WO2022252057A1 - 一种检测方法及装置 - Google Patents

一种检测方法及装置 Download PDF

Info

Publication number
WO2022252057A1
WO2022252057A1 PCT/CN2021/097424 CN2021097424W WO2022252057A1 WO 2022252057 A1 WO2022252057 A1 WO 2022252057A1 CN 2021097424 W CN2021097424 W CN 2021097424W WO 2022252057 A1 WO2022252057 A1 WO 2022252057A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
light wave
detection
information
area
Prior art date
Application number
PCT/CN2021/097424
Other languages
English (en)
French (fr)
Inventor
黄崇德
石现领
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/097424 priority Critical patent/WO2022252057A1/zh
Priority to CN202180098312.9A priority patent/CN117355765A/zh
Publication of WO2022252057A1 publication Critical patent/WO2022252057A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present application relates to the technical field of sensors, in particular to a detection method and device.
  • LiDAR light detection and ranging
  • LiDAR is a radar system that emits laser beams to detect the position, speed and other characteristics of the target.
  • the working principle of lidar is to transmit a detection signal (laser beam) to a target object (such as a vehicle, aircraft or missile), and then compare and process the received signal (echo signal) reflected from the target object with the transmitted signal , the relevant information of the target object can be obtained, such as the target distance, azimuth, height, speed, attitude, and even shape parameters, so that the target object can be detected, tracked and identified.
  • lidar is widely used in unmanned driving, surveying and mapping, robotics and other fields.
  • the lidar In order to avoid contamination of the internal optical devices by the external environment, the lidar has a housing for isolation protection.
  • the window in the casing can ensure the normal transmission of the laser light while isolating external pollution.
  • external pollutants such as rain, snow, frost, dust, flying insects, etc.
  • the lidar will adhere to the window, causing the laser to fail to transmit normally, which in turn affects the detection performance of the lidar. Therefore, there is an urgent need for a detection method to detect whether the window is blocked.
  • the present application adopts a detection method and device for detecting whether a window in equipment such as a laser radar is blocked by an obstruction.
  • the present application provides a detection device, including: an optical path adjustment module, a scanning module and a processing module, a first detection module and a second detection module with a distance of d, d is greater than 0; Receive and reflect the first light wave passing through the first area of the window at all times, the first light wave is received by the first detection module through the optical path adjustment module and generate first information; the scanning module is used to receive and reflect the light wave passing through the window at the second moment The second light wave in the second area, the second light wave is received by the second detection module through the optical path adjustment module and generates the second information; the scanning angle difference between the scanning module at the first moment and the second moment is n*a, and a is a step Angle and greater than 0, n is a positive integer; the optical path adjustment module includes a first lens group, the distance c between the images formed by the first light wave and the second light wave on the focal plane of the first lens group and the scanning angle difference n* a is related; or, the ratio of the distance
  • the processing module is used to control the scanning module to rotate at a step angle a; and obtain the first information from the first detection module and the second information from the second detection module, the first information indicates the intensity of the first light wave, and the second information
  • the second information is used to indicate the intensity of the second light wave
  • the processing module is also used to output third information according to the first information and the second information, and the third information is used to indicate that there is occlusion in the first area or the second area, or for Instructs to perform a cleaning operation.
  • the first light wave is transmitted through the first region on the window and then received by the first detection module.
  • the second light wave is transmitted through the second region on the window and then received by the second detection module, that is, the first light wave and the second light wave are transmitted at different positions on the window.
  • the window for example, when there is an obstruction in the first area or the second area on the window, according to the first information received by the first detection module after the first light wave is transmitted by the first area, Compared with the second information after the second light wave received by the second detection module is transmitted by the second area, it is determined whether there is a difference in transmission between the first area and the second area, thereby determining the first area or the second area Whether there is occlusion in the second area can be used to indicate whether to clean the window, effectively ensuring the normal performance of devices such as laser radars or cameras.
  • the scanning module and the optical path adjustment module make the first light wave and the second light wave received by the first detection module at the first moment
  • the second light waves received by the two detection modules at the second moment are from the same detection area outside the window.
  • the first light wave from the same detection area passes through the scanning module and is focused by the first lens group of the optical path adjustment module at the first moment, so that the detection area corresponding to the first light wave is imaged on the first lens group On the focal plane, furthermore, the first information corresponding to the first light wave is received by the first detection module.
  • the scanning module is rotated by an angle n*a, so that the second light wave passes through the scanning module, and after being focused by the first lens group of the optical path adjustment module, it is imaged on the focal plane of the first lens group, and the second The distance between the imaging position of the light wave and the imaging position of the first light wave is c, so that the second information corresponding to the second light wave is received by the second detection module.
  • the scanning module rotates by an angle a at the second moment relative to the first moment.
  • the rotation angle a corresponds to the angle between the optical path of the first detection module receiving the first information and the optical path of the second detection module receiving the second information, that is, the scanning module receives the first light wave corresponding to the first detection module at the first moment.
  • the first information after one step of the scanning module, due to the ratio of the distance c between the image formed by the first light wave and the second light wave on the focal plane of the first lens group to the focal length f of the first lens group, It is related to the scanning angle difference a, so that the second detection module can receive the second information corresponding to the second light wave. That is, through one step of the scanning module, the first detection module and the second detection module receive light waves from the same detection area.
  • the relationship between the first area corresponding to the first detection module and the second area corresponding to the second detection module can be adjusted accordingly.
  • the relationship between the first area and the second area can also be adjusted.
  • the size of the second area improves the flexibility of the detection device to detect the window.
  • the first light wave is parallel to the second light wave; the first light wave and the second light wave originate from the same detection area outside the window.
  • the first detection module receives the first light wave transmitted to a detection area in the window at the first moment
  • the second detection module receives the second light wave transmitted to the same detection area in the window at the second moment.
  • light waves and the first light wave is transmitted to the first detection module through the first area on the window
  • the second light wave is transmitted to the second detection module through the second area on the window, thus, based on the first light wave and the second detection module from the same detection area
  • Two light waves are used to compare the differences of different areas on the window. Since the transmittance of the light wave on the window is considered, compared with the scheme of detecting the window through the reflected echo signal, the window can be judged more accurately. Whether there is an occluder effectively guarantees the normal operation performance of devices such as lidar or camera.
  • the scanning angle difference between the first moment and the second moment satisfies:
  • n*a arctan(c/f)
  • f is the focal length of the optical path adjustment module
  • c is the distance between the images formed by the first light wave and the second light wave on the focal plane of the optical path adjustment module
  • a is the step angle of the scanning module, c, f, a greater than 0
  • n is a positive integer.
  • the distance c between the scanning angle difference between the first moment and the second moment and the image formed by the first light wave and the second light wave on the focal plane of the optical path adjustment module is established through the first lens group, so that The first lens group can respectively transmit the first light wave to the first detection module through the first moment, and transmit the second light wave to the second detection module, so that the detection device can receive the first light wave from the same detection area through different areas on the window.
  • the light wave and the second light wave reduce the difficulty of realization.
  • the first lens group is used to focus the first light wave from the scanning module, and transmit the focused first light wave to the first detection module; to focus the second light wave from the scanning module, and transmit the focused second light wave to the second detection module; the first detection module and the second detection module are located on the focal plane of the image side of the lens assembly; c and d are equal.
  • the first detection module can receive the first light wave at the first moment, and the second detection module can receive the second light wave at the second moment, and the solution is easier to realize.
  • the optical path adjustment module further includes a second lens group, the second lens group is a collimation system; the second lens group is used to focus the second light wave from the first lens group, and the focused The first light wave from the first lens group is transmitted to the first detection module; the second light wave from the first lens group is focused, and the focused second light wave is transmitted to the second detection module; the light entrance of the collimation system is located in the first lens On the focal plane of the group, the first detection module and the second detection module are located on the focal plane of the collimation system, and m is related to the focal length of the collimation system.
  • the flexibility of the optical path adjustment module and the setting of the first detection module and the second detection module is increased through the second lens group.
  • the first detection module is satisfied to receive the first light wave at the first moment
  • the second detection module On the premise of receiving the second light wave at the second moment, the flexibility of the detection device is improved.
  • the processing module is specifically configured to determine that occlusion exists in the first region or the second region when the difference between the intensity of the first light wave and the intensity of the second light wave is greater than a preset threshold.
  • the above solution based on the difference in transmittance of the blocking object on the window, through the above solution, it can be determined that the first area or the second area is blocked according to the difference between the intensity of the first light wave and the intensity of the second light wave, thus, Provides more information for subsequent window cleaning.
  • the processing module is further configured to determine the type of the blocking object on the window according to the difference between the intensity of the first light wave and the intensity of the second light wave.
  • While determining the existence of an obstruction it is also possible to determine the type of the obstruction based on the difference in transmission characteristics of different obstructions through the difference between the first light wave and the second light wave, so as to perform cleaning of the corresponding type of obstruction Operation, while identifying the blocking objects in time, it can also perform adaptive processing on the blocking objects to improve the maintenance effect of the window.
  • the wiper when it is determined that there is a rain-type shelter in the first area, the wiper may be turned on to clean the first area.
  • the cleaner spraying component when it is determined that there is a dust-type occluder in the first area, the cleaner spraying component may be turned on to spray the window cleaner, and the wiper may be turned on to clean the first area.
  • the processing module is further configured to: according to the K pieces of first information correspondingly received by the first detection module at the K first moments, and the corresponding K pieces of information received by the second detection module at the K second moments receiving K pieces of second information, determining the distribution of strength differences between K pieces of said first information and K pieces of second information; said K is a positive integer; according to said K pieces of said first information and K pieces of second information The distribution of the intensity difference between the information determines the position information of the occluder on the window.
  • the area on the window can be divided into K areas, for example, the scanning module can step K-1 times to complete the scanning of the K areas on the window.
  • the K areas may be K first areas. That is, through the K first moments, the first detection module completes the scanning of the K first areas on the window.
  • the first detection module may receive first information corresponding to a first area. Each time the scanning module steps one time, a new first information corresponding to the first area can be received correspondingly. By stepping the scanning module for K-1 times, the first detection module can receive K pieces of first information on the window.
  • the K area may be K second areas. There may be overlap between the K second regions and the K first regions. That is, through K second moments, the second detection module completes scanning of K second regions on the window.
  • the second detection module may receive second information corresponding to a second area. Each time the scanning module steps once, a new second information corresponding to the second area can be received correspondingly. By stepping the scanning module for K-1 times, the second detection module can receive K pieces of second information on the window.
  • the scanning module rotates by an angle of n*a, therefore, K first moments and K second moments may overlap. For example, if the scanning module rotates by an angle a at the second first moment relative to the first first moment, then the n-th first moment is the first second moment.
  • the first detection module receives the first The first information of the light wave; at the second moment, the second information of the second light wave received by the second detection module through the second area of the window, the first area and the second area are covered with the same type of occlusion, As a result, the difference between the first information and the second information received by the first detection module and the second detection module is too small, and it cannot be determined that there is an obstruction in both the first area and the second area.
  • K pieces of first information corresponding to K first areas and K pieces of second information corresponding to K second areas can be obtained to determine the distribution of obstructions on the window Therefore, compared with the method of determining whether there is an occluder on the first area or the second area through a single first area and the second area, the recognition effect of the occluder can be effectively improved, and the recognition of the occluder on the window can be improved. Accuracy.
  • the first detection module or the second detection module is located on the optical axis of the optical path adjustment module.
  • the rotation axis of the scanning module is located on the optical axis of the optical path adjustment module.
  • the present application provides a detection method, which can be executed on a detection device, and the detection device can be a component provided on a device such as a laser radar with a window, or partly provided on a device such as a laser radar with a window , the detection device includes: an optical path adjustment module, a scanning module and a processing module, a first detection module and a second detection module with a distance d. in,
  • the scanning module receives and reflects the first light wave that passes through the first area of the window at the first moment, and the first light wave is received by the first detection module through the optical path adjustment module and generates first information; at the second moment, it receives and reflects the first light wave that passes through the window The second light wave in the second area of the second light wave is received by the second detection module through the optical path adjustment module and generates the second information; the scanning angle difference between the scanning module at the first moment and the second moment is n*a, and a is a step Advance angle and greater than 0, n is a positive integer;
  • the optical path adjustment module includes a first lens group, and the distance c between the images formed by the first light wave and the second light wave on the focal plane of the first lens group is related to the scanning angle difference n*a; or, the first light wave and the second light wave
  • the ratio of the distance c between the images formed by the two light waves on the focal plane of the first lens group to the focal length f of the first lens group is related to the scanning angle difference n*a, the distance c is m times the distance d, c , f, m are positive numbers;
  • the processing module controls the scanning module to rotate at a step angle a; and obtains the first information from the first detection module and the second information from the second detection module, and outputs third information according to the first information and the second information, the second One piece of information indicates the intensity of the first light wave, and the second piece of information indicates the intensity of the second light wave; the third piece of information indicates that the first area or the second area is blocked, or is used to indicate the execution of a cleaning operation.
  • the first light wave is parallel to the second light wave; the first light wave and the second light wave originate from the same detection area outside the window.
  • the scanning angle difference between the first moment and the second moment satisfies:
  • n*a arctan(c/f)
  • f is the focal length of the optical path adjustment module
  • c is the distance between the images formed by the first light wave and the second light wave on the focal plane of the optical path adjustment module
  • a is the step angle of the scanning module.
  • c and d are equal; the first lens group focuses the first light wave from the scanning module, and transmits the focused first light wave to the first detection module, and the first detection module according to the focused The first light wave generates the first information; the first lens group focuses the second light wave from the scanning module, and transmits the focused second light wave to the second detection module, and the second detection module according to the focused second light wave Generation is secondary information.
  • the optical path adjustment module also includes a second lens group, the second lens group is a collimation system; the light entrance of the second lens group is located on the focal plane of the lens assembly, the first detection module and the second detection The module is located on the focal plane of the second lens group, and m is related to the focal length of the second lens group;
  • the second lens group focuses the first light wave from the first lens group, and transmits the focused first light wave to the first detection module, and the first detection module generates first information according to the received focused first light wave ;
  • the second lens group focuses the second light wave from the first lens group, and transmits the focused second light wave to the second detection module, and the second detection module generates second information according to the received focused second light wave .
  • the processing module determines that occlusion exists in the first region or the second region when the difference between the intensity of the first light wave and the intensity of the second light wave is greater than a preset threshold.
  • the processing module determines the type of the blocking object on the window according to the difference between the intensity of the first light wave and the intensity of the second light wave.
  • the processing module determines according to the K pieces of first information correspondingly received by the first detection module at K first moments, and the K pieces of second information correspondingly received by the second detection module at K second moments The distribution of intensity differences between K first information and K second information; K is a positive integer; according to the distribution of intensity differences between K first information and K second information, it is determined that the occluder is on the window location information.
  • the present application provides a detection device, and the detection device includes a module/unit for performing the method of any second aspect above or any possible implementation manner of the second aspect.
  • These modules/units can be realized by hardware, and can also be realized by executing corresponding software by hardware.
  • the present application provides a laser radar, including the detection device in any possible implementation manner in the first aspect.
  • the present application provides a terminal, and the terminal includes the detecting device in any possible implementation manner in the first aspect.
  • the detection device may be arranged on a terminal device (terminal for short), so that the terminal device has the function of detecting the window on the lidar.
  • the terminal can be a terminal device such as a motor vehicle, an intersection camera, a drone, a rail car, a bicycle, a signal light, or a speed measuring device.
  • the terminal may include a lidar corresponding to the window to be detected.
  • the detection device may be a laser radar, or all of them are located inside the laser radar; or part of them may be located inside the laser radar, and some of them may be located on terminals other than the laser radar.
  • the processing module of the detection device may be located on a terminal other than the lidar.
  • the lidar is also installed on network equipment (such as base stations in various systems), etc., which is not limited here.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores program instructions, and when the program instructions are run on the detection device, the detection device executes the above-mentioned second aspect or the second aspect.
  • the detection device executes the above-mentioned second aspect or the second aspect.
  • the program instructions are used to control the scanning module of the detection device to rotate at a step angle a, and obtain the first information from the first detection module of the detection device and the second information from the second detection module of the detection device, according to the first One information and second information, output third information, the third information is used to indicate that the first area of the window of the detection device or the second area of the window is blocked, or used to indicate the execution of cleaning operation;
  • the first information indicates the first light wave intensity
  • the second information is used to indicate the intensity of the second light wave;
  • the first light wave is received by the scanning module of the detection device at the first moment and reflected through the first area, and the first light wave is passed through the optical path adjustment module of the detection device by the second light wave
  • a detection module receives and generates the first information;
  • the second light wave is received by the scanning module of the detection device at the second moment and reflected through the second area, and the second light wave is received by the second detection module through the optical path adjustment module and generates the second information ;
  • the present application provides a computer program product
  • the computer program product may include program instructions, and when the computer program product is run on the detection device, the detection device is made to perform the above-mentioned second aspect or any possible method of the second aspect. method in the implementation.
  • the program instructions are used to control the scanning module of the detection device to rotate at a step angle a, and obtain the first information from the first detection module of the detection device and the second information from the second detection module of the detection device, according to the first One information and second information, output third information, the third information is used to indicate that the first area of the window of the detection device or the second area of the window is blocked, or used to indicate the execution of cleaning operation;
  • the first information indicates the first light wave intensity
  • the second information is used to indicate the intensity of the second light wave;
  • the first light wave is received by the scanning module of the detection device at the first moment and reflected through the first area, and the first light wave is passed through the optical path adjustment module of the detection device by the second light wave
  • a detection module receives and generates the first information;
  • the second light wave is received by the scanning module of the detection device at the second moment and reflected through the second area, and the second light wave is received by the second detection module through the optical path adjustment module and generates the second information ;
  • Figure 1a is a schematic diagram of detection of a laser radar
  • Fig. 1b is a schematic diagram of a signal received by a detection module
  • Figure 2a is a schematic structural view of a detection device provided by the present application.
  • Figure 2b is a schematic structural diagram of a detection device provided by the present application.
  • Fig. 3 is a schematic structural diagram of a detection device provided by the present application.
  • Figure 4a is a schematic diagram of the relationship between a first detection module, a second detection module and a detection area provided by the present application;
  • Fig. 4b is a schematic diagram of the relationship between the first detection module, the second detection module and the detection area provided by the present application;
  • Fig. 4c is a schematic diagram of the relationship between the first detection module, the second detection module and the detection area provided by the present application;
  • Figure 5a is a schematic diagram of the relationship between an optical path adjustment module provided by the present application and the first detection module and the second detection module;
  • Fig. 5b is a schematic diagram of the relationship between an optical path adjustment module provided by the present application and the first detection module and the second detection module;
  • Fig. 5c is a schematic diagram of the relationship between an optical path adjustment module provided by the present application and the first detection module and the second detection module;
  • Figure 6a is a schematic diagram of a scanning method provided by the present application.
  • Fig. 6b is a schematic diagram of the optical path relationship between a first detection module and a second detection module provided by the present application;
  • Fig. 6c is a schematic diagram of the optical path relationship between a first detection module and a second detection module provided by the present application;
  • Figure 6d is a schematic diagram of a scanning trajectory provided by the present application.
  • Fig. 6e is a schematic diagram of a scanning trajectory provided by the present application.
  • Figure 6f is a schematic diagram of a scanning trajectory provided by the present application.
  • Figure 7a is a schematic diagram of a scanning result provided by the present application.
  • Figure 7b is a schematic diagram of a scanning result provided by the present application.
  • Figure 8 is a schematic flow diagram of a detection method provided by the present application.
  • FIG. 9 is a schematic structural diagram of a detection device provided by the present application.
  • FIG. 10 is a schematic structural diagram of a detection device provided by the present application.
  • the window may be the window of the lidar.
  • a housing for isolation protection.
  • a window (which can be a glass or other material window structure that is transparent to the light wavelength of the laser radar) is used to ensure that the light waves of the laser are transmitted normally while isolating external pollution.
  • the detection device may be a device having a window member such as a detection laser radar.
  • a window member such as a detection laser radar.
  • external pollutants such as rain, snow, frost, dust, flying insects, etc.
  • the window will adhere to the window, resulting in the failure of normal transmission of laser light or failure of normal reception of echo signals. Affect the detection performance of lidar.
  • the detection device may be a laser radar, or a functional component set in the laser radar, or a larger device including a laser radar (for example, a terminal device (referred to as a terminal) or a vehicle), or an independent device, or it may be It is a functional part that is partially installed in a device other than the lidar, and a functional part that is partially installed in the lidar, etc.
  • the detection device can be installed on terminals such as motor vehicles, intersection cameras, drones, railcars, bicycles, signal lights, or speed measuring devices, so that the terminal device has the function of detecting the window on the lidar.
  • the terminal may include a lidar corresponding to the window to be detected.
  • the detection device may be entirely located inside the lidar; or partly located inside the lidar, and partly located on a terminal other than the lidar.
  • the processing module of the detection device may be located on a terminal other than the lidar.
  • the lidar can also be installed on network equipment (such as base stations in various systems), etc., which is not limited here.
  • Laser radar which may also be called a laser radar device, or a laser radar detection device or a laser radar signal transmission device.
  • the lidar can be a lidar installed on a terminal device (referred to as a terminal) such as a motor vehicle, an intersection camera, a drone, a rail car, a bicycle, a signal light, or a speed measuring device.
  • the laser radar may also be a laser radar installed on network devices (such as base stations in various systems), etc., which is not limited here.
  • Lidar can be used as vehicle-mounted lidar (such as scanning vehicle-mounted FMCW lidar), airborne lidar and other scenarios that require high accuracy.
  • lidar can also be installed on mobile platforms, such as satellites. In this case, the lidar needs the assistance of other devices in the mobile platform to determine its current position and steering information, which ensures the availability of measurement data.
  • the mobile platform can also include a global positioning system (global positioning system, GPS) device and an inertial measurement unit (inertial measurement unit, IMU) device, and the laser radar can combine the measurement data of the GPS device and the IMU device to obtain the position of the target object , speed and other characteristics.
  • GPS global positioning system
  • IMU inertial measurement unit
  • the radar can provide the geographic location information of the mobile platform through the GPS device in the mobile platform, and record the attitude and steering information of the mobile platform through the IMU device.
  • the distance to the target object is determined according to the echo signal
  • at least one of the geographic location information provided by the GPS device or the attitude and steering information provided by the IMU device can be used to convert the measurement point of the target object into a relative coordinate system
  • the location point on the absolute coordinate system is used to obtain the geographic location information of the target object, so that the laser radar can be applied to the mobile platform.
  • the laser radar in this application can also be applied to the automatic driving scene, or can also be applied to the networked car scene, and so on.
  • the working principle of lidar is to detect the corresponding target object by transmitting a signal (or called a detection signal) and receiving the reflected signal reflected by the target object.
  • the signal emitted by the lidar can be an electromagnetic wave signal, a laser beam, etc.
  • the received reflection signal reflected by the target object can also be a corresponding electromagnetic wave signal, a laser beam signal, etc. Therefore, by emitting light waves and receiving electromagnetic energy scattered by the target, and comparing and analyzing the received echo signal and detection signal, information related to the target, such as the position information of the target, can be extracted. For example, the distance from the target object to the launch point, the distance change rate (radial velocity), azimuth, height and other information.
  • Fig. 1a is a schematic diagram of detection of a laser radar provided in the present application.
  • LiDAR consists of lasers and detectors.
  • a laser emits a beam in a certain direction, and if there is a target within a certain distance along the direction in which the beam is emitted, the beam can reflect off the surface of the target.
  • Figure 1a takes the target A in the emission direction of the beam 1 as an example.
  • the laser radar detector can receive the echo signal shown in the left figure in Figure 1b, and the detector can determine the relevant information of the target A according to the echo signal and the local signal, such as the target A's location information, etc.
  • the lidar can also receive ambient light from outside the viewing window, for example, as shown in the right figure in Figure 1b, it is the light signal received by the detector when the lidar is not emitting light waves.
  • Optical modules can be determined according to the functions of the optical modules.
  • the optical module as a transceiver module as an example, that is, the receiving module is used to receive optical signals
  • the receiving module may include an optical path adjustment module (such as a collimation system, a lens module, etc.) and a receiving module.
  • the receiving module may further include a first detection module and a second detection module, and the first detection module and the second detection module may be detectors respectively.
  • the optical module can be combined with the transmitting module, or can be set separately with the mode module, which is not limited here.
  • the optical module can adopt a coaxial structure for transmitting and receiving, or an off-axis structure for transmitting and receiving.
  • the optical signal sent by the optical module and the optical path that the received optical signal passes through in the optical module are the same optical path or a paraxial optical path.
  • An optical module can include a light source (for example, a laser), An optical path adjustment module and a receiving module, wherein the transmitting module may include a laser and an optical path adjusting module corresponding to the transmitting module, and the receiving module may include a first detection module.
  • the receiving module may also include an optical path adjusting module corresponding to the receiving module,
  • the first detection module may be a detector.
  • the optical path adjustment module may be set independently based on the transmitting module and the receiving module, or may be set jointly by the transmitting module and the receiving module.
  • the optical path adjustment module may include a collimation system or a lens, a lens group, and optionally, a light splitting module.
  • Figure 2a is an optical module with coaxial transmission and reception. pre-spread. The optical signal passes through the light splitting module, and then exits into the space through the light splitting module. The received echo optical signal will reach the optical splitting module, and the optical splitting module sends the received optical signal to the first detection module in the receiving module.
  • An optical module may include a light source (for example, a laser), an optical path adjustment module (for example, a collimation system or a lens, lens group) and a receiving module, wherein the transmitting module can include a laser and an optical path adjustment module corresponding to the transmitting module, and the receiving module can include a second detection module.
  • the receiving module can also include an optical path adjusting module corresponding to the receiving module.
  • the second detection module can be a detector.
  • FIG. 2b it is an optical module for sending and receiving off-axis.
  • the optical signal emitted by the laser is collimated by the collimation system to regulate the propagation direction of the optical signal so that the optical signal can propagate forward as much as possible.
  • the collimation system can make the light The signal exits into space.
  • the received optical signal will reach the receiving module. It can be seen that for the transceiver off-axis structure, since the paths of the optical signal sent by the optical module and the received optical signal are different, the optical splitting module may not be provided.
  • the field of view is the range formed after the optical signal sent by an optical module reaches the space, or the range where the detection device receives the optical signal corresponding to a transceiver module.
  • Angle of field of view the angle of field of view, for example, the scanning angle in space of an optical signal received by an optical module.
  • the field of view can determine the size of the field of view. Generally speaking, the larger the field of view, the larger the field of view, and the smaller the field of view, the smaller the field of view. And if a field of view needs to be adjusted, it can also be realized by adjusting the field of view angle of the field of view.
  • nouns for the number of nouns, unless otherwise specified, it means “singular noun or plural noun", that is, “one or more". “At least one” means one or more, and “plurality” means two or more. "And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural. Unless otherwise specified, the character “/" generally indicates that the contextual objects are an "or" relationship. For example, A/B means: A or B.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c means: a, b, c, a and b, a and c, b and c, or, a and b and c, where a, b, c can be single or multiple.
  • first and second mentioned in the embodiment of this application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, application scenarios, priority or importance of multiple objects degree etc.
  • the first detection module and the second detection module can be the same detection module or different detection modules, and this name does not mean the structure, position, priority, application of the two detection modules.
  • the scene or the degree of importance is different.
  • FIG. 3 exemplarily shows a schematic structural diagram of a detection device provided by the present application. As shown in FIG. 3 , it includes a first detection module and a second detection module with a distance d, an optical path adjustment module, a scanning module and a processing module.
  • the distance d between the first detection module and the second detection module can be the distance between the center of the first detection module and the center of the second detection module, and can also be the distance between the edge of the first detection module and the second detection module.
  • the distance between the edges of the modules; for example, taking the area of the receiving light wave of the first detection module and the second detection module as a rectangle as an example, the distance between the first detection module and the second detection module can be the first detection module
  • the distance between the upper edge of the upper edge of the second detection module and the upper edge of the second detection module can also be the distance between the lower edge of the first detection module and the lower edge of the second detection module, and can also be the left edge of the first detection module and
  • the distance between the left edges of the second detection module can also be the distance between the right edge of the first detection module and the right edge of the second detection module, of course, it can also be determined in other ways, which is not limited here.
  • the scanning module is configured to receive and reflect the first light wave passing through the first area of the window at the first moment, and the first light wave is received by the first detection module through the optical path adjustment module and generates first information;
  • the scanning module is used to receive and reflect the second light wave passing through the second area of the window at the second moment, and the second light wave is received by the second detection module through the optical path adjustment module and generates second information; the source of the first light wave and the second light wave in the same detection area outside the viewing window.
  • the scanning angle difference between the scanning module at the first moment and the second moment is n*a, a is the step angle and is greater than 0, and n is a positive integer;
  • the optical path adjustment module includes a first lens group, and the first light wave and the second light wave are in the
  • the distance c between the images formed on the focal plane of the first lens group is related to the scanning angle difference n*a, or the distance between the images formed by the first light wave and the second light wave on the focal plane of the first lens group
  • the ratio of the distance c to the focal length f of the first lens group is related to the scanning angle difference n*a.
  • the distance c is m times of the distance d, and c, f, and m are positive numbers.
  • the processing module is used to control the scanning module to rotate at a step angle a; and obtain the first information from the first detection module and the second information from the second detection module, the first information indicates the intensity of the first light wave, and the second information indicates the intensity of the second light wave;
  • the processing module is further configured to output third information according to the first information and the second information, the third information is used to indicate that the first area or the second area is blocked, or is used to indicate to perform a cleaning operation.
  • the processing module can be a processor located in the laser radar or a component in the processor.
  • the processing module may be a processor in the vehicle or a component in the processor, or a processor in the cloud server or a component in the processor, which is not limited here.
  • the window will generate three light states of reflected light I reflect , transmitted light I trans and absorbed light I absorb .
  • the sum of the energies of the three forms of light is equal to the total energy I total of the emitted light, which satisfies:
  • the essence is to measure the returned echo signal on the window, so as to determine the difference in reflectivity between the obstructed object on the window and the window without the obstructed object.
  • this application mainly uses transmitted light, that is, passive imaging to determine whether the window is blocked.
  • the first light wave and the second light wave originate from the same detection area outside the window, and based on the first light wave and the second light wave, it is determined whether the first area or the second area on the window is blocked.
  • the first detection module and the second detection module are identical.
  • the first detection module may be a detector in a laser radar, or a component with a detection function in a laser radar.
  • the first detection module may convert the received optical signal into an analog signal or a digital signal through photoelectric conversion, so as to obtain the first information.
  • the light received by the first detection module and the second detection module from the detection area outside the window can be the light wave emitted by the light source in the detection area, or it can be the light wave after the target object in the detection area reflects other light sources. Do limited.
  • the first detection module before the first detection module receives the optical signal, it can adjust the field of view of the first detection module through the optical path adjustment module to standardize the receiving direction of the optical signal, so that it is transmitted from the outside of the window to the receiver.
  • the light of the module is a light wave in a detection area from the far field.
  • the first detection module and the second detection module may receive light waves corresponding to different detection areas outside the viewing window.
  • the first detection module may receive light waves corresponding to the first area outside the viewing window.
  • the second detection module can receive light waves corresponding to the second detection area outside the window.
  • the division of the detection areas can be implemented in many ways, which will be described in two cases below.
  • the detection area may be divided by a one-dimensional direction, for example, the one-dimensional direction may be a horizontal direction or a vertical direction. Taking the one-dimensional direction as the horizontal direction as an example, the area where the target object outside the window that can be detected by the first detection module or the second detection module is divided in the horizontal direction to obtain one horizontal detection area among the N horizontal detection areas .
  • the vertical direction is not limited, that is, at any moment, the first detection module can detect all target objects that can be detected in the vertical direction by one of the N horizontal detection areas.
  • an area corresponding to the detection area may also be correspondingly determined, for example, a horizontal area corresponding to the horizontal detection area, that is, the window is divided into N horizontal areas.
  • the N horizontal areas may include a first horizontal area and a second horizontal area as shown in FIG. 4a, correspondingly, the first horizontal area corresponds to the first horizontal detection area, and the second horizontal area corresponds to the second horizontal detection area.
  • the first detection module may receive light waves corresponding to the first horizontal detection area outside the viewing window.
  • the first detection module receives light waves from the first horizontal detection area that pass through the window.
  • the second detection module can receive light waves corresponding to the second horizontal detection area outside the viewing window.
  • the second detection module receives light waves from the second horizontal detection area that pass through the window. That is, the first horizontal detection area and the second horizontal detection area are different horizontal detection areas among the N horizontal detection areas.
  • different horizontal detection areas in the N horizontal detection areas can be scanned at different times by the scanning module, so as to receive the light waves of the N horizontal detection areas.
  • the area of the window can be divided based on the one-dimensional direction of the window, so that the window can be set to be insensitive to the direction of another dimension.
  • the cleaning operation for the window can be set for the horizontal direction 2 or more cleaning devices.
  • the detection device can be aimed at the arrangement of the cleaning devices. For example, if the cleaning device is based on multiple cleaning devices arranged at different positions in the horizontal direction, the area of the window can be divided in the horizontal direction. , to save the complexity of the detection device.
  • the detection device can divide the area of the window, which can be determined based on the detection method of the laser radar.
  • the detection of the laser radar is based on N detection areas divided in the horizontal direction, thus , the detection device can divide the area of N windows in the horizontal direction, and when it is determined that there is an occluder in the corresponding horizontal area, the laser radar can cancel the use of echoes collected through the horizontal area according to the horizontal area where the occluder exists signal to avoid the influence of occluders on the detection performance of lidar.
  • the detection area is divided by two-dimensional directions, for example, divided by the horizontal direction and the vertical direction.
  • the horizontal direction can be scanned by the scanning module at different times, so that the first detection module or the second detection module can receive the light waves of the N horizontal detection areas.
  • the vertical direction of any horizontal detection area can be divided into M vertical detection areas, that is, the detectable range outside the window can be divided into N*M detection areas.
  • At least M first sub-detection modules and at least M second sub-detection modules can be arranged so that each first sub-detection module or second sub-detection module is used to receive M vertical detection areas Light waves in a vertical detection area.
  • an area corresponding to the detection area may also be correspondingly determined, that is, the window is divided into N*M areas.
  • the first sub-detection module 1-1 can receive detection area 1 outside the window -1 corresponds to the light wave.
  • the first detection module receives the light wave from the area 1-1 transmitted through the window.
  • the second detection module can receive light waves corresponding to the detection area 1-2 outside the viewing window.
  • the second detection module receives the light wave from the area 1-2 transmitted through the window.
  • the horizontal positions corresponding to the detection area 1-1 and the detection area 1-2 are the same.
  • the second sub-detection module 1 in the second detection module can receive light waves corresponding to the detection area 2-1 outside the viewing window.
  • the second sub-detection module 2 in the second detection module can receive light waves corresponding to the detection area 2-2 outside the window.
  • the horizontal positions corresponding to the detection area 2-1 and the detection area 2-2 are the same.
  • the horizontal positions corresponding to the area 2-1 and the area 2-2 are the same, but the vertical positions are different.
  • the horizontal position of the detection area 2-1 is different from that of the detection area 1-1.
  • the horizontal position of the detection area 2-2 is different from that of the detection area 1-2.
  • any one of the light waves transmitted by the M vertical detection areas can enter the first sub-detection module or the second sub-detection module through the optical path adjustment module, so that the first sub-detection module or the second sub-detection module can detect the reception of light waves.
  • the optical path adjustment module may also be an optical path adjustment module separately provided for each sub-detection module.
  • an optical path adjustment module is provided for the first sub-detection module
  • an optical path adjustment module is provided for the second sub-detection module. That is, the detection device includes 2*M optical path adjustment modules. Therefore, the light wave emitted by each vertical detection area can be received by the corresponding first sub-detection module through the light wave adjusted by the light path adjustment module of the corresponding first sub-detection module. The light wave emitted by each vertical detection area can be received by the corresponding second sub-detection module through the light wave adjusted by the light path adjustment module of the corresponding second sub-detection module.
  • an optical path adjustment module may also be provided for the first sub-detection module and the second sub-detection module. That is, the detection device includes M optical path adjustment modules. Therefore, the light wave emitted by each vertical detection area can make the corresponding first sub-detection module and the second sub-detection module receive .
  • the light waves received in the detection area outside the window in the horizontal and vertical directions can be flexibly adjusted, and the corresponding area on the window can be adjusted accordingly, so that the blocking objects on the window can be flexibly detected.
  • the possible type of the occluder and the common size of the occluder on the window can be determined to determine the area on the window, thereby determining the first sub-detection module and the first sub-detection module for detecting the occluder in the detection device.
  • the second sub-detection module improves the efficiency of the detection device in detecting obstructions.
  • the first sub-detection module and the second sub-detection module can be determined in combination with the usage of the device of the window to be detected (for example, laser radar), so as to improve the compatibility between the detection device and the device of the window to be detected.
  • the light waves transmitted from the N*M detection areas to the window may form a certain angle or be parallel.
  • Case 3 The detection area is divided by two-dimensional directions, for example, divided by horizontal and vertical directions. For example, N*M detection areas in case two.
  • the first detection module receives light waves from a detection area at different scanning angles (different in horizontal direction and vertical direction) through the scanning module.
  • the second detection module can also receive light waves from one detection area at different scanning angles through the scanning module. Therefore, through the scanning module, the scanning of N*M detection areas by the first detection module and the second detection module is realized.
  • the first detection module and the second detection module may be arranged at different positions in the horizontal direction, and the positions in the vertical direction are the same.
  • the first detection module and the second detection module may also be arranged at different positions in the vertical direction, and the positions in the horizontal direction are the same. Alternatively, the positions in the horizontal direction and the vertical direction may be different.
  • the scanning module can be used to realize the scanning of the detection area in the two-dimensional direction, without setting sub-detection modules, and reducing the complexity of the detection device.
  • the first detection module may receive light waves corresponding to the first detection area outside the viewing window.
  • the first detection module receives the light wave from the first area transmitted through the window.
  • the second detection module can receive light waves corresponding to the second detection area outside the viewing window.
  • the second detection module receives the light wave from the second area transmitted through the window.
  • the first detection area and the second detection area may have the same horizontal position and different vertical positions.
  • the first detection area and the second detection area may have different horizontal positions and different vertical positions.
  • the optical path adjustment module can be used so that at the same time, the light waves of different detection areas outside the window are received by different detection modules.
  • the detection module and the optical path adjustment module in the present application, or by sub-detection modules and optical path adjustment modules (for example, collimator, lens module), or through a combination of a scanning module (for example, a mirror) and a management adjustment module, which will not be listed here.
  • sub-detection modules and optical path adjustment modules for example, collimator, lens module
  • a scanning module for example, a mirror
  • management adjustment module for example, a management adjustment module
  • FIG. 5 a it is a schematic structural diagram of an optical path adjustment module provided by the present application.
  • the first detection module and the second detection module may share one optical path adjustment module, or may be respectively provided with corresponding optical path adjustment modules.
  • the first detection module and the second detection module share an optical path adjustment module as an example.
  • the optical path adjustment module includes a lens assembly. After the light waves transmitted from the detection area into the window pass through the lens assembly, The light wave can be focused on the detection module, that is, the field of view corresponding to each detection module is the detection area, so as to realize the adjustment of the field of view of the detection module.
  • the light entrances of the first detection module and the second detection module are located on the focal plane of the image side of the lens assembly.
  • the light entrances of the first detection module can be located at the on the focal plane of the image square.
  • the light entrance of the second detection module can also be located on the focal plane of the image side of the lens assembly.
  • the distance d1 between the first detection module and the optical axis of the first lens group is taken as an example.
  • the first detection module receives the light wave of the detection area 101 that forms an angle ⁇ 1 with the optical axis of the first lens group, and passes through the area 101 on the window. Through, the included angle ⁇ 1 satisfies:
  • ⁇ 1 arctan(f/d1).
  • the distance d2 between the second detection module and the optical axis of the first lens group is taken as an example.
  • the second detection module receives the light wave of the detection area 102 at an angle ⁇ 2 with the optical axis of the first lens group, it passes through the area on the window 102 through, the included angle ⁇ 2 satisfies:
  • ⁇ 2 arctan(f/d2).
  • the distance d1 between the first detection module and the optical axis of the first lens group may be the distance between the center of the first detection module and the optical axis of the first lens group, or the distance between the edge of the first detection module and the first lens group.
  • the distance d2 between the second detection module and the optical axis of the first lens group can be the distance between the center of the second detection module and the optical axis of the first lens group, or the distance between the edge of the second detection module and the optical axis of the first lens group.
  • axis distance may be set in the same manner as the distance d between the first detection module and the second detection module. Of course, it can also be determined in other ways, which are not limited here.
  • the first detection module or the second detection module may be a detection module in a device (for example, a laser radar) corresponding to the window to be detected.
  • a device for example, a laser radar
  • the first detection module or the second detection module may be located on the optical axis of the optical path adjustment module.
  • the distance d between the first detection module and the second detection module is the distance between the first detection module and the optical axis. Therefore, when the first detection module receives The light wave of the detection area 101 forming an angle ⁇ with the optical axis of the first lens group, the second detection module receives the light wave of the detection area 103 parallel to the optical axis of the first lens group, and the included angle ⁇ satisfies:
  • the optical path adjustment module may include a second lens group and a first lens group.
  • the second lens group may be a collimation system.
  • the second lens group may also be a collimator or a collimating lens.
  • the collimation system may also be shared by the first detection module and the second detection module.
  • the collimation system can also be set separately for the first detection module and for the second detection module. For example, as shown in FIG. 5b, it includes a first sub-collimation system of the first detection module and a second sub-collimation system of the second detection module.
  • the optical axes of the first sub-collimation system and the second sub-collimation system may not coincide.
  • the distance between the optical axis of the first sub-collimation system and the optical axis of the second sub-collimation system is d0.
  • the distance between the first detection module and the optical axis of the first sub-collimation system is d1
  • the distance between the second detection module and the optical axis of the second sub-collimation system is d2
  • the optical path adjustment module can include the second lens group and the first lens group, so that the positions of the first detection module and the second detection module are not limited to the focal plane of the image side of the first lens group, correspondingly, the first
  • the distance between the detection module and the second detection module can also be set flexibly, which improves the flexibility of the design of the detection device.
  • a second lens group may be included between the first detection module and the first lens group, and the light entrance of the second lens group is located at the image focal point of the first lens group.
  • the first detection module that is, a second lens group may be included between the first detection module and the first lens group, and the light entrance of the second lens group is located at the image focal point of the first lens group.
  • the first light wave can be focused on the second lens group, and then the first light wave can be focused by the second lens group
  • a light wave is sent to the first detection module.
  • the distance between the collimation system in the optical path adjustment module and the optical axis is d1.
  • the second light wave transmitted from the detection area into the window passes through the first lens group, the second light wave can be focused on the second lens group, and then sent to the second detection module after being focused by the second lens group .
  • the field of view of the first detection module corresponds to a detection area outside the detection window
  • the field of view of the second detection module corresponds to a detection area outside the detection window.
  • the first detection module and the second detection module can detect light waves from the same detection area through different areas on the window at different times, so as to compare the transmission effects of different areas on the window on the light waves of the same detection area. Determine whether there are occluders in different areas on the window, avoid the problem that different occluders cannot be detected by reflected light due to weak reflection effects, and improve the detection accuracy of the occluders on the window.
  • the optical axis distance c1 between the image formed by the light wave of the detection area 101 on the focal plane of the first lens group and the first lens group may be the center point of the image formed by the light wave lens group of the detection area 101 on the focal plane
  • the distance from the optical axis of the first lens group, correspondingly, the optical axis distance c2 between the image formed by the light waves of the detection area 102 on the focal plane of the first lens group and the first lens group can be the light wave of the detection area 102
  • the optical axis distance c1 between the image formed by the light waves of the detection area 101 on the focal plane of the first lens group and the first lens group may be the edge and distance of the image formed by the light wave lens group of the detection area 101 on the focal plane.
  • the optical axis distance of the first lens group correspondingly, the optical axis distance c2 between the image formed by the light waves of the detection area 102 on the focal plane of the first lens group and the first lens group can be the light wave of the detection area 102 in the first
  • the distance c2 between the edge of the image formed on the focal plane of the lens group and the optical axis of the first lens group can also be determined in other ways, which are not limited here.
  • the distance c between the image formed by the light wave from the detection area 101 and the light wave from the detection area 102 on the focal plane of the optical path adjustment module can be the light wave from the detection area 101 and the light wave from the detection area 102 in the optical path adjustment
  • the distance between the center points of the image formed on the focal plane of the module can also be the difference between the light waves from the detection area 101 and the light waves from the detection area 102 on the focal plane of the optical path adjustment module. The distance between them is not limited here.
  • the focal length of the first sub-collimation system is f0
  • the first detection module can detect different detection areas outside the window.
  • the specific scanning method is introduced in the scanning module below.
  • the second detection module can also detect the detection area outside the window through the corresponding optical path adjustment module, and then, at different times, the second detection module can also use the scanning module and the corresponding optical path adjustment module. , to realize that the second detection module scans all the detection areas outside the viewing window.
  • the optical path adjustment module can be based on all the first sub-detection modules and/or the second sub-detection modules, or each first sub-detection module can be Corresponding to one optical path adjustment module, each second sub-detection module corresponds to one optical path adjustment module.
  • the optical path adjustment module includes M first sub-detection modules, M second sub-detection modules and a first lens group, and the M first sub-detection modules are in one-to-one correspondence with M vertical detection areas.
  • the M second sub-detection modules are in one-to-one correspondence with the M vertical detection areas.
  • Each sub-detection module can adjust the field of view where the light wave is incident through a first lens group.
  • the light wave received by the first sub-detection module 1 through the first lens group 1-1 corresponds to the field of view 1-1, that is, corresponds to the vertical detection area 101-1 outside the window and the vertical area 101-1 on the window.
  • the light wave received by the first sub-detection module 2 through the first lens group 1-2 corresponds to the field of view 1-2, that is, corresponds to the vertical detection area 101-2 outside the window and the vertical area 101-2 on the window.
  • the first sub-detection module 1 receives light waves from the detection area 101 - 1 through the first lens group 1 - 1 .
  • the first sub-detection module 2 receives the light wave from the detection area 101-2 through the first lens group 1-2. That is to say, by selecting the appropriate distance between the light entrances of the M first sub-detection modules relative to the optical axis of the optical path adjustment module and the focal length f of the first lens group, the corresponding detection windows of the M first sub-detection modules can be satisfied.
  • the outer M vertical detection areas are to select the appropriate distance between the light entrances of the M first sub-detection modules relative to the optical axis of the optical path adjustment module and the focal length f of the first lens group.
  • the M second sub-detection modules correspond to M vertical areas on the detection window.
  • the second sub-detection module shares a set of optical path adjustment modules with the first sub-detection module.
  • the light wave received by the second sub-detection module 1 through the first lens group 1-1 corresponds to the field of view 2-1, that is, corresponds to the vertical detection area 102-1 outside the window and the vertical area 102-1 on the window.
  • the light wave received by the second sub-detection module 2 through the first lens group 1-2 corresponds to the field of view 2-2, that is, corresponds to the vertical detection area 102-2 outside the window and the vertical area 102-2 on the window.
  • the second sub-detection module and the first sub-detection module are separately provided with respective optical path adjustment modules.
  • the light wave received by the second sub-detection module 1 through the first lens group 2-1 corresponds to the field of view 2-1, that is, corresponds to the detection area 102-1 outside the window and the area 102-1 on the window.
  • the light wave received by the second sub-detection module 2 through the first lens group 2-2 corresponds to the field of view 2-2, that is, corresponds to the detection area 102-2 outside the window and the area 102-2 on the window.
  • the intervals between the light outlets of the optical path adjustment modules corresponding to the sub-detection modules can be equal, or Can be unequal.
  • the distance between the light outlets of the optical path adjustment module of the sub-detection module and the focal length of the optical path adjustment module By controlling the distance between the light outlets of the optical path adjustment module of the sub-detection module and the focal length of the optical path adjustment module, the field of view of the light waves received by the sub-detection module from the optical path adjustment module comes from M vertical detection areas outside the window.
  • the size of the vertical detection area for detection can be flexibly set to meet the needs of different detection devices for different types of occluders on the window. detection needs. For example, when the window is often in an environment with a lot of wind and sand and other small obstructions, the area of the vertical detection area can be set to be small, and correspondingly, the interval between the light outlets of the optical path adjustment modules of the sub-detection modules can be set to be small.
  • the area of the vertical detection area can be set to be larger, and correspondingly, the interval between the light outlets of the optical path adjustment modules of the sub-detection modules can be set to be larger.
  • the area of the vertical detection area set in the area where the obstruction is easy to accumulate is relatively small.
  • the vertical detection area set in the area that is not easy to accumulate obstructions is larger.
  • the interval between the light outlets of the optical path adjustment modules of the sub-detection modules can be set to be larger to improve detection efficiency.
  • the light wave from the detection area outside the window is transmitted to the optical path adjustment module through the scanning module, and then transmitted to the first detection module and/or the second detection module through the optical path adjustment module.
  • the detection device can scan the detection area outside the window by changing the detection angle of the scanning module.
  • the window detection device can preset multiple detection angles, and the scanning module can receive light waves from a detection area outside the window at each detection angle of the multiple detection angles.
  • the scanning module may be a scanner, such as a reflective scanner.
  • Reflective scanners include, but are not limited to, mechanical rotating mirrors or MEMS mirrors. Reflective scanners change the scanning direction of the scanner by mechanical rotation.
  • the scanning module is a reflective scanner, the reflective surface of the reflective scanner can be arranged on the focal plane of the image side of the first lens group.
  • FIG 6a it is a schematic diagram of an optical path structure composed of a scanner, a first detection module, a second detection module and an optical path adjustment module provided by the present application.
  • the scanner can change the step angle in the two-dimensional direction (horizontal direction and vertical direction). Changing the step angle can also be understood as the scanner is at different step angles, so that the first detection module or the second detection module receives Light waves in the detection area outside the corresponding window.
  • Figure 5a takes the first detection module as an example. Under the step angles of 8 different directions, the light waves from 8 different detection areas are transmitted to the first detection module respectively through the scanner, and 8 scans of 8 detection areas are obtained. point.
  • the scanning module can be set in the first lens group on the object focal plane.
  • the scanning module may also be located on the optical axis of the first lens group.
  • the scanner can change the scanning angle in one dimension, so that the scanner sends light waves from different detection areas to the first detection module.
  • the scanner is made to send light waves from different detection areas to the second detection module.
  • the scanning module can rotate in the horizontal direction to realize scanning of N horizontal areas on the window.
  • the horizontal scanning of the window can be realized by rotating the scanning module in the horizontal direction.
  • the first sub-detection modules included in the first detection module can be used for detection respectively
  • the second sub-detection modules included in the second detection module can be used for detection respectively.
  • FIG. 6a which will not be repeated here.
  • the detection area 1 outside the viewing window can be regarded as a far-field object relative to the first detection module
  • the light in the detection area received by the first detection module is all parallel light, so at the first moment, it can pass through the optical path
  • the adjustment module (for example, the first lens group, may also include the second lens group), focuses the light wave transmitted from the detection area 1 into the window onto the first detection module, so that the first detection module can detect objects in the detection area 1 Objects are imaged.
  • the detection area 1 outside the viewing window can also be regarded as a far-field object relative to the second detection module.
  • the light in the detection area received by the second detection module is all parallel light.
  • both the first detection module and the second detection module are located on the focal plane of the image side of the first lens group, and the first detection module at a distance of d1 from the optical axis passes through the optical path without considering the scanning module.
  • the adjustment module receives the incident energy with an angle of ⁇ 1 to the optical axis, and the second detection module at a distance of d2 from the optical axis, in the scenario where the scanning module is not considered, receives the incident energy with an angle of ⁇ 1 to the optical axis through the optical path adjustment module.
  • the incident energy of ⁇ 2 therefore, the angle between the detection area 101 and the detection area 102 is the difference between the first optical path formed by the first detection module and the optical path adjustment module and the second optical path formed by the second detection module and the optical path adjustment module Angle related.
  • the first detection module and the second detection module can receive the light waves of the same detection area at different times.
  • the first detection module detects the detection area 101 at the first moment, and the first detection module detects the detection area 102 at the second moment.
  • the first detection module receives the detection area 101 corresponding to the light wave at an angle ⁇ 1 to the optical axis
  • the second detection module receives the detection area 102 corresponding to the light wave at an angle ⁇ 2 to the optical axis.
  • the included angle ⁇ ⁇ 1+ ⁇ 2 between the region 101 and the light wave from the detection region 102 .
  • the distance c between the images formed by the light waves from the detection area 101 and the light waves from the detection area 102 on the focal plane of the optical path adjustment module is the distance c between the light entrances of the first detection module and the second detection module.
  • the distance d between satisfies:
  • the first detection module detects that the detection area 102 outside the window can pass through the area 102' on the window.
  • the area 102' and the area 102 are areas on different windows.
  • the scanning module rotates by an angle ⁇ compared to the first moment, and the light wave of the detection area 102 outside the viewing window is scanned by the scanning module
  • the target object in the image is imaged.
  • the light wave from the detection area 102 received by the first detection module at the first moment is received through the first area on the window
  • the light wave from the detection area 102 received by the second detection module at the second moment Light waves are received through the second area on the window. Since there is an included angle ⁇ 1+ ⁇ 2 between the first optical path composed of the first detection module, the optical path adjustment module, and the scanning module, and the second optical path composed of the second detection module, the optical path adjustment module, and the scanning module, therefore, from The light waves from the same detection area 102 incident on the first optical path and the second optical path will have a displacement in the position of the window, thus, the first area (for example, area 102') and the second area (for example, area 102) are different regions.
  • the first area and the second area may or may not overlap, and may be adjusted as required.
  • the difference between the first area and the second area it is possible to compare whether there is a transmittance between the first area on the window and the second area on the window under the premise of ensuring that the change of the detection area at a distance relative to the window is negligible difference, so as to realize the measurement of the difference in transmittance at different positions of the window, and determine whether there is an occluder on the window, that is, it can be determined whether there is an occluder in the first area or the second area.
  • the processing module may be a processor or a component with a processing function arranged in the laser radar, or a processor or a component with an addition function arranged in the laser radar.
  • the processing module may obtain the signals of the light waves received by the first detection module and the second detection module from the same detection area, so as to determine whether there is an obstruction in the area on the window.
  • the difference between the signal strength of the first light wave received by the first detection module through the first region and the signal strength of the second light wave received by the second detection module through the second region is greater than a preset threshold, it is determined that the first Area or second area is occluded.
  • At least the first region can be determined Obstructions exist. Areas where the second area does not overlap with the first area may not have occluders.
  • a possible implementation method according to the K first information correspondingly received by the first detection module at K first moments, and the K second information correspondingly received by the second detection module at K second moments, determine K The distribution of the intensity difference between the first information and the K second information; K is a positive integer; according to the distribution of the intensity difference between the K first information and the K second information, determine the position of the occluder on the window information.
  • the area on the window can be divided into K areas, for example, the scanning module can step K-1 times to complete the scanning of the K areas on the window.
  • the K areas may be K first areas. That is, through the K first moments, the first detection module completes the scanning of the K first areas on the window.
  • the first detection module may receive first information corresponding to a first area. Each time the scanning module steps one time, a new first information corresponding to the first area can be received correspondingly. By stepping the scanning module for K-1 times, the first detection module can receive K pieces of first information on the window.
  • the scanning module rotates by an angle of n*a, therefore, K first moments and K second moments may overlap. For example, if the scanning module rotates by an angle a at the second first moment relative to the first first moment, then the n-th first moment is the first second moment.
  • taking N as 4 as an example taking the included angle between the first optical path and the second optical path in the horizontal direction as one step angle a as an example.
  • the four detection areas in the horizontal direction are scanned by the scanner, and the scanning of the four detection areas is completed at time 1 to time 4 as an example.
  • the scanner adjusts the scanning angle to the angle at which the first detection module receives the detection area 1, and the first detection module transmits the light wave of the detection area 1 through the area 1-1 on the window.
  • the second detection module receives the light wave of the detection area 2 through the scanner, and the second detection module transmits the light wave of the detection area 2 through the area 2-2 on the window.
  • the scanner will rotate a step angle, so that the first detection module corresponds to the angle of receiving the detection area 2, and the first detection module transmits the light wave of the detection area 2 through the area 2-1 on the window, correspondingly, the second The second detection module receives the light wave of the detection area 3 through the scanner, and the second detection module transmits the light wave of the detection area 3 through the area 3-2 on the window.
  • the light waves in the detection area 2 received by the first detection module and the second detection module can be determined Whether the difference in the intensity of light waves received by the area 2-2 on the window and the area 2-1 on the window is greater than a preset threshold value, thereby determining whether there is an obstruction in the area 2-1 on the window or the area 2-2 on the window .
  • the processing module may receive the grayscale value G1(1) of the signal intensity of the light wave in the area 2-1 on the window, and the grayscale value G2(1) of the signal intensity of the light wave in the area 2-2 on the window. 2).
  • G1(1) and G2(2) correspond to the same detection area.
  • the gray value G1(1) of the light wave received at time 1 in area 2-1 on the window and the gray value of the signal intensity of the light wave received at time 2 in area 2-2 on the window The gray value difference between G2(2) satisfies:
  • the first preset threshold may be determined by noise of the received optical signal, or may be determined by other methods, which are not limited herein.
  • the gray value difference satisfies:
  • the second preset threshold can be determined by noise of the received light signal, can also be determined by combining the signal strength of the light wave received by the window without an obstruction, can also be determined by combining the type of the obstruction, or It can be determined by other means, which is not limited here.
  • the light waves in the detection area 1 received by the first detection module and the second detection module that is, the light waves detected by the first detection module at time 1 and the second detection at time 2
  • the light waves detected by the module can determine whether the difference in the intensity of the light waves received by the area 1-1 on the window and the area 1-2 on the window is greater than a preset threshold, thereby determining the area 1-1 on the window or the area on the window 1-2 Whether there is an occluder.
  • the scanner will rotate a step angle, so that the first detection module corresponds to the angle of receiving the detection area 3, and the first detection module transmits the light wave of the detection area 3 through the area 3-1 on the window, correspondingly, the first detection module
  • the second detection module receives the light wave of the detection area 4 through the scanner, and the second detection module transmits the light wave of the detection area 4 through the area 4-2 on the window.
  • the light wave of the detection area 3 received by the first detection module and the second detection module can determine the Whether the difference in the intensity of light waves received by the area 3-2 and the area 3-1 on the window is greater than a preset threshold value, thereby determining whether there is an obstruction in the area 3-2 on the window or the area 3-1 on the window.
  • the scanner will rotate a step angle, so that the first detection module corresponds to the angle at which the detection area 4 is received, and the first detection module transmits the light wave of the detection area 4 through the area 4-1 on the window.
  • the light waves of the detection area 4 received by the first detection module and the second detection module can be Determine whether the difference in intensity of light waves received by the area 4-2 on the window and the area 4-1 on the window is greater than a preset threshold, thereby determining whether there is occlusion in the area 4-2 on the window or the area 4-1 on the window thing.
  • the included angle between the first optical path and the second optical path in the horizontal direction is L step angles a as an example.
  • the scanner adjusts the scanning angle to the angle corresponding to the first detection module receiving the detection area 1, and the first detection module transmits the light wave of the detection area 1 through the area 1-1 on the window.
  • the second detection module receives the light wave of the detection area 2 through the scanner, and the second detection module transmits the light wave of the detection area 2 through the area 2-2 on the window.
  • the scanner will rotate L step angles, so that the first detection module corresponds to the angle of receiving the detection area 2, and the first detection module transmits the light wave of the detection area 2 through the area 2-1 on the window.
  • the difference in the intensity of light waves received by the area 2-2 on the window and the area 2-1 on the window is greater than a preset threshold, thereby determining whether there is an obstruction in the area 2-2 on the window or the area 2-1 on the window .
  • occluders may appear on multiple first areas and/or multiple second areas, for example, at the first moment, the first light wave received by the first detection module through the first area of the window The first information; at the second moment, the second information of the second light wave received by the second detection module through the second area of the window, the first area and the second area are covered with the same type of occlusion, resulting in the second
  • the difference between the first information and the second information received by the first detection module and the second detection module is too small to determine that there is an obstruction in both the first area and the second area.
  • it can be determined whether there is an occluder it can be determined whether there is an occluder, and the size and position of the occluder can be determined in combination with the difference in light intensity of light waves in other areas on the window measured at other times.
  • the occluder covers the area 1-2 and the area 1-3, and also covers the area 2-2 and the area 2-3.
  • the second detection module obtains the second information on the area 2-2
  • the first detection module obtains the first information of the area 1-3. Since both area 2-2 and area 1-3 are covered with occlusions, the difference between the second information on area 2-2 and the first information on area 1-3 is less than the preset threshold, and area 2 cannot be determined Whether there is an occluder on -2 and areas 1-3.
  • region 2-3 and region 1-4 based on the second information of region 2-3 obtained by the second detection module at time 3 and the first information of region 1-4 obtained by the first detection module at time 4 Whether there is an obstruction. If the difference between the first information of the area 1-4 and the second information of the area 2-3 is greater than a preset threshold, it can be determined that there is no obstruction in the area 1-4 and that there is an obstruction in the area 2-3.
  • the second information of area 2-3 can be compared with the first information of area 1-3, and the second information of area 2-3 and area 1-3
  • the difference between the first information is smaller than the preset threshold, it can be determined that there is an occluder in the area 2-3, and correspondingly, an occluder also exists in the area 2-2.
  • the identification effect of the occlusion can be effectively improved, and the accuracy of identification of the occlusion on the window can be improved.
  • K pieces of first information corresponding to K first areas and K pieces of second information corresponding to K second areas can be obtained by scanning the window, and it is determined that the blocking object is on the window. of the distribution.
  • the processing module determines K pieces of first information according to the K pieces of first information correspondingly received by the first detection module at K first moments, and the K pieces of second information correspondingly received by the second detection module at K second moments and the distribution of the intensity difference between the K pieces of second information; K is a positive integer; according to the distribution of the intensity difference between the K pieces of first information and the K pieces of second information, determine the position information of the occluder on the window.
  • the size and position of the occluder are determined.
  • the first detection module may include 8 first sub-detection modules for detecting 8 vertical detection areas in the vertical direction.
  • the first detection module steps through 14 scans in the horizontal direction, and the first detection module can detect 14*8 detection areas.
  • the second detection module may include 8 second sub-detection modules for detecting 8 vertical detection areas in the vertical direction.
  • the second detection module steps through 14 scans in the horizontal direction, and the second detection module can detect 14*8 detection areas. Therefore, the scanning of 15*8 detection areas covered by the first detection module and the second detection module corresponds to the areas on 15*8 windows.
  • FIG. 7a it is a schematic diagram of the distribution of the intensity value of the light wave in the area of each window obtained by the first detection module
  • Figure 7b it is the intensity value of the light wave in the area of each window obtained by the second detection module
  • each column includes 8 sub-detection modules for detection. Combining with Fig. 7a and Fig. G2(9,4) and G2(9,5) corresponding to the detection module have occluders.
  • the distribution of intensity values of light waves in all areas obtained by the first detection module and the second detection module can be integrated to determine the size and position of the obstruction.
  • a more accurate spatial distribution of the transmittance of the window can be obtained through the distribution of intensity values of light waves in all regions obtained by the first detection module and the second detection module. For example, by scanning the window, K pieces of first information corresponding to K first areas and K pieces of second information corresponding to K second areas are obtained to determine the distribution of occluders on the window, for example For example, the spatial distribution of the transmittance r of the window satisfies:
  • K is the scanning time, which can correspond to the area on the window
  • f( ⁇ ) is the calculation function of the spatial transmittance. This application does not limit the function.
  • the identification effect of the occlusion can be effectively improved, and the accuracy of identification of the occlusion on the window can be improved.
  • the processing module can also determine the type of the obstruction in the first area or the second area on the window according to the first light wave and the second light wave. Specifically, the type of the occluder existing on the window may be determined by setting a corresponding threshold range.
  • the occluders in the first area on the window are water droplets, ice and snow, etc., which have a smooth surface
  • the intensity of the light transmitted into the window through the first area will be greatly reduced, and the intensity of the first light wave received by the first detection module through the first area is relatively
  • the signal intensity of the second light wave received by the second detection module through the second area is weaker. Therefore, by judging the intensity difference between the first light wave and the second light wave, it can be determined whether there is an obstruction and the type of the obstruction in the first area.
  • the intensity of light transmitted into the window through the first area will also decrease accordingly, and the signal intensity of the first light wave received by the first detection module through the first area is higher than that of the first light wave received by the second detection module through the second area.
  • the signal intensity of the second light wave is relatively weak. Therefore, by judging the intensity difference between the first light wave and the second light wave, it can be determined whether there is an obstruction and the type of the obstruction in the first area.
  • the first threshold range of water droplets when it is determined that the difference between the signal intensity of the first light wave and the signal intensity of the second light wave belongs to the first threshold range, it can be determined that there is a water drop type occlusion in the first area or the second area things.
  • the first threshold range of ice when it is determined that the difference between the signal intensity of the first light wave and the signal intensity of the second light wave falls within the first threshold range of ice, it can be determined that the first region or the second region exists Ice type occlusion.
  • the second threshold range of dust when it is determined that the difference between the signal strength of the first light wave and the signal strength of the second light wave falls within the second threshold range, it can be determined that there is a dust type in the first area or the second area occlusion.
  • the processing module may instruct a corresponding window cleaning component to perform a cleaning operation on the first area or the second area.
  • the processing module may also instruct a cleaning component that cleans the type of obstruction to perform a cleaning operation on the first area or the second area after determining that there is a type of obstruction in the first area or the second area.
  • the wiper when it is determined that there is a rain-type shelter in the first area, the wiper may be turned on to clean the first area.
  • the cleaner spraying component when it is determined that there is a dust-type occluder in the first area, the cleaner spraying component may be turned on to spray the window cleaner, and the wiper may be turned on to clean the first area.
  • the detection device may further include: a processing control module.
  • the processing control module can be used to control the scanning module at different scanning angles.
  • the processing control module can be integrated with the processing module, or can be set separately, which is not limited here.
  • processing control module can control the scanning module to step at a certain scanning angle, or it can also continuously rotate to a certain scanning angle, and the scanning module can be at different scanning angles. of light waves.
  • the processing control module may first control the scanning module to receive the first light wave in the first detection area at a scanning angle, for example, at the first moment, and enter the first detection module through the optical path adjustment module. and the second light wave in the second detection area enters the second detection module through the optical path adjustment module.
  • the processing control module triggers the data collection unit in the first detection module to collect the first light wave, and the processing control module triggers the data collection unit in the second detection module to collect the second light wave, so that the processing module, according to the obtained first light wave and the second light wave, Determine the information of the occluder corresponding to the first area and the second area. Afterwards, the processing control module controls the scanning module to be at the next scanning angle, and repeats the above process.
  • the signal receiving unit in the first detection module can always receive the corresponding first information.
  • the signal receiving unit in the second detection module can always receive the corresponding second information.
  • the processing control module can also be used to instruct the corresponding cleaning window component to perform the cleaning operation on the first area or the second area.
  • the processing control module may include a processing unit and a control unit, and the processing unit may be a general-purpose processor, a field programmable gate array (field programmable gate array, FPGA), a signal data processing (digital signal processing, DSP) circuit, application specific integrated circuit (ASIC), or other programmable logic devices.
  • the control unit includes the driver of the scanner, the driver of the modulator, the driver of the frequency modulation of the laser, the driver of the detector, etc. These drivers can be integrated or separated.
  • the FPGA can send control signals to each driver of the control unit, so that the driver of the scanner controls the scanning module, and the driver of the detector controls the first detection module and the second detection module, so as to realize the scanning module, the first detection module, Synchronization is performed between the second detection modules; or, the driving of the scanner controls the scanning module, and the driving of the detector controls the first detection module and the second detection module, so as to realize the connection between the scanning module, the first detection module and the second detection module. to synchronize between.
  • the FPGA can send a control signal to the driver of the scanning module, and the driver of the scanning module can control the scanner to be at a certain scanning angle according to the control signal.
  • the detection device includes: an optical path adjustment module, a scanning module and a processing module, a first detection module and a second detection module with a distance d, as shown in Figure 8, the method includes the following steps:
  • Step 801 The scanning module receives and reflects the first light wave passing through the first area of the window at the first moment, and the first light wave is received by the first detection module through the optical path adjustment module and generates first information; the first information indicates the first light wave Strength of.
  • Step 802 The scanning module receives and reflects the second light wave passing through the second area of the window at the second moment, and the second light wave is received by the second detection module via the optical path adjustment module to generate second information; the second information is used to indicate the second The intensity of the light waves; the first light wave and the second light wave originate from the same detection area outside the viewing window.
  • Step 803 The processing module obtains the first information from the first detection module and the second information from the second detection module, and controls the scanning module to rotate at a step angle a.
  • the scanning angle difference between the scanning module at the first moment and the second moment is n*a, a is a step angle and is greater than 0, and n is a positive integer;
  • the optical path adjustment module includes a first lens group, a first light wave and a second
  • the distance c between the images formed by the light waves on the focal plane of the first lens group is related to the scanning angle difference n*a.
  • the ratio of the distance c between the images formed by the first light wave and the second light wave on the focal plane of the first lens group to the focal length f of the first lens group is related to the scan angle difference n*a.
  • the distance c is m times of the distance d, and c, f, and m are positive numbers.
  • Step 804 The processing module outputs third information according to the first information and the second information, the third information is used to indicate that the first area or the second area is blocked, or is used to indicate to perform a cleaning operation.
  • the angle between the first optical path and the second optical path is related to the scanning angle difference n*a; wherein, the first optical path is the angle between the first detection module, the optical path adjustment module and the scanning module at the first moment Optical path; the second optical path is the optical path between the second detection module, the optical path adjustment module and the scanning module at the first moment; or, the first optical path is the optical path between the first detection module, the optical path adjustment module and the scanning module at the second moment Optical path; the second optical path is the optical path between the second detection module, the optical path adjustment module and the scanning module at the second moment.
  • the first light wave transmitted to a detection area in the window is received by the first detection module at the first moment, and the second light wave transmitted to the same detection area in the window is received by the second detection module at the second time, and the second light wave is transmitted to the same detection area in the window by the second detection module.
  • a light wave is transmitted to the first detection module through the first area on the window, and a second light wave is transmitted to the second detection module through the second area on the window, so that, based on the first light wave and the second light wave from the same detection area, the Comparing the differences between different areas on the window, since the transmittance of light waves on the window is considered, it can be more accurately judged whether there is an obstruction on the window than by detecting the window through the reflected echo signal.
  • the type of the obstruction can also be determined based on the difference between the first light wave and the second light wave to perform a corresponding cleaning operation, and the obstruction can also be processed while identifying the obstruction in time , which effectively guarantees the normal working performance of devices such as lidar or camera.
  • the embodiment of the present application further provides a detection device for realizing the above method.
  • the device may include a hardware structure and/or a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the detection device provided in the embodiment of the present application may be a controller integrated with a processor, or may also be a chip or a circuit capable of performing the functions corresponding to the above method, and the chip or circuit may be set in a device such as a controller.
  • the detection device provided in the embodiment of the present application can also be realized in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the embodiments of the present application.
  • the detection device provided in the embodiment of the present application can divide functional modules, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • the detection device may be a laser radar, or a device in the laser radar, or a device that can be used in conjunction with the laser radar.
  • the device 900 may include: a first detection module 901 , a second detection module 902 , an optical path adjustment module 903 and a scanning module 904 .
  • the apparatus 900 may also include other modules, for example, a processing module and the like.
  • the embodiment of the present application is not limited, and only shows main functional modules.
  • first detection module 901 and the second detection module 901 in the embodiment of the present application may be respectively implemented by detectors or detector-related circuit components.
  • the scanning module 904 is used to receive and reflect the first light wave passing through the first area of the window at the first moment, and the first light wave is received by the first detection module 901 through the optical path adjustment module 903 to generate first information; the scanning module 904 , for receiving and reflecting the second light wave passing through the second region of the window at the second moment, the second light wave is received by the second detection module 902 via the optical path adjustment module 903 to generate second information; the scanning module 904 at the first moment and the second The scanning angle difference at the second moment is n*a, a is the step angle and is greater than 0, and n is a positive integer; the optical path adjustment module 903 includes a first lens group, and the first light wave and the second light wave are on the focal plane of the first lens group The distance c between the images formed on the surface is related to the scanning angle difference n*a; or, the distance c between the images formed by the first light wave and the second light wave on the focal plane of the first lens group is related to the second The ratio of the focal
  • the processing module is used to control the scanning module 904 to rotate at a step angle a; the processing module is also used to output third information according to the first information and the second information, and the third information is used to indicate the first area or the second area An occlusion is present, or is used to indicate that a cleaning operation is to be performed.
  • the processing module acquires first information from the first detection module and second information from the second detection module, the first information indicates the intensity of the first light wave, and the second information is used to indicate the intensity of the second light wave.
  • the embodiment of the present application can provide a laser radar 1000, the structure of the laser radar 1000 can be shown in FIG. ;
  • the optical device 1004 may include the scanning module in the above embodiment and/or the optical path adjustment module in the above embodiment.
  • the first detector 1002 may be the first detection module in the above embodiment, and the second detector 1003 may be the second detection module in the above embodiment.
  • the lidar 1000 may further include a processing module.
  • the scanning module in the optical device 1004 is used to receive and reflect the first light wave passing through the first area of the window at the first moment, and the first light wave is received by the first detection module through the optical path adjustment module to generate first information; the scanning module, Used to receive and reflect the second light wave passing through the second area of the window at the second moment, the second light wave is received by the second detection module through the optical path adjustment module to generate second information; the scanning module scans at the first moment and the second moment
  • the angle difference is n*a, a is the step angle and is greater than 0, and n is a positive integer;
  • the optical path adjustment module in the optical device 1004 includes a first lens group, and the distance c between the images formed by the first light wave and the second light wave on the focal plane of the first lens group is related to the scanning angle difference n*a; or, The ratio of the distance c between the images formed by the first light wave and the second light wave on the focal plane of the first lens group to the focal length f of the first lens group is related to the scanning angle difference n*a.
  • the distance c is m times of the distance d, and c, f, and m are positive numbers.
  • the processing module is used to control the scanning module in the optical device 1004 to rotate at a step angle a; the processing module is also used to output third information according to the first information and the second information, and the third information is used to indicate the first area Either the second area is covered, or it is used to indicate the execution of a cleaning operation.
  • the processing module acquires first information from the first detection module and second information from the second detection module, the first information indicates the intensity of the first light wave, and the second information is used to indicate the intensity of the second light wave.
  • connection between the laser 1001 and the optical device 1004 in FIG. The connection line between the first detector 1002, the optical device 1004 and the second detector 1003 indicates that there is an optical path between the optical device 1004 and the first detector 1002, and there is an optical path between the optical device 1004 and the second detector 1003. Represents the device connection between the optical device 1004 and the first detector 1002 , and the device connection between the optical device 1004 and the second detector 1003 .
  • the embodiment of the present application also provides a chip, the chip is connected to the memory, and is used to read and execute the software program stored in the memory, and when the software program is run on the chip, the chip realizes the functions shown in Figure 3 and Figure 4a.
  • Fig. 4c Fig. 5a ⁇ Fig. 5c, Fig. 6a ⁇ Fig. 6f, Fig. 7a ⁇ Fig. 7b, the function of the processing module or the laser radar in Fig. 8.
  • the chip controls the scanning module of the detection device to rotate with a step angle a; and obtains the first information from the first detection module of the detection device and the first information from the detection device
  • the second information of the second detection module the first information indicates the intensity of the first light wave
  • the second information is used to indicate the intensity of the second light wave
  • the third information is used to indicate that the first area of the window of the detection device or the second area of the window is blocked, or is used to indicate the execution of a cleaning operation
  • the first light wave is received by the scanning module of the detection device at the first moment and reflected through the first area, the first light wave is received by the first detection module through the optical path adjustment module of the detection device and generates first information; the second light wave passes through the detection device The scanning module receives and reflects and passes through the second area at the second moment, and the second light wave is received by the second detection module through the optical path adjustment module and generates second information;
  • the scanning angle difference between the scanning module at the first moment and the second moment is n*a, a is the step angle and is greater than 0, and n is a positive integer;
  • the optical path adjustment module includes a first lens group, and the first light wave and the second light wave are in the
  • the distance c between the images formed on the focal plane of the first lens group is related to the scanning angle difference n*a; or, between the images formed by the first light wave and the second light wave on the focal plane of the first lens group
  • the ratio of the distance c to the focal length f of the first lens group is related to the scanning angle difference n*a.
  • the distance c is m times of the distance d, and c, f, and m are positive numbers.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, and when the instructions are run on the detection device, the detection device is made to realize the steps shown in Figure 3, Figures 4a-4c, Figures 5a-5c, and Figures 6a-6f. , Figures 7a-7b, and the function of the detection device or the laser radar in Figure 8 .
  • the detection device controls the scanning module of the detection device to rotate at a step angle a; and obtains the first information from the first detection module of the detection device and the second detection from the detection device
  • the second information of the module the first information indicates the intensity of the first light wave
  • the second information is used to indicate the intensity of the second light wave
  • the third information is output, and the third information is used to indicate the detection
  • the first area of the window of the device or the second area of the window is blocked, or used to indicate the execution of a cleaning operation;
  • the first light wave is received by the scanning module of the detection device at the first moment and reflected through the first area, the first light wave is received by the first detection module through the optical path adjustment module of the detection device and generates first information; the second light wave passes through the detection device The scanning module receives and reflects and passes through the second area at the second moment, and the second light wave is received by the second detection module through the optical path adjustment module and generates second information;
  • the scanning angle difference between the scanning module at the first moment and the second moment is n*a, a is the step angle and is greater than 0, and n is a positive integer;
  • the optical path adjustment module includes a first lens group, and the first light wave and the second light wave are in the
  • the distance c between the images formed on the focal plane of the first lens group is related to the scanning angle difference n*a; or, between the images formed by the first light wave and the second light wave on the focal plane of the first lens group
  • the ratio of the distance c to the focal length f of the first lens group is related to the scanning angle difference n*a.
  • the distance c is m times of the distance d, and c, f, and m are positive numbers.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be Incorporation or may be integrated into another device, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or may be distributed to multiple different places . Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium Among them, several instructions are included to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes various media capable of storing program codes such as a mobile hard disk, ROM, RAM, magnetic disk or optical disk.
  • An embodiment of the present application further provides a terminal, and the terminal includes at least one detection device mentioned in the above-mentioned embodiments of the present application, or includes the laser radar mentioned in the above-mentioned embodiments of the present application.
  • the embodiment of the present application also provides a computer product, including instructions.
  • the computer can realize the steps shown in Figure 3, Figure 4a-4c, Figure 5a-5c, Figure 6a-6f, Figure 7a- 7b.
  • the computer controls the scanning module of the detection device to rotate at a step angle a; and obtains the first information from the first detection module of the detection device and the information from the second detection module of the detection device
  • the second information indicates the intensity of the first light wave
  • the second information is used to indicate the intensity of the second light wave
  • output the third information the third information is used to indicate the detection device
  • the first area of the window or the second area of the window is blocked, or used to indicate the execution of a cleaning operation
  • the first light wave is received by the scanning module of the detection device at the first moment and reflected through the first area, the first light wave is received by the first detection module through the optical path adjustment module of the detection device and generates first information; the second light wave passes through the detection device The scanning module receives and reflects and passes through the second area at the second moment, and the second light wave is received by the second detection module through the optical path adjustment module and generates second information;
  • the scanning angle difference between the scanning module at the first moment and the second moment is n*a, a is the step angle and is greater than 0, and n is a positive integer;
  • the optical path adjustment module includes a first lens group, and the first light wave and the second light wave are in the
  • the distance c between the images formed on the focal plane of the first lens group is related to the scanning angle difference n*a; or, between the images formed by the first light wave and the second light wave on the focal plane of the first lens group
  • the ratio of the distance c to the focal length f of the first lens group is related to the scanning angle difference n*a, the distance c is m times the distance d, and c, f, and m are positive numbers.

Abstract

一种检测方法、装置、激光雷达、终端及计算机可读介质,涉及传感器技术领域,应用于测绘、自动驾驶或者辅助驾驶。该装置可以用于检测激光雷达的视窗,其中,该装置包括:扫描模块(904)、处理模块及距离为d的第一探测模块(901)和第二探测模块(902)。其中,通过光路调整模块(903)和扫描模块(904),使得第一探测模块(901)在第一时刻接收透过视窗的第一区域的第一光波并生成第一信息、第二探测模块(902)在第二时刻接收透过视窗的第二区域的第二光波并生成第二信息,第一光波和第二光波为来自视窗外的同一探测区域的光波。通过处理模块获取第一信息和第二信息,并输出第三信息,以指示第一区域或者第二区域存在遮挡,或者用于指示清洗操作。

Description

一种检测方法及装置 技术领域
本申请涉及传感器技术领域,尤其涉及一种检测方法及装置。
背景技术
激光雷达(light detection and ranging,LiDAR)为发射激光束探测目标的位置、速度等特征量的雷达系统。激光雷达的工作原理是向目标物体(例如车辆、飞机或导弹)发射探测信号(激光束),然后将接收到的从目标物体反射回来的信号(回波信号)与发射信号进行比较和处理后,可获得目标物体的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而可对目标物体进行探测、跟踪和识别。
目前,激光雷达被广泛应用在无人驾驶,测绘,机器人等领域。激光雷达为了避免外界环境对内部光学器件的污染,会有壳体进行隔离保护。壳体中的视窗在隔离外界污染的同时,能保证激光正常透射出去。但是激光雷达在使用过程中,外界污染物,如雨雪、冰霜、尘土、飞虫等,会附着在视窗上,导致激光无法正常透射,进而影响激光雷达的探测性能。因此亟需一种检测方法对视窗是否被遮挡进行检测。
发明内容
本申请通过一种检测方法及装置,用于检测激光雷达等设备中的视窗是否被遮挡物遮挡。
第一方面,本申请提供一种检测装置,包括:光路调整模块、扫描模块和处理模块,距离为d的第一探测模块和第二探测模块,d大于0;扫描模块,用于在第一时刻接收并反射透过视窗的第一区域的第一光波,第一光波经由光路调整模块被第一探测模块接收并生成第一信息;扫描模块,用于第二时刻接收并反射透过视窗的第二区域的第二光波,第二光波经由光路调整模块被第二探测模块接收并生成第二信息;扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关;或者,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与第一透镜组的焦距f的比值,和扫描角度差n*a有关,距离c为距离d的m倍,c、f、m为正数;
处理模块,用于控制扫描模块以步进角度a进行转动;并获取来自第一探测模块的第一信息和来自第二探测模块的第二信息,第一信息指示第一光波的强度,以及第二信息用于指示第二光波的强度;处理模块,还用于根据第一信息和第二信息,输出第三信息,第三信息用于指示第一区域或者第二区域存在遮挡,或者用于指示执行清洗操作。
通过上述方案,在第一时刻,第一光波通过视窗上的第一区域透射后被第一探测模块接收。在第二时刻,第二光波通过视窗上的第二区域透射后被第二探测模块接收,即第一光波和第二光波在视窗上的不同位置透射。考虑到视窗上存在遮挡物时,例如,在视窗上的第一区域或第二区域存在遮挡物时,可以根据第一探测模块接收到的第一光波被第一区域透射后的第一信息,及第二探测模块接收到的第二光波被第二区域透射后的第二信息进 行比较,确定第一区域和第二区域之间是否存在透射上的差异,从而,确定出第一区域或者第二区域是否存在遮挡,从而,可以用于指示是否对视窗进行清洗操作,有效的保证了激光雷达或摄像头等器件的正常工作的性能。
需要说明的是,为保证第一光波和第二光波被视窗透射后可以比较,该方案中,通过扫描模块和光路调整模块,使得第一探测模块在第一时刻接收到的第一光波和第二探测模块在第二时刻接收到的第二光波为来自视窗外的同一探测区域。
其中,在第一时刻,来自同一探测区域的第一光波在第一时刻经扫描模块并通过光路调整模块的第一透镜组聚焦后,使得第一光波对应的探测区域成像在第一透镜组的焦平面上,进而,第一光波对应的第一信息被第一探测模块接收。在第二时刻,经扫描模块旋转角度n*a,使得第二光波经扫描模块后,并通过光路调整模块的第一透镜组聚焦后,成像在第一透镜组的焦平面上,且第二光波成像的位置与第一光波成像的位置之间的距离为c,实现第二光波对应的第二信息被第二探测模块接收。
举例来说,在n为1时,第二时刻相对第一时刻,扫描模块旋转角度a。该旋转角度a对应第一探测模块接收第一信息的光路和第二探测模块接收第二信息的光路之间的角度,即扫描模块在第一时刻时段第一探测模块接收到第一光波对应的第一信息,经过扫描模块的一次步进后,由于第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与第一透镜组的焦距f的比值,和扫描角度差a有关,使得第二探测模块可以接收到第二光波对应的第二信息。即通过扫描模块的一次步进,使得第一探测模块和第二探测模块接收到来自同一探测区域的光波。
另外,在对扫描模块的步进角度a进行调整时,可以相应调整第一探测模块对应的第一区域和第二探测模块对应的第二区域的关系,相应的,还可以调整第一区域和第二区域的大小,提高检测装置检测视窗的灵活性。
一种可能的实现方式,第一光波与第二光波平行;第一光波和第二光波来源于视窗外的同一探测区域。
通过上述方案,通过第一探测模块在第一时刻接收透射到视窗内的一个探测区域的第一光波,并通过第二探测模块在第二时刻接收透射到视窗内的同一个探测区域的第二光波,而第一光波通过视窗上的第一区域透射到第一探测模块,第二光波通过视窗上的第二区域透射到第二探测模块,从而,基于来自同一探测区域的第一光波和第二光波,实现对视窗上的不同区域的差异性进行比较,由于考虑的是光波在视窗上的透过率,相比通过反射回波信号对视窗进行检测的方案,可以更准确的判断视窗上是否存在遮挡物,有效的保证了激光雷达或摄像头等器件的正常工作的性能。
一种可能的实现方式,第一时刻和第二时刻的扫描角度差满足:
n*a=arctan(c/f)
其中,f为光路调整模块的焦距,c为第一光波和第二光波在光路调整模块的焦平面上所成的像之间的距离,a为扫描模块的步进角度,c、f、a大于0;n为正整数。
通过上述方案,通过第一时刻和第二时刻的扫描角度差与第一光波和第二光波在光路调整模块的焦平面上所成的像之间的距离c通过第一透镜组建立联系,使得第一透镜组可以将第一光波分别通过第一时刻透射到第一探测模块,将第二光波透射到第二探测模块,实现检测装置可以通过视窗上的不同区域接收来自同一探测区域的第一光波和第二光波,降低了实现的难度。
一种可能的实现方式,第一透镜组用于对来自扫描模块的第一光波进行聚焦,并将聚焦后的第一光波传输给第一探测模块;对来自扫描模块的第二光波进行聚焦,并将聚焦后的第二光波传输给第二探测模块;第一探测模块和第二探测模块位于透镜组件的像方焦平面上;c与d相等。
通过上述方案,通过第一透镜组,第一探测模块实现在第一时刻接收第一光波,第二探测模块实现在第二时刻接收第二光波,方案更易实现。
一种可能的实现方式,光路调整模块还包括第二透镜组,第二透镜组为准直系统;第二透镜组,用于对来自第一透镜组的第二光波进行聚焦,并将聚焦后的第一光波传输给第一探测模块;对来自第一透镜组的第二光波进行聚焦,并将聚焦后的第二光波传输给第二探测模块;准直系统的入光口位于第一透镜组的焦平面上,第一探测模块和第二探测模块位于准直系统的焦平面上,m与准直系统的焦距有关。
通过上述方案,通过第二透镜组,增加了光路调整模块和第一探测模块与第二探测模块设置的灵活性,在满足第一探测模块实现在第一时刻接收第一光波,第二探测模块实现在第二时刻接收第二光波的前提下,提高了检测装置的灵活性。
一种可能的实现方式,处理模块,具体用于在第一光波的强度与第二光波的强度的差异大于预设阈值时,确定第一区域或第二区域存在遮挡。
通过上述方案,基于遮挡物在视窗上的透射率的不同,通过上述方案,可以根据第一光波的强度与第二光波的强度的差异,确定出第一区域或第二区域存在遮挡,从而,为后续视窗的清洗提供更多的信息。
一种可能的实现方式,处理模块,还用于根据第一光波的强度与第二光波的强度的差异值,确定视窗上的遮挡物的类型。
在确定存在遮挡物的同时,还可以基于不同遮挡物在透射上的特性的不同,通过第一光波和第二光波之间的差异值,确定遮挡物的类型,从而执行相应遮挡物类型的清洗操作,在及时对遮挡物识别的同时,还可以对遮挡物进行适应性的处理,提高视窗的维护效果。
例如,在确定第一区域存在雨水类型的遮挡物时,可以开启雨刷器执行对第一区域的清洗操作。再比如,在确定第一区域存在灰尘类型的遮挡物时,可以开启清洁剂喷洒部件喷洒视窗的清洁剂,及开启雨刷器执行对第一区域的清洗操作。
一种可能的实现方式,处理模块,还用于:根据所述第一探测模块在K个第一时刻对应接收的K个第一信息,和所述第二探测模块在K个第二时刻对应接收的K个第二信息,确定K个所述第一信息和K个第二信息之间的强度差的分布;所述K为正整数;根据所述K个第一信息和K个第二信息之间的强度差的分布,确定遮挡物在视窗上的位置信息。
举例来说,视窗上的区域可以划分为K个区域,例如,可以通过扫描模块步进K-1次,完成对视窗上的K个区域的扫描。其中,针对第一探测模块,K区域可以为K个第一区域。即通过K个第一时刻,使得第一探测模块完成对视窗上的K个第一区域的扫描。在扫描模块的初始位置,第一探测模块可以接收到一个第一区域对应的第一信息。每次扫描模块步进1次,都可以相应接收到一个新的第一区域对应的第一信息。通过扫描模块步进K-1次,可以使得第一探测模块接收到视窗上的K个第一信息。
针对第二探测模块,K区域可以为K个第二区域。K个第二区域和K个第一区域之间可以有重叠。即通过K个第二时刻,使得第二探测模块完成对视窗上的K个第二区域的扫描。在扫描模块的初始位置,第二探测模块可以接收到一个第二区域对应的第二信息。每 次扫描模块步进1次,都可以相应接收到一个新的第二区域对应的第二信息。通过扫描模块步进K-1次,可以使得第二探测模块接收到视窗上的K个第二信息。
考虑到第二时刻相对第一时刻,扫描模块旋转角度n*a,因此,K个第一时刻和K个第二时刻可以是存在重叠的。例如,若第2个第一时刻相对第1个第一时刻,扫描模块旋转角度a,则第n个第一时刻为第1个第二时刻。
通过上述方案,可以实现对视窗上的K个第一区域和K个第二区域进行扫描,提高对视窗的检测效率。
另外,考虑到遮挡物可能在多个第一区域和/或多个第二区域上出现的场景,例如,在第一时刻,第一探测模块接收到的透过视窗的第一区域的第一光波的第一信息;第二时刻,第二探测模块接收到的透过视窗的第二区域的第二光波的第二信息,第一区域和第二区域上都覆盖有相同类型的遮挡物,导致第一探测模块和第二探测模块接收到的第一信息和第二信息之间的差异过小,无法确定出第一区域和第二区域上都存在遮挡物。此时,可以通过对视窗进行扫描的方式,获得K个第一区域对应的K个第一信息,及K个第二区域对应的K个第二信息,确定出遮挡物在视窗上的分布情况,从而,相比通过单个的第一区域和第二区域确定第一区域或第二区域上是否有遮挡物的方式,可以有效提高遮挡物的识别效果,提高对视窗上的遮挡物的识别的准确度。
一种可能的实现方式,第一探测模块或第二探测模块位于光路调整模块的光轴上。
通过上述方案,可以简化第一探测模块和第二探测模块在检测装置中的光路的复杂度。
一种可能的实现方式,扫描模块的转轴位于光路调整模块的光轴上。
通过上述方案,可以简化扫描模块的设计的复杂度。
第二方面,本申请提供一种检测方法,该方法可以在检测装置上执行,检测装置可以是设置具有视窗的激光雷达等设备上的部件,或者是部分设置在具有视窗的激光雷达等设备上,该检测装置包括:光路调整模块、扫描模块和处理模块,距离为d的第一探测模块和第二探测模块。其中,
扫描模块在第一时刻接收并反射透过视窗的第一区域的第一光波,第一光波经由光路调整模块被第一探测模块接收并生成第一信息;在第二时刻接收并反射透过视窗的第二区域的第二光波,第二光波经由光路调整模块被第二探测模块接收并生成第二信息;扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;
光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关;或者,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与第一透镜组的焦距f的比值,和扫描角度差n*a有关,距离c为距离d的m倍,c、f,m为正数;
处理模块控制扫描模块以步进角度a进行转动;并获取来自第一探测模块的第一信息和来自第二探测模块的第二信息,根据第一信息和第二信息,输出第三信息,第一信息指示第一光波的强度,以及第二信息用于指示第二光波的强度;第三信息用于指示第一区域或者第二区域存在遮挡,或者用于指示执行清洗操作。
一种可能的实现方式,第一光波与第二光波平行;第一光波和第二光波来源于视窗外的同一探测区域。
一种可能的实现方式,第一时刻和第二时刻的扫描角度差满足:
n*a=arctan(c/f)
其中,f为光路调整模块的焦距,c为第一光波和第二光波在光路调整模块的焦平面上所成的像之间的距离,a为扫描模块的步进角度。
一种可能的实现方式,c与d相等;第一透镜组对来自扫描模块的第一光波进行聚焦,并将聚焦后的第一光波传输给第一探测模块,第一探测模块根据聚焦后的第一光波生成第一信息;第一透镜组对来自扫描模块的对第二光波进行聚焦,并将聚焦后的第二光波传输给第二探测模块,第二探测模块根据聚焦后的第二光波生成是第二信息。
一种可能的实现方式,光路调整模块还包括第二透镜组,第二透镜组为准直系统;第二透镜组的入光口位于透镜组件的焦平面上,第一探测模块和第二探测模块位于第二透镜组的焦平面上,m与第二透镜组的焦距有关;
第二透镜组对来自第一透镜组的第一光波进行聚焦,并将聚焦后的第一光波传输给第一探测模块,第一探测模块根据接收到的聚焦后的第一光波生成第一信息;
第二透镜组对来自第一透镜组的第二光波进行聚焦,并将聚焦后的第二光波传输给第二探测模块,第二探测模块根据接收到的聚焦后的第二光波生成第二信息。
一种可能的实现方式,处理模块在第一光波的强度与第二光波的强度的差异大于预设阈值时,确定第一区域或第二区域存在遮挡。
一种可能的实现方式,处理模块根据第一光波的强度与第二光波的强度的差异值,确定视窗上的遮挡物的类型。
一种可能的实现方式,处理模块根据第一探测模块在K个第一时刻对应接收的K个第一信息,和第二探测模块在K个第二时刻对应接收的K个第二信息,确定K个第一信息和K个第二信息之间的强度差的分布;K为正整数;根据K个第一信息和K个第二信息之间的强度差的分布,确定遮挡物在视窗上的位置信息。
第三方面,本申请提供了一种检测装置,该检测装置包括执行上述任第二方面或第二方面任意可能实现方式的方法的模块/单元。这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第四方面,本申请提供了一种激光雷达,包括如第一方面中任意可能实现方式中的检测装置。
第五方面,本申请提供了一种终端,终端包括如第一方面中任意可能实现方式中的检测装置。
其中,检测装置可以设置于终端设备(简称终端)上,使得终端设备具有对激光雷达上的视窗进行检测的功能。该终端可以是机动车辆、路口摄像头、无人机、轨道车、自行车、信号灯或测速装置等终端设备。在一种可能的方式中,终端可以包括待检测的视窗对应的激光雷达。此时,检测装置可以为激光雷达,或者全部位于激光雷达内部;也可以部分位于激光雷达内部,部分位于除激光雷达之外的终端上。例如,检测装置的处理模块可以位于除激光雷达之外的终端上。激光雷达还安装在网络设备(如各种系统中的基站)等上面,在此不做限制。
第六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在检测装置上运行时,使得检测装置执行上述第二方面或第二方面的任意可能的实现方式中的方法。例如,程序指令用于控制检测装置的扫描模块以步进角度a进行转动,并获取来自检测装置的第一探测模块的第一信息和来自检测装置的第二探测模块的第二信息,根据第一信息和第二信息,输出第三信息,第三信息用于指示检测装置 的视窗的第一区域或者视窗的第二区域存在遮挡,或者用于指示执行清洗操作;第一信息指示第一光波的强度,以及第二信息用于指示第二光波的强度;第一光波通过检测装置的扫描模块在第一时刻接收并反射透过第一区域,第一光波经由检测装置的光路调整模块被第一探测模块接收并生成第一信息;第二光波通过检测装置的扫描模块在第二时刻接收并反射透过第二区域,第二光波经由光路调整模块被第二探测模块接收并生成第二信息;扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关,距离c为距离d的m倍,c、m为正数。
第七方面,本申请提供了一种计算机程序产品,该计算机程序产品可以包括程序指令,当计算机程序产品在检测装置上运行时,使得检测装置执行上述第二方面或第二方面的任意可能的实现方式中的方法。例如,程序指令用于控制检测装置的扫描模块以步进角度a进行转动,并获取来自检测装置的第一探测模块的第一信息和来自检测装置的第二探测模块的第二信息,根据第一信息和第二信息,输出第三信息,第三信息用于指示检测装置的视窗的第一区域或者视窗的第二区域存在遮挡,或者用于指示执行清洗操作;第一信息指示第一光波的强度,以及第二信息用于指示第二光波的强度;第一光波通过检测装置的扫描模块在第一时刻接收并反射透过第一区域,第一光波经由检测装置的光路调整模块被第一探测模块接收并生成第一信息;第二光波通过检测装置的扫描模块在第二时刻接收并反射透过第二区域,第二光波经由光路调整模块被第二探测模块接收并生成第二信息;扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关,距离c为距离d的m倍,c、m为正数。
关于第二方面至第七方面的各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
附图说明
图1a为一种激光雷达的探测示意图;
图1b为一种探测模块接收到的信号的示意图;
图2a为本申请提供的一种检测装置的结构示意图;
图2b为本申请提供的一种检测装置的结构示意图;
图3为本申请提供的一种检测装置的结构示意图;
图4a为本申请提供的一种第一探测模块、第二探测模块与探测区域的关系示意图;
图4b为本申请提供的一种第一探测模块、第二探测模块与探测区域的关系示意图;
图4c为本申请提供的一种第一探测模块、第二探测模块与探测区域的关系示意图;
图5a为本申请提供的一种光路调整模块与第一探测模块、第二探测模块的关系示意图;
图5b为本申请提供的一种光路调整模块与第一探测模块、第二探测模块的关系示意图;
图5c为本申请提供的一种光路调整模块与第一探测模块、第二探测模块的关系示意图;
图6a为本申请提供的一种扫描方式的示意图;
图6b为本申请提供的一种第一探测模块和第二探测模块的光路关系示意图;
图6c为本申请提供的一种第一探测模块和第二探测模块的光路关系示意图;
图6d为本申请提供的一种扫描轨迹的示意图;
图6e为本申请提供的一种扫描轨迹的示意图;
图6f为本申请提供的一种扫描轨迹的示意图;
图7a为本申请提供的一种扫描结果的示意图;
图7b为本申请提供的一种扫描结果的示意图;
图8为本申请提供的一种检测方法的流程示意图;
图9为本申请提供的一种检测装置的结构示意图;
图10为本申请提供的一种检测装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)视窗,可以为激光雷达的视窗。为了避免外界环境对激光雷达内部光学器件的污染,通常会有壳体进行隔离保护。对于激光雷达发射方向会使用视窗(可以是对激光雷达所在的光波长为透明的玻璃或者其他材料的窗口结构),在隔离外界污染的同时,能保证激光的光波正常透射出去。
(2)检测装置,可以为检测激光雷达等具有视窗部件的设备。以激光雷达为例,在激光雷达的使用过程中,外界污染物,如雨雪、冰霜、尘土、飞虫等,会附着在视窗上,导致激光无法正常透射或回波信号无法正常接收,进而影响激光雷达的探测性能。通过对视窗的检测,有利于对视窗上的遮挡物进行识别,从而为后续对视窗进行清洗或告警提供支持。该检测装置可以为激光雷达,或者为设置在激光雷达中的功能部件,或者为包括激光雷达的较大设备(例如,终端设备(简称终端)或车辆),或者是独立的设备,或者也可以是部分设置在除了激光雷达外的其他设备中的功能部件,部分设置在激光雷达内的功能部件等。举例来说,检测装置可以设置在机动车辆、路口摄像头、无人机、轨道车、自行车、信号灯或测速装置等终端上,使得终端设备具有对激光雷达上的视窗进行检测的功能。在一种可能的方式中,终端可以包括待检测的视窗对应的激光雷达。此时,检测装置可以全部位于激光雷达内部;也可以部分位于激光雷达内部,部分位于除激光雷达之外的终端上。例如,检测装置的处理模块可以位于除激光雷达之外的终端上。在另一种可能的方式中,该激光雷达还可以安装在网络设备(如各种系统中的基站)等上面,在此不做限制。
(3)激光雷达,也可称为激光雷达装置,或者称为激光雷达探测装置或者激光雷达信号发送装置等。激光雷达可以是安装在机动车辆、路口摄像头、无人机、轨道车、自行车、信号灯或测速装置等终端设备(简称为终端)上面的激光雷达。可选的,激光雷达也可以是安装在网络设备(如各种系统中的基站)等上面的激光雷达,在此不做限制。
激光雷达可被用作车载激光雷达(例如扫描式车载FMCW激光雷达)、机载激光雷达等对精确度要求较高的场景。此外,激光雷达还可以安装于移动平台,如卫星。在此情况下,激光雷达需要移动平台中的其它装置的协助以确定自身当前的位置和转向信息,这样可保证测量数据的可用性。例如,移动平台中还可以包括全球定位系统(global positioning system,GPS)装置和惯性测量单元(inertial measurement unit,IMU)装置,激光雷达可以结合GPS装置和IMU装置的测量数据进而得到目标物体的位置、速度等特征量。例如, 雷达可以通过移动平台中的GPS装置提供移动平台的地理位置信息,通过IMU装置记录移动平台的姿态和转向信息。在根据回波信号确定与目标物体之间的距离后,可以通过GPS装置提供的地理位置信息或IMU装置提供的姿态和转向信息中的至少一种,将目标物体的测量点由相对坐标系转换为绝对坐标系上的位置点,得到目标物体的地理位置信息,从而使激光雷达可以应用于移动的平台中。可以理解的是,本申请中激光雷达还可应用于自动驾驶场景中、或者也可应用于网联车场景中,等等。
激光雷达的工作原理是通过发射信号(或者称为探测信号),并接收经过目标物体反射的反射信号,来探测相应的目标物体。激光雷达所发射的信号可以是电磁波信号,激光光束等,相应的,所接收的经过目标物体反射的反射信号也可以是相应的电磁波信号,激光光束信号等。从而,通过发射光波并接收目标散射的电磁能量,比较分析接收到的回波信号与探测信号,可以提取与目标相关的信息,例如目标的位置信息。例如,目标物体至发射点的距离、距离变化率(径向速度)、方位、高度等信息。
图1a为本申请提供的一种激光雷达的探测示意图。激光雷达包括激光器和探测器。激光器以一定方向发射光束,若在沿光束的发射方向的一定距离内存在目标,则光束可以在该目标的表面发生反射。图1a以光束1的发射方向存在目标A为例,激光器发射的光束1在到达目标A后,在目标A的表面发生反射,被反射的信号作为回波信号返回至激光雷达的探测器,例如,光束1发射到目标A后,激光雷达的探测器可以接收到图1b中的左图所示的回波信号,探测器根据回波信号和本地信号可确定出目标A的关联信息,例如目标A的位置信息等。另外,激光雷达还可以接收到来自视窗外的环境光,例如,如图1b中的右图所示,为激光雷达在未发射光波时,探测器接收到的光信号。
(4)光学模组,或者称为接收模组、发送模组、收发模组等,具体可以根据光学模组的功能确定。例如,以光学模组为收发模组为例,即接收模组用于接收光信号,接收模组可包括光路调整模块(例如,准直系统、透镜模组等)以及接收模块,本申请中,接收模块还可包括第一探测模块和第二探测模块,第一探测模块、第二探测模块可以分别为探测器。
考虑到激光雷达内部还存在发射模块,此时,光学模组可以是与发射模组组合设置的,也可以是与方式模组单独设置的在此不做限定。例如,光学模组可以采用收发同轴的结构,也可以采用收发离轴的结构。
在收发同轴结构中,光学模组发出的光信号和接收的光信号在光学模组内所经过的光路为相同的光路或旁轴光路,一个光学模组可包括光源(例如,激光器)、光路调整模块、以及接收模块,其中,发射模块可以包括激光器和发射模块对应的光路调整模块,接收模块可包括第一探测模块,可选的,接收模块还可以包括接收模块对应的光路调整模块,第一探测模块可以为探测器。在发射模块和接收模块分别包括光路调整模块时,光路调整模块可以是基于发射模块和接收模块单独设置的,或者,可以是发射模块和接收模块共同设置的。光路调整模块可以包括准直系统或透镜、透镜组,可选的,还可以包括分光模块。例如可参考图2a,图2a为收发同轴的光学模组,在图2a中,激光器发出的光信号经过准直系统进行准直,以规范该光信号的传播方向,使得该光信号尽量向前传播。该光信号经过分光模块,再通过分光模块出射到空间中。接收的回波光信号会到达分光模块,分光模块将接收的光信号送入接收模块中的第一探测模块。
在收发离轴结构中,光学模组发出的光信号和接收的光信号所经过的路径不同,一个 光学模组可包括光源(例如,激光器)、光路调整模块(例如,准直系统或透镜、透镜组)和接收模块,其中,发射模块可以包括激光器和发射模块对应的光路调整模块,接收模块可包括第二探测模块,可选的,接收模块还可以包括接收模块对应的光路调整模块,第二探测模块可以为探测器。在发射模块和接收模块分别包括光路调整模块时,光路调整模块可以是基于发射模块和接收模块单独设置的。参考图2b为收发离轴的光学模组,激光器发出的光信号经过准直系统进行准直,以规范该光信号的传播方向,使得该光信号尽量向前传播,准直系统可将该光信号出射到空间中。接收的光信号会到达接收模块。可见,对于收发离轴结构来说,由于光学模组发出的光信号和接收的光信号所经过的路径不同,因此可以不设置分光模块。
(5)视场,或称为视场范围,为一个光学模组所发出的光信号到达空间后的形成的范围,或者为探测装置接收对应于一个收发模组的光信号的范围。
(6)视场角,视场的角度,例如为一个光学模组接收的光信号在空间中的扫描角度。视场角可以决定视场的大小,一般来说,视场角越大,则视场越大,视场角越小则视场越小。而如果要调整一个视场,也可以通过调整该视场的视场角来实现。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。如无特殊说明,字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、应用场景、优先级或者重要程度等。例如,第一探测模块和第二探测模块,可以是相同的探测模块,也可以是不同的探测模块,且,这种名称也并不是表示这两个探测模块的结构、位置、优先级、应用场景或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
基于上述内容,图3示例性示出了本申请提供的一种检测装置的结构示意图。如图3所示,包括距离为d的第一探测模块和第二探测模块、光路调整模块、扫描模块和处理模块。
其中,第一探测模块的和第二探测模块之间的距离d可以是第一探测模块的中心和第二探测模块的中心之间的距离,还可以是第一探测模块的边缘和第二探测模块的边缘之间的距离;例如,以第一探测模块和第二探测模块的接收光波的区域为矩形为例,第一探测模块的和第二探测模块之间的距离可以是第一探测模块的上边缘和第二探测模块的上边缘之间的距离,还可以是第一探测模块的下边缘和第二探测模块的下边缘之间的距离,还可以是第一探测模块的左边缘和第二探测模块的左边缘之间的距离,还可以是第一探测模块的右边缘和第二探测模块的右边缘之间的距离,当然,还可以通过其他方式确定,在此不做限定。
扫描模块,用于在第一时刻接收并反射透过视窗的第一区域的第一光波,第一光波经由光路调整模块被第一探测模块接收并生成第一信息;
扫描模块,用于第二时刻接收并反射透过视窗的第二区域的第二光波,第二光波经由光路调整模块被第二探测模块接收并生成第二信息;第一光波和第二光波来源于视窗外的同一探测区域。
扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关,或者,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与第一透镜组的焦距f的比值,和扫描角度差n*a有关。其中,距离c为距离d的m倍,c、f、m为正数。
处理模块,用于控制扫描模块以步进角度a进行转动;并获取来自第一探测模块的第一信息和来自第二探测模块的第二信息,第一信息指示了第一光波的强度,以及第二信息指示了第二光波的强度;
处理模块,还用于根据第一信息和第二信息,输出第三信息,第三信息用于指示第一区域或者第二区域存在遮挡,或者用于指示执行清洗操作。
需要说明的是,考虑到检测装置可以位于激光雷达内部,此时,处理模块可以是位于激光雷达中的处理器或处理器中的部件,在检测装置中的部分位于激光雷达的内部时,处理模块可以是位于车辆的处理器或处理器中的部件,还可以是位于云端服务器中的处理器或处理器中的部件,在此不做限定。
其中,对照射到视窗上的光波,视窗会产生反射光I reflect、透射光I trans和吸收光I absorb三种光的形状态。三种形态的光的能量之和等于发射光的总能量I total,即满足:
I total=I reflect+I absorb+I trans
对于利用主动成像的回波信号,其本质是测量视窗上返回的回波信号,从而,确定视窗上遮挡物相比无遮挡物时的视窗的反射率的差异。在遮挡物的反射率相比无遮挡物时的视窗的反射率的差异较小时,通过该方式进行视窗上的遮挡物的判断,就很容易带来误差。因此,本申请主要通过透射光,即通过被动成像去判断视窗是否被遮挡。一种可能的实现方式,通过第一光波和第二光波来源于视窗外的同一探测区域,基于第一光波和第二光波,判断视窗上的第一区域或第二区域是否被遮挡。
下面对图3所示的各个功能模块和结构分别进行介绍说明,以给出示例性的具体实现方案。
一、第一探测模块和第二探测模块
以第一探测模块为例,第一探测模块可以为激光雷达中的探测器,或者为激光雷达中具有探测功能的部件。示例性地,第一探测模块可通过光电转化将接收到的光信号转化为模拟信号或数字信号的形式,以获得第一信息。
第一探测模块和第二探测模块接收到的来自视窗外的探测区域的光可以是探测区域中的光源发射的光波,还可以是探测区域中的目标物体反射其他光源后的光波,在此不做限定。
以第一探测模块为例,第一探测模块在接收光信号之前,可以经过光路调整模块对第一探测模块的视场进行调整,以规范该光信号的接收方向,使得从视窗外透射到接收模块的光为来自远场的一个探测区域内的光波。例如,在同一时刻,第一探测模块和第二探测模块可以接收到视窗外的不同探测区域对应的光波。例如,针对同一时刻,第一探测模块可以接收到视窗外的第一区域对应的光波。第二探测模块可以接收到视窗外的第二探测区 域对应的光波。为检测视窗外的不同探测区域,探测区域的划分可以有多种实现方式,以下分两种情形分别说明。
情形一、探测区域可以是通过一维方向进行划分的,例如,一维方向可以是水平方向或垂直方向。以一维方向为水平方向为例,将第一探测模块或第二探测模块可以探测的视窗外的目标物体所在的区域进行水平方向上的划分,获得N个水平探测区域中的一个水平探测区域。垂直方向不限定,即在任一时刻,第一探测模块可以探测到N个水平探测区域中的一个水平探测区域在垂直方向上可探测到的所有目标物体。相应的,在视窗上,也可以相应的确定出与探测区域对应的区域,例如,与水平探测区域对应的水平区域,即将视窗划分为N个水平区域。其中,N个水平区域可以包括如图4a所示的第一水平区域和第二水平区域,相应的,第一水平区域对应第一水平探测区域,第二水平区域对应第二水平探测区域。
可参考如图4a,针对同一时刻,第一探测模块可以接收到视窗外的第一水平探测区域对应的光波。相应的,第一探测模块接收到从视窗上透过的来自第一水平探测区域的光波。第二探测模块可以接收到视窗外的第二水平探测区域对应的光波。相应的,第二探测模块接收到从视窗上透过的来自第二水平探测区域的光波。即第一水平探测区域和第二水平探测区域为N个水平探测区域中的不同水平探测区域。
可选的,N个水平探测区域中的不同水平探测区域可以通过扫描模块,在不同时刻进行扫描,以实现对N个水平探测区域的光波的接收。
通过上述方法,可以基于视窗的一维方向,划分视窗的区域,从而,可以针对视窗在另一维度的方向上不敏感进行设置的,例如,针对视窗的清洗操作可以是针对水平方向上设置的2个或多个清洗装置,此时,检测装置可以针对清洗装置的设置方式,例如,清洗装置是基于水平方向上的不同位置上设置多个清洗装置,则可以在水平方向上划分视窗的区域,以节省检测装置的复杂度。再比如,还可以在没有清洗条件的情况下,检测装置划分视窗的区域,可以是基于激光雷达的探测方式确定的,例如,激光雷达的探测是基于水平方向上划分的N个探测区域,从而,检测装置可以划分水平方向上的N个视窗的区域,在确定出相应的水平区域上存在遮挡物时,激光雷达可以根据存在遮挡物的水平区域,取消使用经过该水平区域采集到的回波信号,避免遮挡物对激光雷达的检测性能的影响。
情形二、探测区域是通过二维方向进行划分的,例如,通过水平方向和垂直方向进行划分。
举例来说,水平方向可以通过扫描模块,在不同时刻进行扫描,实现第一探测模块或第二探测模块对N个水平探测区域的光波的接收。针对任一水平探测区域的垂直方向可以划分为M个垂直探测区域,即对视窗外的可探测范围划分为N*M个探测区域。
一种可能的实现方式,可以通过设置至少M个第一子探测模块和至少M个第二子探测模块,使得每个第一子探测模块或第二子探测模块用于接收M个垂直探测区域中的1个垂直探测区域的光波。相应的,在视窗上,也可以相应的确定出与探测区域对应的区域,即将视窗划分为N*M个区域。
如图4b所示,以第一探测模块中的第一子探测模块1和第一子探测模块2为例,针对同一时刻,第一子探测模块1-1可以接收到视窗外的探测区域1-1对应的光波。相应的,第一探测模块接收到从视窗上透过的来自区域1-1的光波。第二探测模块可以接收到视窗外的探测区域1-2对应的光波。相应的,第二探测模块接收到从视窗上透过的来自区域1-2 的光波。探测区域1-1和探测区域1-2对应的水平位置相同。相应的,例如,第二探测模块中的第二子探测模块1可以接收到视窗外的探测区域2-1对应的光波。第二探测模块中的第二子探测模块2可以接收到视窗外的探测区域2-2对应的光波。探测区域2-1和探测区域2-2对应的水平位置相同。区域2-1和区域2-2对应的水平位置相同,垂直位置不同。探测区域2-1与探测区域1-1的水平位置不同。探测区域2-2与探测区域1-2的水平位置不同。
可选的,M个垂直探测区域透射的光波中的任一个光波可以通过光路调整模块进入到第一子探测模块或第二子探测模块,实现第一子探测模块或第二子探测模块对该光波的接收。
在一些实施例中,光路调整模块也可以是针对每个子探测模块单独设置的光路调整模块。例如,针对第一子探测模块设置一个光路调整模块,针对第二子探测模块设置一个光路调整模块。即,检测装置包括2*M个光路调整模块。从而,每个垂直探测区域发射的光波,通过相应的第一子探测模块的光路调整模块调整后的光波,可以使得对应的第一子探测模块接收。每个垂直探测区域发射的光波,通过相应的第二子探测模块的光路调整模块调整后的光波,可以使得对应的第二子探测模块接收。
在另一些实施例中,还可以是针对第一子探测模块和第二子探测模块设置一个光路调整模块。即,检测装置包括M个光路调整模块。从而,每个垂直探测区域发射的光波,通过相应的第一子探测模块和第二子探测模块的光路调整模块调整后的光波,可以使得对应的第一子探测模块和第二子探测模块接收。
通过上述方法,可以灵活的调整水平方向和垂直方向上接收到的视窗外的探测区域的光波,并相应的调整了视窗上对应的区域,从而,可以灵活的对视窗上的遮挡物进行检测。
例如,可以基于待检测的视窗所在的环境,确定遮挡物可能的类型及遮挡物在视窗上的常见大小,确定视窗上的区域,从而,确定检测装置中检测遮挡物的第一子探测模块和第二子探测模块,提高检测装置检测遮挡物的效率。再比如,还可以结合待检测的视窗的装置(例如,激光雷达)的使用方式,确定第一子探测模块和第二子探测模块,提高检测装置和待检测的视窗的装置的兼容性。
应理解,N*M个探测区域透射至视窗的光波之间可以呈一定的夹角,也可以是平行的。
情形三、探测区域是通过二维方向进行划分的,例如,通过水平方向和垂直方向进行划分。例如,如情形二中的N*M个探测区域。
以第一探测模块为例,第一探测模块通过扫描模块,在不同的扫描角度(水平方向和垂直方向都不同)下,接收来自一个探测区域的光波。相应的,第二探测模块也可以通过扫描模块,在不同的扫描角度下,接收来自一个探测区域的光波。从而,通过扫描模块,实现第一探测模块和第二探测模块对N*M个探测区域的扫描。
第一探测模块和第二探测模块可以是在水平方向上的不同位置上设置的,垂直方向上的位置相同。第一探测模块和第二探测模块还可以是在垂直方向上的不同位置上设置的,水平方向上的位置相同。也可以是水平方向和垂直方向的位置都不同。
通过上述方法,可以通过扫描模块实现二维方向上的探测区域的扫描,无需设置子探测模块,降低检测装置的复杂度。
例如,如图4c所示,针对同一时刻,第一探测模块可以接收到视窗外的第一探测区域对应的光波。相应的,第一探测模块接收到从视窗上透过的来自第一区域的光波。第二探 测模块可以接收到视窗外的第二探测区域对应的光波。相应的,第二探测模块接收到从视窗上透过的来自第二区域的光波。
其中,第一探测区域和第二探测区域可以是水平位置相同,垂直位置不同。第一探测区域和第二探测区域可以是水平位置不同,垂直位置也不同。通过扫描模块对不同探测区域的扫描,可以实现第一探测模块和第二探测模块分别扫描完透过视窗的所有探测区域。具体可以参见扫描模块的执行方式。
二、光路调整模块
本申请中,可以通过光路调整模块,使得在同一时刻,视窗外的不同探测区域的光波被不同的探测模块接收。
为实现在同一时刻视窗外的不同探测区域的光波被不同的探测模块接收,本申请中还可以通过探测模块与光路调整模块组合的结构实现,也可以通过子探测模块和光路调整模块(例如,准直器、透镜模组)组合的方式实现,也可以通过扫描模块(例如,反射镜)和管理调整模块的组合实现,此处不再一一列举。如下分别对探测模块、光路调整模块和扫描模块组合的结构及子探测模块、光路调整模块和扫描模块组合的结构进行详细介绍。
如图5a所示,为本申请提供的一种光路调整模块的结构示意图。第一探测模块和第二探测模块可以共用一个光路调整模块,也可以分别设置相应的光路调整模块。
下面以第一探测模块和第二探测模块共用一个光路调整模块为例,一种可能的实现方式中,该光路调整模块包括透镜组件,从探测区域透射到视窗内的光波通过该透镜组件后,可以将该光波聚焦到探测模块上,即每个探测模块对应的视场范围为该探测区域,实现对探测模块的视场范围的调整。可选的,第一探测模块和第二探测模块的入光口位于透镜组件的像方焦平面上,例如,如图5a所示,第一探测模块的入光口可以位于第一透镜组的像方焦平面上。同理,第二探测模块的入光口也可以位于透镜组件的像方焦平面上。
第一探测模块与第一透镜组的光轴的距离d1为例,在第一探测模块接收与第一透镜组的光轴呈夹角θ1的探测区域101的光波,并通过视窗上的区域101透过,夹角θ1满足:
θ1=arctan(f/d1)。
第二探测模块与第一透镜组的光轴的距离d2为例,在第二探测模块接收与第一透镜组的光轴呈夹角θ2的探测区域102的光波时,并通过视窗上的区域102透过,夹角θ2满足:
θ2=arctan(f/d2)。
需要说明的是,第一探测模块与第一透镜组的光轴的距离d1可以是第一探测模块的中心与第一透镜组的光轴的距离,也可以是第一探测模块的边缘与第一透镜组的光轴的距离。第二探测模块与第一透镜组的光轴的距离d2可以是第二探测模块的中心与第一透镜组的光轴的距离,也可以是第二探测模块的边缘与第一透镜组的光轴的距离。此处,d1和d2可以与第一探测模块和第二探测模块之间的距离d的设置方式一致。当然,还可以通过其他方式确定,在此不做限定。
其中,在第一探测模块和第二探测模块位于光轴的不同侧时,第一探测模块和第二探测模块的距离d满足:d=d1+d2。此时,来自探测区域101和来自探测区域102的光波之间的夹角满足:θ=θ1+θ2。
在第一探测模块和第二探测模块位于光轴的同一侧时,第一探测模块和第二探测模块 的距离d满足:d=|d1-d2|。来自探测区域101和来自探测区域102的光波之间的夹角θ满足:θ=|θ1-θ2|。
需要说明的是,第一探测模块或第二探测模块可以是待检测的视窗对应的装置(例如,激光雷达)中的探测模块。通过上述方法,可以灵活的兼容待检测的视窗对应的装置,提高检测装置的适应性,降低实现的难度。
一种可能的实现方式,为简化处理模块的复杂度,第一探测模块或第二探测模块可以位于光路调整模块的光轴上。例如,以第二探测模块位于光路调整模块的光轴为例,第一探测模块和第二探测模块的距离d,即为第一探测模块与光轴的距离,因此,在第一探测模块接收与第一透镜组的光轴呈夹角θ的探测区域101的光波,第二探测模块接收与第一透镜组的光轴平行的探测区域103的光波,夹角θ满足:
θ=arctan(f/d)。
在另一种可能的实现方式中,光路调整模块可以包括第二透镜组和第一透镜组。其中,第二透镜组可以是准直系统。在一种可能的实现方式中,第二透镜组还可以是准直器、准直透镜。下面还是以第一探测模块和第二探测模块共用一个光路调整模块为例。该准直系统也可以是第一探测模块和第二探测模块共用的。该准直系统也可以是针对第一探测模块和针对第二探测模块分别设置的。例如,如图5b所示的,包括第一探测模块的第一子准直系统和第二探测模块的第二子准直系统。第一子准直系统和第二子准直系统的光轴可以不重合。例如,第一子准直系统的光轴和第二子准直系统的光轴之间的距离为d0。第一探测模块距离第一子准直系统的光轴的距离为d1,第二探测模块距离第二子准直系统的光轴的距离为d2,第一探测模块和第二探测模块之间的距离d满足:d=d1+d2+d0。
通过上述方法,光路调整模块可以包括第二透镜组和第一透镜组,使得第一探测模块和第二探测模块的位置不限定在第一透镜组的像方焦平面上,相应的,第一探测模块和第二探测模块之间的距离也可以灵活的设置,提高检测装置的设计的灵活性。
如图5b所示,以第一探测模块为例,即第一探测模块和第一透镜组之间可以包括第二透镜组,第二透镜组的入光口位于第一透镜组的像方焦平面上,从而,使得从探测区域透射到视窗内的第一光波通过该第一透镜组后,可以将该第一光波聚焦到第二透镜组上,再通过第二透镜组进行聚焦后将第一光波发送给第一探测模块。此时,光路调整模块中的准直系统与光轴的距离为d1。相应的,从探测区域透射到视窗内的第二光波通过该第一透镜组后,可以将第二光波聚焦到第二透镜组上,再通过第二透镜组进行聚焦后发送给第二探测模块。
因此,可以通过选择合适的光路调整模块,使得第一探测模块的视场对应探测视窗外的一个探测区域,及第二探测模块的视场对应探测视窗外的一个探测区域。并且,第一探测模块和第二探测模块在不同的时刻可以经由视窗上不同的区域探测到来自相同探测区域的光波,为后续比较视窗上不同的区域对相同探测区域的光波的透射效果,来确定视窗上不同区域是否存在遮挡物,避免了不同遮挡物由于反射效果较弱而无法通过反射光来探测的问题,提高了对视窗上的遮挡物的检测的准确度。
其中,第二透镜组接收与第一透镜组的光轴平行的探测区域101的光波时,该光波在第一透镜组的焦平面上所成的像与第一透镜组的光轴距离c1为例,该光波与第一透镜组的光轴夹角为θ1,夹角θ1满足:θ1=arctan(f/c1)。来自探测区域102的光波在第一透镜组的焦平面上所成的像与第一透镜组的光轴距离c2为例,第二光波与第一透镜组的光轴夹角为 θ2,夹角θ2满足:θ2=arctan(f/c2)。
其中,探测区域101的光波在第一透镜组的焦平面上所成的像与第一透镜组的光轴距离c1可以是探测区域101的光波透镜组的焦平面上所成的像的中心点与第一透镜组的光轴距离,相应的,探测区域102的光波在第一透镜组的焦平面上所成的像与第一透镜组的光轴距离c2可以是探测区域102的光波在第一透镜组的焦平面上所成的像的中心点与第一透镜组的光轴距离c2。当然,探测区域101的光波在第一透镜组的焦平面上所成的像与第一透镜组的光轴距离c1可以是探测区域101的光波透镜组的焦平面上所成的像的边缘与第一透镜组的光轴距离,相应的,探测区域102的光波在第一透镜组的焦平面上所成的像与第一透镜组的光轴距离c2可以是探测区域102的光波在第一透镜组的焦平面上所成的像的边缘与第一透镜组的光轴距离c2。当然,还可以通过其他方式确定,在此不做限定。
此时,来自探测区域101的光波和来自探测区域102的光波在光路调整模块的焦平面上所成的像位于第一透镜组的光轴的不同侧时,来自探测区域101的光波和来自探测区域102的光波在光路调整模块的焦平面上所成的像之间的距离c满足:c=c1+c2。来自探测区域101的光波和来自探测区域102的光波在光路调整模块的焦平面上所成的像位于第一透镜组的光轴的同一侧时,来自探测区域101的光波和来自探测区域102的光波在光路调整模块的焦平面上所成的像之间的距离c满足:c=|c1-c2|。
其中,来自探测区域101的光波和来自探测区域102的光波在光路调整模块的焦平面上所成的像之间的距离c可以是来自探测区域101的光波和来自探测区域102的光波在光路调整模块的焦平面上所成的像的中心点之间的距离,还可与是来自探测区域101的光波和来自探测区域102的光波在光路调整模块的焦平面上所成的像的其他点之间的距离,在此不做限定。
此时,以第二透镜组为准直透镜为例,第一子准直系统的焦距为f0,此时,第一探测模块与第一子准直系统的光轴之间的距离d1,第一探测模块通过光路调整模块接收到的与第一子准直系统的光轴夹角为θ1’的光波,夹角θ1’满足:θ1’=arctan(f0/d1’)。相应的,第二探测模块与第二透镜组的光轴之间的距离d2’,第二探测模块通过光路调整模块接收到的与第二子准直系统的光轴夹角为θ2’的光波,夹角θ2’满足:θ2’=arctan(f0/d2’)。
进一步的,通过扫描模块,可以实现第一探测模块对视窗外的不同探测区域进行探测。具体的扫描方式在下文中的扫描模块中介绍。
同理,在任一时刻,第二探测模块也可以通过相应的光路调整模块,对视窗外的探测区域进行探测,进而,在不同时刻,第二探测模块也可以通过扫描模块和相应的光路调整模块,实现第二探测模块扫描完视窗外的所有探测区域。
结合情形二中将探测区域划分为M个垂直探测区域的例子,光路调整模块可以是基于所有第一子探测模块和/或第二子探测模块的,也可以是每个第一子探测模块分别对应一个光路调整模块,每个第二子探测模块分别对应一个光路调整模块。以第一子探测模块分别对应一个光路模块为例,结合图4b和图5b的示例,如图5c所示,为本申请提供的一种光路调整模块的结构示意图。该光路调整模块包括M个第一子探测模块、M个第二子探测模块和第一透镜组,M个第一子探测模块与M个垂直探测区域一一对应。M个第二子探测模块与M个垂直探测区域一一对应。每个子探测模块可以通过一个第一透镜组调整光波入射的视场。例如,第一子探测模块1通过第一透镜组1-1接收的光波对应视场1-1,即对应视窗外的垂直探测区域101-1和视窗上的垂直区域101-1。第一子探测模块2通过第一透 镜组1-2接收的光波对应视场1-2,即对应视窗外的垂直探测区域101-2和视窗上的垂直区域101-2。
结合图5a的方式,以图5c为例,第一子探测模块1通过第一透镜组1-1接收到的来自探测区域101-1的光波。第一子探测模块2通过第一透镜组1-2接收到的来自探测区域101-2的光波。也就是说,可通过选择合适的M个第一子探测模块的入光口相对光路调整模块的光轴的距离和第一透镜组的焦距f,可以满足M个第一子探测模块对应探测视窗外的M个垂直探测区域。
同理,M个第二子探测模块对应探测视窗上的M个垂直区域。
一种可能的实现方式,第二子探测模块与第一子探测模块共用一套光路调整模块。例如,第二子探测模块1可以通过第一透镜组1-1接收的光波对应视场2-1,即对应视窗外的垂直探测区域102-1和视窗上的垂直区域102-1。第二子探测模块2通过第一透镜组1-2接收的光波对应视场2-2,即对应视窗外的垂直探测区域102-2和视窗上的垂直区域102-2。
另一种可能的实现方式,第二子探测模块和第一子探测模块单独设置各自的光路调整模块。例如,第二子探测模块1可以通过第一透镜组2-1接收的光波对应视场2-1,即对应视窗外的探测区域102-1和视窗上的区域102-1。第二子探测模块2通过第一透镜组2-2接收的光波对应视场2-2,即对应视窗外的探测区域102-2和视窗上的区域102-2。
结合将探测区域划分为M个垂直探测区域的例子,子探测模块(例如,第一子探测模块或第二子探测模块)对应的光路调整模块的出光口之间的间隔可以是相等的,也可以是不相等的。可以通过控制子探测模块的光路调整模块的出光口之间的间隔与光路调整模块的焦距,来实现子探测模块从光路调整模块接收的光波的视场来自视窗外的M个垂直探测区域。从而,可以通过设置子探测模块的光路调整模块的出光口之间的间隔,与光路调整模块,灵活的设置探测的垂直探测区域的大小,满足不同检测装置对视窗上的不同类型的遮挡物的检测的需要。例如,针对视窗常处于风沙较多等细小遮挡物的环境时,可以设置垂直探测区域的面积较小,相应的,可以设置子探测模块的光路调整模块的出光口之间的间隔较小。针对视窗常处于雨水、冰霜等大面积遮挡物的环境时,可以设置垂直探测区域的面积较大,相应的,可以设置子探测模块的光路调整模块的出光口之间的间隔较大。再比如,还可以根据视窗的特性,在易累积遮挡物的区域设置的垂直探测区域的面积较小,相应的,可以设置子探测模块的光路调整模块的出光口之间的间隔较小,在不易累积遮挡物的区域设置的垂直探测区域的面积较大,相应的,可以设置子探测模块的光路调整模块的出光口之间的间隔较大,以提高检测效率。
三、扫描模块
通过扫描模块将来自视窗外的探测区域的光波传输至光路调整模块,经光路调整模块传输至第一探测模块和/或第二探测模块。检测装置可通过改变扫描模块的探测角度完成对视窗外的探测区域的扫描。例如,视窗检测装置可预设多个探测角度,扫描模块可以在多个探测角度的每个探测角度下接收来自视窗外的探测区域的光波。
在一种可能实现方式中,扫描模块可以为扫描器,例如反射式扫描器。反射式扫描器包括但不限于机械旋转镜或MEMS微振镜。反射式扫描器是通过机械转动来改变扫描器的扫描方向。当扫描模块为反射式扫描器时,可将反射式扫描器的反射面设置于第一透镜组的像方焦平面上。
如图6a所示,为本申请提供的一种扫描器、第一探测模块、第二探测模块和光路调整 模块组成的光路结构示意图。该扫描器可以在二维方向(水平方向和垂直方向)上变换步进角度,变换步进角度也可理解为扫描器在不同的步进角度下,使得第一探测模块或第二探测模块接收相应视窗外的探测区域的光波。图5a以第一探测模块为例说明,在8个不同方向的步进角度下,来自8个不同探测区域的光波经过扫描器分别传输至第一探测模块,得到8个探测区域的8个扫描点。从而通过扫描器在不同时刻处于不同的步进角度,可以得到视窗上的所有探测区域对应的扫描轨迹。举例来说,通过扫描器得到的扫描轨迹可以是处理控制模块控制扫描器按照预设的扫描方式进行扫描得到的。也可以理解为,是处理控制模块控制扫描器在二维方向上旋转扫描器,使扫描器处于不同探测角度下扫描得到的扫描轨迹。例如,处理控制模块可控制扫描模块先水平方向旋转后垂直方向旋转,或者先垂直方向旋转后水平方向旋转,或者垂直方向和水平方向一起旋转,或者水平方向和垂直方向交替旋转等。结合上述图5a-图5c所示的光路调整模块,由于从第一透镜组入射的光束的光斑在第一透镜组的像方焦平面上重合,因此,可以将扫描模块设置于第一透镜组的物方焦平面上。一种可能的实现方式,扫描模块还可以位于第一透镜组的光轴上。
在另一些实施例中,扫描器可以是在一维方向上改变扫描角度,使得扫描器将来自不同探测区域的光波发送给第一探测模块。或者,使得扫描器将来自不同探测区域的光波发送给第二探测模块。结合上文中的情形一中的一维方向为水平方向为例,扫描模块可以在水平方向上旋转,实现对视窗上的N个水平区域的扫描。结合上文中的情形二,可以通过扫描模块在水平方向上旋转,实现对视窗的水平方向的扫描。此时,另一维度方向上,结合图4b,可以通过第一探测模块包括的第一子探测模块分别进行探测,通过第二探测模块包括的第二子探测模块分别进行探测。具体实现方式,可以参考图6a的实现方式,在此不再赘述。通过上述方法,可以提高检测装置对视窗检测的灵活性。
四、第一探测模块和第二探测模块之间的光路关系
为使第一探测模块和第二探测模块可以接收到来自同一探测区域的光波。
考虑到视窗外的探测区域1相对第一探测模块而言,可以视为远场的物体,第一探测模块接收到的探测区域的光都是平行光,因此,在第一时刻,可以通过光路调整模块(例如,第一透镜组,还可以包括第二透镜组),将探测区域1透射到视窗内的光波聚焦到第一探测模块上,使得第一探测模块可以对探测区域1中的目标物体进行成像。视窗外的探测区域1相对第二探测模块而言,也可以视为远场的物体,第二探测模块接收到的探测区域的光都是平行光,因此,在第一时刻,可以通过光路调整模块(例如,第一透镜组,还可以包括第二透镜组),将探测区域2透射到视窗内的光波聚焦到第二探测模块上,使得第二探测模块可以对探测区域2中的目标物体进行成像。
以图5a的示例,第一探测模块和第二探测模块都位于第一透镜组的像方焦平面上,以距离光轴d1的第一探测模块,在不考虑扫描模块的场景下,通过光路调整模块接收到的是与光轴夹角为θ1的入射能量,距离光轴d2的第二探测模块,在不考虑扫描模块的场景下,通过光路调整模块接收到的是与光轴夹角为θ2的入射能量,因此,探测区域101和探测区域102之间的夹角与第一探测模块与光路调整模块形成的第一光路与第二探测模块与光路调整模块形成的第二光路之间的夹角有关。
结合扫描模块的场景,通过扫描模块对所有探测区域进行扫描时,可以使得第一探测模块和第二探测模块在不同时刻接收到同一探测区域的光波。
举例来说,以第一探测模块在第一时刻探测到探测区域101,第一探测模块第二时刻探测到探测区域102为例。
结合图5a,第一时刻,第一探测模块接收到与光轴成角度θ1的光波对应的探测区域101,第二探测模块接收到与光轴成角度θ2的光波对应的探测区域102,来自探测区域101和来自探测区域102的光波之间的夹角θ=θ1+θ2。
如图6b所示,第二时刻相对第一时刻,通过扫描模块转动n个步进角度a,即相对第一时刻扫描模块转动扫描角度θ=n*a,使得第一探测模块探测到视窗外的探测区域102的光波。此时,来自探测区域101的光波和来自探测区域102的光波在光路调整模块的焦平面上所成的像之间的距离c,即为第一探测模块和第二探测模块的入光口之间的距离d满足:
c=d=d1+d2=f*tanθ
需要说明的是,此时,第一探测模块探测到视窗外的探测区域102可以通过视窗上的区域102’透过。区域102’与区域102为不同的视窗上的区域。
再比如,以第一探测模块位于光轴上为例,如图6c所示,在第二时刻,扫描模块相比第一时刻旋转角度θ,通过扫描模块,将视窗外的探测区域102的光波偏转角度θ,在θ=θ1+θ2时,在偏转角度θ后,探测区域102透射到视窗内的光波可以通过光路调整模块聚焦到第二探测模块上,使得第二探测模块可以对探测区域102中的目标物体进行成像。
在上述过程中,第一探测模块在第一时刻接收到的来自探测区域102的光波为通过视窗上的第一区域接收的,而第二探测模块在第二时刻接收到的来自探测区域102的光波为通过视窗上的第二区域接收的。由于第一探测模块与光路调整模块、扫描模块组成的第一光路,与第二探测模块、光路调整模块和扫描模块组成的第二光路存在一个之间存在一个夹角θ1+θ2,因此,从第一光路和第二光路入射的来自同一探测区域102的光波,在视窗的位置上会存在一个位移,从而,第一区域(例如,区域102’)和第二区域(例如,区域102)为不同的区域。需要说明的是,在具体实施过程中,第一区域和第二区域可以重叠,也可以不重叠,可以根据需要调整。通过第一区域和第二区域的差异,可以在保证相对视窗远距离的探测区域的变化可以忽略的前提下,可以比较视窗上的第一区域和视窗上的第二区域之间是否存在透射率的差异,从而实现对视窗的不同位置上的透射率的差异进行测量,确定出视窗上是否存在遮挡物,即可以确定第一区域或第二区域是否存在遮挡物。
五、处理模块
处理模块可以是设置在激光雷达中的处理器或具有处理功能的部件,还可以是设置在激光雷达的处理器或具有除了功能的部件。本申请中,处理模块可以获得第一探测模块和第二探测模块接收到的来自同一探测区域的光波的信号,以确定视窗上的区域是否存在遮挡物。
在一些实施例中,在第一探测模块通过第一区域接收第一光波的信号强度和第二探测模块通过第二区域接收的第二光波的信号强度的差异大于预设阈值时,确定第一区域或第二区域存在遮挡。
例如,当第一探测模块通过第一区域接收到的第一光波的信号强度,相比第二探测模块通过第二区域接收到的第二光波的信号强度较弱时,可以确定至少第一区域存在遮挡物。第二区域与第一区域不重叠的区域可能不存在遮挡物。
当然,还可以通过其他时刻接收到的与第一区域或第二区域有关的区域,进一步确定第一区域或第二区域是否存在遮挡物。
一种可能的实现方式,根据第一探测模块在K个第一时刻对应接收的K个第一信息,和第二探测模块在K个第二时刻对应接收的K个第二信息,确定K个第一信息和K个第二信息之间的强度差的分布;K为正整数;根据K个第一信息和K个第二信息之间的强度差的分布,确定遮挡物在视窗上的位置信息。
举例来说,视窗上的区域可以划分为K个区域,例如,可以通过扫描模块步进K-1次,完成对视窗上的K个区域的扫描。其中,针对第一探测模块,K区域可以为K个第一区域。即通过K个第一时刻,使得第一探测模块完成对视窗上的K个第一区域的扫描。在扫描模块的初始位置,第一探测模块可以接收到一个第一区域对应的第一信息。每次扫描模块步进1次,都可以相应接收到一个新的第一区域对应的第一信息。通过扫描模块步进K-1次,可以使得第一探测模块接收到视窗上的K个第一信息。
针对第二探测模块,K区域可以为K个第二区域。K个第二区域和K个第一区域之间可以有重叠。即通过K个第二时刻,使得第二探测模块完成对视窗上的K个第二区域的扫描。在扫描模块的初始位置,第二探测模块可以接收到一个第二区域对应的第二信息。每次扫描模块步进1次,都可以相应接收到一个新的第二区域对应的第二信息。通过扫描模块步进K-1次,可以使得第二探测模块接收到视窗上的K个第二信息。
考虑到第二时刻相对第一时刻,扫描模块旋转角度n*a,因此,K个第一时刻和K个第二时刻可以是存在重叠的。例如,若第2个第一时刻相对第1个第一时刻,扫描模块旋转角度a,则第n个第一时刻为第1个第二时刻。
通过上述方案,可以实现对视窗上的K个第一区域和K个第二区域进行扫描,提高对视窗的检测效率。
举例来说,视窗被划分为N*M个探测区域,水平方向上通过扫描器和光路调整模块实现对N个探测区域的扫描,垂直方向上通过M个子探测模块和相应的光路调整模块实现对M个探测区域的探测。此时,K可以为N+1。
如图6d和图6e所示,以N为4为例,在一些实施例中,以第一光路与第二光路在水平方向上的夹角为1个步进角度a为例。通过扫描器对水平方向上的4个探测区域进行扫描,以时刻1~时刻4完成对4个探测区域的扫描为例。第一探测模块与光路调整模块、扫描模块组成的第一光路,与第二探测模块与光路调整模块、扫描模块组成的第二光路。
在时刻1,扫描器将扫描角度调整为第一探测模块对应接收探测区域1的角度,第一探测模块通过视窗上的区域1-1透射该探测区域1的光波。相应的,第二探测模块通过扫描器,接收到探测区域2的光波,第二探测模块通过视窗上的区域2-2透射该探测区域2的光波。
在时刻2,扫描器将旋转一个步进角度,使得第一探测模块对应接收探测区域2的角度,第一探测模块通过视窗上的区域2-1透射该探测区域2的光波,相应的,第二探测模块通过扫描器,接收到探测区域3的光波,第二探测模块通过视窗上的区域3-2透射该探测区域3的光波。
因此,结合图6f,通过第一探测模块和第二探测模块接收到的探测区域2的光波,即时刻1上第二探测模块探测的光波和时刻2上第一探测模块探测的光波,可以确定视窗上的区域2-2和视窗上的区域2-1接收到的光波的强度的差异是否大于预设阈值,从而确定 视窗上的区域2-1或视窗上的区域2-2是否存在遮挡物。
在一些实施例中,处理模块可以接收到视窗上的区域2-1的光波的信号强度的灰度值G1(1),视窗上的区域2-2的光波的信号强度的灰度值G2(2)。
举例来说,在确定视窗上的区域2-1接收到的光波的强度相比视窗上的区域2-2接收到的光波的强度弱时,可以确定视窗上的区域2-1上可能存在遮挡物。
首先把第一探测模块和第二探测模块的视场(探测区域)存在对应关系:G1(1)与G2(2)对应相同的探测区域。因此,可以确定视窗上的区域2-2接收到的第二光波和视窗上的区域2-1接收到的第一光波的强度的差异P。
一种可能的实现方式,时刻1接收到的视窗上的区域2-1的光波的灰度值G1(1)和时刻2接收到视窗上的区域2-2的光波的信号强度的灰度值G2(2)之间的灰度值差异满足:
Figure PCTCN2021097424-appb-000001
在P1(2)大于第一预设阈值时,可以确定在视窗的区域2-1上存在遮挡物。通过上述方法,可以基于灰度值之间的相对差值进行判断,降低环境光的不同强度对遮挡物判断的影响,提高检测的鲁棒性。需要说明的是,第一预设阈值可以是通过接收光信号的噪声确定的,也可以通过其他方式确定的,在此不做限定。
另一种可能的实现方式,灰度值差异满足:
P2(2)=G2(2)-G1(1)
在P2(2)大于第二预设阈值时,可以确定在视窗的区域2-1上存在遮挡物。通过上述方法,可以基于灰度值之间的差值进行判断,降低检测装置的复杂度。需要说明的是,第二预设阈值可以是通过接收光信号的噪声确定的,还可以是结合不存在遮挡物的视窗接收到的光波的信号强度确定,还可以结合遮挡物的类型确定,还可以通过其他方式确定的,在此不做限定。
结合时刻1和时刻2,结合图6f,还可以通过第一探测模块和第二探测模块接收到的探测区域1的光波,即时刻1上第一探测模块探测的光波和时刻2上第二探测模块探测的光波,可以确定视窗上的区域1-1和视窗上的区域1-2接收到的光波的强度的差异是否大于预设阈值,从而确定视窗上的区域1-1或视窗上的区域1-2是否存在遮挡物。
举例来说,在确定视窗上的区域1-2接收到的光波的强度相比视窗上的区域1-1接收到的光波的强度弱时,可以确定视窗上的区域1-2上可能存在遮挡物。结合时刻1和时刻2确定的视窗上的区域2-1上可能存在遮挡物,可以至少确定出区域1-2和区域2-1的重叠部分存在遮挡物。
在时刻3,扫描器将旋转一个步进角度,使得第一探测模块对应接收探测区域3的角度,第一探测模块通过视窗上的区域3-1透射该探测区域3的光波,相应的,第二探测模块通过扫描器,接收到探测区域4的光波,第二探测模块通过视窗上的区域4-2透射该探测区域4的光波。
因此,通过第一探测模块和第二探测模块接收到的探测区域3的光波,即通过时刻2上第二探测模块探测的光波和时刻3上第一探测模块探测的光波,可以确定视窗上的区域3-2和视窗上的区域3-1接收到的光波的强度的差异是否大于预设阈值,从而确定视窗上的区域3-2或视窗上的区域3-1是否存在遮挡物。
或者,结合图6f,通过第一探测模块和第二探测模块接收到的探测区域2的光波,即时刻2上第一探测模块探测的光波和时刻3上第二探测模块探测的光波,可以确定视窗上的区域2-1和视窗上的区域2-2接收到的光波的强度的差异是否大于预设阈值,从而确定视窗上的区域2-1或视窗上的区域2-2是否存在遮挡物。
在时刻4,扫描器将旋转一个步进角度,使得第一探测模块对应接收探测区域4的角度,第一探测模块通过视窗上的区域4-1透射该探测区域4的光波。
因此,结合图6f,通过第一探测模块和第二探测模块接收到的探测区域4的光波,即通过时刻3上第二探测模块探测的光波和时刻4上第一探测模块探测的光波,可以确定视窗上的区域4-2和视窗上的区域4-1接收到的光波的强度的差异是否大于预设阈值,从而确定视窗上的区域4-2或视窗上的区域4-1是否存在遮挡物。
再比如,在一些实施例中,以第一光路与第二光路在水平方向上的夹角为L个步进角度a为例。
在第一时刻,扫描器将扫描角度调整为第一探测模块对应接收探测区域1的角度,第一探测模块通过视窗上的区域1-1透射该探测区域1的光波。相应的,第二探测模块通过扫描器,接收到探测区域2的光波,第二探测模块通过视窗上的区域2-2透射该探测区域2的光波。在第二时刻,扫描器将旋转L个步进角度,使得第一探测模块对应接收探测区域2的角度,第一探测模块通过视窗上的区域2-1透射该探测区域2的光波。
因此,通过第一探测模块和第二探测模块接收到的探测区域2的光波,即第一时刻1上第二探测模块探测的光波和第二时刻2上第一探测模块探测的光波,可以确定视窗上的区域2-2和视窗上的区域2-1接收到的光波的强度的差异是否大于预设阈值,从而确定视窗上的区域2-2或视窗上的区域2-1是否存在遮挡物。
考虑到遮挡物可能在多个第一区域和/或多个第二区域上出现的场景,例如,在第一时刻,第一探测模块接收到的透过视窗的第一区域的第一光波的第一信息;第二时刻,第二探测模块接收到的透过视窗的第二区域的第二光波的第二信息,第一区域和第二区域上都覆盖有相同类型的遮挡物,导致第一探测模块和第二探测模块接收到的第一信息和第二信息之间的差异过小,无法确定出第一区域和第二区域上都存在遮挡物。此时,可以结合其他时刻测量得到的视窗上的其他区域的光波的光强差异,确定是否存在遮挡物,以及确定遮挡物的大小及位置。
例如,结合图6d-图6f所示,假设遮挡物覆盖了区域1-2和区域1-3,还覆盖了区域2-2和区域2-3。通过时刻2,第二探测模块获得的区域2-2上的第二信息,通过时刻3,第一探测模块获得的区域1-3的第一信息。由于区域2-2和区域1-3上都覆盖有遮挡物,因此,区域2-2上的第二信息和区域1-3的第一信息之间的差异小于预设阈值,无法确定区域2-2和区域1-3上是否有遮挡物。此时,可以基于时刻3中第二探测模块获得的区域2-3的第二信息和时刻4中第一探测模块获得的区域1-4的第一信息判断区域2-3和区域1-4是否有遮挡物。通过区域1-4的第一信息和区域2-3的第二信息之间的差异大于预设阈值,可以确定出区域1-4没有遮挡物,区域2-3有遮挡物。在确定出区域2-3有遮挡物的前提下,可以根据区域2-3的第二信息和区域1-3的第一信息进行比较,在区域2-3的第二信息和区域1-3的第一信息之间的差异小于预设阈值时,可以确定出区域2-3存在遮挡物,相应的,区域2-2也存在遮挡物。相比通过单个的第一区域和第二区域确定第一区域或第二区域上是否有遮挡物的方式,可以有效提高遮挡物的识别效果,提高对视窗上的遮 挡物的识别的准确度。
在一些实施例中,可以通过对视窗进行扫描的方式,获得K个第一区域对应的K个第一信息,及K个第二区域对应的K个第二信息,确定出遮挡物在视窗上的分布情况。例如,处理模块根据第一探测模块在K个第一时刻对应接收的K个第一信息,和第二探测模块在K个第二时刻对应接收的K个第二信息,确定K个第一信息和K个第二信息之间的强度差的分布;K为正整数;根据K个第一信息和K个第二信息之间的强度差的分布,确定遮挡物在视窗上的位置信息。从而,确定遮挡物的大小及位置。
举例来说,以探测区域包括15*8个探测区域为例,第一探测模块可以包括8个第一子探测模块,用于探测垂直方向上的8个垂直探测区域。第一探测模块通过水平方向上的14个扫描步进,第一探测模块可以探测14*8个探测区域。第二探测模块可以包括8个第二子探测模块,用于探测垂直方向上的8个垂直探测区域。第二探测模块通过水平方向上的14个扫描步进,第二探测模块可以探测14*8个探测区域。从而,通过第一探测模块和第二探测模块覆盖15*8个探测区域的扫描,即对应15*8个视窗上的区域。
如图7a所示,为第一探测模块获得的每个视窗的区域的光波的强度值的分布示意图,如图7b所示,为第二探测模块获得的每个视窗的区域的光波的强度值的分布示意图。以同一时刻可以接收到一列8个探测区域上的光波为例,第一探测模块对应的G1(0)为初始时刻接收到的8个探测区域的信息。第二探测模块对应的G2(0)为初始时刻接收到的8个探测区域的信息。结合图7a和图7b,可以确定出第一探测模块对应的G1(7)和第二探测模块对应的G2(9)存在遮挡物。可选的,考虑每列包括有8个子探测模块进行探测的场景,结合图7a和图7b,可以确定出第一探测模块对应的G1(7,4)和G1(7,5),第二探测模块对应的G2(9,4)和G2(9,5)存在遮挡物。
本申请可以综合第一探测模块和第二探测模块获得的所有区域的光波的强度值的分布,确定遮挡物的大小和位置。可选的,通过第一探测模块和第二探测模块获得的所有区域的光波的强度值的分布,可以获得更准确的视窗的透射率的空间分布。例如,通过对视窗进行扫描的方式,获得K个第一区域对应的K个第一信息,及K个第二区域对应的K个第二信息,确定出遮挡物在视窗上的分布情况,举例来说,视窗的透射率r的空间分布满足:
r(1),r(2),…,r(K)=f(p(1),p(2),…,p(K))
其中,K为扫描时刻,可以对应视窗上的区域,f(~)为空间透射率的计算函数。本申请对该函数不做限定。
相比通过单个的第一区域和第二区域确定第一区域或第二区域上是否有遮挡物的方式,可以有效提高遮挡物的识别效果,提高对视窗上的遮挡物的识别的准确度,以更好的指导后续的视窗清理和视窗告警操作。
在一些实施例中,处理模块还可以根据第一光波和第二光波,确定视窗上的第一区域或第二区域中的遮挡物的类型。具体的,可以通过设置相应的阈值范围,确定视窗上存在的遮挡物的类型。
举例来说,考虑到视窗上第一区域的遮挡物为水滴、冰雪等具有光滑表面的遮挡物,此时,相比不存在该类遮挡物的干净表面的视窗的区域(例如,第二区域)而言,主要通过镜面反射到视窗外,而通过第一区域透射至视窗内的光的强度会极大的减少,第一探测模块通过第一区域接收到的第一光波的信号强度,相比第二探测模块通过第二区域接收到 的第二光波的信号强度较弱,因此,可以通过判断第一光波和第二光波的强度差,确定第一区域是否存在遮挡及遮挡物的类型。
再比如,考虑到视窗上第一区域的遮挡物为灰尘等具有粗糙表面的遮挡物,此时,相比不存在该类遮挡物的干净表面的视窗的区域(例如,第二区域)而言,通过第一区域透射至视窗内的光的强度也会相应减少,第一探测模块通过第一区域接收到的第一光波的信号强度,相比第二探测模块通过第二区域接收到的第二光波的信号强度较弱,因此,可以通过判断第一光波和第二光波的强度差,确定第一区域是否存在遮挡及遮挡物的类型。
例如,可以通过设置水滴的第一阈值范围,在确定第一光波的信号强度和第二光波的信号强度的差异属于第一阈值范围时,可以确定第一区域或第二区域存在水滴类型的遮挡物。再比如,可以通过设置冰的第一阈值范围,在确定第一光波的信号强度和第二光波的信号强度的差异属于冰的第一阈值范围内时,可以确定第一区域或第二区域存在冰类型的遮挡物。
再比如,可以通过设置尘土的第二阈值范围,在确定第一光波的信号强度和第二光波的信号强度的差异属于第二阈值范围内时,可以确定第一区域或第二区域存在尘土类型的遮挡物。
可选的,处理模块还可以在确定第一区域或者第二区域存在遮挡后,指示相应的清洗视窗的部件执行对第一区域或第二区域的清洗操作。
再比如,处理模块还可以在确定第一区域或者第二区域存在遮挡物的类型后,指示清洗该遮挡物类型的清洗部件执行对第一区域或第二区域的清洗操作。
例如,在确定第一区域存在雨水类型的遮挡物时,可以开启雨刷器执行对第一区域的清洗操作。再比如,在确定第一区域存在灰尘类型的遮挡物时,可以开启清洁剂喷洒部件喷洒视窗的清洁剂,及开启雨刷器执行对第一区域的清洗操作。
通过上述方法,可以提高对遮挡物的检测的准确度。
可选的,检测装置还可以包括:处理控制模块。该处理控制模块,可以用于控制扫描模块处于不同的扫描角度。处理控制模块可以与处理模块集成在一起,也可以为单独设置的,在此不做限定。
应理解,处理控制模块可以控制扫描模块步进处于某一个扫描角度,或者也可以是连续转动到某一扫描角度,扫描模块可以处于不同的扫描角度,在每个扫描角度下,接收来自探测区域的光波。
示例性地,处理控制模块可先控制扫描模块在一个扫描角度下,例如,第一时刻,接收第一探测区域的第一光波,经光路调整模块进入第一探测模块。及第二探测区域的第二光波,经光路调整模块进入第二探测模块。
处理控制模块触发第一探测模块中的数据采集单元采集第一光波,处理控制模块触发第二探测模块中的数据采集单元采集第二光波,使得处理模块根据得到的第一光波和第二光波,确定第一区域和第二区域对应的遮挡物的信息。之后处理控制模块控制扫描模块处于下一个扫描角度,并重复上述过程。
需要说明的是,在处理控制模块控制扫描模块时,第一探测模块中的信号接收单元可以一直接收对应的第一信息。第二探测模块中的信号接收单元可以一直接收对应的第二信息。
可选的,处理控制模块还可以在确定第一区域或者第二区域存在遮挡后,用于指示相 应的清洗视窗的部件执行对第一区域或第二区域的清洗操作。
在一种可能的实现方式中,处理控制模块可以包括处理单元和控制单元,处理单元可以是通用处理器、现场可编程门阵列(field programmable gate array,FPGA)、信号数据处理(digital signal processing,DSP)电路、专门应用的集成电路(application specific integrated circuit,ASIC)、或者其他可编程逻辑器件。控制单元包括扫描器的驱动、调制器的驱动、激光器的频率调制驱动、探测器的驱动等,这些驱动可以是集成在一起,也可以是分开的。
可选地,FPGA可向控制单元的各个驱动发送控制信号,使扫描器的驱动控制扫描模块、探测器的驱动控制第一探测模块和第二探测模块,以实现扫描模块、第一探测模块、第二探测模块之间进行同步;或者,使扫描器的驱动控制扫描模块、探测器的驱动控制第一探测模块和第二探测模块,以实现扫描模块、第一探测模块、第二探测模块之间进行同步。以扫描器为例,FPGA可以向扫描模块的驱动发送控制信号,扫描模块的驱动可根据该控制信号控制扫描器处于某一个扫描角度。
基于上述内容和相同的构思,本申请提供的一种检测方法,可参见下述图8的介绍。该视窗检测方法可应用于上述任一实施例的检测装置。其中,检测装置包括:光路调整模块、扫描模块和处理模块,距离为d的第一探测模块和第二探测模块,如图8所示,该方法包括以下步骤:
步骤801:扫描模块在第一时刻接收并反射透过视窗的第一区域的第一光波,第一光波经由光路调整模块被第一探测模块接收并生成第一信息;第一信息指示第一光波的强度。
步骤802:扫描模块在第二时刻接收并反射透过视窗的第二区域的第二光波,第二光波经由光路调整模块被第二探测模块接收生成第二信息;第二信息用于指示第二光波的强度;第一光波和第二光波来源于视窗外的同一探测区域。
步骤803:处理模块获取来自第一探测模块的第一信息和来自第二探测模块的第二信息,并控制扫描模块以步进角度a进行转动。
其中,扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关。或者,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与第一透镜组的焦距f的比值,和扫描角度差n*a有关。其中,距离c为距离d的m倍,c、f、m为正数。
步骤804:处理模块根据第一信息和第二信息,输出第三信息,第三信息用于指示第一区域或者第二区域存在遮挡,或者用于指示执行清洗操作。
在一些实施例中,第一光路和第二光路之间的角度与扫描角度差n*a相关;其中,第一光路为在第一时刻第一探测模块、光路调整模块和扫描模块之间的光路;第二光路为在第一时刻第二探测模块、光路调整模块和扫描模块之间的光路;或者,第一光路为在第二时刻第一探测模块、光路调整模块和扫描模块之间的光路;第二光路为在第二时刻第二探测模块、光路调整模块和扫描模块之间的光路。
通过第一探测模块在第一时刻接收透射到视窗内的一个探测区域的第一光波,并通过第二探测模块在第二时刻接收透射到视窗内的同一个探测区域的第二光波,而第一光波通过视窗上的第一区域透射到第一探测模块,第二光波通过视窗上的第二区域透射到第二探测模块,从而,基于来自同一探测区域的第一光波和第二光波,实现对视窗上的不同区域的差异性进行比较,由于考虑的是光波在视窗上的透过率,相比通过反射的回波信号对视 窗进行检测,可以更准确的判断视窗上是否存在遮挡物,在确定存在遮挡物的同时,还可以基于第一光波和第二光波之间的差异,确定遮挡物的类型从而执行相应的清洗操作,及时对遮挡物识别的同时,还可以对遮挡物进行处理,有效的保证了激光雷达或摄像头等器件的正常工作的性能。
为了实现上述本申请实施例提供的方法中的各功能,本申请实施例还提供一种检测装置用于实现上述方法。该装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例提供的检测装置可以是集成了处理器的控制器,或者也可以是能够执行上述方法对应的功能的芯片或电路,该芯片或电路可以设置在控制器等设备中。进一步的,本申请实施例提供的检测装置,还能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例提供的检测装置可以进行功能模块的划分,例如,可对应各个功能划分各个功能模块,也可将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
一种可能的实现方式中,如图9所示,为本申请实施例提供一种探测装置结构示意图。该探测装置可以是激光雷达,也可以是激光雷达中的装置,或者是能够和激光雷达匹配使用的装置。该装置900可以包括:第一探测模块901、第二探测模块902、光路调整模块903和扫描模块904。当然,该装置900还可能包括其他模块,例如,处理模块等。本申请实施例并不限定,仅示出主要的功能模块。
应理解,本申请实施例中的第一探测模块901和第二探测模块901可以分别由探测器或探测器相关电路组件实现。
其中,扫描模块904,用于在第一时刻接收并反射透过视窗的第一区域的第一光波,第一光波经由光路调整模块903被第一探测模块901接收生成第一信息;扫描模块904,用于第二时刻接收并反射透过视窗的第二区域的第二光波,第二光波经由光路调整模块903被第二探测模块902接收生成第二信息;扫描模块904在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块903包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关;或者,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与所述第一透镜组的焦距f的比值,和扫描角度差n*a有关,距离c为距离d的m倍,c、f、m为正数;
处理模块,用于控制扫描模块904以步进角度a进行转动;处理模块,还用于根据第一信息和第二信息,输出第三信息,第三信息用于指示第一区域或者第二区域存在遮挡,或者用于指示执行清洗操作。处理模块获取来自第一探测模块的第一信息和来自第二探测模块的第二信息,第一信息指示第一光波的强度,以及第二信息用于指示第二光波的强度。
示例性的,本申请实施例可以提供一种激光雷达1000,激光雷达1000的结构可以如图10所示,激光雷达1000包括激光器1001、第一探测器1002、第二探测器1003和光学器件1004;光学器件1004可以包括上述实施例中的扫描模块和/或上述实施例中的光路调整模块。第一探测器1002可以为上述实施例中的第一探测模块,第二探测器1003可以为上述实施例中的第二探测模块。可选的,激光雷达1000还可以包括处理模块。
光学器件1004中的扫描模块,用于在第一时刻接收并反射透过视窗的第一区域的第一光波,第一光波经由光路调整模块被第一探测模块接收生成第一信息;扫描模块,用于第二时刻接收并反射透过视窗的第二区域的第二光波,第二光波经由光路调整模块被第二探测模块接收生成第二信息;扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;
光学器件1004中的光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关;或者,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与所述第一透镜组的焦距f的比值,和扫描角度差n*a有关。其中,距离c为距离d的m倍,c、f、m为正数。
处理模块,用于控制光学器件1004中的扫描模块以步进角度a进行转动;处理模块,还用于根据第一信息和第二信息,输出第三信息,第三信息用于指示第一区域或者第二区域存在遮挡,或者用于指示执行清洗操作。处理模块获取来自第一探测模块的第一信息和来自第二探测模块的第二信息,第一信息指示第一光波的强度,以及第二信息用于指示第二光波的强度。
需要说明的是,图10中激光器1001和光学器件1004之间的连线表示激光器1001和光学器件1004之间存在光路,不代表激光器1001和光学器件1004之间的器件的连接,光学器件1004和第一探测器1002、光学器件1004和第二探测器1003之间的连线表示光学器件1004和第一探测器1002之间存在光路、光学器件1004和第二探测器1003之间存在光路,不代表光学器件1004和第一探测器1002之间的器件的连接、光学器件1004和第二探测器1003的器件的连接。
本申请实施例还提供一种芯片,该芯片与存储器相连,用于读取并执行该存储器中存储的软件程序,当在该芯片上运行该软件程序时,使得该芯片实现图3、图4a~图4c、图5a~图5c、图6a~图6f、图7a~图7b、图8中处理模块或者激光雷达的功能。例如,当在该芯片上运行该软件程序时,使得芯片控制检测装置的扫描模块以步进角度a进行转动;并获取来自该检测装置的第一探测模块的第一信息和来自该检测装置的第二探测模块的第二信息,该第一信息指示第一光波的强度,以及该第二信息用于指示第二光波的强度;根据第一信息和第二信息,输出第三信息,第三信息用于指示检测装置的视窗的第一区域或者视窗的第二区域存在遮挡,或者用于指示执行清洗操作;
第一光波通过检测装置的扫描模块在第一时刻接收并反射透过第一区域,第一光波经由检测装置的光路调整模块被第一探测模块接收并生成第一信息;第二光波通过检测装置的扫描模块在第二时刻接收并反射透过第二区域,第二光波经由光路调整模块被第二探测模块接收并生成第二信息;
扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关;或者,第一光波和第二光波在第一透镜组的焦 平面上所成的像之间的距离c与所述第一透镜组的焦距f的比值,和扫描角度差n*a有关。其中,距离c为距离d的m倍,c、f、m为正数。
本申请实施例还提供一种计算机可读存储介质,包括指令,当在检测装置上运行指令时,使得检测装置实现图3、图4a~图4c、图5a~图5c、图6a~图6f、图7a~图7b、图8中检测装置或者激光雷达的功能。例如,当在检测装置上运行指令时,使得检测装置控制检测装置的扫描模块以步进角度a进行转动;并获取来自检测装置的第一探测模块的第一信息和来自检测装置的第二探测模块的第二信息,第一信息指示第一光波的强度,以及第二信息用于指示第二光波的强度;根据第一信息和第二信息,输出第三信息,第三信息用于指示检测装置的视窗的第一区域或者视窗的第二区域存在遮挡,或者用于指示执行清洗操作;
第一光波通过检测装置的扫描模块在第一时刻接收并反射透过第一区域,第一光波经由检测装置的光路调整模块被第一探测模块接收并生成第一信息;第二光波通过检测装置的扫描模块在第二时刻接收并反射透过第二区域,第二光波经由光路调整模块被第二探测模块接收并生成第二信息;
扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关;或者,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与所述第一透镜组的焦距f的比值,和扫描角度差n*a有关。其中,距离c为距离d的m倍,c、f、m为正数。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供一种终端,终端包括至少一个本申请上述实施例提到的探测装置,或包括本申请上述实施例提到的激光雷达。
本申请实施例还提供一种计算机产品,包括指令,当在计算机上运行指令时,使得计算机实现图3、图4a~图4c、图5a~图5c、图6a~图6f、图7a~图7b、图8中检测装置或者激光雷达的功能。例如,当在计算机上运行指令时,使得计算机控制检测装置的扫描模块以步进角度a进行转动;并获取来自检测装置的第一探测模块的第一信息和来自检测装置的第二探测模块的第二信息,第一信息指示第一光波的强度,以及第二信息用于指示第二光波的强度;根据第一信息和第二信息,输出第三信息,第三信息用于指示检测装置的视窗的第一区域或者视窗的第二区域存在遮挡,或者用于指示执行清洗操作;
第一光波通过检测装置的扫描模块在第一时刻接收并反射透过第一区域,第一光波经由检测装置的光路调整模块被第一探测模块接收并生成第一信息;第二光波通过检测装置的扫描模块在第二时刻接收并反射透过第二区域,第二光波经由光路调整模块被第二探测模块接收并生成第二信息;
扫描模块在第一时刻和第二时刻的扫描角度差为n*a,a为步进角度且大于0,n为正整数;光路调整模块包括第一透镜组,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c和扫描角度差n*a有关;或者,第一光波和第二光波在第一透镜组的焦平面上所成的像之间的距离c与所述第一透镜组的焦距f的比值,和扫描角度差n*a有关,距离c为距离d的m倍,c、f、m为正数。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种检测装置,其特征在于,包括:光路调整模块、扫描模块和处理模块,距离为d的第一探测模块和第二探测模块,所述d大于0;
    所述扫描模块,用于在第一时刻接收并反射透过视窗的第一区域的第一光波,所述第一光波经由光路调整模块被所述第一探测模块接收并生成第一信息;
    所述扫描模块,用于第二时刻接收并反射透过所述视窗的第二区域的第二光波,所述第二光波经由所述光路调整模块被所述第二探测模块接收并生成第二信息;
    所述扫描模块在所述第一时刻和所述第二时刻的扫描角度差为n*a,所述a为步进角度且大于0,所述n为正整数;
    所述光路调整模块包括第一透镜组,所述第一光波和所述第二光波在所述第一透镜组的焦平面上所成的像之间的距离c和所述扫描角度差n*a有关,所述距离c为所述距离d的m倍,所述c、m为正数;
    所述处理模块,用于控制所述扫描模块以所述步进角度a进行转动;并获取来自所述第一探测模块的第一信息和来自所述第二探测模块的第二信息,所述第一信息指示所述第一光波的强度,以及所述第二信息用于指示所述第二光波的强度;
    所述处理模块,还用于根据所述第一信息和第二信息,输出第三信息,所述第三信息用于指示所述第一区域或者所述第二区域存在遮挡,或者用于指示执行清洗操作。
  2. 如权利要求1所述的装置,其特征在于,
    所述第一光波与所述第二光波平行;所述第一光波和所述第二光波来源于所述视窗外的同一探测区域。
  3. 如权利要求1或2所述的装置,其特征在于,所述第一时刻和所述第二时刻的扫描角度差满足:
    n*a=arctan(c/f)
    其中,所述f为所述光路调整模块的焦距,所述c为第一光波和所述第二光波在所述光路调整模块的焦平面上所成的像之间的距离,所述a为所述扫描模块的步进角度,所述c、f、a大于0;所述n为正整数,所述f为正数。
  4. 如权利要求1-3任一项所述的装置,其特征在于,
    所述第一透镜组用于对来自所述扫描模块的所述第一光波进行聚焦,并将聚焦后的第一光波传输给所述第一探测模块;以及,对来自所述扫描模块的所述第二光波进行聚焦,并将聚焦后的第二光波传输给所述第二探测模块;所述第一探测模块和所述第二探测模块位于所述第一透镜组的像方焦平面上;所述c与所述d相等。
  5. 如权利要求1-4任一项所述的装置,其特征在于,所述光路调整模块还包括第二透镜组,所述第二透镜组为准直系统;
    所述第二透镜组,用于对来自所述第一透镜组的所述第二光波进行聚焦,并将聚焦后的第一光波传输给所述第一探测模块;对来自所述第一透镜组的所述第二光波进行聚焦,并将聚焦后的第二光波传输给所述第二探测模块;所述准直系统的入光口位于所述第一透镜组的焦平面上,所述第一探测模块和所述第二探测模块位于所述准直系统的焦平面上,所述m与所述准直系统的焦距有关。
  6. 如权利要求1-5任一项所述的装置,其特征在于,所述处理模块,具体用于在所述 第一光波的强度与所述第二光波的强度的差异大于预设阈值时,确定所述第一区域或所述第二区域存在遮挡。
  7. 如权利要求1-6任一项所述的装置,其特征在于,所述处理模块,还用于根据所述第一光波的强度与所述第二光波的强度的差异值,确定所述视窗上的遮挡物的类型。
  8. 如权利要求1-7任一项所述的装置,其特征在于,所述处理模块,还用于:
    根据所述第一探测模块在K个第一时刻对应接收的K个第一信息,和所述第二探测模块在K个第二时刻对应接收的K个第二信息,确定所述K个第一信息和所述K个第二信息之间的强度差的分布;所述K为正整数;
    根据所述K个所述第一信息和K个所述第二信息之间的强度差的分布,确定遮挡物在所述视窗上的位置信息。
  9. 如权利要求1-8任一项所述的装置,其特征在于,所述第一探测模块或所述第二探测模块位于所述光路调整模块的光轴上。
  10. 如权利要求1-9任一项所述的装置,其特征在于,所述扫描模块的转轴位于所述光路调整模块的光轴上。
  11. 一种检测方法,其特征在于,应用于检测装置,所述检测装置包括:光路调整模块、扫描模块和处理模块,距离为d的第一探测模块和第二探测模块,所述方法包括:
    所述扫描模块在第一时刻接收并反射透过视窗的第一区域的第一光波,所述第一光波经由光路调整模块被第一探测模块接收并生成第一信息;所述扫描模块在第二时刻接收并反射透过所述视窗的第二区域的第二光波,所述第二光波经由所述光路调整模块被第二探测模块接收并生成第二信息;所述扫描模块在所述第一时刻和所述第二时刻的扫描角度差为n*a,所述a为步进角度且大于0,所述n为正整数;
    所述光路调整模块包括第一透镜组,所述第一光波和所述第二光波在所述第一透镜组的焦平面上所成的像之间的距离c和所述扫描角度差n*a有关,所述距离c为所述距离d的m倍,所述c、m为正数;
    所述处理模块控制所述扫描模块以所述步进角度a进行转动,并获取来自所述第一探测模块的第一信息和来自所述第二探测模块的第二信息,根据所述第一信息和第二信息,输出第三信息,所述第一信息指示所述第一光波的强度,以及所述第二信息用于指示所述第二光波的强度;所述第三信息用于指示所述第一区域或者所述第二区域存在遮挡,或者用于指示执行清洗操作。
  12. 如权利要求11所述的方法,其特征在于,
    所述第一光波与所述第二光波平行;所述第一光波和所述第二光波来源于所述视窗外的同一探测区域。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一时刻和所述第二时刻的扫描角度差满足:
    n*a=arctan(c/f)
    其中,所述f为所述光路调整模块的焦距,所述c为第一光波和所述第二光波在所述光路调整模块的焦平面上所成的像之间的距离,所述a为所述扫描模块的步进角度,所述c、f、a大于0;所述f为正数。
  14. 如权利要求11-13任一项所述的方法,其特征在于,所述c与所述d相等;所述第一光波经由光路调整模块被第一探测模块接收并生成第一信息,包括:
    所述第一透镜组对来自所述扫描模块的所述第一光波进行聚焦,并将聚焦后的第一光波传输给所述第一探测模块,所述第一探测模块根据聚焦后的第一光波生成所述第一信息;
    所述第二光波经由光路调整模块被第二探测模块接收生成第二信息,包括:
    所述第一透镜组对来自所述扫描模块的所述第二光波进行聚焦,并将聚焦后的第二光波传输给所述第二探测模块,所述第二探测模块根据聚焦后的第二光波生成是第二信息。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述光路调整模块还包括第二透镜组,所述第二透镜组为准直系统;所述第二透镜组的入光口位于所述透镜组件的焦平面上,所述第一探测模块和所述第二探测模块位于所述第二透镜组的焦平面上,所述m与所述第二透镜组的焦距有关;
    所述第一光波经由光路调整模块被第一探测模块接收并生成第一信息,包括:
    所述第二透镜组对来自所述第一透镜组的第一光波进行聚焦,并将聚焦后的第一光波传输给所述第一探测模块,所述第一探测模块根据接收到的聚焦后的第一光波生成所述第一信息;
    所述第二光波经由光路调整模块被第二探测模块接收生成第二信息,包括:
    所述第二透镜组对来自所述第一透镜组的第二光波进行聚焦,并将聚焦后的第二光波传输给所述第二探测模块,所述第二探测模块根据接收到的聚焦后的第二光波生成所述第二信息。
  16. 如权利要求11-15任一项所述的方法,其特征在于,所述处理模块根据所述第一信息和第二信息,输出第三信息,包括:
    所述处理模块在所述第一光波的强度与所述第二光波的强度的差异大于预设阈值时,确定所述第一区域或所述第二区域存在遮挡。
  17. 如权利要求11-16任一项所述的方法,其特征在于,所述方法还包括:
    所述处理模块根据所述第一光波的强度与所述第二光波的强度的差异值,确定所述视窗上的遮挡物的类型。
  18. 如权利要求11-17任一项所述的方法,其特征在于,所述方法还包括:
    所述处理模块根据所述第一探测模块在K个第一时刻对应接收的K个第一信息,和所述第二探测模块在K个第二时刻对应接收的K个第二信息,确定K个所述第一信息和K个所述第二信息之间的强度差的分布;所述K为正整数;
    根据所述K个第一信息和所述K个第二信息之间的强度差的分布,确定遮挡物在所述视窗上的位置信息。
  19. 一种激光雷达,其特征在于,包括如权利要求1至10任一项所述的检测装置。
  20. 一种终端,其特征在于,所述终端包括如权利要求1至10任一项所述的检测装置。
  21. 一种计算机可读存储介质,其特征在于,用于存储指令,所述指令用于控制检测装置的扫描模块以步进角度a进行转动,并获取来自所述检测装置的第一探测模块的第一信息和来自所述检测装置的第二探测模块的第二信息,根据所述第一信息和所述第二信息,输出第三信息,所述第三信息用于指示所述检测装置的视窗的第一区域或者所述视窗的第二区域存在遮挡,或者用于指示执行清洗操作;
    所述第一信息指示第一光波的强度,以及所述第二信息用于指示第二光波的强度;所述第一光波通过所述检测装置的扫描模块在第一时刻接收并反射透过所述第一区域,所述第一光波经由所述检测装置的光路调整模块被所述第一探测模块接收并生成所述第一信 息;
    所述第二光波通过所述检测装置的扫描模块在第二时刻接收并反射透过所述第二区域,所述第二光波经由所述光路调整模块被所述第二探测模块接收并生成第二信息;
    所述扫描模块在所述第一时刻和所述第二时刻的扫描角度差为n*a,所述a为所述步进角度且大于0,所述n为正整数;所述光路调整模块包括第一透镜组,所述第一光波和所述第二光波在所述第一透镜组的焦平面上所成的像之间的距离c和所述扫描角度差n*a有关,所述距离c为所述距离d的m倍,所述c、m为正数。
PCT/CN2021/097424 2021-05-31 2021-05-31 一种检测方法及装置 WO2022252057A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/097424 WO2022252057A1 (zh) 2021-05-31 2021-05-31 一种检测方法及装置
CN202180098312.9A CN117355765A (zh) 2021-05-31 2021-05-31 一种检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097424 WO2022252057A1 (zh) 2021-05-31 2021-05-31 一种检测方法及装置

Publications (1)

Publication Number Publication Date
WO2022252057A1 true WO2022252057A1 (zh) 2022-12-08

Family

ID=84323809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097424 WO2022252057A1 (zh) 2021-05-31 2021-05-31 一种检测方法及装置

Country Status (2)

Country Link
CN (1) CN117355765A (zh)
WO (1) WO2022252057A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061902A (zh) * 2017-12-30 2018-05-22 刁心玺 一种探测物体的方法及装置
JP2018151286A (ja) * 2017-03-14 2018-09-27 オムロンオートモーティブエレクトロニクス株式会社 物体検出装置
CN109917354A (zh) * 2019-04-26 2019-06-21 上海禾赛光电科技有限公司 激光雷达的接收装置、激光雷达及其回波处理方法
US20200174156A1 (en) * 2018-11-29 2020-06-04 Continental Automotive Systems, Inc. Blockage detection & weather detection system with lidar sensor
CN111429400A (zh) * 2020-02-21 2020-07-17 深圳市镭神智能系统有限公司 一种激光雷达视窗污物的检测方法、装置、系统及介质
US10969491B1 (en) * 2020-08-14 2021-04-06 Aeva, Inc. LIDAR window blockage detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151286A (ja) * 2017-03-14 2018-09-27 オムロンオートモーティブエレクトロニクス株式会社 物体検出装置
CN108061902A (zh) * 2017-12-30 2018-05-22 刁心玺 一种探测物体的方法及装置
US20200174156A1 (en) * 2018-11-29 2020-06-04 Continental Automotive Systems, Inc. Blockage detection & weather detection system with lidar sensor
CN109917354A (zh) * 2019-04-26 2019-06-21 上海禾赛光电科技有限公司 激光雷达的接收装置、激光雷达及其回波处理方法
CN111429400A (zh) * 2020-02-21 2020-07-17 深圳市镭神智能系统有限公司 一种激光雷达视窗污物的检测方法、装置、系统及介质
US10969491B1 (en) * 2020-08-14 2021-04-06 Aeva, Inc. LIDAR window blockage detection

Also Published As

Publication number Publication date
CN117355765A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US20210255329A1 (en) Environment sensing system and movable platform
CN107209265B (zh) 光探测和测距装置
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
US20200018854A1 (en) Camera-Gated Lidar System
US20210293928A1 (en) Ranging apparatus, balance method of scan field thereof, and mobile platform
KR101903960B1 (ko) 라이다 장치
US20190011539A1 (en) Light Projecting/Reception Unit And Radar
US20170299701A1 (en) Scanning Optical System And Radar
WO2020124318A1 (zh) 调整扫描元件运动速度的方法及测距装置、移动平台
WO2022110210A1 (zh) 一种激光雷达及移动平台
CN115480254A (zh) 一种检测方法及装置
CN111263898A (zh) 一种光束扫描系统、距离探测装置及电子设备
US20240012117A1 (en) Detection Method and Apparatus
US11053005B2 (en) Circular light source for obstacle detection
WO2022252057A1 (zh) 一种检测方法及装置
US10048492B2 (en) Scanning optical system and radar
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
CN113820721B (zh) 一种收发分离的激光雷达系统
EP3364229B1 (en) Optical-scanning-type object detection device
US20210341588A1 (en) Ranging device and mobile platform
EP2476014B1 (en) Device and method for object detection and location
JP2017125765A (ja) 対象物検出装置
US20210333369A1 (en) Ranging system and mobile platform
CN114096870A (zh) 用于激光雷达的接收系统、激光雷达和抑制鬼线的方法
KR102636500B1 (ko) 전방위 시야각을 갖는 라이다 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE