WO2019192056A1 - 一种分布式激光雷达 - Google Patents

一种分布式激光雷达 Download PDF

Info

Publication number
WO2019192056A1
WO2019192056A1 PCT/CN2018/086770 CN2018086770W WO2019192056A1 WO 2019192056 A1 WO2019192056 A1 WO 2019192056A1 CN 2018086770 W CN2018086770 W CN 2018086770W WO 2019192056 A1 WO2019192056 A1 WO 2019192056A1
Authority
WO
WIPO (PCT)
Prior art keywords
distributed
light
laser radar
scanning
component
Prior art date
Application number
PCT/CN2018/086770
Other languages
English (en)
French (fr)
Inventor
潘政清
叶良琛
向少卿
李一帆
Original Assignee
上海禾赛光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛光电科技有限公司 filed Critical 上海禾赛光电科技有限公司
Priority to EP18913352.3A priority Critical patent/EP3779502B1/en
Publication of WO2019192056A1 publication Critical patent/WO2019192056A1/zh
Priority to US17/037,960 priority patent/US11002835B2/en
Priority to US17/313,967 priority patent/US20210278510A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres

Definitions

  • the invention belongs to the field of radar, and in particular relates to a distributed laser radar based on optical fiber.
  • Obstacle detection of unmanned vehicles on the road is an important part of the research field of environmental sensing technology.
  • commonly used sensors are laser radar, camera, millimeter wave radar, ultrasonic sensor and the like.
  • Lidar measures the distance by measuring the time difference between the emitted light and the light reflected from the surface of the object.
  • multi-line laser radar on the market is a distribution of a plurality of laser beams by vertical rotation of a plurality of laser emitters.
  • Velodyne's 64-line laser radar however, high-line laser radar leads to increased costs, so applications are also limited.
  • laser radar the cost of the transmitter and receiver is the highest.
  • low-line laser radar coupling is usually used. The effect is equivalent to a multi-line laser radar, which can improve the resolution while reducing the cost of laser radar. The rate has become a hot spot in current research.
  • the commonly used technical solutions are: coupling multiple laser radars. For example, four 16-line laser radars are coupled, and after a reasonable design layout, four laser radars are controlled by the control unit, and the lidar density of the freely combined hybrid solid-state laser radar is achieved through laser radar combined calibration and data synchronization processing. The purpose of change.
  • a first aspect of the present invention provides a distributed laser radar, comprising: an optical transceiver component, a plurality of distributed scanning units, a distributed optical fiber connection component; and the optical transceiver component ( 101) comprising: a light source, transmitting probe light; a light receiving unit, configured to receive the probe return light; the plurality of distributed scanning units, distributed on the carrier of the distributed laser radar; and the distributed optical fiber connection component Coupling the optical transceiver component with the plurality of distributed scanning units; the probe light emitted by the light source in the optical transceiver assembly is coupled to the distributed fiber optic connection component and transmitted synchronously by the distributed fiber optic connection component To the plurality of distributed scanning units, the plurality of distributed scanning units transmit the detection light to the detection area through the scanning device, and receive the reflected light of the detection area, and reflect back through the distributed optical fiber connection component. Light is transmitted to the optical transceiver assembly and received by a light receiving unit in the optical transceiver assembly
  • the second aspect of the present invention provides another distributed laser radar, the laser radar includes: an internal light component, a distributed scanning unit, and a fiber optic connection component; the internal light component is disposed inside the carrier and includes at least: a light source Transmitting the detection light; the light receiving unit is configured to receive the probe light; the distributed scanning unit is disposed on the carrier; the fiber optic connection component is coupled to the inner optical component, and is simultaneously distributed and scanned a unit coupling connection; the probe light emitted by the light source in the inner light assembly is coupled to the distributed fiber optic connection assembly and transmitted by the distributed fiber optic connection assembly to a distributed scanning unit, the distributed scanning unit passing the scanning device The probe light is emitted to the detection area, and the reflected light of the detection area is received, and the reflected light is transmitted to the internal light component via the distributed optical fiber connection assembly, and is received by the light receiving unit.
  • the internal light component is disposed inside the carrier and includes at least: a light source Transmitting the detection light
  • the light receiving unit is configured to receive the probe light
  • the distributed scanning unit shares a set of laser emitters and laser detectors and associated electronic components. Through the arrangement and combination of distributed scanning units, the problem of high cost and large volume in the current multi-laser coupling is solved, and the vertical resolution is also improved by using multiple low-line laser radars.
  • FIG. 1 is a schematic structural diagram of a distributed laser radar provided by an embodiment of the present specification.
  • FIG. 2 is a schematic structural diagram of a distributed laser radar optical coupling device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a distributed laser radar scanning principle provided by an embodiment of the present specification.
  • FIG. 4 is a schematic diagram of a distributed laser radar scanning principle provided by an embodiment of the present specification.
  • FIG. 5 is a schematic diagram of a schematic diagram of a scanning device based on a multi-fiber equivalent light source provided by an embodiment of the present specification.
  • FIG. 6 is a schematic diagram of a schematic diagram of a scanning device based on a multi-fiber equivalent light source provided by an embodiment of the present specification.
  • FIG. 7 is a schematic diagram of a schematic diagram of a scanning device based on a multi-fiber equivalent light source provided by an embodiment of the present specification.
  • FIG. 8 is a schematic diagram of a scanning device based on a multi-fiber equivalent light source provided by an embodiment of the present specification.
  • FIG. 9 is a schematic diagram of a two-dimensional fiber array provided by an embodiment of the present specification.
  • FIG. 10 is a schematic diagram of a two-dimensional fiber array provided by an embodiment of the present specification.
  • FIG. 11 is a schematic diagram of the principle of an optical fiber array with a fiber clamp provided by an embodiment of the present specification.
  • FIG. 12 is a schematic diagram of the principle of total reflection of an end face of an optical fiber provided by an embodiment of the present specification.
  • FIG. 13 is a schematic diagram of a scanning area of a carrier provided by an embodiment of the present specification.
  • FIG. 14 is a schematic diagram of distribution of an internal light component according to an embodiment of the present specification.
  • FIG. 15 is a schematic diagram of distribution of internal light components provided by an embodiment of the present specification.
  • FIG. 16 is a schematic structural view of a drone carrier provided by an embodiment of the present specification.
  • FIG. 17 is a schematic diagram showing the distribution of the internal light components provided by the embodiments of the present specification.
  • the laser radar includes: an optical transceiver component 101, a plurality of distributed scanning units 103, and a distributed optical fiber connection component 102.
  • the optical transceiver component 101 includes: a light source, transmitting the probe light; a light receiving unit, configured to receive the detection light; a plurality of distributed scanning units 103, distributed on the carrier of the distributed laser radar; the distributed optical fiber connection component 102, the coupling connection The optical transceiver component 101 and the plurality of distributed scanning units 103; the probe light emitted by the light source in the optical transceiver component 101 is coupled to the distributed fiber optic connection component 102 and synchronized by the distributed fiber optic connection component 102 Transmitting to the plurality of distributed scanning units 103, the plurality of distributed scanning units 103 transmit the detection light to the detection area through the scanning device, and receive the reflected light of the detection area, via the distributed optical fiber connection component The reflected light is transmitted to the optical transceiver unit 101 and received by the light receiving
  • the optical transceiver component 101 includes at least: a light source for emitting probe light, and a light receiving unit for receiving the probe light.
  • the light source may alternatively be a side emitting semiconductor laser, a surface emitting semiconductor laser, a heterojunction laser, a strip laser, a GaAlAs/GaAs laser, an InGaAsP/InP laser, a quantum well laser, a microcavity laser, or the like.
  • the detection light band can be selected in the near-infrared band, such as 960 nm, 1320 nm or 1550 nm, and the transmission power is selected within the safety range of the human eye.
  • the probe light emitted from the optical transceiver module 101 is input to the optical coupler through the 101OUTPUT port, and the 101OUTPUT port is connected to the input port 102INPUT port of the distributed optical connection assembly 102, and the 102INPUT port is connected.
  • the optical coupling of the output light of the 101OUTPUT port to the fiber in 102COM is achieved by a coupling connection with 102COM.
  • the number of optical fibers coupled in 102COM is four, which are respectively connected to the distributed scanning device of the left front, right front, left rear, and right rear of the carrier.
  • 102COM can also set more fiber interfaces.
  • 1010UTPUT can be coupled to 10 ports or 12 ports of 102COM, so that the left front, right front, left rear, and right rear of the carrier correspond to two or Three fibers or even more fibers.
  • the number is only illustrative, and in this specification, the number of coupled fibers is not limited.
  • the distributed optical connection assembly 102 is implemented by an optical fiber. That is, the probe light emitted from the optical transceiver unit 101 is coupled into the optical fiber through a coupler, and then transmitted to the distributed optical scanning device 103 by means of a pure optical fiber connection. At the distributed optical scanning device 103, the probe light is emitted from the end face of the optical fiber. At this time, the end face of the optical fiber becomes an equivalent light source, and the detected light emitted by the scanning unit is reflected by the scanning unit to the area to be detected.
  • each distributed scanning unit accesses a plurality of optical fibers, and the plurality of optical fibers form a plurality of equivalent light sources, and the detecting light emitted by the plurality of optical fibers is incident on the scanning unit from different angles.
  • the plurality of optical fibers form different angles of incidence to the scanning unit by setting the orientation angle of the optical fibers, and the incident light rays form a scanning field of view driven by the scanning unit.
  • Scanning frequency and scanning amplitude are two important indicators that affect imaging.
  • the scanning frequency determines the resolution of imaging
  • the scanning amplitude determines the imaging range of imaging.
  • the two indexes of scanning resolution and detection range are difficult to balance.
  • the scanning device In order to achieve high scanning resolution, the scanning device is required to vibrate at a high frequency, and in this case, it is difficult to meet the requirements of a large scanning range. At the same time, because of the requirements of the laser radar itself, the scanning range cannot be too small.
  • a plurality of optical fibers are used to form a plurality of equivalent light sources, and the scanning range is ensured while the scanning resolution is ensured.
  • the outgoing light of the optical fibers is incident on the reflective surface of the scanning unit, and at the same time, the fields of view formed by the scanning of the incident light are partially overlapped or just can be combined. In this way, it is possible to ensure a larger detection field of view while the scanning unit maintains a higher scanning frequency.
  • by increasing the number of fibers providing an equivalent source it is possible to ensure that the maximum field of view that can be received is obtained at the same scanning frequency.
  • the end face of the optical fiber as the equivalent light source.
  • the traditional scanning method cannot arrange many lasers around a scanning unit because the laser itself has a certain volume, the space limits the implementation of multiple light sources, and the fiber equivalent light source can be arranged in one scanning unit. Effective light source, which greatly improves the space utilization efficiency, and since the fiber exit end face is only a point, the exit angle of the fiber can be adjusted very easily, and the scanning area is controlled.
  • the synchronization of the probe light can be very well controlled by means of fiber coupling.
  • a laser beam emitted from an end face of an optical fiber as an equivalent light source is incident on a reflecting surface of the scanner and forms a field of view a.
  • the laser beam emitted from the second fiber end face as an equivalent light source is incident on the reflective surface of the scanner and forms a field of view b.
  • the laser light emitted from the third optical fiber end face as an equivalent light source is incident on the reflective surface of the scanner and forms a field of view c.
  • the composite field of view formed by the scanning of the three optical fibers is a superposition of the field of view a, the field of view b, and the field of view c.
  • the resolution of the radar is not affected because the scanning unit maintains a high scanning frequency.
  • FIGS. 5-8 are merely illustrative examples.
  • the introduction of a plurality of equivalent light sources is equivalent to dividing the field of view to be detected into multiple copies, so that a larger scanning frequency can be obtained by sacrificing the scanning amplitude, thereby increasing the upper resolution limit of the same scanning unit.
  • the scanning unit is designed to have a scanning frequency of 85 Hz and the scanning mirror is divided into ⁇ 5°.
  • the scanning angle of the scanning mirror can be reduced to ⁇ 3°. It is possible to increase the scanning frequency upper limit of the scanning unit to 130 Hz.
  • the fiber can also provide a source of light to the scanning unit in the form of an array of light sources.
  • the optical fibers are arranged in a two-dimensional array in space, and are incident on the reflective surface of the scanning device at an angle, and are scanned by the scanning device to form a plurality of two-dimensional sub-light fields, a plurality of two-dimensional images. The superposition of the sub-light fields forms an overlay of the detection area.
  • the optical fiber in FIG. 9 forms a two-dimensional equivalent light source array in a two-dimensional array of 4 ⁇ 4.
  • the two-dimensional array may also be as shown in the figure.
  • 2X2, 3X2, 2X3, 3X3, etc. a rectangular array of MXNs suitable for superimposing the sub-light fields on each other.
  • the arrangement of the light output end faces of the distributed fiber optic connection assembly 102 in the form of a spatial two-dimensional array facilitates the combination and superposition of the spatial two-dimensional market, but the two-dimensional array requires that the fibers in the array have a fixed orientation and a fixed angle, respectively. This requires fine installation and debugging to complete, and during use, external vibrations and other factors are also likely to cause changes in the position and/or orientation of the fiber, which in turn causes a change in the field of view.
  • the optical fibers which are equivalent sources, are fixed in a one-dimensional array using a jig, and the orientation of the fiber bodies is substantially parallel.
  • the position of the fiber can be firmly controlled by the one-dimensional array jig, and the light-emitting direction of the end face of the fiber is controlled by the one-dimensional jig, so that even if an external force such as vibration is encountered, the jig can firmly hold the end face of the fiber to ensure the stability of the system.
  • the light-emitting surface of the optical fiber can be processed.
  • the wavefront of the exiting light field is a tapered surface, and for the one-dimensional fixture, in order to converge the light emitted by the plurality of fibers onto the scanning surface or
  • the focus lens can be realized by cutting the fiber end face.
  • the end faces of the fibers are obliquely cut at different angles, and by controlling the cutting angle, it is satisfied that:
  • n2 is the refractive index of air
  • n1 is the refractive index of the fiber
  • C is the critical angle of cutting.
  • the angle ⁇ of the cutting end face of the fiber is smaller than the critical angle C, the probe light incident from the fiber parallel will be on the cut end face. Total reflection occurs so that the direction in which the fiber exits the light is changed without changing the direction of the fiber itself (the fibers are parallel).
  • the light emitted from the optical fiber is incident on the surface of the lens at different angles.
  • the converging lens may be omitted, and the light emitted from the end face of the optical fiber at different angles is incident on the mirror surface to realize the light field. Partially overlapping or just flattened together.
  • the optical path is received to receive the reflected light of the target detection area, and the received detection light is transmitted to the optical transceiver component through the receiving optical fiber, and the light receiving unit converts the detected return light into an electrical signal.
  • the distributed scanning unit may also transmit the optical signal without using the optical fiber. Rather, the light return signal is converted into an electrical signal directly according to the light receiving unit disposed at the distributed scanning unit, and then the electrical signal is transmitted.
  • the transmission of electrical signals can be selected by wired transmission or wireless transmission.
  • the wired transmission mode may adopt an electrical signal transmission method such as a coaxial cable, and the wireless transmission mode may transmit the processed electrical signal to a unified signal processing such as a driving assistance system or a signal processing system based on the wireless transmission chip to achieve a The obstacles in the target area are identified.
  • the light receiving unit selects an APD (Avalanche Photo Diode) detecting unit, in particular a one-dimensional line array APD or a multi-line array APD. Based on the APD array, the target scene is flooded, and a single laser pulse can obtain a three-dimensional image of the target.
  • APD Anavalanche Photo Diode
  • the single-point scanning method there are many advantages, such as using APD imaging without a scanner, and it is easier to miniaturize the system; The power requirement is low, and the beam collimation requirement between the transmitting and receiving systems is reduced; the motion blur can be overcome, the moving target imaging capability is provided, the frame rate is high, and the penetrating imaging capability is provided.
  • the distributed scanning unit 103 is disposed outside the carrier; the distributed optical fiber connection component 102 is coupled to the optical transceiver component 101 and coupled to the distributed scanning unit 103. connection.
  • the distributed scanning unit 103 is disposed around the outside of the carrier.
  • the carrier may also be other types of vehicles, such as various types. Models of aircraft, vehicles, ships, etc., as long as they can carry the various units described in this specification, can be used as the carrier described in the embodiments of the present specification.
  • FIG. 1 of the specification also does not have a limiting effect on the arrangement and setting position of the distributed scanning unit.
  • the distributed scanning unit 103 is distributed at four positions of the four corners of the carrier, and the scanning range covers the motion state of the linear motion, the turning, and the like when the carrier moves.
  • other arrangements of the distributed scanning unit are not excluded, as shown in FIG. 13, except that the first distributed scanning unit 2031, the second distributed scanning unit 2032, and the third distributed scanning unit 2033 are respectively disposed at four corners of the carrier.
  • two sets of distributed scanning units, a fifth distributed scanning unit 2035 and a sixth distributed scanning unit 2036 are also disposed on both sides of the carrier.
  • the first distributed scanning unit 2031, the second distributed scanning unit 2032, the third distributed scanning unit 2033, and the fourth distributed scanning unit 2034 respectively detect the four-corner orientation of the carrier, and the fifth distributed scanning unit 2035 and The sixth distributed scanning unit 2036 is then used to detect the carrier side orientation.
  • the inner light assembly may be disposed inside the carrier.
  • the inner light assembly may be disposed inside the engine compartment of the carrier vehicle, or may be disposed in the cockpit of the vehicle.
  • the temperature change is small and can even be considered to be substantially constant. Since the lasers and photodetectors used in the laser radar are easily interfered by the ambient temperature, the common external laser radar components are affected by the bad weather, and the detection accuracy and accuracy are affected. By arranging the internal light components inside the carrier, the influence of severe weather and the like on the laser radar can be greatly reduced.
  • the laser and the photodetector are not affected by the ambient temperature, and continue to emit the probe light over a constant temperature range of the carrier, thereby eliminating the need for a temperature-dependent laser. Perform temperature calibration.
  • the internal light assembly when the carrier is a vehicle, the internal light assembly may be disposed near the air conditioning duct inside the vehicle, and the temperature adjustment effect of the air conditioner is used to adjust the temperature of the internal light assembly.
  • the ambient temperature of the internal light component is basically a constant temperature interval, which avoids the temperature difference between day and night when the optical component is external (the maximum temperature difference can reach 20 degrees).
  • the effect of seasonal temperature differences maximum temperature difference up to 50 degrees). It can be seen that the use of the internal light component does not require temperature calibration of the large temperature range.
  • the setting of the internal light component can also protect the light source and the light receiving unit in the internal light component from the influence of rain and humidity, avoid the possibility of short circuit of the electrical component, and prolong the service life of the circuit and the component.
  • the inner light assembly 101 can be placed at the center of gravity of the triangle ABC formed by the nacelle support. At the position of the center of gravity, the inner light assembly is minimally affected by the vibration of the carrier, thereby ensuring minimal occurrence of light generation and vibration of the light receiving device upon receipt of the carrier.
  • the vibration of the carrier may cause slight displacement or deformation of the components in the optical path, and the accumulation of such small displacement or deformation may result in a decrease in radar detection accuracy.
  • distributed laser radar since the light emitted by the light source is transmitted to the distributed scanning device through coupling, the impact of the vibration on the whole scanning process is relatively small, which can undoubtedly improve the accuracy of the detection.
  • the setting of the distributed scanning unit is more for assisting driving, and the distributed scanning unit may have other setting manners when applied to an automatic driving scene.
  • the current classification of autonomous driving techniques is shown in Table 1 below.
  • the sensor mounted on the carrier When applied to a limited autopilot (level 3) or fully autonomous (level 4) scene, the sensor mounted on the carrier needs to achieve full coverage for driving.
  • the inner light assembly 201 is disposed inside the carrier, and the first distributed scanning unit 2031 and the second distributed scanning unit 2032 are respectively disposed on the left front side, the right front side, the left rear side, and the right rear side of the carrier vehicle.
  • the third distributed scanning unit 2033 is a fourth distributed scanning unit 2034.
  • a fifth distributed scanning unit 2035 and a sixth distributed scanning unit 2036 may be disposed at both sides of the carrier vehicle.
  • the scanning mode of the distributed scanning unit is set according to the motion mode and the motion state of the vehicle carrier, thereby providing information of the surrounding obstacles for normal running of the vehicle.
  • the carrier may also be an aircraft, such as the unmanned aerial vehicle shown in FIG. 5, which is equipped with a distributed laser radar system, which also includes an internal light component 401, distributed Optical connection component 402, distributed scanning unit 403.
  • the drone includes a body, a four-wing of the drone, a propeller is disposed on the four wings of the drone, and a landing gear is disposed under the body.
  • the inner light assembly 401 is disposed inside the body of the drone, and the distributed scanning unit 403 is disposed on the four wings of the drone.
  • the internal light component 401 is disposed inside the UAV body and includes at least: a light source for transmitting the probe light, and a light receiving unit configured to receive the probe light.
  • the probe light emitted by the light source in the inner light assembly 401 is transmitted to the distributed scanning unit 403 of the four wings of the drone through the distributed optical connection assembly 402.
  • the distributed scanning unit 403 can scan the probe light and transmit the probe light to the target area to realize the detection of the target area.
  • a galvanometer such as an electrostatic galvanometer, an electromagnetic galvanometer, a piezoelectric galvanometer, or an electrothermal galvanometer can be selected. You can also choose to turn the mirror, such as a rotating prism, a rotating cylindrical mirror, a rotating cone mirror, and so on.
  • the scanning unit can scan the light source coupled to the distributed optical connection assembly during the swinging process to refer to different detection areas.
  • the laser light emitted by the distributed scanning unit 403 is reflected to different positions within the field of view, and is transmitted by the scanning device to the receiving convergence device when the emitted laser beam is reflected by the target object (or obstacle).
  • the converging means may be a lens or a lens group for concentrating the divergent light, and the concentrated beam is transmitted to the light receiving means in the internal light assembly 401 via a plurality of optical fibers.
  • the detector is composed of one or more detection arrays, including but not limited to photoelectric sensors such as PIN, APD, GM-APD, etc., which cover the filter corresponding to the laser emission wavelength, ensuring only corresponding The light of the wavelength can be received by the photoreceptor of the detector through the filter.
  • photoelectric sensors such as PIN, APD, GM-APD, etc.
  • the detector calculates the flight time of the laser by recording the time difference between the laser emission and the received echo signal, thereby obtaining the distance information of the object to be measured at the point.
  • the emission of the light source in the inner light assembly is controlled in accordance with the motion behavior of the carrier, and the receiving component receives the probe light.
  • the inner light assembly 301 increases the output power corresponding to the right side sensor and the front side sensor according to the control signal of the direction sensor to increase the corresponding position. Detection distance. Or, increase the number of equivalent sources in the corresponding direction. For example, the outgoing probe light of the original light source is coupled to one fiber to form an equivalent light source, and the other fibers are idle, and when turning, the idle fiber is turned on to provide more equivalent light sources. To increase the resolution of the azimuth.
  • a light amplifying unit is disposed on the optical fiber in the distributed optical connection assembly.
  • the light intensity of the end face of the fiber is adjusted by the optical amplifying unit.
  • the optical amplifying unit can be used to increase the detection distance when, for example, the carrier vehicle makes a turn.
  • a light modulation unit is disposed on the optical fiber in the distributed optical connection assembly, and the detection light emitted to different detection regions is distinguished by modulating the outgoing light of different optical fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种分布式激光雷达,包括:光收发组件(101),多个分布式扫描单元(103),分布式光纤连接组件(102);光收发组件(101),包含:光源,发射探测光;光接收单元,用于接收探测回光;多个分布式扫描单元(103),分布设置于分布式激光雷达的载体;分布式光纤连接组件(102),耦合连接光收发组件(101)与多个分布式扫描单元(103);光收发组件(101)中光源发射的探测光被耦合至分布式光纤连接组件(102),并由分布式光纤连接组件(102)同步传输至多个分布式扫描单元(103),多个分布式扫描单元(103)通过扫描装置将探测光发射至探测区域,并接收探测区域的反射回光,经由分布式光纤连接组件(102)将反射回光传输至光收发组件(101),并由光收发组件(101)中的光接收单元接收。

Description

一种分布式激光雷达
本申请要求于2017年03月09日提交中国专利局、申请号为201810298191.2,发明名称为“一种分布式激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于雷达领域,具体涉及一种基于光纤的分布式激光雷达。
背景技术
无人驾驶车辆在行驶道路上的障碍物检测是环境感知技术研究领域中的重要组成部分。在障碍检测的应用中,常用的传感器有激光雷达、相机、毫米波雷达、超声波传感器等。激光雷达通过测量发射光和从物体表面反射光之间的时间差来测量距离。目前,市场上多线激光雷达,是通过多个激光发射器在垂直方向上的分布,通过电机的旋转形成多条线束的扫描。例如,Velodyne公司生产的64线的激光雷达,然而,高线数激光雷达导致成本的提高,所以应用也受到限制。在激光雷达中,发射器和接收器的成本是最高的,为了实现降低成本,通常会利用低线数激光雷达耦合,其效果相当于一个多线激光雷达,在降低激光雷达成本的同时提高分辨率,成为目前研究的热点。
目前常用的技术方案有:将多个激光雷达进行耦合。例如,将4个16线的激光雷达进行耦合,经过合理的设计布局,利用控制单元对4个激光雷达进行控制,通过激光雷达联合标定以及数据同步处理,达到自由组合混合固态激光雷达点云密度变化的目的。
发明内容
为了解决现有技术中存在的技术问题,本发明的第一方面提出一种分 布式激光雷达,包括:光收发组件,多个分布式扫描单元,分布式光纤连接组件;所述光收发组件(101),包含:光源,发射探测光;光接收单元,用于接收探测回光;所述多个分布式扫描单元,分布设置于所述分布式激光雷达的载体;所述分布式光纤连接组件,耦合连接所述光收发组件与所述多个分布式扫描的单元;所述光收发组件中光源发射的探测光被耦合至分布式光纤连接组件,并由所述分布式光纤连接组件同步传输至所述多个分布式扫描单元,所述多个分布式扫描的单元通过扫描装置将探测光发射至探测区域,并接收所述探测区域的反射回光,经由分布式光纤连接组件将反射回光传输至所述光收发组件,并由所述光收发组件中的光接收单元接收。
本发明的第二方面提出另一种分布式激光雷达,所述激光雷达包括:内光组件,分布式扫描单元,光纤连接组件;所述内光组件,设置于载体内部,且至少包含:光源,用发射探测光;光接收单元,用于接收探测光;述分布式扫描单元,分布设置于所述载体;所述光纤连接组件,与所述内光组件耦合连接,同时与分布式扫描的单元耦合连接;所述内光组件中光源发射的探测光被耦合至分布式光纤连接组件,并由所述分布式光纤连接组件传输至分布式扫描单元,所述分布式扫描的单元通过扫描装置将探测光发射至探测区域,并接收探测区域的反射回光,经由分布式光纤连接组件将反射回光传输至所述内光组件,并由所述光接收单元接收。
本发明能够达到的有益效果:
分布式扫描单元共用一套激光发射器和激光探测器以及相关的电子部件。通过分布式扫描单元的排列组合,解决目前多激光雷达耦合时成本较高、体积较大的问题,同时也利用多个低线数激光雷达提高垂直分辨率
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明;
图1是本说明书实施例提供的分布式激光雷达结构示意图。
图2是本说明书实施例提供的分布式激光雷达光耦合装置结构示意图。
图3是本说明书实施例提供的分布式激光雷达扫描原理示意图。
图4是本说明书实施例提供的分布式激光雷达扫描原理示意图。
图5是本说明书实施例提供的基于多光纤等效光源的扫描装置原理示意图。
图6是本说明书实施例提供的基于多光纤等效光源的扫描装置原理示意图。
图7是本说明书实施例提供的基于多光纤等效光源的扫描装置原理示意图。
图8是本说明书实施例提供的基于多光纤等效光源的扫描装置原理示意图。
图9是本说明书实施例提供的二维光纤阵列示意图。
图10是本说明书实施例提供的二维光纤阵列示意图。
图11是本说明书实施例提供的带有光纤夹具的光纤阵列原理示意图。
图12是本说明书实施例提供的光纤端面全反射原理示意图。
图13是本说明书实施例提供的载体扫描区域示意图。
图14是本说明书实施例提供的内光组件分布示意图。
图15是本说明书实施例提供的内光组件分布示意图。
图16是本说明书实施例提供的无人机载体结构示意图。
图17是本说明书实施例提供的内光组件分布示意图。
具体实施方式
为了使本技术领域的人员更好地理解本说明书的方案,下面将结合实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书的一部分实施例,而不是全部的实例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
在本说明书的一个实施例中,如图1所示,所述激光雷达包括:光收发组件101,多个分布式扫描单元103,分布式光纤连接组件102;所述光收发组件101,包含:光源,发射探测光;光接收单元,用于接收探测回光;述多个分布式扫描单元103,分布设置于所述分布式激光雷达的载体;所述分布式光纤连接组件102,耦合连接所述光收发组件101与所述多个分布式扫描的单元103;所述光收发组件101中光源发射的探测光被耦合至分布式光纤连接组件102,并由所述分布式光纤连接组件102同步传输至所述多个分布式扫描单元103,所述多个分布式扫描的单元103通过扫描装置将探测光发射至探测区域,并接收所述探测区域的反射回光,经由分布式光纤连接组件102将反射回光传输至所述光收发组件101,并由所述光收发组件101中的光接收单元接收。
光收发组件101,至少包含:光源,用于发射探测光;光接收单元,用于接收探测光。在一个可能的实施例中,光源可选择边发射半导体激光器、面发射半导体激光器、异质结激光器、条形激光器、GaAlAs/GaAs激光器、InGaAsP/InP激光器、量子阱激光器、微腔激光器等等。探测光波段可选择近红外波段,例如960nm、1320nm或者1550nm,发射功率选择在人眼安全范围内。所述光收发组件101中的光源发射探测光之后,被耦合到分布式光纤连接组件102中,光源与光纤之间的耦合方式有多种。
在一个可能的实施例中,如图2所示,光收发组件101出射的探测光通过101OUTPUT端口输入到光耦合器,101OUTPUT端口与分布式光连接组件102的输入端口102INPUT端口连接,102INPUT端口与通过与102COM的耦合连接实现101OUTPUT端口的输出光与102COM中光纤的光耦合。从而实现内光组件出射光与光纤连接组件的耦合连接。在图2中,102COM中耦合的光纤数目为4根,分别连接至载体的左前方、右前方、左后方、右后方的分布式扫描装置。根据实际的探测需要,102COM还可以设置更多的光纤接 口,例如,1010UTPUT可以耦合到10口或者12口的102COM上,这样载体的左前方、右前方、左后方、右后方分别对应二根或者三根光纤甚至更多根光纤。当然,数量只是示意性的,在本说明书中,并不对耦合光纤的数量进行限定。
在一个可能的实施例中,如图3所示,分布式光连接组件102由光纤实现。即,光收发组件101出射的探测光通过耦合器耦合到光纤中,然后通过纯光纤连接的方式将光传输到分布式光扫描装置103。在分布式光扫描装置103处,探测光从光纤端面射出,此时,光纤端面成为一个等效光源,其发出的探测光被扫描单元反射到待探测区域。
在一个可能的实施例中,如图4所示,每个分布式扫描单元接入多根光纤,多根光纤形成多个等效光源,多根光纤出射的探测光从不同角度入射到扫描单元。在图4的实施例中,多根光纤通过设置光纤的朝向角度,形成对扫描单元不同的入射角度,入射光线在扫描单元的驱动下形成扫描视场。
扫描频率和扫描振幅是影响探测成像的两个重要指标,扫描频率决定成像的分辨率,而扫描振幅决定成像的探测范围。通常情况下,扫描分辨率和探测范围这两个指标很难兼顾,为了达到高的扫描分辨率,需要扫描器件以高频进行振动,在此情况下就很难满足大扫描范围的要求。同时,因为激光雷达自身的要求,扫描范围又不可能过小。
在例如图4的实施例中,利用多根光纤形成了多个等效光源,在保证了扫描分辨率的同时保证了扫描范围。通过调整多根光纤的出光端面,使光纤的出射光均入射到扫描单元的反射面上,同时使入射光线经扫描形成的视场部分重叠或者恰好可以拼合。这样,可以在扫描单元保持较高扫描频率的情况下,保证具有较大探测视场。理论上可以通过提高提供等效光源的光纤数量,能够保证在扫描频率不变的情况,拥有能够接收到的最大视场范围。
在本说明书实施例中,使用光纤端面出射光作为等效光源无疑是非常有利的。首先,通过耦合的方式,可以仅在光收发组件中设置光源,而无需在其它位置提供光源,这可以大大减少光源的数量以及光收发组件的数量,这无疑可以大幅降低成本。第二,传统扫描方式无法在一个扫描单元周围布置很多激光器,是因为激光器本身具有一定体积,空间限制了多个光源的实施,而利用光纤等效光源,可以在一个扫描单元中布置多个等效光源,这大大提高了空间的利用效率,并且由于光纤出射端面仅仅是一个点,可以非常容易地调节光纤的出射角度,控制扫描区域。第三,采用光纤耦合的方式可以非常好地控制探测光的同步性。
下面根据图5-8示意性进行说明:
如图5所示,一根光纤端面作为等效光源出射的激光入射到扫描器的反射表面并形成视场a。
如图6所示,通过调整光纤的出射角度,第二根光纤端面作为等效光源出射的激光入射到扫描器的反射表面并形成视场b。
如图7所示,通过调整光纤的出射角度,第三根光纤端面作为等效光源出射的激光入射到扫描器的反射表面并形成视场c。
如图8所示,三根光纤出射光线经过扫描之后形成的复合视场为视场a,视场b,视场c三者的叠加。而在三个子视场a,b,c中,由于扫描单元保持较高的扫描频率,雷达的分辨率不会受到影响。
当然,图5-8仅仅是示例性地说明,通过设置光纤的数量,例如增加或者减少光纤数量作为等效光源,可以保证视场不变的情况下,提高激光雷达的分辨率。此外,多个等效光源的引入,相当于把待探测的视场分割为多份,这样可以通过牺牲扫描振幅来获得更大的扫描频率,从而提高同一套扫描单元的分辨率上限。例如,对于单个光源而言,扫描单元设计的扫描频率为85Hz,扫描镜面的扫描角度分为±5°;而对于多个等效光源,可以降低扫描镜面的扫描角度分为±3°,这样可以提高扫描单元的扫描频 率上限到130Hz。
同时,图5-8所示例性描述的过程,更多地适用于一维扫描或者复杂度较低的二维扫描。在一些情况下,光纤还可以通过阵列光源的形式为扫描单元提供光源。如图9所示,光纤在空间以二维阵列的形式排列,并呈一定角度入射到扫描器件的反光面上,经过扫描器件进行二维扫描形成多个二维子光场,多个二维子光场的叠加形成对探测区域的覆盖。图9中的光纤以4X4的二维阵列形式形成二维等效光源阵列,实际上,根据扫描器件的不同,以及分布式光扫描103对于工作场景的要求不同,二维阵列还可以是如图10所示的圆形阵列。不失一般性地,例如,2X2,3X2,2X3,3X3,等适合各子光场相互叠加的MXN的矩形阵列。
将分布式光纤连接组件102的光输出端面设置成空间二维阵列的形式,有利于空间二维市场的组合和叠加,但是二维阵列需要阵列中的光纤分别具有固定的朝向和固定的角度,这需要精细的安装调试来完成,并且在使用过程中,外部的振动等因素也容易造成光纤位置和/或朝向的改变,进而造成原本设置视场的改变。
因此,在一个可能的实施例中,利用夹具将作为等效光源的光纤固定在一个一维阵列中,并且光纤本体的朝向基本上是平行的。通过一维阵列夹具可以稳固地控制光纤的位置,并且,利用一维夹具控制光纤端面的出光方向,这样,即使遭遇振动等外力,夹具仍然能够稳固地夹持光纤端面,保证系统的稳定性。
在一个可能的实施例中,如图11所示,除使用夹具来对作为等效光源的光纤进行固定外,还可以对光纤的出光面进行处理。根据Maxwell方程,当光纤的出光面是平直截面时,其出射光场的波阵面是一个锥面,而对于一维夹具而言,为了使多根光纤发射的光线进行汇聚到扫描面或者聚焦透镜上,可以通过切割光纤端面实现。例如图11、12中,光纤端面被倾斜地切割为不同角度,通过控制切割角度,满足:
Figure PCTCN2018086770-appb-000001
其中n2为空气折射率,n1为光纤折射率,C则表示切割的临界角度,在光纤的切割端面的角度θ小于临界角C的情况下,从光纤平行入射的探测光会在切割的端面上发生全反射,这样在不改变光纤本身方向的情况下(光纤是平行的),改变光纤出射光线的方向。图11、12中,光纤出射的光线以不同角度入射到透镜表面上,在一些实施例中,还可以省略汇聚透镜,通过切割不同角度的光纤端面出射光入射到反射镜面上,实现光场的部分重叠或者恰好拼合。
同时,接收光路来对目标探测区域的反射回光进行接收,并通过接收光纤将接收得到的探测光传输到光收发组件,由光接收单元将探测回光转化为电信号。
在一个可能的实施例中,分布式扫描单元在接收到回光信号之后,也可以不使用光纤对回光信号进行传输。而是直接根据设置在分布式扫描单元处的光接收单元将回光信号转换为电信号,然后进行电信号的传输。而电信号的传输可以选择有线传输或者无线传输的方式。有线传输方式可以采用诸如同轴电缆等电信号传输方式,而无线传输方式,可以基于无线传输芯片将处理后的电信号传输至诸如驾驶辅助系统或者信号处理系统进行统一的信号处理,以实现对目标区域的障碍物进行识别。
在一个可能的实施例中,光接收单元选择APD(Avalanche Photo Diode)探测单元,尤其是一维线阵APD或者多线阵APD。基于APD阵列对目标场景进行泛光照射,一次激光脉冲即可获得目标的三维图像,相比于单点扫描方式具有很多优点,例如使用APD成像无需扫描器,更加易于系统小型化;对激光频率及功率要求低,且降低了发射与接收系统之间的光束准直要求;能够克服运动模糊,具备运动目标成像能力,帧频高,具备穿透成像能力。
依旧如图1所示,所述分布式扫描单元103,设置于所述载体外部;所 述分布式光纤连接组件102,与所述光收发组件101耦合连接,同时与分布式扫描的单元103耦合连接。分布式扫描单元103,设置于载体的外部四周,需要指出的是,虽然图1中以车辆作为载体示例,但是不构成对本说明书实施例的限定,载体还可以是其他类型交通工具,例如各种型号的飞行器、车辆、船舶等等,只要能够搭载本说明书中描述的各个单元,均可以作为本说明书实施例描述的载体。
同时,说明书附图1亦不对分布式扫描单元的设置方式和设置位置具有限定作用。在图1的实施例中,分布式扫描单元103分布设置在载体四角的四个位置,其扫描范围覆盖载体在运动时进行直线运动、转弯等运动状态。但是不排除分布式扫描单元的其它设置方式,如图13所示,除在载体的四角分别设置第一分布式扫描单元2031、第二分布式扫描单元2032、第三分布式扫描单元2033、第四分布式扫描单元2034之外,还在载体两侧设置两组分布式扫描单元第五分布式扫描单元2035和第六分布式扫描单元2036。其中第一分布式扫描单元2031、第二分布式扫描单元2032、第三分布式扫描单元2033、第四分布式扫描单元2034分别对载体的四角方位进行探测,而第五分布式扫描单元2035和第六分布式扫描单元2036则用于对载体侧方位进行探测。
本说明书的一个可能实施例中,内光组件可以是设置于载体内部的,如图14所示的结构中,内光组件可以设置在载体车辆的发动机舱内部,也可以设置在车辆驾驶舱中,在车辆的发动机舱内部或者在车辆驾驶舱中,温度变化是很小的,甚至可以认为是基本恒定的。由于激光雷达所使用的激光器和光探测器容易受到周围环境温度的干扰,常见的外置激光雷达组件在恶劣天气的影响下,探测精度和准确度都会受到影响。通过将内光组件设置在载体内部,可以在很大程度上减少恶劣天气等对激光雷达的影响。例如,在寒冷天气下,由于载体内部温度基本是恒定的,激光器和光探测器不会受到周围环境温度的影响,而继续在载体恒定的温度范围内发射探 测光,由此,无需根据温度对激光器进行温度校准。
在可选的实施例中,当载体为车辆时,内光组件可以设置在车辆内部空调管道附近,利用空调的调温效果实现对内光组件温度的调节。这样,在车辆行驶过程中,由于空调系统的效果,内光组件所处的环境温度基本上是恒定的温度区间,避免了光组件在外部时,受到昼夜温差(最大温差可达20度),季节温差的影响(最大温差可达50度)的影响。可见,内光组件的使用,无需对大温度区间进行温度校准。
内光组件的设置,还可以保护内光组件中的光源和光接收单元受到阴雨潮湿的影响,避免电组件出现短路风险的可能,延长电路以及元件的使用寿命。
将内光组件设置在车辆的发动机舱或者驾驶舱内,可以减少内光组件受到的震动影响。在一个可选的实施例中,如图15所示,内光组件101可以设置在发动机舱支撑架所形成的三角形ABC的重心位置。在所述重心位置处,内光组件受到载体震动的影响最小,从而保证光发生和光接收器件收到载体运行的震动影响最小。
当然,由于激光雷达工作期间,车辆等载体通常是处于运行状态的,载体的震动会使光路中的元件发生微小位移或形变,这种微小位移或形变的积累会导致雷达探测精度的降低。而使用分布式激光雷达,由于光源发出光是通过耦合的方式传输到分布式扫描器件的,震动对整个扫描过程带来的影响比较小,这无疑可以提高探测的精度。
在前述的实施例中,分布式扫描单元的设置更多地是用于辅助驾驶,当应用于自动驾驶场景时,分布式扫描单元还可以具有其它的设置方式。下表1中展示了目前对于自动驾驶技术的分级情况。
表1:美国国家公路安全管理局(NHTSA)对自动驾驶技术的分级
Figure PCTCN2018086770-appb-000002
Figure PCTCN2018086770-appb-000003
当应用于受限自动驾驶(3级)或者完全自动驾驶(4级)场景时,搭载于载体上的传感器需要实现对于驾驶的全方位覆盖。如图12所示,内光组件201设置于载体的内部,在载体车辆的左前方、右前方、左后方、右后方分别设置第一分布式扫描单元2031,第二分布式扫描单元2032,第三分布式扫描单元2033,第四分布式扫描单元2034。除此之外,还可以在载体车辆的两侧位置设置第五分布式扫描单元2035和第六分布式扫描单元2036。根据车辆载体的运动模式和运动状态,设置分布式扫描单元的扫描模式,从而为车辆的正常行驶提供周边障碍物的信息。
如前所述,本说明书不对载体进行具体的限制,载体还可以是飞行器,如图5展示的无人机,其中搭载有分布式激光雷达系统,该系统同样包含有内光组件401,分布式光连接组件402,分布式扫描单元403。无人机包含机体、无人机四翼、所述无人机的四翼上设置有螺旋桨、机体下方设置 有起落架。内光组件401设置在该无人机的机体内部,分布式扫描单元403设置在所述无人机的四翼。内光组件401,设置于无人机机体的内部,且至少包含:光源,用于发射探测光;光接收单元,用于接收探测光。
通过分布式光连接组件402将所述内光组件401中光源发射的探测光传输到无人机的四翼的分布式扫描单元403。分布式扫描单元403则可以将对探测光进行扫描,将探测光发射至目标区域,以实现对目标区域的探测。
就分布式扫描单元中扫描单元的具体实现而言,可以选择振镜,例如静电式振镜、电磁式振镜、压电式振镜、电热式振镜。还可以选择转镜,例如旋转棱镜、旋转柱面镜、旋转锥镜等等。扫描单元可以在摆动过程中将分布式光连接组件耦合而来的光源扫描指不同的探测区域。
分布式扫描单元403发射的激光被反射到视野范围内不同位置,当所发射的激光束被目标物体(或障碍物)反射后由扫描装置入射传至接收会聚装置。会聚装置可以是透镜或者透镜组,用于将发散光会聚,会聚后的光束经过一根多跟光纤传输至所述内光组件401中的光接收装置。
在内光组件401中,探测器由一个或多个探测阵列组成,其包括但不限于PIN、APD、GM-APD等光电传感器,其上覆盖与激光器发射波长相对应的滤波片,保证只有对应波长的光能够通过滤光片进而被探测器感光部分接收。
探测器通过记录激光发射到接收到回波信号的时间差计算激光的飞行时间,从而得到该点待测物体的距离信息。
在一个可选的实施例中,根据载体的运动行为控制内光组件中光源的发射,以及接收组件对于探测光的接收。
例如,附图13的实施例中,当载体车辆进行右转操作时,所述内光组件301根据方向传感器的控制信号,增大右侧传感器和前侧传感器对应的输出功率,以增加对应位置的探测距离。或者,增加对应方向的等效光源数,例如原本光源的出射的探测光被耦合至一根光纤形成一个等效光源, 其他光纤闲置,而在转向时,开启闲置光纤,提供更多等效光源,以增大方位向的分辨率。
当然,在控制光源时,还可以同时控制扫描器的扫描频率,例如以更高频率扫描,以增大扫描分辨率。
在一个可能的实施例中,在所述分布式光连接组件中的光纤上设置光放大单元。通过光放大单元调节光纤端面的出射光强。在例如载体车辆进行转弯时,可以利用该光放大单元增大探测距离。
在一个可能的实施例中,在所述分布式光连接组件中的光纤上设置光调制单元,通过对不同光纤的出射光进行调制,实现对射向不同探测区域的探测光的区分。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种分布式激光雷达,其特征在于,所述激光雷达包括:光收发组件(101),多个分布式扫描单元(103),分布式光纤连接组件(102);
    所述光收发组件(101),包含:
    光源,发射探测光;
    所述多个分布式扫描单元(103),分布设置于所述分布式激光雷达的载体;
    所述分布式光纤连接组件(102),耦合连接所述光收发组件(101)与所述多个分布式扫描的单元(103);
    所述光收发组件(101)中光源发射的探测光被耦合至分布式光纤连接组件(102),并由所述分布式光纤连接组件(102)同步传输至所述多个分布式扫描单元(103),所述多个分布式扫描的单元(103)通过扫描装置将探测光发射至探测区域。
  2. 根据权利要求1所述的激光雷达,其特征在于,所述分布式光纤连接组件(102)包含多条下行传输光纤,所述多条下行传输光纤中的至少一条与所述分布式扫描单元(103)连接。
  3. 根据权利要求2所述的激光雷达,其特征在于,所述至少一条下行传输光纤的端面出射的光束相互呈一定角度入射到扫描单元上,以使得所述光束的扫描视场部分重叠或者恰好拼合。
  4. 根据权利要求2所述的激光雷达,其特征在于,所述至少一条下行传输光纤相互平行,且所述至少一条下行传输光纤的出射端面具有不同的形状,以使得端面出射的光束相互呈一定角度入射到扫描单元上,以使得所述光束的扫描视场部分重叠或者恰好拼合。
  5. 根据权利要求4所述的激光雷达,其特征在于,所述至少一条下行传输光纤的出射端面为具有不同倾斜切角的端面,且所述倾斜角θ小于临界角度C,临界角度C满足:
    Figure PCTCN2018086770-appb-100001
    其中n2为空气折射率,n1为光纤纤芯折射率,C则表示切割的临界角度。
  6. 根据权利要求1所述的激光雷达,其特征在于,所述分布式光纤连接组件(102)包含多条上行传输光纤,所述上行传输光纤用于将所述分布式扫描装置(103)接收到的反射回光传输至所述光收发组件(101)。
  7. 根据权利要求1所述的激光雷达,其特征在于,所述下行传输光纤上设置有光放大模块。
  8. 根据权利要求1所述的激光雷达,其特征在于,所述下行传输光纤上设置有光调制模块。
  9. 根据权利要求1所述的激光雷达,其特征在于,多个分布式扫描单元(103)中的每个分布式式扫描单元中均包含有扫描器件,所述扫描器件包括但不限于:静电式振镜、电磁式振镜、压电式振镜、电热式振镜。
  10. 一种分布式激光雷达,其特征在于,所述激光雷达包括:内光组件,分布式扫描单元,光纤连接组件;
    所述内光组件(301,401),设置于载体内部,且至少包含:
    光源,用发射探测光;
    所述分布式扫描单元(303,403),分布设置于所述载体;
    所述光纤连接组件(302,402),与所述内光组件耦合连接,同时与分布式扫描的单元耦合连接;
    所述内光组件(301,401)中光源发射的探测光被耦合至分布式光纤连接组件(302,402),并由所述分布式光纤连接组件传输至分布式扫描单元(103),所述分布式扫描的单元(303,403)通过扫描装置将探测光发射至探测区域。
  11. 根据权利要求10所述的激光雷达,其特征在于,所述内光组件, 设置于载体内部的振动稳定区域。
  12. 一种分布式激光雷达,其特征在于,所述激光雷达包括:光收发组件(101),多个分布式扫描单元(103),分布式光纤连接组件(102);
    所述光收发组件(101),包含:
    光源,发射探测光;
    光接收单元,用于接收探测回光;
    所述多个分布式扫描单元(103),分布设置于所述分布式激光雷达的载体;
    所述分布式光纤连接组件(102),耦合连接所述光收发组件(101)与所述多个分布式扫描的单元(103);
    所述光收发组件(101)中光源发射的探测光被耦合至分布式光纤连接组件(102),并由所述分布式光纤连接组件(102)同步传输至所述多个分布式扫描单元(103),所述多个分布式扫描的单元(103)通过扫描装置将探测光发射至探测区域,并接收所述探测区域的反射回光,经由分布式光纤连接组件(102)将反射回光传输至所述光收发组件(101),并由所述光收发组件(101)中的光接收单元接收。
  13. 根据权利要求12所述的激光雷达,其特征在于,所述光收发组件(101)中包含有光接收单元,所述分布式扫描单元(103)与所述光接收单元之间设置有滤光片,所述滤光片允许光源发射的探测光波长范围的光通过。
  14. 一种分布式激光雷达,其特征在于,所述激光雷达包括:内光组件,分布式扫描单元,光纤连接组件;
    所述内光组件(301,401),设置于载体内部,且至少包含:
    光源,用发射探测光;
    光接收单元,用于接收探测光;
    所述分布式扫描单元(303,403),分布设置于所述载体;
    所述光纤连接组件(302,402),与所述内光组件耦合连接,同时与分布式扫描的单元耦合连接;
    所述内光组件(301,401)中光源发射的探测光被耦合至分布式光纤连接组件(302,402),并由所述分布式光纤连接组件传输至分布式扫描单元(103),所述分布式扫描的单元(303,403)通过扫描装置将探测光发射至探测区域,并接收探测区域的反射回光,经由分布式光纤连接组件(302,402)将反射回光传输至所述内光组件(301,401),并由所述光接收单元接收。
PCT/CN2018/086770 2018-04-03 2018-05-14 一种分布式激光雷达 WO2019192056A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18913352.3A EP3779502B1 (en) 2018-04-03 2018-05-14 Distributed lidar
US17/037,960 US11002835B2 (en) 2018-04-03 2020-09-30 Distributed laser radar
US17/313,967 US20210278510A1 (en) 2018-04-03 2021-05-06 Distributed laser radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810292141.3 2018-04-03
CN201810292141.3A CN108445468B (zh) 2018-04-03 2018-04-03 一种分布式激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,960 Continuation US11002835B2 (en) 2018-04-03 2020-09-30 Distributed laser radar

Publications (1)

Publication Number Publication Date
WO2019192056A1 true WO2019192056A1 (zh) 2019-10-10

Family

ID=63198222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086770 WO2019192056A1 (zh) 2018-04-03 2018-05-14 一种分布式激光雷达

Country Status (4)

Country Link
US (2) US11002835B2 (zh)
EP (1) EP3779502B1 (zh)
CN (1) CN108445468B (zh)
WO (1) WO2019192056A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109884A (zh) * 2021-02-26 2021-07-13 苏州臻迪智能科技有限公司 附件检测装置及检测附件的方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
CN110506220B (zh) 2016-12-30 2023-09-15 图达通智能美国有限公司 多波长lidar设计
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US10969475B2 (en) 2017-01-05 2021-04-06 Innovusion Ireland Limited Method and system for encoding and decoding LiDAR
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
CN111542765A (zh) 2017-10-19 2020-08-14 图达通爱尔兰有限公司 具有大动态范围的lidar
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
US11977184B2 (en) 2018-01-09 2024-05-07 Seyond, Inc. LiDAR detection systems and methods that use multi-plane mirrors
US11391823B2 (en) 2018-02-21 2022-07-19 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
US11422234B2 (en) 2018-02-23 2022-08-23 Innovusion, Inc. Distributed lidar systems
WO2019245614A2 (en) 2018-03-09 2019-12-26 Innovusion Ireland Limited Lidar safety systems and methods
US11789132B2 (en) 2018-04-09 2023-10-17 Innovusion, Inc. Compensation circuitry for lidar receiver systems and method of use thereof
US11289873B2 (en) 2018-04-09 2022-03-29 Innovusion Ireland Limited LiDAR systems and methods for exercising precise control of a fiber laser
US11675053B2 (en) 2018-06-15 2023-06-13 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
CN109213165B (zh) * 2018-09-10 2021-08-06 成都英鑫光电科技有限公司 自动驾驶测距系统及自动驾驶系统
CN109246340B (zh) * 2018-09-18 2020-11-27 杭州行开科技有限公司 一种光场影像处理显示系统及方法
US11024669B2 (en) 2018-10-24 2021-06-01 Aeva, Inc. LIDAR system with fiber tip reimaging
DE112019005684T5 (de) 2018-11-14 2021-08-05 Innovusion Ireland Limited Lidar-systeme und verfahren, bei denen ein mehrfacettenspiegel verwendet wird
CN109597050B (zh) * 2018-11-16 2021-10-08 上海禾赛科技有限公司 一种激光雷达
CN111670527A (zh) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 用于测距装置的放电电路、分布式雷达系统及可移动平台
DE112020000407B4 (de) 2019-01-10 2024-02-15 Innovusion, Inc. Lidar-systeme und -verfahren mit strahllenkung und weitwinkelsignaldetektion
CN111684305A (zh) * 2019-01-10 2020-09-18 深圳市大疆创新科技有限公司 一种测距系统及移动平台
WO2020147077A1 (zh) * 2019-01-17 2020-07-23 西门子(中国)有限公司 柔性激光检测和测距系统以及设有该系统的移动设备
CN109581400A (zh) * 2019-01-31 2019-04-05 无锡流深光电科技有限公司 一种分布式激光雷达系统和激光测距方法
US11486970B1 (en) 2019-02-11 2022-11-01 Innovusion, Inc. Multiple beam generation from a single source beam for use with a LiDAR system
CN111766586A (zh) * 2019-03-29 2020-10-13 宁波舜宇车载光学技术有限公司 激光雷达探测系统和激光雷达探测方法
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
CN110133660A (zh) * 2019-05-23 2019-08-16 成都信息工程大学 一种量子阱汽车灯光雷达系统
CN111076140A (zh) * 2019-12-31 2020-04-28 华域视觉科技(上海)有限公司 照明探测模组
US11398867B2 (en) 2019-12-31 2022-07-26 Hasco Vision Technology Co., Ltd. Lighting and detecting module
CN110930768A (zh) 2019-12-31 2020-03-27 华域视觉科技(上海)有限公司 辅助驾驶系统
US11885718B2 (en) * 2020-03-18 2024-01-30 Rosemount Aerospace Inc. Multi-fiber single lens optical ice detector
CN113167897A (zh) * 2020-04-03 2021-07-23 深圳市速腾聚创科技有限公司 激光收发系统、激光雷达及自动驾驶设备
CN111766587A (zh) * 2020-06-11 2020-10-13 苏州玖物互通智能科技有限公司 一种多线激光雷达光学系统
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
EP4260086A1 (en) 2021-03-01 2023-10-18 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
EP4305450A1 (en) 2021-04-22 2024-01-17 Innovusion, Inc. A compact lidar design with high resolution and ultra-wide field of view
EP4314885A1 (en) 2021-05-12 2024-02-07 Innovusion, Inc. Systems and apparatuses for mitigating lidar noise, vibration, and harshness
US11662440B2 (en) 2021-05-21 2023-05-30 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner
US20220381919A1 (en) * 2021-05-26 2022-12-01 Makalu Optics Ltd. LiDAR WITH COMBINED FAST/SLOW SCANNING
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
CN113406601B (zh) * 2021-07-28 2022-08-23 广东国志激光技术有限公司 一种光纤高频振动式激光雷达装置
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665063B2 (en) * 2001-09-04 2003-12-16 Rosemount Aerospace Inc. Distributed laser obstacle awareness system
US20120206712A1 (en) * 2011-02-14 2012-08-16 Optical Air Data Systems, Llc Laser Wind Velocimeter With Multiple Radiation Sources
CN106154281A (zh) * 2016-09-08 2016-11-23 齐龙舟 一种光纤激光雷达系统
CN106371085A (zh) * 2016-10-27 2017-02-01 上海博未传感技术有限公司 一种基于光纤阵列的激光雷达系统
CN106646494A (zh) * 2016-11-03 2017-05-10 上海博未传感技术有限公司 一种采用发射和接收光路复用结构的激光雷达系统
US20170153319A1 (en) * 2015-11-30 2017-06-01 Luminar Technologies, Inc. Lidar system with distributed laser and multiple sensor heads

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852462B2 (en) * 2000-05-08 2010-12-14 Automotive Technologies International, Inc. Vehicular component control methods based on blind spot monitoring
US20100053593A1 (en) * 2008-08-26 2010-03-04 Honeywell International Inc. Apparatus, systems, and methods for rotating a lidar device to map objects in an environment in three dimensions
DE102013102153A1 (de) * 2012-03-15 2013-09-19 GM Global Technology Operations LLC Verfahren zur Registrierung von Entfernungsbildern von mehreren LiDAR-Sensoren
JP6103179B2 (ja) * 2012-09-13 2017-03-29 株式会社リコー 距離測定装置
KR102027771B1 (ko) * 2013-01-31 2019-10-04 한국전자통신연구원 차량 속도 적응형 장애물 검출 장치 및 방법
US9857472B2 (en) * 2013-07-02 2018-01-02 Electronics And Telecommunications Research Institute Laser radar system for obtaining a 3D image
CN105116416A (zh) * 2015-09-30 2015-12-02 无锡津天阳激光电子有限公司 一种海星式海底中小型激光雷达
CN105547174B (zh) * 2015-11-27 2018-08-17 上海无线电设备研究所 分布式高精度激光在线测量系统
US10598770B2 (en) * 2016-07-28 2020-03-24 GM Global Technology Operations LLC Distributed vehicle LiDAR system
US10408940B2 (en) * 2016-09-25 2019-09-10 James Thomas O'Keeffe Remote lidar with coherent fiber optic image bundle
CN107678040B (zh) * 2017-11-03 2023-09-26 长春理工大学 用于车载三维成像固态激光雷达系统
DE102018222629A1 (de) * 2018-01-17 2019-07-18 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Bestimmung von mindestens einer räumlichen Position und Orientierung mindestens eines Objekts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665063B2 (en) * 2001-09-04 2003-12-16 Rosemount Aerospace Inc. Distributed laser obstacle awareness system
US20120206712A1 (en) * 2011-02-14 2012-08-16 Optical Air Data Systems, Llc Laser Wind Velocimeter With Multiple Radiation Sources
US20170153319A1 (en) * 2015-11-30 2017-06-01 Luminar Technologies, Inc. Lidar system with distributed laser and multiple sensor heads
CN106154281A (zh) * 2016-09-08 2016-11-23 齐龙舟 一种光纤激光雷达系统
CN106371085A (zh) * 2016-10-27 2017-02-01 上海博未传感技术有限公司 一种基于光纤阵列的激光雷达系统
CN106646494A (zh) * 2016-11-03 2017-05-10 上海博未传感技术有限公司 一种采用发射和接收光路复用结构的激光雷达系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779502A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109884A (zh) * 2021-02-26 2021-07-13 苏州臻迪智能科技有限公司 附件检测装置及检测附件的方法

Also Published As

Publication number Publication date
US20210278510A1 (en) 2021-09-09
CN108445468A (zh) 2018-08-24
CN108445468B (zh) 2019-11-05
EP3779502B1 (en) 2022-10-12
US20210011138A1 (en) 2021-01-14
EP3779502A4 (en) 2021-06-02
US11002835B2 (en) 2021-05-11
EP3779502A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019192056A1 (zh) 一种分布式激光雷达
CN214895810U (zh) 分光装置和激光雷达
US20190257924A1 (en) Receive path for lidar system
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
KR101785253B1 (ko) 라이다 장치
KR101785254B1 (ko) 전방향 라이다 장치
CN108594206A (zh) 光传输模块、激光发射模块、激光雷达系统及车辆
CN109814084B (zh) 激光雷达系统
KR20180011510A (ko) 근거리 감지형 라이더 센서 시스템
CN210015229U (zh) 一种距离探测装置
CN108872965A (zh) 一种激光雷达
US20210341610A1 (en) Ranging device
US11609311B2 (en) Pulsed light irradiation/detection device, and optical radar device
US20230145710A1 (en) Laser receiving device, lidar, and intelligent induction apparatus
WO2022110210A1 (zh) 一种激光雷达及移动平台
WO2020107250A1 (zh) 一种激光接收电路及测距装置、移动平台
EP4321903A1 (en) Solid-state laser radar and method for detecting by using same
CN113820721B (zh) 一种收发分离的激光雷达系统
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
CN212321852U (zh) 一种适用于自动驾驶的激光雷达点云成像装置
KR102287071B1 (ko) 라이다 광학 장치
WO2023184060A1 (zh) 探测装置和可移动平台
US20230243932A1 (en) Optical waveguide device used in laser detection and ranging system
WO2022252057A1 (zh) 一种检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913352

Country of ref document: EP

Effective date: 20201103