CN106371085A - 一种基于光纤阵列的激光雷达系统 - Google Patents

一种基于光纤阵列的激光雷达系统 Download PDF

Info

Publication number
CN106371085A
CN106371085A CN201610955939.2A CN201610955939A CN106371085A CN 106371085 A CN106371085 A CN 106371085A CN 201610955939 A CN201610955939 A CN 201610955939A CN 106371085 A CN106371085 A CN 106371085A
Authority
CN
China
Prior art keywords
laser
optical fiber
fiber array
optical
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610955939.2A
Other languages
English (en)
Inventor
齐龙舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Bo Sensor Technology Co Ltd
Original Assignee
Shanghai Bo Sensor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Bo Sensor Technology Co Ltd filed Critical Shanghai Bo Sensor Technology Co Ltd
Priority to CN201610955939.2A priority Critical patent/CN106371085A/zh
Publication of CN106371085A publication Critical patent/CN106371085A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开一种基于光纤阵列的激光雷达系统,包括:激光器、包含第一光纤阵列和发射透镜的发射光学系统、第一光开关、探测器、包含第二光纤阵列和接收透镜的接收光学系统、第二光开关、旋转扫描机构和控制处理单元。第一光开关连接激光器和第一光纤阵列,第二光开关连接探测器和第二光纤阵列,系统利用光开关,在不同的时刻将激光器发射的激光通过第一光纤阵列中不同的光纤发射出去,并由第二光纤阵列中对应的光纤接收发射激光并将其传输到探测器中,通过旋转扫描机构对空间进行旋转扫描,控制处理单元根据发射激光和接收到反射激光的时间差来测量待测物体的距离。本发明利用光纤阵列进行发射激光和接收发射激光,体积小,成本低。

Description

一种基于光纤阵列的激光雷达系统
技术领域
本发明属于激光雷达领域,具体涉及一种基于光纤阵列的激光雷达系统。
背景技术
激光雷达技术有着多年的研究历史,最初应用于国防、航空航天等领域。近年来随着激光技术和信息处理技术的发展,激光雷达在地图测绘、机器人空间定位、汽车无人驾驶等方面有着越来越多的应用。
激光雷达技术在具体的技术方案上有相位测量法、脉冲测量法、三角测量法等,其中脉冲测量法由于测量距离远、测量精度高,受到了广泛的关注。脉冲测量法的具体实现方式为:激光器发射激光,经过准直处理后照射在待测物体表面,有一部分激光在物体表面会被反射,并被探测器接收。根据测量发射激光和接收反射激光的时间差来计算待测物体与激光器之间的距离。
采用脉冲测量法的激光雷达,每发出一个脉冲信号进行一次测量,即得到待测物体的一个位置信息,在机器人空间定位、汽车无人驾驶等应用中,为得到所处环境的完整信息,需要大量的环境测量数据。现有的激光雷达技术方案,一般采用多线程测量技术,即增加发射激光的激光器和接收反射激光的探测器的个数,来增加测量的效率。以现有应用于汽车无人驾驶领域中的64线激光雷达为例,采用64个激光器和64个探测器。
现有技术的问题在于:
1)成本很高:多线程测量需要采用数量众多的激光器和探测器,而目前激光器和探测器的价格都比较高。
2)系统体积大:每个激光器和探测器都需要与之匹配的电路,大量激光器和探测器的使用,会导致激光雷达系统的体积庞大。
3)不方便使用:占用空间大,不具有隐蔽性,同时在安装固定上都有很高的要求。
发明内容
本发明的目的在于解决现有技术存在的上述问题和缺陷的至少一个方面。
本发明的一个目的在于提供一种激光雷达系统,采用光纤进行激光的发射和传输,而光纤具有体积小的特点,利用光纤组成光纤阵列来发射激光,可以实现激光雷达探头的微型化。
本发明的另一个目的在于提供一种激光雷达系统,采用光开关的时分复用功能,可以利用一个激光器实现多路激光信号的发射,同时将多路反射信号传送到同一个探测器中。
为实现上述目的,本发明提供一种基于光纤阵列的激光雷达系统,包括:
激光器,发射激光;探测器,探测反射回来的激光,并将探测到的信号输入控制处理单元;第一光开关,将激光器输入的激光信号进行时分复用,连接激光器和第一光纤阵列,在不同的时刻将激光器发射的激光在第一光纤阵列的不同光纤之间导通,起到一个激光器给多个测量线路提供激光的作用;第二光开关,连接探测器和第二光纤阵列,在不同的时刻将第二光纤阵列中有反射回来的激光的光纤所在线路与探测器导通,起到一个探测器对多路反射激光进行探测的作用;发射光学系统,包含第一光纤阵列和发射透镜,发射透镜将第一光纤阵列中不同光纤发射的激光进行准直,并分别以与水平面成不同的夹角发射出去;;接收光学系统,包含第二光纤阵列和接收透镜,接收透镜将反射回来的激光接收,并汇聚到第二光纤阵列中与第一光纤阵列此刻导通的光纤相对应的那根光纤中;光纤以及多路光纤组成的光纤束,将第一光开关和第二光开关分别与发射光学系统以及接收光学系统相连接;旋转扫描机构,通过旋转带动发射光学系统和接收光学系统旋转,使激光雷达对空间不同位置进行扫描测量,并将旋转时的角度信息发送给控制处理单元;控制处理单元,控制激光器发射激光并记录发射时间,控制第一光开关和第二光开关的开关状态以及光路选择,控制旋转扫描机构进行旋转,记录探测器输入探测信号的时间并对进行数据处理。
其中,第一光纤阵列和第二光纤阵列由光纤组成;第一光开关在不同的时刻将激光器发射的激光在第一光纤阵列的不同光纤之间导通,并由发射透镜将导通的激光准直后以与水平面成不同的夹角发射出去;反射回来的激光经过接收透镜汇聚到第二光纤阵列的对应光纤中,第二光开关将第二光纤阵列中有反射回来的激光的光纤所在线路与探测器导通;控制处理单元根据某一时刻控制的激光器发射激光和探测器接收到反射激光的时间差,可以得出此时刻激光雷达所测量的待测物体的距离,根据此时刻旋转扫描机构的角度信息可以得出待测物体在水平方向的方位角;控制处理单元控制第一光开关在激光器输入和多路输出光纤,第二光开关在多路输出光纤和探测器输入之间高速切换工作,同时控制旋转扫描机构旋转,可以得到有关待测物体的空间测量数据。
在本发明中,激光器发射的激光为脉冲激光,为了行文简洁,以下不再赘述。
激光雷达是一种对周围环境的测量工具,环境由众多的待测物体组成,为方便表述,在本发明的具体实施例中,周围环境以待测物体替代。
在本发明中,所述第一光纤阵列和第二光纤阵列中的光纤数量大于2根。
在本发明中,所述旋转扫描机构为电机旋转平台,在水平方向旋转。将发射光学系统和接收光学系统固定在平台上,电机旋转平台的旋转将带动发射光学系统和接收光学系统的旋转,从而使得激光雷达系统在水平方向进行旋转扫描测量。
根据本发明的另一个实例性的实施例,所述第一光纤阵列和第二光纤阵列中的光纤数量为2个至128个之间的任一个。
根据本发明的另一个实例性的实施例,所述第一光纤阵列和第二光纤阵列中的光纤成线状排列。
根据本发明的另一个实例性的实施例,所述第一光纤阵列和第二光纤阵列中的光纤成网格状排列。
根据本发明的另一个实例性的实施例,所述第一光纤阵列中光纤的出射端面在发射透镜的第一焦平面上。
根据本发明的另一个实例性的实施例,所述第二光纤阵列中光纤的入射端面在接收透镜的第二焦平面上。
根据本发明的另一个实例性的实施例,所述发射透镜为准直透镜。
根据本发明的另一个实例性的实施例,所述接收透镜为汇聚透镜。
根据本发明的另一个实例性的实施例,所述发射光学系统包括第一光纤阵列、第一微透镜阵列和发射透镜,第一微透镜阵列由多个第一微透镜组成。
根据本发明的另一个实例性的实施例,所述第一微透镜为准直透镜。
根据本发明的另一个实例性的实施例,所述第一微透镜阵列中的第一微透镜与第一光纤阵列中的光纤是一一对应的,每个第一微透镜的主光轴与发射透镜的主光轴平行,同时通过所对应的光纤出射端面的中心。
根据本发明的另一个实例性的实施例,所述接收光学系统包括第二光纤阵列、第二微透镜阵列和接收透镜,第二微透镜阵列由多个第二微透镜组成。
根据本发明的另一个实例性的实施例,所述第二微透镜为汇聚透镜。
根据本发明的另一个实例性的实施例,所述第二微透镜阵列中的第二微透镜与第二光纤阵列中的光纤是一一对应的,每个第二微透镜的主光轴与接收透镜的主光轴平行,同时通过所对应的光纤的入射端面的中心。
根据本发明的另一个实例性的实施例,所述准直透镜为平凸透镜。
根据本发明的另一个实例性的实施例,所述汇聚透镜为开普勒望远镜。
根据本发明的另一个实例性的实施例,所述发射光学系统、接收光学系统和旋转扫描机构组成独立的旋转扫描探头,在空间上与激光器、探测器、第一光开关、第二光开关和控制处理单元分离。
本发明与现有技术的区别在于:
本发明利用光开关进行时分复用设计,利用光纤阵列来进行多路激光信号的发射和接收,只需要一个激光器和一个探测器,即可实现多线程测量,降低了系统的成本。
本发明由于光纤具有体积细小的特点,使得激光雷达系统微型化,减小了体积。
本发明利用光纤进行激光信号的传输,使得发射光学系统和接收光学系统在空间上可以与激光器、探测器等分离,组成独立的旋转扫描探头。
通过下文中参照附图对本发明所作的描述,本发明的其他目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
图1显示本发明的总体结构示意图。
图2显示本发明的一种实例性的实施例的发射光学系统结构示意图。
图3显示本发明的一种实例性的实施例的接收光学系统结构示意图。
图4显示本发明的一种实例性的实施例的光纤阵列的正视图。
图5显示图4中的光纤阵列的右视图。
图6显示图5中的光纤阵列的A-A剖视图。
图7显示本发明的另一种实例性的实施例的光纤阵列的结构示意图。
图8显示本发明的另一种实例性的实施例的发射透镜方案示意图。
图9显示本发明的另一种实例性的实施例的接收透镜方案示意图。
图10显示本发明的发射光学系统工作原理图。
图11显示本发明的接收光学系统的工作原理图。
图12显示本发明的另一种实例性的实施例的总体结构示意图。
图13显示本发明的另一种实例性的实施例的发射光学系统结构示意图。。
图14显示本发明的另一种实例性的实施例的接收光学系统结构示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露的实施例的全面理解。然而明显的,一个或多个实施例在没有具体细节的情况下也可以被实施。在其它情况下,公知的结构和装置以图示的方式体现以简化附图。
在图1至图3所示的一个实例性的实施例中,提供了一种基于光纤阵列的激光雷达系统,包括:
激光器102,发射激光;探测器112,探测反射回来的激光,并将探测到的信号输入控制处理单元101;第一光开关103,将激光器输入的激光信号进行时分复用,在不同的时刻将激光在多路输出光纤110之间切换,起到一个激光器给多个测量线路提供激光的作用;第二光开关111,将多路输入光纤114与探测器112连接,在不同的时刻,将某一输入光纤104中的信号与探测器112导通,起到一个探测器对多路反射激光进行探测的作用;发射光学系统105,包含第一光纤阵列201和发射透镜203,将第一光开关103输出的多路光纤信号进行准直,并以与水平面成不同的夹角发射出去;接收光学系统109,包含第二光纤阵列204和接收透镜206,将待测物体表面反射回来的激光接收,并聚焦汇聚到第二光开关111的不同输入光纤116中;多路输入光纤110将第一光开关103和发射光学系统105相连,多路输出光纤114将第二光开关111和接收光学系统109相连;旋转扫描机构113,通过旋转带动发射光学系统105和接收光学系统旋转,使激光雷达对空间不同位置进行扫描测量,并将旋转时的角度信息发送给控制处理单元;控制处理单元101,控制激光器102发射激光并记录发射时间,控制第一光开关103和第二光开关111的开关状态以及光路选择,控制旋转扫描机构113进行旋转,并对探测器112输入的探测信号进行数据处理。
其中,第一光开关103在不同的时刻将激光器102发射的激光在第一光纤阵列201的不同光纤之间导通,并由发射透镜203将导通的激光准直后以与水平面成不同的夹角发射出去;反射回来的激光经过接收透镜206汇聚到第二光纤阵列204的对应光纤中,第二光开关111将第二光纤阵列204中有反射回来的激光的光纤所在线路与探测器112导通;控制处理单元101根据某一时刻控制的激光器102发射激光和探测器112接收到反射激光108的时间差,可以得出此时刻激光雷达所测量的待测物体107的距离,根据此时刻旋转扫描机构113的角度信息可以得出待测物体107的方位角;控制处理单元101控制第一光开关103在激光器102输入和多路输出光纤110,第二光开关111在多路输出光纤114和探测器112输入之间高速切换工作,同时控制旋转扫描机构113旋转,可以得到大量的点对点测量数据,从而得到周边待测物体的大小、形状、距离等三维信息。
旋转扫描机构113为电机旋转平台,在水平方向旋转。将发射光学系统和接收光学系统固定在平台上,电机旋转平台的旋转将带动发射光学系统和接收光学系统的旋转,从而使得激光雷达系统在水平方向进行旋转扫描测量。
控制处理单元101发出信号,驱动激光器102发射激光,发射的激光进入第一光开关103。第一光开关103有多个输出端口,通过多路输出光纤110,将第一光开关103与发射光学系统105相连,光开关103的每个输出端口,分别与发射光学系统105的第一光纤阵列201中的一根光纤相连。
控制处理单元101在驱动激光器102工作的同时,控制第一光开关103工作,使得在一定的时间间隔内,第一光开关103只有一对输入-输出通道处于导通状态,即在任一时刻,激光器102发射的激光,只能被导通至第一光纤阵列201中的某一根光纤。控制处理单元101驱动第一光开关103进行工作端口依次切换,使第一光纤阵列201中的光纤104是依次导通的。第一光纤阵列201中的每根光纤104在导通状态时,激光器102发射的激光,都通过光纤104发射出来,每根光纤都近似于一个微型的点光源,第一光纤阵列201近似于一个点光源阵列。在第一光开关103的控制下,此近似点光源阵列中的各点光源依次发光。
第一光纤阵列201中的光纤的个数,即本发明中激光雷达的测量线数,是由第一光开关103的输出端口数决定的。根据公开信息,光通信领域的基于微机电系统的光开关目前已经有包含128个以上输出端口的成熟产品,因此本领域的普通技术人员在不付出创造性劳动的前提下,可以根据本发明制造包含数量在2个到128个的任一线数的激光雷达。特别地,根据信息处理的习惯,激光雷达的线数可以是2个、4个、8个、16个、32个、64个或128个中的任一个。
为增加对本发明中光纤阵列的理解,在图4至图6中显示的是本发明中包含16根光纤的光纤阵列示意图。图4显示的是正视图,图5显示的是图4中光纤阵列的右视图,图6显示的是图5中光纤阵列的A-A方向剖视图。在图4至图6中,光纤阵列中的光纤是线性排列的。应知道,选择16线光纤阵列作示意图只是为了对本发明作更清晰的说明而选取的一种示例性的实施例。
在本发明的一个实例性的实施例中,如图5所示,光纤阵列中的光纤是成线状排列的。
在本发明的一个实例性的实施例中,如图7所示,光纤阵列中的光纤是成网格状排列的。
在本发明的一种实例性的实施例中,第一光纤阵列201和第二光纤阵列204具有相同的结构和光纤数量。
第一光纤阵列和第二光纤阵列中的光纤,起着传输和发射激光的作用,可以是单模光纤,也可以是多模光纤。
在本发明的一个实例性的实施例中,本发明中的单模光纤为符合国际电信联盟ITU-T G.652标准的光纤。
在本发明的一个实例性的实施例中,本发明中的多模光纤为符合国际电信联盟ITU-T G.651标准的光纤。
在本发明的一个实例性的实施例中,如图10中所示,第一光纤阵列201,其中所包含所有光纤的出射端面301都处于与发射透镜203平行的同一平面上,而且是处于发射透镜203的第一焦平面上(过物方焦点且垂直于透镜主光轴的平面)。由光学基本原理可知,发射透镜203第一焦平面上的任一点光源(第一光纤阵列201中光纤出射端口)所发出的激光,经过发射透镜203后,会变成平行光,此平行光的发射方向,与此点光源即光纤端面在第一焦平面上的位置有关,与连接此点光源和发射透镜203的光心的连线(副光轴)方向相同。第一光纤阵列201中的光纤,是依次排列成一条直线,处于发射透镜203第一焦平面上的不同位置,在竖直方向排列,因此不同光纤发射的激光,经过发射透镜203后,会以与水平面成不同的夹角对待测物体107进行照射,夹角的大小与所发射激光的光纤位置有关。因此,第一光纤阵列201与发射透镜配合,即可实现激光雷达多线测量的功能。同时,旋转扫描机构113在水平方向上周期性旋转,带动发射光学系统105和接收光学系统109旋转,引起发射光学系统105发出的发射激光106在水平方向对待测物体进行周期性扫描,并将扫描时的角度信息发送给控制处理单元。由此,根据测量时发射激光的光纤在发射透镜203第一焦平面上的位置,激光雷达系统可得到待测物体107在竖直方向的方位角;根据旋转扫描机构113发送给控制处理单元101的水平方向的角度信息,可得到待测物体107在水平方向的方位角;根据发射激光和接收激光的时间差可测得待测物体107的距离,根据距离和竖直、水平方向的方位角,可得出待测物体的三维空间信息。
第一光纤阵列201中光纤发射的激光,经过发射透镜203后,以与水平面成不同的夹角对待测物体107进行照射,在待测物体107表面有一部分激光会反射,一部分反射激光108会被接收光学系统109接收。在本发明的一个实例性的实施例中,如图3和图12所示,反射光108被接收透镜206接收后,被耦合进第二光纤阵列204中。第二光纤阵列204中光纤的入射端面302,都处于接收透镜206的第二焦平面上(过象方焦点且垂直于主光轴的平面),与前所述的发射光学系统105相似的原理,如图11所示,第一光纤阵列201中每根光纤经过发射透镜203向待测物体107照射的发射激光106,其反射激光108会被耦合进第二光纤阵列204中相对应的光纤中。
控制处理单元101控制第一光开关103将激光器102与第一光纤阵列201中的某根光纤导通的同时,控制第二光开关111,将第二光纤阵列204中与第一光纤阵列201中导通的光纤相对应的那根光纤与探测器112导通,反射激光108因此被探测112接收,信号被送入控制处理单元101。
在t0时刻,控制处理单元101控制激光器102发射激光,同时将光开关103中与光纤阵列201中的第一根光纤相连的端口导通,激光器102发射的激光因此通过光纤阵列201中的第一根光纤向发射透镜203发射,发射透镜203对激光进行准直,并根据第一根光纤在其第一焦平面上的位置在竖直方向以特定的角度向待测物体107发射激光106。
发射激光106在待测物体107表面发生反射现象,一部分反射激光108被接收透镜206接收。接收透镜206将反射激光108汇聚耦合进与第一光纤阵列201中第一根光纤所对应的第二光纤阵列204的第一根光纤中。在t0时刻,控制处理单元101还发出控制信号,驱动第二光开关111进行光路选择,将第二光纤阵列204中的第一根光纤与探测器112导通,反射激光108因此被探测器112接收,接收到的发射激光108在经过光电转换后被送入控制处理单元101,控制处理单元101记录此时的时刻t1,并发出控制信号,将第一光开关103和第二光开关111的所有通道都关闭。
令t1时刻和t0时刻的时间差为ΔT,假设激光器102与控制处理单元101处于同一位置,根据脉冲探测法的测量原理,本次测量中测得的待测物体107上某点与激光器102的距离L为其中C为激光在空气中的传输速度。同时,如图12所示,根据第一光纤阵列201中第一根光纤在发射透镜203的焦平面上所处的位置,即可得到第一根光纤发出的激光经过发射透镜203后的发射激光106在竖直方向的发射角度,即由此可得的待测物体107表面某点在竖直方向所处的方位角。在t0时刻和t1时刻,旋转扫描机构113分别将在水平方向所处的角度信息发送给控制处理单元101,则待测物体107在水平方向上的方位角即处于这两个角度之间,作为一种优选方案,取t0时刻和t1时刻旋转扫描机构113所处的角度的平均值作为本次测量中待测物体在水平方向的方位角。
在t2时刻,控制处理单元101控制激光器102发射激光,并驱动第一光开关103和第二光开关111,将激光器102与第一光纤阵列201中的第二根光纤、探测器112与第二光纤阵列204中的第二根光纤同时导通,进入第一光开关103中的第二根光纤的测量周期。记t2时刻与t0时刻的时间差为T,此即为本发明中激光雷达系统得到一个测量数据所占用的时间。
激光器102发射的激光为脉冲激光,激光雷达对空间距离的测量精度与脉冲宽度有关,一般来说,脉冲宽度越宽,测量精度越低。同时,由于激光雷达的测量距离与脉冲宽度也有关系,由于脉冲宽度越宽,激光能量越大,则测量距离越大。因此,一般脉冲宽度要综合考虑。
激光器102是周期性发射脉冲激光的,其周期根据待测物体或者激光雷达的测量距离决定,周期应该大于激光在测量距离内传播一个来回所需要的时间。作为一种示例性的说明,当待测物体106的距离为150米时,自激光器102发射激光,激光到达待测物体106的表面后,反射激光107被探测器接收的时间约为1微秒,则激光器102发射脉冲激光的周期要大于1微妙。为方便本领域的普通技术人员更深入的理解本发明,作为一种示例性说明,可选定激光器102发射脉冲激光的周期为2微秒,脉冲宽度为10纳秒,即每2微秒发射一次脉冲宽度为10纳秒的激光。本领域的普通技术人员应该理解,激光器102的周期为2微秒和脉冲宽度为10纳秒只是一种示例性说明,不应成为本实施例的一种限制。
控制处理单元101通过控制第一光开关103和第二光开关111进行光路选择,使得第一光纤阵列201和第二光纤阵列204中的光纤依次工作,则包含N根光纤的第一光纤阵列201和第二光纤阵列204的一次完整工作时间为2N微秒。假设第一光纤阵列201和第二光纤阵列204中各包含64根光纤,则在128微秒内,六十四对光纤依次工作一次,得到待测物体107表面的六十四个点的距离和角度信息。
控制处理单元101在控制激光器102、第一光开关103和第二光开关111进行周期性工作的同时,控制旋转扫描机构113进行旋转,带动发射光学系统105和接收光学系统109在水平方向进行旋转扫描。
在本发明的一个实例性的实施例中,旋转扫描机构113的扫描频率为20赫兹,即扫描一周的时间为50毫秒。
在本发明的一个实例性的实施例中,如图1所示,发射光学系统105、接收光学系统109和控制处理单元101、激光器102等器件在空间上是集成在一起的,因此旋转扫描机构113是带动整个激光雷达系统进行旋转扫描。
在本发明的一个实例性的实施例中,如图5所示,第一光纤阵列201和第二光纤阵列204中的光纤是按线状排列的。
在本发明的一个实例性的实施例中,如图7所示,第一光纤阵列201和第二光纤阵列204中的光纤是按网格状排列的。
在本发明的一个实例性的实施例中,如图8所示,发射透镜203为平凸透镜。
在本发明的一个实例性的实施例中,如图9所示,接收透镜206为开普勒型望远镜。
在本发明的一个实例性的实施例中,如图12所示,发射光学系统105、接收光学系统109和旋转扫描机构113组成独立的旋转扫描探头115。旋转扫描探头115中的发射光学系统105通过光纤束110与第一光开关103相连,接收光学系统109通过光纤束114与第二光开关111相连,旋转扫描机构115通过导线与控制处理单元101相连。旋转扫描探头115在空间上可以与第一光开关103、第二光开关111、控制处理单元101、激光器102和探测器112分离。独立的旋转扫描探头115结构简单,体积小,便于安装。
在图2所示的发射光学系统105的实例性的实施例中,由于光纤的发射端面与发射透镜203有一定的距离,而从第一光纤阵列201中光纤发射的激光,具有比较大的发散角,导致从光纤到达发射透镜203入射端的光斑比较大。
在本发明的一个实例性的实施例中,如图13所示,在第一光纤阵列201和发射透镜203之间,有一个第一微透镜阵列202,第一微透镜阵列202中的第一微透镜303数量以及排列方式,与第一光纤阵列201中的光纤数量和排列方式相同,第一微透镜阵列202中的第一微透镜303和第一光纤阵列201中光纤是一一对应的。第一微透镜阵列202中的第一微透镜303,为准直透镜。作为一种优选方案,是平凸透镜。作为一种优选方案,第一微透镜阵列202中的第一微透镜303,主光轴与发射透镜203的主光轴平行,且通过其对应的发射光纤的中心,在主光轴上。因此,微透镜阵列202中的第一微透镜303,将第一光纤阵列201中光纤发射的激光,进行准直,以与发射透镜203主光轴平行的方向对发射透镜203传输,且传输到发射透镜203上时光斑较小。由光学基本知识可知,平行于透镜主光轴的入射光线,通过透镜后,其出射光线或出射光线的延长线,通过透镜的焦点,由此,根据光纤阵列201中的光纤的纤芯的位置以及发射透镜203的焦距,可以得知这条光纤发射的激光经过发射透镜203后,射向待测物体107的方向角。
在图3所示的接收光学系统的实例性的实施例中,第二光纤阵列204光纤的入射端,处于接收透镜206的焦平面上,待测物体107表面的反射光108,被接收透镜206耦合进第二光纤阵列204的光纤中。由于光纤的数值孔径比较小,耦合效率比较低。
在本发明的一个实例性的实施例中,如图14所示,第二光纤阵列204和接收透镜206之间,有一个第二微透镜阵列205。第二微透镜阵列205中的第二微透镜304,为汇聚透镜。作为一种优选方案,是平凸透镜。作为一种优选方案,第二微透镜阵列205中的第二微透镜304,主光轴与接收透镜206的主光轴平行,且通过其对应的发射光纤的中心,在主光轴上。第二微透镜阵列205中的第二微透镜304,将从接收透镜206中传输过来的反射激光108,进行二次汇聚,耦合进所对应的光纤中。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明的实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然阐述本发明的构思的一些实施例已经被显示和说明,本领域普通技术人员将理解,在不背离本发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (10)

1.一种基于光纤阵列的激光雷达系统,包括:
激光器,发射激光;
发射光学系统,包含第一光纤阵列和发射透镜,发射透镜将第一光纤阵列中不同光纤发射的激光进行准直,并分别以与水平面成不同的夹角发射出去;
第一光开关,连接激光器和第一光纤阵列,在不同的时刻将激光器发射的激光在第一光纤阵列的不同光纤之间导通;
探测器,探测反射回来的激光,并将探测到的信号输入控制处理单元;
接收光学系统,包含第二光纤阵列和接收透镜,接收透镜将反射回来的激光接收,并汇聚到第二光纤阵列中与第一光纤阵列此刻导通的光纤相对应的那根光纤中;
第二光开关,连接探测器和第二光纤阵列,在不同的时刻将第二光纤阵列中有反射回来的激光的光纤所在线路与探测器导通;
旋转扫描机构,通过旋转带动发射光学系统和接收光学系统旋转,使激光雷达对空间不同位置进行扫描测量,并将旋转时的角度信息发送给控制处理单元;
控制处理单元,控制激光器发射激光并记录发射时间,控制第一光开关和第二光开关的开关状态以及光路选择,控制旋转扫描机构进行旋转,记录探测器输入探测信号的时间并对进行数据处理。
其特征在于:
所述第一光纤阵列和第二光纤阵列由光纤组成;所述第一光开关在不同的时刻将激光器发射的激光在第一光纤阵列的不同光纤之间导通,并由发射透镜将导通的激光准直后以与水平面成不同的夹角发射出去;反射回来的激光经过接收透镜汇聚到第二光纤阵列的对应光纤中,第二光开关将第二光纤阵列中有反射回来的激光的光纤所在线路与探测器导通;控制处理单元根据某一时刻控制的激光器发射激光和探测器接收到反射激光的时间差,可以得出此时刻激光雷达所测量的待测物体的距离,根据此时刻旋转扫描机构的角度信息可以得出待测物体在水平方向的方位角;控制处理单元控制第一光开关在激光器输入和多路输出光纤,第二光开关在多路输出光纤和探测器输入之间高速切换工作,同时控制旋转扫描机构旋转,可以得到有关待测物体的空间测量数据。
2.根据权利要求1所述的激光雷达系统,其特征在于,所述第一光纤阵列和第二光纤阵列中的光纤数量大于2根,光纤成线状或网格状排列。
3.根据权利要求2所述的激光雷达系统,其特征在于,所述第一光纤阵列中光纤的出射端面在发射透镜的第一焦平面上,第二光纤阵列中光纤的入射端面在接收透镜的第二焦平面上。
4.根据权利要求3所述的激光雷达系统,其特征在于,所述发射透镜为准直透镜,接收透镜为汇聚透镜。
5.根据权利要求1所述的激光雷达系统,其特征在于,所述发射光学系统包括第一光纤阵列、第一微透镜阵列和发射透镜,第一微透镜阵列由多个第一微透镜组成,第一微透镜为准直透镜。
6.根据权利要求5所述的激光雷达系统,其特征在于,第一微透镜阵列中的第一微透镜与第一光纤阵列中的光纤是一一对应的,每个第一微透镜的主光轴与发射透镜的主光轴平行,同时通过所对应的光纤出射端面的中心。
7.根据权利要求1所述的激光雷达系统,其特征在于,所述接收光学系统包括第二光纤阵列、第二微透镜阵列和接收透镜,第二微透镜阵列由多个第二微透镜组成,第二微透镜为汇聚透镜。
8.根据权利要求7所述的激光雷达系统,其特征在于,所述第二微透镜阵列中的第二微透镜与第二光纤阵列中的光纤是一一对应的,每个第二微透镜的主光轴与接收透镜的主光轴平行,同时通过所对应的光纤的入射端面的中心。
9.根据权利要求4、5或7中的任一项所述的激光雷达系统,其特征在于,所述准直透镜为平凸透镜,汇聚透镜为开普勒望远镜。
10.根据权利要求1所述的激光雷达系统,其特征在于,所述发射光学系统、接收光学系统和旋转扫描机构组成独立的旋转扫描探头,在空间上与激光器、探测器、第一光开关、第二光开关和控制处理单元分离。
CN201610955939.2A 2016-10-27 2016-10-27 一种基于光纤阵列的激光雷达系统 Pending CN106371085A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610955939.2A CN106371085A (zh) 2016-10-27 2016-10-27 一种基于光纤阵列的激光雷达系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610955939.2A CN106371085A (zh) 2016-10-27 2016-10-27 一种基于光纤阵列的激光雷达系统

Publications (1)

Publication Number Publication Date
CN106371085A true CN106371085A (zh) 2017-02-01

Family

ID=57893607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610955939.2A Pending CN106371085A (zh) 2016-10-27 2016-10-27 一种基于光纤阵列的激光雷达系统

Country Status (1)

Country Link
CN (1) CN106371085A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415001A (zh) * 2018-02-12 2018-08-17 深圳市镭神智能系统有限公司 接收激光雷达的反射光斑的感光阵列、接收系统及方法
CN108508431A (zh) * 2018-06-08 2018-09-07 上海禾赛光电科技有限公司 一种激光发射系统
WO2018176972A1 (zh) * 2017-04-01 2018-10-04 北科天绘(苏州)激光技术有限公司 一种激光雷达装置及其通道选通方法
CN108627974A (zh) * 2017-03-15 2018-10-09 松下知识产权经营株式会社 光扫描系统
CN108732552A (zh) * 2018-04-16 2018-11-02 任金淼 一种实现激光雷达的探头与机箱分离的方法及激光雷达
CN108872965A (zh) * 2018-04-03 2018-11-23 上海禾赛光电科技有限公司 一种激光雷达
CN109188447A (zh) * 2018-08-21 2019-01-11 华中科技大学 一种光纤阵列反射式的激光雷达
CN109298404A (zh) * 2018-10-22 2019-02-01 上海交通大学 基于透镜的集成二维光束转向装置
CN109581400A (zh) * 2019-01-31 2019-04-05 无锡流深光电科技有限公司 一种分布式激光雷达系统和激光测距方法
WO2019129259A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 多线激光雷达
US10429495B1 (en) 2018-04-03 2019-10-01 Hesai Photonics Technology Co., Ltd. Lidar system and method
WO2019192038A1 (zh) * 2018-04-04 2019-10-10 无锡流深光电科技有限公司 一种激光雷达系统和激光测距方法
WO2019192056A1 (zh) * 2018-04-03 2019-10-10 上海禾赛光电科技有限公司 一种分布式激光雷达
WO2019196135A1 (zh) * 2018-04-11 2019-10-17 无锡流深光电科技有限公司 一种激光雷达系统和激光测距方法
WO2019237581A1 (en) * 2018-06-13 2019-12-19 Hesai Photonics Technology Co., Ltd. Lidar systems and methods
WO2020001372A1 (zh) * 2018-06-26 2020-01-02 洛伦兹(北京)科技有限公司 共轴收发探测装置
CN110824454A (zh) * 2018-08-08 2020-02-21 宁波舜宇车载光学技术有限公司 镜头系统及其构建方法
CN110836724A (zh) * 2018-08-15 2020-02-25 意法半导体(R&D)有限公司 光学装置
CN111164457A (zh) * 2018-09-07 2020-05-15 深圳市大疆创新科技有限公司 激光测距模块、装置、方法和移动平台
CN111257896A (zh) * 2020-05-06 2020-06-09 中国电子科技集团公司信息科学研究院 选通阵列激光雷达接收光学系统和激光雷达
CN111352093A (zh) * 2018-12-21 2020-06-30 罗伯特·博世有限公司 用于激光雷达系统的激光雷达传感器
CN111766587A (zh) * 2020-06-11 2020-10-13 苏州玖物互通智能科技有限公司 一种多线激光雷达光学系统
CN113064141A (zh) * 2021-03-15 2021-07-02 深圳煜炜光学科技有限公司 一种基于单波长和单探测器的多线激光雷达及探测方法
CN113093148A (zh) * 2019-12-23 2021-07-09 深圳市速腾聚创科技有限公司 激光接收系统及激光雷达
CN113109789A (zh) * 2021-04-09 2021-07-13 深圳煜炜光学科技有限公司 一种多线扫描激光雷达装置及控制方法
CN114526762A (zh) * 2022-02-21 2022-05-24 欧梯恩智能科技(苏州)有限公司 光纤传感器系统及光纤传感器的寻址方法
WO2023169298A1 (zh) * 2022-03-11 2023-09-14 华为技术有限公司 激光雷达及其光发射装置、控制方法和相关装置

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627974A (zh) * 2017-03-15 2018-10-09 松下知识产权经营株式会社 光扫描系统
WO2018176972A1 (zh) * 2017-04-01 2018-10-04 北科天绘(苏州)激光技术有限公司 一种激光雷达装置及其通道选通方法
WO2019129259A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 多线激光雷达
US11513193B2 (en) 2017-12-29 2022-11-29 Huawei Technologies Co., Ltd. Multi-line laser radar
EP3719540A4 (en) * 2017-12-29 2021-01-06 Huawei Technologies Co., Ltd. MULTI-LINE LASER RADAR
CN108415001B (zh) * 2018-02-12 2022-06-17 深圳市镭神智能系统有限公司 接收激光雷达的反射光斑的感光阵列、接收系统及方法
CN108415001A (zh) * 2018-02-12 2018-08-17 深圳市镭神智能系统有限公司 接收激光雷达的反射光斑的感光阵列、接收系统及方法
US11474207B2 (en) 2018-04-03 2022-10-18 Hesai Technology Co. Ltd. Lidar system and method
CN108872965A (zh) * 2018-04-03 2018-11-23 上海禾赛光电科技有限公司 一种激光雷达
US11002835B2 (en) 2018-04-03 2021-05-11 Hesai Photonics Technology Co., Ltd. Distributed laser radar
CN108872965B (zh) * 2018-04-03 2020-04-24 上海禾赛光电科技有限公司 一种激光雷达
US10429495B1 (en) 2018-04-03 2019-10-01 Hesai Photonics Technology Co., Ltd. Lidar system and method
WO2019192056A1 (zh) * 2018-04-03 2019-10-10 上海禾赛光电科技有限公司 一种分布式激光雷达
WO2019192038A1 (zh) * 2018-04-04 2019-10-10 无锡流深光电科技有限公司 一种激光雷达系统和激光测距方法
EP3570064A4 (en) * 2018-04-04 2019-11-20 Deepwater Optoelectronics Co., Ltd. LASER RADAR SYSTEM AND LASER TELEMETRY METHOD
CN110346774A (zh) * 2018-04-04 2019-10-18 无锡流深光电科技有限公司 一种激光雷达系统和激光测距方法
WO2019196135A1 (zh) * 2018-04-11 2019-10-17 无锡流深光电科技有限公司 一种激光雷达系统和激光测距方法
EP3572842A4 (en) * 2018-04-11 2019-11-27 Deepwater Optoelectronics Co., Ltd. LIGHT DETECTION AND REMOVAL MEASUREMENT SYSTEM AND LASER REMOVAL MEASUREMENT METHOD
CN108732552A (zh) * 2018-04-16 2018-11-02 任金淼 一种实现激光雷达的探头与机箱分离的方法及激光雷达
CN108508431A (zh) * 2018-06-08 2018-09-07 上海禾赛光电科技有限公司 一种激光发射系统
CN108508431B (zh) * 2018-06-08 2024-04-26 上海禾赛科技有限公司 一种激光发射系统
US11029394B2 (en) 2018-06-13 2021-06-08 Hesai Technology Co., Ltd. Lidar systems and methods
WO2019237581A1 (en) * 2018-06-13 2019-12-19 Hesai Photonics Technology Co., Ltd. Lidar systems and methods
US11879999B2 (en) 2018-06-13 2024-01-23 Hesai Technology Co., Ltd. Lidar systems and methods
WO2020001372A1 (zh) * 2018-06-26 2020-01-02 洛伦兹(北京)科技有限公司 共轴收发探测装置
CN110824454A (zh) * 2018-08-08 2020-02-21 宁波舜宇车载光学技术有限公司 镜头系统及其构建方法
CN110824454B (zh) * 2018-08-08 2023-11-03 宁波舜宇车载光学技术有限公司 镜头系统及其构建方法
CN110836724A (zh) * 2018-08-15 2020-02-25 意法半导体(R&D)有限公司 光学装置
US11573293B2 (en) 2018-08-15 2023-02-07 Stmicroelectronics (Research & Development) Limited Apparatus providing a plurality of light beams
US11815628B2 (en) 2018-08-15 2023-11-14 Stmicroelectronics (Research & Development) Limited Apparatus providing a plurality of light beams
CN109188447A (zh) * 2018-08-21 2019-01-11 华中科技大学 一种光纤阵列反射式的激光雷达
CN111164457B (zh) * 2018-09-07 2023-04-14 深圳市大疆创新科技有限公司 激光测距模块、装置、方法和移动平台
CN111164457A (zh) * 2018-09-07 2020-05-15 深圳市大疆创新科技有限公司 激光测距模块、装置、方法和移动平台
CN109298404A (zh) * 2018-10-22 2019-02-01 上海交通大学 基于透镜的集成二维光束转向装置
CN111352093A (zh) * 2018-12-21 2020-06-30 罗伯特·博世有限公司 用于激光雷达系统的激光雷达传感器
CN109581400A (zh) * 2019-01-31 2019-04-05 无锡流深光电科技有限公司 一种分布式激光雷达系统和激光测距方法
CN113093148A (zh) * 2019-12-23 2021-07-09 深圳市速腾聚创科技有限公司 激光接收系统及激光雷达
CN111257896A (zh) * 2020-05-06 2020-06-09 中国电子科技集团公司信息科学研究院 选通阵列激光雷达接收光学系统和激光雷达
CN111766587A (zh) * 2020-06-11 2020-10-13 苏州玖物互通智能科技有限公司 一种多线激光雷达光学系统
CN113064141B (zh) * 2021-03-15 2024-05-03 深圳煜炜光学科技有限公司 一种基于单波长和单探测器的多线激光雷达及探测方法
CN113064141A (zh) * 2021-03-15 2021-07-02 深圳煜炜光学科技有限公司 一种基于单波长和单探测器的多线激光雷达及探测方法
CN113109789A (zh) * 2021-04-09 2021-07-13 深圳煜炜光学科技有限公司 一种多线扫描激光雷达装置及控制方法
CN114526762A (zh) * 2022-02-21 2022-05-24 欧梯恩智能科技(苏州)有限公司 光纤传感器系统及光纤传感器的寻址方法
CN114526762B (zh) * 2022-02-21 2023-10-24 欧梯恩智能科技(苏州)有限公司 光纤传感器系统及光纤传感器的寻址方法
WO2023169298A1 (zh) * 2022-03-11 2023-09-14 华为技术有限公司 激光雷达及其光发射装置、控制方法和相关装置

Similar Documents

Publication Publication Date Title
CN106371085A (zh) 一种基于光纤阵列的激光雷达系统
CN206132985U (zh) 一种基于光纤阵列的激光雷达系统
CN208224485U (zh) 一种多线激光雷达
CN106443634A (zh) 一种固态激光雷达系统
CN106154281A (zh) 一种光纤激光雷达系统
CA3017735C (en) Integrated illumination and detection for lidar based 3-d imaging
CN109597050B (zh) 一种激光雷达
CN106291509B (zh) 激光雷达光学系统
CN206114893U (zh) 一种固态激光雷达系统
CN106646494A (zh) 一种采用发射和接收光路复用结构的激光雷达系统
CN109613515B (zh) 一种激光雷达系统
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
CN106104204B (zh) 具有扫描功能的距离测量仪器
US7440084B2 (en) Micromechanical and related lidar apparatus and method, and fast light-routing components
CN103765238A (zh) 通过光纤光学耦合器组合两种不同波长的激光跟踪仪
CN108445467A (zh) 一种扫描激光雷达系统
CN101692126B (zh) 激光雷达对称分布式光束发射接收方法与装置
CN204989469U (zh) 一种具有增强远距离测距能力的多发射单元激光测距装置
CN109581400A (zh) 一种分布式激光雷达系统和激光测距方法
CN105589075B (zh) 具有扫描功能的距离测量仪器
US4456329A (en) Optical device having multiple wavelength dependent optical paths
US9164173B2 (en) Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
CN110133620A (zh) 多线激光雷达
CN204044360U (zh) 一种具有分光片的扫描式激光测距装置
CN207074262U (zh) 激光雷达及其二维相控阵激光发射单元

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170201

WD01 Invention patent application deemed withdrawn after publication