反应后,将生成的高钛渣排入到高温反应炉中,再向高温炉中加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,使单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与熔融状态的高钛渣反应生成金属钛。
  4. 根据权利要求1至3中任一项所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:所述单一活泼金属为铝,所述合金为铝合金。
  5. 根据权利要求1至3中任一项所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:所述单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金以熔化状态加入熔融状态的高钛渣中。
  6. 根据权利要求1至3中任一项所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:使单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与钛矿反应后生成的二氧化钛的量按化学反应方程式的计量比发生化学反应,得到金属钛。
  7. 根据权利要求1至3中任一项所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:使单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金与过量钛矿发生化学反应,得到高纯度金属钛。
  8. 根据权利要求1至3中任一项所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:使与熔融状态的高钛渣发生化学反应的单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金过量,得到含单一活泼金属或多种活泼金属的钛合金。
  9. 根据权利要求1至3中任一项所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:先将形成目标钛合金所需要的金属组分加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金中,然后使其与熔融状态的高钛渣发生化学反应,得到所 需钛合金。
  10. 根据权利要求1至3中任一项所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:先将形成目标钛合金所需要的金属组分加入熔融状态的高钛渣中,然后加入单一活泼金属或多种活泼金属形成的混合物或多种活泼金属形成的合金,使其发生化学反应得到所需钛合金。
  11. 根据权利要求1所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:步骤a)和步骤b)中的反应均在搅拌状态下进行。
  12. 根据权利要求1所述的利用钛矿直接生产钛及钛合金的方法,其特征在于:步骤a)和步骤b)中的反应均在无氧条件下进行。
PCT/CN2019/079942 2018-04-03 2019-03-27 一种利用钛矿直接生产钛及钛合金的方法 WO2019192373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810303735.X 2018-04-03
CN201810303735.XA CN110343874A (zh) 2018-04-03 2018-04-03 一种利用钛矿直接生产钛及钛合金的方法

Publications (1)

Publication Number Publication Date
WO2019192373A1 true WO2019192373A1 (zh) 2019-10-10

Family

ID=68099900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079942 WO2019192373A1 (zh) 2018-04-03 2019-03-27 一种利用钛矿直接生产钛及钛合金的方法

Country Status (2)

Country Link
CN (1) CN110343874A (zh)
WO (1) WO2019192373A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250930A (ja) * 1989-03-23 1990-10-08 Kawasaki Steel Corp Al―Ti合金の製造方法
CN1888101A (zh) * 2006-07-17 2007-01-03 中国科学院过程工程研究所 一种直接从含钛矿物生产钛合金的方法
CN101643805A (zh) * 2008-08-08 2010-02-10 苏永山 优质高钛渣生产新方法
CN102517472A (zh) * 2012-01-06 2012-06-27 攀枝花钢城集团有限公司 高钛低硅的钛硅铁合金及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507036C (zh) * 2007-06-08 2009-07-01 东北大学 基于铝热还原-真空感应熔炼制备高钛铁的方法
CN102094096A (zh) * 2011-01-07 2011-06-15 武汉科技大学 一种利用热态含钛高炉渣制备钛硅铁合金的方法
CN102936635B (zh) * 2012-10-25 2015-01-14 攀钢集团攀枝花钢铁研究院有限公司 一种从含钛铁精矿中提取铁和钛的方法
CN103484683A (zh) * 2013-10-12 2014-01-01 钢铁研究总院 一种熔融含钛高炉渣综合利用的方法
CN107400741B (zh) * 2016-05-18 2022-02-18 鞍钢股份有限公司 一种熔融含钛高炉渣冶炼低硅钛铁工艺
CN106755652A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛熔渣冶金一步法回收的方法
CN107586971A (zh) * 2017-08-18 2018-01-16 王武生 一种利用二氧化钛直接生产钛及钛合金的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250930A (ja) * 1989-03-23 1990-10-08 Kawasaki Steel Corp Al―Ti合金の製造方法
CN1888101A (zh) * 2006-07-17 2007-01-03 中国科学院过程工程研究所 一种直接从含钛矿物生产钛合金的方法
CN101643805A (zh) * 2008-08-08 2010-02-10 苏永山 优质高钛渣生产新方法
CN102517472A (zh) * 2012-01-06 2012-06-27 攀枝花钢城集团有限公司 高钛低硅的钛硅铁合金及其制备方法

Also Published As

Publication number Publication date
CN110343874A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
TWI694155B (zh) 利用二氧化鈦直接生產鈦及鈦合金的方法
EP3495513B1 (en) Aluminum thermal self-propagation gradient reduction and slag washing and refining-based method for preparing titanium alloy
KR20160010874A (ko) 금속 함유 분말을 제조하기 위한 공정
CN108602120A (zh) 使固溶体中具有溶解于其中的氧的金属脱氧的方法
CN112875704B (zh) 一种难熔金属碳化物固溶体粉末的低温制备方法
WO2019192372A1 (zh) 一种利用高钛渣直接生产钛及钛合金的方法
CN111747761B (zh) 一种钛增强刚玉系耐火材料及制备方法
CN103898324B (zh) 一种铝钽合金的制备方法
WO2019192373A1 (zh) 一种利用钛矿直接生产钛及钛合金的方法
CN103911537B (zh) 一种铝钒铬铁钛中间合金及其制备方法
CN107058845B (zh) 一种铝钒锆钼铬五元合金的制备方法
CN111378883A (zh) 一种铌铁中间合金及其制备方法和应用
CN106119740A (zh) 笔记本电脑用镁合金
CN112374472B (zh) 一种氮化钛包覆Ti2O3复合Al2O3材料及其制备方法
CN115821082A (zh) 一种铝铌钛硼及其制备方法
CN103131879A (zh) 一种铝合金变质处理方法
CN112921199B (zh) 一种铝钛硼合金生产用精炼剂及应用
CN106086528B (zh) 具有锻打高成材率的镍基合金及其冶炼工艺
CN106011568B (zh) 一种氮化镁‑碳纳米管颗粒增强镁基合金材料的制备方法
CN113604707A (zh) 一种镍基高温合金、其制备方法及应用
Jinzhong et al. Reaction mechanism and kinetics of ferrotitanium preparation by aluminothermic reduction of CaTiO3
CN101845564B (zh) 一种生产镁锆中间合金的二次熔炼法
RU2639797C1 (ru) Способ получения порошка карбида
CN108374098A (zh) 一种用于含钙镁合金熔炼的熔剂及其制备方法
CN108070801A (zh) 一种采用工业级海绵锆制备低成本厘米级锆基非晶合金的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 19781848

Country of ref document: EP

Kind code of ref document: A1