WO2019189490A1 - Packaging material and retort pouch or microwavable pouch provided with packaging material - Google Patents

Packaging material and retort pouch or microwavable pouch provided with packaging material Download PDF

Info

Publication number
WO2019189490A1
WO2019189490A1 PCT/JP2019/013404 JP2019013404W WO2019189490A1 WO 2019189490 A1 WO2019189490 A1 WO 2019189490A1 JP 2019013404 W JP2019013404 W JP 2019013404W WO 2019189490 A1 WO2019189490 A1 WO 2019189490A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
packaging material
plastic film
stretched plastic
layer
Prior art date
Application number
PCT/JP2019/013404
Other languages
French (fr)
Japanese (ja)
Inventor
靖也 飯尾
有紀 龍田
紘基 阿久津
高橋 秀明
和弘 多久島
浩一 三上
戸田 清志
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2020509273A priority Critical patent/JPWO2019189490A1/en
Publication of WO2019189490A1 publication Critical patent/WO2019189490A1/en
Priority to JP2023218500A priority patent/JP2024041795A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a packaging material and a packaging product such as a retort pouch or a microwave oven pouch provided with the packaging material.
  • Patent Document 1 discloses as a packaging material a stretched polyethylene terephthalate film, a silica-deposited stretched polyethylene terephthalate film, an alumina-deposited stretched polyethylene terephthalate film, a stretched nylon film, a stretched polypropylene film, or a polypropylene / ethylene-vinyl alcohol copolymer co-pushing. It has been proposed to use a stretched film or a composite film in which two or more of these films are laminated.
  • the packaging material for forming the packaged product is required to have rigidity for preventing the packaged product from being broken even when a sharp member having a sharp tip contacts the packaged product.
  • the present invention has been made in consideration of such points, and an object thereof is to provide a packaging material having rigidity.
  • One embodiment of the present invention is a packaging material
  • a packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side
  • the biaxially stretched plastic film contained in the packaging material is only the first biaxially stretched plastic film and the second biaxially stretched plastic film
  • the sealant layer contains polypropylene as a main component
  • the packaging material has a loop stiffness in one direction of the packaging material of 0.160 N or more.
  • the first biaxially stretched plastic film and the second biaxially stretched plastic film may contain polyester as a main component.
  • One embodiment of the present invention is a packaging material
  • a packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side
  • the biaxially stretched plastic film contained in the packaging material is only the first biaxially stretched plastic film and the second biaxially stretched plastic film
  • the sealant layer contains polypropylene as a main component
  • the packaging material has a value obtained by dividing the loop stiffness in one direction of the packaging material by the thickness of the packaging material of 0.00150 [N / ⁇ m] or more.
  • One embodiment of the present invention is a packaging material
  • a packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side
  • One of the first biaxially stretched plastic film or the second biaxially stretched plastic film is a high stiffness polyester film
  • the first biaxially stretched plastic film or the second biaxially stretched plastic film contains polyester or polyamide as the main component
  • the high stiffness polyester film is a packaging material having a loop stiffness of 0.0017 N or more in one direction and containing polyester as a main component.
  • One embodiment of the present invention is a packaging material
  • a packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
  • Each of the first biaxially stretched plastic film and the second biaxially stretched plastic film contains polyethylene terephthalate as a main component,
  • the packaging material has a puncture strength of 14 N or more.
  • One embodiment of the present invention is a packaging material
  • a packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side
  • One of the first biaxially stretched plastic film or the second biaxially stretched plastic film is a high stiffness polyester film
  • the first biaxially stretched plastic film or the second biaxially stretched plastic film contains polyester or polyamide as the main component
  • the packaging material has a value obtained by dividing the tensile strength of the high stiffness polyester film by the tensile elongation in at least one direction is 2.0 [MPa /%] or more.
  • the puncture strength of the packaging material may be 14 N or more.
  • the tensile strength of the high stiffness polyester film in one direction may be 250 MPa or more.
  • either the first biaxially stretched plastic film or the second biaxially stretched plastic film has a tensile strength in one direction perpendicular to the one direction. It may be a straight-cut film that is larger than the tensile strength. In this case, the tensile strength of the straight cut film in one direction may be 1.05 times or more the tensile strength of the straight cut film in a direction orthogonal to the one direction.
  • the packaging material according to an embodiment of the present invention may include a printing layer.
  • the sealant layer may contain polypropylene as a main component.
  • the sealant layer may contain polyethylene having a melting point of 100 ° C. or higher as a main component.
  • the sealant layer includes a first layer mainly composed of polyethylene or polypropylene, and a second layer that is located closer to the inner surface than the first layer and includes a mixed resin of polyethylene and polypropylene. And may have a layer.
  • a packaging material includes a vapor deposition layer located on one surface of the first biaxially stretched plastic film or the second biaxially stretched plastic film, and a gas barrier located on the vapor deposition layer.
  • An adhesive coating film located on one surface of the first biaxially stretched plastic film or the second biaxially stretched plastic film.
  • One embodiment of the present invention is a retort pouch provided with the packaging material described above.
  • One embodiment of the present invention is a microwave oven pouch having a storage portion, Steam-wrapped packaging material; It is a pouch for microwave ovens provided with the seal part which joins the inner surfaces of the said packaging material, Comprising: The seal
  • a packaging material having rigidity can be provided.
  • FIG. 6 is a cross-sectional view of the loop stiffness measuring device of FIG. 5 taken along line VI-VI. It is a figure which shows an example of the method of preparing the test piece used with a loop stiffness measuring device.
  • FIG. 1 It is a figure which shows an example of the method of filling the contents with a bag. It is a front view which shows one modification of a bag. It is a front view which shows one modification of a bag. It is a longitudinal cross-sectional view which shows an example of the container containing a packaging material. It is a top view which shows an example of the container containing a packaging material. It is sectional drawing which shows an example of the packaging material by 2nd Embodiment. It is sectional drawing which shows an example of the packaging material by 2nd Embodiment. It is sectional drawing which shows an example of the base material of a barriering laminated film. It is sectional drawing which shows an example of a sealant layer.
  • FIGS. 1 to 16 With reference to the first embodiment FIGS. 1 to 16, it will be described an embodiment of the present invention.
  • scales, vertical and horizontal dimensional ratios, and the like are appropriately changed and exaggerated from those of the actual ones.
  • FIG. 1 is a front view showing a bag 10 according to the present embodiment.
  • the bag 10 includes a storage portion 17 that stores the contents.
  • FIG. 1 the bag 10 of the state before the contents are accommodated is shown.
  • the configuration of the bag 10 will be described.
  • the bag 10 is a gusseted bag configured to be able to stand on its own.
  • the bag 10 includes an upper portion 11, a lower portion 12, and a pair of side portions 13, and has a substantially rectangular outline in a front view.
  • names such as “upper”, “lower” and “side”, and terms such as “upper” and “lower” refer to a bag based on the state in which the bag 10 is self-supporting with the gusset portion down. It is only a relative representation of the position and direction of 10 and its components.
  • position at the time of transport of the bag 10 or use is not limited by the name and terminology in this specification.
  • the width direction of the bag 10 is also referred to as a first direction D1.
  • the pair of side portions 13 described above face each other in the first direction D1.
  • a direction orthogonal to the first direction D1 is also referred to as a second direction D2.
  • a usage pattern is assumed in which the consumer opens the bag 10 by tearing the bag 10 along the first direction D1.
  • the bag 10 includes a surface film 14 that constitutes the front surface, a back film 15 that constitutes the back surface, and a lower film 16 that constitutes the lower portion 12.
  • the lower film 16 is disposed between the front film 14 and the back film 15 in a state where the lower film 16 is folded at the folded portion 16f.
  • the term “surface film”, “back film” and “lower film” described above is merely a partition of each film according to the positional relationship, and the method of providing a film when manufacturing the bag 10 It is not limited by the above terms.
  • the bag 10 may be manufactured using one film in which the front film 14, the back film 15, and the lower film 16 are continuously provided, or one sheet in which the front film 14 and the lower film 16 are continuously provided. It may be manufactured using a total of two films, a film and one back film 15, and a total of three films, one surface film 14, one back film 15, and one lower film 16. May be used.
  • the inner surfaces of the front film 14, the back film 15, and the lower film 16 are joined together by a seal portion.
  • the seal portion is hatched.
  • the seal portion has an outer edge seal portion that extends along the outer edge of the bag 10.
  • the outer edge seal portion includes a lower seal portion 12 a extending in the lower portion 12 and a pair of side seal portions 13 a extending along the pair of side portions 13.
  • the upper portion 11 of the bag 10 is an opening 11b.
  • the upper seal portion 11 a is formed by sealing the bag 10 by joining the inner surface of the front film 14 and the inner surface of the back film 15 at the upper portion 11.
  • the side seal part 13 a and the upper seal part 11 a are seal parts configured by joining the inner surface of the front film 14 and the inner surface of the back film 15.
  • the lower seal portion 12a is formed by bonding the inner surface of the surface film 14 and the inner surface of the lower film 16, and by bonding the inner surface of the back film 15 and the inner surface of the lower film 16. Including a configured seal.
  • the method for forming the seal portion is not particularly limited.
  • the sealing portion may be formed by melting the inner surfaces of the film by heating or the like and welding the inner surfaces, that is, by heat sealing. Or you may form a seal
  • the front film 14 and the back film 15 may be provided with easy opening means 25 for tearing the front film 14 and the back film 15 along the first direction D1 to open the bag 10.
  • the easy-opening means 25 may include a notch 26 that is formed in the side seal portion 13 a of the bag 10 and serves as a starting point of tearing.
  • a half-cut line formed by laser processing, a cutter, or the like may be provided as the easy-opening means 25 in a portion that becomes a path when the bag 10 is torn.
  • the easy-opening means 25 may include notches and scars formed in the area where the seal portion is formed in the front film 14 and the back film 15.
  • the scar group may include, for example, a plurality of through holes formed so as to penetrate the front film 14 and / or the back film 15.
  • the scar group may include a plurality of holes formed on the outer surface of the front film 14 and / or the back film 15 so as not to penetrate the front film 14 and / or the back film 15.
  • FIG. 2 is a cross-sectional view showing an example of the layer structure of the packaging material 30 that constitutes the front film 14 and the back film 15.
  • the packaging material 30 includes at least a first stretched plastic film 40, a first adhesive layer 45, a second stretched plastic film 50, a second adhesive layer 55, and a sealant layer 70 in this order.
  • the first stretched plastic film 40 is located on the outer surface 30y side
  • the sealant layer 70 is located on the inner surface 30x side opposite to the outer surface 30y.
  • the inner surface 30x is a surface located on the accommodating portion 17 side.
  • Each film constituting the packaging material 30, such as the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70, and the packaging material 30 have a flow direction and a vertical direction.
  • the flow direction is a direction in which the film flows when the film is formed, and is so-called MD (Machine-Direction).
  • the vertical direction is a direction orthogonal to the flow direction and is a so-called TD (Transverse Direction).
  • the direction in which the upper part 11 and the lower part 12 extend is the flow direction
  • the direction in which the side part 13 extends is the vertical direction.
  • the packaging material 30 of the present embodiment is configured to have rigidity. Thereby, the bag 10 including the packaging material 30 can be given rigidity. For example, it is possible to prevent the bag 10 from being broken when a sharp member with a sharp tip contacts the bag 10.
  • the thickness of the packaging material 30 is, for example, 80 ⁇ m or more, 90 ⁇ m or more, 100 ⁇ m or more, or 105 ⁇ m or more.
  • the thickness of the packaging material 30 may be 140 ⁇ m or less, 130 ⁇ m or less, 120 ⁇ m or less, 115 ⁇ m or less, or 110 ⁇ m or less.
  • Both the first stretched plastic film 40 and the second stretched plastic film 50 are biaxially stretched plastic films that are stretched in two predetermined directions.
  • the stretching direction of each stretched plastic film 40, 50 is not particularly limited.
  • the stretched plastic films 40 and 50 may be stretched in the direction in which the side portion 13 extends, or may be stretched in a direction orthogonal to the direction in which the side portion 13 extends.
  • stretching plastic film 40 and 50 may mutually be the same, and may differ.
  • the stretch ratio of each stretched plastic film 40, 50 is, for example, 1.05 times or more.
  • a stretched plastic film having a loop stiffness of 0.0017 N or more in at least one direction and containing polyester as a main component is also referred to as a high stiffness polyester film.
  • the high stiffness polyester film has a loop stiffness of 0.0017 N or more in at least one of the flow direction (MD) and the vertical direction (TD), for example.
  • the high stiffness polyester film may have, for example, a loop stiffness of 0.0017 N or more in both the flow direction (MD) and the vertical direction (TD).
  • the packaging material 30 can have rigidity.
  • the polyester is at least one aromatic dicarboxylic acid selected from terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and at least selected from ethylene glycol, 1,3-propanediol and 1,4-butanediol.
  • a polyester mainly composed of an aromatic polyester composed of one kind of aliphatic alcohol is preferred.
  • the polyester includes polyethylene terephthalate (hereinafter also referred to as PET), polybutylene terephthalate (hereinafter also referred to as PBT), and the like.
  • the high stiffness polyester film examples include a high stiffness PET film containing 51% by mass or more of PET as a main component, and a high stiffness PBT film containing 51% by mass or more of PBT as a main component.
  • the thickness of the high stiffness polyester film is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more. Further, the thickness of the high stiffness polyester film is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less.
  • Loop stiffness is a parameter representing the strength of a film such as a stretched plastic film.
  • a method for measuring loop stiffness will be described with reference to FIGS. Note that the measurement method described below can be used not only for a single layer film such as a stretched plastic film but also for a plurality of layers such as a vapor deposition film and a laminated film.
  • the vapor deposition film is a film including a single layer film such as a stretched plastic film and a vapor deposition layer formed on the single layer film.
  • the laminated film is a film including a plurality of laminated films such as the packaging material 30.
  • FIG. 5 is a plan view showing the test piece 80 and the loop stiffness measuring device 85
  • FIG. 6 is a cross-sectional view of the test piece 80 and the loop stiffness measuring device 85 in FIG. 5 taken along line VI-VI.
  • the test piece 80 is a rectangular film having a long side and a short side.
  • the long side length L1 of the test piece 80 is 150 mm
  • the short side length L2 is 15 mm.
  • As the loop stiffness measuring instrument 85 for example, No. manufactured by Toyo Seiki Co., Ltd. 581 Loop Stiffness Tester (registered trademark) LOOP STIFFNESS TESTER DA type can be used.
  • the long side length L1 of the test piece 80 can be adjusted as long as the test piece 80 can be gripped by a pair of chuck portions 86 described later.
  • the loop stiffness measuring instrument 85 includes a pair of chuck portions 86 for gripping a pair of end portions in the long side direction of the test piece 80, and a support member 87 for supporting the chuck portions 86.
  • the chuck portion 86 includes a first chuck 861 and a second chuck 862. 5 and 6, the test piece 80 is disposed on the pair of first chucks 861, and the second chuck 862 still grips the test piece 80 with the first chuck 861. Not. As will be described later, at the time of measurement, the test piece 80 is held between the first chuck 861 and the second chuck 862 of the chuck portion 86.
  • the second chuck 862 may be connected to the first chuck 861 via a hinge mechanism.
  • the test piece 80 is produced by cutting the film to be measured. May be. Moreover, the test piece 80 may be produced by cutting a packaged product produced from the packaging material 30 such as a bag and taking out a film to be measured.
  • FIG. 7 is a diagram illustrating an example of a method for preparing the test piece 80 by cutting the front film 14 or the back film 15 of the bag 10.
  • the front film 14 or the back film 15 of the bag 10 is cut so that the long side direction of the test piece coincides with the flow direction as indicated by reference numeral 80A in FIG.
  • the front film 14 or the back film 15 of the bag 10 is cut so that the long side direction of the test piece coincides with the vertical direction as indicated by reference numeral 80B in FIG.
  • the test piece is cut so that the long side direction of the test piece coincides with the vertical direction as indicated by reference numeral 80B in FIG.
  • the test piece 80 is placed on the first chuck 861 of the pair of chuck portions 86 arranged with a gap L ⁇ b> 3.
  • the interval L3 is set so that the length of the loop portion 81 (to be described later) (hereinafter also referred to as loop length) is 60 mm.
  • the test piece 80 includes an inner surface 80x located on the first chuck 861 side and an outer surface 80y located on the opposite side of the inner surface 80x.
  • the inner surface 80x and the outer surface 80y of the test piece 80 coincide with the inner surface 30x and the outer surface 30y of the packaging material 30.
  • the loop portion 81 described later is formed on the test piece 80, the inner surface 80 x is positioned inside the loop portion 81 and the outer surface 80 y is positioned outside the loop portion 81.
  • the second chuck 862 is disposed on the test piece 80 so as to grip the end portion in the long side direction of the test piece 80 with the first chuck 861.
  • a test piece 80 shown in FIG. 9 includes a loop portion 81, a pair of intermediate portions 82, and a pair of fixing portions 83.
  • the pair of fixing portions 83 are portions of the test piece 80 that are gripped by the pair of chuck portions 86.
  • the pair of intermediate portions 82 are portions of the test piece 80 that are located between the loop portion 81 and the pair of intermediate portions 82.
  • the chuck portion 86 is slid on the support member 87 until the inner surfaces 80x of the pair of intermediate portions 82 come into contact with each other.
  • the loop part 81 which has a loop length of 60 mm can be formed.
  • the loop length of the loop portion 81 is such that the position P1 where the surface on the loop portion 81 side of one second chuck 862 and the test piece 80 intersect, the surface on the loop portion 81 side of the other second chuck 862, and the test piece 80 This is the length of the test piece 80 between the position P2 and the position P2.
  • the interval L3 is a value obtained by adding 2 ⁇ t to the length of the loop portion 81 when the thickness of the test piece 80 is ignored.
  • t is the thickness of the second chuck 862 of the chuck portion 86.
  • the posture of the chuck portion 86 is adjusted so that the protruding direction Y of the loop portion 81 with respect to the chuck portion 86 is horizontal.
  • the posture of the chuck portion 86 supported by the support member 87 is adjusted by moving the support member 87 so that the normal direction of the support member 87 faces the horizontal direction.
  • the protruding direction Y of the loop portion 81 coincides with the thickness direction of the chuck portion.
  • the load cell 88 is prepared at a position away from the second chuck 862 by the distance Z1 in the projecting direction Y of the loop portion 81. In the present application, the distance Z1 is 50 mm.
  • the load cell 88 is moved toward the loop portion 81 of the test piece 80 at a speed V by a distance Z2 shown in FIG.
  • the distance Z2 is set so that the load cell 88 comes into contact with the loop portion 81 and then the load cell 88 pushes the loop portion 81 toward the chuck portion 86.
  • the distance Z2 is 40 mm.
  • the distance Z3 between the load cell 88 and the second chuck 862 of the chuck portion 86 in a state where the load cell 88 pushes the loop portion 81 toward the chuck portion 86 is 10 mm.
  • the speed V for moving the load cell 88 was 3.3 mm / second.
  • the load cell 88 shown in FIG. 11 is moved to the chuck portion 86 side by a distance Z2, and the load cell 88 is added to the load cell 88 from the loop portion 81 in a state where the load cell 88 pushes the loop portion 81 of the test piece 80. After the load value stabilizes, record the load value.
  • the load value thus obtained is adopted as the loop stiffness of the film constituting the test piece 80.
  • the environment at the time of measuring loop stiffness is a temperature of 23 ° C. and a relative humidity of 50%.
  • the puncture strength of the high stiffness polyester film is preferably 10N or more, more preferably 11N or more.
  • the tensile strength of the high stiffness polyester film in at least one direction is preferably 250 MPa or more, more preferably 280 MPa or more.
  • the tensile strength of the high stiffness polyester film in the flow direction is preferably 250 MPa or more, more preferably 280 MPa or more.
  • the tensile strength of the high stiffness polyester film in the vertical direction is preferably 250 MPa or more, more preferably 280 MPa or more.
  • the tensile elongation of the high stiffness polyester film in at least one direction is preferably 130% or less, more preferably 120% or less.
  • the tensile elongation of the high stiffness polyester film in the flow direction is preferably 130% or less, more preferably 120% or less.
  • the tensile elongation of the high stiffness polyester film in the vertical direction is preferably 120% or less, and more preferably 110% or less.
  • a value obtained by dividing the tensile strength of the high stiffness polyester film by the tensile elongation is 2.0 [MPa /%] or more.
  • the value obtained by dividing the tensile strength of the high stiffness polyester film in the vertical direction (TD) by the tensile elongation is preferably 2.0 [MPa /%] or more, more preferably 2.2 [MPa /%]. That's it.
  • the value obtained by dividing the tensile strength of the high stiffness polyester film in the flow direction (MD) by the tensile elongation is preferably 1.8 [MPa /%] or more, more preferably 2.0 [MPa /%] or more. is there.
  • the tensile strength and tensile elongation can be measured according to JIS K7127.
  • a tensile tester STA-1150 manufactured by Orientec Corporation can be used.
  • As the test piece a high-stiffness polyester film cut into a rectangular film having a width of 15 mm and a length of 150 mm can be used.
  • the distance at the start of measurement between the pair of chucks holding the test piece is 100 mm, and the tensile speed is 300 mm / min.
  • the environment at the time of measurement of tensile strength and tensile elongation is a temperature of 23 ° C. and a relative humidity of 50%.
  • the heat shrinkage ratio of the high stiffness polyester film in at least one direction is preferably 0.7% or less, and more preferably 0.5% or less.
  • the thermal contraction rate of the high stiffness polyester film in the flow direction is preferably 0.7% or less, and more preferably 0.5% or less.
  • the heat shrinkage rate of the high stiffness polyester film in the vertical direction is preferably 0.7% or less, and more preferably 0.5% or less.
  • the heating temperature when measuring the heat shrinkage rate is 100 ° C., and the heating time is 40 minutes.
  • the tensile elasticity modulus of the high stiffness polyester film in at least one direction is preferably 4.0 GPa or more, more preferably 4.5 MPa or more.
  • the tensile elastic modulus of the high stiffness polyester film in the flow direction is preferably 4.0 GPa or more, more preferably 4.5 MPa or more.
  • the tensile elastic modulus of the high stiffness polyester film in the vertical direction is preferably 4.0 GPa or more, more preferably 4.5 GPa or more.
  • a plastic film obtained by melting and molding polyester is first subjected to 3 times to 4.5 times at 90 to 145 ° C. in the flow direction and the vertical direction, respectively.
  • stretched is implemented.
  • a second stretching step is performed in which the plastic film is stretched 1.1 to 3.0 times at 100 to 145 ° C. in the flow direction and the vertical direction, respectively.
  • heat setting is performed at a temperature of 190 ° C. to 220 ° C.
  • a relaxation treatment treatment for reducing the film width
  • a high stiffness polyester film having the above-mentioned mechanical properties can be obtained by adjusting the stretching ratio, stretching temperature, heat setting temperature, and relaxation treatment rate.
  • the packaging material 30 includes the high stiffness polyester film, so that the loop stiffness of the packaging material 30 can be increased.
  • the loop stiffness of the packaging material 30 in at least one direction is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. 0.180N or more.
  • the loop stiffness of the packaging material 30 in the flow direction (MD) is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. It may be 0.180 N or more.
  • the loop stiffness of the packaging material 30 in the vertical direction (TD) is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. It may be 0.180 N or more.
  • the packaging material 30 includes the high stiffness polyester film, so that the loop stiffness of the packaging material 30 per unit thickness of the packaging material 30 can be increased.
  • a value obtained by dividing the loop stiffness of the packaging material 30 in at least one direction by the thickness of the packaging material 30 is, for example, 0.00150 N / ⁇ m or more, may be 0.00155 N / ⁇ m or more, and may be 0.00160 N / ⁇ m. The above may be sufficient, 0.00165 N / micrometer or more may be sufficient, and 0.00170 N / micrometer or more may be sufficient.
  • the value obtained by dividing the loop stiffness of the packaging material 30 in the flow direction (MD) by the thickness of the packaging material 30 is, for example, 0.00150 N / ⁇ m or more, and may be 0.00155 N / ⁇ m or more. It may be greater than or equal to 000016 N / ⁇ m, may be greater than or equal to 0.00165 N / ⁇ m, and may be greater than or equal to 0.00170 N / ⁇ m.
  • the value obtained by dividing the loop stiffness of the packaging material 30 in the vertical direction (TD) by the thickness of the packaging material 30 is, for example, 0.00150 N / ⁇ m or more, and may be 0.00155 N / ⁇ m or more. It may be greater than or equal to 000016 N / ⁇ m, may be greater than or equal to 0.00165 N / ⁇ m, and may be greater than or equal to 0.00170 N / ⁇ m.
  • the PET constituting the high stiffness PET film may contain biomass-derived PET.
  • the high stiffness PET film may be composed of only biomass-derived PET.
  • the high stiffness PET film may be composed of biomass-derived PET and fossil fuel-derived PET. Since the high-stiffness PET film contains biomass-derived PET, the amount of PET derived from fossil fuel can be reduced compared to the conventional case, so that the amount of carbon dioxide emission can be reduced and the environmental load can be reduced. it can.
  • Biomass-derived PET uses biomass-derived ethylene glycol as a diol unit and fossil fuel-derived terephthalic acid as a dicarboxylic acid unit.
  • Fossil fuel-derived PET uses fossil fuel-derived ethylene glycol as diol units and fossil fuel-derived terephthalic acid as dicarboxylic acid units.
  • biomass degree indicates the weight ratio of biomass-derived components. Taking PET as an example, PET is obtained by polymerizing ethylene glycol containing 2 carbon atoms and terephthalic acid containing 8 carbon atoms in a molar ratio of 1: 1.
  • the weight ratio of biomass-derived components in PET is 31.25%, so the theoretical value of the biomass degree of PET is 31.25%.
  • the weight ratio of the biomass-derived component in PET derived from fossil fuel is 0%, and the biomass degree of PET derived from fossil fuel is 0%.
  • the biomass degree of the high stiffness PET film is preferably 5.0% or more, and more preferably 10.0% or more.
  • the biomass degree of the high stiffness PET film is preferably 30.0% or less.
  • Biomass-derived ethylene glycol is made from ethanol (biomass ethanol) produced from biomass as a raw material.
  • biomass-derived ethylene glycol can be obtained from biomass ethanol by a conventionally known method, such as a method of producing ethylene glycol via ethylene oxide.
  • raw materials for biomass ethanol include corn, sugar cane, beet, and manioc.
  • India Glycoal's biomass ethylene glycol is made from sugarcane waste molasses.
  • the other of the first stretched plastic film 40 or the second stretched plastic film 50 contains polyester or polyamide as a main component.
  • the second stretched plastic film 50 may be a stretched plastic film containing 51% by mass or more of polyester or polyamide as a main component.
  • the first stretched plastic film 40 may be a stretched plastic film containing 51% by mass or more of polyester or polyamide as a main component.
  • both the first stretched plastic film 40 and the second stretched plastic film 50 may be high stiffness polyester films.
  • the stretched plastic constituting the other of the first stretched plastic film 40 or the second stretched plastic film 50 It is preferable that the film contains polyester as a main component.
  • the stretched plastic film containing polyester as a main component contains, for example, 51% by mass or more of polyester.
  • polyester as in the case of the high stiffness polyester film, at least one aromatic dicarboxylic acid selected from terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, ethylene glycol, 1,3-propanediol and A polyester mainly composed of an aromatic polyester comprising at least one aliphatic alcohol selected from 1,4-butanediol is preferred.
  • polyester include PET and PBT.
  • 51 mass% or more polyester in a stretched polyester film may be comprised by one type of polyester, and may be comprised by two or more types of polyester.
  • the thickness of the stretched polyester film is preferably 9 ⁇ m or more, more preferably 12 ⁇ m or more.
  • the stretched polyester film preferably has a thickness of 25 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the stretched polyester film has sufficient strength.
  • the stretched polyester film exhibits excellent moldability. For this reason, the process which processes the packaging material 30 and manufactures the bag 10 can be implemented efficiently.
  • the material constituting the stretched polyester film has a thermal conductivity equal to or higher than a predetermined value.
  • the thermal conductivity of the material constituting the stretched polyester film is preferably 0.05 W / m ⁇ K or more, more preferably 0.1 W / m ⁇ K or more.
  • the thermal conductivity of PET is, for example, 0.14 W / m ⁇ K.
  • the thermal conductivity of PBT is higher than that of PET, for example, 0.25 W / m ⁇ K.
  • the melting point of the stretched polyester film is preferably 200 ° C. or higher, more preferably 220 ° C. or higher. By setting the melting point of the stretched polyester film to 220 ° C. or higher, there is a hole in the stretched polyester film or the stretched polyester film when the contents contained in the bag 10 manufactured using the packaging material 30 are heated. The formation of wrinkles can be suppressed.
  • the PET may contain biomass-derived PET as in the case of the above-mentioned high stiffness polyester film.
  • the stretched polyester film may be composed only of biomass-derived PET.
  • the stretched polyester film may be composed of biomass-derived PET and fossil fuel-derived PET. Since the biomass-derived PET contained in the stretched polyester film, the biomass degree of the stretched polyester film, and the like are the same as those in the case of the above-described high stiffness polyester film, description thereof is omitted.
  • the stretched plastic film containing polyamide as a main component contains, for example, 51% by mass or more of polyamide.
  • polyamide systems include aliphatic polyamides or aromatic polyamides.
  • examples of the aliphatic polyamide include nylon-6, nylon-6,6, nylon such as a copolymer of nylon 6 and nylon 6,6, and examples of the aromatic polyamide include polymetaxylene adipamide ( MXD6). Since the packaging material 30 includes the stretched polyamide film, the puncture strength of the packaging material 30 can be increased.
  • the stretched polyamide film may be composed of a single layer or a plurality of layers.
  • the stretched polyamide film is, for example, a co-extruded film produced by co-extrusion.
  • the co-pressing film includes, for example, a first layer made of polyester such as PET, a second layer made of polyamide such as nylon, and a third layer made of polyester such as PET, which are sequentially laminated.
  • the mass of the second layer made of polyamide such as nylon is 51% or more of the mass of the entire co-pressed film, it can be said that the main component of the co-pressed film is polyamide.
  • the stretched polyester film or stretched polyamide film constituting the other of the first stretched plastic film 40 or the second stretched plastic film 50 is configured to have tearability in the flow direction (MD).
  • the stretched polyester film or stretched polyamide film having tearability in the flow direction (MD) is also referred to as a straight cut film.
  • the packaging material 30 can be provided with tearability in the flow direction (MD).
  • the first direction D1 corresponds to the flow direction (MD) of a film such as the stretched plastic films 40 and 50.
  • the second direction D2 corresponds to the vertical direction (TD) of a film such as the stretched plastic films 40 and 50.
  • the tensile strength of the straight cut film in the flow direction (MD) is larger than the tensile strength of the straight cut film in the vertical direction (TD).
  • the tensile strength of the straight cut film in the flow direction (MD) is preferably 1.05 times or more, more preferably 1.10 times or more of the tensile strength of the straight cut film in the vertical direction (TD). Preferably it is 1.2 times or more.
  • the tensile strength of the rectilinear cut film in the flow direction (MD) is, for example, 200 MPa or more and 300 MPa or less.
  • the straight cut film may be a straight cut polyester film containing polyester as a main component or a straight cut polyamide film containing polyamide as a main component.
  • Examples of combinations of the first stretched plastic film 40 and the second stretched plastic film 50 in the present embodiment are as follows.
  • the first adhesive layer 45 includes an adhesive for bonding the first stretched plastic film 40 and the second stretched plastic film 50 by a dry lamination method.
  • the adhesive which comprises the 1st adhesive bond layer 45 is produced
  • an adhesive contains the hardened
  • Examples of adhesives include polyurethane.
  • Polyurethane is a cured product produced by a reaction between a polyol as a main agent and an isocyanate compound as a curing agent.
  • Examples of polyurethane include polyether polyurethane and polyester polyurethane.
  • the polyether polyurethane is a cured product produced by a reaction between a polyether polyol as a main agent and an isocyanate compound as a curing agent.
  • Polyester polyurethane is a cured product produced by a reaction between a polyester polyol as a main agent and an isocyanate compound as a curing agent.
  • Isocyanate compounds include aromatic isocyanate compounds such as tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and the like. Aliphatic isocyanate compounds, or adducts or multimers of the above-mentioned various isocyanate compounds can be used.
  • aromatic isocyanate compounds such as tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and the like.
  • Aliphatic isocyanate compounds, or adducts or multimers of the above-mentioned various isocyanate compounds can
  • the material constituting the first adhesive layer 45 preferably has a higher thermal conductivity than the materials constituting the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70.
  • the thermal conductivity of the material constituting the first adhesive layer 45 is preferably 1.0 W / m ⁇ K or more, more preferably 3.0 W / m ⁇ K or more.
  • the thermal conductivity of polyurethane is in the range of 3.0 W / m ⁇ K to 5.0 W / m ⁇ K, for example 5.0 W / m ⁇ K.
  • the heat generated in the housing portion 17 is the inner surface 30x of the packaging material 30. Heat is easily diffused in the surface direction of the packaging material 30 while being transferred from the side to the outer surface 30y side. Thereby, since the heat dissipation of the packaging material 30 can be improved, the temperature rise of the packaging material 30 can be suppressed. As a result, the packaging material 30 can be prevented from being damaged by heat when the bag 10 is heated. That is, the heat resistance of the packaging material 30 can be increased.
  • the thickness of the first adhesive layer 45 is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more. Moreover, the thickness of the 1st adhesive bond layer 45 becomes like this. Preferably it is 6 micrometers or less, More preferably, it is 5 micrometers or less. By setting the thickness of the first adhesive layer 45 to 3 ⁇ m or more, heat diffusion in the surface direction of the packaging material 30 is more likely to occur.
  • the second adhesive layer 55 includes an adhesive for bonding the second stretched plastic film 50 and the sealant layer 70 by a dry laminating method.
  • the adhesive of the second adhesive layer 55 as in the case of the first adhesive layer 45, polyurethane or the like can be used.
  • the configuration, material, and characteristics of the second adhesive layer 55 can be the same as those of the first adhesive layer 45.
  • the material constituting the second adhesive layer 55 is preferably higher in heat than the materials constituting the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70, like the first adhesive layer 45.
  • the thermal conductivity of the material constituting the second adhesive layer 55 is preferably 1 W / m ⁇ K or more, more preferably 3 W / m ⁇ K or more.
  • the thickness of the second adhesive layer 55 is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the thickness of the second adhesive layer 55 is preferably 6 ⁇ m or less, more preferably 5 ⁇ m or less.
  • aromatic isocyanate compounds and aliphatic isocyanate compounds exist as isocyanate compounds constituting the curing agent of the adhesive.
  • aromatic isocyanate compounds elute components that cannot be used in food applications under high-temperature environments such as heat sterilization.
  • the second adhesive layer 55 is in contact with the sealant layer 70.
  • the component eluted from the aromatic isocyanate compound adheres to the content accommodated in the accommodating part 17 which contact
  • a cured product produced by a reaction between a polyol as a main agent and an aliphatic isocyanate compound as a curing agent as an adhesive constituting the second adhesive layer 55 is used. Thereby, it can prevent that the component which cannot be used for the food use resulting from the 2nd adhesive bond layer 55 adheres to the content.
  • sealant layer 70 As a material constituting the sealant layer 70, one or more resins selected from polyethylene such as low density polyethylene and linear low density polyethylene, and polypropylene can be used.
  • the sealant layer 70 may be a single layer or a multilayer.
  • the sealant layer 70 is preferably made of an unstretched sealant film. “Unstretched” is a concept that includes not only a film that is not stretched at all, but also a film that is slightly stretched due to the tension applied during film formation.
  • the sealant film that constitutes the sealant layer 70 is, for example, a plastic film that has been subjected to a stretching process necessary for conveyance, but has not been intentionally stretched.
  • the preferred mechanical properties of the sealant film will be further described.
  • the tensile elastic modulus of the sealant film in at least one direction is preferably 1000 MPa or less.
  • the tensile elastic modulus of the sealant film in the flow direction and the vertical direction is preferably 1000 MPa or less.
  • the tensile elongation of the sealant film in at least one direction is preferably 300% or more.
  • the tensile elongation of the sealant film in the flow direction and the vertical direction is preferably 300% or more.
  • the tensile elastic modulus and tensile elongation of the sealant film can be measured according to JIS K7127, as in the case of the high stiffness polyester film.
  • a tensile tester STA-1150 manufactured by Orientec Corporation can be used.
  • As the test piece a film obtained by cutting the film into a rectangular film having a width of 15 mm and a length of 150 mm can be used. The distance at the start of measurement between the pair of chucks holding the test piece is 100 mm, and the tensile speed is 300 mm / min.
  • the bag 10 composed of the packaging material 30 may be subjected to a sterilization process such as a boil process or a retort process at a high temperature.
  • the sealant layer 70 is preferably heat resistant to withstand these high temperature processes.
  • the retort process is a process of filling the bag 10 with the contents and sealing the bag 10 and then heating the bag 10 in a pressurized state using steam or heated hot water.
  • the temperature of retort processing is 120 degreeC or more, for example.
  • the boil process is a process of filling the bag 10 with the contents and sealing the bag 10 and then bathing the bag 10 under atmospheric pressure.
  • the temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
  • the melting point of the material constituting the sealant layer 70 is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. By increasing the melting point of the sealant layer 70, the bag 10 can be retorted at a high temperature, and therefore the time required for the retort processing can be shortened.
  • the melting point of the material constituting the sealant layer 70 is lower than the melting point of the resin constituting the stretched plastic films 40 and 50.
  • a material mainly composed of propylene can be used as a material constituting the sealant layer 70.
  • the material having “propylene as a main component” means a material having a propylene content of 90% by mass or more.
  • Specific examples of the material mainly composed of propylene include propylene / ethylene block copolymer, propylene / ethylene random copolymer, polypropylene such as homopolypropylene, or a mixture of polypropylene and polyethylene.
  • the “propylene / ethylene block copolymer” means a material having a structural formula represented by the following formula (I).
  • the “propylene / ethylene random copolymer” means a material having a structural formula represented by the following formula (II).
  • “Homopolypropylene” means a material having the structural formula shown by the following formula (III).
  • the material may have a sea-island structure.
  • the “sea-island structure” means a structure in which polyethylene is discontinuously dispersed in a region where polypropylene is continuous.
  • examples of the material constituting the sealant layer 70 include polyethylene, polypropylene, or a combination thereof.
  • polyethylene include medium density polyethylene, linear low density polyethylene, and combinations thereof.
  • the material constituting the sealant layer 70 has a melting point of, for example, 100 ° C. or higher, more preferably 105 ° C. or higher, more preferably 110 ° C. or higher, and still more preferably 115 ° C. or higher.
  • sealant layer for constituting the sealant layer 70 having a melting point of 100 ° C. or higher include TUX-HC manufactured by Mitsui Chemicals Tosero, L6101 manufactured by Toyobo, and LS700C manufactured by Idemitsu Unitech.
  • TUX-HC manufactured by Mitsui Chemicals Tosero
  • L6101 manufactured by Toyobo
  • LS700C manufactured by Idemitsu Unitech.
  • NB-1 manufactured by Tamapoli can be cited.
  • Specific examples of the sealant layer for forming the sealant layer 70 having a melting point of 110 ° C. or higher include LS760C manufactured by Idemitsu Unitech, TUX-HZ manufactured by Mitsui Chemicals Tosero, and the like.
  • the sealant layer 70 is a single layer film containing a propylene / ethylene block copolymer.
  • the sealant layer including the sealant layer 70 is a single-layer unstretched film whose main component is a propylene / ethylene block copolymer.
  • the propylene / ethylene block copolymer includes, for example, a sea component composed of polypropylene and an island component composed of an ethylene / propylene copolymer rubber component.
  • the sea component can contribute to enhancing the blocking resistance, heat resistance, rigidity, seal strength and the like of the propylene / ethylene block copolymer.
  • the island component can contribute to enhancing the impact resistance of the propylene / ethylene block copolymer. Therefore, the mechanical properties of the sealant layer containing the propylene / ethylene block copolymer can be adjusted by adjusting the ratio of the sea component and the island component.
  • the mass ratio of the sea component made of polypropylene is higher than the mass ratio of the island component made of the ethylene / propylene copolymer rubber component.
  • the mass ratio of the sea component made of polypropylene is at least 51% by mass, preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the single-layer sealant layer may further contain a second thermoplastic resin in addition to the first thermoplastic resin made of propylene / ethylene block copolymer.
  • the second thermoplastic resin include an ⁇ -olefin copolymer and polyethylene.
  • the ⁇ -olefin copolymer is, for example, linear low density polyethylene.
  • polyethylene include low density polyethylene, medium density polyethylene, and high density polyethylene.
  • the second thermoplastic resin can contribute to increasing the impact resistance of the sealant layer.
  • the low-density polyethylene density of 0.910 g / cm 3 or more and 0.925 g / cm 3 or less of polyethylene.
  • Medium density polyethylene is polyethylene having a density of 0.926 g / cm 3 or more and 0.940 g / cm 3 or less.
  • the high density polyethylene is polyethylene having a density of 0.941 g / cm 3 or more and 0.965 g / cm 3 or less.
  • Low density polyethylene is obtained, for example, by polymerizing ethylene at a high pressure of 1000 atm or more and less than 2000 atm.
  • the medium density polyethylene and the high density polyethylene are obtained, for example, by polymerizing ethylene at a medium pressure or low pressure of 1 atm or more and less than 1000 atm.
  • the medium density polyethylene and the high density polyethylene may partially contain a copolymer of ethylene and ⁇ -olefin. Even when ethylene is polymerized at an intermediate pressure or a low pressure, when a copolymer of ethylene and an ⁇ -olefin is contained, an intermediate density or low density polyethylene can be produced. Such polyethylene is referred to as the above-mentioned linear low density polyethylene.
  • the linear low density polyethylene is obtained by introducing a short chain branch by copolymerizing an ⁇ -olefin with a linear polymer obtained by polymerizing ethylene at a medium pressure or a low pressure.
  • ⁇ -olefins examples include 1-butene (C 4 ), 1-hexene (C 6 ), 4-methylpentene (C 6 ), 1-octene (C 8 ) and the like.
  • the density of the linear low density polyethylene is, for example, 0.915 g / cm 3 or more and 0.945 g / cm 3 or less.
  • the ⁇ -olefin copolymer constituting the second thermoplastic resin of the propylene / ethylene block copolymer is not limited to the above-mentioned linear low density polyethylene.
  • the ⁇ -olefin copolymer means a material having a structural formula represented by the following formula (IV).
  • R 1 and R 2 are both H (hydrogen atom) or an alkyl group such as CH 3 or C 2 H 5 .
  • J and k are both integers of 1 or more. J is larger than k. That is, in the ⁇ -olefin copolymer represented by the formula (IV), the left side structure including R 1 is the base.
  • R 1 is, for example, H
  • R 2 is, for example, C 2 H 5 .
  • the mass ratio of the first thermoplastic resin made of propylene / ethylene block copolymer is higher than the mass ratio of the second thermoplastic resin containing at least the ⁇ -olefin copolymer or polyethylene.
  • the mass ratio of the first thermoplastic resin composed of the propylene / ethylene block copolymer is at least 51% by mass, preferably 60% by mass or more, and more preferably 70%. It is at least mass%.
  • the second thermoplastic resin can contribute to enhancing the impact resistance of the sealant layer. Therefore, the mechanical properties of the sealant layer can be adjusted by adjusting the mass ratio of the second thermoplastic resin containing at least the ⁇ -olefin copolymer or polyethylene in the single sealant layer.
  • the sealant layer 70 may further contain a thermoplastic elastomer. By using a thermoplastic elastomer, the impact resistance and puncture resistance of the sealant layer 70 can be further enhanced.
  • the thermoplastic elastomer is, for example, a hydrogenated styrene thermoplastic elastomer.
  • the hydrogenated styrene-based thermoplastic elastomer has a structure comprising a polymer block A mainly composed of at least one vinyl aromatic compound and a polymer block B mainly composed of at least one hydrogenated conjugated diene compound.
  • the thermoplastic elastomer may be an ethylene / ⁇ -olefin elastomer.
  • the ethylene / ⁇ -olefin elastomer is a low crystalline or amorphous copolymer elastomer, which is a random copolymer of 50 to 90% by mass of ethylene as a main component and ⁇ -olefin as a comonomer. is there.
  • the content of the propylene / ethylene block copolymer in the sealant layer 70 is, for example, 80% by mass or more, and preferably 90% by mass or more.
  • Examples of the method for producing a propylene / ethylene block copolymer include a method of polymerizing propylene, ethylene, and the like as raw materials using a catalyst.
  • a catalyst Ziegler-Natta type or metallocene catalyst can be used.
  • the thickness of the sealant layer 70 is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more. Moreover, the thickness of the sealant layer 70 is preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the tensile elongation at 25 ° C. of the sealant film in the flow direction (MD) is preferably 600% or more and 1300% or less.
  • the product of the tensile elongation (%) of the sealant film and the thickness ( ⁇ m) of the sealant film in the flow direction (MD) is preferably 35000 or more and 80000 or less.
  • the tensile elongation at 25 ° C. of the sealant film in the vertical direction (TD) is preferably 700% or more and 1400% or less.
  • the product of the tensile elongation (%) of the sealant film and the thickness ( ⁇ m) of the sealant film in the vertical direction (TD) is preferably 40000 or more and 85000 or less.
  • the tensile modulus at 25 ° C. of the sealant film in the flow direction (MD) is preferably 400 MPa or more and 1100 MPa or less.
  • the product of the tensile modulus (MPa) of the sealant film and the thickness ( ⁇ m) of the sealant film in the flow direction (MD) is preferably 30000 or more and 55000 or less.
  • the tensile elastic modulus at 25 ° C. of the sealant film in the vertical direction (TD) is preferably 250 MPa or more and 900 MPa or less.
  • the product of the tensile modulus (MPa) of the sealant film and the thickness ( ⁇ m) of the sealant film in the vertical direction (TD) is preferably 20000 or more and 45000 or more.
  • the first direction D1 corresponds to the flow direction (MD) of the sealant film.
  • the second direction D2 corresponds to the vertical direction (TD) of the sealant film.
  • Tensile modulus and tensile elongation can be measured according to JIS K7127.
  • a tensile tester STA-1150 manufactured by Orientec Corporation can be used.
  • the direction in which the upper portion 11 and the lower portion 12 extend is the flow direction of the film constituting the bag 10 such as a sealant film
  • the direction in which the side portion 13 extends is such as a sealant film.
  • the bag 10 may be configured such that the direction in which the upper portion 11 and the lower portion 12 extend is the vertical direction of the film, and the direction in which the side portion 13 extends is the flow direction of the film.
  • the first is a type having high tensile elongation and impact resistance, such as an unstretched polypropylene film ZK500 manufactured by Toray Film Processing Co., Ltd.
  • the first type of sealant film preferably further has the property of low hot seal strength. Thereby, it can suppress that the internal pressure of the accommodating part 17 becomes excessive at the time of the heating of the bag 10, and it can suppress that the packaging material 30 arises a damage.
  • the second is a type having a high tensile elastic modulus, such as an unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. By using the second type sealant film, it is possible to improve the tearability when the bag is opened by the consumer tearing the bag 10 along the first direction D1.
  • the product of the tensile elongation (%) of the first type sealant film in the flow direction (MD) and the thickness ( ⁇ m) of the sealant film is preferably 45000 or more, more preferably 50000 or more, 55000 or more, Or 60000 or more may be sufficient.
  • the product of the tensile elongation (%) of the first type sealant film and the thickness ( ⁇ m) of the sealant film in the vertical direction (TD) is preferably 53,000 or more, more preferably 60000 or more. Since the sealant film has a high tensile elongation, the bag 10 can be prevented from breaking due to an impact at the time of dropping or the like.
  • the product of the tensile modulus (MPa) of the first type sealant film and the thickness ( ⁇ m) of the sealant film in the flow direction (MD) is preferably 38000 or less, more preferably 35000 or less.
  • the product of the tensile modulus (MPa) of the first type sealant film and the thickness ( ⁇ m) of the sealant film in the vertical direction (TD) is preferably 30000 or less, more preferably 25000 or less.
  • the product of the tensile modulus (MPa) of the second type sealant film in the flow direction (MD) and the thickness ( ⁇ m) of the sealant film is preferably 35000 or more, more preferably 38000 or more, and further preferably 45,000 or more. Further, the product of the tensile modulus (MPa) of the second type sealant film in the vertical direction (TD) and the thickness ( ⁇ m) of the sealant film is preferably 25000 or more, more preferably 30000 or more, Preferably it is 35000 or more and may be 38000 or more.
  • the sealant film has a high tensile elastic modulus, the tearability when the bag 10 is opened can be improved.
  • the product of the tensile elongation (%) of the second type sealant film and the thickness ( ⁇ m) of the sealant film in the flow direction (MD) is preferably 55000 or less, more preferably 50000 or less.
  • the product of the tensile elongation (%) of the second type sealant film and the thickness ( ⁇ m) of the sealant film in the vertical direction (TD) is preferably 60000 or less, more preferably 55000 or less.
  • the sealant layer 70 may have an easy peel property.
  • the easy peel property means that, for example, when the packaging material 30 having the sealant layer 70 is used to form a container lid, the lid is easily peeled from the flange portion of the container at the lower surface thereof, that is, the sealant layer 70. It is a characteristic.
  • the easy peel property can be expressed, for example, by configuring the sealant layer 70 with two or more kinds of resins and making one resin and another resin incompatible. Examples of the resin capable of exhibiting easy peel properties include a mixed resin of polyethylene and polypropylene such as high-density polyethylene.
  • the sealant layer 70 When the sealant layer 70 has an easy peel property, as shown in FIG. 12, the sealant layer 70 is positioned on the inner side of the first layer 71, the first layer 71 positioned on the second stretched plastic film 50 side, And a second layer 72 constituting the inner surface 30x of the packaging material 30.
  • the first layer 71 and the second layer 72 of the sealant layer 70 having easy peel properties there are mainly two types such as A type and B type described below.
  • the first layer 71 is a layer mainly composed of polyethylene
  • the second layer 72 is a layer containing a mixed resin of polyethylene and polypropylene.
  • the blending ratio of polypropylene is larger than the blending ratio of polyethylene.
  • the mass ratio of polypropylene and polyethylene in the second layer 72 is 6: 4 to 8: 2.
  • the density of polyethylene in the sealant layer 70 is preferably 0.940 g / cm 3 or more.
  • polypropylene in the second layer 72 of the A type sealant layer 70 for example, an ethylene-propylene random copolymer can be used.
  • the ratio of the thickness of the first layer 71 to the thickness of the second layer 72 can be 5: 1 to 10: 1.
  • the first layer 71 is a layer mainly composed of polypropylene
  • the second layer 72 is a layer containing a mixed resin of polyethylene and polypropylene.
  • the blending ratio of polypropylene is larger than the blending ratio of polyethylene.
  • the mass ratio of polypropylene and polyethylene in the second layer 72 is 6: 4 to 8: 2.
  • the density of the polyethylene in the sealant layer 70 is preferably 0.940 g / cm 3 or more.
  • polypropylene in the first layer 71 of the B type sealant layer 70 for example, an ethylene-propylene block copolymer can be used.
  • polypropylene in the second layer 72 of the B type sealant layer 70 for example, an ethylene-propylene random copolymer can be used.
  • the ratio of the thickness of the first layer 71 to the thickness of the second layer 72 can be 3: 1 to 8: 1.
  • the sealant layer 70 may be a resin layer provided on the inner surface side of the second stretched plastic film 50 by an extrusion method or the like. In this case, the second adhesive layer 55 described above may not be present between the second stretched plastic film 50 and the sealant layer 70.
  • the packaging material 30 may further include a printing layer 32.
  • the printing layer 32 is located between the first stretched plastic film 40 and the first adhesive layer 45.
  • the packaging material 30 may further include a printing layer 32 provided on the first stretched plastic film 40.
  • the printed layer 32 is a layer for displaying information on the contents and the packaged product or imparting aesthetics to the packaged product such as the bag 10.
  • the print layer expresses letters, numbers, symbols, figures, patterns, and the like.
  • gravure printing ink or flexographic printing ink can be used as a material constituting the printing layer.
  • FINAT manufactured by DIC Graphics Corporation can be given.
  • FIG. 3 is a cross-sectional view showing a modification of the layer structure of the packaging material 30.
  • the packaging material 30 may include a vapor deposition layer 34 positioned on the inner surface 30 x side surface of the first stretched plastic film 40.
  • the packaging material 30 may further include a gas barrier coating film 36 that is located on the surface of the vapor deposition layer 34 and has transparency.
  • FIG. 4 is a cross-sectional view showing a modification of the layer structure of the packaging material 30.
  • the vapor deposition layer 34 may be located on the surface on the outer surface 30 y side of the second stretched plastic film 50.
  • a gas barrier coating film 36 may be provided on the surface of the vapor deposition layer 34.
  • the vapor deposition layer 34 is a layer provided on the packaging material 30 in order to improve the gas barrier property of the packaging material 30.
  • Examples of the material constituting the vapor deposition layer 34 include metals such as aluminum, metal oxides such as aluminum oxide, and inorganic oxides such as silicon oxide.
  • the vapor deposition layer 34 functions as a layer having a gas barrier function that prevents permeation of oxygen gas, water vapor, and the like. Two or more vapor deposition layers 34 may be provided. When it has two or more vapor deposition layers 34, each may have the same composition or different compositions. Examples of the method for forming the vapor deposition layer 34 include physical vapor deposition methods (Physical Vapor Deposition method, PVD method) such as vacuum vapor deposition, sputtering, and ion plating, or plasma chemical vapor deposition, Examples thereof include chemical vapor deposition and chemical vapor deposition (chemical vapor deposition, CVD) such as photochemical vapor deposition. Specifically, a vapor deposition layer can be formed on a film formation roller using a roller-type vapor deposition film forming apparatus.
  • PVD method Physical Vapor Deposition method
  • CVD chemical vapor deposition
  • a vapor deposition layer can be formed on a film formation roller using a roller-type vapor deposition
  • the vapor deposition layer 34 may be a transparent vapor deposition layer formed of an inorganic material having transparency, such as aluminum oxide (aluminum oxide) or silicon oxide.
  • the vapor deposition layer 34 is configured as a transparent vapor deposition layer. It is preferable to use an amorphous thin film of aluminum oxide as the transparent vapor deposition layer.
  • the transparent vapor-deposited layer is an amorphous thin film of aluminum oxide represented by the formula AlO X (wherein X represents a number in the range of 0.5 to 1.5).
  • an amorphous thin film of aluminum oxide in which the value of X decreases in the depth direction from the film surface toward the inner surface can be used.
  • the amorphous thin film of aluminum oxide is represented by the formula AlO X (wherein X represents a number in the range of 0.5 to 1.5), and in the depth direction from the thin film surface toward the inner surface. It is preferable that the value of X is increasing.
  • the value of X in said formula is 0, it is a perfect inorganic simple substance (pure substance), and is not transparent.
  • the rate of decrease in the value of X is determined by using a surface analyzer such as an X-ray photoelectron spectrometer (Xray Photoelectron Spectroscopy: XPS) or a secondary ion mass spectrometer (Secondary Ion Mass Spectroscopy: SIMS). This can be confirmed by conducting an elemental analysis of the transparent vapor-deposited layer using a method of analyzing by ion etching or the like.
  • a surface analyzer such as an X-ray photoelectron spectrometer (Xray Photoelectron Spectroscopy: XPS) or a secondary ion mass spectrometer (Secondary Ion Mass Spectroscopy: SIMS).
  • the transparent vapor deposition layer may be a layer made of a mixture of inorganic compounds containing a covalent bond between an aluminum atom and a carbon atom.
  • the transparent vapor deposition layer is a covalent bond between an aluminum atom and a carbon atom at the peak measured by ion etching in the depth direction using an X-ray photoelectron spectrometer (measurement conditions: X-ray source AlK ⁇ , X-ray output 120 W).
  • it may have a gas barrier property that is transparent and that prevents permeation of oxygen, water vapor, and the like.
  • a covalent bond between a metal atom and a carbon atom may be formed at the interface between the transparent vapor deposition layer and the stretched plastic film.
  • the transparent vapor deposition layer contains aluminum oxide
  • a covalent bond between an aluminum atom and a carbon atom may be formed at the interface between the stretched plastic film and the transparent vapor deposition layer.
  • the covalent bond can be detected by measurement by X-ray photoelectron spectroscopy (hereinafter referred to as “XPS measurement” for short).
  • the existence ratio of the covalent bond between the aluminum atom and the carbon atom is the total bond including carbon atoms observed when the interface between the transparent vapor deposition layer and the stretched plastic film is measured by XPS measurement. It is preferable that it is within the range of 0.3% or more and 30% or less.
  • the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is less than 0.3%, the adhesion of the transparent deposition layer is not sufficiently improved, and it is difficult to stably maintain the barrier property.
  • the AL (aluminum) / O (oxygen) ratio of the transparent vapor-deposited layer mainly composed of aluminum oxide is such that the transparent vapor-deposited layer on the opposite side of the stretched plastic film from the interface between the stretched plastic film and the transparent vapor-deposited layer. In the range up to 3 nm toward the surface, it is preferably 1.0 or less. Within the range from the interface between the transparent vapor-deposited layer and the stretched plastic film to the surface of the transparent vapor-deposited layer opposite to the stretched plastic film, if the AL / O ratio exceeds 1.0, the stretched plastic film and the transparent vapor-deposited film Adhesion between the layers becomes insufficient, the proportion of aluminum increases, and the transparency of the transparent vapor deposition layer decreases.
  • the thickness of the transparent vapor deposition layer is, for example, 20 mm or more and 200 mm, preferably 30 mm or more and 150 mm. If it is less than 30 mm, gas barrier properties may be insufficient. On the other hand, if it exceeds 150 mm, the gas barrier performance of the packaging material 30 may not be maintained. The reason for this is not clear, but if the thickness of the transparent vapor deposition layer exceeds 150 mm, the flexibility of the packaging material 30 decreases, and when the packaging material 30 is used for the bag 10, a part of the transparent vapor deposition layer is cracked or pinholed It is considered that gas barrier properties are reduced due to the occurrence of gas.
  • the thickness of the transparent vapor deposition layer is preferably 40 mm or more and 130 mm or less, more preferably 50 mm or more and 120 mm or less.
  • the thickness of the transparent vapor deposition layer can be measured by a fundamental parameter method using, for example, a fluorescent X-ray analyzer (trade name: RIX2000 type, manufactured by Rigaku Corporation).
  • RIX2000 type a fluorescent X-ray analyzer
  • it can carry out by the method of changing the deposition rate of a transparent vapor deposition layer, the method of changing the speed
  • the surface of the stretched plastic film may be pretreated such as corona discharge treatment, flame treatment, or plasma treatment.
  • plasma treatment plasma is supplied to the surface of the stretched plastic film by a pretreatment apparatus in a reduced pressure environment of 0.1 Pa or more and 100 Pa or less.
  • Plasma uses an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them as a plasma source gas, and the plasma source gas is excited by a potential difference due to a high-frequency voltage or the like. By doing so, it can be generated.
  • plasma can be confined in the vicinity of the surface of the stretched plastic film.
  • the shape of the surface of a stretched plastic film, a chemical bonding state, and a functional group can be changed, and the chemical property of the surface of a stretched plastic film can be changed. This makes it possible to improve the adhesion between the stretched plastic film and the transparent vapor deposition layer.
  • the 2nd preferable form of a transparent vapor deposition layer is demonstrated.
  • the transparent vapor deposition layer may satisfy
  • fill both of the above-mentioned 1st preferable form and the 2nd preferable form demonstrated below can also be considered.
  • a transition region defining the adhesion strength between a base material such as a stretched plastic film and a transparent vapor deposition layer such as an aluminum oxide vapor deposition film may be formed in the transparent vapor deposition layer.
  • the transparent vapor deposition layer is an aluminum oxide vapor deposition film
  • the transition region is formed on the aluminum hydroxide detected by etching the aluminum oxide vapor deposition film using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Includes a transforming bond structure (Al2O4H).
  • the transition region transformation rate defined by the ratio of the transformed transition region defined using TOF-SIMS to the aluminum oxide vapor deposition film defined by etching using TOF-SIMS is preferably 45% or less.
  • Such a form is based on the knowledge that by specifying the transformation rate of the transition region, it is possible to specify the packaging material 30 having barrier properties with improved adhesion strength between the stretched plastic film and the aluminum oxide deposition film. Is based.
  • transition region metamorphic rate will be explained in detail.
  • etching is performed from the outermost surface of the aluminum oxide vapor deposition film by Cs using a time-of-flight secondary ion mass spectrometer, and the element bond of the interface between the aluminum oxide vapor deposition film and the stretched plastic film and the element bond of the vapor deposition film are performed. taking measurement. Subsequently, respective measured graphs are obtained for the measured elements and element bonds as shown in FIG.
  • Position where the intensity H 0 of the graph of element C6 is halved (The position where the intensity (Intensity) becomes H 1 in FIG. 13) is specified as the interface between the stretched plastic film and the aluminum oxide deposition film (the horizontal axis (Cycle) is the position where T 1 in FIG. 13). Further, the surface from the interface to the surface of the aluminum oxide vapor deposition film (the position where the horizontal axis (Cycle) is T 0 in FIG. 13) is specified as the aluminum oxide vapor deposition film.
  • the mixing ratio of oxygen gas supplied as plasma gas and argon or helium is 5 to 1, preferably 2 to 1.
  • vapor deposition method for forming a vapor deposition film
  • various vapor deposition methods can be applied among physical vapor deposition and chemical vapor deposition.
  • the physical vapor deposition method can be selected from the group consisting of vapor deposition method, sputtering method, ion plating method, ion beam assist method, and cluster ion beam method.
  • Chemical vapor deposition methods include plasma CVD method, plasma polymerization method, thermal method. It can be selected from the group consisting of CVD method and catalytic reaction type CVD method. In this embodiment, a physical vapor deposition method is preferred.
  • the thickness of the aluminum oxide vapor deposition film formed as described above is preferably 3 nm or more and 50 nm or less, and preferably 8 nm or more and 30 nm or less. If it is this range, it will be easy to hold
  • the gas barrier coating film 36 has a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M.) and a polyvinyl alcohol as described above And a transparent gas barrier composition that is polycondensed by a sol-gel method in the presence of a sol-gel method catalyst, an acid, water, and an organic solvent. It is done.
  • the gas barrier coating film 36 is preferably transparent.
  • alkoxide represented by the general formula R 1 n M (OR 2 ) m at least one kind of a partial hydrolyzate of alkoxide and a condensate of hydrolysis of alkoxide can be used. Moreover, as a partial hydrolyzate of said alkoxide, all the alkoxy groups do not need to be hydrolyzed, The thing by which 1 or more was hydrolyzed, and its mixture may be sufficient.
  • the condensate of hydrolysis of alkoxide a dimer or more of partially hydrolyzed alkoxide, specifically, a dimer to hexamer is used.
  • the alkoxide represented by the above general formula R 1 n M (OR 2 ) m as the metal atom represented by M, silicon, zirconium, titanium, aluminum, and the like can be used. Examples of preferable metals include silicon and titanium. Moreover, in this Embodiment, as usage of an alkoxide, the alkoxide of 2 or more types of different metal atoms can also be mixed and used in the same solution.
  • R 1 n M (OR 2 ) m specific examples of the organic group represented by R 1 include, for example, a methyl group, an ethyl group, an n-propyl group, i Examples thereof include alkyl groups such as -propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-hexyl group, n-octyl group and others.
  • alkoxide represented by the general formula R 1 n M (OR 2 ) m specific examples of the organic group represented by R 2 include, for example, a methyl group, an ethyl group, an n-propyl group, i -Propyl group, n-butyl group, sec-butyl group, and the like. These alkyl groups in the same molecule may be the same or different.
  • a silane coupling agent or the like may be added.
  • silane coupling agent known organic reactive group containing organoalkoxysilane can be used.
  • an organoalkoxysilane having an epoxy group is preferably used.
  • ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, or ⁇ - (3, 4-epoxycyclohexyl) ethyltrimethoxysilane and the like can be used.
  • the above silane coupling agents may be used alone or in combination of two or more.
  • the oxygen permeability and water vapor permeability of the packaging material 30 including the vapor deposition layer 34 are preferably 2 or less (cc / m 2 ⁇ day ⁇ atm) and 2 or less (g / m 2 ⁇ day), respectively.
  • the oxygen permeability is measured under conditions of 23 ° C. and 90% RH using an oxygen barrier measuring device OXTRAN manufactured by Mocon, USA according to JIS K7126 (isobaric method).
  • the water vapor permeability is measured under the conditions of 40 ° C. and 90% RH using a water vapor barrier measuring device PERMATRAN manufactured by Mocon, USA according to JIS K7129 (Method B).
  • the layer structure of the lower film 16 is arbitrary as long as it has an inner surface that can be joined to the inner surface of the front film 14 and the inner surface of the back film 15.
  • the packaging material 30 described above may be used as the lower film 16 as with the front film 14 and the back film 15.
  • a film having an inner surface constituted by a sealant layer and a configuration different from that of the packaging material 30 may be used as the lower film 16.
  • Method for producing a packaging material will be described an example of a method for manufacturing the packaging material 30.
  • the first stretched plastic film 40 and the second stretched plastic film 50 described above are prepared.
  • the first stretched plastic film 40 or the second stretched plastic film 50 is provided with a printing layer 32, a vapor deposition layer 34, a gas barrier coating film 36, and the like as necessary.
  • the first stretched plastic film 40 and the second stretched plastic film 50 are laminated via the first adhesive layer 45 by a dry laminating method.
  • the laminate including the first stretched plastic film 40 and the second stretched plastic film 50 and the sealant film for constituting the sealant layer 70 are laminated via the second adhesive layer 55 by a dry laminating method.
  • the packaging material 30 including the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70 can be obtained.
  • the second stretched plastic film 50 and the sealant film are first laminated by the dry lamination method through the second adhesive layer 55, and then the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer are laminated.
  • the packaging material 30 may be manufactured by laminating the laminated body including the laminated body via the first adhesive layer 45 by a dry laminating method.
  • an adhesive composition is applied to one of two laminated films. Subsequently, the applied adhesive composition is dried to volatilize the solvent. Then, two films are laminated
  • a method for producing the bag 10 with the packaging material 30 described above First, the front film 14 and the back film 15 made of the packaging material 30 are prepared. In addition, the lower film 16 in a folded state is inserted between the front film 14 and the back film 15. Subsequently, the inner surfaces of the films are heat-sealed to form seal portions such as the lower seal portion 12a and the side seal portion 13a. Further, the films bonded to each other by heat sealing are cut into an appropriate shape to obtain a bag 10 shown in FIG.
  • the contents 10 are filled into the bag 10 through the opening 11b of the upper portion 11.
  • portions of the pair of side seal portions 13 a of the bag 10 that are close to the upper portion 11 are gripped by the pair of chuck portions 105.
  • the chuck portion 105 is moved in such a direction that the interval between the pair of chuck portions 105 becomes narrow in the width direction of the bag 10.
  • the surface film 14 and the back film 15 are deformed so as to form the opening 11b in the upper part 11.
  • the suction part 106 may be attached to the outer surfaces of the front film 14 and the back film 15, and the suction part 106 may be moved in the direction of the arrow Q. Thereby, it becomes easy to form the opening part 11b. Subsequently, the contents 18 are filled into the bag 10 through the opening 11b. Thereafter, the upper part 11 is heat-sealed to form the upper seal part 11a. Thus, the bag 10 in which the contents 18 are accommodated and sealed can be obtained.
  • the contents 18 are cooked foods containing moisture, such as curry, stew, and soup.
  • the contents 18 may have a material containing a large amount of oil, such as meat and fish and seasonings for them.
  • items that can be heated by hot water can be stored in the bag 10 as contents.
  • the bag 10 may contain contents that do not require heating.
  • a high stiffness polyester film is used as the first stretched plastic film 40 or the second stretched plastic film 50 of the packaging material 30 constituting the bag 10.
  • the packaging material 30 and the bag 10 can have rigidity and puncture resistance.
  • the puncture strength of the packaging material 30 is preferably 14N or more, preferably 15N or more, more preferably 16N or more, preferably 17N or more, and more preferably 18N or more. The method for measuring the piercing strength will be described in the examples described later.
  • the packaging material 30 constituting the front film 14 and the back film 15 has rigidity, when the chuck portion 105 is moved as shown in FIG. It becomes easy to form.
  • the front film 14 and the back film 15 are each easily deformed so as to have a curved shape that is convex on the outer surface side. Thereby, it becomes easy to ensure the opening width K of the opening part 11b.
  • the packaging material 30 which comprises the surface film 14 and the back film 15 since the packaging material 30 which comprises the surface film 14 and the back film 15 has rigidity, it is hard to produce a wrinkle in the surface film 14 and the back film 15. For this reason, the adsorption
  • Opening method of bag will now be described opening method of bag 10.
  • a case where the consumer opens the bag 10 by tearing the bag 10 along the first direction D1 will be described.
  • a straight cut film is used as the first stretched plastic film 40 or the second stretched plastic film 50 of the packaging material 30.
  • the consumer tears and opens the bag 10 it can suppress that a tear direction deviates from the 1st direction D1. Therefore, the consumer can tear the bag 10 easily.
  • the above-described second type sealant film having a high tensile elastic modulus.
  • FIG. 15 is a diagram illustrating another example of the bag 10 including the packaging material 30.
  • the bag 10 shown in FIG. 15 is different from the bag 10 shown in FIG. 1 only in that the bag 10 is further provided with a steam venting mechanism 20.
  • the same parts as those in the bag 10 shown in FIG. 15 are different from the bag 10 shown in FIG. 1 only in that the bag 10 is further provided with a steam venting mechanism 20.
  • the bag 10 includes a steam release mechanism 20 for escaping steam generated when the contents stored in the storage portion 17 are heated.
  • the steam release mechanism 20 allows the inside and the outside of the bag 10 to communicate with each other when the pressure of the steam reaches a predetermined value or more to escape the steam, and suppresses the steam from being released from a place other than the steam release mechanism 20. ,It is configured.
  • the internal pressure of the bag 10 may not increase to the extent that the vapor is released from the vapor venting mechanism 20 to the outside. That is, depending on how the bag 10 is used, the steam release mechanism 20 may have a low probability of developing a function of escaping steam to the outside. Even in this case, by providing the vapor venting mechanism 20 in the bag 10, it is possible to further reduce the probability that the vapor will escape from a place other than the vapor venting mechanism 20 or the bag 10 may rupture.
  • the steam release mechanism 20 includes a steam release seal part 20 a that protrudes from the side seal part 13 a toward the inside of the bag 10, and a non-seal that is isolated from the housing part 17 by the steam release seal part 20 a. Part 20b.
  • the non-seal portion 20 b communicates with the outside of the bag 10.
  • the steam release seal portion 20a is peeled off.
  • the steam in the housing part 17 can escape to the outside of the bag 10 through the peeling part of the steam release seal part 20a and the non-seal part 20b.
  • the packaging material 30 has heat resistance, it is possible to suppress the formation of a hole in the packaging material 30 or the formation of wrinkles in the packaging material 30 during heating.
  • the configuration of the steam release mechanism 20 is not limited to the configuration shown in FIG.
  • the configuration of the steam release mechanism 20 is arbitrary as long as the housing portion 17 and the outside of the bag 10 can be communicated with each other when the steam pressure exceeds a predetermined value.
  • the surface film 14 may include a palm portion 14a in which the inner surfaces of the surface film 14 are partially overlapped.
  • the palm portion 14a can be configured, for example, by folding back with a folding portion 14f so as to form a pleat on one surface film 14. Further, the palm portion 14a may be configured by overlapping a part of the two surface films 14.
  • the steam release mechanism 20 includes, for example, a steam release seal part 20a that protrudes from the palm seal part 14b toward the housing part 17, and a non-seal part 20b that is surrounded by the steam release seal part 20a and the joint seal part 14b. And a through hole 20c formed in the surface film 14 in the non-seal portion 20b.
  • the steam release seal portion 20a when the pressure in the accommodating portion 17 increases, the steam release seal portion 20a is peeled off, and the accommodating portion 17 and the non-seal portion 20b communicate with each other.
  • the steam that has flowed into the non-seal portion 20b from the housing portion 17 through the peeled portion of the steam release seal portion 20a passes through the through hole 20c and escapes to the outside of the bag 10.
  • the bag 10 shown in FIG. 16 is arrange
  • FIG. 17A and FIG. 17B are a longitudinal sectional view and a plan view showing a lidded container 110 which is an example of an application of the packaging material 30.
  • the lidded container 110 includes a container main body 112 manufactured by sheet molding such as drawing or injection molding, and a lid member 114 joined to the container main body 112.
  • the container main body 112 includes a bottom surface 112a and a side surface 112b, and a flange portion 113 that spreads outward in the horizontal direction from the upper end of the side surface 112b.
  • the lid member 114 is joined to the upper surface of the flange portion 113 of the container main body 112 via a seal portion 116.
  • the lid 114 may include the packaging material 30 described above having a high stiffness polyester film.
  • the lid member 114 By configuring the lid member 114 using the packaging material 30 described above, the lid member 114 can have excellent piercing strength. Thereby, when the sharp member with the pointed tip contacts the lid member 114, the lid member 114 can be prevented from being broken. Moreover, when the container 110 with a lid
  • the sealant layer 70 of the packaging material 30 constituting the lid material 114 may have an easy peel property. That is, the sealant layer 70 of the packaging material 30 constituting the lid member 114 includes a first layer 71 mainly composed of polyethylene or polypropylene, and a second layer 72 comprising a mixed resin of polyethylene and polypropylene and constituting the inner surface 30x. , May be included.
  • packaging products for packaging articles such as the bag 10 and the lidded container 110 are also referred to as packaging products.
  • the bag 10 is a gusset type bag
  • the specific configuration of the bag 10 is not particularly limited.
  • the bag 10 may be a so-called four-side sealed bag formed by joining the inner surfaces of the front film 14 and the back film 15 made of the packaging material 30 at the upper part 11, the lower part 12 and the side part 13.
  • the second embodiment also relates to a packaging product including the packaging material and the packaging material.
  • packaging materials have been developed and proposed for filling and packaging various articles such as foods and drinks, pharmaceuticals, chemicals, cosmetics, and others.
  • various physical properties are required as the packaging material, although it varies depending on the purpose of packaging, the contents to be filled, the storage / distribution of the packaged product, and the like.
  • gas barrier materials that prevent permeation of oxygen and water vapor have been developed and proposed.
  • Gas barrier materials have been developed and proposed.
  • Barrier films and the like have also been proposed.
  • Japanese Patent Laid-Open No. 2007-303000 proposes producing a barrier film by forming a vapor deposition layer of an inorganic oxide on a nylon film.
  • the packaging material is required to have a characteristic that prevents the bag from being torn even when a sharp member with a sharp tip contacts the packaging bag, that is, a so-called puncture resistance.
  • This embodiment is intended to provide a packaging material that can effectively solve such problems.
  • the present embodiment is a barrier laminate film, a sealant layer located inside the barrier laminate film, and located between the barrier laminate film and the sealant layer, or the barrier laminate film.
  • a stretched plastic film positioned on the outer side, and the barrier laminate film includes a base material, and a vapor deposition layer provided on the base material and containing a metal or an inorganic compound.
  • a packaging material containing polyester as a main component and having a value obtained by dividing the tensile strength of the base material by the tensile elongation in at least one direction is 2.0 [MPa /%] or more.
  • the sealant layer may include 90% by mass or more of polypropylene.
  • the sealant layer may include linear low density polyethylene having a melting point of 100 ° C. or higher.
  • the sealant layer includes a first layer containing polypropylene and high-density polyethylene, and a first layer containing polypropylene or high-density polyethylene, which is positioned closer to the barrier laminate film than the first layer. And may have two layers.
  • the stretched plastic film may be a polyester film or a polyamide film positioned between the barrier laminate film and the sealant layer.
  • the stretched plastic film may be a polyester film positioned outside the barrier laminate film.
  • the piercing strength of the base material of the barrier laminate film may be 9.5 N or more.
  • the base material of the barrier laminate film may have a loop stiffness of 0.0017 N or more in the flow direction and the vertical direction, and may contain polyester as a main component.
  • the base material of the barrier laminate film may contain polybutylene terephthalate as a main component.
  • the barrier laminate film may further include a gas barrier coating film provided on the vapor deposition layer.
  • the vapor deposition layer of the barrier laminate film may be a transparent vapor deposition layer containing an inorganic compound.
  • the vapor deposition layer of the barrier laminate film is a transparent vapor deposition layer containing aluminum oxide
  • the transparent vapor deposition layer includes a transition region
  • the transition region includes the barrier laminate.
  • the ratio of the thickness of the transition region to the thickness of the transparent vapor deposition layer may be 5% or more and 60% or less.
  • This embodiment is a packaged product composed of the packaging material described above.
  • a packaging material having gas barrier properties and strength can be provided.
  • the packaging material 210 in the second embodiment is characterized by having a high stiffness polyester film provided with a vapor deposition layer.
  • the same names are used for portions that can be configured in the same manner as in the first embodiment described above, and redundant descriptions may be omitted.
  • the description thereof may be omitted.
  • the laminate constituting the packaging material according to the present embodiment includes a barrier laminate film and a sealant layer located inside the barrier laminate film.
  • the inner side means the side of the contents contained in the packaged product in the packaged product formed from the packaging material.
  • an outer side means the side away from the content accommodated in packaged products.
  • FIG. 18 is a cross-sectional view showing an example of the packaging material 210 according to the embodiment of the present invention.
  • the packaging material 210 includes a barrier laminate film 205, a printed layer 218, a first adhesive layer 213, a stretched plastic film 214, a second adhesive layer 215, and a sealant layer 212 in order from the outside to the inside.
  • the barrier laminate film 205 includes at least a base material 201 and a vapor deposition layer 202 provided on the inner surface of the base material 201.
  • the barrier laminate film 205 may further include a gas barrier coating film 203 located on the vapor deposition layer 202.
  • the base material 201 constitutes the outer surface 210 y of the packaging material 210
  • the sealant layer 212 constitutes the inner surface 210 x of the packaging material 210.
  • the outer surface is a surface located on the outermost side in the packaging material 210
  • the inner surface is a surface located on the innermost side in the packaging material 210.
  • order in descriptions such as “prepared in this order” and “laminated in order” represents the order in the direction from the outside to the inside unless otherwise specified.
  • FIG. 19 is a cross-sectional view showing an example of a packaging material according to the present embodiment.
  • the packaging material 210 includes a stretched plastic film 214, a printed layer 218, a first adhesive layer 213, a barrier laminate film 205, a second adhesive layer 215, and a sealant layer 212 in order from the outside to the inside.
  • the barrier laminate film 205 includes at least a base material 201 and a vapor deposition layer 202 provided on the outer surface of the base material 201.
  • the barrier laminate film 205 may further include a gas barrier coating film 203 located on the vapor deposition layer 202.
  • the stretched plastic film 214 constitutes the outer surface 210 y of the packaging material 210
  • the sealant layer 212 constitutes the inner surface 210 x of the packaging material 210.
  • the film and layers constituting the packaging material 210 will be described.
  • the barrier laminate film 205 will be described.
  • the substrate 201 used for the barrier laminate film 205 is a polyester film containing polyester as a main component.
  • the base material 201 contains, for example, 51% by mass or more of polyester.
  • the polyester is at least one aromatic dicarboxylic acid selected from terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and at least selected from ethylene glycol, 1,3-propanediol and 1,4-butanediol.
  • a polyester mainly composed of an aromatic polyester composed of one kind of aliphatic alcohol is preferred.
  • the polyester includes polyethylene terephthalate (hereinafter also referred to as PET), polybutylene terephthalate (hereinafter also referred to as PBT), and the like.
  • the base of the barrier laminate film 205 is used. It is preferable that the material 201 has resistance such as puncture resistance. Therefore, in the present embodiment, it is proposed to use either a high stiffness PET film or a PBT film as the base material 201. Thereby, for example, the puncture strength of the base material 201 can be increased. For example, the puncture strength of the base material 201 can be set to 9.5 N or more, more preferably 10 N or more. Further, the ratio of the tensile strength to the tensile elongation of the substrate 201 can be increased.
  • the value obtained by dividing the tensile strength of the substrate by the tensile elongation is 2.0 [MPa /%] or more.
  • the high stiffness PET film and the PBT film will be described in detail. First, the high stiffness PET film will be described.
  • the high stiffness PET film like the above-described high stiffness polyester film, has a loop stiffness of 0.0017 N or more in the flow direction (MD) and the vertical direction (TD), and includes 51% by mass or more of PET. It is a plastic film.
  • the thickness of the high stiffness PET film is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more.
  • the thickness of the high stiffness PET film is preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the loop stiffness measurement method is the same as that in the first embodiment described above.
  • the puncture strength of the high stiffness PET film is preferably 9.5 N or more, more preferably 10.0 N or more.
  • the tensile strength and tensile elongation of the high stiffness PET film in the flow direction the value obtained by dividing the tensile strength of the high stiffness PET film by the tensile elongation, the thermal shrinkage rate, and the tensile elastic modulus are the same as those in the first embodiment. Since it is the same as the case of the stiffness polyester film, the description is omitted.
  • a PET film obtained by melting and molding polyethylene terephthalate is subjected to 90 ° C. in the flow direction and the vertical direction, respectively.
  • a first stretching step of stretching 3 to 4.5 times at ⁇ 145 ° C. is performed.
  • a second stretching step is performed in which the plastic film is stretched 1.1 to 3.0 times at 100 to 145 ° C. in the flow direction and the vertical direction, respectively.
  • heat setting is performed at a temperature of 190 ° C. to 220 ° C.
  • a relaxation treatment treatment for reducing the film width
  • a high stiffness PET film having the above-mentioned mechanical properties can be obtained by adjusting the stretching ratio, stretching temperature, heat setting temperature, and relaxation treatment rate.
  • the PET constituting the high stiffness PET film may include biomass-derived PET, as in the case of the first embodiment described above.
  • the high stiffness PET film may be composed of only biomass-derived PET.
  • the high stiffness PET film may be composed of biomass-derived PET and fossil fuel-derived PET.
  • the biomass-derived PET contained in the high stiffness PET film, the biomass degree of the high stiffness PET film, and the like are the same as in the case of the high stiffness polyester film of the first embodiment described above, and thus the description thereof is omitted.
  • the PBT film is a stretched plastic film containing 51% by mass or more of PBT.
  • advantages of the base material 201 containing PBT will be described.
  • the retort process is a process of heating the packaging bag in a pressurized state using steam or heated hot water after filling the packaging bag with the contents and sealing the packaging bag.
  • the temperature of retort processing is 120 degreeC or more, for example.
  • the boil process is a process in which the packaged product is filled with the contents and the packaged product is sealed, and then the packaged product is boiled under atmospheric pressure.
  • the temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
  • the packaging bag can be provided with puncture resistance as in the case where the packaging material 210 constituting the packaging bag contains nylon.
  • the puncture strength of the PBT film is preferably 9.5 N or more, more preferably 10.0 N or more.
  • the tensile strength of the PBT film in the flow direction is preferably 150 MPa or more, more preferably 180 MPa or more.
  • the tensile strength of the PBT film in the vertical direction is preferably 250 MPa or more, and more preferably 280 MPa or more.
  • the tensile elongation of the PBT film in the flow direction is preferably 220% or less, and more preferably 200% or less.
  • the tensile elongation of the PBT film in the vertical direction is preferably 120% or less, and more preferably 110% or less.
  • a value obtained by dividing the tensile strength of the PBT film by the tensile elongation is 2.0 [MPa /%] or more.
  • the value obtained by dividing the tensile strength of the PBT film in the vertical direction (TD) by the tensile elongation is preferably 2.0 [MPa /%] or more, more preferably 2.2 [MPa /%] or more. Yes, more preferably 2.5 [MPa /%] or more.
  • PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 201 containing PBT is arrange
  • any of the following first configuration or second configuration may be adopted.
  • the content of PBT in the substrate 201 according to the first configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further 70% by mass or more, particularly preferably 75% by mass or more, and most preferably. 80% by mass or more.
  • the base material 201 can have excellent impact strength and pinhole resistance.
  • PBT used as a main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, most preferably 100 mol% or more of terephthalic acid as a dicarboxylic acid component.
  • Mol%. 1,4-butanediol as the glycol component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol during polymerization. It is not included except by-products generated by the ether bond of butanediol.
  • the base material 201 may contain a polyester resin other than PBT.
  • Polyester resins other than PBT include polyester resins such as PET, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), as well as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, and biphenyldicarboxylic acid.
  • PBT resin copolymerized with dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols such as pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, polycarbonate diol Min can be mentioned copolymerized PBT resin.
  • dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid
  • ethylene glycol 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols
  • the amount of the polyester resin other than PBT is preferably 49% by mass or less, and more preferably 40% by mass or less. If the addition amount of the polyester resin other than PBT exceeds 49% by mass, the mechanical properties as PBT may be impaired, and impact strength, pinhole resistance, and drawability may be insufficient.
  • the base material 201 may include a polyester-based and polyamide-based elastomer obtained by copolymerizing at least one of a flexible polyether component, a polycarbonate component, and a polyester component as an additive. Thereby, the pinhole resistance at the time of bending can be improved.
  • the additive amount of the additive is, for example, 20% by mass. If the additive amount exceeds 20% by mass, the effect as an additive may be saturated, or the transparency of the substrate 201 may be reduced.
  • FIG. 20 is a cross-sectional view showing an example of the layer structure of the base material 201.
  • the base material 201 is composed of a multilayer structure including a plurality of layers 201a.
  • Each of the plurality of layers 201a includes PBT as a main component.
  • each of the plurality of layers 201a preferably includes 51% by mass or more of PBT, and more preferably includes 60% by mass or more of PBT.
  • the (n + 1) th layer 201a is directly stacked on the nth layer 201a. That is, no adhesive layer or adhesive layer is interposed between the plurality of layers 201a.
  • the reason why the properties of the PBT film are improved by multilayering is estimated as follows.
  • the resins are laminated, even if the resin composition is the same, a layer interface exists, and crystallization is accelerated by the interface.
  • the growth of large crystals beyond the layer thickness is suppressed. For this reason, it is considered that the size of the crystal (spherulite) becomes small.
  • a general multilayering apparatus multilayer feed block, static mixer, multilayer multimanifold, etc.
  • a method of laminating thermoplastic resins sent from different flow paths using two or more extruders in multiple layers using a feed block, a static mixer, a multi-manifold die, or the like can be used.
  • multilayering resin of the same composition it is also possible to introduce the above multilayering apparatus into the melt line from the extruder to the die using only one extruder.
  • the substrate 201 is composed of a multilayer structure including at least 10 layers, preferably 60 layers or more, more preferably 250 layers or more, and still more preferably 1000 layers or more.
  • the size of spherulites in the unstretched raw PBT can be reduced, and the subsequent biaxial stretching can be carried out stably.
  • the yield stress of PBT in the state of a biaxially stretched film can be made small.
  • the diameter of the spherulite in the unstretched raw PBT is 500 nm or less.
  • the stretching temperature (hereinafter also referred to as MD stretching temperature) in the longitudinal stretching direction (hereinafter referred to as MD) when producing a biaxially stretched film by biaxially stretching the unstretched raw material of PBT is preferably 40 ° C. or higher. Yes, more preferably 45 ° C or higher.
  • MD stretching temperature is preferably 40 ° C. or higher.
  • stretching temperature becomes like this.
  • it is 100 degrees C or less, More preferably, it is 95 degrees C or less.
  • the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed by setting the MD stretching temperature to 100 ° C. or lower.
  • the draw ratio in MD (hereinafter also referred to as MD draw ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement
  • the stretching temperature (hereinafter also referred to as TD stretching temperature) in the transverse stretching direction (hereinafter also referred to as TD) is preferably 40 ° C. or higher. By setting the TD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken.
  • the TD stretching temperature is preferably 100 ° C. or lower. By setting the TD stretching temperature to 100 ° C. or lower, the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed.
  • the stretching ratio in TD (hereinafter also referred to as TD stretching ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement
  • MD stretch ratio is 5 times or less, for example.
  • TD relaxation rate is preferably 0.5% or more. Thereby, it can suppress that a fracture
  • the TD relaxation rate is preferably 10% or less. Thereby, sagging etc. arise in a biaxially stretched film of PBT, and it can control that thickness unevenness generate
  • the thickness of the layer 201a of the substrate 201 shown in FIG. 20 is preferably 3 nm or more, more preferably 10 nm or more.
  • the thickness of the layer 201a is preferably 200 nm or less, more preferably 100 nm or less.
  • the thickness of the base material 201 is preferably 9 ⁇ m or more, more preferably 12 ⁇ m or more.
  • the thickness of the base material 201 is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the base material 201 comes to show the outstanding moldability by making the thickness of the base material 201 into 25 micrometers or less. For this reason, the process which processes the packaging material 210 containing the base material 201 and manufactures a packaging bag can be implemented efficiently.
  • the base material 201 according to the second configuration is made of a single layer film containing polyester having butylene terephthalate as a main repeating unit.
  • the base material 201 is mainly composed of 1,4-butanediol as a glycol component or an ester-forming derivative thereof and terephthalic acid as a dibasic acid component or an ester-forming derivative thereof, and condenses them. Homo- or copolymer-type polyester obtained.
  • the content of PBT in the base material 201 according to the second configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, further preferably 80% by mass or more, and most preferably. Is 90% by mass or more.
  • the base material 201 which concerns on a 2nd structure is comprised only with the polybutylene terephthalate and the additive.
  • PBT having a melting point of 200 ° C. or more and 250 ° C. or less and an IV value (intrinsic viscosity) of 1.10 dl / g or more and 1.35 dl / g or less Is preferred.
  • IV value intrinsic viscosity
  • those having a melting point of 215 ° C. or more and 225 ° C. or less and an IV value of 1.15 dl / g or more and 1.30 dl / g or less are particularly preferable.
  • These IV values may be satisfied by the entire material constituting the substrate 201.
  • the IV value can be calculated based on JIS K 7367-5: 2000.
  • the substrate 201 according to the second configuration may include a polyester resin other than PBT such as PET in a range of 30% by mass or less.
  • PET a polyester resin other than PBT
  • blended with PBT of the base material 201 the polyester which uses ethylene terephthalate as a main repeating unit can be used.
  • PET mix blended with PBT of the base material 201
  • the polyester which uses ethylene terephthalate as a main repeating unit can be used.
  • a homotype mainly composed of ethylene glycol as a glycol component and terephthalic acid as a dibasic acid component can be preferably used.
  • the substrate 201 is made of a lubricant, an anti-blocking agent, an inorganic extender, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, a plasticizer, a colorant, a crystallization inhibitor, and a crystallization accelerator as necessary. Etc. may be contained. Further, the polyester resin pellets used as the raw material of the base material 201 has a moisture content of 0.05% by weight or less, preferably 0.01% by weight or less before heating and melting in order to avoid a decrease in viscosity due to hydrolysis during heating and melting. It is preferable to use after sufficiently pre-drying so that
  • the crystallization temperature region of the polymer is cooled at a certain rate or more, that is, the raw fabric cooling rate is an important factor.
  • the raw fabric cooling rate is, for example, 200 ° C./second or more, preferably 250 ° C./second or more, particularly preferably 350 ° C./second or more. Since the unstretched original film formed at a high cooling rate maintains a low crystalline state, the stability of the bubbles during stretching is improved. Furthermore, since film formation at high speed is possible, film productivity is also improved.
  • the cooling rate is less than 200 ° C./sec, it is considered that the crystallinity of the obtained unstretched original fabric is increased and the stretchability is lowered. In extreme cases, the stretching bubble may burst and stretching may not continue.
  • the unstretched raw material containing PBT as a main component is conveyed to a space where biaxial stretching is performed while maintaining the atmospheric temperature at 25 ° C. or lower, preferably 20 ° C. or lower. Thereby, even if it is a case where residence time becomes long, the crystallinity of the unstretched original fabric immediately after film-forming can be maintained.
  • the biaxial stretching method for obtaining a stretched film by stretching an unstretched raw fabric is not particularly limited.
  • the longitudinal direction and the lateral direction may be simultaneously stretched by the tubular method or the tenter method, or the longitudinal direction and the lateral direction may be sequentially stretched.
  • the tubular method can obtain a stretched film having a good balance of physical properties in the circumferential direction, and is particularly preferably employed.
  • the unstretched raw material introduced into the stretching space is inserted between a pair of low-speed nip rolls, and then heated by a stretching heater while air is being pressed therein. After stretching, air is blown onto the stretched film by a cooling shoulder air ring.
  • the stretching ratio is preferably 2.7 times or more and 4.5 times or less for MD and TD, respectively, in consideration of stretching stability, strength physical properties of the stretched film, transparency, and thickness uniformity.
  • the stretching temperature is preferably 40 ° C. or higher and 80 ° C. or lower, and particularly preferably 45 ° C. or higher and 65 ° C. or lower. Since the unstretched original fabric produced at the above-described high cooling rate has low crystallinity, the unstretched original fabric can be stably stretched even when the stretching temperature is relatively low. Further, by setting the stretching temperature to 80 ° C. or less, it is possible to suppress stretching bubble shaking and obtain a stretched film with good thickness accuracy. In addition, by setting the stretching temperature to 40 ° C. or higher, it is possible to suppress the occurrence of excessive stretch-oriented crystallization due to low-temperature stretching, thereby preventing whitening of the film.
  • the base material 201 produced as described above is constituted by a single layer containing, for example, polyester having butylene terephthalate as a main repeating unit. According to the above-described production method, since the unstretched raw film is formed at a high cooling rate, even when the unstretched raw fabric is constituted by a single layer, a low crystalline state can be maintained, For this reason, an unstretched original fabric can be extended
  • the heat resistance of the barrier laminate film 205 and the heat resistance of the packaging material 210 including the barrier laminate film 205 can be increased.
  • the tensile elastic modulus of the barrier laminate film 205 and the packaging material 210 can be sufficiently increased.
  • the tensile elastic modulus (hereinafter also referred to as hot tensile elastic modulus) of the barrier laminate film 205 and the packaging material 210 in a high-temperature atmosphere for example, an atmosphere at 100 ° C. can be sufficiently increased.
  • the puncture strength of the packaging material 210 can be increased as in the case of the first embodiment described above.
  • the puncture strength of the packaging material 210 is, for example, 14N or more, 15N or more, 16N or more, 17N or more, or 18N or more.
  • the strength of the packaging material 210 can be increased as in the case of the first embodiment described above.
  • the loop stiffness of the packaging material 210 can be increased.
  • the loop stiffness of the packaging material 30 in at least one direction is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. 0.180N or more.
  • the loop stiffness of the packaging material 30 in the flow direction is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. It may be 0.180 N or more.
  • the loop stiffness of the packaging material 30 in the vertical direction (TD) is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. It may be 0.180 N or more. Also,
  • the vapor deposition layer 202 is a thin film having a gas barrier performance that blocks or blocks permeation of oxygen gas, water vapor, and the like.
  • the vapor deposition layer 202 may be a metal layer containing a light-shielding metal such as aluminum, or may be a transparent vapor deposition layer formed of an inorganic compound having transparency.
  • the vapor deposition layer 202 is a transparent vapor deposition layer formed of an inorganic oxide having transparency.
  • the inorganic oxide forming the vapor deposition layer 202 contains, for example, an aluminum compound as a main component, which contains at least aluminum oxide or aluminum nitride, carbide, hydroxide alone or a mixture thereof.
  • the inorganic oxide contains aluminum oxide as a main component.
  • the vapor deposition layer 202 may be a layer containing a silicon compound as a main component.
  • the inorganic oxide layer contains silicon oxide (silicon oxide) as a main component.
  • the vapor deposition layer 202 contains an aluminum compound such as the above-described aluminum oxide as a main component, and further includes silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, magnesium oxide, titanium oxide, tin oxide, and indium oxide. Further, it may be a layer containing a metal oxide such as zinc oxide or zirconium oxide, or a metal nitride, carbide or mixture thereof.
  • the thickness of the vapor deposition layer 202 is preferably 3 nm or more and 50 nm or less, and more preferably 9 nm or more and 30 nm or less.
  • the gas barrier coating film 203 is a cured film formed by a coating agent for a gas barrier coating film made of a resin composition containing a metal alkoxide, a hydroxyl group-containing water-soluble resin, and a silane coupling agent added as necessary. is there.
  • the mass ratio of the hydroxyl group-containing water-soluble resin / metal alkoxide in the resin composition is preferably 5/95 or more and 20/80 or less, more preferably 8/92 or more and 15/85 or less.
  • the mass ratio of the hydroxyl group-containing water-soluble resin / metal alkoxide in the resin composition is preferably 5/95 or more and 20/80 or less, more preferably 8/92 or more and 15/85 or less.
  • the thickness of the gas barrier coating film 203 is preferably 100 nm or more and 800 nm or less. If it is thinner than the above range, the barrier effect of the gas barrier coating film 203 tends to be insufficient, and if it is thicker than the above range, rigidity and brittleness tend to increase.
  • the metal alkoxide has the general formula R 1 nM (OR 2 ) m (wherein R 1 and R 2 represent a hydrogen atom or an organic group having 1 to 8 carbon atoms, M represents a metal atom, n Represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M. Even if each of a plurality of R 1 and R 2 in one molecule is the same, (It may be different.) ... It is represented by (XI).
  • metal atoms represented by M in the metal alkoxide include silicon, zirconium, titanium, aluminum, tin, lead, borane, and the like.
  • alkoxy in which M is Si It is preferred to use silane.
  • OR 2 examples include a hydroxyl group, a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, an i-propoxy group, a butoxy group, and a 3-methacryloxy group.
  • alkoxy groups such as 3-acryloxy group and phenoxy group, and phenoxy groups.
  • R 1 examples include methyl group, ethyl group, n-propyl group, isopropyl group, phenyl group, p-styryl group, 3-chloropropyl group, trifluoromethyl group, vinyl group, ⁇ -glycol.
  • examples thereof include a sidoxypropyl group, a methacryl group, and a ⁇ -aminopropyl group.
  • alkoxysilane examples include, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraphenoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, Methyltributoxysilane, methyltriphenoxysilane, phenylphenoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxy Silane, isopropyltriethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane,
  • the silane coupling agent is used to adjust the crosslinking density of a cured film with a metal alkoxide and a hydroxyl group-containing water-soluble resin to obtain a film having a barrier property and a heat-resistant water treatment property.
  • the silane coupling agent has the general formula: R 3 nSi (OR 4 ) 4-n (XII) (In the formula, R 3 and R 4 each independently represents an organic functional group, and n is 1 to 3.) It is represented by
  • R 3 is, for example, a hydrocarbon group such as an alkyl group or an alkylene group, an epoxy group, a (meth) acryloxy group, a ureido group, a vinyl group, an amino group, an isocyanurate group or an isocyanate group.
  • at least one of R 3 present in two or three is preferably a functional group having an epoxy group, such as a 3-glycidoxypropyl group and a 2- (3,4 epoxycyclohexyl) group. It is more preferable that R 3 may be the same or different.
  • R 4 is, for example, an organic functional group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 8 carbon atoms which may have a branch, or 3 to 3 carbon atoms. 7 alkoxyalkyl groups.
  • alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group and the like.
  • alkoxyalkyl group having 3 to 7 carbon atoms examples include methyl ethyl ether, diethyl ether, methyl propyl ether, methyl isopropyl ether, ethyl propyl ether, ethyl isopropyl ether, methyl butyl ether, ethyl butyl ether, methyl sec-butyl ether, ethyl sec.
  • a group obtained by removing one hydrogen atom from a linear or branched ether such as butyl ether, methyl tert-butyl ether, or ethyl tert-butyl ether; Note that (OR 4 ) may be the same or different.
  • the crosslinking density of the cured film of the barrier coating layer using 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane is lower than the crosslinking density in the system using trialkoxysilane.
  • the hydroxyl group-containing water-soluble resin can be dehydrated and co-condensed with a metal alkoxide, and the degree of saponification is preferably 90% or more and 100% or less, more preferably 95% or more and 100% or less, and 99% or more, 100 % Or less is more preferable.
  • the saponification degree is smaller than the above range. The hardness of the barrier coating layer tends to decrease.
  • hydroxyl group-containing water-soluble resin examples include, for example, polyvinyl alcohol resins, ethylene / vinyl alcohol copolymers, polymers of bifunctional phenol compounds and bifunctional epoxy compounds, and the like. You may use, 2 or more types may be mixed and used, and you may make it copolymerize and use. Among these, polyvinyl alcohol is preferable and polyvinyl alcohol resin is preferable because it is excellent in flexibility and affinity.
  • a polyvinyl alcohol resin obtained by saponifying polyvinyl acetate or an ethylene / vinyl alcohol copolymer obtained by saponifying a copolymer of ethylene and vinyl acetate is used. can do.
  • FIG. 22 shows time-of-flight secondary ion mass spectrometry (TOF ⁇ ) while soft etching is repeated at a constant rate on the surface of the barrier laminate film 205 on the gas barrier coating film 203 side with a Cs (cesium) ion gun. It is a figure which shows the result of having measured the ion derived from the vapor deposition layer 202 containing an aluminum oxide, and the ion derived from the base material 201 using SIMS.
  • the vapor deposition layer 202 of the barrier laminate film 205 includes a transition region specified by the graph analysis diagram shown in FIG.
  • the transition region is the position of the peak of element-bonded Al 2 O 4 H that is converted into aluminum hydroxide and is detected by etching the barrier laminate film 205 from the gas barrier coating film 203 side using TOF-SIMS. This is a region between T 2 and the interface T 1 between the vapor deposition layer 202 and the substrate 201. Interface T 1 of the the deposition layer 202 and the substrate 201, the intensity of the graph element C 6 is identified as a position that is half the strength of the element C 6 in the substrate 201. In FIG. 22, the symbol W2 represents the thickness of the transition region.
  • the ratio of the thickness W2 of the transition region to the thickness of the deposited layer 202 is preferably 5% or more and 60% or less.
  • the transition region modification rate is preferably 5% or more and 60% or less.
  • the boil process is a process of filling the packaging bag with the contents and sealing the packaging bag, and then bathing the packaging bag under atmospheric pressure.
  • the temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
  • the packaging material including the barrier laminated film 205 having a transition region transformation rate of 5% or more and 60% or less is used in packaging bags that are not subjected to sterilization treatment such as boil treatment or retort treatment. However, it can function effectively in maintaining the barrier property against gases such as oxygen and water vapor.
  • the interface between the base material 201 and the vapor deposition layer 202 is subjected to mechanical and chemical stress by heat. Therefore, in order to suppress deterioration in adhesion and barrier properties, it is important to firmly cover the base material 201 with the vapor deposition layer 202 at the interface between the base material 201 and the vapor deposition layer 202.
  • Aluminum hydroxide has good adhesion to plastic films such as polyester film due to its chemical structure, and has high water vapor barrier properties because it itself forms a network and is dense.
  • the bonding structure based on hydrogen bonding between aluminum hydroxide and the plastic film is easily broken microscopically against heat stress. Also, it easily penetrates into the membrane due to the affinity of the water molecule and aluminum hydroxide grain interface to the aluminum hydroxide network.
  • the vapor deposition layer 202 containing aluminum oxide can be formed by forming the vapor deposition layer 202 on the surface of the base material 201 that has been pretreated with oxygen plasma.
  • a vapor deposition method for forming the vapor deposition layer 202 various vapor deposition methods can be applied among physical vapor deposition and chemical vapor deposition.
  • the physical vapor deposition method can be selected from the group consisting of vapor deposition method, sputtering method, ion plating method, ion beam assist method, and cluster ion beam method.
  • Chemical vapor deposition methods include plasma CVD method, plasma polymerization method, thermal method. It can be selected from the group consisting of CVD method and catalytic reaction type CVD method. In this embodiment, a physical vapor deposition method is preferable.
  • FIG. 22 A specific example of a method for obtaining the graph of FIG. 22 will be described. First, using Cs, etching is performed from the outermost surface of the gas barrier coating film 203, and the element bonding of the interface between the gas barrier coating film 203, the vapor deposition layer 202, and the film such as the substrate 201 and the element bonding of the vapor deposition layer 202 are performed. Perform analysis. Thereby, the graph shown in FIG. 22 can be obtained.
  • the position at which the strength of SiO 2 (mass number 59.96), which is a constituent element of the gas barrier coating film 203, becomes half the strength of the gas barrier coating film 203 is indicated by the gas barrier coating film 203 and the vapor deposition layer. 202 is specified as the interface.
  • a position where the strength of C 6 (mass number 72.00), which is a constituent material of the base material 201, becomes half of the strength of the base material 201 is specified as an interface between the base material 201 and the vapor deposition layer 202. Further, the distance in the thickness direction between the two interfaces is adopted as the thickness of the vapor deposition layer 202.
  • waveform separation for example, a profile with a mass number of 118.93 obtained by TOF-SIMS is subjected to nonlinear curve fitting using a Gaussian function, and overlapping peaks are separated using a least square method Levenberg Marquardt algorithm. It can be carried out.
  • the barrier laminate film 205 includes the base material 201, the vapor deposition layer 202, and the gas barrier coating film 203.
  • the same analysis shows that the barrier laminate film 205 includes the base material 201.
  • the present invention can also be applied to the case where the vapor barrier layer 202 is included but the gas barrier coating film 203 is not included. Even when the barrier laminate film 205 does not include the gas barrier coating film 203, the packaging material including the barrier laminate film 205 can be boiled by setting the transformation rate of the transition region of the vapor deposition layer 202 within a predetermined range.
  • the sterilization process such as the process or the retort process
  • the barrier laminate film 205 includes a base material 201 and a vapor deposition layer 202 and etching is performed from the vapor deposition layer 202 side using time-of-flight secondary ion mass spectrometry (TOF-SIMS)
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the modification rate is preferably 45% or less.
  • the mechanical properties of the barrier laminate film 205 are mainly determined by the mechanical properties of the substrate 201. Therefore, the mechanical properties such as the loop stiffness, puncture strength, tensile strength, tensile elongation, tensile strength divided by tensile elongation, thermal shrinkage rate, and tensile elastic modulus of the barrier laminate film 205 are the same as those of the substrate 201. This is equivalent to the mechanical properties of the high-stiffness PET film and PBT film to be constructed.
  • the measurement results of the mechanical properties of the barrier laminate film 205 are within the above-described preferable range, the measurement results of the mechanical properties of the base material 201 formed of a high stiffness PET film or a PBT film are also described above. Is considered to be within the preferable range.
  • the sealant layer 212 is a layer containing a thermoplastic resin that constitutes the inner surface 210 x of the packaging material 210.
  • the sealant layer 212 is formed by bonding a thermoplastic resin film to the stretched plastic film 214 via the second adhesive layer 215.
  • the sealant layer 212 is formed by bonding a thermoplastic resin film to the base material 201 of the barrier laminate film 205 via the second adhesive layer 215.
  • the sealant layer 212 may be formed by extruding a thermoplastic resin onto the stretched plastic film 214 or the barrier laminate film 205.
  • the sealant layer 212 As a material constituting the sealant layer 212, one or more resins selected from polyethylene such as low density polyethylene and linear low density polyethylene, and polypropylene can be used.
  • the sealant layer 212 may be a single layer or a multilayer.
  • the sealant layer 212 is preferably made of an unstretched film. “Unstretched” is a concept that includes not only a film that is not stretched at all, but also a film that is slightly stretched due to the tension applied during film formation.
  • a packaged product composed of the packaging material 210 including the sealant layer 212 may be subjected to sterilization treatment such as boil treatment and retort treatment at a high temperature. Accordingly, the sealant layer 212 has a heat resistance that can withstand the processing at these high temperatures.
  • the melting point of the material constituting the sealant layer 212 is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. By increasing the melting point of the sealant layer 212, it becomes possible to perform the retorting process of the packaged product at a high temperature, and therefore the time required for the retorting process can be shortened. Note that the melting point of the material constituting the sealant layer 212 is lower than the melting point of the resin constituting the substrate 201.
  • a material mainly composed of propylene can be used as a material constituting the sealant layer 212 as in the case of the sealant layer 70 in the first embodiment.
  • examples of the material constituting the sealant layer 212 include polyethylene, polypropylene, or a combination thereof as in the case of the sealant layer 70 in the first embodiment described above. Can do.
  • the sealant layer 212 includes a propylene / ethylene block copolymer as in the case of the sealant layer 70 in the first embodiment described above.
  • the sealant film constituting the sealant layer 212 is an unstretched film containing a propylene / ethylene block copolymer as a main component.
  • the sealant layer 212 may further include a thermoplastic elastomer as in the case of the sealant layer 70 in the first embodiment described above. By using a thermoplastic elastomer, the impact resistance and puncture resistance of the sealant layer can be further enhanced.
  • the content of the propylene / ethylene block copolymer in the sealant layer 212 is, for example, 80% by mass or more, and preferably 90% by mass or more.
  • Examples of the method for producing a propylene / ethylene block copolymer include a method of polymerizing propylene, ethylene, and the like as raw materials using a catalyst.
  • a catalyst Ziegler-Natta type or metallocene catalyst can be used.
  • the sealant layer 212 may have an easy peel property.
  • the easy peel property means that, for example, when a packaging material 210 having a sealant layer 212 is used to form a lid for a container, the lid is easily peeled from the flange portion of the container at the lower surface thereof, that is, the sealant layer 212. It is a characteristic.
  • the easy peel property can be expressed, for example, by configuring the sealant layer 212 with two or more types of resins and making one resin and another resin incompatible. Examples of the resin capable of exhibiting easy peel properties include a mixed resin of polyethylene and polypropylene such as high-density polyethylene.
  • the sealant layer 212 When the sealant layer 212 has an easy peel property, as shown in FIG. 21, the sealant layer 212 includes a first layer 2121 that constitutes the inner surface 210 x of the packaging material 210, and the barrier layered film 205 side of the first layer 2121.
  • the 2nd layer 2122 located in (outside) may be included.
  • the first layer 2121 may be a layer containing mixed polypropylene and high density polyethylene.
  • the second layer 2122 may be a layer made of polypropylene or high-density polyethylene.
  • Such a sealant layer 212 can be formed by bonding a coextruded film including the first layer 2121 and the second layer 2122 to the barrier laminate film 205.
  • the sealant layer 212 including the first layer 2121 and the second layer 2122 has heat resistance that can withstand heat treatment up to 135 ° C., for example.
  • the sealant layer 212 including the first layer 2121 and the second layer 2122 has heat resistance that can withstand heat treatment up to 123 ° C., for example.
  • the sealant layer 212 may contain a biomass-derived component or may not contain a biomass-derived component.
  • the sealant layer 212 can be formed using the following biomass polyolefin.
  • the sealant layer 212 can be formed using the conventionally well-known thermoplastic resin derived from a fossil fuel.
  • the sealant layer 70 of the above-mentioned first embodiment may also contain a biomass-derived component, and may not contain a biomass-derived component, like the sealant layer 212 of the present embodiment.
  • Biomass polyolefin is a polymer of a monomer containing an olefin such as ethylene derived from biomass. Since a biomass-derived olefin is used as a monomer as a raw material, the polymerized polyolefin is derived from biomass. In addition, the raw material monomer of polyolefin does not need to contain 100 mass% of olefin derived from biomass.
  • biomass-derived ethylene can be produced using biomass-derived ethanol as a raw material.
  • biomass-derived fermented ethanol obtained from plant raw materials.
  • a plant raw material is not specifically limited, A conventionally well-known plant can be used. For example, corn, sugar cane, beet, and manioc can be mentioned.
  • Biomass-derived fermented ethanol refers to ethanol that has been purified after contacting a microorganism-producing product or a product derived from its crushed material with a culture solution containing a carbon source obtained from plant raw materials.
  • a culture solution containing a carbon source obtained from plant raw materials For the purification of ethanol from the culture solution, conventionally known methods such as distillation, membrane separation, and extraction can be applied. For example, a method of adding benzene, cyclohexane or the like and azeotropically or removing water by membrane separation or the like can be mentioned.
  • the monomer that is a raw material of biomass polyolefin may further contain an ethylene monomer derived from fossil fuel and / or an ⁇ -olefin monomer derived from fossil fuel, or may further include an ⁇ -olefin monomer derived from biomass.
  • the above ⁇ -olefin is not particularly limited in carbon number, but usually those having 3 to 20 carbon atoms can be used, and is preferably butylene, hexene or octene. This is because if it is butylene, hexene or octene, it can be produced by polymerization of ethylene which is a biomass-derived raw material.
  • the polymerized polyolefin has an alkyl group as a branched structure, so that it can be more flexible than a simple linear one.
  • biomass polyolefin polyethylene or a copolymer of ethylene and ⁇ -olefin may be used alone, or two or more kinds may be mixed and used.
  • the biomass polyolefin is preferably polyethylene. This is because, by using ethylene, which is a biomass-derived raw material, it is theoretically possible to manufacture with 100% biomass-derived components.
  • the biomass polyolefin may contain two or more kinds of biomass polyolefins having different biomass degrees, and the biomass degree of the polyolefin resin layer as long as it is within the range described later.
  • Biomass polyolefin preferably 0.91 g / cm 3 or more 0.93 g / cm 3 or less, more preferably 0.912 g / cm 3 or more 0.928 g / cm 3 or less, more preferably 0.915 g / cm 3 or more 0 It has a density of 925 g / cm 3 or less.
  • the density of biomass polyolefin is a value measured according to the method defined in Method A of JIS K7112-1980 after annealing described in JIS K6760-1995.
  • the density of the biomass polyolefin is 0.91 g / cm 3 or more, the rigidity of the polyolefin resin layer containing the biomass polyolefin can be increased, and it can be suitably used as the inner layer of the packaged product. Moreover, if the density of biomass polyolefin is 0.93 g / cm ⁇ 3 > or less, the transparency and mechanical strength of the polyolefin resin layer containing biomass polyolefin can be improved, and it can be used suitably as an inner layer of a packaged product.
  • Biomass polyolefin has a melt flow of 0.1 g / 10 min to 10 g / 10 min, preferably 0.2 g / 10 min to 9 g / 10 min, more preferably 1 g / 10 min to 8.5 g / 10 min. It has a rate (MFR).
  • the melt flow rate is a value measured by the method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method specified in JIS K7210-1995. If the MFR of the biomass polyolefin is 0.1 g / 10 min or more, the extrusion load during the molding process can be reduced. Moreover, if MFR of biomass polyolefin is 10 g / 10min or less, the mechanical strength of the polyolefin resin layer containing biomass polyolefin can be raised.
  • biomass polyolefin As biomass polyolefin suitably used, low density polyethylene derived from biomass (trade name: SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 min, biomass degree 95%) manufactured by Braskem, Low-density polyethylene derived from biomass manufactured by Braskem (trade name: SPB681, density: 0.922 g / cm 3 , MFR: 3.8 g / 10 min, biomass degree 95%), linear derived from biomass manufactured by Braskem Examples thereof include low-density polyethylene (trade name: SLL118, density: 0.916 g / cm 3 , MFR: 1.0 g / 10 min, biomass degree 87%).
  • Examples of the fossil fuel-derived thermoplastic resin include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene, propylene-ethylene copolymer, ethylene-vinyl acetate copolymer, Examples thereof include an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, an ethylene-methyl methacrylate copolymer, and an ionomer.
  • the sealant layer 212 has a biomass degree of preferably 5% or more, more preferably 5% or more and 60% or less, and still more preferably 10% or more and 60% or less. If the degree of biomass is in the above range, the amount of fossil fuel used can be reduced, and the environmental load can be reduced.
  • the sealant layer 212 may be a single layer or a multilayer.
  • a sealant layer including three layers of an inner layer, an intermediate layer, and an outer layer may be used.
  • the intermediate layer may be a layer made of biomass polyolefin, or a layer made of a mixture of biomass polyolefin and a conventionally known fossil fuel-derived polyolefin
  • the inner layer and the outer layer may be a conventionally known fossil fuel-derived polyolefin. preferable.
  • the thickness of the sealant layer 212 is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more.
  • the thickness of the sealant layer 212 is preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the stretched plastic film 214 is a plastic film that is stretched in a predetermined direction.
  • the stretched plastic film 214 may be a uniaxially stretched film stretched in a predetermined direction, or may be a biaxially stretched film stretched in a predetermined two directions.
  • the stretching direction of the stretched plastic film 214 is not particularly limited.
  • the stretched plastic film 214 may be stretched in the film flow direction (MD) or may be stretched in the transverse direction (TD) orthogonal to the flow method.
  • the stretched plastic film 214 As the material of the stretched plastic film 214 , various plastics such as polyethylene, polypropylene, polyamide, polyvinyl chloride, polystyrene, and polyester can be used.
  • the stretched plastic film 214 is a polyester film or a polyamide film.
  • the stretched plastic film 214 may be a high stiffness PET film or a PBT film, like the base material 201 of the barrier laminate film 205.
  • the stretched plastic film 214 may contain a biomass-derived component.
  • the stretched plastic film 214 may contain a resin composition containing biomass-derived polyester (hereinafter also referred to as biomass polyester).
  • biomass polyester a resin composition containing biomass-derived polyester
  • the degree of biomass in the stretched plastic film 214 is preferably 5.0% or more, more preferably 10.0% or more, and 15.0% or more. It may be.
  • the degree of biomass of the stretched plastic film 214 is preferably 30.0% or less, and may be 25.0% or less.
  • Biomass polyester is a polyester in which the diol unit is biomass-derived ethylene glycol and the dicarboxylic acid unit is a dicarboxylic acid derived from fossil fuel.
  • Biomass-derived ethylene glycol has the same chemical structure as conventional fossil fuel-derived ethylene glycol. Therefore, polyester films synthesized using biomass-derived ethylene glycol are mechanically similar to conventional fossil fuel-derived polyester films. There is no inferiority in physical properties such as characteristics. Accordingly, the stretched plastic film 214 and the packaging material 210 including the stretched plastic film 214 have a layer made of a carbon neutral material, and therefore, compared with a stretched plastic film manufactured from a raw material obtained from a conventional fossil fuel and a packaging material including the stretched plastic film. The amount of fossil fuel used can be reduced and the environmental load can be reduced.
  • the stretched plastic film 214 may be a recycled film containing polyethylene terephthalate recycled by mechanical recycling.
  • the recycled film includes PET obtained by recycling a PET bottle by mechanical recycling.
  • the PET includes diol units of ethylene glycol and dicarboxylic acid units of terephthalic acid and isophthalic acid.
  • mechanical recycling generally means that collected polyethylene terephthalate resin products such as PET bottles are crushed and washed with alkali to remove dirt and foreign matter on the surface of PET resin products, and then dried for a certain period of time under high temperature and reduced pressure. In this method, contaminants remaining inside the PET resin are diffused and decontaminated to remove stains on the resin product made of the PET resin, and then returned to the PET resin again.
  • the stretched plastic film 214 includes a stretched polyester film such as a stretched polyethylene terephthalate film or a stretched polybutylene terephthalate film
  • the thickness of the stretched plastic film 214 is, for example, 9 ⁇ m or more and 25 ⁇ m or less.
  • the stretched plastic film 214 includes a stretched polyamide film such as a stretched nylon film
  • the thickness of the stretched plastic film 214 is, for example, 15 ⁇ m or more and 25 ⁇ m or less.
  • the first adhesive layer 213 is a layer that adheres a plastic film constituting the outer surface 210 y of the packaging material 210 and a plastic film positioned in the middle of the packaging material 210.
  • the second adhesive layer 215 is a layer that bonds the plastic film located in the middle of the packaging material 210 and the sealant layer 212.
  • the first adhesive layer 213 and the second adhesive layer 215 are an adhesive layer or an adhesive resin layer. Hereinafter, each of the adhesive layer and the adhesive resin layer will be described.
  • the adhesive layer can be formed by a conventionally known method such as a dry laminating method.
  • a dry laminating method When two layers are bonded by a dry laminating method, the adhesive layer is formed by applying an adhesive to the surface of the layer to be laminated and drying it.
  • the adhesive to be applied include one-part or two-part cured or non-cured vinyl, (meth) acrylic, polyamide, polyester, polyether, polyurethane, epoxy, and rubber. It is possible to use an adhesive such as a solvent type, an aqueous type, or an emulsion type.
  • a two-component curable adhesive a cured product of a polyol and an isocyanate compound can be used.
  • the adhesive layer after drying has a thickness of, for example, 1 ⁇ m to 10 ⁇ m, preferably 2 ⁇ m to 5 ⁇ m.
  • the adhesive layer may contain a biomass-derived component.
  • the adhesive layer includes a cured product of a polyol and an isocyanate compound
  • at least one of the polyol and the isocyanate compound may include a biomass-derived component.
  • the biomass degree of the packaging material 210 can further be improved.
  • the adhesive resin layer contains a thermoplastic resin.
  • the adhesive resin layer can be formed by a conventionally known method such as a melt extrusion laminating method or a sand laminating method.
  • the thermoplastic resin that can be used for the adhesive resin layer include a polyethylene resin, a polypropylene resin, or a cyclic polyolefin resin, or a copolymer resin, a modified resin, or a mixture (including alloy) containing these resins as a main component. ) Can be used.
  • polyolefin resins examples include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear (linear) low density polyethylene (LLDPE), polypropylene (PP), and metallocene catalysts.
  • EMMA ethylene-methyl methacrylate copolymer
  • EMMA ethylene / maleic acid copolymer
  • ionomer resin ionomer resin, and interlayer adhesion
  • a resin obtained by graft polymerization or copolymerization of an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, or an ester monomer can be used as the polyolefin resin.
  • these materials can be used alone or in combination of two or more.
  • the cyclic polyolefin-based resin for example, cyclic polyolefins such as ethylene-propylene copolymer, polymethylpentene, polybutene, and polynorbornene can be used. These resins can be used alone or in combination.
  • the adhesive resin layer has a thickness of, for example, 5 ⁇ m to 50 ⁇ m, preferably 10 ⁇ m to 30 ⁇ m.
  • polyethylene-based resin those using ethylene derived from biomass described in the sealant layer 212 as a monomer unit may be used. Thereby, the biomass degree of the packaging material 210 can further be improved.
  • the printed layer 218 is designed to display letters, numbers, patterns, graphics, symbols, etc. for decoration, display of contents and packaged products, display of the best-before period, display of manufacturers, sellers, etc. , A layer for forming a desired arbitrary printed pattern such as a pattern.
  • the printing layer 218 can be provided as necessary, and can be provided, for example, on a film including the barrier laminate film 205 or a film including a stretched plastic film 214.
  • the printing layer 218 may be provided on the entire surface of the film or may be provided on a part thereof.
  • the printing layer 218 can be formed using a conventionally known pigment or dye, and the formation method is not particularly limited.
  • the printing layer 218 preferably has a thickness of 0.1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and still more preferably 1 ⁇ m to 3 ⁇ m.
  • the printing layer 218 may contain a biomass-derived component.
  • the printing layer 218 includes a cured product of a polyol and an isocyanate compound, at least one of the polyol and the isocyanate compound may include a biomass-derived component.
  • FIG. 23 is a diagram illustrating an example of the film forming apparatus 260.
  • a film forming apparatus 260 and a film forming method using the film forming apparatus 260 will be described.
  • partition walls 285a to 285c are formed in the decompression chamber 262.
  • the partition walls 285a to 285c form a base material transfer chamber 262A, a plasma pretreatment chamber 262B, and a film formation chamber 262C, and in particular, a plasma pretreatment chamber 262B and a film formation chamber as spaces surrounded by the partition walls and the partition walls 285a to 285c. 262C is formed, and an exhaust chamber is further formed inside each chamber as necessary.
  • the plasma pretreatment process in the plasma pretreatment chamber 262B and the plasma pretreatment chamber 262B will be described.
  • a part of the plasma pretreatment roller 270 that conveys the substrate 201 to be pretreated and enables the plasma treatment is provided so as to be exposed to the substrate conveyance chamber 262A. Yes.
  • the substrate 201 moves to the plasma pretreatment chamber 262B while being wound up.
  • the plasma pretreatment chamber 262B and the film formation chamber 262C are provided in contact with the base material transfer chamber 262A, and can move without the base material 201 being exposed to the atmosphere. Further, the pretreatment chamber 262B and the base material transfer chamber 262A are connected by a rectangular hole, and a part of the plasma pretreatment roller 270 protrudes to the base material transfer chamber 262A side through the rectangular hole. A gap is opened between the wall of the transfer chamber and the pretreatment roller 270, and the substrate 201 can move from the substrate transfer chamber 262A to the film forming chamber 262C through the gap.
  • the structure between the base material transfer chamber 262A and the film formation chamber 262C is similar, and the base material 201 can be moved without being exposed to the atmosphere.
  • the base material transport chamber 262A is moved again to the base material transport chamber 212A by the film forming roller 275, and the base material 201 with the vapor deposition layer 202 formed on one side is wound up in a roll shape.
  • a take-up roller is provided so that the substrate 201 on which the vapor deposition layer 202 is formed can be taken up.
  • the plasma pretreatment chamber 262B separates the space where the plasma is generated from other regions so that the facing space can be efficiently evacuated. By being configured, control of the plasma gas concentration becomes easy and productivity is improved.
  • the pre-treatment pressure formed by reducing the pressure can be set and maintained at about 0.1 Pa to 100 Pa.
  • the oxygen plasma pre-treatment is performed in order to obtain a preferable transformation rate of the transition region of the vapor deposition layer 202 containing aluminum oxide.
  • the processing pressure is preferably 1 to 20 Pa.
  • the conveying speed of the substrate 201 is not particularly limited, but can be at least 200 to 1000 m / min from the viewpoint of production efficiency, and in particular, oxygen in order to obtain a transformation rate in the transition region of the vapor deposition layer 202 containing aluminum oxide.
  • the conveyance speed of the plasma pretreatment is preferably 300 to 800 m / min.
  • the plasma pretreatment roller 270 constituting the plasma pretreatment apparatus prevents the base material 201 from being contracted or damaged by heat during the plasma processing by the plasma pretreatment means, and the oxygen plasma P is uniformly and widely distributed over the base material 201. It is intended to be applied to. It is preferable that the pretreatment roller 270 can be adjusted to a constant temperature between ⁇ 20 ° C. and 100 ° C. by adjusting the temperature of the temperature adjustment medium circulating in the pretreatment roller.
  • the plasma pretreatment means includes a plasma supply means and a magnetic formation means.
  • the plasma pretreatment means cooperates with the plasma pretreatment roller 270 to confine the oxygen plasma P in the vicinity of the surface of the substrate 201.
  • the plasma pretreatment means is provided so as to cover a part of the pretreatment roller 270.
  • the plasma supply means 272 and the magnetic formation means 273 that constitute the plasma pretreatment means are disposed along the surface in the vicinity of the outer periphery of the pretreatment roller 270.
  • the plasma supply means 272 includes a plasma supply nozzle that supplies a plasma source gas.
  • the magnetic forming means 273 has a magnet or the like for promoting the generation of the plasma P.
  • the plasma pretreatment means includes an electrode 271 to which a voltage is applied between the plasma pretreatment means 270 and the pretreatment roller 270.
  • FIG. 23 shows an example in which the electrode 271 and the plasma supply means 272 are separate members, but the present invention is not limited to this.
  • the electrode 271 and the plasma supply means 272 may be constituted by an integral member.
  • Plasma P is generated in a space sandwiched between the pretreatment roller 270 and the magnetic forming means 273, and a region having a high plasma density is formed in the vicinity of the surface of the pretreatment roller 270 and the substrate 201.
  • the plasma-treated surface can be formed by performing oxygen plasma pretreatment on the inner surface.
  • the plasma supply means 272 of the plasma pretreatment means includes a source gas volatilization supply device 268 connected to a plasma supply nozzle provided outside the decompression chamber 262 and a source gas supply line for supplying source gas from the device.
  • the plasma source gas to be supplied is supplied while oxygen alone or a mixed gas of oxygen gas and inert gas is measured from the gas reservoir through a flow rate controller while measuring the gas flow rate.
  • an inert gas 1 type, or 2 or more types of mixed gas chosen from the group which consists of argon, helium, and nitrogen is mentioned.
  • These supplied gases are mixed at a predetermined ratio as necessary, formed into a plasma raw material gas alone or a plasma forming mixed gas, and supplied to the plasma supply means.
  • the single or mixed gas is supplied to the plasma supply nozzle of the plasma supply means, and is supplied to the vicinity of the outer periphery of the pretreatment roller 270 where the supply port of the plasma supply nozzle opens.
  • the nozzle opening is directed to the base material 201 on the pretreatment roller 270, and is arranged and configured so that the oxygen plasma P can be uniformly diffused and supplied to the entire surface of the base material 201. Thereby, a uniform plasma pretreatment can be performed on a large area portion of the substrate 201.
  • the transition rate of the transition region of the vapor deposition layer 202 containing aluminum oxide is set to 5% or more and 60% or less.
  • the active gas is preferably 6/1 to 1/1, more preferably 5/2 to 3/2.
  • the electrode 271 functions as a counter electrode of the pretreatment roller 270.
  • the plasma source gas supplied by the potential difference due to the high frequency voltage, the low frequency voltage, etc. supplied to the pretreatment roller 270 is excited, and plasma P is generated and supplied.
  • the electrode 271 is provided with a plasma pretreatment roller as a plasma power source, an AC voltage having a frequency of 10 Hz to 2.5 GHz is applied between the electrode 271 and the counter electrode, and input power control or impedance control is performed.
  • an arbitrary voltage can be applied between the plasma pretreatment roller 270 and the plasma pretreatment roller 270.
  • the film forming apparatus 260 includes a power source 282 capable of applying a bias voltage that makes the oxygen plasma P capable of physically or chemically modifying the surface properties of the substrate 201 positive.
  • the plasma intensity per unit area is preferably 50 to 8000 W ⁇ sec / m 2 . At 50 W ⁇ sec / m 2 or less, the effect of the plasma pretreatment is not observed, and at 8000 W ⁇ sec / m 2 or more, deterioration of the base material 201 due to plasma occurs, such as consumption of the base material 201, damage coloring, and firing. There is a tendency.
  • the plasma intensity per unit area is preferably 100 to 1000 W ⁇ sec / m 2 .
  • an insulating spacer and a base plate provided in a magnet case and a magnet provided on the base plate can be used as the magnetic forming means 273, an insulating spacer and a base plate provided in a magnet case and a magnet provided on the base plate can be used.
  • An insulating shield plate is provided on the magnet case, and an electrode can be attached to the insulating shield plate.
  • the magnet case and the electrode are electrically insulated, and even if the magnet case is installed and fixed in the decompression chamber 262, the electrode can be brought to an electrically floating level.
  • the magnet is configured such that the magnetic flux density at the surface position of the substrate 201 is from 10 gauss to 10,000 gauss. If the magnetic flux density on the surface of the substrate 201 is 10 gauss or more, the reactivity in the vicinity of the surface of the substrate 201 can be sufficiently increased, and a good pretreatment surface can be formed at high speed.
  • the film forming apparatus 260 includes a film forming roller 275 disposed in the decompressed film forming chamber 262 ⁇ / b> C, and a target of the vapor deposition film forming unit 274 disposed to face the film forming roller 275.
  • the film forming roller 275 conveys the base material 201 while winding the base material 201 with the processing surface of the base material 201 preprocessed by the plasma pretreatment apparatus facing outside.
  • the target of the vapor deposition film forming means 274 is evaporated to form an aluminum oxide film on the surface of the substrate 201.
  • the vapor deposition film forming means 274 is, for example, a resistance heating method, and uses aluminum metal wire with aluminum as an evaporation source, and supplies aluminum to oxidize aluminum vapor while containing aluminum oxide on the surface of the substrate 201.
  • the vapor deposition layer 202 is formed.
  • the thickness of the vapor deposition layer 202 containing aluminum oxide formed as described above is preferably 3 to 50 nm, more preferably 9 to 30 nm. Within this range, the barrier property can be maintained. However, when the vapor deposition layer 202 containing aluminum oxide is very thin, it is difficult to calculate the transition region transformation rate by TOF-SIMS measurement.
  • an organic solvent such as the above metal alkoxide, silane coupling agent, hydroxyl group-containing water-soluble resin, reaction accelerator (sol-gel method catalyst, acid, etc.), water as a solvent, alcohol such as methyl alcohol, ethyl alcohol, isopropanol, etc.
  • a coating agent for a gas barrier coating film made of a resin composition is prepared.
  • a coating agent for the gas barrier coating film may be prepared as follows. First, a metal alkoxide such as alkoxysilane and a silane coupling agent are mixed. The metal alkoxide and the silane coupling agent are preferably mixed at 10 ° C. or lower. Thereby, the film structure in the gas barrier coating film 203 to be formed is likely to be dense. Subsequently, a mixture of a metal alkoxide and a silane coupling agent and a hydroxyl group-containing water-soluble resin such as a polyvinyl alcohol-based resin are mixed.
  • the coating agent for the gas barrier coating film is applied onto the vapor deposition layer 202 by a conventional method and dried. By this drying step, the condensation or co-condensation reaction further proceeds to form a coating film. On the first coating film, the above coating operation may be further repeated to form a plurality of coating films composed of two or more layers.
  • heat treatment is performed for 3 seconds to 10 minutes at a temperature in the range of 20 to 200 ° C., preferably 50 to 180 ° C., and a temperature below the softening point of the resin constituting the substrate 201.
  • the gas barrier coating film 203 made of the gas barrier coating film coating agent can be formed on the vapor deposition layer 202.
  • the barrier laminate film 205 having the substrate 201, the vapor deposition layer 202, and the gas barrier coating film 203 can be produced.
  • a barrier laminate film 205 is prepared, and a printing layer 218 is formed on the gas barrier coating film 203 of the barrier laminate film 205 by, for example, a gravure printing method.
  • a stretched plastic film 214 is prepared. Thereafter, the film including the barrier laminate film 205 provided with the printing layer 218 and the stretched plastic film 214 are bonded via the first adhesive layer 213 formed of an adhesive layer by a dry laminating method.
  • a film constituting the sealant layer 212 is prepared.
  • the laminate including the barrier laminate film 205 and the stretched plastic film 214 and the film constituting the sealant layer 212 are bonded via a second adhesive layer 215 made of an adhesive layer by a dry lamination method.
  • the packaging material 210 shown in FIG. 18 can be obtained. Note that after the stretched plastic film 214 and the film constituting the sealant layer 212 are bonded, the laminate including the stretched plastic film 214 and the sealant layer 212 and the barrier laminate film 205 may be bonded.
  • a stretched plastic film 214 is prepared, and a printing layer 218 is formed on the stretched plastic film 214 by, for example, a gravure printing method.
  • a barrier laminate film 205 is prepared. Thereafter, the stretched plastic film 214 provided with the printing layer 218 and the barrier laminate film 205 are bonded via a first adhesive layer 213 made of an adhesive layer by a dry laminating method.
  • a film constituting the sealant layer 212 is prepared.
  • the laminate including the stretched plastic film 214 and the barrier laminate film 205 and the film constituting the sealant layer 212 are bonded via a second adhesive layer 215 made of an adhesive layer by a dry lamination method.
  • the packaging material 210 shown in FIG. 19 can be obtained. Note that after the barrier laminate film 205 and the film constituting the sealant layer 212 are adhered, the laminate including the barrier laminate film 205 and the sealant layer 212 and the stretched plastic film 214 may be adhered.
  • FIGS. 17A and 17B As an example of the packaged product formed by using the packaging material 210, as in the case of the first embodiment described above, the bag 10 shown in FIGS. 1, 15, and 16 is shown in FIGS. 17A and 17B. Examples thereof include a lid material 114 of the lidded container 110.
  • the packaging material 210 is folded in half, or two packaging materials 210 are prepared, and the sealant layer 212 of the front side packaging material 210 and the sealant layer 212 of the back side packaging material 210 are opposed to each other.
  • Overlap, and the peripheral edge for example, side seal type, two-side seal type, three-side seal type, four-side seal type, envelope-attached seal type, joint-attached seal type (pillow seal type), pleated seal type, flat bottom
  • Various types of bags can be manufactured by heat-sealing in a heat-sealing form such as a sealing type or a square bottom sealing type.
  • a gusseted bag can be manufactured by performing heat sealing with the folded back packaging material 210 between the front packaging material 210 and the back packaging material 210.
  • all of the packaging material 210 constituting the bag may not be the packaging material 210 according to the present invention. That is, at least a part of the packaging material 210 constituting the bag may be the packaging material 210 including the barrier laminate film 205 having the base 201 including the high stiffness PET film or the PBT film, and the packaging material 210 constituting the bag. The other part may be the packaging material 210 that does not include the barrier laminate film 205.
  • a heat sealing method for example, a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, or an ultrasonic seal can be used.
  • At least one of the films such as the front film 14, the back film 15, and the lower film 16 constituting the bag 10 as shown in FIGS. 1, 15, and 16 includes a high-stiffness PET film or a PBT film. It is comprised by the packaging material 210 provided with the barriering laminated film 205 which has 201. FIG. Thereby, gas barrier property and intensity
  • the lid member 114 constituting the lidded container 110 as shown in FIGS. 17A and 17B is constituted by a packaging material 210 including a barrier laminated film 205 having a base 201 containing a high stiffness PET film or PBT film. You can also Thereby, gas barrier property and intensity
  • the packaging material 210 and the packaged product can be provided with puncture resistance.
  • the puncture strength of the packaging material 210 is preferably 14N or more, more preferably 15N or more, more preferably 16N or more, preferably 17N or more, and more preferably 18N or more. .
  • the packaging material 210 can be given rigidity.
  • the loop stiffness of the packaging material 210 in the flow direction (MD) is, for example, 0.150 N or more, 0.160 N or more, 0.170 N or more, or 0.180 N or more. Good.
  • the loop stiffness of the packaging material 210 in the vertical direction (TD) is, for example, 0.150 N or more, 0.160 N or more, 0.170 N or more, or 0.180 N or more. May be. For this reason, when the bag 10 as shown in FIG. 14 manufactured using the packaging material 210 is filled with the contents, when the chuck part 19 is moved as shown in FIG. It becomes easy.
  • the front film 14 and the back film 15 are each easily deformed so as to have a curved shape that is convex on the outer surface side. Thereby, it becomes easy to ensure the opening width K of the opening part 11b. Also in this embodiment, since the packaging material 210 has rigidity, the front film 14 and the back film 15 are unlikely to be wrinkled. For this reason, the adsorption
  • Example A1 As the first stretched plastic film 40, a high stiffness polyester film (hereinafter also referred to as a high stiffness PET film) having a loop stiffness of 0.0017 N or more and made of PET was prepared. Subsequently, a printed layer 32 having a thickness of 1 ⁇ m was formed on the surface of the high stiffness PET film. Specifically, XP-55 manufactured by Toray Industries, Inc. was used as the high stiffness PET film. The thickness of the high stiffness PET film was 16 ⁇ m. The measured value of the loop stiffness of the high stiffness PET film was 0.0021 N in both the flow direction and the vertical direction.
  • the tensile elasticity modulus of the high stiffness PET film in the flow direction was 4.8 GPa
  • the tensile elasticity modulus of the high stiffness PET film in the vertical direction was 4.7 GPa.
  • the tensile strength of the high stiffness PET film in the flow direction was 292 MPa
  • the tensile strength of the high stiffness PET film in the vertical direction was 257 MPa.
  • the tensile elongation of the high stiffness PET film in the flow direction was 107%
  • the tensile elongation of the high stiffness PET film in the vertical direction was 102%.
  • the value obtained by dividing the tensile strength of the high stiffness PET film in the flow direction by the tensile elongation is 2.73 [MPa /%]
  • the tensile strength of the high stiffness PET film in the vertical direction is divided by the tensile elongation.
  • the value is 2.52 [MPa /%].
  • the thermal shrinkage rate of the high stiffness PET film in the flow direction and the vertical direction was both 0.4%.
  • a straight cut polyester film (hereinafter also referred to as a straight cut PET film) having tearability in the flow direction (MD) and made of PET was prepared.
  • a straight cut PET film As the straight cut PET film, Emblet (registered trademark) PC manufactured by Unitika Ltd. was used. The thickness of the straight cut PET film was 12 ⁇ m.
  • Emblet (registered trademark) PC has higher tearability in the flow direction (MD) than a general stretched PET film.
  • the tensile strength of Emblet (R) PC in the flow direction (MD) is 200 MPa
  • the tensile strength of Emblet (R) PC in the vertical direction (TD) is 180 MPa.
  • sealant layer 70 an unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. was prepared.
  • ZK207 contains the above-mentioned propylene / ethylene block copolymer.
  • the thickness of the sealant layer 70 was 70 ⁇ m.
  • ZK207 has a high tensile elastic modulus. Specifically, the tensile modulus of elasticity of ZK207 in the flow direction (MD) is 780 MPa when the thickness is 50 ⁇ m and 680 MPa when the thickness is 60 ⁇ m. Further, the tensile modulus of elasticity of ZK207 in the vertical direction (TD) is 630 MPa when the thickness is 50 ⁇ m and 560 MPa when the thickness is 60 ⁇ m. Therefore, the product of the tensile modulus (MPa) and the thickness ( ⁇ m) of ZK207 in the flow direction is 39000 when the thickness is 50 ⁇ m and 40800 when the thickness is 60 ⁇ m. The product of the tensile modulus (MPa) and thickness ( ⁇ m) of ZK207 in the vertical direction is 31500 when the thickness is 50 ⁇ m and 33600 when the thickness is 60 ⁇ m.
  • ZK207 also has a low tensile elongation. Specifically, the tensile elongation of ZK207 in the flow direction (MD) is 790% when the thickness is 50 ⁇ m and 730% when the thickness is 60 ⁇ m. The tensile elongation of ZK207 in the vertical direction (TD) is 1020% when the thickness is 50 ⁇ m, and 870% when the thickness is 60 ⁇ m. Therefore, the product of the tensile elongation (%) and thickness ( ⁇ m) of ZK207 in the flow direction is 39500 when the thickness is 50 ⁇ m and 43800 when the thickness is 60 ⁇ m. The product of the tensile elongation (%) and the thickness ( ⁇ m) of ZK207 in the vertical direction is 51000 when the thickness is 50 ⁇ m and 52200 when the thickness is 60 ⁇ m.
  • the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70 were laminated by a dry laminating method to produce the packaging material 30.
  • a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used.
  • the main agent, RU-40 is a polyester polyol.
  • the thickness of the 1st adhesive bond layer 45 and the 2nd adhesive bond layer 55 was 3.5 micrometers.
  • the total thickness of the packaging material 30 was 106 ⁇ m.
  • the maximum value of stress was measured, and the average value was defined as the piercing strength of the packaging material 30.
  • the environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the piercing strength was 16.7N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00171 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00144 N. / ⁇ m.
  • the two packaging materials 30 joined through the sealant layer 70 were cut out so that the width V1 was 15 mm and the length V2 was 100 mm, and the test piece 100 was produced.
  • the direction of the width V1 of the test piece 100 is parallel to the second direction D2 shown in FIG.
  • the direction of the length V2 of the test piece 100 is parallel to the flow direction (MD) when a film such as a stretched plastic film or a sealant film is formed, and is parallel to the first direction D1 shown in FIG. It is.
  • MD flow direction
  • the two packaging materials 30 are joined over the entire region.
  • a notch 28 was formed in the center of the test piece 100 in the width V1 direction. Subsequently, the test piece 100 was torn by hand in the direction of the length V2 starting from the notch 28. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the test piece 100 could be torn in the direction of the length V2 without the sealant layer 70 of the packaging material 30 extending along the way. Moreover, the amount of displacement of the position of the two packaging materials 30 at the torn portion in the direction of the width V1 was 5 mm or less.
  • the bag 10 was produced using the packaging material 30, and the opening property and heat resistance of the bag 10 were evaluated. Specifically, first, the bag 10 shown in FIG. The height S1 of the bag 10 was 145 mm and the width S2 was 150 mm. Further, the height S3 of the folded lower film 16, that is, the height from the lower end portion of the bag 10 to the folded portion 16f was 43 mm. In the following description, the bag 10 having a height S1 of 145 mm, a width S2 of 150 mm, and a height S3 of 43 mm is also referred to as an M size bag 10.
  • the upper part 11 was heat-sealed to form an upper seal part 11a. Then, the bag 10 in which the contents were accommodated was heated for 2 minutes using the microwave oven of 500 W, and it was confirmed whether the packaging material 30 which comprises the bag 10 was damaged. The test was performed on 10 bags 10. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
  • Example A2 The second stretched plastic film 50 is tearable in the flow direction (MD), and has the same properties as in Example A1, except that a straight-cut polyamide film made of nylon (hereinafter also referred to as a straight-cut nylon film) is used.
  • the packaging material 30 was produced. Bonile CL manufactured by Kojin Film & Chemicals Co., Ltd. was used as the straight cut nylon film. The thickness of the straight cut nylon film was 15 ⁇ m. The total thickness of the packaging material 30 was 109 ⁇ m.
  • Bonyl CL has higher tearability in the flow direction (MD) than a general stretched nylon film.
  • the tensile strength of bonile CL in the flow direction (MD) is 269 MPa, and the tensile strength of bonile CL in the vertical direction (TD) is 255 MPa.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 18.5 N
  • the loop stiffness in the flow direction was 0.178 N
  • the loop stiffness in the vertical direction was 0.140 N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00163 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00128 N. / ⁇ m.
  • the tearability of the packaging material 30 was evaluated in the same manner as in Example A1. As a result, the test piece 100 could be torn in the direction of the length V2 without the sealant layer 70 of the packaging material 30 extending along the way. Moreover, the amount of displacement of the position of the two packaging materials 30 at the torn portion in the direction of the width V1 was 5 mm or less.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, although the wrinkle was formed in the packaging material 30, it confirmed that the packaging material 30 did not have a hole.
  • Example A3 As the first stretched plastic film 40, the straight-cut PET film used as the second stretched plastic film 50 in Example A1 was used, and as the second stretched plastic film 50, the high stretch used as the first stretched plastic film 40 in Example A1.
  • a packaging material 30 was produced in the same manner as in Example 1 except that a stiffness PET film was used. The total thickness of the packaging material 30 was 106 ⁇ m.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 16.5N
  • the loop stiffness was 0.176N
  • the loop stiffness in the vertical direction was 0.152N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00166 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00143 N. / ⁇ m.
  • test piece 100 could be torn in the direction of the length V2 without the sealant layer 70 of the packaging material 30 extending along the way.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
  • Example A4 As the first stretched plastic film 40, the straight cut nylon film used as the second stretched plastic film 50 in Example A2 was used, and as the second stretched plastic film 50, the high stretch used as the first stretched plastic film 40 in Example A2.
  • a packaging material 30 was produced in the same manner as in Example A2, except that a stiffness PET film was used. The total thickness of the packaging material 30 was 109 ⁇ m.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 18.6N
  • the loop stiffness in the flow direction was 0.175N
  • the loop stiffness in the vertical direction was 0.141N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00161 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00129 N. / ⁇ m.
  • the tearability of the packaging material 30 was evaluated in the same manner as in Example A1. As a result, the test piece 100 could be torn in the direction of the length V2 without the sealant layer 70 of the packaging material 30 extending along the way.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, although the wrinkle was formed in the packaging material 30, it confirmed that the packaging material 30 did not have a hole.
  • Example A5 As the first stretched plastic film 40, except that a biaxially stretched PET film having a thickness of 12 ⁇ m provided with a transparent vapor deposition layer, a gas barrier coating film and a printing layer was used, as in Example A3, A packaging material 30 was produced. A biaxially stretched PET film having the same tensile strength in the flow direction (MD) and tensile strength in the vertical direction (TD) was used. The total thickness of the packaging material 30 was 106 ⁇ m.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 16.7 N
  • the loop stiffness in the flow direction was 0.176 N
  • the loop stiffness in the vertical direction was 0.154 N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00166 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00145 N. / ⁇ m.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
  • Example A6 As the second stretched plastic film 50, a packaging material 30 was obtained in the same manner as in Example A1, except that a biaxially stretched PET film having a thickness of 12 ⁇ m provided with a transparent vapor deposition layer and a gas barrier coating film was used. Was made. As the biaxially stretched PET film, one having substantially the same tensile strength in the flow direction (MD) and tensile strength in the vertical direction (TD) was used. The total thickness of the packaging material 30 was 106 ⁇ m.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 16.9 N
  • the loop stiffness in the flow direction was 0.179 N
  • the loop stiffness in the vertical direction was 0.157 N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00169 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00148 N. / ⁇ m.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
  • Example A1 A packaging material 30 was produced in the same manner as in Example A1, except that a biaxially stretched PET film having a thickness of 12 ⁇ m was used as the first stretched plastic film 40 and the second stretched plastic film 50.
  • a biaxially stretched PET film one having substantially the same tensile strength in the flow direction (MD) and tensile strength in the vertical direction (TD) was used.
  • the total thickness of the packaging material 30 was 102 ⁇ m.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 13.2N
  • the loop stiffness in the flow direction was 0.151N
  • the loop stiffness in the vertical direction was 0.117N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00148 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00115 N. / ⁇ m.
  • the tearability of the packaging material 30 was evaluated in the same manner as in Example A1. As a result, the sealant layer 70 of the packaging material 30 was stretched midway, and the test piece 100 could not be torn in the direction of the length V2.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the surface film 14 and the back film 15 are also formed with a plurality of curved portions that are convex on the inner surface side in addition to the plurality of curved portions that are convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, although the wrinkle was formed in the packaging material 30, it confirmed that the packaging material 30 did not have a hole.
  • Example A7 A biaxially stretched PET film having a thickness of 12 ⁇ m was used as the second stretched plastic film 50, and a sealant film (thickness 50 ⁇ m) made of a mixed resin of low density polyethylene and linear low density polyethylene was used as the sealant layer 70. Except for this, a packaging material 30 was produced in the same manner as in Example A1. As the biaxially stretched PET film, one having substantially the same tensile strength in the flow direction (MD) and tensile strength in the vertical direction (TD) was used. The total thickness of the packaging material 30 was 86 ⁇ m.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 16.5N
  • the loop stiffness in the flow direction was 0.111N
  • the loop stiffness in the vertical direction was 0.121N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00129 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00141 N. / ⁇ m.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
  • Example A8 Easy peel formed by co-extrusion, including a first layer constituting the inner surface 30x of the packaging material 30 and a second layer located on the surface of the first layer on the second stretched plastic film 50 side as the sealant layer 70
  • a packaging material 30 was produced in the same manner as in Example A7 except that a sealant film having a property (thickness: 50 ⁇ m) was used.
  • the first layer is a layer having a thickness of 5 ⁇ m made of a mixed resin of high-density polyethylene and polypropylene.
  • the second layer is a layer made of high-density polyethylene and having a thickness of 45 ⁇ m.
  • the total thickness of the packaging material 30 was 86 ⁇ m.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 16.2N
  • the loop stiffness in the flow direction was 0.112N
  • the loop stiffness in the vertical direction was 0.115N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00130 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00134 N. / ⁇ m.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
  • Example A9 A packaging material 30 was produced in the same manner as in Example A5 except that an unstretched polypropylene film ZK500 manufactured by Toray Film Processing Co., Ltd. was used as the sealant layer 70.
  • ZK500 contains the above-mentioned propylene / ethylene block copolymer and elastomer.
  • the thickness of the sealant layer 70 was 60 ⁇ m.
  • the total thickness of the packaging material 30 was 96 ⁇ m.
  • ZK500 has a higher tensile elongation than a general unstretched polypropylene film.
  • the tensile elongation of ZK500 in the flow direction (MD) is 1180% when the thickness is 50 ⁇ m and 1100% when the thickness is 60 ⁇ m.
  • the tensile elongation of ZK500 in the vertical direction (TD) is 1240% when the thickness is 50 ⁇ m, and 1150% when the thickness is 60 ⁇ m. Therefore, the product of the tensile elongation (%) and the thickness ( ⁇ m) of ZK500 in the flow direction is 59000 when the thickness is 50 ⁇ m and 66000 when the thickness is 60 ⁇ m.
  • the product of the tensile elongation (%) and thickness ( ⁇ m) of ZK500 in the vertical direction is 62000 when the thickness is 50 ⁇ m and 69000 when the thickness is 60 ⁇ m.
  • ZK500 has a lower tensile elastic modulus than a general unstretched polypropylene film.
  • the tensile modulus of elasticity of ZK500 in the flow direction (MD) is 640 MPa when the thickness is 50 ⁇ m, and 550 MPa when the thickness is 60 ⁇ m.
  • the tensile modulus of elasticity of ZK500 in the vertical direction (TD) is 480 MPa when the thickness is 50 ⁇ m, and 400 MPa when the thickness is 60 ⁇ m. Therefore, the product of the tensile modulus (MPa) and the thickness ( ⁇ m) of ZK500 in the flow direction is 32000 when the thickness is 50 ⁇ m and 33000 when the thickness is 60 ⁇ m.
  • the product of the tensile modulus (MPa) and thickness ( ⁇ m) of ZK500 in the vertical direction is 24000 when the thickness is 50 ⁇ m and 35000 when the thickness is 60 ⁇ m.
  • the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1.
  • the piercing strength was 16.8N
  • the loop stiffness in the flow direction was 0.132N
  • the loop stiffness in the vertical direction was 0.110N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00138 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00115 N. / ⁇ m.
  • Example A1 a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated.
  • the size of the bag 10 was set to M size as in the case of Example A1.
  • the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
  • the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
  • FIG. 26 summarizes the layer configurations of the packaging materials 30 of Examples A1 to A6 and Comparative Example A1, and the evaluation results relating to the piercing strength and loop stiffness.
  • FIG. 27 summarizes the layer configurations of the packaging materials 30 of Examples A1 to A6 and Comparative Example A1, and the evaluation results regarding tearability, heat resistance, and openability.
  • FIG. 28 shows the layer configuration of the packaging materials 30 of Examples A7 to A9, and the evaluation results regarding the piercing strength and the loop stiffness. 26 to 28, the components of the packaging material 30 are listed from the top in the order of the outer layer side in the “layer configuration” column.
  • the packaging material 30 includes the high stiffness polyester film, so that the packaging material 30 is pierced compared to the case where the packaging material 30 does not include the high stiffness polyester film.
  • the strength could be increased to 14N or higher.
  • the piercing strength of the packaging material 30 was 16 N or more.
  • the puncture strength of the packaging material 30 was 18 N or more.
  • the packaging material 30 includes a high stiffness polyester film, and the sealant layer 70 includes polypropylene as a main component, so that the packaging material 30 has a high stiffness polyester film.
  • the loop stiffness of the packaging material 30 could be increased to 0.160 N or higher, for example, 0.170 N or higher or 0.180 N or higher, in at least one direction, as compared with the case where the material was not included.
  • the value obtained by dividing the loop stiffness of the packaging material 30 by the thickness of the packaging material 30 is 0.00150 N / ⁇ m or more, for example, 0.00160 N / ⁇ m or more, 0.00165 N / ⁇ m or more, or 0. It was possible to increase it to 190017 N / ⁇ m or more. Thereby, the opening property of the bag 10 provided with the packaging material 30 was able to be improved.
  • the packaging material 30 includes a straight cut film having tearability in the flow direction (MD) such as a straight cut polyester film and a straight cut polyamide film.
  • MD flow direction
  • the test piece 100 could be smoothly torn across the entire area in the direction of the length V2, and thus the evaluation result was “good”.
  • the test piece 100 can be smoothly torn across the entire region in the direction of the length V2, and the two packaging materials 30 constituting the test piece 100 in the direction of the width V1.
  • Example B1 As the base material 201, a high stiffness PET film having a loop stiffness of 0.0017 N or more and made of petroleum-derived PET was prepared. Specifically, XP-55 manufactured by Toray Industries, Inc. was used as a high stiffness PET film. The thickness of the high stiffness PET film was 16 ⁇ m. The measured value of the loop stiffness of the high stiffness PET film was 0.0021 N in both the flow direction and the vertical direction. Moreover, the tensile elasticity modulus of the high stiffness PET film in the flow direction was 4.8 GPa, and the tensile elasticity modulus of the high stiffness polyester film in the vertical direction was 4.7 GPa.
  • the tensile strength of the high stiffness PET film in the flow direction was 292 MPa, and the tensile strength of the high stiffness polyester film in the vertical direction was 257 MPa. Further, the tensile elongation of the high stiffness PET film in the flow direction was 107%, and the tensile elongation of the high stiffness polyester film in the vertical direction was 102%.
  • the value obtained by dividing the tensile strength of the high stiffness PET film in the flow direction by the tensile elongation is 2.73 [MPa /%], and the tensile strength of the high stiffness PET film in the vertical direction is divided by the tensile elongation. The value is 2.52 [MPa /%].
  • the thermal shrinkage rate of the high stiffness PET film in the flow direction and the vertical direction was both 0.4%.
  • the puncture strength of the high stiffness PET film was measured according to JIS Z1707 7.4.
  • Tensilon universal material testing machine RTC-1310 manufactured by A & D was used as a measuring instrument. Specifically, a semi-circular needle having a diameter of 1.0 mm and a tip shape radius of 0.5 mm is applied to the test piece of the high stiffness PET film in a fixed state from the outer surface 30y side at 50 mm / min (1 The maximum value of the stress until the needle penetrated the high stiffness PET film was measured at a speed of 50 mm per minute). About five or more test pieces, the maximum value of stress was measured, and the average value was defined as the piercing strength of the high stiffness PET film. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the piercing strength was 10.2N.
  • Example B2 As the substrate 201, a PBT film including a plurality of layers described in the first configuration of the above-described second embodiment and manufactured by a casting method was prepared.
  • the PBT content in each layer was 80%, the number of layers was 1024, and the thickness of the PBT film was 15 ⁇ m.
  • the tensile strength of the PBT film in the flow direction was 191 MPa, and the tensile strength of the PBT film in the vertical direction was 289 MPa. Further, the tensile elongation of the PBT film in the flow direction was 195%, and the tensile elongation of the PBT film in the vertical direction was 100%.
  • the value obtained by dividing the tensile strength of the PBT film in the flow direction by the tensile elongation is 0.98 [MPa /%]
  • the value obtained by dividing the tensile strength of the PBT film in the vertical direction by the tensile elongation is 2. 89 [MPa /%].
  • the thermal shrinkage rate of the PBT film in the flow direction and the vertical direction was both 0.4%.
  • Example C1 First, the vapor deposition layer 202 was formed on the base material 201, the gas barrier coating film 203 was formed on the vapor deposition layer 202, and the barrier property laminated film 205 was produced. Then, the packaging material 210 provided with the barriering laminated film 205 was produced.
  • the roll which wound up the 16-micrometer-thick high stiffness PET film used by the above-mentioned Example B1 as the base material 201 was prepared.
  • the substrate 201 was subjected to oxygen plasma treatment using the above-described film forming apparatus 260 shown in FIG. 23, and then a vapor deposition layer 202 having a thickness of 12 nm containing aluminum oxide was formed on the oxygen plasma treatment surface.
  • the oxygen plasma process and the film forming process will be described in detail.
  • plasma is introduced from the plasma supply nozzle 272 under the following conditions in the plasma pretreatment chamber 262B on the surface of the base material 201 where the vapor deposition layer 202 is provided, and is transported at a transport speed of 400 m / min.
  • the material 201 was subjected to plasma pretreatment. Thereby, the oxygen plasma processing surface was formed in the surface in which the vapor deposition layer 202 was provided among the base materials 201.
  • the film formation process in the film formation chamber 262C into which the base material 201 continuously transferred from the plasma pretreatment chamber 262B is carried, aluminum is used as a target on the oxygen plasma processing surface of the base material 201.
  • a vapor deposition layer 202 containing aluminum oxide having a thickness of 12 nm was formed on the substrate 201 by a vacuum vapor deposition method.
  • a heating means of the vacuum deposition method a reactive resistance heating method was adopted.
  • the film forming conditions are as follows. [Aluminum oxide deposition conditions] ⁇ Degree of vacuum: 8.1 ⁇ 10 ⁇ 2 Pa ⁇ Conveying speed: 400m / min ⁇ Oxygen gas supply amount: 20000 sccm
  • a gas barrier coating film 203 was formed on the vapor deposition layer 202. Specifically, first, 385 g of water, 67 g of isopropyl alcohol, and 9.1 g of 0.5N hydrochloric acid were mixed and adjusted to pH 2.2, and then 175 g of tetraethoxysilane as a metal alkoxide and glycid as a silane coupling agent. A solution A was prepared by mixing 9.2 g of xylpropyltrimethoxysilane while cooling to 10 ° C.
  • a solution B was prepared by mixing 14.7 g of polyvinyl alcohol having a degree of polymerization of 2400 with a ken number of 99% or more, 324 g of water, and 17 g of isopropyl alcohol. Then, A liquid and B liquid were mixed so that it might become a weight ratio 6.5: 3.5. The solution thus obtained was used as a coating agent for a gas barrier coating film.
  • the gas barrier coating film coating agent prepared above was coated on the vapor deposition layer 202 by a spin coating method. Thereafter, heat treatment was performed in an oven at 180 ° C. for 60 seconds to form a gas barrier coating film 203 having a thickness of about 400 nm on the vapor deposition layer 202. In this way, a barrier laminate film 205 having a base material 201, a vapor deposition layer 202, and a gas barrier coating film 203 was obtained.
  • time-of-flight secondary ion mass spectrometry is performed while repeatedly performing soft etching on the surface of the gas barrier coating film 203 of the barrier laminate film 205 with a Cs (cesium) ion gun at a constant rate.
  • Cs cesium
  • ions derived from the gas barrier coating film 203, ions derived from the vapor deposition layer 202, and ions derived from the substrate 201 were measured.
  • C 6 mass number 72.00
  • Al 2 O 4 H mass analysis of ions.
  • a time-of-flight secondary ion mass spectrometer used for TOF-SIMS is manufactured by ION TOF, TOF. The measurement was performed under the following measurement conditions using SIMS5. As a result, a graph as shown in FIG. 22 was obtained.
  • the positions at which the strength of SiO 2 (mass number 59.96), which is a constituent element of the gas barrier coating film 203, is half the strength of the gas barrier coating film 203 are determined between the gas barrier coating film 203 and the vapor deposition layer 202. Identified as an interface.
  • the position where the strength of C 6 (mass number 72.00), which is a constituent material of the base material 201, becomes half the strength of the base material 201 was specified as the interface between the base material 201 and the vapor deposition layer 202.
  • the distance in the thickness direction between the two interfaces was adopted as the thickness of the vapor deposition layer 202.
  • waveform separation for example, a profile with a mass number of 118.93 obtained by TOF-SIMS is subjected to nonlinear curve fitting using a Gaussian function, and overlapping peaks are separated using a least square method Levenberg Marquardt algorithm. You may go.
  • the packaging material 210 including the barrier laminate film 205 will be described.
  • a printing layer 218 having a thickness of 1 ⁇ m was formed on the gas barrier coating film 203 of the barrier laminate film 205.
  • the film including the barrier laminate film 205 and the stretched plastic film 214 were bonded together by a dry laminating method through a first adhesive layer 213 made of an adhesive layer having a thickness of 3.5 ⁇ m.
  • a biaxially stretched PET film thickness 12 ⁇ m
  • the stretched plastic film 214 and the film constituting the sealant layer 212 were bonded together by a dry laminating method through a second adhesive layer 215 made of an adhesive layer having a thickness of 3.5 ⁇ m.
  • a second adhesive layer 215 made of an adhesive layer having a thickness of 3.5 ⁇ m.
  • an unstretched polypropylene film (thickness 60 ⁇ m) was used.
  • unstretched polypropylene film unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. was used.
  • a packaging material 210 having the layer configuration shown in FIG. 18 was produced.
  • the total thickness of the packaging material 210 was 96 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows. High PET16 / transparent deposition / barrier / mark / contact / PET12 / contact / CPP60 “High PET” means high stiffness PET film. “Transparent deposition” means a transparent deposition layer containing aluminum oxide. “Barrier” means a gas barrier coating film. “Mark” means a printed layer. “Contact” means an adhesive layer. “PET” means stretched PET film. “CPP” means an unstretched polypropylene film. The number means the thickness of the layer (unit: ⁇ m).
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 16.9 N
  • the loop stiffness in the flow direction was 0.167 N
  • the loop stiffness in the vertical direction was 0.142 N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00174 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00148 N. / ⁇ m.
  • the oxygen permeability and the water vapor permeability were measured.
  • a four-sided seal pouch was prepared using the packaging material 210. Subsequently, 100 mL of water was injected into the inside of the four-way seal pouch from the opening at the top of the four-way seal pouch, and then a seal portion was formed on the upper portion to seal the four-way seal pouch. Subsequently, the four-side seal pouch was subjected to a retort treatment at 121 ° C. for 40 minutes and 2 atmospheres. Then, the packaging material 210 which comprises the single side
  • the sample after the retort treatment is set so that the outer surface 210y side of the packaging material 210 is the oxygen supply side, and in accordance with JIS K 7126 B method under measurement conditions in an atmosphere of 23 ° C. and 100% RH.
  • the oxygen permeability was measured.
  • an oxygen permeability measuring device manufactured by Modern Control (MOCON) [model name: OX-TRAN 2/21]
  • MOCON Modern Control
  • the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm .
  • the water vapor permeability was measured using the same sample as that used for measuring the oxygen permeability. Specifically, each sample is set so that the outer surface 210y side of the packaging material 210 is the sensor side, and in accordance with JIS K 7126 B method under measurement conditions in an atmosphere of 37.8 ° C. and 100% RH. The water vapor transmission rate was measured. As a measuring device, a water vapor permeability measuring device (a measuring machine manufactured by MOCON [model name, PERMATRAN 3/33]) was used. Result, the water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
  • the packaging material 210 of the present embodiment can be used, for example, to configure a pouch that is subjected to retort processing.
  • Example C2 In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, a packaging material 210 having the layer configuration shown in FIG. 17 was obtained in the same manner as in Example C1, except that a biaxially stretched nylon film (thickness: 15 ⁇ m) was used as the stretched plastic film 214. Produced. The total thickness of the packaging material 210 was 99 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows.
  • High PET16 / transparent deposition / barrier / mark / contact / nylon 15 / contact / CPP60 “Nylon” means a stretched nylon film.
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 18.1 N
  • the loop stiffness in the flow direction was 0.151 N
  • the loop stiffness in the vertical direction was 0.134 N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00153 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00135 N. / ⁇ m.
  • Example C2 the packaging material 210 of Example C2 was subjected to a retort treatment, and then the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
  • the packaging material 210 of the present embodiment can be used, for example, to configure a pouch that is subjected to retort processing.
  • Example C3 In the same manner as in Example C1, a barrier laminate film 205 was produced. In addition, a stretched plastic film 214 was prepared, and a printed layer 218 having a thickness of 1 ⁇ m was formed on the stretched plastic film 214. As the stretched plastic film 214, a stretched PET film (thickness 12 ⁇ m) derived from fossil fuel was used. Subsequently, the stretched plastic film 214 provided with the printing layer 218 and the barrier laminate film 205 were bonded together by a dry laminating method through a first adhesive layer 213 made of an adhesive layer having a thickness of 3.5 ⁇ m.
  • the base material 201 of the barrier laminate film 205 and the film constituting the sealant layer 212 were bonded together by a dry laminating method through a second adhesive layer 215 made of an adhesive layer having a thickness of 3.5 ⁇ m.
  • a second adhesive layer 215 made of an adhesive layer having a thickness of 3.5 ⁇ m.
  • an unstretched polypropylene film (thickness 60 ⁇ m) was used.
  • unstretched polypropylene film unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. was used.
  • a packaging material 210 having the layer configuration shown in FIG. 19 was produced.
  • the total thickness of the packaging material 210 was 96 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows. PET12 / mark / contact / barrier / transparent deposition / high PET16 / contact / CPP60
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 17.2 N
  • the loop stiffness in the flow direction was 0.165 N
  • the loop stiffness in the vertical direction was 0.141 N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00172 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00147 N. / ⁇ m.
  • Example C2 the packaging material 210 of Example C2 was subjected to a retort treatment, and then the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
  • the packaging material 210 of the present embodiment can be used, for example, to configure a pouch that is subjected to retort processing.
  • Example C4 In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C1, except that a sealant layer (thickness 50 ⁇ m) made of a mixed resin of low-density polyethylene and linear low-density polyethylene was used as the film of the sealant layer 212, FIG. A packaging material 210 having a layer configuration shown in FIG. The total thickness of the packaging material 210 was 86 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows.
  • “Blend PE” means a sealant layer made of a mixed resin of low density polyethylene and linear low density polyethylene.
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 16.5N
  • the loop stiffness in the flow direction was 0.111N
  • the loop stiffness in the vertical direction was 0.121N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00129 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00141 N. / ⁇ m.
  • a four-sided seal pouch was prepared using the packaging material 210. Subsequently, 100 mL of water was injected into the inside of the four-way seal pouch from the opening at the top of the four-way seal pouch, and then a seal portion was formed on the upper portion to seal the four-way seal pouch. Subsequently, the four-side seal pouch was boiled at 95 ° C. for 60 minutes. Subsequently, the packaging material 210 constituting one side of the four-sided seal pouch after the boil treatment was cut out, and a sample for evaluating the oxygen permeability after the boil treatment was produced. Subsequently, the oxygen permeability of the sample after the boil treatment was measured in the same manner as in Example C1. Result, the oxygen permeability was less than 1.5cc / m 2 / 24hr / atm .
  • the packaging material 210 of the present embodiment can be used to configure a pouch that is subjected to boil processing, for example.
  • Example C5 In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C2, except that a sealant layer (thickness 50 ⁇ m) made of a mixed resin of low density polyethylene and linear low density polyethylene was used as the film of the sealant layer 212, A packaging material 210 having a layer configuration shown in FIG. The total thickness of the packaging material 210 was 89 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows. High PET16 / transparent deposition / barrier / mark / contact / nylon 15 / contact / blend PE50
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 17.4N
  • the loop stiffness in the flow direction was 0.101N
  • the loop stiffness in the vertical direction was 0.109N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00113 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00122 N. / ⁇ m.
  • Example C4 the packaging material 210 of Example C5 was boiled, and then the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after boiling treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after boiling treatment was less than 2.0g / m 2 / 24hr.
  • the packaging material 210 of the present embodiment can be used to configure a pouch that is subjected to boil processing, for example.
  • Example C6 In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C3, except that a sealant layer (thickness 50 ⁇ m) made of a mixed resin of low-density polyethylene and linear low-density polyethylene was used as the film of the sealant layer 212, FIG. A packaging material 210 having a layer configuration shown in FIG. The total thickness of the packaging material 210 was 86 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows. PET12 / mark / contact / barrier / transparent deposition / high PET16 / contact / blend PE50
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 16.4N
  • the loop stiffness in the flow direction was 0.114N
  • the loop stiffness in the vertical direction was 0.123N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00133 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00143 N. / ⁇ m.
  • Example C4 the packaging material 210 of Example C6 was boiled, and then the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after boiling treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after boiling treatment was less than 2.0g / m 2 / 24hr.
  • the packaging material 210 of the present embodiment can be used to configure a pouch that is subjected to boil processing, for example.
  • Example C7 In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as a film of the sealant layer 212, the sealant layer including the first layer 2121 and the second layer 2122 shown in FIG. 21 and formed by coextrusion and having an easy peel property (thickness 50 ⁇ m) is used. Produced a packaging material 210 having the layer structure shown in FIG. 18 in the same manner as in Example C1.
  • the first layer 2121 is a layer having a thickness of 5 ⁇ m made of a mixed resin of high-density polyethylene and polypropylene.
  • the second layer 2122 is a layer made of high-density polyethylene and having a thickness of 45 ⁇ m.
  • the total thickness of the packaging material 210 was 86 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows.
  • “Easy peel” means a sealant layer including a layer made of a mixed resin of polyethylene and polypropylene and having easy peel properties.
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 16.2N
  • the loop stiffness in the flow direction was 0.112N
  • the loop stiffness in the vertical direction was 0.115N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00130 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00134 N. / ⁇ m.
  • Example C1 after the retort treatment was performed on the four-sided seal pouch produced using the packaging material 210, the oxygen permeability was measured using the sample cut out from the four-way seal pouch, and the water vapor transmission rate. The degree of measurement was taken. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
  • the packaging material 210 of the present embodiment can be used, for example, to constitute a lid material for a container with a lid that is subjected to a retort process.
  • the container body of the lidded container can be made of, for example, polypropylene.
  • Example C8 In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C2, except that a sealant layer (thickness 50 ⁇ m) having an easy peel property was used as the film of the sealant layer 212 as in Example C7, FIG. A packaging material 210 having the layer structure shown was produced. The total thickness of the packaging material 210 was 89 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows. High PET16 / transparent deposition / barrier / mark / contact / nylon 15 / contact / easy peel 50
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 17.0 N
  • the loop stiffness in the flow direction was 0.101 N
  • the loop stiffness in the vertical direction was 0.102 N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00113 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00115 N. / ⁇ m.
  • the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
  • the packaging material 210 of the present embodiment can be used, for example, to constitute a lid material for a container with a lid that is subjected to a retort process.
  • the container body of the lidded container can be made of, for example, polypropylene.
  • Example C9 In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C3, except that a sealant layer (thickness 50 ⁇ m) having an easy peel property was used as the film of the sealant layer 212 as in Example C7, FIG. A packaging material 210 having the layer structure shown was produced. The total thickness of the packaging material 210 was 86 ⁇ m.
  • the layer structure of the packaging material 210 of the present embodiment is expressed as follows. PET12 / mark / contact / barrier / transparent deposition / high PET16 / contact / easy peel 50
  • the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1.
  • the puncture strength of the packaging material 210 was 16.3 N
  • the loop stiffness in the flow direction was 0.114 N
  • the loop stiffness in the vertical direction was 0.119 N.
  • the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00133 N / ⁇ m
  • the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00138 N. / ⁇ m.
  • the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
  • the packaging material 210 of the present embodiment can be used, for example, to constitute a lid material for a container with a lid that is subjected to a retort process.
  • the container body of the lidded container can be made of, for example, polypropylene.
  • FIG. 29 and FIG. 30 collectively show the layer configurations of the packaging materials 210 of Examples C1 to C3 and Examples C4 to C9, and the evaluation results regarding the piercing strength and loop stiffness, respectively.
  • FIG. 31 shows the layer structure of the packaging material 210 of Examples C1 to C9, the evaluation result of the oxygen permeability, and the evaluation result of the water vapor permeability.
  • oxygen permeability of the sample after retort treatment means that was less than 1.5cc / m 2 / 24hr / atm .
  • water vapor transmission rate in FIG. 31, “OK” means that the water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
  • the piercing strength of the packaging material 210 is the same as in Examples A1 to A9. Can be increased to 14N or more.
  • the puncture strength of the packaging material 210 was 16 N or more.
  • the puncture strength of the packaging material 30 was 17 N or more.
  • the packaging material 210 includes a high stiffness polyester film, and the sealant layer 70 includes polypropylene as a main component, thereby reducing the loop stiffness of the packaging material 210 in at least one direction. It was possible to increase to 150N or higher. Further, the value obtained by dividing the loop stiffness of the packaging material 210 by the thickness of the packaging material 210 could be increased to 0.00150 N / ⁇ m or more in at least one direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Bag Frames (AREA)

Abstract

This packaging material is provided with at least a first stretched plastic film, a second stretched plastic film, and a sealant layer in this order from the outer surface side toward the inner surface side. The first stretched plastic film and the second stretched plastic film are the only stretched plastic films included in the packaging material. One of the first stretched plastic film and the second stretched plastic film is a high-stiffness polyester film, and the other of the first stretched plastic film and the second stretched plastic film contains polyester as a main component. The loop stiffness of the packaging material in one direction is 0.16 N or more.

Description

包装材料及び包装材料を備えるレトルトパウチ又は電子レンジ用パウチRetort pouch or pouch for microwave oven provided with packaging material and packaging material
 本発明は、包装材料及び包装材料を備えるレトルトパウチ又は電子レンジ用パウチなどの包装製品に関する。 The present invention relates to a packaging material and a packaging product such as a retort pouch or a microwave oven pouch provided with the packaging material.
 従来、飲食品、医薬品、化学品、化粧品、衛生用品、日用品その他等の種々の物品を充填包装する袋や容器などの包装製品を構成するための包装材料として、種々の包装材料が開発され、提案されている。包装材料は、少なくとも1つの延伸プラスチックフィルムと、包装材料同士を溶着させるためのシーラント層とが少なくとも積層された積層体から構成される。例えば特許文献1は、包装材料として、延伸ポリエチレンテレフタレートフィルム、シリカ蒸着延伸ポリエチレンテレフタレートフィルム、アルミナ蒸着延伸ポリエチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルム、またはポリプロピレン/エチレン-ビニルアルコール共重合体共押共延伸フィルム、またはこれらの2以上のフィルムを積層した複合フィルムを用いることを提案している。 Conventionally, various packaging materials have been developed as packaging materials for composing packaging products such as bags and containers filled with various articles such as food and drink, pharmaceuticals, chemicals, cosmetics, hygiene products, daily necessities, etc. Proposed. The packaging material is composed of a laminate in which at least one stretched plastic film and at least a sealant layer for welding the packaging materials are laminated. For example, Patent Document 1 discloses as a packaging material a stretched polyethylene terephthalate film, a silica-deposited stretched polyethylene terephthalate film, an alumina-deposited stretched polyethylene terephthalate film, a stretched nylon film, a stretched polypropylene film, or a polypropylene / ethylene-vinyl alcohol copolymer co-pushing. It has been proposed to use a stretched film or a composite film in which two or more of these films are laminated.
特開2015-120550号公報JP 2015-120550 A
 包装製品を構成するための包装材料には、先端が尖った鋭利な部材が包装製品に接触した場合にも包装製品が破けてしまうことを抑制するための剛性を有することが求められる。 The packaging material for forming the packaged product is required to have rigidity for preventing the packaged product from being broken even when a sharp member having a sharp tip contacts the packaged product.
 本発明は、このような点を考慮してなされたものであり、剛性を有する包装材料を提供することを目的とする。 The present invention has been made in consideration of such points, and an object thereof is to provide a packaging material having rigidity.
 本発明の一実施形態は、包装材料であって、
 外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
 前記包装材料に含まれる二軸延伸プラスチックフィルムは、前記第1の二軸延伸プラスチックフィルム及び前記第2の二軸延伸プラスチックフィルムのみであり、
 前記シーラント層は、ポリプロピレンを主成分として含み、
 前記包装材料の1つの方向におけるループスティフネスは、0.160N以上である、包装材料である。この場合、前記第1の二軸延伸プラスチックフィルム及び前記第2の二軸延伸プラスチックフィルムは、ポリエステルを主成分として含んでいてもよい。
One embodiment of the present invention is a packaging material,
A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
The biaxially stretched plastic film contained in the packaging material is only the first biaxially stretched plastic film and the second biaxially stretched plastic film,
The sealant layer contains polypropylene as a main component,
The packaging material has a loop stiffness in one direction of the packaging material of 0.160 N or more. In this case, the first biaxially stretched plastic film and the second biaxially stretched plastic film may contain polyester as a main component.
 本発明の一実施形態は、包装材料であって、
 外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
 前記包装材料に含まれる二軸延伸プラスチックフィルムは、前記第1の二軸延伸プラスチックフィルム及び前記第2の二軸延伸プラスチックフィルムのみであり、
 前記シーラント層は、ポリプロピレンを主成分として含み、
 前記包装材料の1つの方向におけるループスティフネスを前記包装材料の厚みで割った値が0.00150〔N/μm〕以上である、包装材料である。
One embodiment of the present invention is a packaging material,
A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
The biaxially stretched plastic film contained in the packaging material is only the first biaxially stretched plastic film and the second biaxially stretched plastic film,
The sealant layer contains polypropylene as a main component,
The packaging material has a value obtained by dividing the loop stiffness in one direction of the packaging material by the thickness of the packaging material of 0.00150 [N / μm] or more.
 本発明の一実施形態は、包装材料であって、
 外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
 前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムの一方は、高スティフネスポリエステルフィルムであり、前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムの他方は、ポリエステル又はポリアミドを主成分として含み、
 前記高スティフネスポリエステルフィルムは、1つの方向において0.0017N以上のループスティフネスを有し、且つポリエステルを主成分として含む、包装材料である。
One embodiment of the present invention is a packaging material,
A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
One of the first biaxially stretched plastic film or the second biaxially stretched plastic film is a high stiffness polyester film, and the first biaxially stretched plastic film or the second biaxially stretched plastic film The other contains polyester or polyamide as the main component,
The high stiffness polyester film is a packaging material having a loop stiffness of 0.0017 N or more in one direction and containing polyester as a main component.
 本発明の一実施形態は、包装材料であって、
 外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
 前記第1の二軸延伸プラスチックフィルム及び前記第2の二軸延伸プラスチックフィルムはいずれも、ポリエチレンテレフタレートを主成分として含み、
 前記包装材料の突き刺し強度が14N以上である、包装材料である。
One embodiment of the present invention is a packaging material,
A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
Each of the first biaxially stretched plastic film and the second biaxially stretched plastic film contains polyethylene terephthalate as a main component,
The packaging material has a puncture strength of 14 N or more.
 本発明の一実施形態は、包装材料であって、
 外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
 前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムの一方は、高スティフネスポリエステルフィルムであり、前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムの他方は、ポリエステル又はポリアミドを主成分として含み、
 少なくとも1つの方向において、前記高スティフネスポリエステルフィルムの引張強度を引張伸度で割った値が2.0〔MPa/%〕以上である、包装材料である。
One embodiment of the present invention is a packaging material,
A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
One of the first biaxially stretched plastic film or the second biaxially stretched plastic film is a high stiffness polyester film, and the first biaxially stretched plastic film or the second biaxially stretched plastic film The other contains polyester or polyamide as the main component,
The packaging material has a value obtained by dividing the tensile strength of the high stiffness polyester film by the tensile elongation in at least one direction is 2.0 [MPa /%] or more.
 本発明の一実施形態による包装材料において、前記包装材料の突き刺し強度が14N以上であってもよい。 In the packaging material according to one embodiment of the present invention, the puncture strength of the packaging material may be 14 N or more.
 本発明の一実施形態による包装材料において、1つの方向における前記高スティフネスポリエステルフィルムの引張強度が250MPa以上であってもよい。 In the packaging material according to an embodiment of the present invention, the tensile strength of the high stiffness polyester film in one direction may be 250 MPa or more.
 本発明の一実施形態による包装材料において、前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムのいずれかは、1つの方向における引張強度が前記1つの方向と直交する方向における引張強度よりも大きい直進カットフィルムであってもよい。この場合、1つの方向における前記直進カットフィルムの引張強度が、前記1つの方向と直交する方向における前記直進カットフィルムの引張強度の1.05倍以上であってもよい。 In the packaging material according to an embodiment of the present invention, either the first biaxially stretched plastic film or the second biaxially stretched plastic film has a tensile strength in one direction perpendicular to the one direction. It may be a straight-cut film that is larger than the tensile strength. In this case, the tensile strength of the straight cut film in one direction may be 1.05 times or more the tensile strength of the straight cut film in a direction orthogonal to the one direction.
 本発明の一実施形態による包装材料は、印刷層を備えていてもよい。 The packaging material according to an embodiment of the present invention may include a printing layer.
 本発明の一実施形態による包装材料において、前記シーラント層は、ポリプロピレンを主成分として含んでいてもよい。 In the packaging material according to one embodiment of the present invention, the sealant layer may contain polypropylene as a main component.
 本発明の一実施形態による包装材料において、前記シーラント層は、100℃以上の融点を有するポリエチレンを主成分として含んでいてもよい。 In the packaging material according to an embodiment of the present invention, the sealant layer may contain polyethylene having a melting point of 100 ° C. or higher as a main component.
 本発明の一実施形態による包装材料において、前記シーラント層は、ポリエチレン又はポリプロピレンを主成分とする第1層と、第1層よりも内面側に位置し、ポリエチレンとポリプロピレンの混合樹脂を含む第2層と、を有していてもよい。 In the packaging material according to an embodiment of the present invention, the sealant layer includes a first layer mainly composed of polyethylene or polypropylene, and a second layer that is located closer to the inner surface than the first layer and includes a mixed resin of polyethylene and polypropylene. And may have a layer.
 本発明の一実施形態による包装材料は、前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムのいずれかの面上に位置する蒸着層と、蒸着層上に位置するガスバリア性塗布膜と、を更に備えていてもよい。 A packaging material according to an embodiment of the present invention includes a vapor deposition layer located on one surface of the first biaxially stretched plastic film or the second biaxially stretched plastic film, and a gas barrier located on the vapor deposition layer. An adhesive coating film.
 本発明の一実施形態は、上記記載の包装材料を備えるレトルトパウチである。 One embodiment of the present invention is a retort pouch provided with the packaging material described above.
 本発明の一実施形態は、収容部を有する電子レンジ用パウチであって、
 蒸気記載の包装材料と、
 前記包装材料の内面同士を接合するシール部であって、前記収容部の圧力の増加により剥離する蒸気抜きシール部を含むシール部と、を備える電子レンジ用パウチである。
One embodiment of the present invention is a microwave oven pouch having a storage portion,
Steam-wrapped packaging material;
It is a pouch for microwave ovens provided with the seal part which joins the inner surfaces of the said packaging material, Comprising: The seal | sticker part containing the steam release seal part which peels by the increase in the pressure of the said accommodating part.
 本発明によれば、剛性を有する包装材料を提供することができる。 According to the present invention, a packaging material having rigidity can be provided.
本発明の第1の実施の形態における袋を示す正面図である。It is a front view which shows the bag in the 1st Embodiment of this invention. 袋を構成する包装材料の層構成の一例を示す断面図である。It is sectional drawing which shows an example of the layer structure of the packaging material which comprises a bag. 袋を構成する包装材料の層構成の一変形例を示す断面図である。It is sectional drawing which shows the modification of the layer structure of the packaging material which comprises a bag. 袋を構成する包装材料の層構成の一変形例を示す断面図である。It is sectional drawing which shows the modification of the layer structure of the packaging material which comprises a bag. ループスティフネス測定器の一例を示す平面図である。It is a top view which shows an example of a loop stiffness measuring device. 図5のループスティフネス測定器の線VI-VIに沿った断面図である。FIG. 6 is a cross-sectional view of the loop stiffness measuring device of FIG. 5 taken along line VI-VI. ループスティフネス測定器で用いられる試験片を準備する方法の一例を示す図である。It is a figure which shows an example of the method of preparing the test piece used with a loop stiffness measuring device. ループスティフネス測定器に試験片を取り付ける工程を説明するための図である。It is a figure for demonstrating the process of attaching a test piece to a loop stiffness measuring device. 試験片にループ部を形成する工程を説明するための図である。It is a figure for demonstrating the process of forming a loop part in a test piece. 試験片のループ部に荷重を加える工程を説明するための図である。It is a figure for demonstrating the process of applying a load to the loop part of a test piece. 試験片のループ部に荷重を加える工程を説明するための図である。It is a figure for demonstrating the process of applying a load to the loop part of a test piece. シーラント層の層構成の一例を示す図である。It is a figure which shows an example of the layer structure of a sealant layer. 延伸プラスチックフィルムの面上に成膜された透明蒸着層を、飛行時間型二次イオン質量分析計により分析した結果の一例を示す図である。It is a figure which shows an example of the result of having analyzed the transparent vapor deposition layer formed into a film on the surface of the extending | stretched plastic film with the time-of-flight type secondary ion mass spectrometer. 袋に内容物を充填する方法の一例を示す図である。It is a figure which shows an example of the method of filling the contents with a bag. 袋の一変形例を示す正面図である。It is a front view which shows one modification of a bag. 袋の一変形例を示す正面図である。It is a front view which shows one modification of a bag. 包装材料を含む容器の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the container containing a packaging material. 包装材料を含む容器の一例を示す平面図である。It is a top view which shows an example of the container containing a packaging material. 第2の実施の形態による包装材料の一例を示す断面図である。It is sectional drawing which shows an example of the packaging material by 2nd Embodiment. 第2の実施の形態による包装材料の一例を示す断面図である。It is sectional drawing which shows an example of the packaging material by 2nd Embodiment. バリア性積層フィルムの基材の一例を示す断面図である。It is sectional drawing which shows an example of the base material of a barriering laminated film. シーラント層の一例を示す断面図である。It is sectional drawing which shows an example of a sealant layer. バリア性積層フィルムの蒸着層を、飛行時間型二次イオン質量分析計により分析した結果の一例を示す図である。It is a figure which shows an example of the result of having analyzed the vapor deposition layer of the barrier laminated film with the time-of-flight type secondary ion mass spectrometer. 基材に蒸着層を成膜する成膜装置の一例を示す図である。It is a figure which shows an example of the film-forming apparatus which forms a vapor deposition layer in a base material. 突き刺し強度の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of piercing strength. 引き裂き性を評価するための試験片を示す平面図である。It is a top view which shows the test piece for evaluating tearability. 実施例A1~A6及び比較例A1の評価結果を示す図である。It is a figure which shows the evaluation result of Example A1-A6 and Comparative Example A1. 実施例A1~A6及び比較例A1の評価結果を示す図である。It is a figure which shows the evaluation result of Example A1-A6 and Comparative Example A1. 実施例A7~A9の評価結果を示す図である。It is a figure which shows the evaluation result of Example A7-A9. 実施例C1~C3の評価結果を示す図である。It is a figure which shows the evaluation result of Example C1-C3. 実施例C4~C9の評価結果を示す図である。It is a figure which shows the evaluation result of Examples C4-C9. 実施例C1~C9の評価結果を示す図である。It is a figure which shows the evaluation result of Example C1-C9.
 第1の実施の形態
 図1乃至図16を参照して、本発明の一実施の形態について説明する。なお本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、縮尺および縦横の寸法比等を、実物のそれらから適宜変更し誇張してある。
With reference to the first embodiment FIGS. 1 to 16, it will be described an embodiment of the present invention. In the drawings attached to the present specification, for the sake of illustration and ease of understanding, scales, vertical and horizontal dimensional ratios, and the like are appropriately changed and exaggerated from those of the actual ones.
 また、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。 In addition, as used in this specification, the shape and geometric conditions and the degree thereof are specified, for example, terms such as “parallel”, “orthogonal”, “identical”, length and angle values, etc. are strictly Without being bound by meaning, it should be interpreted including the extent to which similar functions can be expected.
 図1は、本実施の形態による袋10を示す正面図である。袋10は、内容物を収容する収容部17を備える。なお、図1においては、内容物が収容される前の状態の袋10が示されている。以下、袋10の構成について説明する。 FIG. 1 is a front view showing a bag 10 according to the present embodiment. The bag 10 includes a storage portion 17 that stores the contents. In addition, in FIG. 1, the bag 10 of the state before the contents are accommodated is shown. Hereinafter, the configuration of the bag 10 will be described.
 
 本実施の形態において、袋10は、自立可能に構成されたガセット式の袋である。袋10は、上部11、下部12及び一対の側部13を含み、正面図において略矩形状の輪郭を有する。なお、「上部」、「下部」及び「側部」などの名称、並びに、「上方」、「下方」などの用語は、ガセット部を下にして袋10が自立している状態を基準として袋10やその構成要素の位置や方向を相対的に表したものに過ぎない。袋10の輸送時や使用時の姿勢などは、本明細書における名称や用語によっては限定されない。
In the present embodiment, the bag 10 is a gusseted bag configured to be able to stand on its own. The bag 10 includes an upper portion 11, a lower portion 12, and a pair of side portions 13, and has a substantially rectangular outline in a front view. It should be noted that names such as “upper”, “lower” and “side”, and terms such as “upper” and “lower” refer to a bag based on the state in which the bag 10 is self-supporting with the gusset portion down. It is only a relative representation of the position and direction of 10 and its components. The attitude | position at the time of transport of the bag 10 or use is not limited by the name and terminology in this specification.
 本実施の形態においては、袋10の幅方向を、第1方向D1とも称する。上述の一対の側部13は、第1方向D1において対向している。また、第1方向D1に直交する方向を、第2方向D2とも称する。本実施の形態の袋10においては、第1方向D1に沿って消費者が袋10を引き裂くことにより袋10を開封する、という使用形態が想定されている。 In the present embodiment, the width direction of the bag 10 is also referred to as a first direction D1. The pair of side portions 13 described above face each other in the first direction D1. A direction orthogonal to the first direction D1 is also referred to as a second direction D2. In the bag 10 of the present embodiment, a usage pattern is assumed in which the consumer opens the bag 10 by tearing the bag 10 along the first direction D1.
 図1に示すように、袋10は、表面を構成する表面フィルム14、裏面を構成する裏面フィルム15、及び、下部12を構成する下部フィルム16を備える。下部フィルム16は、折り返し部16fで折り返された状態で、表面フィルム14と裏面フィルム15との間に配置されている。 As shown in FIG. 1, the bag 10 includes a surface film 14 that constitutes the front surface, a back film 15 that constitutes the back surface, and a lower film 16 that constitutes the lower portion 12. The lower film 16 is disposed between the front film 14 and the back film 15 in a state where the lower film 16 is folded at the folded portion 16f.
 なお、上述の「表面フィルム」、「裏面フィルム」及び「下部フィルム」という用語は、位置関係に応じて各フィルムを区画したものに過ぎず、袋10を製造する際のフィルムの提供方法が、上述の用語によって限定されることはない。例えば、袋10は、表面フィルム14と裏面フィルム15と下部フィルム16が連設された1枚のフィルムを用いて製造されてもよく、表面フィルム14と下部フィルム16が連設された1枚のフィルムと1枚の裏面フィルム15の計2枚のフィルムを用いて製造されてもよく、1枚の表面フィルム14と1枚の裏面フィルム15と1枚の下部フィルム16の計3枚のフィルムを用いて製造されてもよい。 In addition, the term “surface film”, “back film” and “lower film” described above is merely a partition of each film according to the positional relationship, and the method of providing a film when manufacturing the bag 10 It is not limited by the above terms. For example, the bag 10 may be manufactured using one film in which the front film 14, the back film 15, and the lower film 16 are continuously provided, or one sheet in which the front film 14 and the lower film 16 are continuously provided. It may be manufactured using a total of two films, a film and one back film 15, and a total of three films, one surface film 14, one back film 15, and one lower film 16. May be used.
 表面フィルム14、裏面フィルム15及び下部フィルム16は、内面同士がシール部によって接合されている。図1などの袋10の平面図においては、シール部にハッチングが施されている。 The inner surfaces of the front film 14, the back film 15, and the lower film 16 are joined together by a seal portion. In the plan view of the bag 10 shown in FIG. 1 and the like, the seal portion is hatched.
 図1に示すように、シール部は、袋10の外縁に沿って延びる外縁シール部を有する。外縁シール部は、下部12に広がる下部シール部12a、及び、一対の側部13に沿って延びる一対の側部シール部13aを含む。なお、内容物が収容される前の状態の袋10においては、図1に示すように、袋10の上部11は開口部11bになっている。袋10に内容物を収容した後、表面フィルム14の内面と裏面フィルム15の内面とを上部11において接合することにより、上部シール部11a(図7参照)が形成されて袋10が封止される。 As shown in FIG. 1, the seal portion has an outer edge seal portion that extends along the outer edge of the bag 10. The outer edge seal portion includes a lower seal portion 12 a extending in the lower portion 12 and a pair of side seal portions 13 a extending along the pair of side portions 13. In addition, in the bag 10 in a state before the contents are accommodated, as shown in FIG. 1, the upper portion 11 of the bag 10 is an opening 11b. After the contents are stored in the bag 10, the upper seal portion 11 a (see FIG. 7) is formed by sealing the bag 10 by joining the inner surface of the front film 14 and the inner surface of the back film 15 at the upper portion 11. The
 側部シール部13a及び上部シール部11aは、表面フィルム14の内面と裏面フィルム15の内面とを接合することによって構成されるシール部である。一方、下部シール部12aは、表面フィルム14の内面と下部フィルム16の内面とを接合することによって構成されるシール部、及び、裏面フィルム15の内面と下部フィルム16の内面とを接合することによって構成されるシール部を含む。 The side seal part 13 a and the upper seal part 11 a are seal parts configured by joining the inner surface of the front film 14 and the inner surface of the back film 15. On the other hand, the lower seal portion 12a is formed by bonding the inner surface of the surface film 14 and the inner surface of the lower film 16, and by bonding the inner surface of the back film 15 and the inner surface of the lower film 16. Including a configured seal.
 対向するフィルム同士を接合して袋10を封止することができる限りにおいて、シール部を形成するための方法が特に限られることはない。例えば、加熱などによってフィルムの内面を溶融させ、内面同士を溶着させることによって、すなわちヒートシールによって、シール部を形成してもよい。若しくは、接着剤などを用いて対向するフィルムの内面同士を接着することによって、シール部を形成してもよい。 As long as the opposing films can be joined and the bag 10 can be sealed, the method for forming the seal portion is not particularly limited. For example, the sealing portion may be formed by melting the inner surfaces of the film by heating or the like and welding the inner surfaces, that is, by heat sealing. Or you may form a seal | sticker part by adhere | attaching the inner surfaces of the opposing film using an adhesive agent etc.
 易開封性手段
 表面フィルム14及び裏面フィルム15には、表面フィルム14及び裏面フィルム15を第1方向D1に沿って引き裂いて袋10を開封するための易開封性手段25が設けられていてもよい。例えば図1に示すように、易開封性手段25は、袋10の側部シール部13aに形成された、引き裂きの起点となるノッチ26を含んでいてもよい。また、袋10を引き裂く際の経路となる部分には、易開封性手段25として、レーザー加工やカッターなどで形成されたハーフカット線が設けられていてもよい。
Easy opening means The front film 14 and the back film 15 may be provided with easy opening means 25 for tearing the front film 14 and the back film 15 along the first direction D1 to open the bag 10. . For example, as shown in FIG. 1, the easy-opening means 25 may include a notch 26 that is formed in the side seal portion 13 a of the bag 10 and serves as a starting point of tearing. Further, a half-cut line formed by laser processing, a cutter, or the like may be provided as the easy-opening means 25 in a portion that becomes a path when the bag 10 is torn.
 また、図示はしないが、易開封性手段25は、表面フィルム14及び裏面フィルム15のうちシール部が形成されている領域に形成された切り込みや傷痕群を含んでいてもよい。傷痕群は例えば、表面フィルム14及び/又は裏面フィルム15を貫通するように形成された複数の貫通孔を含んでいてもよい。若しくは、傷痕群は、表面フィルム14及び/又は裏面フィルム15を貫通しないように表面フィルム14及び/又は裏面フィルム15の外面に形成された複数の孔を含んでいてもよい。 Although not shown, the easy-opening means 25 may include notches and scars formed in the area where the seal portion is formed in the front film 14 and the back film 15. The scar group may include, for example, a plurality of through holes formed so as to penetrate the front film 14 and / or the back film 15. Alternatively, the scar group may include a plurality of holes formed on the outer surface of the front film 14 and / or the back film 15 so as not to penetrate the front film 14 and / or the back film 15.
 表面フィルム及び裏面フィルムの層構成
 次に、表面フィルム14及び裏面フィルム15の層構成について説明する。図2は、表面フィルム14及び裏面フィルム15を構成する包装材料30の層構成の一例を示す断面図である。
Next, the layer structure of the front film 14 and the back film 15 will be described. FIG. 2 is a cross-sectional view showing an example of the layer structure of the packaging material 30 that constitutes the front film 14 and the back film 15.
 図2に示すように、包装材料30は、第1延伸プラスチックフィルム40、第1接着剤層45、第2延伸プラスチックフィルム50、第2接着剤層55及びシーラント層70をこの順で少なくとも備える。第1延伸プラスチックフィルム40は、外面30y側に位置しており、シーラント層70は、外面30yの反対側の内面30x側に位置している。内面30xは、収容部17側に位置する面である。 2, the packaging material 30 includes at least a first stretched plastic film 40, a first adhesive layer 45, a second stretched plastic film 50, a second adhesive layer 55, and a sealant layer 70 in this order. The first stretched plastic film 40 is located on the outer surface 30y side, and the sealant layer 70 is located on the inner surface 30x side opposite to the outer surface 30y. The inner surface 30x is a surface located on the accommodating portion 17 side.
 第1延伸プラスチックフィルム40、第2延伸プラスチックフィルム50、シーラント層70などの、包装材料30を構成する各フィルム、並びに包装材料30は、流れ方向及び垂直方向を有する。流れ方向とは、フィルムを成形する際にフィルムが流れる方向であり、いわゆるMD(Machine Direction)である。垂直方向とは、流れ方向に直交する方向であり、いわゆるTD(Transverse Direction)である。図1に示す袋10においては、上部11及び下部12が延びる方向が流れ方向であり、側部13が延びる方向が垂直方向である。 Each film constituting the packaging material 30, such as the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70, and the packaging material 30 have a flow direction and a vertical direction. The flow direction is a direction in which the film flows when the film is formed, and is so-called MD (Machine-Direction). The vertical direction is a direction orthogonal to the flow direction and is a so-called TD (Transverse Direction). In the bag 10 shown in FIG. 1, the direction in which the upper part 11 and the lower part 12 extend is the flow direction, and the direction in which the side part 13 extends is the vertical direction.
 本実施の形態の包装材料30は、剛性を有するよう構成されている。これにより、包装材料30を備える袋10に剛性を持たせることができる。例えば、先端が尖った鋭利な部材が袋10に接触した場合に袋10が破けてしまうことを抑制することができる。包装材料30の厚みは、例えば80μm以上であり、90μm以上であってもよく、100μm以上であってもよく、105μm以上であってもよい。また、包装材料30の厚みは、140μm以下であってもよく、130μm以下であってもよく、120μm以下であってもよく、115μm以下であってもよく、110μm以下であってもよい。 The packaging material 30 of the present embodiment is configured to have rigidity. Thereby, the bag 10 including the packaging material 30 can be given rigidity. For example, it is possible to prevent the bag 10 from being broken when a sharp member with a sharp tip contacts the bag 10. The thickness of the packaging material 30 is, for example, 80 μm or more, 90 μm or more, 100 μm or more, or 105 μm or more. The thickness of the packaging material 30 may be 140 μm or less, 130 μm or less, 120 μm or less, 115 μm or less, or 110 μm or less.
 以下、包装材料30の各層についてそれぞれ詳細に説明する。 Hereinafter, each layer of the packaging material 30 will be described in detail.
 (延伸プラスチックフィルム)
 第1延伸プラスチックフィルム40及び第2延伸プラスチックフィルム50はいずれも、所定の二方向において延伸されている二軸延伸プラスチックフィルムである。各延伸プラスチックフィルム40,50の延伸方向は特には限定されない。例えば、延伸プラスチックフィルム40,50は、側部13が延びる方向において延伸されていてもよく、側部13が延びる方向に直交する方向において延伸されていてもよい。また、各延伸プラスチックフィルム40,50の延伸方向は、互いに同一であってもよく、異なっていてもよい。各延伸プラスチックフィルム40,50の延伸倍率は、例えば1.05倍以上である。
(Stretched plastic film)
Both the first stretched plastic film 40 and the second stretched plastic film 50 are biaxially stretched plastic films that are stretched in two predetermined directions. The stretching direction of each stretched plastic film 40, 50 is not particularly limited. For example, the stretched plastic films 40 and 50 may be stretched in the direction in which the side portion 13 extends, or may be stretched in a direction orthogonal to the direction in which the side portion 13 extends. Moreover, the extending | stretching direction of each extending | stretching plastic film 40 and 50 may mutually be the same, and may differ. The stretch ratio of each stretched plastic film 40, 50 is, for example, 1.05 times or more.
 本実施の形態においては、第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50の一方として、少なくとも1つの方向において0.0017N以上のループスティフネスを有し、且つポリエステルを主成分として含む延伸プラスチックフィルムを用いることを提案する。以下の説明において、少なくとも1つの方向において0.0017N以上のループスティフネスを有し、且つポリエステルを主成分として含む延伸プラスチックフィルムのことを、高スティフネスポリエステルフィルムとも称する。高スティフネスポリエステルフィルムは、例えば流れ方向(MD)又は垂直方向(TD)の少なくとも一方において0.0017N以上のループスティフネスを有する。高スティフネスポリエステルフィルムは、例えば流れ方向(MD)及び垂直方向(TD)の両方において0.0017N以上のループスティフネスを有していてもよい。包装材料30が高スティフネスポリエステルフィルムを含むことにより、包装材料30が剛性を有することができる。
 ポリエステルとしては、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸から選ばれる少なくとも1種の芳香族ジカルボン酸と、エチレグリコール、1,3-プロパンジオールおよび1,4-ブタンジオールから選ばれる少なくとも1種の脂肪族アルコールとからなる芳香族ポリエステルを主体とするポリエステルが好ましい。例えば、ポリエステルは、ポリエチレンテレフタレート(以下、PETとも記す)、ポリブチレンテレフタレート(以下、PBTとも記す)などである。高スティフネスポリエステルフィルムの例としては、51質量%以上のPETを主成分として含む高スティフネスPETフィルム、51質量%以上のPBTを主成分として含む高スティフネスPBTフィルムなどを挙げることができる。高スティフネスポリエステルフィルムの厚みは、好ましくは5μm以上であり、より好ましくは7μm以上である。また、高スティフネスポリエステルフィルムの厚みは、好ましくは25μm以下であり、より好ましくは20μm以下である。
In the present embodiment, as one of the first stretched plastic film 40 or the second stretched plastic film 50, a stretched plastic film having a loop stiffness of 0.0017 N or more in at least one direction and containing polyester as a main component. We propose to use In the following description, a stretched plastic film having a loop stiffness of 0.0017 N or more in at least one direction and containing polyester as a main component is also referred to as a high stiffness polyester film. The high stiffness polyester film has a loop stiffness of 0.0017 N or more in at least one of the flow direction (MD) and the vertical direction (TD), for example. The high stiffness polyester film may have, for example, a loop stiffness of 0.0017 N or more in both the flow direction (MD) and the vertical direction (TD). When the packaging material 30 includes the high stiffness polyester film, the packaging material 30 can have rigidity.
The polyester is at least one aromatic dicarboxylic acid selected from terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and at least selected from ethylene glycol, 1,3-propanediol and 1,4-butanediol. A polyester mainly composed of an aromatic polyester composed of one kind of aliphatic alcohol is preferred. For example, the polyester includes polyethylene terephthalate (hereinafter also referred to as PET), polybutylene terephthalate (hereinafter also referred to as PBT), and the like. Examples of the high stiffness polyester film include a high stiffness PET film containing 51% by mass or more of PET as a main component, and a high stiffness PBT film containing 51% by mass or more of PBT as a main component. The thickness of the high stiffness polyester film is preferably 5 μm or more, more preferably 7 μm or more. Further, the thickness of the high stiffness polyester film is preferably 25 μm or less, more preferably 20 μm or less.
 ループスティフネスとは、延伸プラスチックフィルムなどのフィルムのこしの強さを表すパラメータである。以下、図5~図11を参照して、ループスティフネスの測定方法を説明する。なお、以下に説明する測定方法は、延伸プラスチックフィルムなどの単層のフィルムだけでなく、蒸着フィルム、積層フィルムなどの、複数の層をフィルムに関しても使用可能である。蒸着フィルムとは、延伸プラスチックフィルムなどの単層のフィルムと、単層のフィルム上に形成されている蒸着層と、を含むフィルムである。積層フィルムとは、包装材料30のような、積層された複数のフィルムを含むフィルムである。 Loop stiffness is a parameter representing the strength of a film such as a stretched plastic film. Hereinafter, a method for measuring loop stiffness will be described with reference to FIGS. Note that the measurement method described below can be used not only for a single layer film such as a stretched plastic film but also for a plurality of layers such as a vapor deposition film and a laminated film. The vapor deposition film is a film including a single layer film such as a stretched plastic film and a vapor deposition layer formed on the single layer film. The laminated film is a film including a plurality of laminated films such as the packaging material 30.
 図5は、試験片80及びループスティフネス測定器85を示す平面図であり、図6は、図5の試験片80及びループスティフネス測定器85の線VI-VIに沿った断面図である。試験片80は、長辺及び短辺を有する矩形状のフィルムである。本願においては、試験片80の長辺の長さL1を150mmとし、短辺の長さL2を15mmとした。ループスティフネス測定器85としては、例えば、東洋精機社製のNo.581ループステフネステスタ(登録商標)LOOP STIFFNESS TESTER DA型を用いることができる。なお、試験片80の長辺の長さL1は、後述する一対のチャック部86によって試験片80を把持することができる限りにおいて、調整可能である。 5 is a plan view showing the test piece 80 and the loop stiffness measuring device 85, and FIG. 6 is a cross-sectional view of the test piece 80 and the loop stiffness measuring device 85 in FIG. 5 taken along line VI-VI. The test piece 80 is a rectangular film having a long side and a short side. In the present application, the long side length L1 of the test piece 80 is 150 mm, and the short side length L2 is 15 mm. As the loop stiffness measuring instrument 85, for example, No. manufactured by Toyo Seiki Co., Ltd. 581 Loop Stiffness Tester (registered trademark) LOOP STIFFNESS TESTER DA type can be used. The long side length L1 of the test piece 80 can be adjusted as long as the test piece 80 can be gripped by a pair of chuck portions 86 described later.
 ループスティフネス測定器85は、試験片80の長辺方向の一対の端部を把持するための一対のチャック部86と、チャック部86を支持する支持部材87と、を有する。チャック部86は、第1チャック861及び第2チャック862を含む。図5及び図6に示す状態において、試験片80は、一対の第1チャック861の上に配置されており、第2チャック862は、第1チャック861との間で試験片80を未だ把持していない。後述するように、測定時、試験片80は、チャック部86の第1チャック861と第2チャック862との間に把持される。第2チャック862は、ヒンジ機構を介して第1チャック861に連結されていてもよい。 The loop stiffness measuring instrument 85 includes a pair of chuck portions 86 for gripping a pair of end portions in the long side direction of the test piece 80, and a support member 87 for supporting the chuck portions 86. The chuck portion 86 includes a first chuck 861 and a second chuck 862. 5 and 6, the test piece 80 is disposed on the pair of first chucks 861, and the second chuck 862 still grips the test piece 80 with the first chuck 861. Not. As will be described later, at the time of measurement, the test piece 80 is held between the first chuck 861 and the second chuck 862 of the chuck portion 86. The second chuck 862 may be connected to the first chuck 861 via a hinge mechanism.
 延伸プラスチックフィルム、蒸着フィルム、積層フィルムなどの測定対象のフィルムを、フィルムが包装製品に加工される前の状態で入手可能な場合、試験片80は、測定対象のフィルムを切断することによって作製されてもよい。また、試験片80は、袋などの、包装材料30から作製された包装製品を切断し、測定対象のフィルムを取り出すことによって作製されてもよい。図7は、袋10の表面フィルム14又は裏面フィルム15を切断することによって試験片80を準備する方法の一例を示す図である。流れ方向における包装材料30のループスティフネスを測定する場合、図7において符号80Aで示すように、試験片の長辺方向が流れ方向に一致するよう、袋10の表面フィルム14又は裏面フィルム15を切断して試験片を作製する。垂直方向における包装材料30のループスティフネスを測定する場合、図7において符号80Bで示すように、試験片の長辺方向が垂直方向に一致するよう、袋10の表面フィルム14又は裏面フィルム15を切断して試験片を作製する。 When a film to be measured such as a stretched plastic film, a vapor-deposited film, and a laminated film is available in a state before the film is processed into a packaged product, the test piece 80 is produced by cutting the film to be measured. May be. Moreover, the test piece 80 may be produced by cutting a packaged product produced from the packaging material 30 such as a bag and taking out a film to be measured. FIG. 7 is a diagram illustrating an example of a method for preparing the test piece 80 by cutting the front film 14 or the back film 15 of the bag 10. When measuring the loop stiffness of the packaging material 30 in the flow direction, the front film 14 or the back film 15 of the bag 10 is cut so that the long side direction of the test piece coincides with the flow direction as indicated by reference numeral 80A in FIG. To prepare a test piece. When measuring the loop stiffness of the packaging material 30 in the vertical direction, the front film 14 or the back film 15 of the bag 10 is cut so that the long side direction of the test piece coincides with the vertical direction as indicated by reference numeral 80B in FIG. To prepare a test piece.
 ループスティフネス測定器85を用いて試験片80のループスティフネスを測定する方法について説明する。まず、図5及び図6に示すように、間隔L3を空けて配置されている一対のチャック部86の第1チャック861上に試験片80を載置する。本願においては、後述するループ部81の長さ(以下、ループ長とも称する)が60mmになるよう、間隔L3を設定した。試験片80は、第1チャック861側に位置する内面80xと、内面80xの反対側に位置する外面80yと、を含む。試験片80が包装材料30からなる場合、試験片80の内面80x及び外面80yは、包装材料30の内面30x及び外面30yに一致する。後述するループ部81を試験片80に形成する際、内面80xがループ部81の内側に位置し、外面80yがループ部81の外側に位置する。続いて、図8に示すように、第1チャック861との間で試験片80の長辺方向の端部を把持するよう、第2チャック862を試験片80の上に配置する。 A method for measuring the loop stiffness of the test piece 80 using the loop stiffness measuring device 85 will be described. First, as shown in FIGS. 5 and 6, the test piece 80 is placed on the first chuck 861 of the pair of chuck portions 86 arranged with a gap L <b> 3. In the present application, the interval L3 is set so that the length of the loop portion 81 (to be described later) (hereinafter also referred to as loop length) is 60 mm. The test piece 80 includes an inner surface 80x located on the first chuck 861 side and an outer surface 80y located on the opposite side of the inner surface 80x. When the test piece 80 is made of the packaging material 30, the inner surface 80x and the outer surface 80y of the test piece 80 coincide with the inner surface 30x and the outer surface 30y of the packaging material 30. When the loop portion 81 described later is formed on the test piece 80, the inner surface 80 x is positioned inside the loop portion 81 and the outer surface 80 y is positioned outside the loop portion 81. Subsequently, as shown in FIG. 8, the second chuck 862 is disposed on the test piece 80 so as to grip the end portion in the long side direction of the test piece 80 with the first chuck 861.
 続いて、図9に示すように、一対のチャック部86の間の間隔が縮まる方向において、一対のチャック部86の少なくとも一方を支持部材87上でスライドさせる。これにより、試験片80にループ部81を形成することができる。図9に示す試験片80は、ループ部81と、一対の中間部82及び一対の固定部83とを有する。一対の固定部83は、試験片80のうち一対のチャック部86によって把持されている部分である。一対の中間部82は、試験片80のうちループ部81と一対の中間部82との間に位置している部分である。図9に示すように、チャック部86は、一対の中間部82の内面80x同士が接触するまで支持部材87上でスライドされる。これにより、60mmのループ長を有するループ部81を形成することができる。ループ部81のループ長は、一方の第2チャック862のループ部81側の面と試験片80とが交わる位置P1と、他方の第2チャック862のループ部81側の面と試験片80とが交わる位置P2との間における、試験片80の長さである。上述の間隔L3は、試験片80の厚みを無視する場合、ループ部81の長さに2×tを加えた値になる。tは、チャック部86の第2チャック862の厚みである。 Subsequently, as shown in FIG. 9, at least one of the pair of chuck portions 86 is slid on the support member 87 in a direction in which the distance between the pair of chuck portions 86 is reduced. Thereby, the loop part 81 can be formed in the test piece 80. A test piece 80 shown in FIG. 9 includes a loop portion 81, a pair of intermediate portions 82, and a pair of fixing portions 83. The pair of fixing portions 83 are portions of the test piece 80 that are gripped by the pair of chuck portions 86. The pair of intermediate portions 82 are portions of the test piece 80 that are located between the loop portion 81 and the pair of intermediate portions 82. As shown in FIG. 9, the chuck portion 86 is slid on the support member 87 until the inner surfaces 80x of the pair of intermediate portions 82 come into contact with each other. Thereby, the loop part 81 which has a loop length of 60 mm can be formed. The loop length of the loop portion 81 is such that the position P1 where the surface on the loop portion 81 side of one second chuck 862 and the test piece 80 intersect, the surface on the loop portion 81 side of the other second chuck 862, and the test piece 80 This is the length of the test piece 80 between the position P2 and the position P2. The interval L3 is a value obtained by adding 2 × t to the length of the loop portion 81 when the thickness of the test piece 80 is ignored. t is the thickness of the second chuck 862 of the chuck portion 86.
 その後、図10に示すように、チャック部86に対するループ部81の突出方向Yが水平方向になるよう、チャック部86の姿勢を調整する。例えば、支持部材87の法線方向が水平方向を向くように支持部材87を動かすことにより、支持部材87によって支持されているチャック部86の姿勢を調整する。図10に示す例において、ループ部81の突出方向Yは、チャック部の厚み方向に一致している。また、ループ部81の突出方向Yにおいて第2チャック862から距離Z1だけ離れた位置にロードセル88を準備する。本願においては、距離Z1を50mmとした。続いて、ロードセル88を、試験片80のループ部81に向けて、図10に示す距離Z2だけ速度Vで移動させる。距離Z2は、図10及び図11に示すように、ロードセル88がループ部81に接触し、その後、ロードセル88がループ部81をチャック部86側に押し込むよう、設定される。本願においては、距離Z2を40mmとした。この場合、ロードセル88がループ部81をチャック部86側に押し込んでいる状態におけるロードセル88とチャック部86の第2チャック862との間の距離Z3は、10mmになる。ロードセル88を移動させる速度Vは、3.3mm/秒とした。 Thereafter, as shown in FIG. 10, the posture of the chuck portion 86 is adjusted so that the protruding direction Y of the loop portion 81 with respect to the chuck portion 86 is horizontal. For example, the posture of the chuck portion 86 supported by the support member 87 is adjusted by moving the support member 87 so that the normal direction of the support member 87 faces the horizontal direction. In the example shown in FIG. 10, the protruding direction Y of the loop portion 81 coincides with the thickness direction of the chuck portion. In addition, the load cell 88 is prepared at a position away from the second chuck 862 by the distance Z1 in the projecting direction Y of the loop portion 81. In the present application, the distance Z1 is 50 mm. Subsequently, the load cell 88 is moved toward the loop portion 81 of the test piece 80 at a speed V by a distance Z2 shown in FIG. As shown in FIGS. 10 and 11, the distance Z2 is set so that the load cell 88 comes into contact with the loop portion 81 and then the load cell 88 pushes the loop portion 81 toward the chuck portion 86. In the present application, the distance Z2 is 40 mm. In this case, the distance Z3 between the load cell 88 and the second chuck 862 of the chuck portion 86 in a state where the load cell 88 pushes the loop portion 81 toward the chuck portion 86 is 10 mm. The speed V for moving the load cell 88 was 3.3 mm / second.
 続いて、図11に示す、ロードセル88をチャック部86側に距離Z2だけ移動させ、ロードセル88が試験片80のループ部81を押し込んでいる状態において、ループ部81からロードセル88に加えられている荷重の値が安定した後、荷重の値を記録する。このようにして得られた荷重の値を、試験片80を構成するフィルムのループスティフネスとして採用する。本願において、特に断らない限り、ループスティフネスの測定時の環境は、温度23℃、相対湿度50%である。 Subsequently, the load cell 88 shown in FIG. 11 is moved to the chuck portion 86 side by a distance Z2, and the load cell 88 is added to the load cell 88 from the loop portion 81 in a state where the load cell 88 pushes the loop portion 81 of the test piece 80. After the load value stabilizes, record the load value. The load value thus obtained is adopted as the loop stiffness of the film constituting the test piece 80. In this application, unless otherwise specified, the environment at the time of measuring loop stiffness is a temperature of 23 ° C. and a relative humidity of 50%.
 高スティフネスポリエステルフィルムの好ましい機械特性について更に説明する。
 高スティフネスポリエステルフィルムの突き刺し強度は、好ましくは10N以上であり、より好ましくは11N以上である。
The preferred mechanical properties of the high stiffness polyester film will be further described.
The puncture strength of the high stiffness polyester film is preferably 10N or more, more preferably 11N or more.
 少なくとも1つの方向における高スティフネスポリエステルフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。例えば、流れ方向における高スティフネスポリエステルフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。また、垂直方向における高スティフネスポリエステルフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。
 少なくとも1つの方向における高スティフネスポリエステルフィルムの引張伸度は、好ましくは130%以下であり、より好ましくは120%以下である。例えば、流れ方向における高スティフネスポリエステルフィルムの引張伸度は、好ましくは130%以下であり、より好ましくは120%以下である。また、垂直方向における高スティフネスポリエステルフィルムの引張伸度は、好ましくは120%以下であり、より好ましくは110%以下である。
 好ましくは、少なくとも1つの方向において、高スティフネスポリエステルフィルムの引張強度を引張伸度で割った値が2.0〔MPa/%〕以上である。例えば、垂直方向(TD)における高スティフネスポリエステルフィルムの引張強度を引張伸度で割った値は、好ましくは2.0〔MPa/%〕以上であり、より好ましくは2.2〔MPa/%〕以上である。流れ方向(MD)における高スティフネスポリエステルフィルムの引張強度を引張伸度で割った値は、好ましくは1.8〔MPa/%〕以上であり、より好ましくは2.0〔MPa/%〕以上である。
 引張強度及び引張伸度は、JIS K7127に準拠して測定され得る。測定器としては、オリエンテック社製の引張試験機 STA-1150を用いることができる。試験片としては、高スティフネスポリエステルフィルムを幅15mm、長さ150mmの矩形状のフィルムに切り出したものを用いることができる。試験片を保持する一対のチャックの間の、測定開始時の間隔は100mmであり、引張速度は300mm/分である。本願において、特に断らない限り、引張強度及び引張伸度の測定時の環境は、温度23℃、相対湿度50%である。
The tensile strength of the high stiffness polyester film in at least one direction is preferably 250 MPa or more, more preferably 280 MPa or more. For example, the tensile strength of the high stiffness polyester film in the flow direction is preferably 250 MPa or more, more preferably 280 MPa or more. Further, the tensile strength of the high stiffness polyester film in the vertical direction is preferably 250 MPa or more, more preferably 280 MPa or more.
The tensile elongation of the high stiffness polyester film in at least one direction is preferably 130% or less, more preferably 120% or less. For example, the tensile elongation of the high stiffness polyester film in the flow direction is preferably 130% or less, more preferably 120% or less. Further, the tensile elongation of the high stiffness polyester film in the vertical direction is preferably 120% or less, and more preferably 110% or less.
Preferably, in at least one direction, a value obtained by dividing the tensile strength of the high stiffness polyester film by the tensile elongation is 2.0 [MPa /%] or more. For example, the value obtained by dividing the tensile strength of the high stiffness polyester film in the vertical direction (TD) by the tensile elongation is preferably 2.0 [MPa /%] or more, more preferably 2.2 [MPa /%]. That's it. The value obtained by dividing the tensile strength of the high stiffness polyester film in the flow direction (MD) by the tensile elongation is preferably 1.8 [MPa /%] or more, more preferably 2.0 [MPa /%] or more. is there.
The tensile strength and tensile elongation can be measured according to JIS K7127. As a measuring instrument, a tensile tester STA-1150 manufactured by Orientec Corporation can be used. As the test piece, a high-stiffness polyester film cut into a rectangular film having a width of 15 mm and a length of 150 mm can be used. The distance at the start of measurement between the pair of chucks holding the test piece is 100 mm, and the tensile speed is 300 mm / min. In this application, unless otherwise specified, the environment at the time of measurement of tensile strength and tensile elongation is a temperature of 23 ° C. and a relative humidity of 50%.
 少なくとも1つの方向における高スティフネスポリエステルフィルムの熱収縮率は、0.7%以下であることが好ましく、0.5%以下であることがより好ましい。例えば、流れ方向における高スティフネスポリエステルフィルムの熱収縮率は、0.7%以下であることが好ましく、0.5%以下であることがより好ましい。垂直方向における高スティフネスポリエステルフィルムの熱収縮率は、0.7%以下であることが好ましく、0.5%以下であることがより好ましい。熱収縮率を測定する際の加熱温度は100℃であり、加熱時間は40分である。
 少なくとも1つの方向における高スティフネスポリエステルフィルムの引張弾性率は、好ましくは4.0GPa以上であり、より好ましくは4.5MPa以上である。例えば、流れ方向における高スティフネスポリエステルフィルムの引張弾性率は、好ましくは4.0GPa以上であり、より好ましくは4.5MPa以上である。垂直方向における高スティフネスポリエステルフィルムの引張弾性率は、好ましくは4.0GPa以上であり、より好ましくは4.5GPa以上である。
The heat shrinkage ratio of the high stiffness polyester film in at least one direction is preferably 0.7% or less, and more preferably 0.5% or less. For example, the thermal contraction rate of the high stiffness polyester film in the flow direction is preferably 0.7% or less, and more preferably 0.5% or less. The heat shrinkage rate of the high stiffness polyester film in the vertical direction is preferably 0.7% or less, and more preferably 0.5% or less. The heating temperature when measuring the heat shrinkage rate is 100 ° C., and the heating time is 40 minutes.
The tensile elasticity modulus of the high stiffness polyester film in at least one direction is preferably 4.0 GPa or more, more preferably 4.5 MPa or more. For example, the tensile elastic modulus of the high stiffness polyester film in the flow direction is preferably 4.0 GPa or more, more preferably 4.5 MPa or more. The tensile elastic modulus of the high stiffness polyester film in the vertical direction is preferably 4.0 GPa or more, more preferably 4.5 GPa or more.
 高スティフネスポリエステルフィルムの製造工程においては、例えば、まず、ポリエステルを溶融及び成形することによって得られたプラスチックフィルムを、流れ方向及び垂直方向において、それぞれ90℃~145℃で3倍~4.5倍に延伸する第1延伸工程を実施する。続いて、プラスチックフィルムを、流れ方向及び垂直方向において、それぞれ100℃~145℃で1.1倍~3.0倍に延伸する第2延伸工程を実施する。その後、190℃~220℃の温度で熱固定を行う。続いて、流れ方向及び垂直方向において、100℃~190℃の温度で0.2%~2.5%程度の弛緩処理(フィルム幅を縮める処理)を実施する。これらの工程において、延伸倍率、延伸温度、熱固定温度、弛緩処理率を調整することにより、上述の機械特性を備える高スティフネスポリエステルフィルムを得ることができる。 In the production process of a high stiffness polyester film, for example, a plastic film obtained by melting and molding polyester is first subjected to 3 times to 4.5 times at 90 to 145 ° C. in the flow direction and the vertical direction, respectively. The 1st extending process extended | stretched is implemented. Subsequently, a second stretching step is performed in which the plastic film is stretched 1.1 to 3.0 times at 100 to 145 ° C. in the flow direction and the vertical direction, respectively. Thereafter, heat setting is performed at a temperature of 190 ° C. to 220 ° C. Subsequently, in the flow direction and the vertical direction, a relaxation treatment (treatment for reducing the film width) of about 0.2% to 2.5% is performed at a temperature of 100 ° C. to 190 ° C. In these steps, a high stiffness polyester film having the above-mentioned mechanical properties can be obtained by adjusting the stretching ratio, stretching temperature, heat setting temperature, and relaxation treatment rate.
 本実施の形態によれば、包装材料30が高スティフネスポリエステルフィルムを含むことにより、包装材料30のループスティフネスを高めることができる。少なくとも1つの方向における包装材料30のループスティフネスは、例えば0.160N以上であり、0.165N以上であってもよく、0.170N以上であってもよく、0.175N以上であってもよく、0.180N以上であってもよい。例えば、流れ方向(MD)における包装材料30のループスティフネスは、例えば0.160N以上であり、0.165N以上であってもよく、0.170N以上であってもよく、0.175N以上であってもよく、0.180N以上であってもよい。また、垂直方向(TD)における包装材料30のループスティフネスは、例えば0.160N以上であり、0.165N以上であってもよく、0.170N以上であってもよく、0.175N以上であってもよく、0.180N以上であってもよい。 According to the present embodiment, the packaging material 30 includes the high stiffness polyester film, so that the loop stiffness of the packaging material 30 can be increased. The loop stiffness of the packaging material 30 in at least one direction is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. 0.180N or more. For example, the loop stiffness of the packaging material 30 in the flow direction (MD) is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. It may be 0.180 N or more. The loop stiffness of the packaging material 30 in the vertical direction (TD) is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. It may be 0.180 N or more.
 また、本実施の形態によれば、包装材料30が高スティフネスポリエステルフィルムを含むことにより、包装材料30の単位厚みあたりの包装材料30のループスティフネスを高めることができる。少なくとも1つの方向における包装材料30のループスティフネスを包装材料30の厚みで割った値は、例えば0.00150N/μm以上であり、0.00155N/μm以上であってもよく、0.00160N/μm以上であってもよく、0.00165N/μm以上であってもよく、0.00170N/μm以上であってもよい。例えば、流れ方向(MD)における包装材料30のループスティフネスを包装材料30の厚みで割った値は、例えば0.00150N/μm以上であり、0.00155N/μm以上であってもよく、0.00160N/μm以上であってもよく、0.00165N/μm以上であってもよく、0.00170N/μm以上であってもよい。また、垂直方向(TD)における包装材料30のループスティフネスを包装材料30の厚みで割った値は、例えば0.00150N/μm以上であり、0.00155N/μm以上であってもよく、0.00160N/μm以上であってもよく、0.00165N/μm以上であってもよく、0.00170N/μm以上であってもよい。 Further, according to the present embodiment, the packaging material 30 includes the high stiffness polyester film, so that the loop stiffness of the packaging material 30 per unit thickness of the packaging material 30 can be increased. A value obtained by dividing the loop stiffness of the packaging material 30 in at least one direction by the thickness of the packaging material 30 is, for example, 0.00150 N / μm or more, may be 0.00155 N / μm or more, and may be 0.00160 N / μm. The above may be sufficient, 0.00165 N / micrometer or more may be sufficient, and 0.00170 N / micrometer or more may be sufficient. For example, the value obtained by dividing the loop stiffness of the packaging material 30 in the flow direction (MD) by the thickness of the packaging material 30 is, for example, 0.00150 N / μm or more, and may be 0.00155 N / μm or more. It may be greater than or equal to 000016 N / μm, may be greater than or equal to 0.00165 N / μm, and may be greater than or equal to 0.00170 N / μm. The value obtained by dividing the loop stiffness of the packaging material 30 in the vertical direction (TD) by the thickness of the packaging material 30 is, for example, 0.00150 N / μm or more, and may be 0.00155 N / μm or more. It may be greater than or equal to 000016 N / μm, may be greater than or equal to 0.00165 N / μm, and may be greater than or equal to 0.00170 N / μm.
 高スティフネスポリエステルフィルムが、PETを主成分として含む高スティフネスPETフィルムである場合、高スティフネスPETフィルムを構成するPETは、バイオマス由来のPETを含んでいてもよい。この場合、高スティフネスPETフィルムは、バイオマス由来のPETのみで構成されていてもよい。若しくは、高スティフネスPETフィルムは、バイオマス由来のPETと、化石燃料由来のPETと、で構成されていてもよい。高スティフネスPETフィルムがバイオマス由来のPETを含むことにより、従来に比べて化石燃料由来のPETの量を削減することができるため、二酸化炭素の排出量を減らすことができ、環境負荷を減らすことができる。なお、バイオマス由来のPETは、バイオマス由来のエチレングリコールをジオール単位とし、化石燃料由来のテレフタル酸をジカルボン酸単位とするものである。化石燃料由来のPETは、化石燃料由来のエチレングリコールをジオール単位とし、化石燃料由来のテレフタル酸をジカルボン酸単位とするものである。 When the high stiffness polyester film is a high stiffness PET film containing PET as a main component, the PET constituting the high stiffness PET film may contain biomass-derived PET. In this case, the high stiffness PET film may be composed of only biomass-derived PET. Alternatively, the high stiffness PET film may be composed of biomass-derived PET and fossil fuel-derived PET. Since the high-stiffness PET film contains biomass-derived PET, the amount of PET derived from fossil fuel can be reduced compared to the conventional case, so that the amount of carbon dioxide emission can be reduced and the environmental load can be reduced. it can. Biomass-derived PET uses biomass-derived ethylene glycol as a diol unit and fossil fuel-derived terephthalic acid as a dicarboxylic acid unit. Fossil fuel-derived PET uses fossil fuel-derived ethylene glycol as diol units and fossil fuel-derived terephthalic acid as dicarboxylic acid units.
 大気中の二酸化炭素には、C14が一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばとうもろこし中のC14含有量も105.5pMC程度であることが知られている。また、化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、PET中の全炭素原子中に含まれるC14の割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。本発明において、「バイオマス度」とは、バイオマス由来成分の重量比率を示すものである。PETを例にとると、PETは、2炭素原子を含むエチレングリコールと8炭素原子を含むテレフタル酸とがモル比1:1で重合したものである。PETのエチレングリコールとしてバイオマス由来のもののみを使用した場合、PET中のバイオマス由来成分の重量比率は31.25%であるため、PETのバイオマス度の理論値は31.25%となる。具体的には、PETの質量は192であり、そのうちバイオマス由来のエチレングリコールに由来する質量は60であるため、60÷192×100=31.25となる。また、化石燃料由来のPETにおけるバイオマス由来成分の重量比率は0%であり、化石燃料由来のPETのバイオマス度は0%となる。本発明において、高スティフネスPETフィルムのバイオマス度は、5.0%以上であることが好ましく、10.0%以上であることがより好ましい。また、高スティフネスPETフィルムのバイオマス度は、30.0%以下であることが好ましい。 Since carbon dioxide in the atmosphere contains C14 at a constant ratio (105.5 pMC), the C14 content in plants that take in carbon dioxide in the atmosphere and grow, for example, corn, is also about 105.5 pMC. It is known. It is also known that fossil fuel contains almost no C14. Therefore, the ratio of carbon derived from biomass can be calculated by measuring the ratio of C14 contained in all carbon atoms in PET. In the present invention, “biomass degree” indicates the weight ratio of biomass-derived components. Taking PET as an example, PET is obtained by polymerizing ethylene glycol containing 2 carbon atoms and terephthalic acid containing 8 carbon atoms in a molar ratio of 1: 1. When only biomass-derived components are used as the ethylene glycol of PET, the weight ratio of biomass-derived components in PET is 31.25%, so the theoretical value of the biomass degree of PET is 31.25%. Specifically, since the mass of PET is 192 and the mass derived from biomass-derived ethylene glycol is 60, 60 ÷ 192 × 100 = 31.25. Moreover, the weight ratio of the biomass-derived component in PET derived from fossil fuel is 0%, and the biomass degree of PET derived from fossil fuel is 0%. In the present invention, the biomass degree of the high stiffness PET film is preferably 5.0% or more, and more preferably 10.0% or more. The biomass degree of the high stiffness PET film is preferably 30.0% or less.
 バイオマス由来のエチレングリコールは、バイオマスを原料として製造されたエタノール(バイオマスエタノール)を原料としたものである。例えば、バイオマスエタノールを、従来公知の方法により、エチレンオキサイドを経由してエチレングリコールを生成する方法等により、バイオマス由来のエチレングリコールを得ることができる。バイオマスエタノールの原料として、とうもろこし、さとうきび、ビート、マニオクなどを挙げることができる。また、市販のバイオマスエチレングリコールを使用してもよく、例えば、インディアグライコール社から市販されているバイオマスエチレングリコールを好適に使用することができる。なお、インディアグライコール社のバイオマスエチレングリコールは、さとうきびの廃糖蜜を原料としたものである。 Biomass-derived ethylene glycol is made from ethanol (biomass ethanol) produced from biomass as a raw material. For example, biomass-derived ethylene glycol can be obtained from biomass ethanol by a conventionally known method, such as a method of producing ethylene glycol via ethylene oxide. Examples of raw materials for biomass ethanol include corn, sugar cane, beet, and manioc. Moreover, you may use commercially available biomass ethylene glycol, for example, the biomass ethylene glycol marketed from India Glycol can be used conveniently. India Glycoal's biomass ethylene glycol is made from sugarcane waste molasses.
 第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50の一方が高スティフネスポリエステルフィルムである場合、第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50の他方は、ポリエステル又はポリアミドを主成分として含む。例えば、第1延伸プラスチックフィルム40が高スティフネスポリエステルフィルムである場合、第2延伸プラスチックフィルム50は、51質量%以上のポリエステル又はポリアミドを主成分として含む延伸プラスチックフィルムであってもよい。また、第2延伸プラスチックフィルム50が高スティフネスポリエステルフィルムである場合、第1延伸プラスチックフィルム40は、51質量%以上のポリエステル又はポリアミドを主成分として含む延伸プラスチックフィルムであってもよい。また、第1延伸プラスチックフィルム40及び第2延伸プラスチックフィルム50の両方が、高スティフネスポリエステルフィルムであってもよい。 When one of the first stretched plastic film 40 or the second stretched plastic film 50 is a high stiffness polyester film, the other of the first stretched plastic film 40 or the second stretched plastic film 50 contains polyester or polyamide as a main component. For example, when the first stretched plastic film 40 is a high stiffness polyester film, the second stretched plastic film 50 may be a stretched plastic film containing 51% by mass or more of polyester or polyamide as a main component. Further, when the second stretched plastic film 50 is a high stiffness polyester film, the first stretched plastic film 40 may be a stretched plastic film containing 51% by mass or more of polyester or polyamide as a main component. Further, both the first stretched plastic film 40 and the second stretched plastic film 50 may be high stiffness polyester films.
 なお、包装材料30から構成された袋10に、ボイル処理やレトルト処理などの高温の殺菌処理が施される場合、第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50の他方を構成する延伸プラスチックフィルムがポリエステルを主成分として含むことが好ましい。 In addition, when the bag 10 comprised from the packaging material 30 is subjected to high-temperature sterilization treatment such as boil treatment or retort treatment, the stretched plastic constituting the other of the first stretched plastic film 40 or the second stretched plastic film 50 It is preferable that the film contains polyester as a main component.
 ポリエステルを主成分として含む延伸プラスチックフィルム(以下、延伸ポリエステルフィルムとも記す)は、例えば51質量%以上のポリエステルを含む。ポリエステルとしては、高スティフネスポリエステルフィルムの場合と同様に、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸から選ばれる少なくとも1種の芳香族ジカルボン酸と、エチレグリコール、1,3-プロパンジオールおよび1,4-ブタンジオールから選ばれる少なくとも1種の脂肪族アルコールとからなる芳香族ポリエステルを主体とするポリエステルが好ましい。ポリエステルの例としては、PET、PBTなどを挙げることができる。なお、延伸ポリエステルフィルムにおける、51質量%以上のポリエステルは、一種類のポリエステルによって構成されていてもよく、二種類以上のポリエステルによって構成されていてもよい。 The stretched plastic film containing polyester as a main component (hereinafter also referred to as stretched polyester film) contains, for example, 51% by mass or more of polyester. As the polyester, as in the case of the high stiffness polyester film, at least one aromatic dicarboxylic acid selected from terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, ethylene glycol, 1,3-propanediol and A polyester mainly composed of an aromatic polyester comprising at least one aliphatic alcohol selected from 1,4-butanediol is preferred. Examples of polyester include PET and PBT. In addition, 51 mass% or more polyester in a stretched polyester film may be comprised by one type of polyester, and may be comprised by two or more types of polyester.
 延伸ポリエステルフィルムの厚みは、好ましくは9μm以上であり、より好ましくは12μm以上である。また、延伸ポリエステルフィルムの厚みは、好ましくは25μm以下であり、より好ましくは20μm以下である。延伸ポリエステルフィルムの厚みを9μm以上にすることにより、延伸ポリエステルフィルムが十分な強度を有するようになる。また、延伸ポリエステルフィルムの厚みを25μm以下にすることにより、延伸ポリエステルフィルムが優れた成形性を示すようになる。このため、包装材料30を加工して袋10を製造する工程を効率的に実施することができる。 The thickness of the stretched polyester film is preferably 9 μm or more, more preferably 12 μm or more. The stretched polyester film preferably has a thickness of 25 μm or less, more preferably 20 μm or less. By setting the thickness of the stretched polyester film to 9 μm or more, the stretched polyester film has sufficient strength. Moreover, when the thickness of the stretched polyester film is 25 μm or less, the stretched polyester film exhibits excellent moldability. For this reason, the process which processes the packaging material 30 and manufactures the bag 10 can be implemented efficiently.
 好ましくは、延伸ポリエステルフィルムを構成する材料は、所定値以上の熱伝導率を有する。例えば、延伸ポリエステルフィルムを構成する材料の熱伝導率は、好ましくは0.05W/m・K以上であり、より好ましくは0.1W/m・K以上である。なお、PETの熱伝導率は、例えば0.14W/m・Kである。また、PBTの熱伝導率は、PETの熱伝導率よりも高く、例えば0.25W/m・Kである。所定値以上の熱伝導率を有する材料を用いることにより、包装材料30の耐熱性を高めることができる。 Preferably, the material constituting the stretched polyester film has a thermal conductivity equal to or higher than a predetermined value. For example, the thermal conductivity of the material constituting the stretched polyester film is preferably 0.05 W / m · K or more, more preferably 0.1 W / m · K or more. The thermal conductivity of PET is, for example, 0.14 W / m · K. Moreover, the thermal conductivity of PBT is higher than that of PET, for example, 0.25 W / m · K. By using a material having a thermal conductivity equal to or higher than a predetermined value, the heat resistance of the packaging material 30 can be increased.
 延伸ポリエステルフィルムの融点は、好ましくは200℃以上であり、より好ましくは220℃以上である。延伸ポリエステルフィルムの融点を220℃以上とすることにより、包装材料30を用いて製造された袋10に収容された内容物を加熱する際に、延伸ポリエステルフィルムに穴があくことや、延伸ポリエステルフィルムにシワが形成されることを抑制することができる。 The melting point of the stretched polyester film is preferably 200 ° C. or higher, more preferably 220 ° C. or higher. By setting the melting point of the stretched polyester film to 220 ° C. or higher, there is a hole in the stretched polyester film or the stretched polyester film when the contents contained in the bag 10 manufactured using the packaging material 30 are heated. The formation of wrinkles can be suppressed.
 延伸ポリエステルフィルムがPETを含む場合、PETは、上述の高スティフネスポリエステルフィルムの場合と同様に、バイオマス由来のPETを含んでいてもよい。この場合、延伸ポリエステルフィルムは、バイオマス由来のPETのみで構成されていてもよい。若しくは、延伸ポリエステルフィルムは、バイオマス由来のPETと、化石燃料由来のPETと、で構成されていてもよい。延伸ポリエステルフィルムに含まれるバイオマス由来のPET、延伸ポリエステルフィルムのバイオマス度などは、上述の高スティフネスポリエステルフィルムの場合と同一であるので、説明を省略する。 When the stretched polyester film contains PET, the PET may contain biomass-derived PET as in the case of the above-mentioned high stiffness polyester film. In this case, the stretched polyester film may be composed only of biomass-derived PET. Alternatively, the stretched polyester film may be composed of biomass-derived PET and fossil fuel-derived PET. Since the biomass-derived PET contained in the stretched polyester film, the biomass degree of the stretched polyester film, and the like are the same as those in the case of the above-described high stiffness polyester film, description thereof is omitted.
 ポリアミドを主成分として含む延伸プラスチックフィルム(以下、延伸ポリアミドフィルムとも記す)は、例えば51質量%以上のポリアミドを含む。ポリアミド系の例としては、脂肪族ポリアミドまたは芳香族ポリアミドが挙げられる。脂肪族ポリアミドとてしてはナイロン-6、ナイロン-6,6、ナイロン6とナイロン6,6との共重合体などのナイロンが挙げられ、芳香族ポリアミドとしては、ポリメタキシレンアジパミド(MXD6)などが挙げられる。包装材料30が、延伸ポリアミドフィルムを備えることにより、包装材料30の突き刺し強度を高めることができる。 The stretched plastic film containing polyamide as a main component (hereinafter also referred to as stretched polyamide film) contains, for example, 51% by mass or more of polyamide. Examples of polyamide systems include aliphatic polyamides or aromatic polyamides. Examples of the aliphatic polyamide include nylon-6, nylon-6,6, nylon such as a copolymer of nylon 6 and nylon 6,6, and examples of the aromatic polyamide include polymetaxylene adipamide ( MXD6). Since the packaging material 30 includes the stretched polyamide film, the puncture strength of the packaging material 30 can be increased.
 延伸ポリアミドフィルムは、単一の層によって構成されていてもよく、複数の層によって構成されていてもよい。延伸ポリアミドフィルムが複数の層を含む場合、延伸ポリアミドフィルムは、例えば、共押し出しによって作製された共押しフィルムである。共押しフィルムは、例えば、順に積層された、PETなどのポリエステルからなる第1層、ナイロンなどのポリアミドからなる第2層、およびPETなどのポリエステルからなる第3層を含む。なお、ナイロンなどのポリアミドからなる第2層の質量が、共押しフィルム全体の質量の51%以上である場合、共押しフィルムの主成分はポリアミドであると言える。 The stretched polyamide film may be composed of a single layer or a plurality of layers. When the stretched polyamide film includes a plurality of layers, the stretched polyamide film is, for example, a co-extruded film produced by co-extrusion. The co-pressing film includes, for example, a first layer made of polyester such as PET, a second layer made of polyamide such as nylon, and a third layer made of polyester such as PET, which are sequentially laminated. In addition, when the mass of the second layer made of polyamide such as nylon is 51% or more of the mass of the entire co-pressed film, it can be said that the main component of the co-pressed film is polyamide.
 好ましくは、第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50の他方を構成する延伸ポリエステルフィルム又は延伸ポリアミドフィルムは、流れ方向(MD)における引き裂き性を有するよう構成されている。以下の説明において、流れ方向(MD)における引き裂き性を有する延伸ポリエステルフィルム又は延伸ポリアミドフィルムのことを、直進カットフィルムとも称する。直進カットフィルムを用いることにより、流れ方向(MD)における引き裂き性を包装材料30に持たせることができる。なお、図1に示す袋10においては、第1方向D1が、延伸プラスチックフィルム40,50などのフィルムの流れ方向(MD)に相当する。また、第2方向D2が、延伸プラスチックフィルム40,50などのフィルムの垂直方向(TD)に相当する。 Preferably, the stretched polyester film or stretched polyamide film constituting the other of the first stretched plastic film 40 or the second stretched plastic film 50 is configured to have tearability in the flow direction (MD). In the following description, the stretched polyester film or stretched polyamide film having tearability in the flow direction (MD) is also referred to as a straight cut film. By using the rectilinear cut film, the packaging material 30 can be provided with tearability in the flow direction (MD). In the bag 10 shown in FIG. 1, the first direction D1 corresponds to the flow direction (MD) of a film such as the stretched plastic films 40 and 50. The second direction D2 corresponds to the vertical direction (TD) of a film such as the stretched plastic films 40 and 50.
 以下、直進カットフィルムについて説明する。流れ方向(MD)における直進カットフィルムの引張強度は、垂直方向(TD)における直進カットフィルムの引張強度よりも大きい。流れ方向(MD)における直進カットフィルムの引張強度は、垂直方向(TD)における直進カットフィルムの引張強度の、好ましくは1.05倍以上であり、より好ましくは1.10倍以上であり、更に好ましくは1.2倍以上である。また、流れ方向(MD)における直進カットフィルムの引張強度は、例えば200MPa以上且つ300MPa以下である。 Hereinafter, the straight cut film will be described. The tensile strength of the straight cut film in the flow direction (MD) is larger than the tensile strength of the straight cut film in the vertical direction (TD). The tensile strength of the straight cut film in the flow direction (MD) is preferably 1.05 times or more, more preferably 1.10 times or more of the tensile strength of the straight cut film in the vertical direction (TD). Preferably it is 1.2 times or more. Moreover, the tensile strength of the rectilinear cut film in the flow direction (MD) is, for example, 200 MPa or more and 300 MPa or less.
 直進カットフィルムは、ポリエステルを主成分として含む直進カットポリエステルフィルムであってもよく、ポリアミドを主成分として含む直進カットポリアミドフィルムであってもよい。 The straight cut film may be a straight cut polyester film containing polyester as a main component or a straight cut polyamide film containing polyamide as a main component.
 本実施の形態における、第1延伸プラスチックフィルム40と第2延伸プラスチックフィルム50の組み合わせの例は以下の通りである。
Figure JPOXMLDOC01-appb-T000001
Examples of combinations of the first stretched plastic film 40 and the second stretched plastic film 50 in the present embodiment are as follows.
Figure JPOXMLDOC01-appb-T000001
 (第1接着剤層)
 第1接着剤層45は、第1延伸プラスチックフィルム40と第2延伸プラスチックフィルム50とをドライラミネート法により接着するための接着剤を含む。第1接着剤層45を構成する接着剤は、主剤及び溶剤を含む第1組成物と、硬化剤及び溶剤を含む第2組成物とを混合して作製した接着剤組成物から生成される。具体的には、接着剤は、接着剤組成物中の主剤と溶剤とが反応して生成された硬化物を含む。
(First adhesive layer)
The first adhesive layer 45 includes an adhesive for bonding the first stretched plastic film 40 and the second stretched plastic film 50 by a dry lamination method. The adhesive which comprises the 1st adhesive bond layer 45 is produced | generated from the adhesive composition produced by mixing the 1st composition containing a main ingredient and a solvent, and the 2nd composition containing a hardening | curing agent and a solvent. Specifically, an adhesive contains the hardened | cured material produced | generated by the reaction of the main ingredient and solvent in an adhesive composition.
 接着剤の例としては、ポリウレタンなどを挙げることができる。ポリウレタンは、主剤としてのポリオールと、硬化剤としてのイソシアネート化合物とが反応することにより生成される硬化物である。ポリウレタンの例としては、ポリエーテルポリウレタン、ポリエステルポリウレタンなどを挙げることができる。ポリエーテルポリウレタンは、主剤としてのポリエーテルポリオールと、硬化剤としてのイソシアネート化合物とが反応することにより生成される硬化物である。ポリエステルポリウレタンは、主剤としてのポリエステルポリオールと、硬化剤としてのイソシアネート化合物とが反応することにより生成される硬化物である。 Examples of adhesives include polyurethane. Polyurethane is a cured product produced by a reaction between a polyol as a main agent and an isocyanate compound as a curing agent. Examples of polyurethane include polyether polyurethane and polyester polyurethane. The polyether polyurethane is a cured product produced by a reaction between a polyether polyol as a main agent and an isocyanate compound as a curing agent. Polyester polyurethane is a cured product produced by a reaction between a polyester polyol as a main agent and an isocyanate compound as a curing agent.
 イソシアネート化合物としては、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)などの芳香族系イソシアネート化合物、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)などの脂肪族系イソシアネート化合物、あるいは、上記各種イソシアネート化合物の付加体または多量体を用いることができる。 Isocyanate compounds include aromatic isocyanate compounds such as tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and the like. Aliphatic isocyanate compounds, or adducts or multimers of the above-mentioned various isocyanate compounds can be used.
 第1接着剤層45を構成する材料は、好ましくは、第1延伸プラスチックフィルム40、第2延伸プラスチックフィルム50及びシーラント層70を構成する材料よりも高い熱伝導率を有する。例えば、第1接着剤層45を構成する材料の熱伝導率は、好ましくは1.0W/m・K以上であり、より好ましくは3.0W/m・K以上である。なお、ポリウレタンの熱伝導率は、3.0W/m・K~5.0W/m・Kの範囲内であり、例えば5.0W/m・Kである。第1接着剤層45を構成する材料の熱伝導率が高いことにより、包装材料30を用いて作製された袋10が加熱される際、収容部17で生じた熱が包装材料30の内面30x側から外面30y側へ伝達される間に熱を包装材料30の面方向に拡散させ易くなる。これにより、包装材料30の放熱性を高めることができるので、包装材料30の温度上昇を抑制することができる。このことにより、袋10が加熱される際に包装材料30が熱によりダメージを受けることを抑制することができる。すなわち、包装材料30の耐熱性を高めることができる。 The material constituting the first adhesive layer 45 preferably has a higher thermal conductivity than the materials constituting the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70. For example, the thermal conductivity of the material constituting the first adhesive layer 45 is preferably 1.0 W / m · K or more, more preferably 3.0 W / m · K or more. The thermal conductivity of polyurethane is in the range of 3.0 W / m · K to 5.0 W / m · K, for example 5.0 W / m · K. Due to the high thermal conductivity of the material constituting the first adhesive layer 45, when the bag 10 made using the packaging material 30 is heated, the heat generated in the housing portion 17 is the inner surface 30x of the packaging material 30. Heat is easily diffused in the surface direction of the packaging material 30 while being transferred from the side to the outer surface 30y side. Thereby, since the heat dissipation of the packaging material 30 can be improved, the temperature rise of the packaging material 30 can be suppressed. As a result, the packaging material 30 can be prevented from being damaged by heat when the bag 10 is heated. That is, the heat resistance of the packaging material 30 can be increased.
 第1接着剤層45の厚みは、好ましくは2μm以上であり、より好ましくは3μm以上である。また、第1接着剤層45の厚みは、好ましくは6μm以下であり、より好ましくは5μm以下である。第1接着剤層45の厚みを3μm以上にすることにより、包装材料30の面方向における熱の拡散がより生じ易くなる。 The thickness of the first adhesive layer 45 is preferably 2 μm or more, more preferably 3 μm or more. Moreover, the thickness of the 1st adhesive bond layer 45 becomes like this. Preferably it is 6 micrometers or less, More preferably, it is 5 micrometers or less. By setting the thickness of the first adhesive layer 45 to 3 μm or more, heat diffusion in the surface direction of the packaging material 30 is more likely to occur.
 (第2接着剤層)
 第2接着剤層55は、第2延伸プラスチックフィルム50とシーラント層70とをドライラミネート法により接着するための接着剤を含む。第2接着剤層55の接着剤の例としては、第1接着剤層45の場合と同様に、ポリウレタンなどを挙げることができる。以下に説明する構成、材料や特性以外にも、第2接着剤層55の構成、材料や特性として、第1接着剤層45と同様のものを採用することができる。
(Second adhesive layer)
The second adhesive layer 55 includes an adhesive for bonding the second stretched plastic film 50 and the sealant layer 70 by a dry laminating method. As an example of the adhesive of the second adhesive layer 55, as in the case of the first adhesive layer 45, polyurethane or the like can be used. In addition to the configuration, materials, and characteristics described below, the configuration, material, and characteristics of the second adhesive layer 55 can be the same as those of the first adhesive layer 45.
 第2接着剤層55を構成する材料は、第1接着剤層45と同様に、好ましくは、第1延伸プラスチックフィルム40、第2延伸プラスチックフィルム50及びシーラント層70を構成する材料よりも高い熱伝導率を有する。例えば、第2接着剤層55を構成する材料の熱伝導率は、好ましくは1W/m・K以上であり、より好ましくは3W/m・K以上である。 The material constituting the second adhesive layer 55 is preferably higher in heat than the materials constituting the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70, like the first adhesive layer 45. Has conductivity. For example, the thermal conductivity of the material constituting the second adhesive layer 55 is preferably 1 W / m · K or more, more preferably 3 W / m · K or more.
 第2接着剤層55の厚みは、好ましくは2μm以上であり、より好ましくは3μm以上である。また、第2接着剤層55の厚みは、好ましくは6μm以下であり、より好ましくは5μm以下である。 The thickness of the second adhesive layer 55 is preferably 2 μm or more, more preferably 3 μm or more. The thickness of the second adhesive layer 55 is preferably 6 μm or less, more preferably 5 μm or less.
 ところで、接着剤の硬化剤を構成するイソシアネート化合物としては、上述のように、芳香族系イソシアネート化合物及び脂肪族系イソシアネート化合物が存在する。このうち芳香族系イソシアネート化合物は、加熱殺菌などの高温環境下において、食品用途で使用できない成分が溶出する。ところで、第2接着剤層55は、シーラント層70に接している。このため、第2接着剤層55が芳香族系イソシアネート化合物を含む場合、芳香族系イソシアネート化合物から溶出された成分が、シーラント層70に接する収容部17に収容されている内容物に付着することがある。 Incidentally, as described above, aromatic isocyanate compounds and aliphatic isocyanate compounds exist as isocyanate compounds constituting the curing agent of the adhesive. Among these, aromatic isocyanate compounds elute components that cannot be used in food applications under high-temperature environments such as heat sterilization. Incidentally, the second adhesive layer 55 is in contact with the sealant layer 70. For this reason, when the 2nd adhesive bond layer 55 contains an aromatic isocyanate compound, the component eluted from the aromatic isocyanate compound adheres to the content accommodated in the accommodating part 17 which contact | connects the sealant layer 70. FIG. There is.
 このような課題を考慮し、好ましくは、第2接着剤層55を構成する接着剤として、主剤としてのポリオールと、硬化剤としての脂肪族系イソシアネート化合物とが反応することにより生成される硬化物を用いる。これにより、第2接着剤層55に起因する、食品用途で使用できない成分が、内容物に付着することを防止することができる。 In consideration of such problems, preferably, a cured product produced by a reaction between a polyol as a main agent and an aliphatic isocyanate compound as a curing agent as an adhesive constituting the second adhesive layer 55. Is used. Thereby, it can prevent that the component which cannot be used for the food use resulting from the 2nd adhesive bond layer 55 adheres to the content.
 (シーラント層)
 次に、シーラント層70について説明する。シーラント層70を構成する材料としては、低密度ポリエチレン、直鎖状低密度ポリエチレンなどのポリエチレン、ポリプロピレンから選択される1種または2種以上の樹脂を用いることができる。シーラント層70は、単層であってもよく、多層であってもよい。また、シーラント層70は、好ましくは未延伸のシーラントフィルムからなる。なお「未延伸」とは、全く延伸されていないフィルムだけでなく、製膜の際に加えられる張力に起因してわずかに延伸されているフィルムも含む概念である。
(Sealant layer)
Next, the sealant layer 70 will be described. As a material constituting the sealant layer 70, one or more resins selected from polyethylene such as low density polyethylene and linear low density polyethylene, and polypropylene can be used. The sealant layer 70 may be a single layer or a multilayer. The sealant layer 70 is preferably made of an unstretched sealant film. “Unstretched” is a concept that includes not only a film that is not stretched at all, but also a film that is slightly stretched due to the tension applied during film formation.
 シーラント層70を構成するシーラントフィルムは、例えば、搬送するために必要な程度の延伸加工は施されているが、意図的な延伸加工は施されていないプラスチックフィルムである。シーラントフィルムの好ましい機械特性について更に説明する。
 少なくとも1つの方向におけるシーラントフィルムの引張弾性率は、好ましくは1000MPa以下である。例えば、流れ方向及び垂直方向におけるシーラントフィルムの引張弾性率は、好ましくは1000MPa以下である。
 少なくとも1つの方向におけるシーラントフィルムの引張伸度は、好ましくは300%以上である。例えば、流れ方向及び垂直方向におけるシーラントフィルムの引張伸度は、好ましくは300%以上である。
The sealant film that constitutes the sealant layer 70 is, for example, a plastic film that has been subjected to a stretching process necessary for conveyance, but has not been intentionally stretched. The preferred mechanical properties of the sealant film will be further described.
The tensile elastic modulus of the sealant film in at least one direction is preferably 1000 MPa or less. For example, the tensile elastic modulus of the sealant film in the flow direction and the vertical direction is preferably 1000 MPa or less.
The tensile elongation of the sealant film in at least one direction is preferably 300% or more. For example, the tensile elongation of the sealant film in the flow direction and the vertical direction is preferably 300% or more.
 シーラントフィルムの引張弾性率及び引張伸度は、高スティフネスポリエステルフィルムの場合と同様に、JIS K7127に準拠して測定され得る。測定器としては、オリエンテック社製の引張試験機 STA-1150を用いることができる。試験片としては、該フィルムを幅15mm、長さ150mmの矩形状のフィルムに切り出したものを用いることができる。試験片を保持する一対のチャックの間の、測定開始時の間隔は100mmであり、引張速度は300mm/分である。 The tensile elastic modulus and tensile elongation of the sealant film can be measured according to JIS K7127, as in the case of the high stiffness polyester film. As a measuring instrument, a tensile tester STA-1150 manufactured by Orientec Corporation can be used. As the test piece, a film obtained by cutting the film into a rectangular film having a width of 15 mm and a length of 150 mm can be used. The distance at the start of measurement between the pair of chucks holding the test piece is 100 mm, and the tensile speed is 300 mm / min.
 包装材料30から構成された袋10には、ボイル処理やレトルト処理などの殺菌処理が高温で施されることがある。シーラント層70は、好ましくは、これらの高温での処理に耐える耐熱性を有する。なお、レトルト処理とは、内容物を袋10に充填して袋10を密封した後、蒸気又は加熱温水を利用して袋10を加圧状態で加熱する処理である。レトルト処理の温度は、例えば120℃以上である。ボイル処理とは、内容物を袋10に充填して袋10を密封した後、袋10を大気圧下で湯煎する処理である。ボイル処理の温度は、例えば90℃以上且つ100℃以下である。 The bag 10 composed of the packaging material 30 may be subjected to a sterilization process such as a boil process or a retort process at a high temperature. The sealant layer 70 is preferably heat resistant to withstand these high temperature processes. The retort process is a process of filling the bag 10 with the contents and sealing the bag 10 and then heating the bag 10 in a pressurized state using steam or heated hot water. The temperature of retort processing is 120 degreeC or more, for example. The boil process is a process of filling the bag 10 with the contents and sealing the bag 10 and then bathing the bag 10 under atmospheric pressure. The temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
 シーラント層70を構成する材料の融点は、150℃以上であることが好ましく、160℃以上であることがより好ましい。シーラント層70の融点を高くすることにより、袋10のレトルト処理を高温で実施することが可能になり、このため、レトルト処理に要する時間を短くすることができる。なお、シーラント層70を構成する材料の融点は、延伸プラスチックフィルム40,50を構成する樹脂の融点より低い。 The melting point of the material constituting the sealant layer 70 is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. By increasing the melting point of the sealant layer 70, the bag 10 can be retorted at a high temperature, and therefore the time required for the retort processing can be shortened. The melting point of the material constituting the sealant layer 70 is lower than the melting point of the resin constituting the stretched plastic films 40 and 50.
 レトルト処理の観点で考える場合、シーラント層70を構成する材料として、プロピレンを主成分とする材料を用いることができる。ここで、プロピレンを「主成分とする」材料とは、プロピレンの含有率が90質量%以上である材料を意味する。プロピレンを主成分とする材料としては、具体的には、プロピレン・エチレンブロック共重合体、プロピレン・エチレンランダム共重合体、ホモポリプロピレンなどのポリプロピレン、又はポリプロピレンとポリエチレンとを混合したものなどを挙げることができる。ここで、「プロピレン・エチレンブロック共重合体」とは、下記の式(I)に示される構造式を有する材料を意味する。また、「プロピレン・エチレンランダム共重合体」とは、下記の式(II)に示される構造式を有する材料を意味する。また、「ホモポリプロピレン」とは、下記の式(III)に示される構造式を有する材料を意味する。 When considering from the viewpoint of retort treatment, a material mainly composed of propylene can be used as a material constituting the sealant layer 70. Here, the material having “propylene as a main component” means a material having a propylene content of 90% by mass or more. Specific examples of the material mainly composed of propylene include propylene / ethylene block copolymer, propylene / ethylene random copolymer, polypropylene such as homopolypropylene, or a mixture of polypropylene and polyethylene. Can do. Here, the “propylene / ethylene block copolymer” means a material having a structural formula represented by the following formula (I). The “propylene / ethylene random copolymer” means a material having a structural formula represented by the following formula (II). “Homopolypropylene” means a material having the structural formula shown by the following formula (III).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 プロピレンを主成分とする材料として、ポリプロピレンとポリエチレンとを混合したものを用いる場合には、材料は、海島構造を有していてもよい。ここで、「海島構造」とは、ポリプロピレンが連続する領域の内に、ポリエチレンが不連続に分散している構造をいう。 In the case of using a mixture of polypropylene and polyethylene as a material mainly composed of propylene, the material may have a sea-island structure. Here, the “sea-island structure” means a structure in which polyethylene is discontinuously dispersed in a region where polypropylene is continuous.
 ボイル処理の観点で考える場合、シーラント層70を構成する材料の例として、ポリエチレン、ポリプロピレン又はこれらの組み合わせなどを挙げることができる。ポリエチレンとしては、中密度ポリエチレン、直鎖状低密度ポリエチレン又はこれらの組み合わせなどを挙げることができる。例えば、上述のレトルト処理の観点からシーラント層70を構成する材料として挙げた材料を用いることも可能である。シーラント層70を構成する材料は、例えば100℃以上、より好ましくは105℃以上、より好ましくは110℃以上、更に好ましくは115℃以上の融点を有する。シーラント層70を構成する材料としてポリエチレンを用いる場合、100℃以上の融点は、例えば、ポリエチレンの密度が0.920g/cm以上である場合に実現され得る。また、100℃以上の融点を有するシーラント層70を構成するためのシーラント層の具体例としては、三井化学東セロ製TUX-HC、東洋紡製L6101、出光ユニテック製LS700C等を挙げることができる。105℃以上の融点を有するシーラント層70を構成するためのシーラント層の具体例としては、タマポリ製NB-1等を挙げることができる。110℃以上の融点を有するシーラント層70を構成するためのシーラント層の具体例としては、出光ユニテック製LS760C、三井化学東セロ製TUX-HZ等を挙げることができる。 When considered from the viewpoint of boil treatment, examples of the material constituting the sealant layer 70 include polyethylene, polypropylene, or a combination thereof. Examples of polyethylene include medium density polyethylene, linear low density polyethylene, and combinations thereof. For example, it is also possible to use the materials mentioned as the material constituting the sealant layer 70 from the viewpoint of the above retort processing. The material constituting the sealant layer 70 has a melting point of, for example, 100 ° C. or higher, more preferably 105 ° C. or higher, more preferably 110 ° C. or higher, and still more preferably 115 ° C. or higher. When polyethylene is used as the material constituting the sealant layer 70, a melting point of 100 ° C. or higher can be realized, for example, when the density of polyethylene is 0.920 g / cm 3 or higher. Specific examples of the sealant layer for constituting the sealant layer 70 having a melting point of 100 ° C. or higher include TUX-HC manufactured by Mitsui Chemicals Tosero, L6101 manufactured by Toyobo, and LS700C manufactured by Idemitsu Unitech. As a specific example of the sealant layer for constituting the sealant layer 70 having a melting point of 105 ° C. or higher, NB-1 manufactured by Tamapoli can be cited. Specific examples of the sealant layer for forming the sealant layer 70 having a melting point of 110 ° C. or higher include LS760C manufactured by Idemitsu Unitech, TUX-HZ manufactured by Mitsui Chemicals Tosero, and the like.
 好ましくは、シーラント層70は、プロピレン・エチレンブロック共重合体を含む単層のフィルムである。例えば、シーラント層70を含むシーラント層は、プロピレン・エチレンブロック共重合体を主成分とする単層の未延伸フィルムである。プロピレン・エチレンブロック共重合体を用いることにより、シーラント層の耐衝撃性を高めることができ、これにより、落下時の衝撃により袋10が破袋してしまうことを抑制することができる。また、包装材料30の耐突き刺し性を高めることができる。 Preferably, the sealant layer 70 is a single layer film containing a propylene / ethylene block copolymer. For example, the sealant layer including the sealant layer 70 is a single-layer unstretched film whose main component is a propylene / ethylene block copolymer. By using the propylene / ethylene block copolymer, the impact resistance of the sealant layer can be increased, and thereby, the bag 10 can be prevented from being broken due to the impact at the time of dropping. Moreover, the puncture resistance of the packaging material 30 can be improved.
 プロピレン・エチレンブロック共重合体は、例えば、ポリプロピレンからなる海成分と、エチレン・プロピレン共重合ゴム成分からなる島成分と、を含む。海成分は、プロピレン・エチレンブロック共重合体の耐ブロッキング性、耐熱性、剛性、シール強度などを高めることに寄与し得る。また、島成分は、プロピレン・エチレンブロック共重合体の耐衝撃性を高めることに寄与し得る。従って、海成分と島成分の比率を調整することにより、プロピレン・エチレンブロック共重合体を含むシーラント層の機械特性を調整することができる。 The propylene / ethylene block copolymer includes, for example, a sea component composed of polypropylene and an island component composed of an ethylene / propylene copolymer rubber component. The sea component can contribute to enhancing the blocking resistance, heat resistance, rigidity, seal strength and the like of the propylene / ethylene block copolymer. In addition, the island component can contribute to enhancing the impact resistance of the propylene / ethylene block copolymer. Therefore, the mechanical properties of the sealant layer containing the propylene / ethylene block copolymer can be adjusted by adjusting the ratio of the sea component and the island component.
 プロピレン・エチレンブロック共重合体において、ポリプロピレンからなる海成分の質量比率は、エチレン・プロピレン共重合ゴム成分からなる島成分の質量比率よりも高い。例えば、プロピレン・エチレンブロック共重合体において、ポリプロピレンからなる海成分の質量比率は、少なくとも51質量%以上であり、好ましくは60質量%以上であり、更に好ましくは70質量%以上である。 In the propylene / ethylene block copolymer, the mass ratio of the sea component made of polypropylene is higher than the mass ratio of the island component made of the ethylene / propylene copolymer rubber component. For example, in the propylene / ethylene block copolymer, the mass ratio of the sea component made of polypropylene is at least 51% by mass, preferably 60% by mass or more, and more preferably 70% by mass or more.
 単層のシーラント層は、プロピレン・エチレンブロック共重合体からなる第1の熱可塑性樹脂に加えて、第2の熱可塑性樹脂を更に含んでいてもよい。第2の熱可塑性樹脂としては、α-オレフィン共重合体、ポリエチレンなどを挙げることができる。α-オレフィン共重合体は、例えば直鎖状低密度ポリエチレンである。ポリエチレンの例としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンを挙げることができる。第2の熱可塑性樹脂は、シーラント層の耐衝撃性を高めることに寄与し得る。 The single-layer sealant layer may further contain a second thermoplastic resin in addition to the first thermoplastic resin made of propylene / ethylene block copolymer. Examples of the second thermoplastic resin include an α-olefin copolymer and polyethylene. The α-olefin copolymer is, for example, linear low density polyethylene. Examples of polyethylene include low density polyethylene, medium density polyethylene, and high density polyethylene. The second thermoplastic resin can contribute to increasing the impact resistance of the sealant layer.
 低密度ポリエチレンとは、密度が0.910g/cm以上且つ0.925g/cm以下のポリエチレンである。中密度ポリエチレンは、密度が0.926g/cm以上且つ0.940g/cm以下のポリエチレンである。高密度ポリエチレンとは、密度が0.941g/cm以上且つ0.965g/cm以下のポリエチレンである。低密度ポリエチレンは、例えば、1000気圧以上且つ2000気圧未満の高圧でエチレンを重合することにより得られる。中密度ポリエチレン及び高密度ポリエチレンは、例えば、1気圧以上且つ1000気圧未満の中圧又は低圧でエチレンを重合することにより得られる。 The low-density polyethylene, density of 0.910 g / cm 3 or more and 0.925 g / cm 3 or less of polyethylene. Medium density polyethylene is polyethylene having a density of 0.926 g / cm 3 or more and 0.940 g / cm 3 or less. The high density polyethylene is polyethylene having a density of 0.941 g / cm 3 or more and 0.965 g / cm 3 or less. Low density polyethylene is obtained, for example, by polymerizing ethylene at a high pressure of 1000 atm or more and less than 2000 atm. The medium density polyethylene and the high density polyethylene are obtained, for example, by polymerizing ethylene at a medium pressure or low pressure of 1 atm or more and less than 1000 atm.
 なお、中密度ポリエチレン及び高密度ポリエチレンは、エチレンとα-オレフィンとの共重合体を部分的に含んでいてもよい。また、中圧又は低圧でエチレンを重合する場合であっても、エチレンとα-オレフィンとの共重合体を含む場合は、中密度又は低密度のポリエチレンが生成され得る。このようなポリエチレンが、上述の直鎖状低密度ポリエチレンと称される。直鎖状低密度ポリエチレンは、中圧又は低圧でエチレンを重合することにより得られる直鎖状ポリマーにα-オレフィンを共重合させて短鎖分岐を導入することによって得られる。α-オレフィンの例としては、1-ブテン(C)、1-ヘキセン(C)、4-メチルペンテン(C)、1-オクテン(C)などを挙げることができる。直鎖状低密度ポリエチレンの密度は、例えば0.915g/cm以上且つ0.945g/cm以下である。 The medium density polyethylene and the high density polyethylene may partially contain a copolymer of ethylene and α-olefin. Even when ethylene is polymerized at an intermediate pressure or a low pressure, when a copolymer of ethylene and an α-olefin is contained, an intermediate density or low density polyethylene can be produced. Such polyethylene is referred to as the above-mentioned linear low density polyethylene. The linear low density polyethylene is obtained by introducing a short chain branch by copolymerizing an α-olefin with a linear polymer obtained by polymerizing ethylene at a medium pressure or a low pressure. Examples of α-olefins include 1-butene (C 4 ), 1-hexene (C 6 ), 4-methylpentene (C 6 ), 1-octene (C 8 ) and the like. The density of the linear low density polyethylene is, for example, 0.915 g / cm 3 or more and 0.945 g / cm 3 or less.
 なお、プロピレン・エチレンブロック共重合体の第2の熱可塑性樹脂を構成するα-オレフィン共重合体は、上述の直鎖状低密度ポリエチレンには限られない。α-オレフィン共重合体とは、下記の式(IV)に示される構造式を有する材料を意味する。 Note that the α-olefin copolymer constituting the second thermoplastic resin of the propylene / ethylene block copolymer is not limited to the above-mentioned linear low density polyethylene. The α-olefin copolymer means a material having a structural formula represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000005
 R、Rはいずれも、H(水素原子)、又はCH、Cなどのアルキル基である。また、j及びkはいずれも、1以上の整数である。また、jはkよりも大きい。すなわち、式(IV)に示すα-オレフィン共重合体においては、Rを含む左側の構造がベースとなる。Rは例えばHであり、Rは例えばCである。
Figure JPOXMLDOC01-appb-C000005
R 1 and R 2 are both H (hydrogen atom) or an alkyl group such as CH 3 or C 2 H 5 . J and k are both integers of 1 or more. J is larger than k. That is, in the α-olefin copolymer represented by the formula (IV), the left side structure including R 1 is the base. R 1 is, for example, H, and R 2 is, for example, C 2 H 5 .
 シーラント層において、プロピレン・エチレンブロック共重合体からなる第1の熱可塑性樹脂の質量比率は、α-オレフィン共重合体又はポリエチレンを少なくとも含む第2の熱可塑性樹脂の質量比率よりも高い。例えば、単層のシーラント層において、プロピレン・エチレンブロック共重合体からなる第1の熱可塑性樹脂の質量比率は、少なくとも51質量%以上であり、好ましくは60質量%以上であり、更に好ましくは70質量%以上である。 In the sealant layer, the mass ratio of the first thermoplastic resin made of propylene / ethylene block copolymer is higher than the mass ratio of the second thermoplastic resin containing at least the α-olefin copolymer or polyethylene. For example, in the single-layer sealant layer, the mass ratio of the first thermoplastic resin composed of the propylene / ethylene block copolymer is at least 51% by mass, preferably 60% by mass or more, and more preferably 70%. It is at least mass%.
 上述のように、第2の熱可塑性樹脂は、シーラント層の耐衝撃性を高めることに寄与し得る。従って、単層のシーラント層における、α-オレフィン共重合体又はポリエチレンを少なくとも含む第2の熱可塑性樹脂の質量比率を調整することにより、シーラント層の機械特性を調整することができる。 As described above, the second thermoplastic resin can contribute to enhancing the impact resistance of the sealant layer. Therefore, the mechanical properties of the sealant layer can be adjusted by adjusting the mass ratio of the second thermoplastic resin containing at least the α-olefin copolymer or polyethylene in the single sealant layer.
 また、シーラント層70は、熱可塑性エラストマーを更に含んでいてもよい。熱可塑性エラストマーを用いることにより、シーラント層70の耐衝撃性や耐突き刺し性を更に高めることができる。 The sealant layer 70 may further contain a thermoplastic elastomer. By using a thermoplastic elastomer, the impact resistance and puncture resistance of the sealant layer 70 can be further enhanced.
 熱可塑性エラストマーは、例えば水添スチレン系熱可塑性エラストマーである。水添スチレン系熱可塑性エラストマーは、少なくとも1個のビニル芳香族化合物を主体とする重合体ブロックAと少なくとも1個の水素添加された共役ジエン化合物を主体とする重合体ブロックBからなる構造を有する。また、熱可塑性エラストマーは、エチレン・α-オレフィンエラストマーであってもよい。エチレン・α-オレフィンエラストマーは、低結晶性もしくは非晶性の共重合体エラストマーであり、主成分としての50~90質量%のエチレンと共重合モノマーとしてのα-オレフィンとのランダム共重合体である。 The thermoplastic elastomer is, for example, a hydrogenated styrene thermoplastic elastomer. The hydrogenated styrene-based thermoplastic elastomer has a structure comprising a polymer block A mainly composed of at least one vinyl aromatic compound and a polymer block B mainly composed of at least one hydrogenated conjugated diene compound. . The thermoplastic elastomer may be an ethylene / α-olefin elastomer. The ethylene / α-olefin elastomer is a low crystalline or amorphous copolymer elastomer, which is a random copolymer of 50 to 90% by mass of ethylene as a main component and α-olefin as a comonomer. is there.
 シーラント層70におけるプロピレン・エチレンブロック共重合体の含有率は、例えば80質量%以上であり、好ましくは90質量%以上である。 The content of the propylene / ethylene block copolymer in the sealant layer 70 is, for example, 80% by mass or more, and preferably 90% by mass or more.
 プロピレン・エチレンブロック共重合体の製造方法としては、触媒を用いて原料であるプロピレンやエチレンなどを重合させる方法が挙げられる。触媒としては、チーグラー・ナッタ型やメタロセン触媒などを用いることができる。 Examples of the method for producing a propylene / ethylene block copolymer include a method of polymerizing propylene, ethylene, and the like as raw materials using a catalyst. As the catalyst, Ziegler-Natta type or metallocene catalyst can be used.
 シーラント層70の厚みは、好ましくは30μm以上であり、より好ましくは40μm以上である。また、シーラント層70の厚みは、好ましくは100μm以下であり、より好ましくは80μm以下である。 The thickness of the sealant layer 70 is preferably 30 μm or more, more preferably 40 μm or more. Moreover, the thickness of the sealant layer 70 is preferably 100 μm or less, and more preferably 80 μm or less.
 以下、シーラント層70が、プロピレン・エチレンブロック共重合体を含む単層のシーラントフィルムからなる場合の、シーラントフィルムの好ましい機械特性について説明する。
 流れ方向(MD)におけるシーラントフィルムの、25℃における引張伸度は、好ましくは600%以上且つ1300%以下である。また、流れ方向(MD)におけるシーラントフィルムの引張伸度(%)とシーラントフィルムの厚み(μm)の積は、好ましくは35000以上且つ80000以下である。また、垂直方向(TD)におけるシーラントフィルムの、25℃における引張伸度は、好ましくは700%以上且つ1400%以下である。また、垂直方向(TD)におけるシーラントフィルムの引張伸度(%)とシーラントフィルムの厚み(μm)の積は、好ましくは40000以上且つ85000以下である。
 流れ方向(MD)におけるシーラントフィルムの、25℃における引張弾性率は、好ましくは400MPa以上且つ1100MPa以下である。また、流れ方向(MD)におけるシーラントフィルムの引張弾性率(MPa)とシーラントフィルムの厚み(μm)の積は、好ましくは30000以上且つ55000以下である。また、垂直方向(TD)におけるシーラントフィルムの、25℃における引張弾性率は、好ましくは250MPa以上且つ900MPa以下である。また、垂直方向(TD)におけるシーラントフィルムの引張弾性率(MPa)とシーラントフィルムの厚み(μm)の積は、好ましくは20000以上且つ45000以上である。
 なお、図1に示す袋10においては、第1方向D1が、シーラントフィルムの流れ方向(MD)に相当する。また、第2方向D2が、シーラントフィルムの垂直方向(TD)に相当する。
Hereinafter, preferable mechanical properties of the sealant film when the sealant layer 70 is formed of a single-layer sealant film containing a propylene / ethylene block copolymer will be described.
The tensile elongation at 25 ° C. of the sealant film in the flow direction (MD) is preferably 600% or more and 1300% or less. The product of the tensile elongation (%) of the sealant film and the thickness (μm) of the sealant film in the flow direction (MD) is preferably 35000 or more and 80000 or less. Further, the tensile elongation at 25 ° C. of the sealant film in the vertical direction (TD) is preferably 700% or more and 1400% or less. The product of the tensile elongation (%) of the sealant film and the thickness (μm) of the sealant film in the vertical direction (TD) is preferably 40000 or more and 85000 or less.
The tensile modulus at 25 ° C. of the sealant film in the flow direction (MD) is preferably 400 MPa or more and 1100 MPa or less. The product of the tensile modulus (MPa) of the sealant film and the thickness (μm) of the sealant film in the flow direction (MD) is preferably 30000 or more and 55000 or less. Further, the tensile elastic modulus at 25 ° C. of the sealant film in the vertical direction (TD) is preferably 250 MPa or more and 900 MPa or less. The product of the tensile modulus (MPa) of the sealant film and the thickness (μm) of the sealant film in the vertical direction (TD) is preferably 20000 or more and 45000 or more.
In the bag 10 shown in FIG. 1, the first direction D1 corresponds to the flow direction (MD) of the sealant film. The second direction D2 corresponds to the vertical direction (TD) of the sealant film.
 引張弾性率及び引張伸度は、JIS K7127に準拠して測定され得る。測定器としては、オリエンテック社製の引張試験機 STA-1150を用いることができる。なお、図1に示す袋10においては、上部11及び下部12が延びる方向が、シーラントフィルムなどの、袋10を構成するフィルムの流れ方向であり、側部13が延びる方向が、シーラントフィルムなどの、袋10を構成するフィルムの垂直方向である。図示はしないが、上部11及び下部12が延びる方向が、フィルムの垂直方向となり、側部13が延びる方向が、フィルムの流れ方向となるよう、袋10が構成されていてもよい。 Tensile modulus and tensile elongation can be measured according to JIS K7127. As a measuring instrument, a tensile tester STA-1150 manufactured by Orientec Corporation can be used. In the bag 10 shown in FIG. 1, the direction in which the upper portion 11 and the lower portion 12 extend is the flow direction of the film constituting the bag 10 such as a sealant film, and the direction in which the side portion 13 extends is such as a sealant film. , The vertical direction of the film constituting the bag 10. Although not shown, the bag 10 may be configured such that the direction in which the upper portion 11 and the lower portion 12 extend is the vertical direction of the film, and the direction in which the side portion 13 extends is the flow direction of the film.
 プロピレン・エチレンブロック共重合体を含む単層のシーラントフィルムのタイプとしては、主に2つのタイプが考えられる。
 第1は、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK500のような、高い引張伸度を有し、耐衝撃性を備えるタイプである。第1のタイプのシーラントフィルムは、好ましくは、熱間シール強度が低いという特性も更に備える。これにより、袋10の加熱時に収容部17の内圧が過大になることを抑制することができ、包装材料30にダメージが生じることを抑制することができる。
 第2は、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK207のような、高い引張弾性率を有するタイプである。第2のタイプのシーラントフィルムを用いることにより、第1方向D1に沿って消費者が袋10を引き裂くことにより袋10を開封する際の引き裂き性を高めることができる。
There are mainly two types of single-layer sealant films containing a propylene / ethylene block copolymer.
The first is a type having high tensile elongation and impact resistance, such as an unstretched polypropylene film ZK500 manufactured by Toray Film Processing Co., Ltd. The first type of sealant film preferably further has the property of low hot seal strength. Thereby, it can suppress that the internal pressure of the accommodating part 17 becomes excessive at the time of the heating of the bag 10, and it can suppress that the packaging material 30 arises a damage.
The second is a type having a high tensile elastic modulus, such as an unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. By using the second type sealant film, it is possible to improve the tearability when the bag is opened by the consumer tearing the bag 10 along the first direction D1.
 流れ方向(MD)における第1のタイプのシーラントフィルムの引張伸度(%)とシーラントフィルムの厚み(μm)の積は、好ましくは45000以上であり、より好ましくは50000以上であり、55000以上、又は60000以上であってもよい。また、垂直方向(TD)における第1のタイプのシーラントフィルムの引張伸度(%)とシーラントフィルムの厚み(μm)の積は、好ましくは53000以上であり、より好ましくは60000以上である。シーラントフィルムが高い引張伸度を有することにより、落下時の衝撃などにより袋10が破袋してしまうことを抑制することができる。
 また、流れ方向(MD)における第1のタイプのシーラントフィルムの引張弾性率(MPa)とシーラントフィルムの厚み(μm)の積は、好ましくは38000以下であり、より好ましくは35000以下である。また、垂直方向(TD)における第1のタイプのシーラントフィルムの引張弾性率(MPa)とシーラントフィルムの厚み(μm)の積は、好ましくは30000以下であり、より好ましくは25000以下である。
The product of the tensile elongation (%) of the first type sealant film in the flow direction (MD) and the thickness (μm) of the sealant film is preferably 45000 or more, more preferably 50000 or more, 55000 or more, Or 60000 or more may be sufficient. The product of the tensile elongation (%) of the first type sealant film and the thickness (μm) of the sealant film in the vertical direction (TD) is preferably 53,000 or more, more preferably 60000 or more. Since the sealant film has a high tensile elongation, the bag 10 can be prevented from breaking due to an impact at the time of dropping or the like.
Further, the product of the tensile modulus (MPa) of the first type sealant film and the thickness (μm) of the sealant film in the flow direction (MD) is preferably 38000 or less, more preferably 35000 or less. The product of the tensile modulus (MPa) of the first type sealant film and the thickness (μm) of the sealant film in the vertical direction (TD) is preferably 30000 or less, more preferably 25000 or less.
 流れ方向(MD)における第2のタイプのシーラントフィルムの引張弾性率(MPa)とシーラントフィルムの厚み(μm)の積は、好ましくは35000以上であり、より好ましくは38000以上であり、更に好ましくは45000以上である。また、垂直方向(TD)における第2のタイプのシーラントフィルムの引張弾性率(MPa)とシーラントフィルムの厚み(μm)の積は、好ましくは25000以上であり、より好ましくは30000以上であり、更に好ましくは35000以上であり、38000以上であってもよい。シーラントフィルムが高い引張弾性率を有することにより、袋10を開封する際の引き裂き性を高めることができる。
 また、流れ方向(MD)における第2のタイプのシーラントフィルムの引張伸度(%)とシーラントフィルムの厚み(μm)の積は、好ましくは55000以下であり、より好ましくは50000以下である。また、垂直方向(TD)における第2のタイプのシーラントフィルムの引張伸度(%)とシーラントフィルムの厚み(μm)の積は、好ましくは60000以下であり、より好ましくは55000以下である。
The product of the tensile modulus (MPa) of the second type sealant film in the flow direction (MD) and the thickness (μm) of the sealant film is preferably 35000 or more, more preferably 38000 or more, and further preferably 45,000 or more. Further, the product of the tensile modulus (MPa) of the second type sealant film in the vertical direction (TD) and the thickness (μm) of the sealant film is preferably 25000 or more, more preferably 30000 or more, Preferably it is 35000 or more and may be 38000 or more. When the sealant film has a high tensile elastic modulus, the tearability when the bag 10 is opened can be improved.
The product of the tensile elongation (%) of the second type sealant film and the thickness (μm) of the sealant film in the flow direction (MD) is preferably 55000 or less, more preferably 50000 or less. The product of the tensile elongation (%) of the second type sealant film and the thickness (μm) of the sealant film in the vertical direction (TD) is preferably 60000 or less, more preferably 55000 or less.
 シーラント層70は、イージーピール性を備えていてもよい。イージーピール性とは、例えばシーラント層70を有する包装材料30を用いて容器の蓋材を構成する場合に、蓋材がその下面において、すなわちシーラント層70において、容器のフランジ部から剥がれやすい、という特性である。イージーピール性は、例えば、シーラント層70を2種類以上の樹脂で構成し、一の樹脂と他の樹脂とを非相溶性とすることにより、発現することができる。イージーピール性を発現させることができる樹脂としては、例えば、高密度ポリエチレンなどのポリエチレンとポリプロピレンの混合樹脂が挙げられる。 The sealant layer 70 may have an easy peel property. The easy peel property means that, for example, when the packaging material 30 having the sealant layer 70 is used to form a container lid, the lid is easily peeled from the flange portion of the container at the lower surface thereof, that is, the sealant layer 70. It is a characteristic. The easy peel property can be expressed, for example, by configuring the sealant layer 70 with two or more kinds of resins and making one resin and another resin incompatible. Examples of the resin capable of exhibiting easy peel properties include a mixed resin of polyethylene and polypropylene such as high-density polyethylene.
 シーラント層70がイージーピール性を備える場合、図12に示すように、シーラント層70が、第2延伸プラスチックフィルム50側に位置する第1層71と、第1層71よりも内側に位置し、包装材料30の内面30xを構成するする第2層72と、を含んでいてもよい。イージーピール性を備えるシーラント層70の第1層71及び第2層72としては、以下に説明するAタイプ及びBタイプのような、主に2つのタイプが考えられる。 When the sealant layer 70 has an easy peel property, as shown in FIG. 12, the sealant layer 70 is positioned on the inner side of the first layer 71, the first layer 71 positioned on the second stretched plastic film 50 side, And a second layer 72 constituting the inner surface 30x of the packaging material 30. As the first layer 71 and the second layer 72 of the sealant layer 70 having easy peel properties, there are mainly two types such as A type and B type described below.
 Aタイプのシーラント層70においては、第1層71がポリエチレンを主成分とする層であり、第2層72がポリエチレンとポリプロピレンの混合樹脂を含む層である。第2層72においては、ポリプロピレンの配合比がポリエチレンの配合比より大きい。第2層72におけるポリプロピレンとポリエチレンの質量比は、6:4~8:2である。 In the A type sealant layer 70, the first layer 71 is a layer mainly composed of polyethylene, and the second layer 72 is a layer containing a mixed resin of polyethylene and polypropylene. In the second layer 72, the blending ratio of polypropylene is larger than the blending ratio of polyethylene. The mass ratio of polypropylene and polyethylene in the second layer 72 is 6: 4 to 8: 2.
 Aタイプのシーラント層70を備える包装材料30が、加熱殺菌用途の包装製品で使用される場合、シーラント層70におけるポリエチレンの密度を0.940g/cm3以上とすることが好ましい。 When the packaging material 30 including the A-type sealant layer 70 is used in a packaged product for heat sterilization, the density of polyethylene in the sealant layer 70 is preferably 0.940 g / cm 3 or more.
 Aタイプのシーラント層70の第2層72におけるポリプロピレンとしては、例えばエチレン-プロピレンランダム共重合体を用いることができる。 As the polypropylene in the second layer 72 of the A type sealant layer 70, for example, an ethylene-propylene random copolymer can be used.
 Aタイプのシーラント層70において、第1層71の厚みと第2層72の厚みの比は、5:1~10:1とすることができる。 In the A type sealant layer 70, the ratio of the thickness of the first layer 71 to the thickness of the second layer 72 can be 5: 1 to 10: 1.
 Bタイプのシーラント層70においては、第1層71がポリプロピレンを主成分とする層であり、第2層72がポリエチレンとポリプロピレンの混合樹脂を含む層である。第2層72においては、ポリプロピレンの配合比がポリエチレンの配合比より大きい。第2層72におけるポリプロピレンとポリエチレンの質量比は、6:4~8:2である。 In the B-type sealant layer 70, the first layer 71 is a layer mainly composed of polypropylene, and the second layer 72 is a layer containing a mixed resin of polyethylene and polypropylene. In the second layer 72, the blending ratio of polypropylene is larger than the blending ratio of polyethylene. The mass ratio of polypropylene and polyethylene in the second layer 72 is 6: 4 to 8: 2.
 Bタイプのシーラント層70を備える包装材料30が、加熱殺菌用途の包装製品で使用される場合、シーラント層70におけるポリエチレンの密度を0.940g/cm3以上とすることが好ましい。 When the packaging material 30 including the B-type sealant layer 70 is used in a packaged product for heat sterilization, the density of the polyethylene in the sealant layer 70 is preferably 0.940 g / cm 3 or more.
 Bタイプのシーラント層70の第1層71におけるポリプロピレンとしては、例えばエチレン-プロピレンブロック共重合体を用いることができる。Bタイプのシーラント層70の第2層72におけるポリプロピレンとしては、例えばエチレン-プロピレンランダム共重合体を用いることができる。 As the polypropylene in the first layer 71 of the B type sealant layer 70, for example, an ethylene-propylene block copolymer can be used. As the polypropylene in the second layer 72 of the B type sealant layer 70, for example, an ethylene-propylene random copolymer can be used.
 Bタイプのシーラント層70において、第1層71の厚みと第2層72の厚みの比は、3:1~8:1とすることができる。 In the B type sealant layer 70, the ratio of the thickness of the first layer 71 to the thickness of the second layer 72 can be 3: 1 to 8: 1.
 なお、シーラント層70は、第2延伸プラスチックフィルム50の内面側に押し出し法などによって設けられる樹脂層であってもよい。この場合、第2延伸プラスチックフィルム50とシーラント層70との間に上述の第2接着剤層55が存在していなくてもよい。 The sealant layer 70 may be a resin layer provided on the inner surface side of the second stretched plastic film 50 by an extrusion method or the like. In this case, the second adhesive layer 55 described above may not be present between the second stretched plastic film 50 and the sealant layer 70.
 (その他の層)
 包装材料30は、印刷層32を更に備えていてもよい。図2に示す例において、印刷層32は、第1延伸プラスチックフィルム40と第1接着剤層45との間に位置している。
(Other layers)
The packaging material 30 may further include a printing layer 32. In the example shown in FIG. 2, the printing layer 32 is located between the first stretched plastic film 40 and the first adhesive layer 45.
 図2に示すように、包装材料30は、第1延伸プラスチックフィルム40に設けられた印刷層32を更に備えていてもよい。印刷層32は、袋10などの包装製品に、内容物や包装製品の情報を示したり、美感を付与したりするための層である。印刷層は、文字、数字、記号、図形、絵柄などを表現する。印刷層を構成する材料としては、グラビア印刷用のインキやフレキソ印刷用のインキを用いることができる。グラビア印刷用のインキの具体例としては、DICグラフィックス株式会社製のフィナートを挙げることができる。 As shown in FIG. 2, the packaging material 30 may further include a printing layer 32 provided on the first stretched plastic film 40. The printed layer 32 is a layer for displaying information on the contents and the packaged product or imparting aesthetics to the packaged product such as the bag 10. The print layer expresses letters, numbers, symbols, figures, patterns, and the like. As a material constituting the printing layer, gravure printing ink or flexographic printing ink can be used. As a specific example of the ink for gravure printing, FINAT manufactured by DIC Graphics Corporation can be given.
 図3は、包装材料30の層構成の一変形例を示す断面図である。図3に示すように、包装材料30は、第1延伸プラスチックフィルム40の内面30x側の面上に位置する蒸着層34を備えていてもよい。また、包装材料30は、蒸着層34の面上に位置し、透明性を有するガスバリア性塗布膜36を更に備えていてもよい。 FIG. 3 is a cross-sectional view showing a modification of the layer structure of the packaging material 30. As shown in FIG. 3, the packaging material 30 may include a vapor deposition layer 34 positioned on the inner surface 30 x side surface of the first stretched plastic film 40. The packaging material 30 may further include a gas barrier coating film 36 that is located on the surface of the vapor deposition layer 34 and has transparency.
 図4は、包装材料30の層構成の一変形例を示す断面図である。図4に示すように、蒸着層34は、第2延伸プラスチックフィルム50の外面30y側の面上に位置していてもよい。また、蒸着層34の面上にガスバリア性塗布膜36が設けられていてもよい。 FIG. 4 is a cross-sectional view showing a modification of the layer structure of the packaging material 30. As shown in FIG. 4, the vapor deposition layer 34 may be located on the surface on the outer surface 30 y side of the second stretched plastic film 50. A gas barrier coating film 36 may be provided on the surface of the vapor deposition layer 34.
 以下、蒸着層34及びガスバリア性塗布膜36について説明する。 Hereinafter, the vapor deposition layer 34 and the gas barrier coating film 36 will be described.
 蒸着層34は、包装材料30のガスバリア性を高めるために包装材料30に設けられる層である。蒸着層34を構成する材料としては、アルミニウムなどの金属、酸化アルミニウムなどの金属酸化物、酸化珪素などの無機酸化物などが挙げられる。 The vapor deposition layer 34 is a layer provided on the packaging material 30 in order to improve the gas barrier property of the packaging material 30. Examples of the material constituting the vapor deposition layer 34 include metals such as aluminum, metal oxides such as aluminum oxide, and inorganic oxides such as silicon oxide.
 蒸着層34は、酸素ガスおよび水蒸気などの透過を阻止するガスバリア性の機能を有する層として機能する。なお、蒸着層34は二層以上設けられてもよい。蒸着層34を二層以上有する場合、それぞれが、同一の組成であってもよいし、異なる組成であってもよい。蒸着層34の形成方法としては、例えば、真空蒸着法、スパッタリング法、およびイオンプレ-ティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、および光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を挙げることができる。具体的には、ローラー式蒸着膜成膜装置を用いて、成膜ローラー上において蒸着層を形成することができる。 The vapor deposition layer 34 functions as a layer having a gas barrier function that prevents permeation of oxygen gas, water vapor, and the like. Two or more vapor deposition layers 34 may be provided. When it has two or more vapor deposition layers 34, each may have the same composition or different compositions. Examples of the method for forming the vapor deposition layer 34 include physical vapor deposition methods (Physical Vapor Deposition method, PVD method) such as vacuum vapor deposition, sputtering, and ion plating, or plasma chemical vapor deposition, Examples thereof include chemical vapor deposition and chemical vapor deposition (chemical vapor deposition, CVD) such as photochemical vapor deposition. Specifically, a vapor deposition layer can be formed on a film formation roller using a roller-type vapor deposition film forming apparatus.
 蒸着層34は、アルミニウム酸化物(酸化アルミニウム)、珪素酸化物などの、透明性を有する無機物で形成された透明蒸着層であってもよい。特に、蒸着層34よりも内面30x側に印刷層32が設けられている場合、蒸着層34は、透明蒸着層として構成される。透明蒸着層としては、酸化アルミニウムの非結晶性の薄膜を使用することが好ましい。具体的には、透明蒸着層は、式AlO(式中、Xは、0.5~1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜である。透明蒸着層は、膜表面から内面に向かう深さ方向に向かってXの値が減少している酸化アルミニウムの非結晶性の薄膜を使用することができる。酸化アルミニウムの非結晶性の薄膜は、式AlO(式中、Xは、0.5~1.5の範囲の数を表す。)で表され、その薄膜表面から内面に向かう深さ方向に向かってXの値が増加していることが好ましい。なお、上記の式中のXの値としては、基本的には、X=0.5以上のものを使用することができるが、X=1.0未満になると、着色が激しく、かつ、透明性に劣ることから、X=1.0以上のものを使用することが好ましい。また、X=1.5のものは、Alと酸素とが完全に酸化した状態のものであることから、上限としては、X=1.5までのものを使用することができる。なお、上記の式中のXの値が0の場合、完全な無機単体(純物質)であり、透明ではない。 The vapor deposition layer 34 may be a transparent vapor deposition layer formed of an inorganic material having transparency, such as aluminum oxide (aluminum oxide) or silicon oxide. In particular, when the printing layer 32 is provided on the inner surface 30x side of the vapor deposition layer 34, the vapor deposition layer 34 is configured as a transparent vapor deposition layer. It is preferable to use an amorphous thin film of aluminum oxide as the transparent vapor deposition layer. Specifically, the transparent vapor-deposited layer is an amorphous thin film of aluminum oxide represented by the formula AlO X (wherein X represents a number in the range of 0.5 to 1.5). As the transparent vapor deposition layer, an amorphous thin film of aluminum oxide in which the value of X decreases in the depth direction from the film surface toward the inner surface can be used. The amorphous thin film of aluminum oxide is represented by the formula AlO X (wherein X represents a number in the range of 0.5 to 1.5), and in the depth direction from the thin film surface toward the inner surface. It is preferable that the value of X is increasing. In addition, as a value of X in the above formula, a value of X = 0.5 or more can be basically used. However, when X is less than 1.0, coloring is intense and transparent. Since it is inferior in property, it is preferable to use the thing of X = 1.0 or more. Moreover, since the thing of X = 1.5 is a thing in which Al and oxygen were completely oxidized, the thing to X = 1.5 can be used as an upper limit. In addition, when the value of X in said formula is 0, it is a perfect inorganic simple substance (pure substance), and is not transparent.
 なお、Xの値の減少割合は、例えば、X線光電子分光装置(Xray Photoelectron Spectroscopy:XPS)、二次イオン質量分析装置(Secondary Ion Mass Spectroscopy:SIMS)などの表面分析装置を用い、深さ方向にイオンエッチングするなどして分析する方法を利用して、透明蒸着層の元素分析を行うことより確認することができる。 The rate of decrease in the value of X is determined by using a surface analyzer such as an X-ray photoelectron spectrometer (Xray Photoelectron Spectroscopy: XPS) or a secondary ion mass spectrometer (Secondary Ion Mass Spectroscopy: SIMS). This can be confirmed by conducting an elemental analysis of the transparent vapor-deposited layer using a method of analyzing by ion etching or the like.
 <透明蒸着層の第1の好ましい形態>
 以下、透明蒸着層の第1の好ましい形態について説明する。透明蒸着層は、アルミニウム原子と炭素原子の共有結合を含む無機化合物の混合物からなる層であってもよい。この場合において、透明蒸着層は、X線光電子分光装置(測定条件:X線源AlKα、X線出力120W)を用い、深さ方向にイオンエッチングにより測定したピークにアルミニウム原子と炭素原子の共有結合の存在を示し、また、透明性を有しかつ酸素、水蒸気等の透過を妨げるガスバリア性を有してもよい。
<First Preferred Form of Transparent Deposition Layer>
Hereinafter, the 1st preferable form of a transparent vapor deposition layer is demonstrated. The transparent vapor deposition layer may be a layer made of a mixture of inorganic compounds containing a covalent bond between an aluminum atom and a carbon atom. In this case, the transparent vapor deposition layer is a covalent bond between an aluminum atom and a carbon atom at the peak measured by ion etching in the depth direction using an X-ray photoelectron spectrometer (measurement conditions: X-ray source AlKα, X-ray output 120 W). In addition, it may have a gas barrier property that is transparent and that prevents permeation of oxygen, water vapor, and the like.
 透明蒸着層と延伸プラスチックフィルムとの界面には、金属原子と炭素原子の共有結合が形成されていてもよい。例えば、透明蒸着層が酸化アルミニウムを含む場合、延伸プラスチックフィルムと透明蒸着層との界面には、アルミニウム原子と炭素原子の共有結合が形成されていてもよい。共有結合は、X線光電子分光法による測定(以下、略して「XPS測定」という)によって検出され得る。 A covalent bond between a metal atom and a carbon atom may be formed at the interface between the transparent vapor deposition layer and the stretched plastic film. For example, when the transparent vapor deposition layer contains aluminum oxide, a covalent bond between an aluminum atom and a carbon atom may be formed at the interface between the stretched plastic film and the transparent vapor deposition layer. The covalent bond can be detected by measurement by X-ray photoelectron spectroscopy (hereinafter referred to as “XPS measurement” for short).
 また、透明蒸着層においては、アルミニウム原子と炭素原子の共有結合の存在比率が、XPS測定により透明蒸着層と延伸プラスチックフィルムとの界面を測定した場合に観察される炭素原子を含む全結合のうちの0.3%以上且つ30%以下の範囲内であることが好ましい。これにより、透明蒸着層と延伸プラスチックフィルムとの密着性が強化され、透明性も優れ、ガスバリア性の蒸着フィルムとしてバランスのよい性能のものが得られる。 Moreover, in the transparent vapor deposition layer, the existence ratio of the covalent bond between the aluminum atom and the carbon atom is the total bond including carbon atoms observed when the interface between the transparent vapor deposition layer and the stretched plastic film is measured by XPS measurement. It is preferable that it is within the range of 0.3% or more and 30% or less. Thereby, the adhesiveness of a transparent vapor deposition layer and an extending | stretched plastic film is strengthened, transparency is excellent, and the thing of the performance with a good balance is obtained as a gas barrier property vapor deposition film.
 アルミニウム原子と炭素原子の共有結合の存在比率が0.3%未満であると、透明蒸着層の密着性の改善が不十分であり、バリア性を安定して維持することが困難になる。 If the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is less than 0.3%, the adhesion of the transparent deposition layer is not sufficiently improved, and it is difficult to stably maintain the barrier property.
 さらに、酸化アルミニウムを主成分とする透明蒸着層の、AL(アルミニウム)/O(酸素)比が、延伸プラスチックフィルムと透明蒸着層との界面から、延伸プラスチックフィルムとは反対側の透明蒸着層の表面に向かって3nmまでの範囲内において、1.0以下であることが好ましい。
 透明蒸着層と延伸プラスチックフィルムとの界面から、延伸プラスチックフィルムとは反対側の透明蒸着層の表面に向かう範囲内において、AL/Oの比が1.0を超えると、延伸プラスチックフィルムと透明蒸着層との間の密着性が不十分となり、かつアルミニウムの割合が高まり、透明蒸着層の透明性が低下する。
Furthermore, the AL (aluminum) / O (oxygen) ratio of the transparent vapor-deposited layer mainly composed of aluminum oxide is such that the transparent vapor-deposited layer on the opposite side of the stretched plastic film from the interface between the stretched plastic film and the transparent vapor-deposited layer. In the range up to 3 nm toward the surface, it is preferably 1.0 or less.
Within the range from the interface between the transparent vapor-deposited layer and the stretched plastic film to the surface of the transparent vapor-deposited layer opposite to the stretched plastic film, if the AL / O ratio exceeds 1.0, the stretched plastic film and the transparent vapor-deposited film Adhesion between the layers becomes insufficient, the proportion of aluminum increases, and the transparency of the transparent vapor deposition layer decreases.
 透明蒸着層の厚みは、例えば20Å以上且つ200Åであり、好ましくは30Å以上且つ150Åである。30Å未満であると、ガスバリア性が不十分となる場合がある。一方、150Åを超えると、包装材料30のガスバリア性能を維持できない場合がある。この理由は定かではないが、透明蒸着層の厚みが150Åを超えると包装材料30の屈曲性が低下し、包装材料30を袋10に使用した場合に透明蒸着層の一部に亀裂ないしピンホールが発生してガスバリア性が低下するものと考えられる。透明蒸着層の厚みは、好ましくは、40Å以上且つ130Å以下、より好ましくは、50Å以上且つ120Å以下である。なお、透明蒸着層の厚みは、例えば、蛍光X線分析装置(商品名:RIX2000型、株式会社理学製)を用いて、ファンダメンタルパラメーター法で測定することができる。また、透明蒸着層の厚みを変更する手段としては、透明蒸着層の堆積速度を変更する方法、蒸着する速度を変更する方法などによって行うことができる。 The thickness of the transparent vapor deposition layer is, for example, 20 mm or more and 200 mm, preferably 30 mm or more and 150 mm. If it is less than 30 mm, gas barrier properties may be insufficient. On the other hand, if it exceeds 150 mm, the gas barrier performance of the packaging material 30 may not be maintained. The reason for this is not clear, but if the thickness of the transparent vapor deposition layer exceeds 150 mm, the flexibility of the packaging material 30 decreases, and when the packaging material 30 is used for the bag 10, a part of the transparent vapor deposition layer is cracked or pinholed It is considered that gas barrier properties are reduced due to the occurrence of gas. The thickness of the transparent vapor deposition layer is preferably 40 mm or more and 130 mm or less, more preferably 50 mm or more and 120 mm or less. The thickness of the transparent vapor deposition layer can be measured by a fundamental parameter method using, for example, a fluorescent X-ray analyzer (trade name: RIX2000 type, manufactured by Rigaku Corporation). Moreover, as a means to change the thickness of a transparent vapor deposition layer, it can carry out by the method of changing the deposition rate of a transparent vapor deposition layer, the method of changing the speed | rate of vapor deposition, etc.
 延伸プラスチックフィルムの面に予めコロナ放電処理、フレーム処理、プラズマ処理などの前処理を施しておいてもよい。前処理がプラズマ処理である場合、前処理装置により、0.1Pa以上100Pa以下の減圧環境下において、延伸プラスチックフィルムの面に対してプラズマを供給する。プラズマは、アルゴン等の不活性ガス単独又は酸素、窒素、炭酸ガス及びそれらの1種以上のガスとの混合ガスをプラズマ原料ガスとして用い、高周波電圧等による電位差によって、プラズマ原料ガスを励起状態にすることにより、発生させることができる。 The surface of the stretched plastic film may be pretreated such as corona discharge treatment, flame treatment, or plasma treatment. When the pretreatment is plasma treatment, plasma is supplied to the surface of the stretched plastic film by a pretreatment apparatus in a reduced pressure environment of 0.1 Pa or more and 100 Pa or less. Plasma uses an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them as a plasma source gas, and the plasma source gas is excited by a potential difference due to a high-frequency voltage or the like. By doing so, it can be generated.
 前処理により、延伸プラスチックフィルムの表面近傍にプラズマを閉じ込めることができる。これにより、延伸プラスチックフィルムの表面の形状や、化学的な結合状態や官能基を変化させ、延伸プラスチックフィルムの表面の化学的性状を変化させることができる。このことにより、延伸プラスチックフィルムと透明蒸着層との密着性を向上させることが可能となる。 プ ラ ズ マ By pretreatment, plasma can be confined in the vicinity of the surface of the stretched plastic film. Thereby, the shape of the surface of a stretched plastic film, a chemical bonding state, and a functional group can be changed, and the chemical property of the surface of a stretched plastic film can be changed. This makes it possible to improve the adhesion between the stretched plastic film and the transparent vapor deposition layer.
 <透明蒸着層の第2の好ましい形態>
 次に、透明蒸着層の第2の好ましい形態について説明する。なお、本願においては、透明蒸着層が、上述の第1の好ましい形態及び以下に説明する第2の好ましい形態の両方を満たしていてもよく、いずれか一方の形態のみを満たしていてもよい。また、本願の透明蒸着層が上述の第1の好ましい形態及び以下に説明する第2の好ましい形態のいずれをも満たさない場合も考えられ得る。
<Second Preferred Form of Transparent Deposition Layer>
Next, the 2nd preferable form of a transparent vapor deposition layer is demonstrated. In addition, in this application, the transparent vapor deposition layer may satisfy | fill both the above-mentioned 1st preferable form and the 2nd preferable form demonstrated below, and may satisfy | fill only any one form. Moreover, the case where the transparent vapor deposition layer of this application does not satisfy | fill both of the above-mentioned 1st preferable form and the 2nd preferable form demonstrated below can also be considered.
 透明蒸着層においては、延伸プラスチックフィルムなどの基材と酸化アルミニウム蒸着膜などの透明蒸着層との密着強度を規定する遷移領域が、透明蒸着層に形成されていてもよい。透明蒸着層が酸化アルミニウム蒸着膜である場合、遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて酸化アルミニウム蒸着膜のエッチングを行うことで検出される水酸化アルミニウムに変成する結合構造(Al2O4H)を含む。TOF-SIMSを用いてエッチングを行うことで規定される酸化アルミニウム蒸着膜に対する、TOF-SIMSを用いて規定される該変成される遷移領域の割合により定義される遷移領域の変成率は、好ましくは45%以下である。このような形態は、遷移領域の変成率を規定することで、延伸プラスチックフィルムと酸化アルミニウム蒸着膜との間の密着強度が改善された、バリア性を備える包装材料30を特定できるとの知見に基づくものである。 In the transparent vapor deposition layer, a transition region defining the adhesion strength between a base material such as a stretched plastic film and a transparent vapor deposition layer such as an aluminum oxide vapor deposition film may be formed in the transparent vapor deposition layer. When the transparent vapor deposition layer is an aluminum oxide vapor deposition film, the transition region is formed on the aluminum hydroxide detected by etching the aluminum oxide vapor deposition film using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Includes a transforming bond structure (Al2O4H). The transition region transformation rate defined by the ratio of the transformed transition region defined using TOF-SIMS to the aluminum oxide vapor deposition film defined by etching using TOF-SIMS is preferably 45% or less. Such a form is based on the knowledge that by specifying the transformation rate of the transition region, it is possible to specify the packaging material 30 having barrier properties with improved adhesion strength between the stretched plastic film and the aluminum oxide deposition film. Is based.
 遷移領域の変成率について具体的に説明する。まず、飛行時間型二次イオン質量分析計を用いてCsにより、酸化アルミニウム蒸着膜の最表面からエッチングを行い、酸化アルミニウム蒸着膜と延伸プラスチックフィルムとの界面の元素結合及び蒸着膜の元素結合を測定する。続いて、測定された元素および元素結合について、図13に示すように、それぞれの実測グラフを得る。 The transition region metamorphic rate will be explained in detail. First, etching is performed from the outermost surface of the aluminum oxide vapor deposition film by Cs using a time-of-flight secondary ion mass spectrometer, and the element bond of the interface between the aluminum oxide vapor deposition film and the stretched plastic film and the element bond of the vapor deposition film are performed. taking measurement. Subsequently, respective measured graphs are obtained for the measured elements and element bonds as shown in FIG.
 酸化アルミニウム蒸着膜における水酸化アルミニウムが形成する、延伸プラスチックフィルムと蒸着膜の界面の遷移領域を極力狭くするために、AL2O4Hに注目し、1)元素C6のグラフの強度Hが半分になる位置(図13において強度(Intensity)がHになる位置)を、延伸プラスチックフィルムと酸化アルミニウム蒸着膜の界面(図13において横軸(Cycle)がTの位置)として特定する。また、界面から酸化アルミニウム蒸着膜の表面(図13において横軸(Cycle)がTの位置)までを、酸化アルミニウム蒸着膜として特定する。続いて、2)元素結合AL2O4Hを表すグラフにおけるピーク(図13において横軸(Cycle)がTの位置)を求め、そのピークの位置から界面の位置までを遷移領域として特定する。続いて、3)(元素結合AL2O4Hのピークから界面までの遷移領域/酸化アルミニウム蒸着膜)×100(%)として遷移領域の水酸化アルミニウムへの変成率を求めるものである。図13に示す例において、変成率は、(W2/W1)×100(%)である。 Focus on AL2O4H in order to make the transition region at the interface between the stretched plastic film and the vapor deposition film formed by aluminum hydroxide in the aluminum oxide vapor deposition film as much as possible. 1) Position where the intensity H 0 of the graph of element C6 is halved (The position where the intensity (Intensity) becomes H 1 in FIG. 13) is specified as the interface between the stretched plastic film and the aluminum oxide deposition film (the horizontal axis (Cycle) is the position where T 1 in FIG. 13). Further, the surface from the interface to the surface of the aluminum oxide vapor deposition film (the position where the horizontal axis (Cycle) is T 0 in FIG. 13) is specified as the aluminum oxide vapor deposition film. Subsequently, 2) peak in the graph representing the element binding AL2O4H (horizontal axis shows 13 (Cycle) is asked to T 2 of the position) is specified from the position of the peak to the position of the interface as a transition region. Subsequently, 3) (transition region from the peak of the element bond AL2O4H to the interface / aluminum oxide vapor deposition film) × 100 (%) is obtained to determine the conversion rate of the transition region into aluminum hydroxide. In the example shown in FIG. 13, the metamorphic rate is (W2 / W1) × 100 (%).
 酸化アルミニウム蒸着膜の成膜は、酸化アルミニウム蒸着膜の遷移領域の変成率を好ましい値とするために、酸化アルミ蒸着工程前に、延伸プラスチックフィルムの表面にプラズマ前処理を行うことが好ましい。プラズマ前処理において、プラズマガスとして供給する酸素ガスとアルゴンまたはヘリウムとの混合比率は、5対1、好ましくは、2対1である。混合比率を5対1とすることで、延伸プラスチックフィルムの面上での蒸着アルミニウムの膜形成エネルギーが増加し、更に2対1とすることで、水酸化アルミニウムの形成が基材の界面近傍で形成される、すなわち該遷移領域の変成率が低下する。 In forming the aluminum oxide vapor-deposited film, it is preferable to perform plasma pretreatment on the surface of the stretched plastic film before the aluminum oxide vapor-deposition step in order to obtain a preferable value for the transition rate of the transition region of the aluminum oxide vapor-deposited film. In the plasma pretreatment, the mixing ratio of oxygen gas supplied as plasma gas and argon or helium is 5 to 1, preferably 2 to 1. By setting the mixing ratio to 5: 1, the film formation energy of evaporated aluminum on the surface of the stretched plastic film is increased, and by further setting 2: 1, the formation of aluminum hydroxide is near the interface of the substrate. It is formed, that is, the transformation rate of the transition region is lowered.
 蒸着膜を成膜する蒸着法としては、物理蒸着法、化学蒸着の中から種々の蒸着法が適用できる。物理蒸着法としては、蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法、クラスターイオンビーム法からなる群から選ぶことができ、化学蒸着法としては、プラズマCVD法、プラズマ重合法、熱CVD法、触媒反応型CVD法からなる群から選ぶことができる。本形態においては、物理蒸着法の蒸着法が好適である。 As a vapor deposition method for forming a vapor deposition film, various vapor deposition methods can be applied among physical vapor deposition and chemical vapor deposition. The physical vapor deposition method can be selected from the group consisting of vapor deposition method, sputtering method, ion plating method, ion beam assist method, and cluster ion beam method. Chemical vapor deposition methods include plasma CVD method, plasma polymerization method, thermal method. It can be selected from the group consisting of CVD method and catalytic reaction type CVD method. In this embodiment, a physical vapor deposition method is preferred.
 上記のように製膜される酸化アルミニウム蒸着膜の厚さは、好ましくは3nm以上且つ50nm以下であり、好ましくは8nm以上且つ30nm以下である。この範囲であれば、バリア性を保持し易い。 The thickness of the aluminum oxide vapor deposition film formed as described above is preferably 3 nm or more and 50 nm or less, and preferably 8 nm or more and 30 nm or less. If it is this range, it will be easy to hold | maintain barrier property.
 〔ガスバリア性塗布膜〕
 ガスバリア性塗布膜36は、一般式R M(OR(ただし、式中、R、Rは、炭素数1~8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも一種以上のアルコキシドと、上記のようなポリビニルアルコ-ル系樹脂および/またはエチレン・ビニルアルコ-ル共重合体とを含有し、さらに、ゾルゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合する透明ガスバリア性組成物により得られる。なお、ガスバリア性塗布膜36は透明であることが好ましい。
[Gas barrier coating film]
The gas barrier coating film 36 has a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M.) and a polyvinyl alcohol as described above And a transparent gas barrier composition that is polycondensed by a sol-gel method in the presence of a sol-gel method catalyst, an acid, water, and an organic solvent. It is done. The gas barrier coating film 36 is preferably transparent.
 上記の一般式R M(ORで表されるアルコキシドとしては、アルコキシドの部分加水分解物、アルコキシドの加水分解の縮合物の少なくとも一種以上を使用することができる。また、上記のアルコキシドの部分加水分解物としては、アルコキシ基のすべてが加水分解されている必要はなく、1個以上が加水分解されているもの、および、その混合物であってもよい。アルコキシドの加水分解の縮合物としては、部分加水分解アルコキシドの2量体以上のもの、具体的には、2~6量体のものを使用される。 As the alkoxide represented by the general formula R 1 n M (OR 2 ) m , at least one kind of a partial hydrolyzate of alkoxide and a condensate of hydrolysis of alkoxide can be used. Moreover, as a partial hydrolyzate of said alkoxide, all the alkoxy groups do not need to be hydrolyzed, The thing by which 1 or more was hydrolyzed, and its mixture may be sufficient. As the condensate of hydrolysis of alkoxide, a dimer or more of partially hydrolyzed alkoxide, specifically, a dimer to hexamer is used.
 上記の一般式R M(ORで表されるアルコキシドにおいて、Mで表される金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、その他などを使用することができる。好ましい金属としては、例えば、ケイ素、チタンなどを挙げることができる。また、本実施の形態において、アルコキシドの用い方としては、単独または二種以上の異なる金属原子のアルコキシドを同一溶液中に混合して使うこともできる。 In the alkoxide represented by the above general formula R 1 n M (OR 2 ) m , as the metal atom represented by M, silicon, zirconium, titanium, aluminum, and the like can be used. Examples of preferable metals include silicon and titanium. Moreover, in this Embodiment, as usage of an alkoxide, the alkoxide of 2 or more types of different metal atoms can also be mixed and used in the same solution.
 また、上記の一般式R M(ORで表されるアルコキシドにおいて、Rで表される有機基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基、その他などのアルキル基を挙げることができる。また、上記の一般式R M(ORで表されるアルコキシドにおいて、Rで表される有機基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、その他などを挙げることができる。なお、同一分子中にこれらのアルキル基は同一であっても、異なってもよい。 In the alkoxide represented by the general formula R 1 n M (OR 2 ) m , specific examples of the organic group represented by R 1 include, for example, a methyl group, an ethyl group, an n-propyl group, i Examples thereof include alkyl groups such as -propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-hexyl group, n-octyl group and others. In the alkoxide represented by the general formula R 1 n M (OR 2 ) m , specific examples of the organic group represented by R 2 include, for example, a methyl group, an ethyl group, an n-propyl group, i -Propyl group, n-butyl group, sec-butyl group, and the like. These alkyl groups in the same molecule may be the same or different.
 上記の透明ガスバリア性組成物を調製する際、例えば、シランカップリング剤などを添加してもよい。上記のシランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができる。特に、エポキシ基を有するオルガノアルコキシシランが好適に用いられ、具体的には、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、または、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシランなどを使用することができる。上記のようなシランカップリング剤は、一種または二種以上を混合して用いてもよい。 When preparing the above transparent gas barrier composition, for example, a silane coupling agent or the like may be added. As said silane coupling agent, known organic reactive group containing organoalkoxysilane can be used. In particular, an organoalkoxysilane having an epoxy group is preferably used. Specifically, for example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, or β- (3, 4-epoxycyclohexyl) ethyltrimethoxysilane and the like can be used. The above silane coupling agents may be used alone or in combination of two or more.
 蒸着層34を備える包装材料30の酸素透過度及び水蒸気透過度はそれぞれ、好ましくは2以下(cc/m・day・atm)及び2以下(g/m・day)である。酸素透過度は、JIS K7126(等圧法)に準じ、米国モコン社製の酸素バリア測定器 OXTRAN を用い、23℃・90%RH条件下にて測定される。水蒸気透過度は、JIS K7129(B法)に準じ、米国モコン社製の水蒸気バリア測定器 PERMATRAN を用い、40℃・90%RH条件下にて測定される。 The oxygen permeability and water vapor permeability of the packaging material 30 including the vapor deposition layer 34 are preferably 2 or less (cc / m 2 · day · atm) and 2 or less (g / m 2 · day), respectively. The oxygen permeability is measured under conditions of 23 ° C. and 90% RH using an oxygen barrier measuring device OXTRAN manufactured by Mocon, USA according to JIS K7126 (isobaric method). The water vapor permeability is measured under the conditions of 40 ° C. and 90% RH using a water vapor barrier measuring device PERMATRAN manufactured by Mocon, USA according to JIS K7129 (Method B).
 下部フィルムの層構成
 次に、下部フィルム16の層構成について説明する。
Next, the layer structure of the lower film 16 will be described.
 表面フィルム14の内面及び裏面フィルム15の内面と接合可能な内面を有する限りにおいて、下部フィルム16の層構成は任意である。例えば、表面フィルム14及び裏面フィルム15と同様に、下部フィルム16として上述の包装材料30を用いてもよい。若しくは、内面がシーラント層によって構成され、且つ包装材料30とは異なる構成のフィルムを、下部フィルム16として用いてもよい。 The layer structure of the lower film 16 is arbitrary as long as it has an inner surface that can be joined to the inner surface of the front film 14 and the inner surface of the back film 15. For example, the packaging material 30 described above may be used as the lower film 16 as with the front film 14 and the back film 15. Alternatively, a film having an inner surface constituted by a sealant layer and a configuration different from that of the packaging material 30 may be used as the lower film 16.
 包装材料の製造方法
 次に、包装材料30の製造方法の一例について説明する。
Method for producing a packaging material will be described an example of a method for manufacturing the packaging material 30.
 まず、上述の第1延伸プラスチックフィルム40及び第2延伸プラスチックフィルム50を準備する。第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50には、必要に応じて、印刷層32、蒸着層34、ガスバリア性塗布膜36などが設けられている。 First, the first stretched plastic film 40 and the second stretched plastic film 50 described above are prepared. The first stretched plastic film 40 or the second stretched plastic film 50 is provided with a printing layer 32, a vapor deposition layer 34, a gas barrier coating film 36, and the like as necessary.
 続いて、ドライラミネート法により、第1延伸プラスチックフィルム40と第2延伸プラスチックフィルム50とを、第1接着剤層45を介して積層する。その後、ドライラミネート法により、第1延伸プラスチックフィルム40及び第2延伸プラスチックフィルム50を含む積層体と、シーラント層70を構成するためのシーラントフィルムとを、第2接着剤層55を介して積層する。これによって、第1延伸プラスチックフィルム40、第2延伸プラスチックフィルム50及びシーラント層70を備える包装材料30を得ることができる。 Subsequently, the first stretched plastic film 40 and the second stretched plastic film 50 are laminated via the first adhesive layer 45 by a dry laminating method. Thereafter, the laminate including the first stretched plastic film 40 and the second stretched plastic film 50 and the sealant film for constituting the sealant layer 70 are laminated via the second adhesive layer 55 by a dry laminating method. . Thus, the packaging material 30 including the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70 can be obtained.
 若しくは、まず第2延伸プラスチックフィルム50とシーラントフィルムとを第2接着剤層55を介してドライラミネート法により積層し、その後、第1延伸プラスチックフィルム40と、第2延伸プラスチックフィルム50及びシーラント層を含む積層体とを第1接着剤層45を介してドライラミネート法により積層することにより、包装材料30を製造してもよい。 Alternatively, the second stretched plastic film 50 and the sealant film are first laminated by the dry lamination method through the second adhesive layer 55, and then the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer are laminated. The packaging material 30 may be manufactured by laminating the laminated body including the laminated body via the first adhesive layer 45 by a dry laminating method.
 ドライラミネート法においては、まず、積層される2つのフィルムのうちの一方に接着剤組成物を塗布する。続いて、塗布された接着剤組成物を乾燥させて溶剤を揮発させる。その後、乾燥後の接着剤組成物を介して2つのフィルムを積層する。続いて、積層された2つのフィルムを巻き取った状態で、例えば20℃以上の環境下で24時間以上にわたってエージングする。 In the dry laminating method, first, an adhesive composition is applied to one of two laminated films. Subsequently, the applied adhesive composition is dried to volatilize the solvent. Then, two films are laminated | stacked through the adhesive composition after drying. Subsequently, aging is performed for 24 hours or more in an environment of 20 ° C. or higher, for example, in a state where the two laminated films are wound.
 袋の製造方法
 次に、上述の包装材料30を用いて袋10を製造する方法について説明する。まず、包装材料30からなる表面フィルム14及び裏面フィルム15を準備する。また、表面フィルム14と裏面フィルム15との間に、折り返した状態の下部フィルム16を挿入する。続いて、各フィルムの内面同士をヒートシールして、下部シール部12a、側部シール部13aなどのシール部を形成する。また、ヒートシールによって互いに接合されたフィルムを適切な形状に切断して、図1に示す袋10を得る。
Method for producing a bag Next, a method for producing the bag 10 with the packaging material 30 described above. First, the front film 14 and the back film 15 made of the packaging material 30 are prepared. In addition, the lower film 16 in a folded state is inserted between the front film 14 and the back film 15. Subsequently, the inner surfaces of the films are heat-sealed to form seal portions such as the lower seal portion 12a and the side seal portion 13a. Further, the films bonded to each other by heat sealing are cut into an appropriate shape to obtain a bag 10 shown in FIG.
 続いて、上部11の開口部11bを介して内容物18を袋10に充填する。具体的には、図14に示すように、袋10の一対の側部シール部13aのうち上部11に近い部分を、一対のチャック部105によって把持する。また、図14において矢印Pで示すように、袋10の幅方向において一対のチャック部105の間の間隔が狭くなる向きにチャック部105を動かす。これにより、開口部11bを上部11に形成するように表面フィルム14及び裏面フィルム15が変形する。この際、図14に示すように、表面フィルム14及び裏面フィルム15の外面に吸着部106を取り付け、矢印Qの方向に吸着部106を移動させてもよい。これにより、開口部11bを形成し易くなる。続いて、開口部11bを介して内容物18を袋10に充填する。その後、上部11をヒートシールして上部シール部11aを形成する。このようにして、内容物18が収容され封止された袋10を得ることができる。 Subsequently, the contents 10 are filled into the bag 10 through the opening 11b of the upper portion 11. Specifically, as shown in FIG. 14, portions of the pair of side seal portions 13 a of the bag 10 that are close to the upper portion 11 are gripped by the pair of chuck portions 105. Further, as indicated by an arrow P in FIG. 14, the chuck portion 105 is moved in such a direction that the interval between the pair of chuck portions 105 becomes narrow in the width direction of the bag 10. Thereby, the surface film 14 and the back film 15 are deformed so as to form the opening 11b in the upper part 11. At this time, as shown in FIG. 14, the suction part 106 may be attached to the outer surfaces of the front film 14 and the back film 15, and the suction part 106 may be moved in the direction of the arrow Q. Thereby, it becomes easy to form the opening part 11b. Subsequently, the contents 18 are filled into the bag 10 through the opening 11b. Thereafter, the upper part 11 is heat-sealed to form the upper seal part 11a. Thus, the bag 10 in which the contents 18 are accommodated and sealed can be obtained.
 内容物18は、例えば、カレー、シチュー、スープ等の、水分を含む調理済食品である。また、内容物18は、肉や魚及びそれらのための調味料など、油分を多く含む素材を有していてもよい。また食品以外にも、湯煎等によって加熱され得るものを内容物として袋10に収容することができる。また、加熱が不要な内容物を袋10に収容してもよい。 The contents 18 are cooked foods containing moisture, such as curry, stew, and soup. The contents 18 may have a material containing a large amount of oil, such as meat and fish and seasonings for them. In addition to food, items that can be heated by hot water can be stored in the bag 10 as contents. In addition, the bag 10 may contain contents that do not require heating.
 本実施の形態においては、袋10を構成する包装材料30の第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50として、高スティフネスポリエステルフィルムが用いられている。このため、包装材料30及び袋10に剛性や耐突き刺し性を持たせることができる。これにより、例えば、先端が尖った鋭利な部材が袋10に接触した場合に袋10が破けてしまうことなどを抑制することができる。包装材料30の突き刺し強度は、14N以上であることが好ましく、15N以上であることが好ましく、16N以上であることがより好ましく、17N以上であることが好ましく、18N以上であることがさらに好ましい。突き刺し強度の測定方法については、後述する実施例において説明する。 In the present embodiment, a high stiffness polyester film is used as the first stretched plastic film 40 or the second stretched plastic film 50 of the packaging material 30 constituting the bag 10. For this reason, the packaging material 30 and the bag 10 can have rigidity and puncture resistance. Thereby, for example, when a sharp member with a sharp tip comes into contact with the bag 10, the bag 10 can be prevented from being torn. The puncture strength of the packaging material 30 is preferably 14N or more, preferably 15N or more, more preferably 16N or more, preferably 17N or more, and more preferably 18N or more. The method for measuring the piercing strength will be described in the examples described later.
 また、本実施の形態においては、表面フィルム14及び裏面フィルム15を構成する包装材料30が剛性を有しているので、図14に示すようにチャック部105を動かすとき、開口部11bを上部11に形成し易くなる。例えば、表面フィルム14及び裏面フィルム15がそれぞれ、外面側に凸となる湾曲形状を有するように変形し易くなる。これにより、開口部11bの開口幅Kを確保し易くなる。また、本実施の形態においては、表面フィルム14及び裏面フィルム15を構成する包装材料30が剛性を有しているので、表面フィルム14及び裏面フィルム15にシワが生じにくい。このため、表面フィルム14及び裏面フィルム15の外面に吸着部106が吸着し易い。このことも、開口部11bの開口幅Kを確保することに寄与し得る。 In the present embodiment, since the packaging material 30 constituting the front film 14 and the back film 15 has rigidity, when the chuck portion 105 is moved as shown in FIG. It becomes easy to form. For example, the front film 14 and the back film 15 are each easily deformed so as to have a curved shape that is convex on the outer surface side. Thereby, it becomes easy to ensure the opening width K of the opening part 11b. Moreover, in this Embodiment, since the packaging material 30 which comprises the surface film 14 and the back film 15 has rigidity, it is hard to produce a wrinkle in the surface film 14 and the back film 15. For this reason, the adsorption | suction part 106 tends to adsorb | suck to the outer surface of the surface film 14 and the back film 15. This can also contribute to securing the opening width K of the opening 11b.
 袋の開封方法
 次に、袋10の開封方法について説明する。ここでは、消費者が第1方向D1に沿って袋10を引き裂くことにより袋10を開封する場合について説明する。本実施の形態においては、上述のように、包装材料30の第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50として直進カットフィルムが用いられている。このため、消費者が袋10を引き裂いて開封する際に引き裂き方向が第1方向D1から逸れてしまうことを抑制することができる。従って、消費者は袋10を容易に引き裂くことができる。なお、袋10の引き裂き性を高める上では、高い引張弾性率を有する上述の第2のタイプのシーラントフィルムを用いることが好ましい。
Opening method of bag will now be described opening method of bag 10. Here, a case where the consumer opens the bag 10 by tearing the bag 10 along the first direction D1 will be described. In the present embodiment, as described above, a straight cut film is used as the first stretched plastic film 40 or the second stretched plastic film 50 of the packaging material 30. For this reason, when a consumer tears and opens the bag 10, it can suppress that a tear direction deviates from the 1st direction D1. Therefore, the consumer can tear the bag 10 easily. In order to improve the tearability of the bag 10, it is preferable to use the above-described second type sealant film having a high tensile elastic modulus.
 なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。 Note that various modifications can be made to the above-described embodiment. Hereinafter, modified examples will be described with reference to the drawings as necessary. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding parts in the above embodiment are used for the parts that can be configured in the same manner as in the above embodiment. A duplicate description is omitted. In addition, when it is clear that the operational effects obtained in the above-described embodiment can be obtained in the modified example, the description thereof may be omitted.
 (袋の変形例)
 図15は、包装材料30を備える袋10のその他の例を示す図である。図15に示す袋10は、蒸気抜き機構20を更に備える点が異なるのみであり、他の構成は、図1に示す袋10と略同一である。図15に示す袋10において、図1に示す袋10と同一部分には同一符号を付して詳細な説明は省略する。
(Bag variant)
FIG. 15 is a diagram illustrating another example of the bag 10 including the packaging material 30. The bag 10 shown in FIG. 15 is different from the bag 10 shown in FIG. 1 only in that the bag 10 is further provided with a steam venting mechanism 20. In the bag 10 shown in FIG. 15, the same parts as those in the bag 10 shown in FIG.
 図15に示すように、袋10は、収容部17に収容された内容物を加熱する際に発生する蒸気を外部に逃がすための蒸気抜き機構20を備える。蒸気抜き機構20は、蒸気の圧力が所定値以上になったときに袋10の内部と外部とを連通させて蒸気を逃がすとともに、蒸気抜き機構20以外の箇所から蒸気が抜けることを抑制するよう、構成されている。 As shown in FIG. 15, the bag 10 includes a steam release mechanism 20 for escaping steam generated when the contents stored in the storage portion 17 are heated. The steam release mechanism 20 allows the inside and the outside of the bag 10 to communicate with each other when the pressure of the steam reaches a predetermined value or more to escape the steam, and suppresses the steam from being released from a place other than the steam release mechanism 20. ,It is configured.
 なお、蒸気抜き機構20を備える袋10を、電子レンジなどを用いて加熱する場合、袋10の内部の圧力が、蒸気抜き機構20から外部へ蒸気が抜ける程度にまで上昇しないこともある。すなわち、袋10の使用方法によっては、蒸気抜き機構20は、蒸気を外部に逃がすという機能を発現させる確率が低い場合がある。この場合であっても、袋10に蒸気抜き機構20を設けることにより、蒸気抜き機構20以外の箇所から蒸気が抜けたり、袋10が破裂したりする確率をより低くすることができる。 In addition, when the bag 10 provided with the vapor venting mechanism 20 is heated using a microwave oven or the like, the internal pressure of the bag 10 may not increase to the extent that the vapor is released from the vapor venting mechanism 20 to the outside. That is, depending on how the bag 10 is used, the steam release mechanism 20 may have a low probability of developing a function of escaping steam to the outside. Even in this case, by providing the vapor venting mechanism 20 in the bag 10, it is possible to further reduce the probability that the vapor will escape from a place other than the vapor venting mechanism 20 or the bag 10 may rupture.
 図15に示す例において、蒸気抜き機構20は、側部シール部13aから袋10の内側に向かって突出した蒸気抜きシール部20aと、蒸気抜きシール部20aによって収容部17から隔離された非シール部20bと、を有する。非シール部20bは、袋10の外部に連通している。電子レンジなどによって加熱されることによって収容部17の圧力が高まると、蒸気抜きシール部20aが剥離する。収容部17の蒸気は、蒸気抜きシール部20aの剥離部分及び非シール部20bを通って袋10の外部に抜けることができる。この際、包装材料30が耐熱性を有することにより、加熱の際に包装材料30に穴があいたり包装材料30にシワが形成されたりすることを抑制することができる。 In the example shown in FIG. 15, the steam release mechanism 20 includes a steam release seal part 20 a that protrudes from the side seal part 13 a toward the inside of the bag 10, and a non-seal that is isolated from the housing part 17 by the steam release seal part 20 a. Part 20b. The non-seal portion 20 b communicates with the outside of the bag 10. When the pressure in the accommodating portion 17 is increased by being heated by a microwave oven or the like, the steam release seal portion 20a is peeled off. The steam in the housing part 17 can escape to the outside of the bag 10 through the peeling part of the steam release seal part 20a and the non-seal part 20b. At this time, since the packaging material 30 has heat resistance, it is possible to suppress the formation of a hole in the packaging material 30 or the formation of wrinkles in the packaging material 30 during heating.
 なお、蒸気抜き機構20の構成が、図15に示す構成に限られることはない。蒸気の圧力が所定値以上になったときに収容部17と袋10の外部とを連通させることができる限りにおいて、蒸気抜き機構20の構成は任意である。 It should be noted that the configuration of the steam release mechanism 20 is not limited to the configuration shown in FIG. The configuration of the steam release mechanism 20 is arbitrary as long as the housing portion 17 and the outside of the bag 10 can be communicated with each other when the steam pressure exceeds a predetermined value.
 例えば図16に示すように、表面フィルム14は、表面フィルム14の内面同士が部分的に重ね合された合掌部14aを含んでいてもよい。合掌部14aは、例えば、1枚の表面フィルム14にひだを形成するように折り返し部14fで折り返すことによって構成され得る。また、合掌部14aは、2枚の表面フィルム14の一部分同士を重ね合わせることによって構成されてもよい。 For example, as shown in FIG. 16, the surface film 14 may include a palm portion 14a in which the inner surfaces of the surface film 14 are partially overlapped. The palm portion 14a can be configured, for example, by folding back with a folding portion 14f so as to form a pleat on one surface film 14. Further, the palm portion 14a may be configured by overlapping a part of the two surface films 14.
 合掌部14aには、一方の側部シール部13aから他方の側部シール部13aまで延びる合掌シール部14bが形成されている。この場合、蒸気抜き機構20は、例えば、合掌シール部14bから収容部17に向かって突出した蒸気抜きシール部20aと、蒸気抜きシール部20aと合掌シール部14bとによって囲われた非シール部20bと、非シール部20bにおいて表面フィルム14に形成された貫通孔20cと、を有する。 In the palm portion 14a, a palm seal portion 14b extending from one side seal portion 13a to the other side seal portion 13a is formed. In this case, the steam release mechanism 20 includes, for example, a steam release seal part 20a that protrudes from the palm seal part 14b toward the housing part 17, and a non-seal part 20b that is surrounded by the steam release seal part 20a and the joint seal part 14b. And a through hole 20c formed in the surface film 14 in the non-seal portion 20b.
 本変形例においても、収容部17の圧力が増加すると、蒸気抜きシール部20aが剥離して収容部17と非シール部20bとが連通する。蒸気抜きシール部20aの剥離部分を通って収容部17から非シール部20bに流入した蒸気は、貫通孔20cを通って袋10の外部に抜ける。 Also in this modified example, when the pressure in the accommodating portion 17 increases, the steam release seal portion 20a is peeled off, and the accommodating portion 17 and the non-seal portion 20b communicate with each other. The steam that has flowed into the non-seal portion 20b from the housing portion 17 through the peeled portion of the steam release seal portion 20a passes through the through hole 20c and escapes to the outside of the bag 10.
 なお、図16に示す袋10は、裏面フィルム15が広域にわたって電子レンジのターンテーブル又は下面(フラットテーブル)に接するよう、電子レンジ内に配置される。このため、図15に示すような自立タイプの袋10に比べて、内容物が均一に加熱され易い。また、袋10が電子レンジに接している部分の面積が大きいので、加熱によって袋10が軟化したとしても、内容物の液面の位置が変化しにくい。このため、電子レンジを用いた加熱工程において、内容物の液面よりも上方において表面フィルム14又は裏面フィルム15の内面に内容物が付着しているという状態が生じにくい。これにより、表面フィルム14又は裏面フィルム15の内面に付着している内容物が過剰に過熱されて表面フィルム14又は裏面フィルム15に穴が形成されるという現象が生じることを抑制することができる。 In addition, the bag 10 shown in FIG. 16 is arrange | positioned in a microwave oven so that the back surface film 15 may contact the turntable or lower surface (flat table) of a microwave oven over a wide area. For this reason, compared with the self-supporting bag 10 as shown in FIG. Moreover, since the area of the part where the bag 10 is in contact with the microwave oven is large, even if the bag 10 is softened by heating, the position of the liquid level of the contents is unlikely to change. For this reason, in the heating process using a microwave oven, it is difficult for the contents to adhere to the inner surface of the front film 14 or the back film 15 above the liquid level of the contents. Thereby, it can suppress that the phenomenon that the content adhering to the inner surface of the surface film 14 or the back surface film 15 overheats excessively and a hole is formed in the surface film 14 or the back surface film 15 arises.
 図17A及び図17Bは、包装材料30の用途の一例である蓋付容器110を示す縦断面図及び平面図である。蓋付容器110は、絞り成形などのシート成形や射出成形などによって作製された容器本体112と、容器本体112に接合された蓋材114と、を備える。容器本体112は、底面112a及び側面112bと、側面112bの上端から水平方向外方へ広がるフランジ部113と、を有する。蓋材114は、容器本体112のフランジ部113の上面に、シール部116を介して接合されている。蓋材114は、高スティフネスポリエステルフィルムを有する上述の包装材料30を含んでいてもよい。上述の包装材料30を用いて蓋材114を構成することにより、蓋材114に優れた突き刺し強度を持たせることができる。これにより、先端が尖った鋭利な部材が蓋材114に接触した場合に蓋材114が破けてしまうことなどを抑制することができる。また、蓋付容器110が落下した場合に蓋付容器110が破損して内容物が漏れ出てしまうことを抑制することができる。 FIG. 17A and FIG. 17B are a longitudinal sectional view and a plan view showing a lidded container 110 which is an example of an application of the packaging material 30. The lidded container 110 includes a container main body 112 manufactured by sheet molding such as drawing or injection molding, and a lid member 114 joined to the container main body 112. The container main body 112 includes a bottom surface 112a and a side surface 112b, and a flange portion 113 that spreads outward in the horizontal direction from the upper end of the side surface 112b. The lid member 114 is joined to the upper surface of the flange portion 113 of the container main body 112 via a seal portion 116. The lid 114 may include the packaging material 30 described above having a high stiffness polyester film. By configuring the lid member 114 using the packaging material 30 described above, the lid member 114 can have excellent piercing strength. Thereby, when the sharp member with the pointed tip contacts the lid member 114, the lid member 114 can be prevented from being broken. Moreover, when the container 110 with a lid | cover falls, it can suppress that the container 110 with a lid | cover is damaged and the content leaks out.
 蓋材114を構成する包装材料30のシーラント層70は、イージーピール性を備えていてもよい。すなわち、蓋材114を構成する包装材料30のシーラント層70は、ポリエチレン又はポリプロピレンを主成分とする第1層71と、ポリエチレンとポリプロピレンの混合樹脂を含み、内面30xを構成する第2層72と、を有していてもよい。 The sealant layer 70 of the packaging material 30 constituting the lid material 114 may have an easy peel property. That is, the sealant layer 70 of the packaging material 30 constituting the lid member 114 includes a first layer 71 mainly composed of polyethylene or polypropylene, and a second layer 72 comprising a mixed resin of polyethylene and polypropylene and constituting the inner surface 30x. , May be included.
 本願においては、袋10や蓋付容器110などの、物品を包装するための製品のことを、包装製品とも称する。 In the present application, products for packaging articles such as the bag 10 and the lidded container 110 are also referred to as packaging products.
 (袋のその他の変形例)
 上述の本実施の形態においては、袋10がガセット式の袋である例を示したが、袋10の具体的な構成が特に限定されることはない。例えば、袋10は、包装材料30からなる表面フィルム14及び裏面フィルム15の内面同士を上部11、下部12及び側部13で接合することによって形成された、いわゆる四方シール袋であってもよい。
(Other variations of bags)
In the above-described embodiment, an example in which the bag 10 is a gusset type bag has been shown, but the specific configuration of the bag 10 is not particularly limited. For example, the bag 10 may be a so-called four-side sealed bag formed by joining the inner surfaces of the front film 14 and the back film 15 made of the packaging material 30 at the upper part 11, the lower part 12 and the side part 13.
 第2の実施の形態
 次に、本発明の第2の実施の形態について説明する。第2の実施の形態も、上述の第1の実施の形態と同様に、包装材料及び包装材料を備える包装製品に関する。
Second Embodiment Next, a second embodiment of the present invention will be described. Similarly to the first embodiment described above, the second embodiment also relates to a packaging product including the packaging material and the packaging material.
 まず、第2の実施の形態が解決しようとする課題について説明する。 First, the problem to be solved by the second embodiment will be described.
 従来、飲食品、医薬品、化学品、化粧品、その他等の種々の物品を充填包装するために、種々の包装材料が開発され、提案されている。そのような包装材料においては、包装目的、充填する内容物、包装製品の貯蔵・流通、その他等によって異なるが、包装材料として、種々の物性が要求される。例えば、それらの物性の一つとして、酸素および水蒸気等の透過を阻止するガスバリア性がある。 Conventionally, various packaging materials have been developed and proposed for filling and packaging various articles such as foods and drinks, pharmaceuticals, chemicals, cosmetics, and others. In such a packaging material, various physical properties are required as the packaging material, although it varies depending on the purpose of packaging, the contents to be filled, the storage / distribution of the packaged product, and the like. For example, as one of those physical properties, there is a gas barrier property that prevents permeation of oxygen, water vapor, and the like.
 従来から、酸素および水蒸気等の透過を阻止するガスバリア性材料が、種々、開発され、提案されている。例えば、アルミニウム箔、あるいは、ポリ塩化ビニリデン系樹脂のコーティング膜を有するナイロンフィルムあるいはポリエチレンテレフタレ-トフィルム、ポリビニルアルコ-ルフィルム、エチレン-酢酸ビニル共重合体のケン化物フィルム、ポリアクリロニトリル系樹脂フィルム等のガスバリア性材料が、開発され、提案されている。 Conventionally, various gas barrier materials that prevent permeation of oxygen and water vapor have been developed and proposed. For example, aluminum foil or nylon film or polyethylene terephthalate film having a polyvinylidene chloride resin coating film, polyvinyl alcohol film, saponified ethylene-vinyl acetate copolymer film, polyacrylonitrile resin film, etc. Gas barrier materials have been developed and proposed.
 更に、近年、プラスチック製の基材の上に、例えば、酸化ケイ素、酸化アルミニウム等の無機酸化物の蒸着層を設けた構成からなる透明バリア性フィルム、あるいは、アルミニウム等の金属の蒸着層を設けたバリア性フィルム等も提案されている。例えば、特開2007-303000号公報は、ナイロンフィルム上に無機酸化物の蒸着層を形成することによってバリア性フィルムを作製することを提案している。 Further, in recent years, a transparent barrier film having a structure in which a vapor-deposited layer of an inorganic oxide such as silicon oxide or aluminum oxide is provided on a plastic substrate, or a vapor-deposited layer of a metal such as aluminum is provided. Barrier films and the like have also been proposed. For example, Japanese Patent Laid-Open No. 2007-303000 proposes producing a barrier film by forming a vapor deposition layer of an inorganic oxide on a nylon film.
 ところで、包装材料には、先端が尖った鋭利な部材が包装袋に接触した場合にも袋が破けてしまうことを抑制する特性、いわゆる耐突き刺し性などの強度が求められる。 By the way, the packaging material is required to have a characteristic that prevents the bag from being torn even when a sharp member with a sharp tip contacts the packaging bag, that is, a so-called puncture resistance.
 本実施の形態は、このような課題を効果的に解決し得る包装材料を提供することを目的とする。 This embodiment is intended to provide a packaging material that can effectively solve such problems.
 次に、課題を解決するための手段を記載する。 Next, the means for solving the problem will be described.
 本実施の形態は、バリア性積層フィルムと、前記バリア性積層フィルムよりも内側に位置するシーラント層と、前記バリア性積層フィルムと前記シーラント層との間に位置する、又は、前記バリア性積層フィルムよりも外側に位置する延伸プラスチックフィルムと、を備え、前記バリア性積層フィルムは、基材と、前記基材上に設けられ、金属又は無機化合物を含む蒸着層と、を備え、前記基材は、ポリエステルを主成分として含み、少なくとも1つの方向において、前記基材の引張強度を引張伸度で割った値が2.0〔MPa/%〕以上である、包装材料である。 The present embodiment is a barrier laminate film, a sealant layer located inside the barrier laminate film, and located between the barrier laminate film and the sealant layer, or the barrier laminate film. A stretched plastic film positioned on the outer side, and the barrier laminate film includes a base material, and a vapor deposition layer provided on the base material and containing a metal or an inorganic compound. A packaging material containing polyester as a main component and having a value obtained by dividing the tensile strength of the base material by the tensile elongation in at least one direction is 2.0 [MPa /%] or more.
 本実施の形態による包装材料において、前記シーラント層は、90質量%以上のポリプロピレンを含んでいてもよい。 In the packaging material according to the present embodiment, the sealant layer may include 90% by mass or more of polypropylene.
 本発明による包装材料において、前記シーラント層は、100℃以上の融点を有する直鎖状低密度ポリエチレンを含んでいてもよい。 In the packaging material according to the present invention, the sealant layer may include linear low density polyethylene having a melting point of 100 ° C. or higher.
 本実施の形態による包装材料において、前記シーラント層は、ポリプロピレン及び高密度ポリエチレンを含む第1層と、前記第1層よりも前記バリア性積層フィルム側に位置し、ポリプロピレン又は高密度ポリエチレンを含む第2層と、を有していてもよい。 In the packaging material according to the present embodiment, the sealant layer includes a first layer containing polypropylene and high-density polyethylene, and a first layer containing polypropylene or high-density polyethylene, which is positioned closer to the barrier laminate film than the first layer. And may have two layers.
 本実施の形態による包装材料において、前記延伸プラスチックフィルムは、前記バリア性積層フィルムと前記シーラント層との間に位置するポリエステルフィルム又はポリアミドフィルムであってもよい。 In the packaging material according to the present embodiment, the stretched plastic film may be a polyester film or a polyamide film positioned between the barrier laminate film and the sealant layer.
 本実施の形態による包装材料において、前記延伸プラスチックフィルムは、前記バリア性積層フィルムよりも外側に位置するポリエステルフィルムであってもよい。 In the packaging material according to the present embodiment, the stretched plastic film may be a polyester film positioned outside the barrier laminate film.
 本実施の形態による包装材料において、前記バリア性積層フィルムの前記基材の突き刺し強度が9.5N以上であってもよい。 In the packaging material according to the present embodiment, the piercing strength of the base material of the barrier laminate film may be 9.5 N or more.
 本実施の形態による包装材料において、前記バリア性積層フィルムの前記基材は、流れ方向及び垂直方向において0.0017N以上のループスティフネスを有し、且つポリエステルを主成分として含んでいてもよい。 In the packaging material according to the present embodiment, the base material of the barrier laminate film may have a loop stiffness of 0.0017 N or more in the flow direction and the vertical direction, and may contain polyester as a main component.
 本実施の形態による包装材料において、前記バリア性積層フィルムの前記基材は、ポリブチレンテレフタレートを主成分として含んでいてもよい。 In the packaging material according to the present embodiment, the base material of the barrier laminate film may contain polybutylene terephthalate as a main component.
 本実施の形態による包装材料において、前記バリア性積層フィルムは、前記蒸着層上に設けられたガスバリア性塗布膜を更に備えていてもよい。 In the packaging material according to the present embodiment, the barrier laminate film may further include a gas barrier coating film provided on the vapor deposition layer.
 本実施の形態による包装材料において、前記バリア性積層フィルムの前記蒸着層は、無機化合物を含む透明蒸着層であってもよい。 In the packaging material according to the present embodiment, the vapor deposition layer of the barrier laminate film may be a transparent vapor deposition layer containing an inorganic compound.
 本実施の形態による包装材料において、前記バリア性積層フィルムの前記蒸着層は、酸化アルミニウムを含む透明蒸着層であり、前記透明蒸着層は、遷移領域を含み、前記遷移領域は、前記バリア性積層フィルムを前記透明蒸着層側から飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される元素結合Al2O4Hのピークの位置と、前記透明蒸着層と前記基材との界面との間の領域であり、前記透明蒸着層の厚みに対する前記遷移領域の厚みの比率が、5%以上60%以下であってもよい。 In the packaging material according to the present embodiment, the vapor deposition layer of the barrier laminate film is a transparent vapor deposition layer containing aluminum oxide, the transparent vapor deposition layer includes a transition region, and the transition region includes the barrier laminate. The peak position of element-bonded Al2O4H detected by etching the film from the transparent vapor deposition layer side using time-of-flight secondary ion mass spectrometry (TOF-SIMS), the transparent vapor deposition layer, and the substrate The ratio of the thickness of the transition region to the thickness of the transparent vapor deposition layer may be 5% or more and 60% or less.
 本実施の形態は、上記記載の包装材料から構成された包装製品である。 This embodiment is a packaged product composed of the packaging material described above.
 本実施の形態によれば、ガスバリア性及び強度を有する包装材料を提供することができる。 According to this embodiment, a packaging material having gas barrier properties and strength can be provided.
 以下、第2の実施の形態について具体的に説明する。第2の実施の形態における包装材料210は、蒸着層が設けられた高スティフネスポリエステルフィルムを有することを特徴としている。以下の説明では、上述した第1の実施の形態と同様に構成され得る部分について、同一の名称を用いることとし、重複する説明を省略することがある。また、上述した第1の実施の形態において得られる作用効果が第2の実施の形態においても得られることが明らかである場合、その説明を省略することもある。 Hereinafter, the second embodiment will be described in detail. The packaging material 210 in the second embodiment is characterized by having a high stiffness polyester film provided with a vapor deposition layer. In the following description, the same names are used for portions that can be configured in the same manner as in the first embodiment described above, and redundant descriptions may be omitted. Moreover, when it is clear that the operational effects obtained in the first embodiment described above can be obtained in the second embodiment, the description thereof may be omitted.
<包装材料>
 本実施の形態による包装材料を構成する積層体は、バリア性積層フィルムと、バリア性積層フィルムよりも内側に位置するシーラント層と、を備える。内側とは、包装材料から形成される包装製品において、包装製品に収容される内容物の側を意味する。また、外側とは、包装製品に収容される内容物から遠ざかる側を意味する。
<Packaging materials>
The laminate constituting the packaging material according to the present embodiment includes a barrier laminate film and a sealant layer located inside the barrier laminate film. The inner side means the side of the contents contained in the packaged product in the packaged product formed from the packaging material. Moreover, an outer side means the side away from the content accommodated in packaged products.
 図18は、本発明の実施の形態による包装材料210の一例を示す断面図である。包装材料210は、外側から内側へ順に、バリア性積層フィルム205と、印刷層218と、第1接着層213と、延伸プラスチックフィルム214と、第2接着層215と、シーラント層212とを備える。バリア性積層フィルム205は、基材201と、基材201の内側の面上に設けられた蒸着層202と、を少なくとも有する。バリア性積層フィルム205は、蒸着層202上に位置するガスバリア性塗布膜203を更に有していてもよい。基材201が包装材料210の外面210yを構成し、シーラント層212が包装材料210の内面210xを構成している。 FIG. 18 is a cross-sectional view showing an example of the packaging material 210 according to the embodiment of the present invention. The packaging material 210 includes a barrier laminate film 205, a printed layer 218, a first adhesive layer 213, a stretched plastic film 214, a second adhesive layer 215, and a sealant layer 212 in order from the outside to the inside. The barrier laminate film 205 includes at least a base material 201 and a vapor deposition layer 202 provided on the inner surface of the base material 201. The barrier laminate film 205 may further include a gas barrier coating film 203 located on the vapor deposition layer 202. The base material 201 constitutes the outer surface 210 y of the packaging material 210, and the sealant layer 212 constitutes the inner surface 210 x of the packaging material 210.
 本実施の形態において、外面とは、包装材料210において最も外側に位置する面であり、内面とは、包装材料210において最も内側に位置する面である。また、本実施の形態において、「この順に備える」や「順に積層された」などの記載における「順」という用語は、特に断らない限り、外側から内側に向かう方向における順序を表している。 In this embodiment, the outer surface is a surface located on the outermost side in the packaging material 210, and the inner surface is a surface located on the innermost side in the packaging material 210. Further, in the present embodiment, the term “order” in descriptions such as “prepared in this order” and “laminated in order” represents the order in the direction from the outside to the inside unless otherwise specified.
 図19は、本実施の形態による包装材料の一例を示す断面図である。包装材料210は、外側から内側へ順に、延伸プラスチックフィルム214と、印刷層218と、第1接着層213と、バリア性積層フィルム205と、第2接着層215と、シーラント層212とを備える。バリア性積層フィルム205は、基材201と、基材201の外側の面上に設けられた蒸着層202と、を少なくとも有する。バリア性積層フィルム205は、蒸着層202上に位置するガスバリア性塗布膜203を更に有していてもよい。延伸プラスチックフィルム214が包装材料210の外面210yを構成し、シーラント層212が包装材料210の内面210xを構成している。 FIG. 19 is a cross-sectional view showing an example of a packaging material according to the present embodiment. The packaging material 210 includes a stretched plastic film 214, a printed layer 218, a first adhesive layer 213, a barrier laminate film 205, a second adhesive layer 215, and a sealant layer 212 in order from the outside to the inside. The barrier laminate film 205 includes at least a base material 201 and a vapor deposition layer 202 provided on the outer surface of the base material 201. The barrier laminate film 205 may further include a gas barrier coating film 203 located on the vapor deposition layer 202. The stretched plastic film 214 constitutes the outer surface 210 y of the packaging material 210, and the sealant layer 212 constitutes the inner surface 210 x of the packaging material 210.
 以下、包装材料210を構成するフィルム及び層について説明する。まず、バリア性積層フィルム205について説明する。 Hereinafter, the film and layers constituting the packaging material 210 will be described. First, the barrier laminate film 205 will be described.
[基材]
 バリア性積層フィルム205に用いる基材201は、主成分としてポリエステルを含むポリエステルフィルムである。基材201は、例えば51質量%以上のポリエステルを含む。ポリエステルとしては、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸から選ばれる少なくとも1種の芳香族ジカルボン酸と、エチレグリコール、1,3-プロパンジオールおよび1,4-ブタンジオールから選ばれる少なくとも1種の脂肪族アルコールとからなる芳香族ポリエステルを主体とするポリエステルが好ましい。例えば、ポリエステルは、ポリエチレンテレフタレート(以下、PETとも記す)、ポリブチレンテレフタレート(以下、PBTとも記す)などである。
[Base material]
The substrate 201 used for the barrier laminate film 205 is a polyester film containing polyester as a main component. The base material 201 contains, for example, 51% by mass or more of polyester. The polyester is at least one aromatic dicarboxylic acid selected from terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and at least selected from ethylene glycol, 1,3-propanediol and 1,4-butanediol. A polyester mainly composed of an aromatic polyester composed of one kind of aliphatic alcohol is preferred. For example, the polyester includes polyethylene terephthalate (hereinafter also referred to as PET), polybutylene terephthalate (hereinafter also referred to as PBT), and the like.
 バリア性積層フィルム205を含む包装材料によって構成された包装容器に、先端が尖った鋭利な部材が接触した場合に、袋が破けてしまうことを抑制するためには、バリア性積層フィルム205の基材201が、耐突き刺し性などの耐性を有することが好ましい。そこで、本実施の形態においては、基材201として、高スティフネスPETフィルム又はPBTフィルムのいずれかを用いることを提案する。これにより、例えば、基材201の突き刺し強度を高くすることができる。例えば、基材201の突き刺し強度を9.5N以上にすることができ、より好ましくは10N以上にすることができる。また、基材201の引張伸度に対する引張強度の比率を高くすることができる。例えば、少なくとも1つの方向において、基材の引張強度を引張伸度で割った値が2.0〔MPa/%〕以上になる。これにより、バリア性積層フィルム205を含む包装材料に、先端が尖った鋭利な部材が接触した場合にも包装容器が破けてしまうことを抑制するための剛性を持たせることができる。 In order to prevent the bag from tearing when a sharp member with a sharp tip comes into contact with a packaging container made of a packaging material including the barrier laminate film 205, the base of the barrier laminate film 205 is used. It is preferable that the material 201 has resistance such as puncture resistance. Therefore, in the present embodiment, it is proposed to use either a high stiffness PET film or a PBT film as the base material 201. Thereby, for example, the puncture strength of the base material 201 can be increased. For example, the puncture strength of the base material 201 can be set to 9.5 N or more, more preferably 10 N or more. Further, the ratio of the tensile strength to the tensile elongation of the substrate 201 can be increased. For example, in at least one direction, the value obtained by dividing the tensile strength of the substrate by the tensile elongation is 2.0 [MPa /%] or more. Thereby, the rigidity for suppressing that a packaging container is torn can be given even when a sharp member with a sharp tip comes into contact with the packaging material including the barrier laminate film 205.
 以下、高スティフネスPETフィルム及びPBTフィルムについて詳細に説明する。まず、高スティフネスPETフィルムについて説明する。 Hereinafter, the high stiffness PET film and the PBT film will be described in detail. First, the high stiffness PET film will be described.
 高スティフネスPETフィルムとは、上述の高スティフネスポリエステルフィルムと同様に、流れ方向(MD)及び垂直方向(TD)において0.0017N以上のループスティフネスを有し、且つ51質量%以上のPETを含む延伸プラスチックフィルムである。高スティフネスPETフィルムの厚みは、好ましくは5μm以上であり、より好ましくは7μm以上である。また、高スティフネスPETフィルムの厚みは、好ましくは25μm以下であり、より好ましくは20μm以下である。ループスティフネスの測定方法は、上述の第1の実施の形態の場合と同一である。 The high stiffness PET film, like the above-described high stiffness polyester film, has a loop stiffness of 0.0017 N or more in the flow direction (MD) and the vertical direction (TD), and includes 51% by mass or more of PET. It is a plastic film. The thickness of the high stiffness PET film is preferably 5 μm or more, more preferably 7 μm or more. The thickness of the high stiffness PET film is preferably 25 μm or less, and more preferably 20 μm or less. The loop stiffness measurement method is the same as that in the first embodiment described above.
 高スティフネスPETフィルムの好ましい機械特性について更に説明する。
 高スティフネスPETフィルムの突き刺し強度は、好ましくは9.5N以上であり、より好ましくは10.0N以上である。
The preferred mechanical properties of the high stiffness PET film will be further described.
The puncture strength of the high stiffness PET film is preferably 9.5 N or more, more preferably 10.0 N or more.
 流れ方向における高スティフネスPETフィルムの引張強度、引張伸度、高スティフネスPETフィルムの引張強度を引張伸度で割った値、熱収縮率及び引張弾性率は、上述の第1の実施の形態の高スティフネスポリエステルフィルムの場合と同一であるので、説明を省略する。 The tensile strength and tensile elongation of the high stiffness PET film in the flow direction, the value obtained by dividing the tensile strength of the high stiffness PET film by the tensile elongation, the thermal shrinkage rate, and the tensile elastic modulus are the same as those in the first embodiment. Since it is the same as the case of the stiffness polyester film, the description is omitted.
 高スティフネスPETフィルムの製造工程においては、高スティフネスポリエステルフィルムの場合と同様に、例えば、まず、ポリエチレンテレフタレートを溶融及び成形することによって得られたPETフィルムを、流れ方向及び垂直方向において、それぞれ90℃~145℃で3倍~4.5倍に延伸する第1延伸工程を実施する。続いて、プラスチックフィルムを、流れ方向及び垂直方向において、それぞれ100℃~145℃で1.1倍~3.0倍に延伸する第2延伸工程を実施する。その後、190℃~220℃の温度で熱固定を行う。続いて、流れ方向及び垂直方向において、100℃~190℃の温度で0.2%~2.5%程度の弛緩処理(フィルム幅を縮める処理)を実施する。これらの工程において、延伸倍率、延伸温度、熱固定温度、弛緩処理率を調整することにより、上述の機械特性を備える高スティフネスPETフィルムを得ることができる。 In the production process of the high stiffness PET film, as in the case of the high stiffness polyester film, for example, first, a PET film obtained by melting and molding polyethylene terephthalate is subjected to 90 ° C. in the flow direction and the vertical direction, respectively. A first stretching step of stretching 3 to 4.5 times at ˜145 ° C. is performed. Subsequently, a second stretching step is performed in which the plastic film is stretched 1.1 to 3.0 times at 100 to 145 ° C. in the flow direction and the vertical direction, respectively. Thereafter, heat setting is performed at a temperature of 190 ° C. to 220 ° C. Subsequently, in the flow direction and the vertical direction, a relaxation treatment (treatment for reducing the film width) of about 0.2% to 2.5% is performed at a temperature of 100 ° C. to 190 ° C. In these steps, a high stiffness PET film having the above-mentioned mechanical properties can be obtained by adjusting the stretching ratio, stretching temperature, heat setting temperature, and relaxation treatment rate.
 高スティフネスPETフィルムを構成するPETは、上述の第1の実施の形態の場合と同様に、バイオマス由来のPETを含んでいてもよい。この場合、高スティフネスPETフィルムは、バイオマス由来のPETのみで構成されていてもよい。若しくは、高スティフネスPETフィルムは、バイオマス由来のPETと、化石燃料由来のPETと、で構成されていてもよい。高スティフネスPETフィルムに含まれるバイオマス由来のPET、高スティフネスPETフィルムのバイオマス度などは、上述の第1の実施の形態の高スティフネスポリエステルフィルムの場合と同一であるので、説明を省略する。 The PET constituting the high stiffness PET film may include biomass-derived PET, as in the case of the first embodiment described above. In this case, the high stiffness PET film may be composed of only biomass-derived PET. Alternatively, the high stiffness PET film may be composed of biomass-derived PET and fossil fuel-derived PET. The biomass-derived PET contained in the high stiffness PET film, the biomass degree of the high stiffness PET film, and the like are the same as in the case of the high stiffness polyester film of the first embodiment described above, and thus the description thereof is omitted.
 次に、PBTフィルムについて説明する。PBTフィルムとは、51質量%以上のPBTを含む延伸プラスチックフィルムである。以下、基材201がPBTを含むことの利点について説明する。 Next, the PBT film will be described. The PBT film is a stretched plastic film containing 51% by mass or more of PBT. Hereinafter, advantages of the base material 201 containing PBT will be described.
 PBTは、耐熱性に優れる。このため、食品などの内容物を収容する包装袋にボイル処理やレトルト処理を施す際に基材201が変形したり基材201の強度が低下したりすることを抑制することができる。レトルト処理とは、内容物を包装袋に充填して包装袋を密封した後、蒸気又は加熱温水を利用して包装袋を加圧状態で加熱する処理である。レトルト処理の温度は、例えば120℃以上である。ボイル処理とは、内容物を包装製品に充填して包装製品を密封した後、包装製品を大気圧下で湯煎する処理である。ボイル処理の温度は、例えば90℃以上且つ100℃以下である。 PBT has excellent heat resistance. For this reason, it can suppress that the base material 201 deform | transforms or the intensity | strength of the base material 201 falls when performing a boil process and a retort process to the packaging bag which accommodates contents, such as foodstuffs. The retort process is a process of heating the packaging bag in a pressurized state using steam or heated hot water after filling the packaging bag with the contents and sealing the packaging bag. The temperature of retort processing is 120 degreeC or more, for example. The boil process is a process in which the packaged product is filled with the contents and the packaged product is sealed, and then the packaged product is boiled under atmospheric pressure. The temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
 また、PBTは、高い強度を有する。このため、包装袋を構成する包装材料210がナイロンを含む場合と同様に、包装袋に耐突き刺し性を持たせることができる。PBTフィルムの突き刺し強度は、好ましくは9.5N以上であり、より好ましくは10.0N以上である。 Also, PBT has high strength. For this reason, the packaging bag can be provided with puncture resistance as in the case where the packaging material 210 constituting the packaging bag contains nylon. The puncture strength of the PBT film is preferably 9.5 N or more, more preferably 10.0 N or more.
 流れ方向におけるPBTフィルムの引張強度は、好ましくは150MPa以上であり、より好ましくは180MPa以上である。垂直方向におけるPBTフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。
 流れ方向におけるPBTフィルムの引張伸度は、好ましくは220%以下であり、より好ましくは200%以下である。垂直方向におけるPBTフィルムの引張伸度は、好ましくは120%以下であり、より好ましくは110%以下である。
 好ましくは、少なくとも1つの方向において、PBTフィルムの引張強度を引張伸度で割った値が2.0〔MPa/%〕以上である。例えば、垂直方向(TD)におけるPBTフィルムの引張強度を引張伸度で割った値は、好ましくは2.0〔MPa/%〕以上であり、より好ましくは2.2〔MPa/%〕以上であり、更に好ましくは2.5〔MPa/%〕以上である。
The tensile strength of the PBT film in the flow direction is preferably 150 MPa or more, more preferably 180 MPa or more. The tensile strength of the PBT film in the vertical direction is preferably 250 MPa or more, and more preferably 280 MPa or more.
The tensile elongation of the PBT film in the flow direction is preferably 220% or less, and more preferably 200% or less. The tensile elongation of the PBT film in the vertical direction is preferably 120% or less, and more preferably 110% or less.
Preferably, in at least one direction, a value obtained by dividing the tensile strength of the PBT film by the tensile elongation is 2.0 [MPa /%] or more. For example, the value obtained by dividing the tensile strength of the PBT film in the vertical direction (TD) by the tensile elongation is preferably 2.0 [MPa /%] or more, more preferably 2.2 [MPa /%] or more. Yes, more preferably 2.5 [MPa /%] or more.
 また、PBTは、ナイロンに比べて水分を吸収しにくいという特性を有する。このため、PBTを含む基材201を包装材料210の外面に配置した場合であっても、基材201が水分を吸収して包装材料210のラミネート強度が低下してしまうことを抑制することができる。 Also, PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 201 containing PBT is arrange | positioned on the outer surface of the packaging material 210, it suppresses that the base material 201 absorbs a water | moisture content and the laminate strength of the packaging material 210 falls. it can.
 以下、PBTを含む基材201の構成について詳細に説明する。本実施の形態における、PBTを含む基材201の構成としては、下記の第1の構成又は第2の構成のいずれを採用してもよい。 Hereinafter, the configuration of the base material 201 including PBT will be described in detail. As the configuration of the base material 201 containing PBT in the present embodiment, any of the following first configuration or second configuration may be adopted.
 〔PBTを含む基材の第1の構成〕
 第1の構成に係る基材201におけるPBTの含有率は、51質量%以上が好ましく、60質量%以上がより好ましく、さらには70質量%以上、特には75質量%以上が好ましく、最も好ましくは80質量%以上である。PBTの含有率を51質量%以上にすることにより、基材201に優れたインパクト強度および耐ピンホール性を持たせることができる。
[First Configuration of Substrate Containing PBT]
The content of PBT in the substrate 201 according to the first configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further 70% by mass or more, particularly preferably 75% by mass or more, and most preferably. 80% by mass or more. By making the content of PBT 51% by mass or more, the base material 201 can have excellent impact strength and pinhole resistance.
 主たる構成成分として用いるPBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり、最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは、重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。 PBT used as a main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, most preferably 100 mol% or more of terephthalic acid as a dicarboxylic acid component. Mol%. 1,4-butanediol as the glycol component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol during polymerization. It is not included except by-products generated by the ether bond of butanediol.
 基材201は、PBT以外のポリエステル樹脂を含んでいてもよい。これにより、例えばフィルム状の基材201を二軸延伸させる場合の成膜性や基材201の力学特性を調整することができる。
 PBT以外のポリエステル樹脂としては、PET、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂や、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等のジオール成分が共重合されたPBT樹脂を挙げることができる。
The base material 201 may contain a polyester resin other than PBT. Thereby, for example, the film formability when the film-like base material 201 is biaxially stretched and the mechanical properties of the base material 201 can be adjusted.
Polyester resins other than PBT include polyester resins such as PET, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), as well as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, and biphenyldicarboxylic acid. , PBT resin copolymerized with dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols such as pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, polycarbonate diol Min can be mentioned copolymerized PBT resin.
 これらPBT以外のポリエステル樹脂の添加量は、49質量%以下が好ましく、40質量%以下がより好ましい。PBT以外のポリエステル樹脂の添加量が49質量%を超えると、PBTとしての力学特性が損なわれ、インパクト強度や耐ピンホール性、絞り成形性が不十分となることが考えられる。 The amount of the polyester resin other than PBT is preferably 49% by mass or less, and more preferably 40% by mass or less. If the addition amount of the polyester resin other than PBT exceeds 49% by mass, the mechanical properties as PBT may be impaired, and impact strength, pinhole resistance, and drawability may be insufficient.
 基材201は、添加剤として、柔軟なポリエーテル成分、ポリカーボネート成分、ポリエステル成分の少なくともいずれかを共重合したポリエステル系およびポリアミド系エラストマーを含んでいてもよい。これにより、屈曲時の耐ピンホール性を改善することができる。添加剤の添加量は、例えば20質量%である。添加剤の添加量が20質量%を超えると、添加剤としての効果が飽和することや、基材201の透明性が低下することなどが起こり得る。 The base material 201 may include a polyester-based and polyamide-based elastomer obtained by copolymerizing at least one of a flexible polyether component, a polycarbonate component, and a polyester component as an additive. Thereby, the pinhole resistance at the time of bending can be improved. The additive amount of the additive is, for example, 20% by mass. If the additive amount exceeds 20% by mass, the effect as an additive may be saturated, or the transparency of the substrate 201 may be reduced.
 第1の構成に係るフィルム状の基材201を作製する方法の一例について説明する。ここでは、キャスト法によってフィルム状の基材201を作製する方法について説明する。より具体的には、キャスト時に同一の組成の樹脂を多層化してキャストする方法について説明する。 An example of a method for producing the film-like substrate 201 according to the first configuration will be described. Here, a method for producing the film-like substrate 201 by a casting method will be described. More specifically, a method of casting a resin having the same composition in multiple layers during casting will be described.
 PBTは結晶化速度が速いため、キャスト時にも結晶化が進行する。このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、結晶が大きなサイズに成長してしまい、得られた未延伸原反の降伏応力が高くなる。このため、未延伸原反を二軸延伸する際に破断しやすくなる。また、得られた二軸延伸フィルムの降伏応力が高くなり、二軸延伸フィルムの成形性が不十分になってしまうことが考えられる。
 これに対して、キャスト時に同一の樹脂を多層化すれば、未延伸シートの延伸応力を低減することができる。このため、安定した二軸延伸が可能となり、また、得られた二軸延伸フィルムの降伏応力が低くなる。このことにより、柔軟かつ破断強度の高いフィルムを得ることができる。
Since PBT has a high crystallization speed, crystallization proceeds even during casting. At this time, when cast as a single layer without being multi-layered, there is no barrier that can suppress the growth of the crystal, so the crystal grows to a large size, and the resulting unstretched original fabric is obtained. The yield stress of becomes higher. For this reason, it becomes easy to fracture when the unstretched original fabric is biaxially stretched. Moreover, it is possible that the yield stress of the obtained biaxially stretched film becomes high and the moldability of the biaxially stretched film becomes insufficient.
On the other hand, if the same resin is multilayered at the time of casting, the stretching stress of the unstretched sheet can be reduced. For this reason, stable biaxial stretching is possible, and the yield stress of the obtained biaxially stretched film is reduced. Thereby, a flexible and high breaking strength film can be obtained.
 図20は、基材201の層構成の一例を示す断面図である。樹脂を多層化してキャストすることによって基材201が作製される場合、図20に示すように、基材201は、複数の層201aを含む多層構造部からなる。複数の層201aはそれぞれ、主成分としてPBTを含む。例えば、複数の層201aはそれぞれ、好ましくは51質量%以上のPBTを含み、より好ましくは60質量%以上のPBTを含む。なお、複数の層201aにおいては、n番目の層201aの上にn+1番目の層201aが直接積層されている。すなわち、複数の層201aの間には、接着剤層や接着層が介在されていない。 FIG. 20 is a cross-sectional view showing an example of the layer structure of the base material 201. In the case where the base material 201 is produced by casting the resin in multiple layers, as shown in FIG. 20, the base material 201 is composed of a multilayer structure including a plurality of layers 201a. Each of the plurality of layers 201a includes PBT as a main component. For example, each of the plurality of layers 201a preferably includes 51% by mass or more of PBT, and more preferably includes 60% by mass or more of PBT. In the plurality of layers 201a, the (n + 1) th layer 201a is directly stacked on the nth layer 201a. That is, no adhesive layer or adhesive layer is interposed between the plurality of layers 201a.
 多層化によりPBTフィルムの特性が改善される原因については、下記のように推測する。樹脂を積層する場合、樹脂の組成が同一の場合であっても層の界面が存在し、その界面により結晶化が加速される。一方、層の厚みを越えた大きな結晶の成長は抑制される。このため、結晶(球晶)のサイズが小さくなるものと考えられる。 The reason why the properties of the PBT film are improved by multilayering is estimated as follows. When the resins are laminated, even if the resin composition is the same, a layer interface exists, and crystallization is accelerated by the interface. On the other hand, the growth of large crystals beyond the layer thickness is suppressed. For this reason, it is considered that the size of the crystal (spherulite) becomes small.
 多層化により球晶のサイズを小さくするための具体的な方法としては、一般的な多層化装置(多層フィードブロック、スタティックミキサー、多層マルチマニホールドなど)を用いることができる。例えば、二台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂を、フィードブロックやスタティックミキサー、マルチマニホールドダイ等を用いて多層に積層する方法等を使用することができる。なお、同一の組成の樹脂を多層化する場合、一台の押出機のみを用いて、押出機からダイまでのメルトラインに上述の多層化装置を導入することも可能である。 As a specific method for reducing the size of spherulites by multilayering, a general multilayering apparatus (multilayer feed block, static mixer, multilayer multimanifold, etc.) can be used. For example, a method of laminating thermoplastic resins sent from different flow paths using two or more extruders in multiple layers using a feed block, a static mixer, a multi-manifold die, or the like can be used. In addition, when multilayering resin of the same composition, it is also possible to introduce the above multilayering apparatus into the melt line from the extruder to the die using only one extruder.
 基材201は、少なくとも10層以上、好ましくは60層以上、より好ましくは250層以上、更に好ましくは1000層以上の層201aを含む多層構造部からなる。層数を多くすることにより、未延伸原反の状態のPBTにおける球晶のサイズを小さくすることができ、その後の二軸延伸を安定に実施することができる。また、二軸延伸フィルムの状態のPBTの降伏応力を小さくすることができる。好ましくは、未延伸原反のPBTにおける球晶の直径は、500nm以下である。 The substrate 201 is composed of a multilayer structure including at least 10 layers, preferably 60 layers or more, more preferably 250 layers or more, and still more preferably 1000 layers or more. By increasing the number of layers, the size of spherulites in the unstretched raw PBT can be reduced, and the subsequent biaxial stretching can be carried out stably. Moreover, the yield stress of PBT in the state of a biaxially stretched film can be made small. Preferably, the diameter of the spherulite in the unstretched raw PBT is 500 nm or less.
 PBTの未延伸原反を二軸延伸して二軸延伸フィルムを作製する際の、縦延伸方向(以下、MD)における延伸温度(以下、MD延伸温度とも記す)は、好ましくは40℃以上であり、より好ましくは45℃以上である。MD延伸温度を40℃以上にすることにより、フィルムの破断が生じることを抑制することができる。また、MD延伸温度は、好ましくは100℃以下であり、より好ましくは95℃以下である。MD延伸温度を100℃以下にすることにより、二軸延伸フィルムの配向が生じないという現象を抑制することができる。 The stretching temperature (hereinafter also referred to as MD stretching temperature) in the longitudinal stretching direction (hereinafter referred to as MD) when producing a biaxially stretched film by biaxially stretching the unstretched raw material of PBT is preferably 40 ° C. or higher. Yes, more preferably 45 ° C or higher. By setting the MD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken. Moreover, MD extending | stretching temperature becomes like this. Preferably it is 100 degrees C or less, More preferably, it is 95 degrees C or less. The phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed by setting the MD stretching temperature to 100 ° C. or lower.
 MDにおける延伸倍率(以下、MD延伸倍率とも記す)は、好ましくは2.5倍以上である。これにより、二軸延伸フィルムを配向させ、良好な力学特性や均一な厚みを実現することができる。MD延伸倍率は、例えば5倍以下である。 The draw ratio in MD (hereinafter also referred to as MD draw ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement | achieved. MD stretch ratio is 5 times or less, for example.
 横延伸方向(以下、TDとも記す)における延伸温度(以下、TD延伸温度とも記す)は、好ましくは40℃以上である。TD延伸温度を40℃以上にすることにより、フィルムの破断が生じることを抑制することができる。また、TD延伸温度は、好ましくは100℃以下である。TD延伸温度を100℃以下にすることにより、二軸延伸フィルムの配向が生じないという現象を抑制することができる。 The stretching temperature (hereinafter also referred to as TD stretching temperature) in the transverse stretching direction (hereinafter also referred to as TD) is preferably 40 ° C. or higher. By setting the TD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken. The TD stretching temperature is preferably 100 ° C. or lower. By setting the TD stretching temperature to 100 ° C. or lower, the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed.
 TDにおける延伸倍率(以下、TD延伸倍率とも記す)は、好ましくは2.5倍以上である。これにより、二軸延伸フィルムを配向させ、良好な力学特性や均一な厚みを実現することができる。MD延伸倍率は、例えば5倍以下である。 The stretching ratio in TD (hereinafter also referred to as TD stretching ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement | achieved. MD stretch ratio is 5 times or less, for example.
 TDリラックス率は、好ましくは0.5%以上である。これにより、PBTの二軸延伸フィルムの熱固定時に破断が生じることを抑制することができる。また、TDリラックス率は、好ましくは10%以下である。これにより、PBTの二軸延伸フィルムにたるみなどが生じて厚みムラが発生することを抑制することができる。 TD relaxation rate is preferably 0.5% or more. Thereby, it can suppress that a fracture | rupture arises at the time of heat setting of the biaxially stretched film of PBT. The TD relaxation rate is preferably 10% or less. Thereby, sagging etc. arise in a biaxially stretched film of PBT, and it can control that thickness unevenness generate | occur | produces.
 図20に示す基材201の層201aの厚みは、好ましくは3nm以上であり、より好ましくは10nm以上である。また、層201aの厚みは、好ましくは200nm以下であり、より好ましくは100nm以下である。
 また、基材201の厚みは、好ましくは9μm以上であり、より好ましくは12μm以上である。また、基材201の厚みは、好ましくは25μm以下であり、より好ましくは20μm以下である。基材201の厚みを9μm以上にすることにより、基材201が十分な強度を有するようになる。また、基材201の厚みを25μm以下にすることにより、基材201が優れた成形性を示すようになる。このため、基材201を含む包装材料210を加工して包装袋を製造する工程を効率的に実施することができる。
The thickness of the layer 201a of the substrate 201 shown in FIG. 20 is preferably 3 nm or more, more preferably 10 nm or more. The thickness of the layer 201a is preferably 200 nm or less, more preferably 100 nm or less.
Moreover, the thickness of the base material 201 is preferably 9 μm or more, more preferably 12 μm or more. The thickness of the base material 201 is preferably 25 μm or less, more preferably 20 μm or less. By setting the thickness of the base material 201 to 9 μm or more, the base material 201 has sufficient strength. Moreover, the base material 201 comes to show the outstanding moldability by making the thickness of the base material 201 into 25 micrometers or less. For this reason, the process which processes the packaging material 210 containing the base material 201 and manufactures a packaging bag can be implemented efficiently.
 〔PBTを含む基材の第2の構成〕
 第2の構成に係る基材201は、ブチレンテレフタレートを主たる繰返し単位とするポリエステルを含む単層フィルムからなる。例えば、基材201は、グリコール成分としての1,4-ブタンジオール、又はそのエステル形成性誘導体と、二塩基酸成分としてのテレフタル酸、又はそのエステル形成性誘導体を主成分とし、それらを縮合して得られるホモ、またはコポリマータイプのポリエステルを含む。第2の構成に係る基材201におけるPBTの含有率は、51質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、さらには80質量%以上が好ましく、最も好ましくは90質量%以上である。また、第2の構成に係る基材201は、ポリブチレンテレフタレートと添加剤のみで構成されていることが好ましい。
[Second Configuration of Substrate Containing PBT]
The base material 201 according to the second configuration is made of a single layer film containing polyester having butylene terephthalate as a main repeating unit. For example, the base material 201 is mainly composed of 1,4-butanediol as a glycol component or an ester-forming derivative thereof and terephthalic acid as a dibasic acid component or an ester-forming derivative thereof, and condenses them. Homo- or copolymer-type polyester obtained. The content of PBT in the base material 201 according to the second configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, further preferably 80% by mass or more, and most preferably. Is 90% by mass or more. Moreover, it is preferable that the base material 201 which concerns on a 2nd structure is comprised only with the polybutylene terephthalate and the additive.
 基材201に機械的強度を付与するためには、PBTのうち、融点が200℃以上且つ250℃以下、IV値(固有粘度)が1.10dl/g以上且つ1.35dl/g以下のものが好ましい。さらには、融点が215℃以上且つ225℃以下、IV値が1.15dl/g以上且つ1.30dl/g以下のものが特に好ましい。これらのIV値は、基材201を構成する材料全体によって満たされていてもよい。IV値は、JIS K 7367-5:2000に基づいて算出され得る。 In order to impart mechanical strength to the substrate 201, PBT having a melting point of 200 ° C. or more and 250 ° C. or less and an IV value (intrinsic viscosity) of 1.10 dl / g or more and 1.35 dl / g or less Is preferred. Furthermore, those having a melting point of 215 ° C. or more and 225 ° C. or less and an IV value of 1.15 dl / g or more and 1.30 dl / g or less are particularly preferable. These IV values may be satisfied by the entire material constituting the substrate 201. The IV value can be calculated based on JIS K 7367-5: 2000.
 第2の構成に係る基材201は、PETなどPBT以外のポリエステル樹脂を30質量%以下の範囲で含んでいてもよい。基材201がPBTに加えてPETを含むことにより、PBT結晶化を抑制することができ、PBTフィルムの延伸加工性を向上させることができる。基材201のPBTに配合するPETとしては、エチレンテレフタレートを主たる繰返し単位とするポリエステルを用いることができる。例えば、グリコール成分としてのエチレングリコール、二塩基酸成分としてのテレフタル酸を主成分としたホモタイプを好ましく用いることができる。良好な機械的強度特性を付与するためには、PETのうち、融点が240℃以上且つ265℃以下、IV値が0.55dl/g以上且つ0.90dl/g以下のものが好ましい。さらには、融点が245℃以上且つ260℃以下、IV値が0.60dl/g以上且つ0.80dl/g以下のものが特に好ましい。
 PETの配合量を30質量%以下にすることにより、未延伸原反及び延伸フィルムの剛性が高くなり過ぎることを抑制することができる。これにより、延伸フィルムがもろくなり、延伸フィルムの耐圧強度、衝撃強度、突刺し強度などが低下してしまうことを抑制することができる。また、未延伸原反を延伸する際の延伸不調が発生することを抑制することができる。
The substrate 201 according to the second configuration may include a polyester resin other than PBT such as PET in a range of 30% by mass or less. When the base material 201 contains PET in addition to PBT, PBT crystallization can be suppressed, and the stretchability of the PBT film can be improved. As PET mix | blended with PBT of the base material 201, the polyester which uses ethylene terephthalate as a main repeating unit can be used. For example, a homotype mainly composed of ethylene glycol as a glycol component and terephthalic acid as a dibasic acid component can be preferably used. In order to impart good mechanical strength characteristics, among PET, those having a melting point of 240 ° C. or more and 265 ° C. or less and an IV value of 0.55 dl / g or more and 0.90 dl / g or less are preferable. Furthermore, those having a melting point of 245 ° C. or more and 260 ° C. or less and an IV value of 0.60 dl / g or more and 0.80 dl / g or less are particularly preferable.
By setting the blending amount of PET to 30% by mass or less, it is possible to suppress the unstretched raw fabric and the stretched film from becoming too rigid. Thereby, a stretched film becomes brittle and it can suppress that the pressure resistance strength, impact strength, puncture strength, etc. of a stretched film fall. Moreover, it is possible to suppress the occurrence of stretching failure when the unstretched raw fabric is stretched.
 基材201は、必要に応じて、滑剤、アンチブロッキング剤、無機増量剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、着色剤、結晶化抑制剤、結晶化促進剤等の添加剤を含んでいてもよい。また、基材201の原料として用いるポリエステル系樹脂ペレットは、加熱溶融時の加水分解による粘度低下を避けるため、加熱溶融前に水分率が0.05重量%以下、好ましくは0.01重量%以下になるように十分予備乾燥を行った上で使用するのが好ましい。 The substrate 201 is made of a lubricant, an anti-blocking agent, an inorganic extender, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, a plasticizer, a colorant, a crystallization inhibitor, and a crystallization accelerator as necessary. Etc. may be contained. Further, the polyester resin pellets used as the raw material of the base material 201 has a moisture content of 0.05% by weight or less, preferably 0.01% by weight or less before heating and melting in order to avoid a decrease in viscosity due to hydrolysis during heating and melting. It is preferable to use after sufficiently pre-drying so that
 第2の構成に係るフィルム状の基材201を作製する方法の一例について説明する。 An example of a method for producing the film-like substrate 201 according to the second configuration will be described.
 上述の構成の基材201のフィルムを安定的に作製するためには、未延伸原反の状態における結晶の成長を抑制することが重要になる。具体的には、押出されたPBT系溶融体を冷却して成膜する際、該ポリマーの結晶化温度領域をある速度以上で冷却する、すなわち原反冷却速度が重要な因子となる。原反冷却速度は、例えば200℃/秒以上、好ましくは250℃/秒以上、特に好ましくは350℃/秒以上である。高い冷却速度で成膜された未延伸原反は、低い結晶状態を保っているため、延伸時のバブルの安定性が向上する。さらには高速での成膜も可能になるので、フィルムの生産性も向上する。冷却速度が200℃/秒未満である場合、得られた未延伸原反の結晶性が高くなり延伸性が低下することが考えられる。また、極端な場合には、延伸バブルが破裂し、延伸が継続しないことも考えられる。 In order to stably produce the film of the base material 201 having the above-described configuration, it is important to suppress the crystal growth in the unstretched raw fabric state. Specifically, when forming the film by cooling the extruded PBT melt, the crystallization temperature region of the polymer is cooled at a certain rate or more, that is, the raw fabric cooling rate is an important factor. The raw fabric cooling rate is, for example, 200 ° C./second or more, preferably 250 ° C./second or more, particularly preferably 350 ° C./second or more. Since the unstretched original film formed at a high cooling rate maintains a low crystalline state, the stability of the bubbles during stretching is improved. Furthermore, since film formation at high speed is possible, film productivity is also improved. When the cooling rate is less than 200 ° C./sec, it is considered that the crystallinity of the obtained unstretched original fabric is increased and the stretchability is lowered. In extreme cases, the stretching bubble may burst and stretching may not continue.
 PBTを主成分として含む未延伸原反は、雰囲気温度を25℃以下、好ましくは20℃以下に保ちながら、二軸延伸を行う空間まで搬送されることが好ましい。これにより、滞留時間が長くなった場合であっても、成膜直後の未延伸原反の結晶性を維持することができる。 It is preferable that the unstretched raw material containing PBT as a main component is conveyed to a space where biaxial stretching is performed while maintaining the atmospheric temperature at 25 ° C. or lower, preferably 20 ° C. or lower. Thereby, even if it is a case where residence time becomes long, the crystallinity of the unstretched original fabric immediately after film-forming can be maintained.
 未延伸原反を延伸させて延伸フィルムを得るための二軸延伸法は、特には限定されない。例えば、チューブラー法又はテンター法により、縦方向及び横方向を同時に延伸してもよく、若しくは、縦方向及び横方向を逐次延伸してもよい。このうち、チューブラー法は、周方向の物性バランスが良好な延伸フィルムを得ることができ、特に好ましく採用される。 The biaxial stretching method for obtaining a stretched film by stretching an unstretched raw fabric is not particularly limited. For example, the longitudinal direction and the lateral direction may be simultaneously stretched by the tubular method or the tenter method, or the longitudinal direction and the lateral direction may be sequentially stretched. Among these, the tubular method can obtain a stretched film having a good balance of physical properties in the circumferential direction, and is particularly preferably employed.
 チューブラー法において、延伸空間に導かれた未延伸原反は、一対の低速ニップロール間に挿通された後、中に空気を圧入しながら延伸用ヒーターで加熱される。延伸終了後、延伸フィルムには、冷却ショルダーエアーリングによりエアーが吹き付けられる。延伸倍率は、延伸安定性や延伸フィルムの強度物性、透明性、および厚み均一性を考慮すると、MD、およびTDそれぞれ2.7倍以上且つ4.5倍以下であることが好ましい。延伸倍率を2.7倍以上にすることにより、延伸フィルムの引張弾性率や衝撃強度を十分に確保することができる。また、延伸倍率を4.5倍以下にすることにより、延伸により過度な分子鎖のひずみが発生することを抑制し、延伸加工時に破断やパンクが発生することを抑制できるので、延伸フィルムを安定に作製することができる。 In the tubular method, the unstretched raw material introduced into the stretching space is inserted between a pair of low-speed nip rolls, and then heated by a stretching heater while air is being pressed therein. After stretching, air is blown onto the stretched film by a cooling shoulder air ring. The stretching ratio is preferably 2.7 times or more and 4.5 times or less for MD and TD, respectively, in consideration of stretching stability, strength physical properties of the stretched film, transparency, and thickness uniformity. By setting the draw ratio to 2.7 times or more, it is possible to sufficiently ensure the tensile elastic modulus and impact strength of the stretched film. In addition, by setting the draw ratio to 4.5 times or less, it is possible to suppress the occurrence of excessive molecular chain distortion due to stretching, and to suppress the occurrence of breakage and puncture during the stretching process, so that the stretched film can be stabilized. Can be produced.
 延伸温度は、40℃以上且つ80℃以下が好ましく、特に好ましくは45℃以上且つ65℃以下である。上述の高い冷却速度で製造した未延伸原反は、結晶性が低いため、延伸温度が比較的に低温の場合であっても、安定して未延伸原反を延伸することができる。また、延伸温度を80℃以下にすることにより、延伸バブルの揺れを抑制し、厚み精度の良好な延伸フィルムを得ることができる。また、延伸温度を40℃以上にすることにより、低温延伸による過度な延伸配向結晶化が発生することを抑制して、フィルムの白化等を防ぐことができる。 The stretching temperature is preferably 40 ° C. or higher and 80 ° C. or lower, and particularly preferably 45 ° C. or higher and 65 ° C. or lower. Since the unstretched original fabric produced at the above-described high cooling rate has low crystallinity, the unstretched original fabric can be stably stretched even when the stretching temperature is relatively low. Further, by setting the stretching temperature to 80 ° C. or less, it is possible to suppress stretching bubble shaking and obtain a stretched film with good thickness accuracy. In addition, by setting the stretching temperature to 40 ° C. or higher, it is possible to suppress the occurrence of excessive stretch-oriented crystallization due to low-temperature stretching, thereby preventing whitening of the film.
 上述のようにして作製される基材201は、例えば、ブチレンテレフタレートを主たる繰返し単位とするポリエステルを含む単一の層によって構成されている。上述の作製方法によれば、高い冷却速度で未延伸原反を成膜するので、未延伸原反が単一の層によって構成される場合であっても、低い結晶状態を保つことができ、このため、安定して未延伸原反を延伸することができる。 The base material 201 produced as described above is constituted by a single layer containing, for example, polyester having butylene terephthalate as a main repeating unit. According to the above-described production method, since the unstretched raw film is formed at a high cooling rate, even when the unstretched raw fabric is constituted by a single layer, a low crystalline state can be maintained, For this reason, an unstretched original fabric can be extended | stretched stably.
 基材201がPBTを含むことにより、バリア性積層フィルム205の耐熱性、及びバリア性積層フィルム205を含む包装材料210の耐熱性を高くすることができる。例えば、バリア性積層フィルム205及び包装材料210の引張弾性率を十分に高くすることができる。特に、高温の雰囲気下、例えば100℃の雰囲気下におけるバリア性積層フィルム205及び包装材料210の引張弾性率(以下、熱間引張弾性率とも記す)を十分に高くすることができる。 When the base material 201 contains PBT, the heat resistance of the barrier laminate film 205 and the heat resistance of the packaging material 210 including the barrier laminate film 205 can be increased. For example, the tensile elastic modulus of the barrier laminate film 205 and the packaging material 210 can be sufficiently increased. In particular, the tensile elastic modulus (hereinafter also referred to as hot tensile elastic modulus) of the barrier laminate film 205 and the packaging material 210 in a high-temperature atmosphere, for example, an atmosphere at 100 ° C. can be sufficiently increased.
 本実施の形態においても、包装材料210が高スティフネスPETフィルム又はPBTフィルムを含むことにより、上述の第1の実施の形態の場合と同様に、包装材料210の突き刺し強度を高めることができる。包装材料210の突き刺し強度は、例えば14N以上であり、15N以上であってもよく、16N以上であってもよく、17N以上であってもよく、18N以上であってもよい。また、上述の第1の実施の形態の場合と同様に、包装材料210のこしの強さを高めることができる。例えば、包装材料210のループスティフネスを高めることができる。少なくとも1つの方向における包装材料30のループスティフネスは、例えば0.160N以上であり、0.165N以上であってもよく、0.170N以上であってもよく、0.175N以上であってもよく、0.180N以上であってもよい。例えば、流れ方向(MD)における包装材料30のループスティフネスは、例えば0.160N以上であり、0.165N以上であってもよく、0.170N以上であってもよく、0.175N以上であってもよく、0.180N以上であってもよい。また、垂直方向(TD)における包装材料30のループスティフネスは、例えば0.160N以上であり、0.165N以上であってもよく、0.170N以上であってもよく、0.175N以上であってもよく、0.180N以上であってもよい。また、 Also in the present embodiment, when the packaging material 210 includes a high stiffness PET film or a PBT film, the puncture strength of the packaging material 210 can be increased as in the case of the first embodiment described above. The puncture strength of the packaging material 210 is, for example, 14N or more, 15N or more, 16N or more, 17N or more, or 18N or more. In addition, the strength of the packaging material 210 can be increased as in the case of the first embodiment described above. For example, the loop stiffness of the packaging material 210 can be increased. The loop stiffness of the packaging material 30 in at least one direction is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. 0.180N or more. For example, the loop stiffness of the packaging material 30 in the flow direction (MD) is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. It may be 0.180 N or more. The loop stiffness of the packaging material 30 in the vertical direction (TD) is, for example, 0.160 N or more, 0.165 N or more, 0.170 N or more, or 0.175 N or more. It may be 0.180 N or more. Also,
[蒸着層]
 次に、バリア性積層フィルム205の蒸着層202について説明する。
[Deposition layer]
Next, the vapor deposition layer 202 of the barrier laminate film 205 will be described.
 蒸着層202は、酸素ガス、水蒸気等の透過を阻止、遮断するガスバリア性能を有する薄膜である。蒸着層202は、アルミニウムなどの遮光性を有する金属を含む金属層であってもよく、透明性を有する無機化合物で形成された透明蒸着層であってもよい。例えば、蒸着層202は、透明性を有する無機酸化物で形成された透明蒸着層である。 The vapor deposition layer 202 is a thin film having a gas barrier performance that blocks or blocks permeation of oxygen gas, water vapor, and the like. The vapor deposition layer 202 may be a metal layer containing a light-shielding metal such as aluminum, or may be a transparent vapor deposition layer formed of an inorganic compound having transparency. For example, the vapor deposition layer 202 is a transparent vapor deposition layer formed of an inorganic oxide having transparency.
 以下、蒸着層202が透明蒸着層である場合について説明する。蒸着層202を形成する無機酸化物は、例えば、少なくとも酸化アルミニウム又はアルミニウムの窒化物、炭化物、水酸化物の単独又はその混合物を含む、アルミニウム化合物を主成分として含む。例えば、無機酸化物は、酸化アルミニウムを主成分として含む。
 また、蒸着層202は、珪素化合物を主成分として含む層であってもよい。例えば、無機酸化物層は、ケイ素酸化物(酸化珪素)を主成分として含む。
 さらに、蒸着層202は、上述の酸化アルミニウムなどのアルミニウム化合物を主成分として含み、更に、ケイ素酸化物、ケイ素窒化物、ケイ素酸化窒化物、ケイ素炭化物、酸化マグネシウム、酸化チタン、酸化錫、酸化インジウム、酸化亜鉛、酸化ジルコニウム等の金属酸化物、またはこれらの金属窒化物、炭化物及びその混合物などを含む層であってもよい。
Hereinafter, the case where the vapor deposition layer 202 is a transparent vapor deposition layer is demonstrated. The inorganic oxide forming the vapor deposition layer 202 contains, for example, an aluminum compound as a main component, which contains at least aluminum oxide or aluminum nitride, carbide, hydroxide alone or a mixture thereof. For example, the inorganic oxide contains aluminum oxide as a main component.
The vapor deposition layer 202 may be a layer containing a silicon compound as a main component. For example, the inorganic oxide layer contains silicon oxide (silicon oxide) as a main component.
Furthermore, the vapor deposition layer 202 contains an aluminum compound such as the above-described aluminum oxide as a main component, and further includes silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, magnesium oxide, titanium oxide, tin oxide, and indium oxide. Further, it may be a layer containing a metal oxide such as zinc oxide or zirconium oxide, or a metal nitride, carbide or mixture thereof.
 蒸着層202の厚みは、3nm以上50nm以下が好ましく、より好ましくは9nm以上30nm以下である。 The thickness of the vapor deposition layer 202 is preferably 3 nm or more and 50 nm or less, and more preferably 9 nm or more and 30 nm or less.
(ガスバリア性塗布膜)
 バリア性積層フィルム205のガスバリア性塗布膜203は、蒸着層202が透明蒸着層である場合に、蒸着層202を機械的・化学的に保護するとともに、バリア性積層フィルム205のバリア性を向上させるためのものであり、蒸着層202に接するように積層される。ガスバリア性塗布膜203は、金属アルコキシドと水酸基含有水溶性樹脂、及び必要に応じて添加されるシランカップリング剤とを含む樹脂組成物からなるガスバリア性塗布膜用コート剤によって形成される硬化膜である。
(Gas barrier coating film)
When the vapor deposition layer 202 is a transparent vapor deposition layer, the gas barrier coating film 203 of the barrier multilayer film 205 protects the vapor deposition layer 202 mechanically and chemically and improves the barrier property of the barrier multilayer film 205. Therefore, the layers are stacked so as to be in contact with the vapor deposition layer 202. The gas barrier coating film 203 is a cured film formed by a coating agent for a gas barrier coating film made of a resin composition containing a metal alkoxide, a hydroxyl group-containing water-soluble resin, and a silane coupling agent added as necessary. is there.
 前記樹脂組成物中の水酸基含有水溶性樹脂/金属アルコキシドの質量比は、5/95以上、20/80以下が好ましく、8/92以上、15/85以下がより好ましい。上記範囲よりも小さいと、バリア性被覆層のバリア効果が不十分になり易い傾向になり、上記範囲よりも大きいと、バリア性被覆層の剛性と脆性とが大きくなり易くなる。 The mass ratio of the hydroxyl group-containing water-soluble resin / metal alkoxide in the resin composition is preferably 5/95 or more and 20/80 or less, more preferably 8/92 or more and 15/85 or less. When it is smaller than the above range, the barrier effect of the barrier coating layer tends to be insufficient, and when it is larger than the above range, the rigidity and brittleness of the barrier coating layer tend to increase.
 ガスバリア性塗布膜203の厚みは、100nm以上、800nm以下が好ましい。上記範囲よりも薄いと、ガスバリア性塗布膜203のバリア効果が不十分になり易くなり、上記範囲よりも厚いと、剛性と脆性とが大きくなり易くなる。 The thickness of the gas barrier coating film 203 is preferably 100 nm or more and 800 nm or less. If it is thinner than the above range, the barrier effect of the gas barrier coating film 203 tends to be insufficient, and if it is thicker than the above range, rigidity and brittleness tend to increase.
 金属アルコキシドは、一般式R1nM(OR2)m(ただし、式中、R1、R2は、水素原子または炭素数1~8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。1分子中の複数のR1、R2のそれぞれは、同一であっても、異なっていてもよい。)・・・(XI)で表される。 The metal alkoxide has the general formula R 1 nM (OR 2 ) m (wherein R 1 and R 2 represent a hydrogen atom or an organic group having 1 to 8 carbon atoms, M represents a metal atom, n Represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M. Even if each of a plurality of R 1 and R 2 in one molecule is the same, (It may be different.) ... It is represented by (XI).
 金属アルコキシドのMで表される具体的な金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、スズ、鉛、ボラン、その他等を例示することができ、例えば、MがSi(ケイ素)であるアルコキシシランを使用することが好ましい。 Specific metal atoms represented by M in the metal alkoxide include silicon, zirconium, titanium, aluminum, tin, lead, borane, and the like. For example, alkoxy in which M is Si (silicon) It is preferred to use silane.
 上記一般式(XI)において、ORの具体例としては、水酸基、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、i-プロポキシ基、ブトキシ基、3-メタクリロキシ基。3-アクリロキシ基、フェノキシ基、等のアルコキシ基またはフェノキシ基等が挙げられる。 In the general formula (XI), specific examples of OR 2 include a hydroxyl group, a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, an i-propoxy group, a butoxy group, and a 3-methacryloxy group. Examples thereof include alkoxy groups such as 3-acryloxy group and phenoxy group, and phenoxy groups.
 上記において、Rの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、p-スチリル基、3-クロロプロピル基、トリフルオロメチル基、ビニル基、γ-グリシドキシプロピル基、メタクリル基、γ-アミノプロピル基等が挙げられる。 In the above, specific examples of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, phenyl group, p-styryl group, 3-chloropropyl group, trifluoromethyl group, vinyl group, γ-glycol. Examples thereof include a sidoxypropyl group, a methacryl group, and a γ-aminopropyl group.
 アルコキシシランの具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラフェノキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、メチルトリフェノキシシラン、フェニルフェノキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-クロロプロピルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン等の各種アルコキシシランやフェノキシシラン等が挙げられる。本実施の形態において、これらのアルコキシシランの縮重合物も使用することができ、具体的には、例えば、ポリテトラメトキシシラン、ポリテトラエトキシシラン等を使用することができる。 Specific examples of the alkoxysilane include, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraphenoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, Methyltributoxysilane, methyltriphenoxysilane, phenylphenoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxy Silane, isopropyltriethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, vinyl Limethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl Trimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-chloropropyltriethoxysilane, trifluoromethyltrimethoxysilane, 1,6- Examples include various alkoxysilanes such as bis (trimethoxysilyl) hexane and phenoxysilane. In the present embodiment, a polycondensation product of these alkoxysilanes can also be used. Specifically, for example, polytetramethoxysilane, polytetraethoxysilane, or the like can be used.
 シランカップリング剤は、金属アルコキシドと水酸基含有水溶性樹脂による硬化膜の架橋密度を調整して、バリア性及び耐熱水処理性のある膜とするために用いるものである。 The silane coupling agent is used to adjust the crosslinking density of a cured film with a metal alkoxide and a hydroxyl group-containing water-soluble resin to obtain a film having a barrier property and a heat-resistant water treatment property.
 シランカップリング剤は、一般式:RnSi(OR)4-n  ・・・(XII)
 (ただし、式中、RおよびRはそれぞれ独立して有機官能基を表し、nは1から3である。)
で表される。
The silane coupling agent has the general formula: R 3 nSi (OR 4 ) 4-n (XII)
(In the formula, R 3 and R 4 each independently represents an organic functional group, and n is 1 to 3.)
It is represented by
 上記一般式(XII)中、Rとしては、例えば、アルキル基やアルキレン基等の炭化水素基、エポキシ基、(メタ)アクリロキシ基、ウレイド基、ビニル基、アミノ基、イソシアヌレート基またはイソシアネート基を有する官能基が挙げられる。具体的には、2つまたは3つ存在するRの少なくとも一つは、エポキシ基を有する官能基であることが好ましく、3-グリシドキシプロピル基および2-(3,4エポキシシクロヘキシル)基であることがより好ましい。なお、Rは、それぞれ同一であっても、異なってもよい。 In the general formula (XII), R 3 is, for example, a hydrocarbon group such as an alkyl group or an alkylene group, an epoxy group, a (meth) acryloxy group, a ureido group, a vinyl group, an amino group, an isocyanurate group or an isocyanate group. The functional group which has is mentioned. Specifically, at least one of R 3 present in two or three is preferably a functional group having an epoxy group, such as a 3-glycidoxypropyl group and a 2- (3,4 epoxycyclohexyl) group. It is more preferable that R 3 may be the same or different.
 上記一般式(XII)中、Rとしては、例えば、炭素数1~8の有機官能基であり、好ましくは分岐を有していてもよい炭素数1~8のアルキル基または炭素数3~7のアルコキシアルキル基である。例えば、炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基等が挙げられる。また、炭素数3~7のアルコキシアルキル基としては、メチルエチルエーテル、ジエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、メチルブチルエーテル、エチルブチルエーテル、メチルsec-ブチルエーテル、エチルsec-ブチルエーテル、メチルtert-ブチルエーテル、エチルtert-ブチルエーテル等の直鎖又は分岐鎖状エーテルから1個の水素原子を除いた基等が挙げられる。なお、(OR)は、それぞれ同一であっても、異なってもよい。 In the general formula (XII), R 4 is, for example, an organic functional group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 8 carbon atoms which may have a branch, or 3 to 3 carbon atoms. 7 alkoxyalkyl groups. For example, examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group and the like. Examples of the alkoxyalkyl group having 3 to 7 carbon atoms include methyl ethyl ether, diethyl ether, methyl propyl ether, methyl isopropyl ether, ethyl propyl ether, ethyl isopropyl ether, methyl butyl ether, ethyl butyl ether, methyl sec-butyl ether, ethyl sec. A group obtained by removing one hydrogen atom from a linear or branched ether such as butyl ether, methyl tert-butyl ether, or ethyl tert-butyl ether; Note that (OR 4 ) may be the same or different.
 上記一般式(XII)で表されるシランカップリング剤としては、例えば、n=1の場合、3-グリシドキシプロピルトリメトキシシランおよび3-グリシドキシプロピルトリエトキシシラン等が挙げられる。n=2の場合、3-グリシドキシプロピルメチルジメトキシシランおよび3-グリシドキシプロピルメチルジエトキシシラン等が挙げられ、n=3の場合、3-グリシドキシプロピルジメチルメトキシシラン、3-グリシドキシプロピルジメチルエトキシシラン、2-(3,4-エポキシシクロヘキシル)ジメチルメトキシシラン、2-(3,4-エポキシシクロヘキシル)ジメチルエトキシシラン等が挙げられる。 Examples of the silane coupling agent represented by the general formula (XII) include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane when n = 1. Examples of n = 2 include 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane. When n = 2, 3-glycidoxypropyldimethylmethoxysilane, 3-glycidoxypropyl Sidoxypropyldimethylethoxysilane, 2- (3,4-epoxycyclohexyl) dimethylmethoxysilane, 2- (3,4-epoxycyclohexyl) dimethylethoxysilane and the like.
 特に、3-グリシドキシプロピルメチルジメトキシシランおよび3-グリシドキシプロピルメチルジエトキシシランを用いたバリア性被覆層の硬化膜の架橋密度は、トリアルコキシシランを用いた系での架橋密度より低くなる。そのため、ガスバリア性及び耐熱水処理性のある膜として優れながら、柔軟性のある硬化膜となり、耐屈曲性にも優れるため、当該バリアフィルムを用いた包装材料はゲルボフレックス試験後でもガスバリア性が劣化し難い。 In particular, the crosslinking density of the cured film of the barrier coating layer using 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane is lower than the crosslinking density in the system using trialkoxysilane. Become. Therefore, since it is excellent as a film having gas barrier properties and heat-resistant water treatment properties, it becomes a flexible cured film, and also has excellent bending resistance. Therefore, the packaging material using the barrier film has gas barrier properties even after the gelbo flex test. Hard to deteriorate.
 シランカップリング剤は、n=1、2、3、のものを混合して用いることもでき、その量比及びシランカップリング剤の使用量は、バリア性被覆層の硬化膜の設計により決められる。 Silane coupling agents with n = 1, 2, 3 can be mixed and used, and the amount ratio and amount of silane coupling agent used are determined by the design of the cured film of the barrier coating layer. .
 水酸基含有水溶性樹脂は、金属アルコキシドと脱水共縮合し得るものであり、ケン化度は、90%以上、100%以下が好ましく、95%以上、100%以下がより好ましく、99%以上、100%以下が更に好ましい。ケン化度が上記範囲よりも小さいと。バリア性被覆層の硬度が低下し易くなる。 The hydroxyl group-containing water-soluble resin can be dehydrated and co-condensed with a metal alkoxide, and the degree of saponification is preferably 90% or more and 100% or less, more preferably 95% or more and 100% or less, and 99% or more, 100 % Or less is more preferable. When the saponification degree is smaller than the above range. The hardness of the barrier coating layer tends to decrease.
 水酸基含有水溶性樹脂の具体例としては、例えば、ポリビニルアルコール系樹脂、エチレン・ビニルアルコ一ル共重合体、2官能フェノール化合物と2官能エポキシ化合物との重合体、等が挙げられ、各々を単独で用いてもよく、2種以上を混合して用いてもよく、共重合させて用いてもよい。これらの中で、特に、柔軟性と親和性に優れることから、ポリビニルアルコールが好ましく、ポリビニルアルコール系樹脂が好適である。 Specific examples of the hydroxyl group-containing water-soluble resin include, for example, polyvinyl alcohol resins, ethylene / vinyl alcohol copolymers, polymers of bifunctional phenol compounds and bifunctional epoxy compounds, and the like. You may use, 2 or more types may be mixed and used, and you may make it copolymerize and use. Among these, polyvinyl alcohol is preferable and polyvinyl alcohol resin is preferable because it is excellent in flexibility and affinity.
 具体的には、例えば、ポリ酢酸ビニルをケン化して得られたポリビニルアルコ一ル系樹脂や、エチレンと酢酸ビニルとの共重合体をケン化して得られたエチレン・ビニルアルコール共重合体を使用することができる。
 このようなポリビニルアルコール系樹脂としては、株式会社クラレ製のPVA-124(ケン化度=99%、重合度=2,400)」、日本合成化学工業株式会社製の「ゴーセノールNM-14(ケン化度=99%、重合度=1,400)」等を挙げることができる。
Specifically, for example, a polyvinyl alcohol resin obtained by saponifying polyvinyl acetate or an ethylene / vinyl alcohol copolymer obtained by saponifying a copolymer of ethylene and vinyl acetate is used. can do.
Examples of such polyvinyl alcohol resins include PVA-124 manufactured by Kuraray Co., Ltd. (degree of saponification = 99%, degree of polymerization = 2,400), and “GOHSENOL NM-14 (degree of saponification) manufactured by Nippon Synthetic Chemical Industries = 99%, degree of polymerization = 1,400).
(バリア性積層フィルムの好ましい構成)
 次に、蒸着層202が酸化アルミニウムを含む透明蒸着層である場合の、厚み方向におけるバリア性積層フィルム205の好ましい構成について、図22を参照して説明する。図22は、バリア性積層フィルム205のガスバリア性塗布膜203側の表面に対し、Cs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、酸化アルミニウムを含む蒸着層202に由来するイオンと、基材201に由来するイオンを測定した結果を示す図である。バリア性積層フィルム205の蒸着層202は、図22に示すグラフ解析図によって特定される遷移領域を含んでいる。
(Preferred configuration of barrier laminate film)
Next, a preferable configuration of the barrier laminate film 205 in the thickness direction when the vapor deposition layer 202 is a transparent vapor deposition layer containing aluminum oxide will be described with reference to FIG. FIG. 22 shows time-of-flight secondary ion mass spectrometry (TOF−) while soft etching is repeated at a constant rate on the surface of the barrier laminate film 205 on the gas barrier coating film 203 side with a Cs (cesium) ion gun. It is a figure which shows the result of having measured the ion derived from the vapor deposition layer 202 containing an aluminum oxide, and the ion derived from the base material 201 using SIMS. The vapor deposition layer 202 of the barrier laminate film 205 includes a transition region specified by the graph analysis diagram shown in FIG.
 遷移領域とは、バリア性積層フィルム205をガスバリア性塗布膜203側からTOF-SIMSを用いてエッチングを行うことで検出される、水酸化アルミニウムに変成する元素結合Al24Hのピークの位置T2と、蒸着層202と基材201との界面T1との間の領域である。蒸着層202と基材201との界面T1は、元素C6のグラフの強度が、基材201における元素C6の強度の半分になる位置として特定される。図22において、符号W2は、遷移領域の厚みを表す。 The transition region is the position of the peak of element-bonded Al 2 O 4 H that is converted into aluminum hydroxide and is detected by etching the barrier laminate film 205 from the gas barrier coating film 203 side using TOF-SIMS. This is a region between T 2 and the interface T 1 between the vapor deposition layer 202 and the substrate 201. Interface T 1 of the the deposition layer 202 and the substrate 201, the intensity of the graph element C 6 is identified as a position that is half the strength of the element C 6 in the substrate 201. In FIG. 22, the symbol W2 represents the thickness of the transition region.
 蒸着層202の厚みに対する遷移領域の厚みW2の比率(以下、遷移領域の変成率とも称する)は、5%以上60%以下であることが望ましい。変成率を5%以上60%以下にすることにより、バリア性積層フィルム205を含む包装材料にボイル処理やレトルト処理などの殺菌処理を施した場合に、水蒸気に対するバリア性積層フィルム205のバリア性が低下してしまうことを抑制することができる。レトルト処理とは、バリア性積層フィルム205を備える包装材料によって構成された包装袋に内容物を充填して包装袋を密封した後、包装袋を加圧状態で加熱する処理である。レトルト処理の温度は、例えば120℃以上である。ボイル処理とは、内容物を包装袋に充填して包装袋を密封した後、包装袋を大気圧下で湯煎する処理である。ボイル処理の温度は、例えば90℃以上且つ100℃以下である。なお、遷移領域の変成率が5%以上60%以下であるバリア性積層フィルム205を含む包装材料は、ボイル処理やレトルト処理などの殺菌処理が施されない用途の包装袋で用いられる場合であっても、酸素や水蒸気などのガスに対するバリア性を維持する上で有効に機能し得る。 The ratio of the thickness W2 of the transition region to the thickness of the deposited layer 202 (hereinafter also referred to as the transition region modification rate) is preferably 5% or more and 60% or less. By making the transformation rate 5% or more and 60% or less, when the packaging material including the barrier laminate film 205 is subjected to sterilization treatment such as boil treatment or retort treatment, the barrier property of the barrier laminate film 205 against water vapor is It can suppress that it falls. A retort process is a process which heats a packaging bag in a pressurized state, after filling the packaging bag comprised with the packaging material provided with the barrier property laminated | multilayer film 205 and sealing a packaging bag. The temperature of retort processing is 120 degreeC or more, for example. The boil process is a process of filling the packaging bag with the contents and sealing the packaging bag, and then bathing the packaging bag under atmospheric pressure. The temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example. Note that the packaging material including the barrier laminated film 205 having a transition region transformation rate of 5% or more and 60% or less is used in packaging bags that are not subjected to sterilization treatment such as boil treatment or retort treatment. However, it can function effectively in maintaining the barrier property against gases such as oxygen and water vapor.
 基材201と蒸着層202の界面は、熱によって機械的及び化学的なストレスを受ける。従って、密着性やバリア性の低下を抑制するためには、基材201と蒸着層202の界面において強固に蒸着層202で基材201を被覆することが重要である。 The interface between the base material 201 and the vapor deposition layer 202 is subjected to mechanical and chemical stress by heat. Therefore, in order to suppress deterioration in adhesion and barrier properties, it is important to firmly cover the base material 201 with the vapor deposition layer 202 at the interface between the base material 201 and the vapor deposition layer 202.
 水酸化アルミニウムは、その化学構造によりポリエステルフィルムなどのプラスチックフィルムとの密着性がよく、またそれ自体がネットワークを作り緻密なため、高い水蒸気バリア性を有する。しかし、熱ストレスに対して、水酸化アルミとプラスチックフィルムとの水素結合に基づく結合構造は微視的に崩れやすい。また、水酸化アルミニウムのネットワークに対しても、水分子と水酸化アルミニウムの粒界面の親和性から膜中に浸透しやすい。 Aluminum hydroxide has good adhesion to plastic films such as polyester film due to its chemical structure, and has high water vapor barrier properties because it itself forms a network and is dense. However, the bonding structure based on hydrogen bonding between aluminum hydroxide and the plastic film is easily broken microscopically against heat stress. Also, it easily penetrates into the membrane due to the affinity of the water molecule and aluminum hydroxide grain interface to the aluminum hydroxide network.
 本実施の形態では、酸化アルミニウムを含む蒸着層202における水酸化アルミニウムが形成する、基材201との界面における遷移領域を極力狭くするために、元素結合Al24Hに注目し、その存在量を制御する。これにより、熱ストレスによって元素結合Al24Hから発生する水酸化アルミニウムを抑え、相対的に水酸化アルミニウムが少ない酸化アルミニウムの層の比率を上げることにより、熱ストレスによる水分子による微視的な蒸着層202の破壊、プラスチックフィルムとの界面破壊を抑制することを意図している。それにより従来にない密着性、バリア性を有するバリア性積層フィルム205を提供することができる。 In the present embodiment, in order to make the transition region at the interface with the base material 201 formed by aluminum hydroxide in the vapor deposition layer 202 containing aluminum oxide as much as possible, attention is paid to element-bonded Al 2 O 4 H and its presence. Control the amount. This suppresses aluminum hydroxide generated from elementally bonded Al 2 O 4 H due to thermal stress, and increases the proportion of the aluminum oxide layer that is relatively low in aluminum hydroxide, thereby making it microscopic due to water molecules caused by thermal stress. It is intended to suppress the destruction of the vapor deposition layer 202 and the interface destruction with the plastic film. As a result, a barrier laminate film 205 having unprecedented adhesion and barrier properties can be provided.
 酸化アルミニウムを含む蒸着層202は、酸素プラズマ前処理された基材201の表面に蒸着層202を成膜することで形成することができる。蒸着層202を成膜する蒸着法としては、物理蒸着法、化学蒸着の中から種々の蒸着法が適用できる。物理蒸着法としては、蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法、クラスターイオンビーム法からなる群から選ぶことができ、化学蒸着法としては、プラズマCVD法、プラズマ重合法、熱CVD法、触媒反応型CVD法からなる群から選ぶことができる。本実施の形態においては、物理蒸着法の蒸着法が好適である。 The vapor deposition layer 202 containing aluminum oxide can be formed by forming the vapor deposition layer 202 on the surface of the base material 201 that has been pretreated with oxygen plasma. As a vapor deposition method for forming the vapor deposition layer 202, various vapor deposition methods can be applied among physical vapor deposition and chemical vapor deposition. The physical vapor deposition method can be selected from the group consisting of vapor deposition method, sputtering method, ion plating method, ion beam assist method, and cluster ion beam method. Chemical vapor deposition methods include plasma CVD method, plasma polymerization method, thermal method. It can be selected from the group consisting of CVD method and catalytic reaction type CVD method. In this embodiment, a physical vapor deposition method is preferable.
 図22のグラフを得るための方法の一具体例について説明する。まず、Csを用いて、ガスバリア性塗布膜203の最表面からエッチングを行い、ガスバリア性塗布膜203と蒸着層202と基材201等のフィルムとの界面の元素結合及び蒸着層202の元素結合の分析を実施する。これにより、図22に示すグラフを得ることができる。 A specific example of a method for obtaining the graph of FIG. 22 will be described. First, using Cs, etching is performed from the outermost surface of the gas barrier coating film 203, and the element bonding of the interface between the gas barrier coating film 203, the vapor deposition layer 202, and the film such as the substrate 201 and the element bonding of the vapor deposition layer 202 are performed. Perform analysis. Thereby, the graph shown in FIG. 22 can be obtained.
 次に、図22のグラフの解析方法の一具体例について説明する。ここでは、ガスバリア性塗布膜203が酸化ケイ素を含む場合について説明する。 Next, a specific example of a method for analyzing the graph in FIG. 22 will be described. Here, a case where the gas barrier coating film 203 contains silicon oxide will be described.
 まず、グラフにおいて、ガスバリア性塗布膜203の構成元素であるSiO2(質量数59.96)の強度が、ガスバリア性塗布膜203における強度の半分になる位置を、ガスバリア性塗布膜203と蒸着層202の界面として特定する。次に、基材201の構成材料であるC6(質量数72.00)の強度が、基材201における強度の半分になる位置を、基材201と蒸着層202の界面として特定する。また、2つの界面の間の、厚み方向における距離を、蒸着層202の厚みとして採用する。 First, in the graph, the position at which the strength of SiO 2 (mass number 59.96), which is a constituent element of the gas barrier coating film 203, becomes half the strength of the gas barrier coating film 203 is indicated by the gas barrier coating film 203 and the vapor deposition layer. 202 is specified as the interface. Next, a position where the strength of C 6 (mass number 72.00), which is a constituent material of the base material 201, becomes half of the strength of the base material 201 is specified as an interface between the base material 201 and the vapor deposition layer 202. Further, the distance in the thickness direction between the two interfaces is adopted as the thickness of the vapor deposition layer 202.
 次に、測定された元素結合Al24H(質量数118.93)のピークを求め、そのピークから界面までを遷移領域とする。ただし、ガスバリア性塗布膜203の成分がAl24H(質量数118.93)と同じ質量数の材料で構成される場合、118.93の波形を分離する必要がある。 Next, a peak of the measured element-bonded Al 2 O 4 H (mass number 118.93) is obtained, and the transition from the peak to the interface is taken as the transition region. However, when the component of the gas barrier coating film 203 is made of a material having the same mass number as Al 2 O 4 H (mass number 118.93), it is necessary to separate the waveform of 118.93.
 ガスバリア性塗布膜203と蒸着層202の界面に、反応物AlSiO4と、水酸化物Al24Hとが生じる場合、それらと、基材201と蒸着層202の間の界面に存在するAl24Hを分離することができる。このように、波形の分離については、ガスバリア性塗布膜203の材料に応じて適宜対応することができる。 When reactants AlSiO 4 and hydroxide Al 2 O 4 H are generated at the interface between the gas barrier coating film 203 and the vapor deposition layer 202, Al and the Al present at the interface between the substrate 201 and the vapor deposition layer 202 are present. 2 O 4 H can be separated. As described above, the waveform separation can be appropriately handled according to the material of the gas barrier coating film 203.
 波形分離においては、例えば、TOF-SIMSで得られた、質量数118.93のプロファイルを、Gaussian関数を用いて非線形のカーブフィッティングを行い最小二乗法Levenberg Marquardt アルゴリズムを使用して重複ピークの分離を行うことができる。 In waveform separation, for example, a profile with a mass number of 118.93 obtained by TOF-SIMS is subjected to nonlinear curve fitting using a Gaussian function, and overlapping peaks are separated using a least square method Levenberg Marquardt algorithm. It can be carried out.
 なお、上述の解析は、バリア性積層フィルム205が基材201、蒸着層202及びガスバリア性塗布膜203を備える場合を想定しているが、同様の解析は、バリア性積層フィルム205が基材201及び蒸着層202を含むがガスバリア性塗布膜203を含まない場合にも適用できる。バリア性積層フィルム205がガスバリア性塗布膜203を含まない場合であっても、蒸着層202の遷移領域の変成率を所定の範囲内にすることにより、バリア性積層フィルム205を含む包装材料にボイル処理やレトルト処理などの殺菌処理を施した場合に、水蒸気に対するバリア性積層フィルム205のバリア性が低下してしまうことを抑制することができる。バリア性積層フィルム205が基材201及び蒸着層202を含み、蒸着層202側から飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行う場合、蒸着層202の遷移領域の変成率が45%以下であることが好ましい。 The above analysis assumes that the barrier laminate film 205 includes the base material 201, the vapor deposition layer 202, and the gas barrier coating film 203. However, the same analysis shows that the barrier laminate film 205 includes the base material 201. In addition, the present invention can also be applied to the case where the vapor barrier layer 202 is included but the gas barrier coating film 203 is not included. Even when the barrier laminate film 205 does not include the gas barrier coating film 203, the packaging material including the barrier laminate film 205 can be boiled by setting the transformation rate of the transition region of the vapor deposition layer 202 within a predetermined range. When the sterilization process such as the process or the retort process is performed, it is possible to prevent the barrier property of the barrier laminate film 205 from being deteriorated against water vapor. When the barrier laminate film 205 includes a base material 201 and a vapor deposition layer 202 and etching is performed from the vapor deposition layer 202 side using time-of-flight secondary ion mass spectrometry (TOF-SIMS), the transition region of the vapor deposition layer 202 is changed. The modification rate is preferably 45% or less.
 次に、バリア性積層フィルム205の機械特性について説明する。バリア性積層フィルム205の機械特性は、主に基材201の機械特性によって決定される。このため、バリア性積層フィルム205のループスティフネス、突き刺し強度、引張強度、引張伸度、引張強度を引張伸度で割った値、熱収縮率及び引張弾性率などの機械特性は、基材201を構成する高スティフネスPETフィルムやPBTフィルムの機械特性と同等である。従って、仮に、バリア性積層フィルム205の機械特性の測定結果が、上述の好ましい範囲内であれば、高スティフネスPETフィルムやPBTフィルムによって構成される基材201単体の機械特性の測定結果も、上述の好ましい範囲内であると考えられる。 Next, mechanical properties of the barrier laminate film 205 will be described. The mechanical properties of the barrier laminate film 205 are mainly determined by the mechanical properties of the substrate 201. Therefore, the mechanical properties such as the loop stiffness, puncture strength, tensile strength, tensile elongation, tensile strength divided by tensile elongation, thermal shrinkage rate, and tensile elastic modulus of the barrier laminate film 205 are the same as those of the substrate 201. This is equivalent to the mechanical properties of the high-stiffness PET film and PBT film to be constructed. Therefore, if the measurement results of the mechanical properties of the barrier laminate film 205 are within the above-described preferable range, the measurement results of the mechanical properties of the base material 201 formed of a high stiffness PET film or a PBT film are also described above. Is considered to be within the preferable range.
[シーラント層]
 次に、シーラント層212について説明する。シーラント層212は、包装材料210の内面210xを構成する、熱可塑性樹脂を含む層である。図18に示す例において、シーラント層212は、第2接着層215を介して熱可塑性樹脂のフィルムを延伸プラスチックフィルム214に貼り合わせることによって形成されている。また、図19に示す例において、シーラント層212は、第2接着層215を介して熱可塑性樹脂のフィルムをバリア性積層フィルム205の基材201に貼り合わせることによって形成されている。図示はしないが、シーラント層212は、熱可塑性樹脂を延伸プラスチックフィルム214又はバリア性積層フィルム205上に押し出すことによって形成されていてもよい。
[Sealant layer]
Next, the sealant layer 212 will be described. The sealant layer 212 is a layer containing a thermoplastic resin that constitutes the inner surface 210 x of the packaging material 210. In the example shown in FIG. 18, the sealant layer 212 is formed by bonding a thermoplastic resin film to the stretched plastic film 214 via the second adhesive layer 215. In the example shown in FIG. 19, the sealant layer 212 is formed by bonding a thermoplastic resin film to the base material 201 of the barrier laminate film 205 via the second adhesive layer 215. Although not shown, the sealant layer 212 may be formed by extruding a thermoplastic resin onto the stretched plastic film 214 or the barrier laminate film 205.
 シーラント層212を構成する材料としては、低密度ポリエチレン、直鎖状低密度ポリエチレンなどのポリエチレン、ポリプロピレンから選択される1種または2種以上の樹脂を用いることができる。シーラント層212は、単層であってもよく、多層であってもよい。また、シーラント層212は、好ましくは未延伸のフィルムからなる。なお「未延伸」とは、全く延伸されていないフィルムだけでなく、製膜の際に加えられる張力に起因してわずかに延伸されているフィルムも含む概念である。 As a material constituting the sealant layer 212, one or more resins selected from polyethylene such as low density polyethylene and linear low density polyethylene, and polypropylene can be used. The sealant layer 212 may be a single layer or a multilayer. The sealant layer 212 is preferably made of an unstretched film. “Unstretched” is a concept that includes not only a film that is not stretched at all, but also a film that is slightly stretched due to the tension applied during film formation.
 ところで、シーラント層212を備える包装材料210から構成された包装製品には、ボイル処理やレトルト処理などの殺菌処理が高温で施されることがある。従って、シーラント層212は、これらの高温での処理に耐える耐熱性を有するものが用いられる。 Incidentally, a packaged product composed of the packaging material 210 including the sealant layer 212 may be subjected to sterilization treatment such as boil treatment and retort treatment at a high temperature. Accordingly, the sealant layer 212 has a heat resistance that can withstand the processing at these high temperatures.
 シーラント層212を構成する材料の融点は、150℃以上であることが好ましく、160℃以上であることがより好ましい。シーラント層212の融点を高くすることにより、包装製品のレトルト処理を高温で実施することが可能になり、このため、レトルト処理に要する時間を短くすることができる。なお、シーラント層212を構成する材料の融点は、基材201を構成する樹脂の融点より低い。 The melting point of the material constituting the sealant layer 212 is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. By increasing the melting point of the sealant layer 212, it becomes possible to perform the retorting process of the packaged product at a high temperature, and therefore the time required for the retorting process can be shortened. Note that the melting point of the material constituting the sealant layer 212 is lower than the melting point of the resin constituting the substrate 201.
 レトルト処理の観点で考える場合、シーラント層212を構成する材料として、上述の第1の実施の形態におけるシーラント層70の場合と同様に、プロピレンを主成分とする材料を用いることができる。また、ボイル処理の観点で考える場合、シーラント層212を構成する材料の例として、上述の第1の実施の形態におけるシーラント層70の場合と同様に、ポリエチレン、ポリプロピレン又はこれらの組み合わせなどを挙げることができる。 When considering from the viewpoint of the retort treatment, a material mainly composed of propylene can be used as a material constituting the sealant layer 212 as in the case of the sealant layer 70 in the first embodiment. Further, when considering from the viewpoint of boil processing, examples of the material constituting the sealant layer 212 include polyethylene, polypropylene, or a combination thereof as in the case of the sealant layer 70 in the first embodiment described above. Can do.
 好ましくは、シーラント層212は、上述の第1の実施の形態におけるシーラント層70の場合と同様に、プロピレン・エチレンブロック共重合体を含む。例えば、シーラント層212を構成するシーラントフィルムは、プロピレン・エチレンブロック共重合体を主成分とする未延伸フィルムである。プロピレン・エチレンブロック共重合体を用いることにより、シーラント層の耐衝撃性を高めることができ、これにより、落下時の衝撃により包装製品が破袋してしまうことを抑制することができる。また、包装材料210の耐突き刺し性を高めることができる。 Preferably, the sealant layer 212 includes a propylene / ethylene block copolymer as in the case of the sealant layer 70 in the first embodiment described above. For example, the sealant film constituting the sealant layer 212 is an unstretched film containing a propylene / ethylene block copolymer as a main component. By using the propylene / ethylene block copolymer, the impact resistance of the sealant layer can be increased, and thereby, the package product can be prevented from being broken by the impact at the time of dropping. Moreover, the puncture resistance of the packaging material 210 can be improved.
 また、シーラント層212は、上述の第1の実施の形態におけるシーラント層70の場合と同様に、熱可塑性エラストマーを更に含んでいてもよい。熱可塑性エラストマーを用いることにより、シーラント層の耐衝撃性や耐突き刺し性を更に高めることができる。 Further, the sealant layer 212 may further include a thermoplastic elastomer as in the case of the sealant layer 70 in the first embodiment described above. By using a thermoplastic elastomer, the impact resistance and puncture resistance of the sealant layer can be further enhanced.
 シーラント層212におけるプロピレン・エチレンブロック共重合体の含有率は、例えば80質量%以上であり、好ましくは90質量%以上である。 The content of the propylene / ethylene block copolymer in the sealant layer 212 is, for example, 80% by mass or more, and preferably 90% by mass or more.
 プロピレン・エチレンブロック共重合体の製造方法としては、触媒を用いて原料であるプロピレンやエチレンなどを重合させる方法が挙げられる。触媒としては、チーグラー・ナッタ型やメタロセン触媒などを用いることができる。 Examples of the method for producing a propylene / ethylene block copolymer include a method of polymerizing propylene, ethylene, and the like as raw materials using a catalyst. As the catalyst, Ziegler-Natta type or metallocene catalyst can be used.
 シーラント層212は、イージーピール性を備えていてもよい。イージーピール性とは、例えばシーラント層212を有する包装材料210を用いて容器の蓋材を構成する場合に、蓋材がその下面において、すなわちシーラント層212において、容器のフランジ部から剥がれやすい、という特性である。イージーピール性は、例えば、シーラント層212を2種類以上の樹脂で構成し、一の樹脂と他の樹脂とを非相溶性とすることにより、発現することができる。イージーピール性を発現させることができる樹脂としては、例えば、高密度ポリエチレンなどのポリエチレンとポリプロピレンの混合樹脂が挙げられる。 The sealant layer 212 may have an easy peel property. The easy peel property means that, for example, when a packaging material 210 having a sealant layer 212 is used to form a lid for a container, the lid is easily peeled from the flange portion of the container at the lower surface thereof, that is, the sealant layer 212. It is a characteristic. The easy peel property can be expressed, for example, by configuring the sealant layer 212 with two or more types of resins and making one resin and another resin incompatible. Examples of the resin capable of exhibiting easy peel properties include a mixed resin of polyethylene and polypropylene such as high-density polyethylene.
 シーラント層212がイージーピール性を備える場合、図21に示すように、シーラント層212が、包装材料210の内面210xを構成する第1層2121と、第1層2121よりもバリア性積層フィルム205側(外側)に位置する第2層2122を含んでいてもよい。この場合、第1層2121は、混合されたポリプロピレン及び高密度ポリエチレンを含む層であってもよい。また、第2層2122は、ポリプロピレン又は高密度ポリエチレンからなる層であってもよい。このようなシーラント層212は、第1層2121及び第2層2122を含む共押し出しフィルムをバリア性積層フィルム205に貼り合わせることによって形成され得る。第2層2122がポリプロピレンからなる場合、第1層2121及び第2層2122を含むシーラント層212は、例えば135℃までの熱処理に耐え得る耐熱性を有する。また、第2層2122が高密度ポリエチレンからなる場合、第1層2121及び第2層2122を含むシーラント層212は、例えば123℃までの熱処理に耐え得る耐熱性を有する。 When the sealant layer 212 has an easy peel property, as shown in FIG. 21, the sealant layer 212 includes a first layer 2121 that constitutes the inner surface 210 x of the packaging material 210, and the barrier layered film 205 side of the first layer 2121. The 2nd layer 2122 located in (outside) may be included. In this case, the first layer 2121 may be a layer containing mixed polypropylene and high density polyethylene. The second layer 2122 may be a layer made of polypropylene or high-density polyethylene. Such a sealant layer 212 can be formed by bonding a coextruded film including the first layer 2121 and the second layer 2122 to the barrier laminate film 205. When the second layer 2122 is made of polypropylene, the sealant layer 212 including the first layer 2121 and the second layer 2122 has heat resistance that can withstand heat treatment up to 135 ° C., for example. When the second layer 2122 is made of high-density polyethylene, the sealant layer 212 including the first layer 2121 and the second layer 2122 has heat resistance that can withstand heat treatment up to 123 ° C., for example.
 シーラント層212は、バイオマス由来成分を含んでいてもよく、バイオマス由来成分を含んでいなくてもよい。バイオマス由来成分を含む材料によりシーラント層212を形成する場合、シーラント層212は、下記のバイオマスポリオレフィンを用いて形成することができる。また、バイオマス由来成分を含まない材料によりシーラント層212を形成する場合、シーラント層212は、従来公知の化石燃料由来の熱可塑性樹脂を用いて形成することができる。なお、上述の第1の実施形態のシーラント層70も、本実施の形態のシーラント層212と同様に、バイオマス由来成分を含んでいてもよく、バイオマス由来成分を含んでいなくてもよい。 The sealant layer 212 may contain a biomass-derived component or may not contain a biomass-derived component. When the sealant layer 212 is formed of a material containing a biomass-derived component, the sealant layer 212 can be formed using the following biomass polyolefin. Moreover, when forming the sealant layer 212 with the material which does not contain a biomass origin component, the sealant layer 212 can be formed using the conventionally well-known thermoplastic resin derived from a fossil fuel. In addition, the sealant layer 70 of the above-mentioned first embodiment may also contain a biomass-derived component, and may not contain a biomass-derived component, like the sealant layer 212 of the present embodiment.
 バイオマスポリオレフィンは、バイオマス由来のエチレン等のオレフィンを含むモノマーの重合体である。原料であるモノマーとしてバイオマス由来のオレフィンを用いているため、重合されてなるポリオレフィンはバイオマス由来となる。なお、ポリオレフィンの原料モノマーは、バイオマス由来のオレフィンを100質量%含むものでなくてもよい。 Biomass polyolefin is a polymer of a monomer containing an olefin such as ethylene derived from biomass. Since a biomass-derived olefin is used as a monomer as a raw material, the polymerized polyolefin is derived from biomass. In addition, the raw material monomer of polyolefin does not need to contain 100 mass% of olefin derived from biomass.
 例えば、バイオマス由来のエチレンは、バイオマス由来のエタノールを原料として製造することができる。特に、植物原料から得られるバイオマス由来の発酵エタノールを用いることが好ましい。植物原料は、特に限定されず、従来公知の植物を用いることができる。例えば、トウモロコシ、サトウキビ、ビート、およびマニオクを挙げることができる。 For example, biomass-derived ethylene can be produced using biomass-derived ethanol as a raw material. In particular, it is preferable to use biomass-derived fermented ethanol obtained from plant raw materials. A plant raw material is not specifically limited, A conventionally well-known plant can be used. For example, corn, sugar cane, beet, and manioc can be mentioned.
 バイオマス由来の発酵エタノールとは、植物原料より得られる炭素源を含む培養液にエタノールを生産する微生物またはその破砕物由来産物を接触させ、生産した後、精製されたエタノールを指す。培養液からのエタノールの精製は、蒸留、膜分離、および抽出等の従来公知の方法が適用可能である。例えば、ベンゼン、シクロヘキサン等を添加し、共沸させるか、または膜分離等により水分を除去する等の方法が挙げられる。 Biomass-derived fermented ethanol refers to ethanol that has been purified after contacting a microorganism-producing product or a product derived from its crushed material with a culture solution containing a carbon source obtained from plant raw materials. For the purification of ethanol from the culture solution, conventionally known methods such as distillation, membrane separation, and extraction can be applied. For example, a method of adding benzene, cyclohexane or the like and azeotropically or removing water by membrane separation or the like can be mentioned.
 バイオマスポリオレフィンの原料であるモノマーは、化石燃料由来のエチレンのモノマーおよび/または化石燃料由来のα-オレフィンのモノマーをさらに含んでもよいし、バイオマス由来のα-オレフィンのモノマーをさらに含んでもよい。 The monomer that is a raw material of biomass polyolefin may further contain an ethylene monomer derived from fossil fuel and / or an α-olefin monomer derived from fossil fuel, or may further include an α-olefin monomer derived from biomass.
 上記のα-オレフィンは、炭素数は特に限定されないが、通常、炭素数3~20のものを用いることができ、ブチレン、ヘキセン、またはオクテンであることが好ましい。ブチレン、ヘキセン、またはオクテンであれば、バイオマス由来の原料であるエチレンの重合により製造することが可能となるからである。また、このようなα-オレフィンを含むことで、重合されてなるポリオレフィンはアルキル基を分岐構造として有するため、単純な直鎖状のものよりも柔軟性に富むものとすることができる。 The above α-olefin is not particularly limited in carbon number, but usually those having 3 to 20 carbon atoms can be used, and is preferably butylene, hexene or octene. This is because if it is butylene, hexene or octene, it can be produced by polymerization of ethylene which is a biomass-derived raw material. In addition, by including such an α-olefin, the polymerized polyolefin has an alkyl group as a branched structure, so that it can be more flexible than a simple linear one.
 バイオマスポリオレフィンとしては、ポリエチレンや、エチレンとα-オレフィンの共重合体を単独で用いてもよいし、二種以上混合して用いてもよい。特に、バイオマスポリオレフィンはポリエチレンであることが好ましい。バイオマス由来の原料であるエチレンを用いることで、理論上100%バイオマス由来成分により製造することが可能となるからである。 As the biomass polyolefin, polyethylene or a copolymer of ethylene and α-olefin may be used alone, or two or more kinds may be mixed and used. In particular, the biomass polyolefin is preferably polyethylene. This is because, by using ethylene, which is a biomass-derived raw material, it is theoretically possible to manufacture with 100% biomass-derived components.
 バイオマスポリオレフィンは、異なるバイオマス度のバイオマスポリオレフィンを2種以上含むものであってもよく、ポリオレフィン樹脂層全体として、バイオマス度が、後述する範囲内であればよい。 The biomass polyolefin may contain two or more kinds of biomass polyolefins having different biomass degrees, and the biomass degree of the polyolefin resin layer as long as it is within the range described later.
 バイオマスポリオレフィンは、好ましくは0.91g/cm以上0.93g/cm以下、より好ましくは0.912g/cm以上0.928g/cm以下、さらに好ましくは0.915g/cm以上0.925g/cm以下の密度を有するものである。バイオマスポリオレフィンの密度は、JIS K6760-1995に記載のアニーリングを行った後、JIS K7112-1980のうち、A法に規定された方法に従って測定される値である。バイオマスポリオレフィンの密度が0.91g/cm以上あれば、バイオマスポリオレフィンを含むポリオレフィン樹脂層の剛性を高めることができ、包装製品の内層として好適に用いることができる。また、バイオマスポリオレフィンの密度が0.93g/cm以下であれば、バイオマスポリオレフィンを含むポリオレフィン樹脂層の透明性や機械的強度を高めることができ、包装製品の内層として好適に用いることができる。 Biomass polyolefin, preferably 0.91 g / cm 3 or more 0.93 g / cm 3 or less, more preferably 0.912 g / cm 3 or more 0.928 g / cm 3 or less, more preferably 0.915 g / cm 3 or more 0 It has a density of 925 g / cm 3 or less. The density of biomass polyolefin is a value measured according to the method defined in Method A of JIS K7112-1980 after annealing described in JIS K6760-1995. If the density of the biomass polyolefin is 0.91 g / cm 3 or more, the rigidity of the polyolefin resin layer containing the biomass polyolefin can be increased, and it can be suitably used as the inner layer of the packaged product. Moreover, if the density of biomass polyolefin is 0.93 g / cm < 3 > or less, the transparency and mechanical strength of the polyolefin resin layer containing biomass polyolefin can be improved, and it can be used suitably as an inner layer of a packaged product.
 バイオマスポリオレフィンは、0.1g/10分以上10g/10分以下、好ましくは0.2g/10分以上9g/10分以下、より好ましくは1g/10分以上8.5g/10分以下のメルトフローレート(MFR)を有するものである。メルトフローレートとは、JIS K7210-1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。バイオマスポリオレフィンのMFRが0.1g/10分以上であれば、成形加工時の押出負荷を低減することができる。また、バイオマスポリオレフィンのMFRが10g/10分以下であれば、バイオマスポリオレフィンを含むポリオレフィン樹脂層の機械的強度を高めることができる。 Biomass polyolefin has a melt flow of 0.1 g / 10 min to 10 g / 10 min, preferably 0.2 g / 10 min to 9 g / 10 min, more preferably 1 g / 10 min to 8.5 g / 10 min. It has a rate (MFR). The melt flow rate is a value measured by the method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method specified in JIS K7210-1995. If the MFR of the biomass polyolefin is 0.1 g / 10 min or more, the extrusion load during the molding process can be reduced. Moreover, if MFR of biomass polyolefin is 10 g / 10min or less, the mechanical strength of the polyolefin resin layer containing biomass polyolefin can be raised.
 好適に使用されるバイオマスポリオレフィンとしては、Braskem社製のバイオマス由来の低密度ポリエチレン(商品名:SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度95%)、Braskem社製のバイオマス由来の低密度ポリエチレン(商品名:SPB681、密度:0.922g/cm、MFR:3.8g/10分、バイオマス度95%)、Braskem社製のバイオマス由来の直鎖状低密度ポリエチレン(商品名:SLL118、密度:0.916g/cm、MFR:1.0g/10分、バイオマス度87%)等が挙げられる。 As biomass polyolefin suitably used, low density polyethylene derived from biomass (trade name: SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 min, biomass degree 95%) manufactured by Braskem, Low-density polyethylene derived from biomass manufactured by Braskem (trade name: SPB681, density: 0.922 g / cm 3 , MFR: 3.8 g / 10 min, biomass degree 95%), linear derived from biomass manufactured by Braskem Examples thereof include low-density polyethylene (trade name: SLL118, density: 0.916 g / cm 3 , MFR: 1.0 g / 10 min, biomass degree 87%).
 上記の化石燃料由来の熱可塑性樹脂としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、プロピレン-エチレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-メチルメタクリレート共重合体またはアイオノマー等が挙げられる。 Examples of the fossil fuel-derived thermoplastic resin include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene, propylene-ethylene copolymer, ethylene-vinyl acetate copolymer, Examples thereof include an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, an ethylene-methyl methacrylate copolymer, and an ionomer.
 シーラント層212は、好ましくは5%以上、より好ましくは5%以上60%以下、さらに好ましくは10%以上60%以下のバイオマス度を有するものである。バイオマス度が上記範囲であれば、化石燃料の使用量を削減することができ、環境負荷を減らすことができる。 The sealant layer 212 has a biomass degree of preferably 5% or more, more preferably 5% or more and 60% or less, and still more preferably 10% or more and 60% or less. If the degree of biomass is in the above range, the amount of fossil fuel used can be reduced, and the environmental load can be reduced.
 シーラント層212は、上述のように、単層であってもよく、多層であってもよい。シーラント層に上記したようなバイオマスポリオレフィンを使用する場合は、内層、中間層、および外層の3層を備えたシーラント層としてもよい。その場合、中間層を、バイオマスポリオレフィンからなる層、またはバイオマスポリオレフィンと従来公知の化石燃料由来のポリオレフィンとの混合物からなる層とし、内層および外層は、従来公知の化石燃料由来のポリオレフィンとすることが好ましい。 As described above, the sealant layer 212 may be a single layer or a multilayer. When using the biomass polyolefin as described above for the sealant layer, a sealant layer including three layers of an inner layer, an intermediate layer, and an outer layer may be used. In that case, the intermediate layer may be a layer made of biomass polyolefin, or a layer made of a mixture of biomass polyolefin and a conventionally known fossil fuel-derived polyolefin, and the inner layer and the outer layer may be a conventionally known fossil fuel-derived polyolefin. preferable.
 シーラント層212の厚みは、好ましくは30μm以上であり、より好ましくは40μm以上である。また、シーラント層212の厚みは、好ましくは100μm以下であり、より好ましくは80μm以下である。 The thickness of the sealant layer 212 is preferably 30 μm or more, more preferably 40 μm or more. The thickness of the sealant layer 212 is preferably 100 μm or less, and more preferably 80 μm or less.
[延伸プラスチックフィルム]
 延伸プラスチックフィルム214は、所定の方向において延伸されているプラスチックフィルムである。延伸プラスチックフィルム214は、所定の一方向において延伸された一軸延伸フィルムであってもよく、所定の二方向において延伸された二軸延伸フィルムであってもよい。延伸プラスチックフィルム214の延伸方向は特には限定されない。例えば、延伸プラスチックフィルム214は、フィルムの流れ方向(MD)において延伸されていてもよく、流れ方法に直交する横方向(TD)において延伸されていてもよい。
[Stretched plastic film]
The stretched plastic film 214 is a plastic film that is stretched in a predetermined direction. The stretched plastic film 214 may be a uniaxially stretched film stretched in a predetermined direction, or may be a biaxially stretched film stretched in a predetermined two directions. The stretching direction of the stretched plastic film 214 is not particularly limited. For example, the stretched plastic film 214 may be stretched in the film flow direction (MD) or may be stretched in the transverse direction (TD) orthogonal to the flow method.
 延伸プラスチックフィルム214の材料としては、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリスチレン、ポリエステル等、様々なプラスチックを用いることができる。例えば、延伸プラスチックフィルム214は、ポリエステルフィルム又はポリアミドフィルムである。また、延伸プラスチックフィルム214は、バリア性積層フィルム205の基材201と同様に、高スティフネスPETフィルム又はPBTフィルムであってもよい。 As the material of the stretched plastic film 214, various plastics such as polyethylene, polypropylene, polyamide, polyvinyl chloride, polystyrene, and polyester can be used. For example, the stretched plastic film 214 is a polyester film or a polyamide film. Further, the stretched plastic film 214 may be a high stiffness PET film or a PBT film, like the base material 201 of the barrier laminate film 205.
 延伸プラスチックフィルム214は、バイオマス由来成分を含んでいてもよい。例えば、延伸プラスチックフィルム214は、バイオマス由来のポリエステル(以下、バイオマスポリエステルとも称する)を含む樹脂組成物を含んでいてもよい。延伸プラスチックフィルム214がバイオマス由来成分を含む場合、延伸プラスチックフィルム214中のバイオマス度は、5.0%以上であることが好ましく、10.0%以上であることがより好ましく、15.0%以上であってもよい。また、延伸プラスチックフィルム214のバイオマス度は、30.0%以下であることが好ましく、25.0%以下であってもよい。 The stretched plastic film 214 may contain a biomass-derived component. For example, the stretched plastic film 214 may contain a resin composition containing biomass-derived polyester (hereinafter also referred to as biomass polyester). When the stretched plastic film 214 includes a biomass-derived component, the degree of biomass in the stretched plastic film 214 is preferably 5.0% or more, more preferably 10.0% or more, and 15.0% or more. It may be. The degree of biomass of the stretched plastic film 214 is preferably 30.0% or less, and may be 25.0% or less.
 バイオマスポリエステルは、ジオール単位がバイオマス由来のエチレングリコールであり、ジカルボン酸単位が化石燃料由来のジカルボン酸であるポリエステルである。バイオマス由来のエチレングリコールは、従来の化石燃料由来のエチレングリコールと化学構造が同じであるため、バイオマス由来のエチレングリコールを用いて合成されたポリエステルフィルムは、従来の化石燃料由来のポリエステルフィルムと機械的特性等の物性面で遜色がない。したがって、延伸プラスチックフィルム214およびそれを備える包装材料210は、カーボンニュートラルな材料からなる層を有するため、従来の化石燃料から得られる原料から製造された延伸プラスチックフィルムおよびそれを備える包装材料に比べて、化石燃料の使用量を削減することができ、環境負荷を減らすことができる。 Biomass polyester is a polyester in which the diol unit is biomass-derived ethylene glycol and the dicarboxylic acid unit is a dicarboxylic acid derived from fossil fuel. Biomass-derived ethylene glycol has the same chemical structure as conventional fossil fuel-derived ethylene glycol. Therefore, polyester films synthesized using biomass-derived ethylene glycol are mechanically similar to conventional fossil fuel-derived polyester films. There is no inferiority in physical properties such as characteristics. Accordingly, the stretched plastic film 214 and the packaging material 210 including the stretched plastic film 214 have a layer made of a carbon neutral material, and therefore, compared with a stretched plastic film manufactured from a raw material obtained from a conventional fossil fuel and a packaging material including the stretched plastic film. The amount of fossil fuel used can be reduced and the environmental load can be reduced.
 また、延伸プラスチックフィルム214は、メカニカルリサイクルによりリサイクルされたポリエチレンテレフタレートを含むリサイクルフィルムであってもよい。リサイクルフィルムは、PETボトルをメカニカルリサイクルによりリサイクルしたPETを含み、このPETは、ジオール単位がエチレングリコールであり、ジカルボン酸単位がテレフタル酸およびイソフタル酸を含む。ここで、メカニカルリサイクルとは、一般に、回収されたPETボトル等のポリエチレンテレフタレート樹脂製品を粉砕、アルカリ洗浄してPET樹脂製品の表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してPET樹脂の内部に留まっている汚染物質を拡散させ除染を行い、PET樹脂からなる樹脂製品の汚れを取り除き、再びPET樹脂に戻す方法である。 Further, the stretched plastic film 214 may be a recycled film containing polyethylene terephthalate recycled by mechanical recycling. The recycled film includes PET obtained by recycling a PET bottle by mechanical recycling. The PET includes diol units of ethylene glycol and dicarboxylic acid units of terephthalic acid and isophthalic acid. Here, mechanical recycling generally means that collected polyethylene terephthalate resin products such as PET bottles are crushed and washed with alkali to remove dirt and foreign matter on the surface of PET resin products, and then dried for a certain period of time under high temperature and reduced pressure. In this method, contaminants remaining inside the PET resin are diffused and decontaminated to remove stains on the resin product made of the PET resin, and then returned to the PET resin again.
 延伸プラスチックフィルム214が、延伸ポリエチレンテレフタレートフィルムや延伸ポリブチレンテレフタレートフィルム等の延伸ポリエステルフィルムを含む場合、延伸プラスチックフィルム214の厚みは例えば9μm以上25μm以下である。延伸プラスチックフィルム214が、延伸ナイロンフィルムなどの延伸ポリアミドフィルムを含む場合、延伸プラスチックフィルム214の厚みは例えば15μm以上25μm以下である。 When the stretched plastic film 214 includes a stretched polyester film such as a stretched polyethylene terephthalate film or a stretched polybutylene terephthalate film, the thickness of the stretched plastic film 214 is, for example, 9 μm or more and 25 μm or less. When the stretched plastic film 214 includes a stretched polyamide film such as a stretched nylon film, the thickness of the stretched plastic film 214 is, for example, 15 μm or more and 25 μm or less.
[接着層]
 第1接着層213は、包装材料210の外面210yを構成するプラスチックフィルムと、包装材料210の中間に位置するプラスチックフィルムとを接着する層である。第2接着層215は、包装材料210の中間に位置するプラスチックフィルムと、シーラント層212とを接着する層である。第1接着層213及び第2接着層215は、接着剤層又は接着樹脂層である。以下、接着剤層及び接着樹脂層についてそれぞれ説明する。
[Adhesive layer]
The first adhesive layer 213 is a layer that adheres a plastic film constituting the outer surface 210 y of the packaging material 210 and a plastic film positioned in the middle of the packaging material 210. The second adhesive layer 215 is a layer that bonds the plastic film located in the middle of the packaging material 210 and the sealant layer 212. The first adhesive layer 213 and the second adhesive layer 215 are an adhesive layer or an adhesive resin layer. Hereinafter, each of the adhesive layer and the adhesive resin layer will be described.
 接着剤層は、従来公知の方法、例えばドライラミネート法により形成することができる。ドライラミネート法により2層を接着する場合、接着剤層は、積層される側の層の表面に、接着剤を塗布して乾燥させることにより形成される。塗布される接着剤としては、例えば、1液型あるいは2液型の硬化ないし非硬化タイプのビニル系、(メタ)アクリル系、ポリアミド系、ポリエステル系、ポリエーテル系、ポリウレタン系、エポキシ系、ゴム系、その他などの溶剤型、水性型、あるいは、エマルジョン型などの接着剤を用いることができる。2液硬化型の接着剤としては、ポリオールとイソシアネート化合物との硬化物を用いることができる。上記のラミネート用接着剤のコーティング方法としては、例えば、ダイレクトグラビアロールコート法、グラビアロールコート法、キスコート法、リバースロールコート法、フォンテン法、トランスファーロールコート法、その他の方法で塗布することができる。乾燥後の接着剤層は、例えば1μm以上10μm以下、好ましくは2μm以上5μm以下の厚さを有する。 The adhesive layer can be formed by a conventionally known method such as a dry laminating method. When two layers are bonded by a dry laminating method, the adhesive layer is formed by applying an adhesive to the surface of the layer to be laminated and drying it. Examples of the adhesive to be applied include one-part or two-part cured or non-cured vinyl, (meth) acrylic, polyamide, polyester, polyether, polyurethane, epoxy, and rubber. It is possible to use an adhesive such as a solvent type, an aqueous type, or an emulsion type. As a two-component curable adhesive, a cured product of a polyol and an isocyanate compound can be used. As a coating method of the adhesive for laminating, for example, direct gravure roll coating method, gravure roll coating method, kiss coating method, reverse roll coating method, fountain method, transfer roll coating method, and other methods can be used. . The adhesive layer after drying has a thickness of, for example, 1 μm to 10 μm, preferably 2 μm to 5 μm.
 接着剤層は、バイオマス由来成分を含んでいてもよい。例えば、接着剤層がポリオールとイソシアネート化合物との硬化物を含む場合、ポリオールまたはイソシアネート化合物の少なくともいずれかがバイオマス由来成分を含んでいてもよい。これにより、包装材料210のバイオマス度をさらに向上させることができる。 The adhesive layer may contain a biomass-derived component. For example, when the adhesive layer includes a cured product of a polyol and an isocyanate compound, at least one of the polyol and the isocyanate compound may include a biomass-derived component. Thereby, the biomass degree of the packaging material 210 can further be improved.
 接着樹脂層は、熱可塑性樹脂を含む。接着樹脂層は、従来公知の方法、例えば溶融押出しラミネート法やサンドラミネート法により形成することができる。接着樹脂層に使用できる熱可塑性樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、または環状ポリオレフィン系樹脂、またはこれら樹脂を主成分とする共重合樹脂、変性樹脂、または、混合体(アロイでを含む)を用いることができる。ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、直鎖状(線状)低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)、メタロセン触媒を利用して重合したエチレン-α・オレフィン共重合体、エチレン・ポリプロピレンのランダムもしくはブロック共重合体、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸共重合体(EAA)、エチレン・アクリル酸エチル共重合体(EEA)、エチレン-メタクリル酸共重合体(EMAA)、エチレン-メタクリル酸メチル共重合体(EMMA)、エチレン・マレイン酸共重合体、アイオノマー樹脂、また、層間の密着性を向上させるために、上記したポリオレフィン系樹脂を、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸などの不飽和カルボン酸で変性した酸変性ポリオレフィン系樹脂などを用いることができる。また、ポリオレフィン樹脂に、不飽和カルボン酸、不飽和カルボン酸無水物、エステル単量体をグラフト重合、または、共重合した樹脂などを用いることができる。これらの材料は、一種単独または二種以上を組み合わせて使用することができる。環状ポリオレフィン系樹脂としては、例えば、エチレン-プロピレン共重合体、ポリメチルペンテン、ポリブテン、ポリノルボネンなどの環状ポリオレフィンなどを用いることができる。これらの樹脂は、単独または複数を組み合せて使用できる。接着樹脂層は、例えば5μm以上50μm以下、好ましくは10μm以上30μm以下の厚さを有する。 The adhesive resin layer contains a thermoplastic resin. The adhesive resin layer can be formed by a conventionally known method such as a melt extrusion laminating method or a sand laminating method. Examples of the thermoplastic resin that can be used for the adhesive resin layer include a polyethylene resin, a polypropylene resin, or a cyclic polyolefin resin, or a copolymer resin, a modified resin, or a mixture (including alloy) containing these resins as a main component. ) Can be used. Examples of polyolefin resins include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear (linear) low density polyethylene (LLDPE), polypropylene (PP), and metallocene catalysts. Ethylene-α-olefin copolymer, ethylene-polypropylene random or block copolymer, ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene Ethyl acrylate copolymer (EEA), ethylene-methacrylic acid copolymer (EMAA), ethylene-methyl methacrylate copolymer (EMMA), ethylene / maleic acid copolymer, ionomer resin, and interlayer adhesion In order to improve the , It can be used acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, and an acid-modified polyolefin resin modified with an unsaturated carboxylic acid such as itaconic acid. Further, a resin obtained by graft polymerization or copolymerization of an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, or an ester monomer can be used as the polyolefin resin. These materials can be used alone or in combination of two or more. As the cyclic polyolefin-based resin, for example, cyclic polyolefins such as ethylene-propylene copolymer, polymethylpentene, polybutene, and polynorbornene can be used. These resins can be used alone or in combination. The adhesive resin layer has a thickness of, for example, 5 μm to 50 μm, preferably 10 μm to 30 μm.
 なお、上記したポリエチレン系樹脂としては、シーラント層212において説明したバイオマス由来のエチレンをモノマー単位として用いたものを使用してもよい。これにより、包装材料210のバイオマス度をさらに向上させることができる。 In addition, as the above-described polyethylene-based resin, those using ethylene derived from biomass described in the sealant layer 212 as a monomer unit may be used. Thereby, the biomass degree of the packaging material 210 can further be improved.
[印刷層]
 印刷層218は、装飾、内容物や包装製品の表示、賞味期間の表示、製造者、販売者などの表示、その他などの表示や美感の付与のために、文字、数字、絵柄、図形、記号、模様などの所望の任意の印刷模様を形成する層である。印刷層218は、必要に応じて設けることができ、例えば、バリア性積層フィルム205を含むフィルム又は延伸プラスチックフィルム214を含むフィルムに設けることができる。印刷層218は、フィルムの全面に設けてもよく、あるいは一部に設けてもよい。印刷層218は、従来公知の顔料や染料を用いて形成することができ、その形成方法は特に限定されない。
[Print layer]
The printed layer 218 is designed to display letters, numbers, patterns, graphics, symbols, etc. for decoration, display of contents and packaged products, display of the best-before period, display of manufacturers, sellers, etc. , A layer for forming a desired arbitrary printed pattern such as a pattern. The printing layer 218 can be provided as necessary, and can be provided, for example, on a film including the barrier laminate film 205 or a film including a stretched plastic film 214. The printing layer 218 may be provided on the entire surface of the film or may be provided on a part thereof. The printing layer 218 can be formed using a conventionally known pigment or dye, and the formation method is not particularly limited.
 印刷層218は、好ましくは0.1μm以上10μm以下、より好ましくは1μm以上5μm以下、さらに好ましくは1μm以上3μm以下の厚さを有するものである。 The printing layer 218 preferably has a thickness of 0.1 μm to 10 μm, more preferably 1 μm to 5 μm, and still more preferably 1 μm to 3 μm.
 印刷層218は、バイオマス由来成分を含んでいてもよい。例えば、印刷層218がポリオールとイソシアネート化合物との硬化物を含む場合、ポリオールまたはイソシアネート化合物の少なくともいずれかがバイオマス由来成分を含んでいてもよい。 The printing layer 218 may contain a biomass-derived component. For example, when the printing layer 218 includes a cured product of a polyol and an isocyanate compound, at least one of the polyol and the isocyanate compound may include a biomass-derived component.
<包装材料の製造方法>
 次に、包装材料210の製造方法の一例について説明する。まず、バリア性積層フィルム205を製造する方法の一例について説明する。
<Method for manufacturing packaging material>
Next, an example of a method for manufacturing the packaging material 210 will be described. First, an example of a method for producing the barrier laminate film 205 will be described.
(バリア性積層フィルムの製造工程)
 まず、基材201を準備する。続いて、基材201の面上に、酸化アルミニウムを含む蒸着層202を成膜する。図23は、成膜装置260の一例を示す図である。以下、成膜装置260及び成膜装置260を用いた成膜方法について説明する。
(Manufacturing process of barrier laminated film)
First, the base material 201 is prepared. Subsequently, a vapor deposition layer 202 containing aluminum oxide is formed on the surface of the substrate 201. FIG. 23 is a diagram illustrating an example of the film forming apparatus 260. Hereinafter, a film forming apparatus 260 and a film forming method using the film forming apparatus 260 will be described.
 図23に示すように、成膜装置260においては、減圧チャンバ262内に隔壁285a~285cが形成されている。該隔壁285a~285cにより、基材搬送室262A、プラズマ前処理室262B、成膜室262Cが形成され、特に、隔壁と隔壁285a~285cで囲まれた空間としてプラズマ前処理室262B及び成膜室262Cが形成され、各室は、必要に応じて、さらに内部に排気室が形成される。 As shown in FIG. 23, in the film forming apparatus 260, partition walls 285a to 285c are formed in the decompression chamber 262. The partition walls 285a to 285c form a base material transfer chamber 262A, a plasma pretreatment chamber 262B, and a film formation chamber 262C, and in particular, a plasma pretreatment chamber 262B and a film formation chamber as spaces surrounded by the partition walls and the partition walls 285a to 285c. 262C is formed, and an exhaust chamber is further formed inside each chamber as necessary.
 プラズマ前処理室262B及びプラズマ前処理室262Bにおけるプラズマ前処理工程について説明する。プラズマ前処理室262B内には、前処理が行われる基材201を搬送し、かつプラズマ処理を可能にするプラズマ前処理ローラー270の一部が基材搬送室262Aに露出するように設けられている。基材201は、巻き取られながらプラズマ前処理室262Bに移動する。 The plasma pretreatment process in the plasma pretreatment chamber 262B and the plasma pretreatment chamber 262B will be described. In the plasma pretreatment chamber 262B, a part of the plasma pretreatment roller 270 that conveys the substrate 201 to be pretreated and enables the plasma treatment is provided so as to be exposed to the substrate conveyance chamber 262A. Yes. The substrate 201 moves to the plasma pretreatment chamber 262B while being wound up.
 プラズマ前処理室262B及び成膜室262Cは、基材搬送室262Aと接して設けられており、基材201を大気に触れさせないままに移動可能である。また、前処理室262Bと基材搬送室262Aの間は、矩形の穴により接続されており、その矩形の穴を通じてプラズマ前処理ローラー270の一部が基材搬送室262A側に飛び出しており、該搬送室の壁と該前処理ローラー270の間に隙間が開いており、その隙間を通じて基材201が基材搬送室262Aから成膜室262Cへ移動可能である。基材搬送室262Aと成膜室262Cとの間も同様の構造となっており、基材201を大気に触れさせずに移動可能である。 The plasma pretreatment chamber 262B and the film formation chamber 262C are provided in contact with the base material transfer chamber 262A, and can move without the base material 201 being exposed to the atmosphere. Further, the pretreatment chamber 262B and the base material transfer chamber 262A are connected by a rectangular hole, and a part of the plasma pretreatment roller 270 protrudes to the base material transfer chamber 262A side through the rectangular hole. A gap is opened between the wall of the transfer chamber and the pretreatment roller 270, and the substrate 201 can move from the substrate transfer chamber 262A to the film forming chamber 262C through the gap. The structure between the base material transfer chamber 262A and the film formation chamber 262C is similar, and the base material 201 can be moved without being exposed to the atmosphere.
 基材搬送室262Aは、成膜ローラー275により再度基材搬送室212Aに移動させられた、片面に蒸着層202が成膜された基材201をロール状に巻き取るため、巻取り手段としての巻き取りローラーが設けられ、蒸着層202が成膜された基材201を巻き取り可能とするようになっている。 The base material transport chamber 262A is moved again to the base material transport chamber 212A by the film forming roller 275, and the base material 201 with the vapor deposition layer 202 formed on one side is wound up in a roll shape. A take-up roller is provided so that the substrate 201 on which the vapor deposition layer 202 is formed can be taken up.
 酸化アルミニウムを含む蒸着層202を有するバリア性積層フィルム205を製造する際、前記プラズマ前処理室262Bは、プラズマが生成する空間を他の領域と区分し、対向空間を効率よく真空排気できるように構成されることで、プラズマガス濃度の制御が容易となり、生産性が向上する。その減圧して形成する前処理圧力は、0.1Pa~100Pa程度に設定、維持することができ、特に、酸化アルミニウムを含む蒸着層202の好ましい遷移領域の変成率とするため酸素プラズマ前処理の処理圧力としては、1~20Paが好ましい。 When manufacturing the barrier laminate film 205 having the vapor deposition layer 202 containing aluminum oxide, the plasma pretreatment chamber 262B separates the space where the plasma is generated from other regions so that the facing space can be efficiently evacuated. By being configured, control of the plasma gas concentration becomes easy and productivity is improved. The pre-treatment pressure formed by reducing the pressure can be set and maintained at about 0.1 Pa to 100 Pa. In particular, the oxygen plasma pre-treatment is performed in order to obtain a preferable transformation rate of the transition region of the vapor deposition layer 202 containing aluminum oxide. The processing pressure is preferably 1 to 20 Pa.
 基材201の搬送速度は、特に限定されないが、生産効率の観点から、少なくとも200~1000m/minにすることができ、特に、酸化アルミニウムを含む蒸着層202の遷移領域の変成率とするため酸素プラズマ前処理の搬送速度としては、300~800m/minが好ましい。 The conveying speed of the substrate 201 is not particularly limited, but can be at least 200 to 1000 m / min from the viewpoint of production efficiency, and in particular, oxygen in order to obtain a transformation rate in the transition region of the vapor deposition layer 202 containing aluminum oxide. The conveyance speed of the plasma pretreatment is preferably 300 to 800 m / min.
 プラズマ前処理装置を構成するプラズマ前処理ローラー270は、プラズマ前処理手段によるプラズマ処理時の熱による基材201の収縮や破損を防ぐこと、酸素プラズマPを基材201に対して均一にかつ広範囲に適用することを目的とするものである。前処理ローラー270は、前処理ローラー内を循環させる温度調節媒体の温度を調整することにより、-20℃から100℃の間で、一定温度に調節することが可能であることが好ましい。 The plasma pretreatment roller 270 constituting the plasma pretreatment apparatus prevents the base material 201 from being contracted or damaged by heat during the plasma processing by the plasma pretreatment means, and the oxygen plasma P is uniformly and widely distributed over the base material 201. It is intended to be applied to. It is preferable that the pretreatment roller 270 can be adjusted to a constant temperature between −20 ° C. and 100 ° C. by adjusting the temperature of the temperature adjustment medium circulating in the pretreatment roller.
 プラズマ前処理手段は、プラズマ供給手段及び磁気形成手段を含む。プラズマ前処理手段はプラズマ前処理ローラー270と協働し、基材201表面近傍に酸素プラズマPを閉じ込める。 The plasma pretreatment means includes a plasma supply means and a magnetic formation means. The plasma pretreatment means cooperates with the plasma pretreatment roller 270 to confine the oxygen plasma P in the vicinity of the surface of the substrate 201.
 プラズマ前処理手段は、前処理ローラー270の一部を覆うように設けられている。具体的には、前処理ローラー270の外周近傍の表面に沿ってプラズマ前処理手段を構成するプラズマ供給手段272と磁気形成手段273を配置する。プラズマ供給手段272は、プラズマ原料ガスを供給するプラズマ供給ノズルを含む。磁気形成手段273は、プラズマPの発生を促進するためマグネット等を有する。また、プラズマ前処理手段は、前処理ローラー270との間で電圧が加えられる電極271を有する。なお、図23においては、電極271とプラズマ供給手段272とが別個の部材である例が示されているが、これに限られることはない。図示はしないが、電極271とプラズマ供給手段272とが一体的な部材によって構成されていてもよい。 The plasma pretreatment means is provided so as to cover a part of the pretreatment roller 270. Specifically, the plasma supply means 272 and the magnetic formation means 273 that constitute the plasma pretreatment means are disposed along the surface in the vicinity of the outer periphery of the pretreatment roller 270. The plasma supply means 272 includes a plasma supply nozzle that supplies a plasma source gas. The magnetic forming means 273 has a magnet or the like for promoting the generation of the plasma P. Further, the plasma pretreatment means includes an electrode 271 to which a voltage is applied between the plasma pretreatment means 270 and the pretreatment roller 270. FIG. 23 shows an example in which the electrode 271 and the plasma supply means 272 are separate members, but the present invention is not limited to this. Although not shown, the electrode 271 and the plasma supply means 272 may be constituted by an integral member.
 前処理ローラー270と磁気形成手段273との間に挟まれた空間にプラズマPを発生させ、前処理ローラー270と基材201の表面近傍にプラズマ密度の高い領域を形成することで、基材201の内側の面に酸素プラズマ前処理を施してプラズマ処理面を形成することができる。 Plasma P is generated in a space sandwiched between the pretreatment roller 270 and the magnetic forming means 273, and a region having a high plasma density is formed in the vicinity of the surface of the pretreatment roller 270 and the substrate 201. The plasma-treated surface can be formed by performing oxygen plasma pretreatment on the inner surface.
 プラズマ前処理手段のプラズマ供給手段272は、減圧チャンバ262の外部に設けたプラズマ供給ノズルに接続された原料ガス揮発供給装置268と、該装置から原料ガスを供給する原料ガス供給ラインを含む。供給されるプラズマ原料ガスは、酸素単独又は酸素ガスと不活性ガスとの混合ガスが、ガス貯留部から流量制御器を介することでガスの流量を計測しつつ供給される。不活性ガスとしては、アルゴン、ヘリウム、窒素なる群から選ばれる、1種または2種以上の混合ガスが挙げられる。 The plasma supply means 272 of the plasma pretreatment means includes a source gas volatilization supply device 268 connected to a plasma supply nozzle provided outside the decompression chamber 262 and a source gas supply line for supplying source gas from the device. The plasma source gas to be supplied is supplied while oxygen alone or a mixed gas of oxygen gas and inert gas is measured from the gas reservoir through a flow rate controller while measuring the gas flow rate. As an inert gas, 1 type, or 2 or more types of mixed gas chosen from the group which consists of argon, helium, and nitrogen is mentioned.
 これら供給されるガスは、必要に応じて所定の比率で混合されて、プラズマ原料ガス単独又はプラズマ形成用混合ガスに形成され、プラズマ供給手段に供給される。その単独又は混合ガスは、プラズマ供給手段のプラズマ供給ノズルに供給され、プラズマ供給ノズルの供給口が開口する前処理ローラー270の外周近傍に供給される。そのノズル開口は前処理ローラー270上の基材201に向けられ、基材201の表面全体に均一に酸素プラズマPを拡散、供給させることが可能となるように配置、構成される。これにより、基材201の大面積の部分に均一なプラズマ前処理を施すことができる。 These supplied gases are mixed at a predetermined ratio as necessary, formed into a plasma raw material gas alone or a plasma forming mixed gas, and supplied to the plasma supply means. The single or mixed gas is supplied to the plasma supply nozzle of the plasma supply means, and is supplied to the vicinity of the outer periphery of the pretreatment roller 270 where the supply port of the plasma supply nozzle opens. The nozzle opening is directed to the base material 201 on the pretreatment roller 270, and is arranged and configured so that the oxygen plasma P can be uniformly diffused and supplied to the entire surface of the base material 201. Thereby, a uniform plasma pretreatment can be performed on a large area portion of the substrate 201.
 酸化アルミニウムを含む蒸着層202の遷移領域の変成率を上述のように5%以上60%以下とするため、酸素プラズマ前処理としては、酸素ガスと不活性ガスとの混合比率(酸素ガス/不活性ガス)は、6/1~1/1が好ましく、5/2~3/2がより好ましい。混合比率を6/1~1/1とすることで、基材201上での蒸着層202の膜形成エネルギーが増加し、更に5/2~3/2とすることで、水酸化アルミニウムの形成が基材の界面近傍で形成される、すなわち該遷移領域の変成率が低下する。 As described above, the transition rate of the transition region of the vapor deposition layer 202 containing aluminum oxide is set to 5% or more and 60% or less. The active gas) is preferably 6/1 to 1/1, more preferably 5/2 to 3/2. By setting the mixing ratio to 6/1 to 1/1, the film formation energy of the vapor deposition layer 202 on the substrate 201 is increased, and by setting the mixing ratio to 5/2 to 3/2, the formation of aluminum hydroxide is increased. Is formed in the vicinity of the interface of the base material, that is, the rate of transformation of the transition region is lowered.
 電極271は、前処理ローラー270の対向電極として機能する。前処理ローラー270との間に供給される高周波電圧、低周波電圧等による電位差によって供給されたプラズマ原料ガスが励起状態になり、プラズマPが発生し、供給される。 The electrode 271 functions as a counter electrode of the pretreatment roller 270. The plasma source gas supplied by the potential difference due to the high frequency voltage, the low frequency voltage, etc. supplied to the pretreatment roller 270 is excited, and plasma P is generated and supplied.
 具体的には、電極271は、プラズマ電源としてプラズマ前処理ローラーを設置し、対向電極との間に周波数が10Hzから2.5GHzの交流電圧を印加し、投入電力制御または、インピーダンス制御等を行い、プラズマ前処理ローラー270との間に任意の電圧を印加した状態にすることができるものである。成膜装置260は、基材201の表面物性を物理的ないしは化学的に改質する処理ができる酸素プラズマPを正電位にするバイアス電圧を印加できる電源282を備えている。 Specifically, the electrode 271 is provided with a plasma pretreatment roller as a plasma power source, an AC voltage having a frequency of 10 Hz to 2.5 GHz is applied between the electrode 271 and the counter electrode, and input power control or impedance control is performed. In addition, an arbitrary voltage can be applied between the plasma pretreatment roller 270 and the plasma pretreatment roller 270. The film forming apparatus 260 includes a power source 282 capable of applying a bias voltage that makes the oxygen plasma P capable of physically or chemically modifying the surface properties of the substrate 201 positive.
 単位面積あたりのプラズマ強度は、好ましくは50~8000W・sec/m2である。50W・sec/m2以下では、プラズマ前処理の効果がみられず、また、8000W・sec/m2以上では、基材201の消耗、破損着色、焼成などプラズマによる基材201の劣化が起きる傾向にある。特に、単位面積あたりのプラズマ強度は、100~1000W・sec/m2が好ましい。基材201に垂直にバイアス電圧を持ち上記プラズマ強度を与えることにより、安定的に酸化アルミニウムを含む蒸着層202との密着性等を向上させることができる。 The plasma intensity per unit area is preferably 50 to 8000 W · sec / m 2 . At 50 W · sec / m 2 or less, the effect of the plasma pretreatment is not observed, and at 8000 W · sec / m 2 or more, deterioration of the base material 201 due to plasma occurs, such as consumption of the base material 201, damage coloring, and firing. There is a tendency. In particular, the plasma intensity per unit area is preferably 100 to 1000 W · sec / m 2 . By providing the plasma intensity with a bias voltage perpendicular to the base material 201, adhesion to the vapor deposition layer 202 containing aluminum oxide can be improved stably.
 磁気形成手段273としては、マグネットケース内に絶縁性スペーサ、ベースプレートが設けられ、このベースプレートにマグネットが設けられたものを用いることができる。マグネットケースに絶縁性シールド板が設けられ、この絶縁性シールド板に電極が取り付けられ得る。マグネットケースと電極は電気的に絶縁されており、マグネットケースを減圧チャンバ262内に設置、固定しても電極は電気的にフローティングレベルとすることが可能である。マグネットを設けることにより、基材201表面近傍での反応性が高くなり、良好なプラズマ前処理面を高速で形成することが可能となる。 As the magnetic forming means 273, an insulating spacer and a base plate provided in a magnet case and a magnet provided on the base plate can be used. An insulating shield plate is provided on the magnet case, and an electrode can be attached to the insulating shield plate. The magnet case and the electrode are electrically insulated, and even if the magnet case is installed and fixed in the decompression chamber 262, the electrode can be brought to an electrically floating level. By providing the magnet, the reactivity in the vicinity of the surface of the substrate 201 is increased, and a good plasma pretreatment surface can be formed at a high speed.
 好ましくは、マグネットは、基材201の表面位置での磁束密度が10ガウスから10000ガウスになるよう構成されている。基材201表面での磁束密度が10ガウス以上であれば、基材201表面近傍での反応性を十分高めることが可能となり、良好な前処理面を高速で形成することができる。 Preferably, the magnet is configured such that the magnetic flux density at the surface position of the substrate 201 is from 10 gauss to 10,000 gauss. If the magnetic flux density on the surface of the substrate 201 is 10 gauss or more, the reactivity in the vicinity of the surface of the substrate 201 can be sufficiently increased, and a good pretreatment surface can be formed at high speed.
 次に、成膜室262C及び成膜室262Cにおける成膜工程について説明する。成膜装置260は、減圧された成膜室262C内に配置された成膜ローラー275と、成膜ローラー275に対向して配置された蒸着膜成膜手段274のターゲットと、を有する。成膜ローラー275は、プラズマ前処理装置で前処理された基材201の処理面を外側にして基材201を巻きかけて搬送する。成膜工程においては、蒸着膜成膜手段274のターゲットを蒸発させて基材201の表面に酸化アルミニウム膜を成膜する。 Next, a film formation process in the film formation chamber 262C and the film formation chamber 262C will be described. The film forming apparatus 260 includes a film forming roller 275 disposed in the decompressed film forming chamber 262 </ b> C, and a target of the vapor deposition film forming unit 274 disposed to face the film forming roller 275. The film forming roller 275 conveys the base material 201 while winding the base material 201 with the processing surface of the base material 201 preprocessed by the plasma pretreatment apparatus facing outside. In the film forming step, the target of the vapor deposition film forming means 274 is evaporated to form an aluminum oxide film on the surface of the substrate 201.
 蒸着膜成膜手段274は、例えば抵抗加熱方式であり、アルミニウムを蒸発源としてアルミニウムの金属線材を用い、酸素を供給ししてアルミニウム蒸気を酸化しつつ、基材201の表面に酸化アルミニウムを含む蒸着層202を成膜させる。 The vapor deposition film forming means 274 is, for example, a resistance heating method, and uses aluminum metal wire with aluminum as an evaporation source, and supplies aluminum to oxidize aluminum vapor while containing aluminum oxide on the surface of the substrate 201. The vapor deposition layer 202 is formed.
 上記のように成膜される酸化アルミニウムを含む蒸着層202の厚みは、3~50nmが好ましく、より好ましくは9~30nmである。この範囲であれば、バリア性を保持することができる。但し、酸化アルミニウムを含む蒸着層202が非常に薄い場合は、TOF-SIMS測定による遷移領域の変成率の算出が困難になる。 The thickness of the vapor deposition layer 202 containing aluminum oxide formed as described above is preferably 3 to 50 nm, more preferably 9 to 30 nm. Within this range, the barrier property can be maintained. However, when the vapor deposition layer 202 containing aluminum oxide is very thin, it is difficult to calculate the transition region transformation rate by TOF-SIMS measurement.
 次に、蒸着層202の上にガスバリア性塗布膜203を形成する方法について説明する。まず、上記金属アルコキシド、シランカップリング剤、水酸基含有水溶性樹脂、反応促進剤(ゾルゲル法触媒、酸等)、及び溶媒としての水、メチルアルコール、エチルアルコール、イソプロパノール等のアルコール等の有機溶媒を混合して、樹脂組成物からなるガスバリア性塗布膜用コート剤を調製する。 Next, a method for forming the gas barrier coating film 203 on the vapor deposition layer 202 will be described. First, an organic solvent such as the above metal alkoxide, silane coupling agent, hydroxyl group-containing water-soluble resin, reaction accelerator (sol-gel method catalyst, acid, etc.), water as a solvent, alcohol such as methyl alcohol, ethyl alcohol, isopropanol, etc. By mixing, a coating agent for a gas barrier coating film made of a resin composition is prepared.
 ガスバリア性塗布膜203がシランカップリング剤を含む場合、以下のようにガスバリア性塗布膜用コート剤を調製してもよい。まず、アルコキシシランなどの金属アルコキシドとシランカップリング剤とを混合する。金属アルコキシドとシランカップリング剤とは、好ましくは10℃以下で混合される。これにより、形成されるガスバリア性塗布膜203における膜構造が緻密なものとなり易くなる。続いて、金属アルコキシドとシランカップリング剤の混合物と、ポリビニルアルコール系樹脂などの水酸基含有水溶性樹脂とを混合する。 When the gas barrier coating film 203 contains a silane coupling agent, a coating agent for the gas barrier coating film may be prepared as follows. First, a metal alkoxide such as alkoxysilane and a silane coupling agent are mixed. The metal alkoxide and the silane coupling agent are preferably mixed at 10 ° C. or lower. Thereby, the film structure in the gas barrier coating film 203 to be formed is likely to be dense. Subsequently, a mixture of a metal alkoxide and a silane coupling agent and a hydroxyl group-containing water-soluble resin such as a polyvinyl alcohol-based resin are mixed.
 ガスバリア性塗布膜用コート剤を調製した後、蒸着層202の上に、常法により、上記のガスバリア性塗布膜用コート剤を塗布し、乾燥する。この乾燥工程によって、縮合または共縮合反応が更に進行し、塗膜が形成される。第一の塗膜の上に、更に上記塗布操作を繰り返して、2層以上からなる複数の塗膜を形成してもよい。 After preparing the coating agent for the gas barrier coating film, the coating agent for the gas barrier coating film is applied onto the vapor deposition layer 202 by a conventional method and dried. By this drying step, the condensation or co-condensation reaction further proceeds to form a coating film. On the first coating film, the above coating operation may be further repeated to form a plurality of coating films composed of two or more layers.
 さらに、20~200℃、好ましくは50~180℃の範囲の温度、かつ基材201を構成する樹脂の軟化点以下の温度で、3秒~10分間加熱処理する。これによって、蒸着層202の上に、上記ガスバリア性塗布膜用コート剤からなるガスバリア性塗布膜203を形成することができる。このようにして、基材201、蒸着層202及びガスバリア性塗布膜203を有するバリア性積層フィルム205を作製することができる。 Furthermore, heat treatment is performed for 3 seconds to 10 minutes at a temperature in the range of 20 to 200 ° C., preferably 50 to 180 ° C., and a temperature below the softening point of the resin constituting the substrate 201. As a result, the gas barrier coating film 203 made of the gas barrier coating film coating agent can be formed on the vapor deposition layer 202. In this way, the barrier laminate film 205 having the substrate 201, the vapor deposition layer 202, and the gas barrier coating film 203 can be produced.
(積層工程)
 次に、バリア性積層フィルム205とその他のフィルムとを積層して上述の包装材料210を製造する方法について説明する。
(Lamination process)
Next, a method for manufacturing the above-described packaging material 210 by laminating the barrier laminate film 205 and other films will be described.
 図18に示す包装材料210の製造方法の一例について説明する。まず、バリア性積層フィルム205を準備し、バリア性積層フィルム205のガスバリア性塗布膜203上に例えばグラビア印刷法によって印刷層218を形成する。また、延伸プラスチックフィルム214を準備する。その後、ドライラミネート法により、印刷層218が設けられたバリア性積層フィルム205を含むフィルムと、延伸プラスチックフィルム214とを、接着剤層からなる第1接着層213を介して接着する。また、シーラント層212を構成するフィルムを準備する。その後、ドライラミネート法により、バリア性積層フィルム205及び延伸プラスチックフィルム214を含む積層体と、シーラント層212を構成するフィルムとを、接着剤層からなる第2接着層215を介して接着する。このようにして、図18に示す包装材料210を得ることができる。
 なお、延伸プラスチックフィルム214とシーラント層212を構成するフィルムとを接着した後、延伸プラスチックフィルム214及びシーラント層212を含む積層体とバリア性積層フィルム205とを接着してもよい。
An example of a method for manufacturing the packaging material 210 shown in FIG. 18 will be described. First, a barrier laminate film 205 is prepared, and a printing layer 218 is formed on the gas barrier coating film 203 of the barrier laminate film 205 by, for example, a gravure printing method. In addition, a stretched plastic film 214 is prepared. Thereafter, the film including the barrier laminate film 205 provided with the printing layer 218 and the stretched plastic film 214 are bonded via the first adhesive layer 213 formed of an adhesive layer by a dry laminating method. In addition, a film constituting the sealant layer 212 is prepared. Thereafter, the laminate including the barrier laminate film 205 and the stretched plastic film 214 and the film constituting the sealant layer 212 are bonded via a second adhesive layer 215 made of an adhesive layer by a dry lamination method. Thus, the packaging material 210 shown in FIG. 18 can be obtained.
Note that after the stretched plastic film 214 and the film constituting the sealant layer 212 are bonded, the laminate including the stretched plastic film 214 and the sealant layer 212 and the barrier laminate film 205 may be bonded.
 図19に示す包装材料210の製造方法の一例について説明する。まず、延伸プラスチックフィルム214を準備し、延伸プラスチックフィルム214上に例えばグラビア印刷法によって印刷層218を形成する。また、バリア性積層フィルム205を準備する。その後、ドライラミネート法により、印刷層218が設けられた延伸プラスチックフィルム214と、バリア性積層フィルム205とを、接着剤層からなる第1接着層213を介して接着する。また、シーラント層212を構成するフィルムを準備する。その後、ドライラミネート法により、延伸プラスチックフィルム214及びバリア性積層フィルム205を含む積層体と、シーラント層212を構成するフィルムとを、接着剤層からなる第2接着層215を介して接着する。このようにして、図19に示す包装材料210を得ることができる。
 なお、バリア性積層フィルム205とシーラント層212を構成するフィルムとを接着した後、バリア性積層フィルム205及びシーラント層212を含む積層体と延伸プラスチックフィルム214とを接着してもよい。
An example of a method for manufacturing the packaging material 210 shown in FIG. 19 will be described. First, a stretched plastic film 214 is prepared, and a printing layer 218 is formed on the stretched plastic film 214 by, for example, a gravure printing method. In addition, a barrier laminate film 205 is prepared. Thereafter, the stretched plastic film 214 provided with the printing layer 218 and the barrier laminate film 205 are bonded via a first adhesive layer 213 made of an adhesive layer by a dry laminating method. In addition, a film constituting the sealant layer 212 is prepared. Thereafter, the laminate including the stretched plastic film 214 and the barrier laminate film 205 and the film constituting the sealant layer 212 are bonded via a second adhesive layer 215 made of an adhesive layer by a dry lamination method. Thus, the packaging material 210 shown in FIG. 19 can be obtained.
Note that after the barrier laminate film 205 and the film constituting the sealant layer 212 are adhered, the laminate including the barrier laminate film 205 and the sealant layer 212 and the stretched plastic film 214 may be adhered.
 <包装製品>
 包装材料210を用いることによって形成される包装製品の例としては、上述の第1の実施の形態の場合と同様に、図1、図15、図16に示す袋10、図17A,17Bに示す蓋付容器110の蓋材114などを挙げることができる。
<Packaging products>
As an example of the packaged product formed by using the packaging material 210, as in the case of the first embodiment described above, the bag 10 shown in FIGS. 1, 15, and 16 is shown in FIGS. 17A and 17B. Examples thereof include a lid material 114 of the lidded container 110.
 包装製品の袋は、包装材料210を二つ折にするか、又は包装材料210を2枚用意し、表側の包装材料210のシーラント層212と裏側の包装材料210のシーラント層212とを対向させて重ね合わせ、さらにその周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型等のヒートシール形態によりヒートシールして、種々の形態の袋を製造することができる。また、表側の包装材料210と裏側の包装材料210との間に、折り返された状態の包装材料210を挿入した状態でヒートシールを行い、ガセット型の袋を製造することもできる。なお、袋を構成する包装材料210の全てが、本発明による包装材料210でなくてもよい。すなわち、袋を構成する包装材料210の少なくとも一部分が、高スティフネスPETフィルム又はPBTフィルムを含む基材201を有するバリア性積層フィルム205を備える包装材料210であればよく、袋を構成する包装材料210のその他の部分が、バリア性積層フィルム205を備えない包装材料210であってもよい。 For the bag of the packaging product, the packaging material 210 is folded in half, or two packaging materials 210 are prepared, and the sealant layer 212 of the front side packaging material 210 and the sealant layer 212 of the back side packaging material 210 are opposed to each other. Overlap, and the peripheral edge, for example, side seal type, two-side seal type, three-side seal type, four-side seal type, envelope-attached seal type, joint-attached seal type (pillow seal type), pleated seal type, flat bottom Various types of bags can be manufactured by heat-sealing in a heat-sealing form such as a sealing type or a square bottom sealing type. In addition, a gusseted bag can be manufactured by performing heat sealing with the folded back packaging material 210 between the front packaging material 210 and the back packaging material 210. Note that all of the packaging material 210 constituting the bag may not be the packaging material 210 according to the present invention. That is, at least a part of the packaging material 210 constituting the bag may be the packaging material 210 including the barrier laminate film 205 having the base 201 including the high stiffness PET film or the PBT film, and the packaging material 210 constituting the bag. The other part may be the packaging material 210 that does not include the barrier laminate film 205.
 ヒートシールの方法としては、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。 As a heat sealing method, for example, a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, or an ultrasonic seal can be used.
 図1、図15、図16に示すような袋10を構成する表面フィルム14、裏面フィルム15、下部フィルム16などのフィルムのうちの少なくとも1つは、高スティフネスPETフィルム又はPBTフィルムを含む基材201を有するバリア性積層フィルム205を備える包装材料210によって構成されている。これにより、袋にガスバリア性及び強度を付与することができる。同様に、図17A,17Bに示すような蓋付容器110を構成する蓋材114を、高スティフネスPETフィルム又はPBTフィルムを含む基材201を有するバリア性積層フィルム205を備える包装材料210によって構成することもできる。これにより、蓋付容器にガスバリア性及び強度を付与することができる。 At least one of the films such as the front film 14, the back film 15, and the lower film 16 constituting the bag 10 as shown in FIGS. 1, 15, and 16 includes a high-stiffness PET film or a PBT film. It is comprised by the packaging material 210 provided with the barriering laminated film 205 which has 201. FIG. Thereby, gas barrier property and intensity | strength can be provided to a bag. Similarly, the lid member 114 constituting the lidded container 110 as shown in FIGS. 17A and 17B is constituted by a packaging material 210 including a barrier laminated film 205 having a base 201 containing a high stiffness PET film or PBT film. You can also Thereby, gas barrier property and intensity | strength can be provided to a container with a lid | cover.
 例えば、第1の実施の形態の場合と同様に、包装材料210及び包装製品に耐突き刺し性を持たせることができる。これにより、例えば、先端が尖った鋭利な部材が包装製品に接触した場合に包装製品が破けてしまうことなどを抑制することができる。包装材料210の突き刺し強度は、14N以上であることが好ましく、15N以上であることがより好ましく、16N以上であることがより好ましく、17N以上であることが好ましく、18N以上であることがさらに好ましい。 For example, as in the case of the first embodiment, the packaging material 210 and the packaged product can be provided with puncture resistance. Thereby, for example, when a sharp member with a sharp tip contacts the packaged product, the packaged product can be prevented from being broken. The puncture strength of the packaging material 210 is preferably 14N or more, more preferably 15N or more, more preferably 16N or more, preferably 17N or more, and more preferably 18N or more. .
 また、第1の実施の形態の場合と同様に、包装材料210に剛性を持たせることができる。流れ方向(MD)における包装材料210のループスティフネスは、例えば0.150N以上であり、0.160N以上であってもよく、0.170N以上であってもよく、0.180N以上であってもよい。また、垂直方向(TD)における包装材料210のループスティフネスは、例えば0.150N以上であり、0.160N以上であってもよく、0.170N以上であってもよく、0.180N以上であってもよい。このため、包装材料210を用いて作製した図14に示すような袋10に内容物を充填する際に、図14に示すようにチャック部19を動かすとき、開口部11bを上部11に形成し易くなる。例えば、表面フィルム14及び裏面フィルム15がそれぞれ、外面側に凸となる湾曲形状を有するように変形し易くなる。これにより、開口部11bの開口幅Kを確保し易くなる。また、本実施の形態においても、包装材料210が剛性を有しているので、表面フィルム14及び裏面フィルム15にシワが生じにくい。このため、表面フィルム14及び裏面フィルム15の外面に吸着部106が吸着し易い。このことも、開口部11bの開口幅Kを確保することに寄与し得る。 Further, as in the case of the first embodiment, the packaging material 210 can be given rigidity. The loop stiffness of the packaging material 210 in the flow direction (MD) is, for example, 0.150 N or more, 0.160 N or more, 0.170 N or more, or 0.180 N or more. Good. Further, the loop stiffness of the packaging material 210 in the vertical direction (TD) is, for example, 0.150 N or more, 0.160 N or more, 0.170 N or more, or 0.180 N or more. May be. For this reason, when the bag 10 as shown in FIG. 14 manufactured using the packaging material 210 is filled with the contents, when the chuck part 19 is moved as shown in FIG. It becomes easy. For example, the front film 14 and the back film 15 are each easily deformed so as to have a curved shape that is convex on the outer surface side. Thereby, it becomes easy to ensure the opening width K of the opening part 11b. Also in this embodiment, since the packaging material 210 has rigidity, the front film 14 and the back film 15 are unlikely to be wrinkled. For this reason, the adsorption | suction part 106 tends to adsorb | suck to the outer surface of the surface film 14 and the back film 15. This can also contribute to securing the opening width K of the opening 11b.
 次に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of the following examples unless it exceeds the gist.
 実施例A1~A9及び比較例A1により、本発明における包装材料30の突き刺し強度、引き裂き性及び耐熱性についての評価を行った。 Evaluation of the puncture strength, tearability and heat resistance of the packaging material 30 according to the present invention was performed according to Examples A1 to A9 and Comparative Example A1.
 (実施例A1)
 第1延伸プラスチックフィルム40として、0.0017N以上のループスティフネスを有し、PETからなる高スティフネスポリエステルフィルム(以下、高スティフネスPETフィルムとも称する)を準備した。続いて、高スティフネスPETフィルムの面に厚み1μmの印刷層32を形成した。
 高スティフネスPETフィルムとしては、具体的には、東レ株式会社製のXP-55を用いた。高スティフネスPETフィルムの厚みは16μmであった。また、高スティフネスPETフィルムのループスティフネスの測定値は、流れ方向及び垂直方向のいずれにおいても0.0021Nであった。また、流れ方向における高スティフネスPETフィルムの引張弾性率は4.8GPaであり、垂直方向における高スティフネスPETフィルムの引張弾性率は4.7GPaであった。
 また、流れ方向における高スティフネスPETフィルムの引張強度は292MPaであり、垂直方向における高スティフネスPETフィルムの引張強度は257MPaであった。また、流れ方向における高スティフネスPETフィルムの引張伸度は107%であり、垂直方向における高スティフネスPETフィルムの引張伸度は102%であった。この場合、流れ方向における高スティフネスPETフィルムの引張強度を引張伸度で割った値は2.73〔MPa/%〕であり、垂直方向における高スティフネスPETフィルムの引張強度を引張伸度で割った値は2.52〔MPa/%〕である。
 また、流れ方向及び垂直方向における高スティフネスPETフィルムの熱収縮率はいずれも0.4%であった。
(Example A1)
As the first stretched plastic film 40, a high stiffness polyester film (hereinafter also referred to as a high stiffness PET film) having a loop stiffness of 0.0017 N or more and made of PET was prepared. Subsequently, a printed layer 32 having a thickness of 1 μm was formed on the surface of the high stiffness PET film.
Specifically, XP-55 manufactured by Toray Industries, Inc. was used as the high stiffness PET film. The thickness of the high stiffness PET film was 16 μm. The measured value of the loop stiffness of the high stiffness PET film was 0.0021 N in both the flow direction and the vertical direction. Moreover, the tensile elasticity modulus of the high stiffness PET film in the flow direction was 4.8 GPa, and the tensile elasticity modulus of the high stiffness PET film in the vertical direction was 4.7 GPa.
The tensile strength of the high stiffness PET film in the flow direction was 292 MPa, and the tensile strength of the high stiffness PET film in the vertical direction was 257 MPa. Further, the tensile elongation of the high stiffness PET film in the flow direction was 107%, and the tensile elongation of the high stiffness PET film in the vertical direction was 102%. In this case, the value obtained by dividing the tensile strength of the high stiffness PET film in the flow direction by the tensile elongation is 2.73 [MPa /%], and the tensile strength of the high stiffness PET film in the vertical direction is divided by the tensile elongation. The value is 2.52 [MPa /%].
In addition, the thermal shrinkage rate of the high stiffness PET film in the flow direction and the vertical direction was both 0.4%.
 また、第2延伸プラスチックフィルム50として、流れ方向(MD)における引き裂き性を有し、PETからなる直進カットポリエステルフィルム(以下、直進カットPETフィルムとも称する)を準備した。直進カットPETフィルムとしては、ユニチカ株式会社製のエンブレット(登録商標)PCを用いた。直進カットPETフィルムの厚みは12μmであった。 Further, as the second stretched plastic film 50, a straight cut polyester film (hereinafter also referred to as a straight cut PET film) having tearability in the flow direction (MD) and made of PET was prepared. As the straight cut PET film, Emblet (registered trademark) PC manufactured by Unitika Ltd. was used. The thickness of the straight cut PET film was 12 μm.
 エンブレット(登録商標)PCは、一般的な延伸PETフィルムに比べて、流れ方向(MD)における高い引き裂き性を有する。流れ方向(MD)におけるエンブレット(登録商標)PCの引張強度は200MPaであり、垂直方向(TD)におけるエンブレット(登録商標)PCの引張強度は180MPaである。 Emblet (registered trademark) PC has higher tearability in the flow direction (MD) than a general stretched PET film. The tensile strength of Emblet (R) PC in the flow direction (MD) is 200 MPa, and the tensile strength of Emblet (R) PC in the vertical direction (TD) is 180 MPa.
 また、シーラント層70として、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK207を準備した。ZK207は、上述のプロピレン・エチレンブロック共重合体を含む。シーラント層70の厚みは70μmであった。 Moreover, as the sealant layer 70, an unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. was prepared. ZK207 contains the above-mentioned propylene / ethylene block copolymer. The thickness of the sealant layer 70 was 70 μm.
 ZK207は、高い引張弾性率を有する。具体的には、流れ方向(MD)におけるZK207の引張弾性率は、厚みが50μmの場合に780MPaであり、厚みが60μmの場合に680MPaである。また、垂直方向(TD)におけるZK207の引張弾性率は、厚みが50μmの場合に630MPaであり、厚みが60μmの場合に560MPaである。従って、流れ方向におけるZK207の引張弾性率(MPa)と厚み(μm)の積は、厚みが50μmの場合に39000であり、厚みが60μmの場合に40800である。また、垂直方向におけるZK207の引張弾性率(MPa)と厚み(μm)の積は、厚みが50μmの場合に31500であり、厚みが60μmの場合に33600である。 ZK207 has a high tensile elastic modulus. Specifically, the tensile modulus of elasticity of ZK207 in the flow direction (MD) is 780 MPa when the thickness is 50 μm and 680 MPa when the thickness is 60 μm. Further, the tensile modulus of elasticity of ZK207 in the vertical direction (TD) is 630 MPa when the thickness is 50 μm and 560 MPa when the thickness is 60 μm. Therefore, the product of the tensile modulus (MPa) and the thickness (μm) of ZK207 in the flow direction is 39000 when the thickness is 50 μm and 40800 when the thickness is 60 μm. The product of the tensile modulus (MPa) and thickness (μm) of ZK207 in the vertical direction is 31500 when the thickness is 50 μm and 33600 when the thickness is 60 μm.
 また、ZK207は、低い引張伸度を有する。具体的には、流れ方向(MD)におけるZK207の引張伸度は、厚みが50μmの場合に790%であり、厚みが60μmの場合に730%である。また、垂直方向(TD)におけるZK207の引張伸度は、厚みが50μmの場合に1020%であり、厚みが60μmの場合に870%である。従って、流れ方向におけるZK207の引張伸度(%)と厚み(μm)の積は、厚みが50μmの場合に39500であり、厚みが60μmの場合に43800である。また、垂直方向におけるZK207の引張伸度(%)と厚み(μm)の積は、厚みが50μmの場合に51000であり、厚みが60μmの場合に52200である。 ZK207 also has a low tensile elongation. Specifically, the tensile elongation of ZK207 in the flow direction (MD) is 790% when the thickness is 50 μm and 730% when the thickness is 60 μm. The tensile elongation of ZK207 in the vertical direction (TD) is 1020% when the thickness is 50 μm, and 870% when the thickness is 60 μm. Therefore, the product of the tensile elongation (%) and thickness (μm) of ZK207 in the flow direction is 39500 when the thickness is 50 μm and 43800 when the thickness is 60 μm. The product of the tensile elongation (%) and the thickness (μm) of ZK207 in the vertical direction is 51000 when the thickness is 50 μm and 52200 when the thickness is 60 μm.
 続いて、ドライラミネート法により、第1延伸プラスチックフィルム40、第2延伸プラスチックフィルム50及びシーラント層70を積層し、包装材料30を作製した。第1接着剤層45及び第2接着剤層55としては、ロックペイント株式会社製の2液型ポリウレタン系接着剤(主剤:RU-40、硬化剤:H-4)を用いた。なお、主剤のRU-40は、ポリエステルポリオールである。第1接着剤層45及び第2接着剤層55の厚みは、3.5μmであった。包装材料30全体の厚みは106μmであった。 Subsequently, the first stretched plastic film 40, the second stretched plastic film 50, and the sealant layer 70 were laminated by a dry laminating method to produce the packaging material 30. As the first adhesive layer 45 and the second adhesive layer 55, a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used. The main agent, RU-40, is a polyester polyol. The thickness of the 1st adhesive bond layer 45 and the 2nd adhesive bond layer 55 was 3.5 micrometers. The total thickness of the packaging material 30 was 106 μm.
 〔耐突き刺し性の評価〕
 続いて、包装材料30の突き刺し強度を、JIS Z1707 7.4に準拠して測定した。測定器としては、A&D製のテンシロン万能材料試験機RTC-1310を用いた。具体的には、図24に示すように、固定されている状態の包装材料30の試験片に対して、外面30y側から、直径1.0mm、先端形状半径0.5mmの半円形の針90を、50mm/分(1分あたり50mm)の速度で突き刺し、針90が包装材料30を貫通するまでの応力の最大値を測定した。5個以上の試験片について、応力の最大値を測定し、その平均値を包装材料30の突き刺し強度とした。測定時の環境は、温度23℃、相対湿度50%とした。結果、突き刺し強度は16.7Nであった。
[Evaluation of puncture resistance]
Subsequently, the piercing strength of the packaging material 30 was measured according to JIS Z1707 7.4. As a measuring instrument, Tensilon universal material testing machine RTC-1310 manufactured by A & D was used. Specifically, as shown in FIG. 24, a semicircular needle 90 having a diameter of 1.0 mm and a tip shape radius of 0.5 mm from the outer surface 30y side with respect to the test piece of the packaging material 30 in a fixed state. Was pierced at a speed of 50 mm / min (50 mm per minute), and the maximum value of stress until the needle 90 penetrated the packaging material 30 was measured. About five or more test pieces, the maximum value of stress was measured, and the average value was defined as the piercing strength of the packaging material 30. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the piercing strength was 16.7N.
 〔ループスティフネスの評価〕
 また、包装材料30の流れ方向及び垂直方向におけるループスティフネスを測定した。測定器としては、東洋精機社製のNo.581ループステフネステスタ(登録商標)LOOP STIFFNESS TESTER DA型を用いた。測定時の環境は、温度23℃、相対湿度50%とした。結果、包装材料30の流れ方向におけるループスティフネスは0.181Nであり、垂直方向におけるループスティフネスは0.153Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00171N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00144N/μmになる。
[Evaluation of loop stiffness]
Further, the loop stiffness in the flow direction and the vertical direction of the packaging material 30 was measured. As a measuring instrument, No. manufactured by Toyo Seiki Co., Ltd. A 581 loop step tester (registered trademark) LOOP STIFFNESS TESTER DA type was used. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the loop stiffness in the flow direction of the packaging material 30 was 0.181 N, and the loop stiffness in the vertical direction was 0.153 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00171 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00144 N. / Μm.
 〔引き裂き性の評価〕
 続いて、シーラント層70を介して接合した2枚の包装材料30を、図25に示すように、幅V1が15mm、長さV2が100mmとなるように切り出して、試験片100を作製した。試験片100の幅V1の方向は、図1に示す第2方向D2に平行である。また、試験片100の長さV2の方向は、延伸プラスチックフィルムやシーラントフィルムなどのフィルムを成膜する際の流れ方向(MD)に平行であり、また、図1に示す第1方向D1に平行である。試験片100においては、2枚の包装材料30が全領域にわたって接合されている。続いて、図25に示すように、試験片100の幅V1の方向における中央に切れ込み28を形成した。続いて、切れ込み28を起点として、長さV2の方向において試験片100を手で引き裂いた。測定時の環境は、温度23℃、相対湿度50%とした。結果、途中で包装材料30のシーラント層70が伸びることなく、試験片100を長さV2の方向で引き裂くことができた。また、引き裂いた箇所における2枚の包装材料30の、幅V1の方向における位置のずれ量が5mm以下であった。
[Evaluation of tearability]
Subsequently, as shown in FIG. 25, the two packaging materials 30 joined through the sealant layer 70 were cut out so that the width V1 was 15 mm and the length V2 was 100 mm, and the test piece 100 was produced. The direction of the width V1 of the test piece 100 is parallel to the second direction D2 shown in FIG. Further, the direction of the length V2 of the test piece 100 is parallel to the flow direction (MD) when a film such as a stretched plastic film or a sealant film is formed, and is parallel to the first direction D1 shown in FIG. It is. In the test piece 100, the two packaging materials 30 are joined over the entire region. Subsequently, as shown in FIG. 25, a notch 28 was formed in the center of the test piece 100 in the width V1 direction. Subsequently, the test piece 100 was torn by hand in the direction of the length V2 starting from the notch 28. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the test piece 100 could be torn in the direction of the length V2 without the sealant layer 70 of the packaging material 30 extending along the way. Moreover, the amount of displacement of the position of the two packaging materials 30 at the torn portion in the direction of the width V1 was 5 mm or less.
 〔開口性及び耐熱性の評価〕
 続いて、包装材料30を用いて袋10を作製し、袋10の開口性及び耐熱性を評価した。具体的には、まず、包装材料30を用いて図15に示す袋10を作製した。袋10の高さS1は145mmであり、幅S2は150mmであった。また、折り返された下部フィルム16の高さS3、すなわち袋10の下端部から折り返し部16fまでの高さは、43mmであった。以下の説明において、高さS1が145mmであり、幅S2が150mmであり、高さS3が43mmである袋10を、Mサイズの袋10とも称する。続いて、肉及び味噌などの油分を多く含む100gの内容物を、上部11の開口部11bを介して袋10の内部に充填した。この際、開口部11bの開口性を評価した。具体的には、図14に示すようにチャック部105を用いて袋10に側方からの力Pを加えた場合に、表面フィルム14及び裏面フィルム15がそれぞれ、外面側に凸となる湾曲形状を有するように変形するか否かを確認した。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。
[Evaluation of openability and heat resistance]
Then, the bag 10 was produced using the packaging material 30, and the opening property and heat resistance of the bag 10 were evaluated. Specifically, first, the bag 10 shown in FIG. The height S1 of the bag 10 was 145 mm and the width S2 was 150 mm. Further, the height S3 of the folded lower film 16, that is, the height from the lower end portion of the bag 10 to the folded portion 16f was 43 mm. In the following description, the bag 10 having a height S1 of 145 mm, a width S2 of 150 mm, and a height S3 of 43 mm is also referred to as an M size bag 10. Subsequently, 100 g of content containing a large amount of oil such as meat and miso was filled into the bag 10 through the opening 11 b of the upper portion 11. At this time, the openability of the opening 11b was evaluated. Specifically, as shown in FIG. 14, when a lateral force P is applied to the bag 10 using the chuck portion 105, the surface film 14 and the back film 15 are respectively curved shapes that are convex on the outer surface side. It was confirmed whether or not to deform so as to have. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side.
 袋10に内容物を充填した後、上部11をヒートシールして上部シール部11aを形成した。その後、500Wの出力の電子レンジを用いて2分間にわたって、内容物が収容された袋10を加熱し、袋10を構成する包装材料30にダメージが生じるか否かを確認した。試験は、10個の袋10に対して実施した。結果、10個中10個の袋10において、包装材料30に穴があくことや、包装材料30にシワが形成されることなどのダメージが生じていないことを確認した。 After filling the bag 10 with the contents, the upper part 11 was heat-sealed to form an upper seal part 11a. Then, the bag 10 in which the contents were accommodated was heated for 2 minutes using the microwave oven of 500 W, and it was confirmed whether the packaging material 30 which comprises the bag 10 was damaged. The test was performed on 10 bags 10. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
 (実施例A2)
 第2延伸プラスチックフィルム50として、流れ方向(MD)における引き裂き性を有し、ナイロンからなる直進カットポリアミドフィルム(以下、直進カットナイロンフィルムとも称する)を用いたこと以外は、実施例A1の場合と同様にして、包装材料30を作製した。直進カットナイロンフィルムとしては、興人フィルム&ケミカルズ株式会社製のボニールCLを用いた。直進カットナイロンフィルムの厚みは15μmであった。包装材料30全体の厚みは109μmであった。
(Example A2)
The second stretched plastic film 50 is tearable in the flow direction (MD), and has the same properties as in Example A1, except that a straight-cut polyamide film made of nylon (hereinafter also referred to as a straight-cut nylon film) is used. Similarly, the packaging material 30 was produced. Bonile CL manufactured by Kojin Film & Chemicals Co., Ltd. was used as the straight cut nylon film. The thickness of the straight cut nylon film was 15 μm. The total thickness of the packaging material 30 was 109 μm.
 ボニールCLは、一般的な延伸ナイロンフィルムに比べて、流れ方向(MD)における高い引き裂き性を有する。流れ方向(MD)におけるボニールCLの引張強度は269MPaであり、垂直方向(TD)におけるボニールCLの引張強度は255MPaである。 Bonyl CL has higher tearability in the flow direction (MD) than a general stretched nylon film. The tensile strength of bonile CL in the flow direction (MD) is 269 MPa, and the tensile strength of bonile CL in the vertical direction (TD) is 255 MPa.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は18.5Nであり、流れ方向におけるループスティフネスは0.178Nであり、垂直方向におけるループスティフネスは0.140Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00163N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00128N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 18.5 N, the loop stiffness in the flow direction was 0.178 N, and the loop stiffness in the vertical direction was 0.140 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00163 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00128 N. / Μm.
 また、実施例A1の場合と同様にして、包装材料30の引き裂き性を評価した。結果、途中で包装材料30のシーラント層70が伸びることなく、試験片100を長さV2の方向で引き裂くことができた。また、引き裂いた箇所における2枚の包装材料30の、幅V1の方向における位置のずれ量が5mm以下であった。 Also, the tearability of the packaging material 30 was evaluated in the same manner as in Example A1. As a result, the test piece 100 could be torn in the direction of the length V2 without the sealant layer 70 of the packaging material 30 extending along the way. Moreover, the amount of displacement of the position of the two packaging materials 30 at the torn portion in the direction of the width V1 was 5 mm or less.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、包装材料30にシワは形成されているが、包装材料30に穴があいていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, although the wrinkle was formed in the packaging material 30, it confirmed that the packaging material 30 did not have a hole.
 (実施例A3)
 第1延伸プラスチックフィルム40として、実施例A1において第2延伸プラスチックフィルム50として用いた直進カットPETフィルムを用い、第2延伸プラスチックフィルム50として、実施例A1において第1延伸プラスチックフィルム40として用いた高スティフネスPETフィルムを用いたこと以外は、実施例1の場合と同様にして、包装材料30を作製した。包装材料30全体の厚みは106μmであった。
(Example A3)
As the first stretched plastic film 40, the straight-cut PET film used as the second stretched plastic film 50 in Example A1 was used, and as the second stretched plastic film 50, the high stretch used as the first stretched plastic film 40 in Example A1. A packaging material 30 was produced in the same manner as in Example 1 except that a stiffness PET film was used. The total thickness of the packaging material 30 was 106 μm.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は16.5Nであり、ループスティフネスは0.176Nであり、垂直方向におけるループスティフネスは0.152Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00166N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00143N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 16.5N, the loop stiffness was 0.176N, and the loop stiffness in the vertical direction was 0.152N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00166 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00143 N. / Μm.
 続いて、実施例A1の場合と同様にして、包装材料30の引き裂き性を評価した。結果、途中で包装材料30のシーラント層70が伸びることなく、試験片100を長さV2の方向で引き裂くことができた。 Subsequently, the tearability of the packaging material 30 was evaluated in the same manner as in Example A1. As a result, the test piece 100 could be torn in the direction of the length V2 without the sealant layer 70 of the packaging material 30 extending along the way.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、10個中10個の袋10において、包装材料30に穴があくことや、包装材料30にシワが形成されることなどのダメージが生じていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
 (実施例A4)
 第1延伸プラスチックフィルム40として、実施例A2において第2延伸プラスチックフィルム50として用いた直進カットナイロンフィルムを用い、第2延伸プラスチックフィルム50として、実施例A2において第1延伸プラスチックフィルム40として用いた高スティフネスPETフィルムを用いたこと以外は、実施例A2の場合と同様にして、包装材料30を作製した。包装材料30全体の厚みは109μmであった。
(Example A4)
As the first stretched plastic film 40, the straight cut nylon film used as the second stretched plastic film 50 in Example A2 was used, and as the second stretched plastic film 50, the high stretch used as the first stretched plastic film 40 in Example A2. A packaging material 30 was produced in the same manner as in Example A2, except that a stiffness PET film was used. The total thickness of the packaging material 30 was 109 μm.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は18.6Nであり、流れ方向におけるループスティフネスは0.175Nであり、垂直方向におけるループスティフネスは0.141Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00161N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00129N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 18.6N, the loop stiffness in the flow direction was 0.175N, and the loop stiffness in the vertical direction was 0.141N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00161 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00129 N. / Μm.
 また、実施例A1の場合と同様にして、包装材料30の引き裂き性を評価した。結果、途中で包装材料30のシーラント層70が伸びることなく、試験片100を長さV2の方向で引き裂くことができた。 Also, the tearability of the packaging material 30 was evaluated in the same manner as in Example A1. As a result, the test piece 100 could be torn in the direction of the length V2 without the sealant layer 70 of the packaging material 30 extending along the way.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、包装材料30にシワは形成されているが、包装材料30に穴があいていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, although the wrinkle was formed in the packaging material 30, it confirmed that the packaging material 30 did not have a hole.
 (実施例A5)
 第1延伸プラスチックフィルム40として、透明蒸着層、ガスバリア性塗布膜及び印刷層が設けられた、厚みが12μmの二軸延伸PETフィルムを用いたこと以外は、実施例A3の場合と同様にして、包装材料30を作製した。二軸延伸PETフィルムとしては、流れ方向(MD)における引張強度と垂直方向(TD)における引張強度とが同一のものを用いた。包装材料30全体の厚みは106μmであった。
(Example A5)
As the first stretched plastic film 40, except that a biaxially stretched PET film having a thickness of 12 μm provided with a transparent vapor deposition layer, a gas barrier coating film and a printing layer was used, as in Example A3, A packaging material 30 was produced. A biaxially stretched PET film having the same tensile strength in the flow direction (MD) and tensile strength in the vertical direction (TD) was used. The total thickness of the packaging material 30 was 106 μm.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は16.7Nであり、流れ方向におけるループスティフネスは0.176Nであり、垂直方向におけるループスティフネスは0.154Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00166N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00145N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 16.7 N, the loop stiffness in the flow direction was 0.176 N, and the loop stiffness in the vertical direction was 0.154 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00166 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00145 N. / Μm.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、10個中10個の袋10において、包装材料30に穴があくことや、包装材料30にシワが形成されることなどのダメージが生じていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
 (実施例A6)
 第2延伸プラスチックフィルム50として、透明蒸着層及びガスバリア性塗布膜が設けられた、厚みが12μmの二軸延伸PETフィルムを用いたこと以外は、実施例A1の場合と同様にして、包装材料30を作製した。二軸延伸PETフィルムとしては、流れ方向(MD)における引張強度と垂直方向(TD)における引張強度とが略同一のものを用いた。包装材料30全体の厚みは106μmであった。
(Example A6)
As the second stretched plastic film 50, a packaging material 30 was obtained in the same manner as in Example A1, except that a biaxially stretched PET film having a thickness of 12 μm provided with a transparent vapor deposition layer and a gas barrier coating film was used. Was made. As the biaxially stretched PET film, one having substantially the same tensile strength in the flow direction (MD) and tensile strength in the vertical direction (TD) was used. The total thickness of the packaging material 30 was 106 μm.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は16.9Nであり、流れ方向におけるループスティフネスは0.179Nであり、垂直方向におけるループスティフネスは0.157Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00169N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00148N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 16.9 N, the loop stiffness in the flow direction was 0.179 N, and the loop stiffness in the vertical direction was 0.157 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00169 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00148 N. / Μm.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、10個中10個の袋10において、包装材料30に穴があくことや、包装材料30にシワが形成されることなどのダメージが生じていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
 (比較例A1)
 第1延伸プラスチックフィルム40及び第2延伸プラスチックフィルム50として、厚みが12μmの二軸延伸PETフィルムを用いたこと以外は、実施例A1の場合と同様にして、包装材料30を作製した。二軸延伸PETフィルムとしては、流れ方向(MD)における引張強度と垂直方向(TD)における引張強度とが略同一のものを用いた。包装材料30全体の厚みは102μmであった。
(Comparative Example A1)
A packaging material 30 was produced in the same manner as in Example A1, except that a biaxially stretched PET film having a thickness of 12 μm was used as the first stretched plastic film 40 and the second stretched plastic film 50. As the biaxially stretched PET film, one having substantially the same tensile strength in the flow direction (MD) and tensile strength in the vertical direction (TD) was used. The total thickness of the packaging material 30 was 102 μm.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は13.2Nであり、流れ方向におけるループスティフネスは0.151Nであり、垂直方向におけるループスティフネスは0.117Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00148N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00115N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 13.2N, the loop stiffness in the flow direction was 0.151N, and the loop stiffness in the vertical direction was 0.117N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00148 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00115 N. / Μm.
 続いて、実施例A1の場合と同様にして、包装材料30の引き裂き性を評価した。結果、途中で包装材料30のシーラント層70が伸びてしまい、試験片100を長さV2の方向で引き裂くことができなかった。 Subsequently, the tearability of the packaging material 30 was evaluated in the same manner as in Example A1. As a result, the sealant layer 70 of the packaging material 30 was stretched midway, and the test piece 100 could not be torn in the direction of the length V2.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15には、外面側に凸となる複数の湾曲形状部分に加えて、内面側に凸となる複数の湾曲形状部分も形成され、このため、十分な開口幅Kを確保できなかった。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、包装材料30にシワは形成されているが、包装材料30に穴があいていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the surface film 14 and the back film 15 are also formed with a plurality of curved portions that are convex on the inner surface side in addition to the plurality of curved portions that are convex on the outer surface side. Could not be secured. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, although the wrinkle was formed in the packaging material 30, it confirmed that the packaging material 30 did not have a hole.
 (実施例A7)
 第2延伸プラスチックフィルム50として、厚みが12μmの二軸延伸PETフィルムを用い、シーラント層70として、低密度ポリエチレンと直鎖状低密度ポリエチレンの混合樹脂からなるシーラントフィルム(厚さ50μm)を用いたこと以外は、実施例A1の場合と同様にして、包装材料30を作製した。二軸延伸PETフィルムとしては、流れ方向(MD)における引張強度と垂直方向(TD)における引張強度とが略同一のものを用いた。包装材料30全体の厚みは86μmであった。
(Example A7)
A biaxially stretched PET film having a thickness of 12 μm was used as the second stretched plastic film 50, and a sealant film (thickness 50 μm) made of a mixed resin of low density polyethylene and linear low density polyethylene was used as the sealant layer 70. Except for this, a packaging material 30 was produced in the same manner as in Example A1. As the biaxially stretched PET film, one having substantially the same tensile strength in the flow direction (MD) and tensile strength in the vertical direction (TD) was used. The total thickness of the packaging material 30 was 86 μm.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は16.5Nであり、流れ方向におけるループスティフネスは0.111Nであり、垂直方向におけるループスティフネスは0.121Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00129N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00141N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 16.5N, the loop stiffness in the flow direction was 0.111N, and the loop stiffness in the vertical direction was 0.121N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00129 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00141 N. / Μm.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、10個中10個の袋10において、包装材料30に穴があくことや、包装材料30にシワが形成されることなどのダメージが生じていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
 (実施例A8)
 シーラント層70として、包装材料30の内面30xを構成する第1層及び第1層の第2延伸プラスチックフィルム50側の面上に位置する第2層を含み、共押し出しによって形成された、イージーピール性を備えるシーラントフィルム(厚さ50μm)を用いたこと以外は、実施例A7の場合と同様にして、包装材料30を作製した。第1層は、高密度ポリエチレンとポリプロピレンの混合樹脂からなる厚さ5μmの層である。第2層は、高密度ポリエチレンからなる厚さ45μmの層である。包装材料30全体の厚みは86μmであった。
(Example A8)
Easy peel formed by co-extrusion, including a first layer constituting the inner surface 30x of the packaging material 30 and a second layer located on the surface of the first layer on the second stretched plastic film 50 side as the sealant layer 70 A packaging material 30 was produced in the same manner as in Example A7 except that a sealant film having a property (thickness: 50 μm) was used. The first layer is a layer having a thickness of 5 μm made of a mixed resin of high-density polyethylene and polypropylene. The second layer is a layer made of high-density polyethylene and having a thickness of 45 μm. The total thickness of the packaging material 30 was 86 μm.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は16.2Nであり、流れ方向におけるループスティフネスは0.112Nであり、垂直方向におけるループスティフネスは0.115Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00130N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00134N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 16.2N, the loop stiffness in the flow direction was 0.112N, and the loop stiffness in the vertical direction was 0.115N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00130 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00134 N. / Μm.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、10個中10個の袋10において、包装材料30に穴があくことや、包装材料30にシワが形成されることなどのダメージが生じていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
 (実施例A9)
 シーラント層70として、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK500を用いたこと以外は、実施例A5の場合と同様にして、包装材料30を作製した。ZK500は、上述のプロピレン・エチレンブロック共重合体及びエラストマーを含む。シーラント層70の厚みは60μmであった。包装材料30全体の厚みは96μmであった。
(Example A9)
A packaging material 30 was produced in the same manner as in Example A5 except that an unstretched polypropylene film ZK500 manufactured by Toray Film Processing Co., Ltd. was used as the sealant layer 70. ZK500 contains the above-mentioned propylene / ethylene block copolymer and elastomer. The thickness of the sealant layer 70 was 60 μm. The total thickness of the packaging material 30 was 96 μm.
 ZK500は、一般的な未延伸ポリプロピレンフィルムに比べて高い引張伸度を有する。具体的には、流れ方向(MD)におけるZK500の引張伸度は、厚みが50μmの場合に1180%であり、厚みが60μmの場合に1100%である。また、垂直方向(TD)におけるZK500の引張伸度は、厚みが50μmの場合に1240%であり、厚みが60μmの場合に1150%である。従って、流れ方向におけるZK500の引張伸度(%)と厚み(μm)の積は、厚みが50μmの場合に59000であり、厚みが60μmの場合に66000である。また、垂直方向におけるZK500の引張伸度(%)と厚み(μm)の積は、厚みが50μmの場合に62000であり、厚みが60μmの場合に69000である。 ZK500 has a higher tensile elongation than a general unstretched polypropylene film. Specifically, the tensile elongation of ZK500 in the flow direction (MD) is 1180% when the thickness is 50 μm and 1100% when the thickness is 60 μm. The tensile elongation of ZK500 in the vertical direction (TD) is 1240% when the thickness is 50 μm, and 1150% when the thickness is 60 μm. Therefore, the product of the tensile elongation (%) and the thickness (μm) of ZK500 in the flow direction is 59000 when the thickness is 50 μm and 66000 when the thickness is 60 μm. The product of the tensile elongation (%) and thickness (μm) of ZK500 in the vertical direction is 62000 when the thickness is 50 μm and 69000 when the thickness is 60 μm.
 また、ZK500は、一般的な未延伸ポリプロピレンフィルムに比べて低い引張弾性率を有する。具体的には、流れ方向(MD)におけるZK500の引張弾性率は、厚みが50μmの場合に640MPaであり、厚みが60μmの場合に550MPaである。また、垂直方向(TD)におけるZK500の引張弾性率は、厚みが50μmの場合に480MPaであり、厚みが60μmの場合に400MPaである。従って、流れ方向におけるZK500の引張弾性率(MPa)と厚み(μm)の積は、厚みが50μmの場合に32000であり、厚みが60μmの場合に33000である。また、垂直方向におけるZK500の引張弾性率(MPa)と厚み(μm)の積は、厚みが50μmの場合に24000であり、厚みが60μmの場合に35000である。 Further, ZK500 has a lower tensile elastic modulus than a general unstretched polypropylene film. Specifically, the tensile modulus of elasticity of ZK500 in the flow direction (MD) is 640 MPa when the thickness is 50 μm, and 550 MPa when the thickness is 60 μm. The tensile modulus of elasticity of ZK500 in the vertical direction (TD) is 480 MPa when the thickness is 50 μm, and 400 MPa when the thickness is 60 μm. Therefore, the product of the tensile modulus (MPa) and the thickness (μm) of ZK500 in the flow direction is 32000 when the thickness is 50 μm and 33000 when the thickness is 60 μm. The product of the tensile modulus (MPa) and thickness (μm) of ZK500 in the vertical direction is 24000 when the thickness is 50 μm and 35000 when the thickness is 60 μm.
 続いて、実施例A1の場合と同様にして、包装材料30の突き刺し強度並びに流れ方向及び垂直方向におけるループスティフネスを測定した。結果、突き刺し強度は16.8Nであり、流れ方向におけるループスティフネスは0.132Nであり、垂直方向におけるループスティフネスは0.110Nであった。この場合、包装材料30の流れ方向におけるループスティフネスを包装材料30の厚みで割った値は0.00138N/μmになり、垂直方向におけるループスティフネスを包装材料30の厚みで割った値は0.00115N/μmになる。 Subsequently, the puncture strength of the packaging material 30 and the loop stiffness in the flow direction and the vertical direction were measured in the same manner as in Example A1. As a result, the piercing strength was 16.8N, the loop stiffness in the flow direction was 0.132N, and the loop stiffness in the vertical direction was 0.110N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 30 by the thickness of the packaging material 30 is 0.00138 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 30 is 0.00115 N. / Μm.
 続いて、実施例A1の場合と同様にして、包装材料30を用いて袋10を作製し、袋10に内容物を充填する際の袋10の開口性を評価した。袋10のサイズは、実施例A1の場合と同様にMサイズとした。結果、表面フィルム14及び裏面フィルム15は、外面側に凸となる湾曲形状を有するように変形した。また、実施例A1の場合と同様にして、内容物が収容されている袋10の耐熱性を評価した。結果、10個中10個の袋10において、包装材料30に穴があくことや、包装材料30にシワが形成されることなどのダメージが生じていないことを確認した。 Subsequently, in the same manner as in Example A1, a bag 10 was produced using the packaging material 30, and the opening of the bag 10 when the bag 10 was filled with the contents was evaluated. The size of the bag 10 was set to M size as in the case of Example A1. As a result, the front film 14 and the back film 15 were deformed so as to have a curved shape that is convex on the outer surface side. Moreover, the heat resistance of the bag 10 containing the contents was evaluated in the same manner as in Example A1. As a result, it was confirmed that in 10 of 10 bags 10, there was no damage such as a hole in the packaging material 30 or formation of wrinkles in the packaging material 30.
 実施例A1~A6及び比較例A1の包装材料30の層構成、並びに、突き刺し強度及びループスティフネスに関する評価結果を、図26にまとめて示す。また、実施例A1~A6及び比較例A1の包装材料30の層構成、並びに、引き裂き性、耐熱性及び開口性に関する評価結果を、図27にまとめて示す。また、実施例A7~A9の包装材料30の層構成、並びに、突き刺し強度及びループスティフネスに関する評価結果を、図28にまとめて示す。図26~図28において、「層構成」の欄には、包装材料30の構成要素を、外面側の層から順に上から記載している。また、「耐熱性」の欄において、包装材料30に穴及びシワが形成されていなかった場合には「great」と記し、包装材料30にシワは形成されていたが穴は形成されていなかった場合には「good」と記し、包装材料30に穴及びシワが形成されていた場合には「bad」と記した。また、「開口性」の欄において、表面フィルム14及び裏面フィルム15が、外面側に凸となる湾曲形状を有するように変形した場合には「good」と記し、表面フィルム14及び裏面フィルム15に、外面側に凸となる複数の湾曲形状部分に加えて、内面側に凸となる複数の湾曲形状部分も形成されていた場合には「bad」と記した。 FIG. 26 summarizes the layer configurations of the packaging materials 30 of Examples A1 to A6 and Comparative Example A1, and the evaluation results relating to the piercing strength and loop stiffness. In addition, FIG. 27 summarizes the layer configurations of the packaging materials 30 of Examples A1 to A6 and Comparative Example A1, and the evaluation results regarding tearability, heat resistance, and openability. In addition, FIG. 28 shows the layer configuration of the packaging materials 30 of Examples A7 to A9, and the evaluation results regarding the piercing strength and the loop stiffness. 26 to 28, the components of the packaging material 30 are listed from the top in the order of the outer layer side in the “layer configuration” column. Further, in the “heat resistance” column, when holes and wrinkles were not formed in the packaging material 30, “great” was written, and wrinkles were formed in the packaging material 30, but no holes were formed. In this case, “good” was written, and when holes and wrinkles were formed in the packaging material 30, “bad” was written. In the “opening” column, when the front film 14 and the back film 15 are deformed so as to have a curved shape that is convex on the outer surface side, “good” is written. In addition to the plurality of curved portions that are convex on the outer surface side, a plurality of curved portions that are convex on the inner surface side are also indicated as “bad”.
 実施例A1~A9と比較例A1の比較から分かるように、包装材料30が高スティフネスポリエステルフィルムを含むことにより、包装材料30が高スティフネスポリエステルフィルムを含まない場合に比べて、包装材料30の突き刺し強度を14N以上に高めることができた。実施例A1、A3、及びA5~A9においては、包装材料30の突き刺し強度が16N以上であった。また、包装材料30が高スティフネスポリエステルフィルムに加えて直進カットポリアミドフィルムを含む実施例A2及びA4においては、包装材料30の突き刺し強度が18N以上であった。 As can be seen from the comparison between Examples A1 to A9 and Comparative Example A1, the packaging material 30 includes the high stiffness polyester film, so that the packaging material 30 is pierced compared to the case where the packaging material 30 does not include the high stiffness polyester film. The strength could be increased to 14N or higher. In Examples A1, A3, and A5 to A9, the piercing strength of the packaging material 30 was 16 N or more. Moreover, in Examples A2 and A4 in which the packaging material 30 includes a straight cut polyamide film in addition to the high stiffness polyester film, the puncture strength of the packaging material 30 was 18 N or more.
 また、実施例A1~A6と比較例A1の比較から分かるように、包装材料30が高スティフネスポリエステルフィルムを含み、シーラント層70がポリプロピレンを主成分として含むことにより、包装材料30が高スティフネスポリエステルフィルムを含まない場合に比べて、包装材料30のループスティフネスを、少なくとも一方向において、0.160N以上に、例えば0.170N以上や0.180N以上に高めることができた。また、包装材料30のループスティフネスを包装材料30の厚みで割った値を、少なくとも一方向において、0.00150N/μm以上に、例えば0.00160N/μm以上、0.00165N/μm以上や0.00170N/μm以上に高めることができた。これにより、包装材料30を備える袋10の開口性を高めることができた。 Further, as can be seen from the comparison between Examples A1 to A6 and Comparative Example A1, the packaging material 30 includes a high stiffness polyester film, and the sealant layer 70 includes polypropylene as a main component, so that the packaging material 30 has a high stiffness polyester film. The loop stiffness of the packaging material 30 could be increased to 0.160 N or higher, for example, 0.170 N or higher or 0.180 N or higher, in at least one direction, as compared with the case where the material was not included. In addition, the value obtained by dividing the loop stiffness of the packaging material 30 by the thickness of the packaging material 30 is 0.00150 N / μm or more, for example, 0.00160 N / μm or more, 0.00165 N / μm or more, or 0. It was possible to increase it to 190017 N / μm or more. Thereby, the opening property of the bag 10 provided with the packaging material 30 was able to be improved.
 また、実施例A1~A4と比較例A1の比較から分かるように、包装材料30が、直進カットポリエステルフィルムや直進カットポリアミドフィルムなどの、流れ方向(MD)における引き裂き性を有する直進カットフィルムを含むことにより、包装材料30を引き裂く際にシーラント層70が伸びてしまうことを抑制することができた。なお、引き裂き性に関して、実施例A3、A4においては、試験片100を長さV2の方向で全域にわたってスムーズに引き裂くことができたので、評価結果を「good」とした。また、実施例A1、A2においては、試験片100を長さV2の方向で全域にわたってスムーズに引き裂くことができ、且つ、試験片100を構成する2枚の包装材料30の、幅V1の方向における位置のずれ量が5mm以下であったので、評価結果を「great」とした。一方、比較例A1においては、途中で包装材料30のシーラント層70が伸びてしまい、このため、試験片100を長さV2の方向で全域にわたってスムーズに引き裂くことができなかったので、評価結果を「bad」とした。 Further, as can be seen from the comparison between Examples A1 to A4 and Comparative Example A1, the packaging material 30 includes a straight cut film having tearability in the flow direction (MD) such as a straight cut polyester film and a straight cut polyamide film. As a result, it was possible to prevent the sealant layer 70 from extending when the packaging material 30 was torn. Regarding the tearability, in Examples A3 and A4, the test piece 100 could be smoothly torn across the entire area in the direction of the length V2, and thus the evaluation result was “good”. In Examples A1 and A2, the test piece 100 can be smoothly torn across the entire region in the direction of the length V2, and the two packaging materials 30 constituting the test piece 100 in the direction of the width V1. Since the positional deviation amount was 5 mm or less, the evaluation result was set to “great”. On the other hand, in Comparative Example A1, the sealant layer 70 of the packaging material 30 stretches in the middle, and for this reason, the test piece 100 could not be smoothly torn across the entire area in the direction of the length V2, and thus the evaluation result was “Bad”.
 次に、第2の実施の形態において説明した、包装材料210がバリア性積層フィルム205を有する場合に関する実施例及び比較例について説明する。 Next, examples and comparative examples relating to the case where the packaging material 210 has the barrier laminate film 205 described in the second embodiment will be described.
[実施例B1]
 基材201として、0.0017N以上のループスティフネスを有し、石油由来のPETからなる高スティフネスPETフィルムを準備した。具体的には、高スティフネスPETフィルムとして、東レ株式会社製のXP-55を用いた。高スティフネスPETフィルムの厚みは16μmであった。また、高スティフネスPETフィルムのループスティフネスの測定値は、流れ方向及び垂直方向のいずれにおいても0.0021Nであった。また、流れ方向における高スティフネスPETフィルムの引張弾性率は4.8GPaであり、垂直方向における高スティフネスポリエステルフィルムの引張弾性率は4.7GPaであった。
 また、流れ方向における高スティフネスPETフィルムの引張強度は292MPaであり、垂直方向における高スティフネスポリエステルフィルムの引張強度は257MPaであった。また、流れ方向における高スティフネスPETフィルムの引張伸度は107%であり、垂直方向における高スティフネスポリエステルフィルムの引張伸度は102%であった。この場合、流れ方向における高スティフネスPETフィルムの引張強度を引張伸度で割った値は2.73〔MPa/%〕であり、垂直方向における高スティフネスPETフィルムの引張強度を引張伸度で割った値は2.52〔MPa/%〕である。
 また、流れ方向及び垂直方向における高スティフネスPETフィルムの熱収縮率はいずれも0.4%であった。
[Example B1]
As the base material 201, a high stiffness PET film having a loop stiffness of 0.0017 N or more and made of petroleum-derived PET was prepared. Specifically, XP-55 manufactured by Toray Industries, Inc. was used as a high stiffness PET film. The thickness of the high stiffness PET film was 16 μm. The measured value of the loop stiffness of the high stiffness PET film was 0.0021 N in both the flow direction and the vertical direction. Moreover, the tensile elasticity modulus of the high stiffness PET film in the flow direction was 4.8 GPa, and the tensile elasticity modulus of the high stiffness polyester film in the vertical direction was 4.7 GPa.
The tensile strength of the high stiffness PET film in the flow direction was 292 MPa, and the tensile strength of the high stiffness polyester film in the vertical direction was 257 MPa. Further, the tensile elongation of the high stiffness PET film in the flow direction was 107%, and the tensile elongation of the high stiffness polyester film in the vertical direction was 102%. In this case, the value obtained by dividing the tensile strength of the high stiffness PET film in the flow direction by the tensile elongation is 2.73 [MPa /%], and the tensile strength of the high stiffness PET film in the vertical direction is divided by the tensile elongation. The value is 2.52 [MPa /%].
In addition, the thermal shrinkage rate of the high stiffness PET film in the flow direction and the vertical direction was both 0.4%.
 続いて、高スティフネスPETフィルムの突き刺し強度を、JIS Z1707 7.4に準拠して測定した。測定器としては、A&D製のテンシロン万能材料試験機RTC-1310を用いた。具体的には、固定されている状態の高スティフネスPETフィルムの試験片に対して、外面30y側から、直径1.0mm、先端形状半径0.5mmの半円形の針を、50mm/分(1分あたり50mm)の速度で突き刺し、針が高スティフネスPETフィルムを貫通するまでの応力の最大値を測定した。5個以上の試験片について、応力の最大値を測定し、その平均値を高スティフネスPETフィルムの突き刺し強度とした。測定時の環境は、温度23℃、相対湿度50%とした。結果、突き刺し強度は10.2Nであった。 Subsequently, the puncture strength of the high stiffness PET film was measured according to JIS Z1707 7.4. As a measuring instrument, Tensilon universal material testing machine RTC-1310 manufactured by A & D was used. Specifically, a semi-circular needle having a diameter of 1.0 mm and a tip shape radius of 0.5 mm is applied to the test piece of the high stiffness PET film in a fixed state from the outer surface 30y side at 50 mm / min (1 The maximum value of the stress until the needle penetrated the high stiffness PET film was measured at a speed of 50 mm per minute). About five or more test pieces, the maximum value of stress was measured, and the average value was defined as the piercing strength of the high stiffness PET film. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the piercing strength was 10.2N.
[実施例B2]
 基材201として、上述の第2の実施の形態の第1の構成で説明した、複数の層を含み、キャスト法で作製されたPBTフィルムを準備した。各層におけるPBTの含有率は80%であり、層の数は1024であり、PBTフィルムの厚みは15μmであった。また、流れ方向におけるPBTフィルムの引張強度は191MPaであり、垂直方向におけるPBTフィルムの引張強度は289MPaであった。また、流れ方向におけるPBTフィルムの引張伸度は195%であり、垂直方向におけるPBTフィルムの引張伸度は100%であった。この場合、流れ方向におけるPBTフィルムの引張強度を引張伸度で割った値は0.98〔MPa/%〕であり、垂直方向におけるPBTフィルムの引張強度を引張伸度で割った値は2.89〔MPa/%〕である。
 また、流れ方向及び垂直方向におけるPBTフィルムの熱収縮率はいずれも0.4%であった。
[Example B2]
As the substrate 201, a PBT film including a plurality of layers described in the first configuration of the above-described second embodiment and manufactured by a casting method was prepared. The PBT content in each layer was 80%, the number of layers was 1024, and the thickness of the PBT film was 15 μm. Moreover, the tensile strength of the PBT film in the flow direction was 191 MPa, and the tensile strength of the PBT film in the vertical direction was 289 MPa. Further, the tensile elongation of the PBT film in the flow direction was 195%, and the tensile elongation of the PBT film in the vertical direction was 100%. In this case, the value obtained by dividing the tensile strength of the PBT film in the flow direction by the tensile elongation is 0.98 [MPa /%], and the value obtained by dividing the tensile strength of the PBT film in the vertical direction by the tensile elongation is 2. 89 [MPa /%].
Further, the thermal shrinkage rate of the PBT film in the flow direction and the vertical direction was both 0.4%.
[実施例C1]
 まず、基材201上に蒸着層202を形成し、蒸着層202上にガスバリア性塗布膜203を形成してバリア性積層フィルム205を作製した。続いて、バリア性積層フィルム205を備える包装材料210を作製した。
[Example C1]
First, the vapor deposition layer 202 was formed on the base material 201, the gas barrier coating film 203 was formed on the vapor deposition layer 202, and the barrier property laminated film 205 was produced. Then, the packaging material 210 provided with the barriering laminated film 205 was produced.
 はじめに、バリア性積層フィルム205の作製について説明する。まず、基材201として、上述の実施例B1で用いた、厚さ16μmの高スティフネスPETフィルムを巻き取ったロールを準備した。続いて、図23に示す上述の成膜装置260を用いて、基材201に酸素プラズマ処理を施した後、酸素プラズマ処理面上に、酸化アルミニウムを含む厚さ12nmの蒸着層202を形成した。以下、酸素プラズマ処理及び成膜処理について詳細に説明する。 First, production of the barrier laminate film 205 will be described. First, the roll which wound up the 16-micrometer-thick high stiffness PET film used by the above-mentioned Example B1 as the base material 201 was prepared. Subsequently, the substrate 201 was subjected to oxygen plasma treatment using the above-described film forming apparatus 260 shown in FIG. 23, and then a vapor deposition layer 202 having a thickness of 12 nm containing aluminum oxide was formed on the oxygen plasma treatment surface. . Hereinafter, the oxygen plasma process and the film forming process will be described in detail.
 酸素プラズマ処理においては、基材201のうち蒸着層202が設けられる面に、プラズマ前処理室262Bにおいて下記条件下でプラズマ供給ノズル272からプラズマを導入し、搬送速度400m/minで搬送される基材201にプラズマ前処理を施した。これにより、基材201のうち蒸着層202が設けられる面に酸素プラズマ処理面を形成した。
〔酸素プラズマ前処理条件〕
・プラズマ強度:200W・sec/m2
・プラズマ形成ガス比:酸素/アルゴン=2/1
・前処理ドラム-プラズマ供給ノズル間印加電圧:340V
・前処理区画の真空度:3.8Pa
In the oxygen plasma processing, plasma is introduced from the plasma supply nozzle 272 under the following conditions in the plasma pretreatment chamber 262B on the surface of the base material 201 where the vapor deposition layer 202 is provided, and is transported at a transport speed of 400 m / min. The material 201 was subjected to plasma pretreatment. Thereby, the oxygen plasma processing surface was formed in the surface in which the vapor deposition layer 202 was provided among the base materials 201. FIG.
[Oxygen plasma pretreatment conditions]
・ Plasma intensity: 200 W · sec / m 2
・ Plasma forming gas ratio: Oxygen / Argon = 2/1
・ Applied voltage between pretreatment drum and plasma supply nozzle: 340V
-Vacuum degree of pretreatment section: 3.8 Pa
 成膜処理においては、プラズマ前処理室262Bから連続的に搬送された基材201が搬入される成膜室262Cにおいて、アルミニウムをターゲットとして用いて、基材201の酸素プラズマ処理面上に、厚さ12nmの酸化アルミニウムを含む蒸着層202を真空蒸着法により基材201上に形成した。真空蒸着法の加熱手段としては、反応性抵抗加熱方式を採用した。成膜条件は下記の通りである。
〔酸化アルミニウム成膜条件〕
・真空度:8.1×10-2Pa
・搬送速度:400m/min
・酸素ガス供給量:20000sccm
In the film formation process, in the film formation chamber 262C into which the base material 201 continuously transferred from the plasma pretreatment chamber 262B is carried, aluminum is used as a target on the oxygen plasma processing surface of the base material 201. A vapor deposition layer 202 containing aluminum oxide having a thickness of 12 nm was formed on the substrate 201 by a vacuum vapor deposition method. As a heating means of the vacuum deposition method, a reactive resistance heating method was adopted. The film forming conditions are as follows.
[Aluminum oxide deposition conditions]
・ Degree of vacuum: 8.1 × 10 −2 Pa
・ Conveying speed: 400m / min
・ Oxygen gas supply amount: 20000 sccm
 続いて、蒸着層202上にガスバリア性塗布膜203を形成した。具体的には、まず、水385g、イソプロピルアルコール67g及び0.5N塩酸9.1gを混合し、pH2.2に調整した溶液に、金属アルコキシドとしてテトラエトキシシラン175gと、シランカップリング剤としてグリシドキシプロピルトリメトキシシラン9.2gを10℃となるよう冷却しながら混合させて溶液Aを調製した。
 水溶性高分子として、ケン価度99%以上の重合度2400のポリビニルアルコール14.7g、水324g、イソプロピルアルコール17gを混合した溶液Bを調製した。
 続いて、A液とB液を重量比6.5:3.5となるよう混合した。このようにして得られた溶液を、ガスバリア性塗布膜用コート剤とした。
Subsequently, a gas barrier coating film 203 was formed on the vapor deposition layer 202. Specifically, first, 385 g of water, 67 g of isopropyl alcohol, and 9.1 g of 0.5N hydrochloric acid were mixed and adjusted to pH 2.2, and then 175 g of tetraethoxysilane as a metal alkoxide and glycid as a silane coupling agent. A solution A was prepared by mixing 9.2 g of xylpropyltrimethoxysilane while cooling to 10 ° C.
As a water-soluble polymer, a solution B was prepared by mixing 14.7 g of polyvinyl alcohol having a degree of polymerization of 2400 with a ken number of 99% or more, 324 g of water, and 17 g of isopropyl alcohol.
Then, A liquid and B liquid were mixed so that it might become a weight ratio 6.5: 3.5. The solution thus obtained was used as a coating agent for a gas barrier coating film.
 上記の蒸着層202上に、上記で調製したガスバリア性塗布膜用コート剤をスピンコート法によりコーティングした。その後、180℃で60秒間、オーブンにて加熱処理して、厚さ約400nmのガスバリア性塗布膜203を蒸着層202上に形成した。このようにして、基材201、蒸着層202及びガスバリア性塗布膜203を有するバリア性積層フィルム205を得た。 The gas barrier coating film coating agent prepared above was coated on the vapor deposition layer 202 by a spin coating method. Thereafter, heat treatment was performed in an oven at 180 ° C. for 60 seconds to form a gas barrier coating film 203 having a thickness of about 400 nm on the vapor deposition layer 202. In this way, a barrier laminate film 205 having a base material 201, a vapor deposition layer 202, and a gas barrier coating film 203 was obtained.
(変成率)
 真空引きされた環境下で、バリア性積層フィルム205のガスバリア性塗布膜203の表面にCs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、ガスバリア性塗布膜203に由来するイオンと、蒸着層202に由来するイオンと、基材201に由来するイオンを測定した。例えば、基材201の樹脂フィルム由来のC(質量数72.00)、蒸着層202の酸化アルミニウム蒸着膜由来のAlH(質量数118.93)イオンの質量分析を行った。
(Transformation rate)
In a vacuumed environment, time-of-flight secondary ion mass spectrometry (TOF) is performed while repeatedly performing soft etching on the surface of the gas barrier coating film 203 of the barrier laminate film 205 with a Cs (cesium) ion gun at a constant rate. -SIMS), ions derived from the gas barrier coating film 203, ions derived from the vapor deposition layer 202, and ions derived from the substrate 201 were measured. For example, C 6 (mass number 72.00) derived from the resin film of the substrate 201, Al 2 O 4 H (mass number 118.93) from aluminum oxide deposited film of the deposited layer 202 was subjected to mass analysis of ions.
 TOF-SIMSに用いられる飛行時間型二次イオン質量分析計としてはION TOF社製、TOF.SIMS5を用い、下記測定条件で測定を行なった。これによって、図22に示すようなグラフを得た。
(TOFSIMS測定条件)
・一次イオン種類:Bi3++(0.2pA,100μs)
・測定面積:150×150μm2
・エッチング銃種類:Cs(1keV、60nA)
・エッチング面積:600×600μm2
・エッチングEtレート:3sec/Cycle
・真空引き時間:1×10-6mbar以下で15時間以上
 飛行時間型二次イオン質量分析計を用いた測定は、真空引きを開始した後、30時間以内に実施した。
A time-of-flight secondary ion mass spectrometer used for TOF-SIMS is manufactured by ION TOF, TOF. The measurement was performed under the following measurement conditions using SIMS5. As a result, a graph as shown in FIG. 22 was obtained.
(TOFSIMS measurement conditions)
Primary ion type: Bi 3 ++ (0.2 pA, 100 μs)
Measurement area: 150 × 150 μm 2
Etching gun type: Cs (1 keV, 60 nA)
Etching area: 600 × 600 μm 2
Etching Et rate: 3 sec / Cycle
Vacuuming time: 15 hours or longer at 1 × 10 −6 mbar or less Measurement using a time-of-flight secondary ion mass spectrometer was performed within 30 hours after the start of vacuuming.
 グラフにおいて、ガスバリア性塗布膜203の構成元素であるSiO2(質量数59.96)の強度が、ガスバリア性塗布膜203における強度の半分になる位置を、ガスバリア性塗布膜203と蒸着層202の界面として特定した。また、基材201の構成材料であるC6(質量数72.00)の強度が、基材201における強度の半分になる位置を、基材201と蒸着層202の界面として特定した。また、2つの界面の間の、厚み方向における距離を、蒸着層202の厚みとして採用した。 In the graph, the positions at which the strength of SiO 2 (mass number 59.96), which is a constituent element of the gas barrier coating film 203, is half the strength of the gas barrier coating film 203 are determined between the gas barrier coating film 203 and the vapor deposition layer 202. Identified as an interface. In addition, the position where the strength of C 6 (mass number 72.00), which is a constituent material of the base material 201, becomes half the strength of the base material 201 was specified as the interface between the base material 201 and the vapor deposition layer 202. Moreover, the distance in the thickness direction between the two interfaces was adopted as the thickness of the vapor deposition layer 202.
 次に、測定された元素結合Al24H(質量数118.93)を表すピークを求め、そのピークから界面までを遷移領域とした。ただし、ガスバリア性塗布膜203の成分がAl24H(質量数118.93)と同じ質量数の材料で構成される場合、118.93の波形を分離する必要がある。 Next, a peak representing the measured element-bound Al 2 O 4 H (mass number 118.93) was determined, and the transition from the peak to the interface was taken as the transition region. However, when the component of the gas barrier coating film 203 is made of a material having the same mass number as Al 2 O 4 H (mass number 118.93), it is necessary to separate the waveform of 118.93.
 ガスバリア性塗布膜203と蒸着層202の界面に、反応物AlSiO4と、水酸化物Al24Hとが生じる場合、それらと、基材201と蒸着層202の間の界面に存在するAl24Hを分離することができる。このように、波形の分離については、ガスバリア性塗布膜203の材料に応じて適宜対応することができる。 When reactants AlSiO 4 and hydroxide Al 2 O 4 H are generated at the interface between the gas barrier coating film 203 and the vapor deposition layer 202, Al and the Al present at the interface between the substrate 201 and the vapor deposition layer 202 are present. 2 O 4 H can be separated. As described above, the waveform separation can be appropriately handled according to the material of the gas barrier coating film 203.
 波形分離においては、例えば、TOF-SIMSで得られた、質量数118.93のプロファイルを、Gaussian関数を用いて非線形のカーブフィッティングを行い最小二乗法Levenberg Marquardt アルゴリズムを使用して重複ピークの分離を行ってもよい。 In waveform separation, for example, a profile with a mass number of 118.93 obtained by TOF-SIMS is subjected to nonlinear curve fitting using a Gaussian function, and overlapping peaks are separated using a least square method Levenberg Marquardt algorithm. You may go.
 実施例C1のバリア性積層フィルム205から2つのサンプルを準備し、2つのサンプルのそれぞれについて、蒸着層202の変成率を、(遷移領域の厚みW1/蒸着層202の厚み)×100(%)として算出した。結果、第1のサンプルにおける変成率は36.2%であり、第2のサンプルにおける変成率は28.8%であった。 Two samples were prepared from the barrier laminate film 205 of Example C1, and for each of the two samples, the conversion rate of the vapor deposition layer 202 was expressed as (transition region thickness W 1 / vapor deposition layer 202 thickness) × 100 (% ). As a result, the modification rate in the first sample was 36.2%, and the modification rate in the second sample was 28.8%.
 次に、バリア性積層フィルム205を備える包装材料210の作製について説明する。まず、バリア性積層フィルム205のガスバリア性塗布膜203上に1μmの厚みの印刷層218を形成した。また、バリア性積層フィルム205を含むフィルムと延伸プラスチックフィルム214とを、3.5μmの厚みの接着剤層からなる第1接着層213を介してドライラミネート法によって貼り合わせた。延伸プラスチックフィルム214としては、化石燃料由来の二軸延伸されたPETフィルム(厚さ12μm)を用いた。続いて、延伸プラスチックフィルム214とシーラント層212を構成するフィルムとを、3.5μmの厚みの接着剤層からなる第2接着層215を介してドライラミネート法によって貼り合わせた。シーラント層212のフィルムとしては、未延伸ポリプロピレンフィルム(厚さ60μm)を用いた。未延伸ポリプロピレンフィルムとしては、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK207を用いた。このようにして、図18に示す層構成を有する包装材料210を作製した。包装材料210全体の厚みは96μmであった。 Next, production of the packaging material 210 including the barrier laminate film 205 will be described. First, a printing layer 218 having a thickness of 1 μm was formed on the gas barrier coating film 203 of the barrier laminate film 205. In addition, the film including the barrier laminate film 205 and the stretched plastic film 214 were bonded together by a dry laminating method through a first adhesive layer 213 made of an adhesive layer having a thickness of 3.5 μm. As the stretched plastic film 214, a biaxially stretched PET film (thickness 12 μm) derived from fossil fuel was used. Subsequently, the stretched plastic film 214 and the film constituting the sealant layer 212 were bonded together by a dry laminating method through a second adhesive layer 215 made of an adhesive layer having a thickness of 3.5 μm. As the film of the sealant layer 212, an unstretched polypropylene film (thickness 60 μm) was used. As the unstretched polypropylene film, unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. was used. In this way, a packaging material 210 having the layer configuration shown in FIG. 18 was produced. The total thickness of the packaging material 210 was 96 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 高PET16/透明蒸着/バリア/印/接/PET12/接/CPP60
 「高PET」は、高スティフネスPETフィルムを意味する。「透明蒸着」は、酸化アルミニウムを含む透明蒸着層を意味する。「バリア」は、ガスバリア性塗布膜を意味する。「印」は、印刷層を意味する。「接」は、接着剤層を意味する。「PET」は、延伸されたPETフィルムを意味する。「CPP」は、未延伸ポリプロピレンフィルムを意味する。数字は、層の厚み(単位はμm)を意味する。
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
High PET16 / transparent deposition / barrier / mark / contact / PET12 / contact / CPP60
“High PET” means high stiffness PET film. “Transparent deposition” means a transparent deposition layer containing aluminum oxide. “Barrier” means a gas barrier coating film. “Mark” means a printed layer. “Contact” means an adhesive layer. “PET” means stretched PET film. “CPP” means an unstretched polypropylene film. The number means the thickness of the layer (unit: μm).
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は16.9Nであり、流れ方向におけるループスティフネスは0.167Nであり、垂直方向におけるループスティフネスは0.142Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00174N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00148N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 16.9 N, the loop stiffness in the flow direction was 0.167 N, and the loop stiffness in the vertical direction was 0.142 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00174 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00148 N. / Μm.
 また、以下に説明するように、実施例C1の包装材料210にレトルト処理を施した後、酸素透過度の測定、及び水蒸気透過度の測定を行った。 Further, as described below, after the retort treatment was applied to the packaging material 210 of Example C1, the oxygen permeability and the water vapor permeability were measured.
(酸素透過度)
 包装材料210を用いて、四方シールパウチを作製した。続いて、四方シールパウチの上部の開口部から四方シールパウチの内部に水100mLを注入した後、上部にシール部を形成して四方シールパウチを封止した。続いて、四方シールパウチに対して、121℃、40分間、2気圧のレトルト処理を施した。
 続いて、レトルト処理が施された後の四方シールパウチの片面を構成している包装材料210を切り出して、レトルト処理後の酸素透過度を評価するためのサンプルを作製した。
(Oxygen permeability)
A four-sided seal pouch was prepared using the packaging material 210. Subsequently, 100 mL of water was injected into the inside of the four-way seal pouch from the opening at the top of the four-way seal pouch, and then a seal portion was formed on the upper portion to seal the four-way seal pouch. Subsequently, the four-side seal pouch was subjected to a retort treatment at 121 ° C. for 40 minutes and 2 atmospheres.
Then, the packaging material 210 which comprises the single side | surface of the four-sided seal pouch after the retort process was cut out, and the sample for evaluating the oxygen permeability after a retort process was produced.
 続いて、レトルト処理後のサンプルを、包装材料210の外面210y側が酸素供給側となるようにセットして、23℃、100%RH雰囲気下の測定条件で、JIS K 7126 B法に準拠して酸素透過度を測定した。測定器としては、酸素透過度測定装置(モダンコントロール(MOCON)社製〔機種名:オクストラン(OX-TRAN)2/21〕)を用いた。結果、レトルト処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であった。 Subsequently, the sample after the retort treatment is set so that the outer surface 210y side of the packaging material 210 is the oxygen supply side, and in accordance with JIS K 7126 B method under measurement conditions in an atmosphere of 23 ° C. and 100% RH. The oxygen permeability was measured. As a measuring device, an oxygen permeability measuring device (manufactured by Modern Control (MOCON) [model name: OX-TRAN 2/21]) was used. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm .
(水蒸気透過度)
 酸素透過度の測定の場合と同一のサンプルを用いて、水蒸気透過度の測定を行った。具体的には、各サンプルを、包装材料210の外面210y側がセンサー側となるようにセットして、37.8℃、100%RH雰囲気下の測定条件で、JIS K 7126 B法に準拠して水蒸気透過度を測定した。測定器としては、水蒸気透過度測定装置(モコン(MOCON)社製の測定機〔機種名、パーマトラン(PERMATRAN)3/33〕)を用いた。結果、レトルト処理後のサンプルの水蒸気透過度は2.0g/m2/24hr未満であった。
(Water vapor permeability)
The water vapor permeability was measured using the same sample as that used for measuring the oxygen permeability. Specifically, each sample is set so that the outer surface 210y side of the packaging material 210 is the sensor side, and in accordance with JIS K 7126 B method under measurement conditions in an atmosphere of 37.8 ° C. and 100% RH. The water vapor transmission rate was measured. As a measuring device, a water vapor permeability measuring device (a measuring machine manufactured by MOCON [model name, PERMATRAN 3/33]) was used. Result, the water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、レトルト処理が施されるパウチを構成するために使用され得る。 The packaging material 210 of the present embodiment can be used, for example, to configure a pouch that is subjected to retort processing.
[実施例C2]
 実施例C1の場合と同様にして、バリア性積層フィルム205を作製した。続いて、延伸プラスチックフィルム214として、二軸延伸されたナイロンフィルム(厚さ15μm)を用いたこと以外は、実施例C1の場合と同様にして、図17に示す層構成を有する包装材料210を作製した。包装材料210全体の厚みは99μmであった。
[Example C2]
In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, a packaging material 210 having the layer configuration shown in FIG. 17 was obtained in the same manner as in Example C1, except that a biaxially stretched nylon film (thickness: 15 μm) was used as the stretched plastic film 214. Produced. The total thickness of the packaging material 210 was 99 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 高PET16/透明蒸着/バリア/印/接/ナイロン15/接/CPP60
 「ナイロン」は、延伸されたナイロンフィルムを意味する。
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
High PET16 / transparent deposition / barrier / mark / contact / nylon 15 / contact / CPP60
“Nylon” means a stretched nylon film.
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は18.1Nであり、流れ方向におけるループスティフネスは0.151Nであり、垂直方向におけるループスティフネスは0.134Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00153N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00135N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 18.1 N, the loop stiffness in the flow direction was 0.151 N, and the loop stiffness in the vertical direction was 0.134 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00153 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00135 N. / Μm.
 続いて、実施例C1の場合と同様にして、実施例C2の包装材料210にレトルト処理を施した後、酸素透過度の測定、及び水蒸気透過度の測定を行った。結果、レトルト処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であった。また、レトルト処理後のサンプルの水蒸気透過度は2.0g/m2/24hr未満であった。 Subsequently, in the same manner as in Example C1, the packaging material 210 of Example C2 was subjected to a retort treatment, and then the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、レトルト処理が施されるパウチを構成するために使用され得る。 The packaging material 210 of the present embodiment can be used, for example, to configure a pouch that is subjected to retort processing.
[実施例C3]
 実施例C1の場合と同様にして、バリア性積層フィルム205を作製した。また、延伸プラスチックフィルム214を準備し、延伸プラスチックフィルム214上に1μmの厚みの印刷層218を形成した。延伸プラスチックフィルム214としては、化石燃料由来の延伸されたPETフィルム(厚さ12μm)を用いた。続いて、印刷層218が設けられた延伸プラスチックフィルム214とバリア性積層フィルム205とを、3.5μmの厚みの接着剤層からなる第1接着層213を介してドライラミネート法によって貼り合わせた。続いて、バリア性積層フィルム205の基材201とシーラント層212を構成するフィルムとを、3.5μmの厚みの接着剤層からなる第2接着層215を介してドライラミネート法によって貼り合わせた。シーラント層212のフィルムとしては、未延伸ポリプロピレンフィルム(厚さ60μm)を用いた。未延伸ポリプロピレンフィルムとしては、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK207を用いた。このようにして、図19に示す層構成を有する包装材料210を作製した。包装材料210全体の厚みは96μmであった。
[Example C3]
In the same manner as in Example C1, a barrier laminate film 205 was produced. In addition, a stretched plastic film 214 was prepared, and a printed layer 218 having a thickness of 1 μm was formed on the stretched plastic film 214. As the stretched plastic film 214, a stretched PET film (thickness 12 μm) derived from fossil fuel was used. Subsequently, the stretched plastic film 214 provided with the printing layer 218 and the barrier laminate film 205 were bonded together by a dry laminating method through a first adhesive layer 213 made of an adhesive layer having a thickness of 3.5 μm. Subsequently, the base material 201 of the barrier laminate film 205 and the film constituting the sealant layer 212 were bonded together by a dry laminating method through a second adhesive layer 215 made of an adhesive layer having a thickness of 3.5 μm. As the film of the sealant layer 212, an unstretched polypropylene film (thickness 60 μm) was used. As the unstretched polypropylene film, unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. was used. In this way, a packaging material 210 having the layer configuration shown in FIG. 19 was produced. The total thickness of the packaging material 210 was 96 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 PET12/印/接/バリア/透明蒸着/高PET16/接/CPP60
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
PET12 / mark / contact / barrier / transparent deposition / high PET16 / contact / CPP60
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は17.2Nであり、流れ方向におけるループスティフネスは0.165Nであり、垂直方向におけるループスティフネスは0.141Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00172N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00147N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 17.2 N, the loop stiffness in the flow direction was 0.165 N, and the loop stiffness in the vertical direction was 0.141 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00172 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00147 N. / Μm.
 続いて、実施例C1の場合と同様にして、実施例C2の包装材料210にレトルト処理を施した後、酸素透過度の測定、及び水蒸気透過度の測定を行った。結果、レトルト処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であった。また、レトルト処理後のサンプルの水蒸気透過度は2.0g/m2/24hr未満であった。 Subsequently, in the same manner as in Example C1, the packaging material 210 of Example C2 was subjected to a retort treatment, and then the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、レトルト処理が施されるパウチを構成するために使用され得る。 The packaging material 210 of the present embodiment can be used, for example, to configure a pouch that is subjected to retort processing.
[実施例C4]
 実施例C1の場合と同様にして、バリア性積層フィルム205を作製した。続いて、シーラント層212のフィルムとして、低密度ポリエチレンと直鎖状低密度ポリエチレンの混合樹脂からなるシーラント層(厚さ50μm)を用いたこと以外は、実施例C1の場合と同様にして、図18に示す層構成を有する包装材料210を作製した。包装材料210全体の厚みは86μmであった。
[Example C4]
In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C1, except that a sealant layer (thickness 50 μm) made of a mixed resin of low-density polyethylene and linear low-density polyethylene was used as the film of the sealant layer 212, FIG. A packaging material 210 having a layer configuration shown in FIG. The total thickness of the packaging material 210 was 86 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 高PET16/透明蒸着/バリア/印/接/PET12/接/ブレンドPE50
 「ブレンドPE」は、低密度ポリエチレンと直鎖状低密度ポリエチレンの混合樹脂からなるシーラント層を意味する。
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
High PET16 / transparent deposition / barrier / mark / contact / PET12 / contact / blend PE50
“Blend PE” means a sealant layer made of a mixed resin of low density polyethylene and linear low density polyethylene.
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は16.5Nであり、流れ方向におけるループスティフネスは0.111Nであり、垂直方向におけるループスティフネスは0.121Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00129N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00141N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 16.5N, the loop stiffness in the flow direction was 0.111N, and the loop stiffness in the vertical direction was 0.121N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00129 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00141 N. / Μm.
 また、以下に説明するように、実施例C4の包装材料210にボイル処理を施した後、酸素透過度の測定、及び水蒸気透過度の測定を行った。 Also, as described below, after the boil treatment was applied to the packaging material 210 of Example C4, the oxygen permeability and the water vapor permeability were measured.
(酸素透過度)
 包装材料210を用いて、四方シールパウチを作製した。続いて、四方シールパウチの上部の開口部から四方シールパウチの内部に水100mLを注入した後、上部にシール部を形成して四方シールパウチを封止した。続いて、四方シールパウチに対して、95℃、60分間のボイル処理を施した。
 続いて、ボイル処理が施された後の四方シールパウチの片面を構成している包装材料210を切り出して、ボイル処理後の酸素透過度を評価するためのサンプルを作製した。続いて、実施例C1の場合と同様にして、ボイル処理後のサンプルの酸素透過度を測定した。結果、酸素透過度は1.5cc/m2/24hr/atm未満であった。
(Oxygen permeability)
A four-sided seal pouch was prepared using the packaging material 210. Subsequently, 100 mL of water was injected into the inside of the four-way seal pouch from the opening at the top of the four-way seal pouch, and then a seal portion was formed on the upper portion to seal the four-way seal pouch. Subsequently, the four-side seal pouch was boiled at 95 ° C. for 60 minutes.
Subsequently, the packaging material 210 constituting one side of the four-sided seal pouch after the boil treatment was cut out, and a sample for evaluating the oxygen permeability after the boil treatment was produced. Subsequently, the oxygen permeability of the sample after the boil treatment was measured in the same manner as in Example C1. Result, the oxygen permeability was less than 1.5cc / m 2 / 24hr / atm .
(水蒸気透過度)
 酸素透過度の測定の場合と同一のサンプルを用いて、実施例C1の場合と同様にして、ボイル処理後のサンプルの水蒸気透過度を測定した。結果、水蒸気透過度は2.0g/m2/24hr未満であった。
(Water vapor permeability)
Using the same sample as in the measurement of oxygen permeability, the water vapor permeability of the sample after the boil treatment was measured in the same manner as in Example C1. Result, water vapor permeability was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、ボイル処理が施されるパウチを構成するために使用され得る。 The packaging material 210 of the present embodiment can be used to configure a pouch that is subjected to boil processing, for example.
[実施例C5]
 実施例C1の場合と同様にして、バリア性積層フィルム205を作製した。続いて、シーラント層212のフィルムとして、低密度ポリエチレンと直鎖状低密度ポリエチレンの混合樹脂からなるシーラント層(厚さ50μm)を用いたこと以外は、実施例C2の場合と同様にして、図18に示す層構成を有する包装材料210を作製した。包装材料210全体の厚みは89μmであった。
[Example C5]
In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C2, except that a sealant layer (thickness 50 μm) made of a mixed resin of low density polyethylene and linear low density polyethylene was used as the film of the sealant layer 212, A packaging material 210 having a layer configuration shown in FIG. The total thickness of the packaging material 210 was 89 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 高PET16/透明蒸着/バリア/印/接/ナイロン15/接/ブレンドPE50
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
High PET16 / transparent deposition / barrier / mark / contact / nylon 15 / contact / blend PE50
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は17.4Nであり、流れ方向におけるループスティフネスは0.101Nであり、垂直方向におけるループスティフネスは0.109Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00113N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00122N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 17.4N, the loop stiffness in the flow direction was 0.101N, and the loop stiffness in the vertical direction was 0.109N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00113 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00122 N. / Μm.
 続いて、実施例C4の場合と同様にして、実施例C5の包装材料210にボイル処理を施した後、酸素透過度の測定、及び水蒸気透過度の測定を行った。結果、ボイル処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であった。また、ボイル処理後のサンプルの水蒸気透過度は2.0g/m2/24hr未満であった。 Subsequently, in the same manner as in Example C4, the packaging material 210 of Example C5 was boiled, and then the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after boiling treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after boiling treatment was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、ボイル処理が施されるパウチを構成するために使用され得る。 The packaging material 210 of the present embodiment can be used to configure a pouch that is subjected to boil processing, for example.
[実施例C6]
 実施例C1の場合と同様にして、バリア性積層フィルム205を作製した。続いて、シーラント層212のフィルムとして、低密度ポリエチレンと直鎖状低密度ポリエチレンの混合樹脂からなるシーラント層(厚さ50μm)を用いたこと以外は、実施例C3の場合と同様にして、図19に示す層構成を有する包装材料210を作製した。包装材料210全体の厚みは86μmであった。
[Example C6]
In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C3, except that a sealant layer (thickness 50 μm) made of a mixed resin of low-density polyethylene and linear low-density polyethylene was used as the film of the sealant layer 212, FIG. A packaging material 210 having a layer configuration shown in FIG. The total thickness of the packaging material 210 was 86 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 PET12/印/接/バリア/透明蒸着/高PET16/接/ブレンドPE50
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
PET12 / mark / contact / barrier / transparent deposition / high PET16 / contact / blend PE50
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は16.4Nであり、流れ方向におけるループスティフネスは0.114Nであり、垂直方向におけるループスティフネスは0.123Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00133N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00143N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 16.4N, the loop stiffness in the flow direction was 0.114N, and the loop stiffness in the vertical direction was 0.123N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00133 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00143 N. / Μm.
 続いて、実施例C4の場合と同様にして、実施例C6の包装材料210にボイル処理を施した後、酸素透過度の測定、及び水蒸気透過度の測定を行った。結果、ボイル処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であった。また、ボイル処理後のサンプルの水蒸気透過度は2.0g/m2/24hr未満であった。 Subsequently, in the same manner as in Example C4, the packaging material 210 of Example C6 was boiled, and then the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after boiling treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after boiling treatment was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、ボイル処理が施されるパウチを構成するために使用され得る。 The packaging material 210 of the present embodiment can be used to configure a pouch that is subjected to boil processing, for example.
[実施例C7]
 実施例C1の場合と同様にして、バリア性積層フィルム205を作製した。続いて、シーラント層212のフィルムとして、図21に示す第1層2121及び第2層2122を含み、共押し出しによって形成された、イージーピール性を備えるシーラント層(厚さ50μm)を用いたこと以外は、実施例C1の場合と同様にして、図18に示す層構成を有する包装材料210を作製した。第1層2121は、高密度ポリエチレンとポリプロピレンの混合樹脂からなる厚さ5μmの層である。第2層2122は、高密度ポリエチレンからなる厚さ45μmの層である。包装材料210全体の厚みは86μmであった。
[Example C7]
In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as a film of the sealant layer 212, the sealant layer including the first layer 2121 and the second layer 2122 shown in FIG. 21 and formed by coextrusion and having an easy peel property (thickness 50 μm) is used. Produced a packaging material 210 having the layer structure shown in FIG. 18 in the same manner as in Example C1. The first layer 2121 is a layer having a thickness of 5 μm made of a mixed resin of high-density polyethylene and polypropylene. The second layer 2122 is a layer made of high-density polyethylene and having a thickness of 45 μm. The total thickness of the packaging material 210 was 86 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 高PET16/透明蒸着/バリア/印/接/PET12/接/イージーピール50
 「イージーピール」は、ポリエチレンとポリプロピレンの混合樹脂からなる層を含み、イージーピール性を備えるシーラント層を意味する。
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
High PET16 / Transparent Deposition / Barrier / Mark / Contact / PET12 / Contact / Easy Peel 50
“Easy peel” means a sealant layer including a layer made of a mixed resin of polyethylene and polypropylene and having easy peel properties.
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は16.2Nであり、流れ方向におけるループスティフネスは0.112Nであり、垂直方向におけるループスティフネスは0.115Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00130N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00134N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 16.2N, the loop stiffness in the flow direction was 0.112N, and the loop stiffness in the vertical direction was 0.115N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00130 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00134 N. / Μm.
 続いて、実施例C1の場合と同様に、包装材料210を用いて作製した四方シールパウチにレトルト処理を施した後、四方シールパウチから切り出したサンプルを用いて酸素透過度の測定、及び水蒸気透過度の測定を行った。結果、レトルト処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であった。また、レトルト処理後のサンプルの水蒸気透過度は2.0g/m2/24hr未満であった。 Subsequently, as in Example C1, after the retort treatment was performed on the four-sided seal pouch produced using the packaging material 210, the oxygen permeability was measured using the sample cut out from the four-way seal pouch, and the water vapor transmission rate. The degree of measurement was taken. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、レトルト処理が施される蓋付容器の蓋材を構成するために使用され得る。蓋付容器の容器本体は、例えばポリプロピレンで構成され得る。 The packaging material 210 of the present embodiment can be used, for example, to constitute a lid material for a container with a lid that is subjected to a retort process. The container body of the lidded container can be made of, for example, polypropylene.
[実施例C8]
 実施例C1の場合と同様にして、バリア性積層フィルム205を作製した。続いて、シーラント層212のフィルムとして、実施例C7の場合と同様にイージーピール性を備えるシーラント層(厚さ50μm)を用いたこと以外は、実施例C2の場合と同様にして、図18に示す層構成を有する包装材料210を作製した。包装材料210全体の厚みは89μmであった。
[Example C8]
In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C2, except that a sealant layer (thickness 50 μm) having an easy peel property was used as the film of the sealant layer 212 as in Example C7, FIG. A packaging material 210 having the layer structure shown was produced. The total thickness of the packaging material 210 was 89 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 高PET16/透明蒸着/バリア/印/接/ナイロン15/接/イージーピール50
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
High PET16 / transparent deposition / barrier / mark / contact / nylon 15 / contact / easy peel 50
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は17.0Nであり、流れ方向におけるループスティフネスは0.101Nであり、垂直方向におけるループスティフネスは0.102Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00113N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00115N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 17.0 N, the loop stiffness in the flow direction was 0.101 N, and the loop stiffness in the vertical direction was 0.102 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00113 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00115 N. / Μm.
 続いて、実施例C7の場合と同様にして、実施例C8の包装材料210にレトルト処理を施した後、酸素透過度の測定、及び水蒸気透過度の測定を行った。結果、レトルト処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であった。また、レトルト処理後のサンプルの水蒸気透過度は2.0g/m2/24hr未満であった。 Subsequently, after the retort treatment was applied to the packaging material 210 of Example C8 in the same manner as in Example C7, the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、レトルト処理が施される蓋付容器の蓋材を構成するために使用され得る。蓋付容器の容器本体は、例えばポリプロピレンで構成され得る。 The packaging material 210 of the present embodiment can be used, for example, to constitute a lid material for a container with a lid that is subjected to a retort process. The container body of the lidded container can be made of, for example, polypropylene.
[実施例C9]
 実施例C1の場合と同様にして、バリア性積層フィルム205を作製した。続いて、シーラント層212のフィルムとして、実施例C7の場合と同様にイージーピール性を備えるシーラント層(厚さ50μm)を用いたこと以外は、実施例C3の場合と同様にして、図19に示す層構成を有する包装材料210を作製した。包装材料210全体の厚みは86μmであった。
[Example C9]
In the same manner as in Example C1, a barrier laminate film 205 was produced. Subsequently, as in the case of Example C3, except that a sealant layer (thickness 50 μm) having an easy peel property was used as the film of the sealant layer 212 as in Example C7, FIG. A packaging material 210 having the layer structure shown was produced. The total thickness of the packaging material 210 was 86 μm.
 本実施例の包装材料210の層構成は、以下のように表現される。
 PET12/印/接/バリア/透明蒸着/高PET16/接/イージーピール50
The layer structure of the packaging material 210 of the present embodiment is expressed as follows.
PET12 / mark / contact / barrier / transparent deposition / high PET16 / contact / easy peel 50
 続いて、実施例A1の場合と同様にして、包装材料210の突き刺し強度及びループスティフネスを測定した。結果、包装材料210の突き刺し強度は16.3Nであり、流れ方向におけるループスティフネスは0.114Nであり、垂直方向におけるループスティフネスは0.119Nであった。この場合、包装材料210の流れ方向におけるループスティフネスを包装材料210の厚みで割った値は0.00133N/μmになり、垂直方向におけるループスティフネスを包装材料210の厚みで割った値は0.00138N/μmになる。 Subsequently, the puncture strength and loop stiffness of the packaging material 210 were measured in the same manner as in Example A1. As a result, the puncture strength of the packaging material 210 was 16.3 N, the loop stiffness in the flow direction was 0.114 N, and the loop stiffness in the vertical direction was 0.119 N. In this case, the value obtained by dividing the loop stiffness in the flow direction of the packaging material 210 by the thickness of the packaging material 210 is 0.00133 N / μm, and the value obtained by dividing the loop stiffness in the vertical direction by the thickness of the packaging material 210 is 0.00138 N. / Μm.
 続いて、実施例C7の場合と同様にして、実施例C9の包装材料210にレトルト処理を施した後、酸素透過度の測定、及び水蒸気透過度の測定を行った。結果、レトルト処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であった。また、レトルト処理後のサンプルの水蒸気透過度は2.0g/m2/24hr未満であった。 Subsequently, after the retort treatment was applied to the packaging material 210 of Example C9 in the same manner as in Example C7, the oxygen permeability and the water vapor permeability were measured. Result, the oxygen permeability of the sample after retort treatment was less than 1.5cc / m 2 / 24hr / atm . Further, water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
 本実施例の包装材料210は、例えば、レトルト処理が施される蓋付容器の蓋材を構成するために使用され得る。蓋付容器の容器本体は、例えばポリプロピレンで構成され得る。 The packaging material 210 of the present embodiment can be used, for example, to constitute a lid material for a container with a lid that is subjected to a retort process. The container body of the lidded container can be made of, for example, polypropylene.
 実施例C1~C3及び実施例C4~C9の包装材料210の層構成、並びに、突き刺し強度及びループスティフネスに関する評価結果をそれぞれ、図29及び図30にまとめて示す。また、実施例C1~C9の包装材料210の層構成、並びに、酸素透過度の評価結果及び水蒸気透過度の評価結果を図31に示す。図31の「酸素透過度」の欄において、「OK」は、レトルト処理後のサンプルの酸素透過度は1.5cc/m2/24hr/atm未満であったことを意味する。また、図31の「水蒸気透過度」の欄において、「OK」は、レトルト処理後のサンプルの水蒸気透過度が2.0g/m2/24hr未満であったことを意味する。 FIG. 29 and FIG. 30 collectively show the layer configurations of the packaging materials 210 of Examples C1 to C3 and Examples C4 to C9, and the evaluation results regarding the piercing strength and loop stiffness, respectively. Further, FIG. 31 shows the layer structure of the packaging material 210 of Examples C1 to C9, the evaluation result of the oxygen permeability, and the evaluation result of the water vapor permeability. In the column of "oxygen permeability" in FIG. 31, "OK" is oxygen permeability of the sample after retort treatment means that was less than 1.5cc / m 2 / 24hr / atm . Further, in the column of "water vapor transmission rate" in FIG. 31, "OK" means that the water vapor permeability of the sample after retort treatment was less than 2.0g / m 2 / 24hr.
 実施例C1~C9から分かるように、第1延伸プラスチックフィルム40又は第2延伸プラスチックフィルム50として高スティフネスポリエステルフィルムを用いることにより、実施例A1~A9の場合と同様に、包装材料210の突き刺し強度を14N以上に高めることができた。実施例C1、C3、C4、C6、C7、C9においては、包装材料210の突き刺し強度が16N以上であった。また、包装材料210が高スティフネスポリエステルフィルムに加えて二軸延伸ナイロンフィルムを含む実施例C2、C5、C8においては、包装材料30の突き刺し強度が17N以上であった。 As can be seen from Examples C1 to C9, by using a high stiffness polyester film as the first stretched plastic film 40 or the second stretched plastic film 50, the piercing strength of the packaging material 210 is the same as in Examples A1 to A9. Can be increased to 14N or more. In Examples C1, C3, C4, C6, C7, and C9, the puncture strength of the packaging material 210 was 16 N or more. Moreover, in Examples C2, C5, and C8 in which the packaging material 210 includes a biaxially stretched nylon film in addition to the high stiffness polyester film, the puncture strength of the packaging material 30 was 17 N or more.
 また、実施例C1~C3から分かるように、包装材料210が高スティフネスポリエステルフィルムを含み、シーラント層70がポリプロピレンを主成分として含むことにより、包装材料210のループスティフネスを、少なくとも一方向において、0.150N以上に高めることができた。また、包装材料210のループスティフネスを包装材料210の厚みで割った値を、少なくとも一方向において、0.00150N/μm以上に高めることができた。 Further, as can be seen from Examples C1 to C3, the packaging material 210 includes a high stiffness polyester film, and the sealant layer 70 includes polypropylene as a main component, thereby reducing the loop stiffness of the packaging material 210 in at least one direction. It was possible to increase to 150N or higher. Further, the value obtained by dividing the loop stiffness of the packaging material 210 by the thickness of the packaging material 210 could be increased to 0.00150 N / μm or more in at least one direction.
10 袋
11 上部
12 下部
12a 下部シール部
13 側部
13a 側部シール部
14 表面フィルム
15 裏面フィルム
16 下部フィルム
17 収容部
18 内容物
20 蒸気抜き機構
20a 蒸気抜きシール部
25 易開封性手段
26 ノッチ
30 包装材料
31 基材部
32 印刷層
34 蒸着層
36 ガスバリア性塗布膜
40 第1延伸プラスチックフィルム
45 第1接着剤層
50 第2延伸プラスチックフィルム
55 第2接着剤層
70 シーラント層
80 試験片
80A 流れ方向用試験片
80B 垂直方向用試験片
80x 内面
80y 外面
81 ループ部
82 中間部
83 固定部
85 ループスティフネス測定器
86 チャック部
861 第1チャック
862 第2チャック
87 支持部材
88 ロードセル
201 基材
202 蒸着層
203 ガスバリア性塗布膜
205 バリア性積層フィルム
210 包装材料
212 シーラント層
2121 第1層
2122 第2層
213 第1接着層
214 延伸プラスチックフィルム
218 印刷層
DESCRIPTION OF SYMBOLS 10 Bag 11 Upper part 12 Lower part 12a Lower seal part 13 Side part 13a Side part seal part 14 Surface film 15 Back surface film 16 Lower film 17 Storage part 18 Contents 20 Vapor venting mechanism 20a Vapor vent seal part 25 Easy opening means 26 Notch 30 Packaging material 31 Substrate portion 32 Print layer 34 Vapor deposition layer 36 Gas barrier coating film 40 First stretched plastic film 45 First adhesive layer 50 Second stretched plastic film 55 Second adhesive layer 70 Sealant layer 80 Test piece 80A Flow direction Test piece 80B Vertical test piece 80x Inner surface 80y Outer surface 81 Loop portion 82 Intermediate portion 83 Fixed portion 85 Loop stiffness measuring device 86 Chuck portion 861 First chuck 862 Second chuck 87 Support member 88 Load cell 201 Base material 202 Vapor deposition layer 203 Gas barrier coating film 205 bar Rear laminated film 210 Packaging material 212 Sealant layer 2121 First layer 2122 Second layer 213 First adhesive layer 214 Stretched plastic film 218 Print layer

Claims (17)

  1.  外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
     前記包装材料に含まれる二軸延伸プラスチックフィルムは、前記第1の二軸延伸プラスチックフィルム及び前記第2の二軸延伸プラスチックフィルムのみであり、
     前記シーラント層は、ポリプロピレンを主成分として含み、
     前記包装材料の1つの方向におけるループスティフネスは、0.160N以上である、包装材料。
    A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
    The biaxially stretched plastic film contained in the packaging material is only the first biaxially stretched plastic film and the second biaxially stretched plastic film,
    The sealant layer contains polypropylene as a main component,
    A packaging material having a loop stiffness in one direction of the packaging material of 0.160 N or more.
  2.  前記第1の二軸延伸プラスチックフィルム及び前記第2の二軸延伸プラスチックフィルムは、ポリエステルを主成分として含む、請求項1に記載の包装材料。 The packaging material according to claim 1, wherein the first biaxially stretched plastic film and the second biaxially stretched plastic film contain polyester as a main component.
  3.  外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
     前記包装材料に含まれる二軸延伸プラスチックフィルムは、前記第1の二軸延伸プラスチックフィルム及び前記第2の二軸延伸プラスチックフィルムのみであり、
     前記シーラント層は、ポリプロピレンを主成分として含み、
     前記包装材料の1つの方向におけるループスティフネスを前記包装材料の厚みで割った値が0.00150〔N/μm〕以上である、包装材料。
    A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
    The biaxially stretched plastic film contained in the packaging material is only the first biaxially stretched plastic film and the second biaxially stretched plastic film,
    The sealant layer contains polypropylene as a main component,
    A packaging material, wherein a value obtained by dividing the loop stiffness in one direction of the packaging material by the thickness of the packaging material is 0.00150 [N / μm] or more.
  4.  外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
     前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムの一方は、高スティフネスポリエステルフィルムであり、前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムの他方は、ポリエステル又はポリアミドを主成分として含み、
     前記高スティフネスポリエステルフィルムは、1つの方向において0.0017N以上のループスティフネスを有し、且つポリエステルを主成分として含む、包装材料。
    A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
    One of the first biaxially stretched plastic film or the second biaxially stretched plastic film is a high stiffness polyester film, and the first biaxially stretched plastic film or the second biaxially stretched plastic film The other contains polyester or polyamide as the main component,
    The high-stiffness polyester film has a loop stiffness of 0.0017 N or more in one direction, and contains a polyester as a main component.
  5.  外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
     前記第1の二軸延伸プラスチックフィルム及び前記第2の二軸延伸プラスチックフィルムはいずれも、ポリエチレンテレフタレートを主成分として含み、
     前記包装材料の突き刺し強度が14N以上である、包装材料。
    A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
    Each of the first biaxially stretched plastic film and the second biaxially stretched plastic film contains polyethylene terephthalate as a main component,
    The packaging material whose puncture strength of the said packaging material is 14 N or more.
  6.  外面側から内面側へ順に、第1の二軸延伸プラスチックフィルム、第2の二軸延伸プラスチックフィルム及びシーラント層を少なくとも備える包装材料であって、
     前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムの一方は、高スティフネスポリエステルフィルムであり、前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムの他方は、ポリエステル又はポリアミドを主成分として含み、
     少なくとも1つの方向において、前記高スティフネスポリエステルフィルムの引張強度を引張伸度で割った値が2.0〔MPa/%〕以上である、包装材料。
    A packaging material comprising at least a first biaxially stretched plastic film, a second biaxially stretched plastic film, and a sealant layer in order from the outer surface side to the inner surface side,
    One of the first biaxially stretched plastic film or the second biaxially stretched plastic film is a high stiffness polyester film, and the first biaxially stretched plastic film or the second biaxially stretched plastic film The other contains polyester or polyamide as the main component,
    A packaging material in which, in at least one direction, a value obtained by dividing the tensile strength of the high stiffness polyester film by the tensile elongation is 2.0 [MPa /%] or more.
  7.  前記包装材料の突き刺し強度が14N以上である、請求項1乃至6のいずれか一項に記載の包装材料。 The packaging material according to any one of claims 1 to 6, wherein the puncture strength of the packaging material is 14 N or more.
  8.  1つの方向における前記高スティフネスポリエステルフィルムの引張強度が250MPa以上である、請求項4又は6に記載の包装材料。 The packaging material according to claim 4 or 6, wherein a tensile strength of the high stiffness polyester film in one direction is 250 MPa or more.
  9.  前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムのいずれかは、1つの方向における引張強度が前記1つの方向と直交する方向における引張強度よりも大きい直進カットフィルムである、請求項1乃至8のいずれか一項に記載の包装材料。 Either the first biaxially stretched plastic film or the second biaxially stretched plastic film is a straight cut film in which the tensile strength in one direction is larger than the tensile strength in a direction orthogonal to the one direction. The packaging material according to any one of claims 1 to 8.
  10.  1つの方向における前記直進カットフィルムの引張強度が、前記1つの方向と直交する方向における前記直進カットフィルムの引張強度の1.05倍以上である、請求項9に記載の包装材料。 The packaging material according to claim 9, wherein a tensile strength of the straight cut film in one direction is 1.05 times or more of a tensile strength of the straight cut film in a direction orthogonal to the one direction.
  11.  印刷層を備える、請求項1乃至10のいずれか一項に記載の包装材料。 The packaging material according to any one of claims 1 to 10, further comprising a printing layer.
  12.  前記シーラント層は、ポリプロピレンを主成分として含む、請求項4乃至11のいずれか一項に記載の包装材料。 The packaging material according to any one of claims 4 to 11, wherein the sealant layer contains polypropylene as a main component.
  13.  前記シーラント層は、100℃以上の融点を有するポリエチレンを主成分として含む、請求項4乃至11のいずれか一項に記載の包装材料。 The packaging material according to any one of claims 4 to 11, wherein the sealant layer contains polyethylene having a melting point of 100 ° C or higher as a main component.
  14.  前記シーラント層は、ポリエチレン又はポリプロピレンを主成分とする第1層と、第1層よりも内面側に位置し、ポリエチレンとポリプロピレンの混合樹脂を含む第2層と、を有する、請求項4乃至11のいずれか一項に記載の包装材料。 The said sealant layer has the 1st layer which has polyethylene or a polypropylene as a main component, and the 2nd layer which is located in the inner surface side rather than a 1st layer and contains the mixed resin of polyethylene and a polypropylene. The packaging material according to any one of the above.
  15.  前記第1の二軸延伸プラスチックフィルム又は前記第2の二軸延伸プラスチックフィルムのいずれかの面上に位置する蒸着層と、蒸着層上に位置するガスバリア性塗布膜と、を更に備える、請求項1乃至14のいずれか一項に記載の包装材料。 The vapor deposition layer located on either surface of the first biaxially stretched plastic film or the second biaxially stretched plastic film, and a gas barrier coating film located on the vapor deposition layer. The packaging material according to any one of 1 to 14.
  16.  請求項1乃至15のいずれか一項に記載の包装材料を備えるレトルトパウチ。 A retort pouch comprising the packaging material according to any one of claims 1 to 15.
  17.  収容部を有する電子レンジ用パウチであって、
     請求項1乃至15のいずれか一項に記載の包装材料と、
     前記包装材料の内面同士を接合するシール部であって、前記収容部の圧力の増加により剥離する蒸気抜きシール部を含むシール部と、を備える電子レンジ用パウチ。
    A microwave oven pouch having a storage portion,
    The packaging material according to any one of claims 1 to 15,
    A microwave oven pouch comprising: a seal portion that joins the inner surfaces of the packaging material, the seal portion including a steam vent seal portion that peels off due to an increase in pressure in the housing portion.
PCT/JP2019/013404 2018-03-28 2019-03-27 Packaging material and retort pouch or microwavable pouch provided with packaging material WO2019189490A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020509273A JPWO2019189490A1 (en) 2018-03-28 2019-03-27 Retort pouch or microwave pouch with packaging material and packaging material
JP2023218500A JP2024041795A (en) 2018-03-28 2023-12-25 Packaging material and retort pouch or microwave pouch provided with packaging material

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018063081 2018-03-28
JP2018-063081 2018-03-28
JP2018-150846 2018-08-09
JP2018150846 2018-08-09
JP2018186119 2018-09-28
JP2018186133 2018-09-28
JP2018-186133 2018-09-28
JP2018-186119 2018-09-28

Publications (1)

Publication Number Publication Date
WO2019189490A1 true WO2019189490A1 (en) 2019-10-03

Family

ID=68059138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013404 WO2019189490A1 (en) 2018-03-28 2019-03-27 Packaging material and retort pouch or microwavable pouch provided with packaging material

Country Status (2)

Country Link
JP (2) JPWO2019189490A1 (en)
WO (1) WO2019189490A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142857A (en) * 2019-02-28 2020-09-10 大日本印刷株式会社 Packaging material and pouch having packaging material
JP2020142858A (en) * 2019-02-28 2020-09-10 大日本印刷株式会社 Packaging material and pouch having packaging material
US20200407136A1 (en) * 2018-03-22 2020-12-31 Dai Nippon Printing Co., Ltd. Barrier laminate film, and packaging material which uses barrier laminate film
JP2021070311A (en) * 2019-10-30 2021-05-06 大日本印刷株式会社 Laminate and package using the same
JP2021176296A (en) * 2020-04-30 2021-11-11 海商株式会社 Packaged seafood product and method for producing the same
WO2023013768A1 (en) * 2021-08-05 2023-02-09 大日本印刷株式会社 Barrier multilayer body, cover material and packaging container
WO2023190907A1 (en) * 2022-03-30 2023-10-05 大日本印刷株式会社 Stretched base material, printing base material, barrier sealant film, laminate, and packaging bag
JP7452744B1 (en) 2023-06-19 2024-03-19 Toppanホールディングス株式会社 Laminates, packaging bags and packaging bodies
JP7494882B2 (en) 2019-10-30 2024-06-04 大日本印刷株式会社 Laminate and packaging material using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168293A (en) * 1996-10-09 1998-06-23 Unitika Ltd Easily tearable biaxially oriented polyester film
JPH11302405A (en) * 1998-04-20 1999-11-02 Unitika Ltd Easy-tear polyester film
JP2001277408A (en) * 2000-03-31 2001-10-09 Toppan Printing Co Ltd Resin laminated film excellent in stiffness strength and impact resistance
JP2015048081A (en) * 2013-08-30 2015-03-16 ユニチカ株式会社 Polyester film for can inner bag
JP2015150807A (en) * 2014-02-17 2015-08-24 ユニチカ株式会社 polyester laminate
JP2016101721A (en) * 2014-11-28 2016-06-02 東レフィルム加工株式会社 Laminate sheet
WO2017170574A1 (en) * 2016-04-01 2017-10-05 凸版印刷株式会社 Gas barrier film
WO2018052042A1 (en) * 2016-09-15 2018-03-22 大日本印刷株式会社 Pouch

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129417B2 (en) * 2001-05-08 2013-01-30 大倉工業株式会社 Aluminum foil laminated film for high retort
JP2003119303A (en) * 2001-10-12 2003-04-23 Unitika Ltd Biaxially oriented polyester-based film, filmy laminate and bag for liquid packing obtained from the laminate
JP5815373B2 (en) * 2011-11-10 2015-11-17 ユニチカ株式会社 Packaging materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168293A (en) * 1996-10-09 1998-06-23 Unitika Ltd Easily tearable biaxially oriented polyester film
JPH11302405A (en) * 1998-04-20 1999-11-02 Unitika Ltd Easy-tear polyester film
JP2001277408A (en) * 2000-03-31 2001-10-09 Toppan Printing Co Ltd Resin laminated film excellent in stiffness strength and impact resistance
JP2015048081A (en) * 2013-08-30 2015-03-16 ユニチカ株式会社 Polyester film for can inner bag
JP2015150807A (en) * 2014-02-17 2015-08-24 ユニチカ株式会社 polyester laminate
JP2016101721A (en) * 2014-11-28 2016-06-02 東レフィルム加工株式会社 Laminate sheet
WO2017170574A1 (en) * 2016-04-01 2017-10-05 凸版印刷株式会社 Gas barrier film
WO2018052042A1 (en) * 2016-09-15 2018-03-22 大日本印刷株式会社 Pouch

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200407136A1 (en) * 2018-03-22 2020-12-31 Dai Nippon Printing Co., Ltd. Barrier laminate film, and packaging material which uses barrier laminate film
JP2020142857A (en) * 2019-02-28 2020-09-10 大日本印刷株式会社 Packaging material and pouch having packaging material
JP2020142858A (en) * 2019-02-28 2020-09-10 大日本印刷株式会社 Packaging material and pouch having packaging material
JP7389959B2 (en) 2019-02-28 2023-12-01 大日本印刷株式会社 Packaging materials and pouches comprising packaging materials
JP2021070311A (en) * 2019-10-30 2021-05-06 大日本印刷株式会社 Laminate and package using the same
JP7115504B2 (en) 2019-10-30 2022-08-09 大日本印刷株式会社 Laminate and package using the same
JP7494882B2 (en) 2019-10-30 2024-06-04 大日本印刷株式会社 Laminate and packaging material using same
JP2021176296A (en) * 2020-04-30 2021-11-11 海商株式会社 Packaged seafood product and method for producing the same
JP7241112B2 (en) 2020-04-30 2023-03-16 海商株式会社 Packaged seafood product and method of making same
WO2023013768A1 (en) * 2021-08-05 2023-02-09 大日本印刷株式会社 Barrier multilayer body, cover material and packaging container
WO2023190907A1 (en) * 2022-03-30 2023-10-05 大日本印刷株式会社 Stretched base material, printing base material, barrier sealant film, laminate, and packaging bag
JP7452744B1 (en) 2023-06-19 2024-03-19 Toppanホールディングス株式会社 Laminates, packaging bags and packaging bodies

Also Published As

Publication number Publication date
JPWO2019189490A1 (en) 2021-04-08
JP2024041795A (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2019189490A1 (en) Packaging material and retort pouch or microwavable pouch provided with packaging material
JP7180072B2 (en) Laminated film and packaging bag
JP7373126B2 (en) Packaging materials for paper containers and liquid paper containers
JP2023001195A (en) bag
WO2021199636A1 (en) Laminate, pouch, and lid member
WO2022131264A1 (en) Laminate, packaging bag, and standing pouch
JP2009248456A (en) Laminate for tube and laminated tube
JP4760494B2 (en) Paper container
JP2019142522A (en) Packaging material and packaging bag
JP7371616B2 (en) Packaging materials and retort pouches or microwave pouches containing packaging materials
JP2019119132A (en) Laminate film and molded article
JP2023123494A (en) Barrier laminate film, and method of manufacturing barrier laminate film, and packaging material having barrier laminate film
JP2004050605A (en) Laminate
JP4857871B2 (en) Paper container
JP7425984B2 (en) Packaging materials for paper containers and liquid paper containers
JP4946412B2 (en) Liquid paper container
JP2020142858A (en) Packaging material and pouch having packaging material
JP2022007962A (en) Laminate, and pouch for retort or boiling
JP2002210858A (en) Pouch for retort
JP2022007964A (en) Laminate, and pouch for retort or boiling
JP2022007961A (en) Laminate and lid material using the same
JP6763761B2 (en) Deep drawn molded package for food packaging
JP2020066232A (en) Packaging material for paper container and liquid paper container
JP2002144465A (en) Barrier film
JP7389959B2 (en) Packaging materials and pouches comprising packaging materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774660

Country of ref document: EP

Kind code of ref document: A1