WO2018052042A1 - Pouch - Google Patents

Pouch Download PDF

Info

Publication number
WO2018052042A1
WO2018052042A1 PCT/JP2017/033130 JP2017033130W WO2018052042A1 WO 2018052042 A1 WO2018052042 A1 WO 2018052042A1 JP 2017033130 W JP2017033130 W JP 2017033130W WO 2018052042 A1 WO2018052042 A1 WO 2018052042A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
film
layer
bag
laminate
Prior art date
Application number
PCT/JP2017/033130
Other languages
French (fr)
Japanese (ja)
Inventor
田中 大介
満 武士田
和佳子 仙頭
和弘 多久島
靖也 飯尾
渡辺 薫
あゆみ 杉山
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2018052042A1 publication Critical patent/WO2018052042A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package

Definitions

  • the present invention relates to a bag provided with a steam release mechanism.
  • the non-seal part to which the laminated bodies are not joined constitutes an accommodation part in which the contents are accommodated.
  • the sealing part to which the laminated bodies are joined has sealed the accommodating part.
  • the contents are, for example, cooked foods such as curry, stew, and soup. The contents are heated by a microwave oven or the like while being contained in a bag.
  • Patent Documents 1 to 3 provide a steam venting mechanism that automatically communicates the housing part with the outside when the pressure in the housing part increases and releases the steam in the housing part to the outside. is suggesting.
  • the steam release mechanism includes, for example, a steam release seal portion having a weaker seal strength than other seal portions.
  • the laminate for constituting the bag is required to have a characteristic that prevents the bag from being broken even when a sharp member with a sharp tip contacts the bag, so-called stab resistance.
  • the conventional laminated body is provided with the film containing nylon which has high puncture resistance property, for example, as disclosed in Patent Documents 1 and 2.
  • nylon is easy to absorb moisture and has poor heat resistance.
  • a hole may be formed in the nylon layer.
  • a film constituting the bag a film containing polyethylene terephthalate (hereinafter also referred to as PET), a film containing nylon, and a film containing a thermoplastic resin such as polyethylene are laminated.
  • PET polyethylene terephthalate
  • nylon a film containing polyethylene
  • thermoplastic resin such as polyethylene
  • the nylon can be prevented from absorbing moisture by providing the nylon between the two films.
  • nylon has a characteristic that it is easily softened by heat. For this reason, when a laminated body contains nylon, the pressure which arises in a accommodating part when the water
  • Patent Document 3 proposes that both the surface layer and the intermediate layer are made of PET. However, it is considered difficult to achieve sufficient puncture resistance depending on PET.
  • the present invention aims to provide a bag that can effectively solve such problems.
  • the present invention is a bag having a vapor venting mechanism, wherein the laminate constituting the bag includes at least a base material containing 51% by mass or more of polybutylene terephthalate and polypropylene, and constitutes an inner surface of the laminate. And a sealant layer.
  • the piercing strength of the laminate may be 13N or more.
  • the base material including polybutylene terephthalate may have a multilayer structure including 10 layers or more.
  • the base material containing polybutylene terephthalate may have a single layer structure having an IV value of 1.10 dl / g or more and 1.35 dl / g or less.
  • the sealant layer may contain 90% by mass or more of polypropylene.
  • the laminate is in the order from the outer surface side to the inner surface side: base material / printing layer / adhesive layer / sealant layer, or base material / transparent vapor deposition layer / transparent gas barrier coating film / printing layer / adhesive.
  • a layer / sealant layer may be included.
  • the laminate includes a base material / a transparent deposition layer / a transparent gas barrier coating film / a printing layer / an adhesive layer / a sealant layer in order from the outer surface side to the inner surface side.
  • the transparent vapor deposition layer may contain aluminum oxide, and a covalent bond between an aluminum atom and a carbon atom may be formed at the interface between the base material and the transparent vapor deposition layer.
  • the laminate includes at least a first base material, a second base material, and a sealant layer in this order, and one of the first base material and the second base material is 51% by mass. It is the said base material containing the above polybutylene terephthalate, and the other may contain the polyethylene terephthalate.
  • the bag by this invention WHEREIN:
  • the said laminated body is a transparent vapor deposition layer provided in the said 1st base material or the said 2nd base material between the said 1st base material and the said 2nd base material, The said transparent vapor deposition layer And a transparent gas barrier coating film provided thereon.
  • the transparent vapor deposition layer includes aluminum oxide, and a covalent bond between an aluminum atom and a carbon atom is formed at an interface between the first base material or the second base material and the transparent vapor deposition layer. May be.
  • the first base material may include polyethylene terephthalate
  • the second base material may include polybutylene terephthalate
  • the first base material may include polybutylene terephthalate
  • the second base material may include polyethylene terephthalate
  • the bag can have puncture resistance and heat resistance.
  • FIG. 3 is a cross-sectional view showing the bag shown in FIG. 1 as viewed along line III-III.
  • FIG. 1 is a front view showing a bag 10 according to the present embodiment.
  • the bag 10 includes a storage portion 17 that stores the contents.
  • FIG. 1 the bag 10 of the state before being filled with the content is shown.
  • the bag 10 by this Embodiment is comprised so that it can be conveniently used as a pouch for microwave ovens in which the contents are heated with a microwave oven.
  • the bag 10 includes a steam venting mechanism 20 for escaping steam generated when the contents stored in the bag 10 are heated.
  • the steam release mechanism 20 allows the inside and outside of the bag 10 to communicate with each other when the pressure of the steam reaches a predetermined value or more to release the steam, and suppresses the occurrence of steam escape from locations other than the steam release mechanism 20. It is configured as such.
  • the configuration of the bag 10 will be described.
  • the bag 10 is a gusseted bag configured to be able to stand on its own.
  • the bag 10 includes an upper portion 11, a lower portion 12, and a side portion 13, and has a substantially rectangular outline in a front view.
  • names such as “upper”, “lower” and “side”, and terms such as “upper” and “lower” refer to a bag based on the state in which the bag 10 is self-supporting with the gusset portion down. It is only a relative representation of the position and direction of 10 and its components.
  • position at the time of transport of the bag 10 or use is not limited by the name and terminology in this specification.
  • the bag 10 includes a surface film 14 that constitutes the front surface, a back film 15 that constitutes the back surface, and a lower film 16 that constitutes the lower portion 12.
  • the lower film 16 is disposed between the front film 14 and the back film 15 in a state where the lower film 16 is folded at the folded portion 16f.
  • the term “surface film”, “back film” and “lower film” described above is merely a partition of each film according to the positional relationship, and the method of providing a film when manufacturing the bag 10 It is not limited by the above terms.
  • the bag 10 may be manufactured using one film in which the front film 14, the back film 15, and the lower film 16 are continuously provided, or one sheet in which the front film 14 and the lower film 16 are continuously provided. It may be manufactured using a total of two films, a film and one back film 15, and a total of three films, one surface film 14, one back film 15, and one lower film 16. May be used.
  • the inner surfaces of the front film 14, the back film 15, and the lower film 16 are joined together by a seal portion.
  • the seal portion is hatched.
  • the seal portion has an outer edge seal portion extending along the outer edge of the bag 10 and a steam vent seal portion 20 a constituting the steam vent mechanism 20.
  • the outer edge seal portion includes a lower seal portion 12 a extending in the lower portion 12 and a pair of side seal portions 13 a extending along the pair of side portions 13.
  • the upper portion 11 of the bag 10 is an opening 11b. After the contents are stored in the bag 10, the inner surface of the front film 14 and the inner surface of the back film 15 are joined at the upper portion 11, whereby an upper seal portion is formed and the bag 10 is sealed.
  • the side seal portion 13a, the steam release seal portion 20a, and the upper seal portion described later are seal portions configured by joining the inner surface of the surface film 14 and the inner surface of the back film 15.
  • the lower seal portion 12a is formed by bonding the inner surface of the surface film 14 and the inner surface of the lower film 16, and by bonding the inner surface of the back film 15 and the inner surface of the lower film 16. Including a configured seal.
  • the method for forming the seal portion is not particularly limited.
  • the sealing portion may be formed by melting the inner surfaces of the film by heating or the like and welding the inner surfaces, that is, by heat sealing. Or you may form a seal
  • FIG. 2 is a cross-sectional view showing a case where the vapor venting mechanism 20 of the bag 10 shown in FIG. 1 is viewed along line II-II.
  • the steam release seal portion 20a of the steam release mechanism 20 has a shape that is easily peeled off as the pressure in the housing portion 17 increases.
  • the steam release seal portion 20 a has a shape protruding from the side seal portion 13 a toward the inside of the bag 10.
  • the force added to the steam release seal part 20a can be made larger than the force applied to the side seal part 13a.
  • sticker part 20a is smaller than the width
  • a non-seal portion 20 b is formed between the steam release seal portion 20 a and the outer edge of the side portion 13. Thereby, compared with the side seal part 13a, in the steam release seal part 20a, it is possible to easily cause communication between the housing part 17 and the outside due to peeling of the seal part.
  • FIG. 3 is a cross-sectional view showing the laminated body 30 constituting the front film 14 and the back film 15.
  • the laminate 30 includes a first film 40 and a sealant film 70 laminated on the first film 40 with an adhesive layer 45 interposed therebetween.
  • the first film 40 is located on the outer surface 30y side, and the sealant film 70 is located on the inner surface 30x side opposite to the outer surface 30y.
  • the inner surface 30x is a surface located on the accommodating portion 17 side.
  • the first film 40 includes a base material 41 and a print layer 42.
  • the sealant film 70 includes a sealant layer 71. Therefore, it can be said that the laminated body 30 by this Embodiment is equipped with the base material / printing layer / adhesive layer / sealant layer in order from the outer surface 30y side to the inner surface 30x side. Note that “/” represents a boundary between layers.
  • the first film 40 includes at least a base material 41 constituting the outer surface 30 y of the laminate 30 and a printed layer 42 provided on the inner surface 30 x side of the base material 41.
  • the printed layer 42 is a layer printed on the base material 41 in order to show product information or impart aesthetics to the bag 10.
  • the print layer 42 expresses characters, numbers, symbols, figures, patterns, and the like.
  • an ink for gravure printing or an ink for flexographic printing can be used.
  • FINAT manufactured by DIC Graphics Corporation can be given.
  • the base material 41 includes polybutylene terephthalate (hereinafter also referred to as PBT) as a main component.
  • PBT polybutylene terephthalate
  • the base material 41 includes 51% by mass or more of PBT.
  • the advantage that the base material 41 includes PBT will be described.
  • the printing layer 42 can be provided on the base material 41 containing PBT similarly to the case of polyethylene terephthalate (hereinafter also referred to as PET).
  • the retort process is a process of heating the bag 10 in a pressurized state using steam or heated hot water after filling the bag 10 with the contents and sealing the bag 10.
  • the temperature of retort processing is 120 degreeC or more, for example.
  • the boil process is a process of filling the bag 10 with the contents and sealing the bag 10 and then bathing the bag 10 under atmospheric pressure.
  • the temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
  • PBT has high strength. For this reason, the stab resistance can be given to the bag 10 similarly to the case where the laminated body which comprises the bag 10 contains nylon.
  • PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 41 containing PBT is arrange
  • any of the following first configuration or second configuration may be adopted.
  • the content of PBT in the base material 41 according to the first configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further 70% by mass or more, particularly preferably 75% by mass or more, and most preferably. 80% by mass or more.
  • the first film 40 can have excellent impact strength and pinhole resistance.
  • PBT used as a main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, most preferably 100 mol% or more of terephthalic acid as a dicarboxylic acid component.
  • Mol%. 1,4-butanediol as the glycol component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol during polymerization. It is not included except by-products generated by the ether bond of butanediol.
  • the base material 41 may contain a polyester resin other than PBT.
  • Polyester resins other than PBT include polyester resins such as PET, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), as well as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, and biphenyldicarboxylic acid.
  • PBT resin copolymerized with dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols such as pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, polycarbonate diol Min can be mentioned copolymerized PBT resin.
  • dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid
  • ethylene glycol 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols
  • the amount of the polyester resin other than PBT is preferably 49% by mass or less, and more preferably 40% by mass or less. If the addition amount of the polyester resin other than PBT exceeds 49% by mass, the mechanical properties as PBT may be impaired, and impact strength, pinhole resistance, and drawability may be insufficient.
  • the base material 41 may contain, as an additive, a polyester-based or polyamide-based elastomer obtained by copolymerizing at least one of a flexible polyether component, a polycarbonate component, and a polyester component. Thereby, the pinhole resistance at the time of bending can be improved.
  • the additive amount of the additive is, for example, 20% by mass. When the addition amount of the additive exceeds 20% by mass, the effect as the additive may be saturated, or the transparency of the base material 41 may be reduced.
  • FIG. 4 is a cross-sectional view showing an example of the layer structure of the first film.
  • the base material 41 of the first film 40 is composed of a multilayer structure including a plurality of layers 41a.
  • Each of the plurality of layers 41a includes PBT as a main component.
  • each of the plurality of layers 41a preferably includes 51% by mass or more of PBT, and more preferably includes 60% by mass or more of PBT.
  • the (n + 1) th layer 41a is directly stacked on the nth layer 41a. That is, no adhesive layer or adhesive layer is interposed between the plurality of layers 41a.
  • the reason why the properties of the PBT film are improved by multilayering is estimated as follows.
  • the resins are laminated, even if the resin composition is the same, a layer interface exists, and crystallization is accelerated by the interface.
  • the growth of large crystals beyond the layer thickness is suppressed. For this reason, it is considered that the size of the crystal (spherulite) becomes small.
  • a general multilayering apparatus multilayer feed block, static mixer, multilayer multimanifold, etc.
  • a method of laminating thermoplastic resins sent out from different flow paths using two or more extruders using a feed block, a static mixer, a multi-manifold die, or the like can be used.
  • multilayering resin of the same composition it is also possible to introduce the above multilayering apparatus into the melt line from the extruder to the die using only one extruder.
  • the substrate 41 is composed of a multilayer structure including at least 10 layers, preferably 60 layers or more, more preferably 250 layers or more, and even more preferably 1000 layers or more.
  • the size of spherulites in the unstretched raw PBT can be reduced, and the subsequent biaxial stretching can be carried out stably.
  • the yield stress of PBT in the state of a biaxially stretched film can be made small.
  • the diameter of the spherulite in the unstretched raw PBT is 500 nm or less.
  • the stretching temperature (hereinafter also referred to as MD stretching temperature) in the longitudinal stretching direction (hereinafter referred to as MD) when producing a biaxially stretched film by biaxially stretching the unstretched raw material of PBT is preferably 40 ° C. or higher. Yes, more preferably 45 ° C or higher.
  • MD stretching temperature is preferably 40 ° C. or higher.
  • stretching temperature becomes like this.
  • it is 100 degrees C or less, More preferably, it is 95 degrees C or less.
  • the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed by setting the MD stretching temperature to 100 ° C. or lower.
  • the draw ratio in MD (hereinafter also referred to as MD draw ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement
  • the stretching temperature (hereinafter also referred to as TD stretching temperature) in the transverse stretching direction (hereinafter also referred to as TD) is preferably 40 ° C. or higher. By setting the TD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken.
  • the TD stretching temperature is preferably 100 ° C. or lower. By setting the TD stretching temperature to 100 ° C. or lower, the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed.
  • the stretching ratio in TD (hereinafter also referred to as TD stretching ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement
  • MD stretch ratio is 5 times or less, for example.
  • TD relaxation rate is preferably 0.5% or more. Thereby, it can suppress that a fracture
  • the TD relaxation rate is preferably 10% or less. Thereby, sagging etc. arise in a biaxially stretched film of PBT, and it can control that thickness unevenness generate
  • the thickness of the layer 41a of the base material 41 shown in FIG. 4 is preferably 3 nm or more, more preferably 10 nm or more.
  • the thickness of the layer 41a is preferably 200 nm or less, and more preferably 100 nm or less.
  • the thickness of the base material 41 is preferably 9 ⁇ m or more, and more preferably 12 ⁇ m or more.
  • the thickness of the base material 41 is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the base material 41 according to the second configuration is made of a single layer film containing polyester having butylene terephthalate as a main repeating unit.
  • the base material 41 is mainly composed of 1,4-butanediol as the glycol component or an ester-forming derivative thereof and terephthalic acid as the dibasic acid component or the ester-forming derivative thereof, and condenses them. Homo- or copolymer-type polyester obtained.
  • the content of PBT in the base material 41 according to the second configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, further preferably 80% by mass or more, and most preferably. Is 90% by mass or more.
  • the base material 41 which concerns on a 2nd structure is comprised only with the polybutylene terephthalate and the additive.
  • PBT having a melting point of 200 ° C. or more and 250 ° C. or less and an IV value (intrinsic viscosity) of 1.10 dl / g or more and 1.35 dl / g or less Is preferred. Furthermore, those having a melting point of 215 ° C. or more and 225 ° C. or less and an IV value of 1.15 dl / g or more and 1.30 dl / g or less are particularly preferable. These IV values may be satisfied by the whole material constituting the base material 41. The IV value can be calculated based on JIS K 7367-5: 2000.
  • the base material 41 which concerns on a 2nd structure may contain polyester resins other than PBT, such as PET, in 30 mass% or less.
  • PET polyester resins other than PBT
  • the base material 41 contains PET in addition to PBT, PBT crystallization can be suppressed, and the stretchability of the PBT film can be improved.
  • blended with PBT of the base material 41 the polyester which uses ethylene terephthalate as a main repeating unit can be used.
  • the base material 41 is a lubricant, an antiblocking agent, an inorganic extender, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, a plasticizer, a colorant, a crystallization inhibitor, a crystallization accelerator, if necessary. Etc. may be contained.
  • the polyester resin pellets used as the raw material of the base material 41 have a moisture content of 0.05% by weight or less, preferably 0.01% by weight or less before heating and melting in order to avoid a decrease in viscosity due to hydrolysis during heating and melting. It is preferable to use after sufficiently pre-drying so that
  • the crystallization temperature region of the polymer is cooled at a certain rate or more, that is, the raw fabric cooling rate is an important factor.
  • the raw fabric cooling rate is, for example, 200 ° C./second or more, preferably 250 ° C./second or more, particularly preferably 350 ° C./second or more. Since the unstretched original film formed at a high cooling rate maintains a low crystalline state, the stability of the bubbles during stretching is improved. Furthermore, since film formation at high speed is possible, film productivity is also improved.
  • the cooling rate is less than 200 ° C./sec, it is considered that the crystallinity of the obtained unstretched original fabric is increased and the stretchability is lowered. In extreme cases, the stretching bubble may burst and stretching may not continue.
  • the unstretched raw material containing PBT as a main component is conveyed to a space where biaxial stretching is performed while maintaining the atmospheric temperature at 25 ° C. or lower, preferably 20 ° C. or lower. Thereby, even if it is a case where residence time becomes long, the crystallinity of the unstretched original fabric immediately after film-forming can be maintained.
  • the biaxial stretching method for obtaining a stretched film by stretching an unstretched raw fabric is not particularly limited.
  • the longitudinal direction and the lateral direction may be simultaneously stretched by the tubular method or the tenter method, or the longitudinal direction and the lateral direction may be sequentially stretched.
  • the tubular method can obtain a stretched film having a good balance of physical properties in the circumferential direction, and is particularly preferably employed.
  • the unstretched raw material introduced into the stretching space is inserted between a pair of low-speed nip rolls, and then heated by a stretching heater while air is being pressed therein. After stretching, air is blown onto the stretched film by a cooling shoulder air ring.
  • the stretching ratio is preferably 2.7 times or more and 4.5 times or less for MD and TD, respectively, in consideration of stretching stability, strength physical properties of the stretched film, transparency, and thickness uniformity.
  • the stretching temperature is preferably 40 ° C. or higher and 80 ° C. or lower, and particularly preferably 45 ° C. or higher and 65 ° C. or lower. Since the unstretched original fabric produced at the above-described high cooling rate has low crystallinity, the unstretched original fabric can be stably stretched even when the stretching temperature is relatively low. Further, by setting the stretching temperature to 80 ° C. or less, it is possible to suppress stretching bubble shaking and obtain a stretched film with good thickness accuracy. In addition, by setting the stretching temperature to 40 ° C. or higher, it is possible to suppress the occurrence of excessive stretch-oriented crystallization due to low-temperature stretching, thereby preventing whitening of the film.
  • the base material 41 produced as described above is constituted by a single layer containing, for example, polyester having butylene terephthalate as a main repeating unit. According to the above-described production method, since the unstretched raw film is formed at a high cooling rate, even when the unstretched raw fabric is constituted by a single layer, a low crystalline state can be maintained, For this reason, an unstretched original fabric can be extended
  • the base material 41 includes PBT as a main component.
  • the tensile elasticity modulus of the laminated body 30 can be made high.
  • the tensile modulus of elasticity (hereinafter also referred to as hot tensile modulus) of the laminate 30 in a high temperature atmosphere, for example, in an atmosphere of 100 ° C. can be increased.
  • the hot tensile elastic modulus of the laminate 30 is preferably 150 MPa or more, more preferably 160 MPa or more, and further preferably 180 MPa or more.
  • the transmissibility of the bag 10 produced using the laminated body 30 is securable. A method for measuring the hot tensile elastic modulus will be described in Example 1 described later.
  • FIG. 5 is a cross-sectional view illustrating another example of the layer configuration of the stacked body 30.
  • the 1st film 40 of the laminated body 30 is located in the inner surface 30x side of the base material 41, and may further contain the transparent gas barrier layer 35 which has transparency.
  • the printing layer 42 is located on the inner surface 30 x side of the transparent gas barrier layer 35.
  • the laminated body 30 in the example shown in FIG. 5 includes a base material / transparent gas barrier layer / printing layer / adhesive layer / sealant layer in order from the outer surface side to the inner surface side.
  • the transparent gas barrier layer 35 is formed on the surface on the inner surface 30x side of the substrate 41 and includes at least a transparent vapor deposition layer 36 made of an inorganic material having transparency.
  • the transparent gas barrier layer 35 may further include a transparent gas barrier coating film 37 that is formed on the inner surface 30x side of the transparent vapor deposition layer 36 and has transparency.
  • the laminated body 30 is provided with a base material / transparent deposition layer / transparent gas barrier coating film / printing layer / adhesive layer / sealant layer in order from the outer surface side to the inner surface side.
  • the transparent vapor-deposited layer 36 functions as a layer having a gas barrier function that prevents permeation of oxygen gas and water vapor.
  • Two or more transparent vapor deposition layers 36 may be provided. When it has two or more transparent vapor deposition layers 36, each may have the same composition or different compositions.
  • a method for forming the transparent vapor deposition layer 36 for example, a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, or a plasma chemical vapor deposition method, Examples thereof include a chemical vapor deposition method (chemical vapor deposition method, CVD method) such as a thermal chemical vapor deposition method and a photochemical vapor deposition method.
  • a vapor deposition layer can be formed on a film formation roller using a roller-type vapor deposition film forming apparatus.
  • the transparent vapor-deposited layer 36 is formed of a transparent inorganic material such as aluminum oxide (aluminum oxide) or silicon oxide.
  • a transparent inorganic material such as aluminum oxide (aluminum oxide) or silicon oxide.
  • the transparent vapor deposition layer 36 it is preferable to use an amorphous thin film of aluminum oxide.
  • the transparent vapor deposition layer 36 is an amorphous thin film of aluminum oxide represented by the formula AlOX (wherein X represents a number in the range of 0.5 to 1.5).
  • AlOX amorphous thin film of aluminum oxide in which the value of X decreases in the depth direction from the film surface toward the inner surface can be used.
  • the amorphous thin film of aluminum oxide is represented by the formula AlOX (wherein X represents a number in the range of 0.5 to 1.5), and extends in the depth direction from the thin film surface toward the inner surface. It is preferable that the value of X increases.
  • the value of X in said formula is 0, it is a perfect inorganic simple substance (pure substance), and is not transparent.
  • the decreasing rate of the value of X is determined by using a surface analyzer such as an X-ray photoelectron spectrometer (Xray Photoelectron Spectroscopy: XPS) or a secondary ion mass spectrometer (Secondary Ion Mass Spectroscopy: SIMS).
  • a surface analyzer such as an X-ray photoelectron spectrometer (Xray Photoelectron Spectroscopy: XPS) or a secondary ion mass spectrometer (Secondary Ion Mass Spectroscopy: SIMS).
  • the transparent vapor deposition layer 36 may be a layer made of a mixture of inorganic compounds containing a covalent bond between an aluminum atom and a carbon atom.
  • the transparent vapor deposition layer 36 uses an X-ray photoelectron spectrometer (measuring conditions: X-ray source AlK ⁇ , X-ray output 120 W) and shares aluminum atoms and carbon atoms at the peak measured by ion etching in the depth direction. It may have a gas barrier property that indicates the presence of a bond and has transparency and prevents permeation of oxygen, water vapor, and the like.
  • a covalent bond between a metal atom and a carbon atom may be formed at the interface between the transparent vapor deposition layer 36 and the substrate 41.
  • the transparent vapor deposition layer 36 contains aluminum oxide
  • the covalent bond of an aluminum atom and a carbon atom shall be formed in the interface of the base material 41 and the transparent vapor deposition layer 36.
  • the covalent bond can be detected by measurement by X-ray photoelectron spectroscopy (hereinafter referred to as “XPS measurement” for short).
  • the transparent vapor deposition layer 36 all the bonds containing the carbon atom observed when the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is measured when the interface between the transparent vapor deposition layer 36 and the substrate 41 is measured by XPS measurement. It is preferable that it is within the range of 0.3% or more and 30% or less. Thereby, the adhesiveness of the transparent vapor deposition layer 36 and the base material 41 is strengthened, the transparency is excellent, and a gas barrier vapor deposition film having a well-balanced performance is obtained.
  • the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is less than 0.3%, the adhesion of the transparent vapor-deposited layer 36 is not sufficiently improved, and it is difficult to stably maintain the barrier property.
  • the transparent vapor deposition layer 36 containing aluminum oxide as a main component has an AL (aluminum) / O (oxygen) ratio of transparent vapor deposition on the side opposite to the base material 41 from the interface between the base material 41 and the transparent vapor deposition layer 36.
  • AL aluminum
  • O oxygen
  • the AL / O ratio exceeds 1.0 within a range from the interface between the transparent vapor deposition layer 36 and the base material 41 toward the surface of the transparent vapor deposition layer 36 on the side opposite to the base material 41, Adhesiveness with the transparent vapor deposition layer 36 becomes insufficient, the proportion of aluminum increases, and the transparency of the transparent vapor deposition layer 36 decreases.
  • the thickness of the transparent vapor deposition layer 36 is, for example, 30 mm or more and 150 mm. If it is less than 30 mm, the gas barrier property may be insufficient even when the transparent gas barrier coating film 37 is used in combination. On the other hand, if it exceeds 150 mm, the gas barrier performance of the laminate 30 may not be maintained. The reason for this is not clear, but if the thickness of the transparent vapor deposition layer 36 exceeds 150 mm, the flexibility of the laminate 30 is reduced, and when the laminate 30 is used in the bag 10, a part of the transparent vapor deposition layer 36 is not cracked. It is considered that pinholes are generated and gas barrier properties are lowered.
  • the thickness of the transparent vapor deposition layer 36 is preferably 40 mm or more and 130 mm or less, more preferably 50 mm or more and 120 mm or less.
  • the thickness of the transparent vapor-deposited layer 36 can be measured by a fundamental parameter method using, for example, a fluorescent X-ray analyzer (trade name: RIX2000 type, manufactured by Rigaku Corporation).
  • RIX2000 type fluorescent X-ray analyzer
  • it can carry out by the method of changing the deposition rate of the transparent vapor deposition layer 36, the method of changing the vapor deposition rate, etc.
  • the surface of the base material 41 on the inner surface 30x side may be subjected to pretreatment such as corona discharge treatment, flame processing, and plasma processing in advance.
  • pretreatment such as corona discharge treatment, flame processing, and plasma processing in advance.
  • the surface of the base material 41 on which the transparent vapor deposition layer 36 is to be formed is pretreated. It is preferable.
  • plasma treatment plasma is supplied to the surface of the base material 41 in a reduced pressure environment of 0.1 Pa or more and 100 Pa or less by the pretreatment apparatus.
  • Plasma uses an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them as a plasma source gas, and the plasma source gas is excited by a potential difference due to a high-frequency voltage or the like. By doing so, it can be generated.
  • an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them as a plasma source gas, and the plasma source gas is excited by a potential difference due to a high-frequency voltage or the like. By doing so, it can be generated.
  • the plasma can be confined in the vicinity of the surface of the base material 41 by the pretreatment. Thereby, the shape of the surface of the base material 41, a chemical bonding state, and a functional group can be changed, and the chemical properties of the surface of the base material 41 can be changed. As a result, the adhesion between the base material 41 and the transparent vapor deposition layer 36 can be improved.
  • the transparent gas barrier coating film 37 is a layer that functions as a layer that suppresses permeation of oxygen gas, water vapor, and the like.
  • the transparent gas barrier coating film 37 has a general formula R 1 n M (OR 2 ) m (where R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, and M represents a metal atom) , N represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M), and a polyvinyl alcohol as described above
  • R 1 n M (OR 2 ) m (where R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, and M represents a metal atom) , N represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M), and a polyvinyl alcohol as described above
  • alkoxide represented by the general formula R 1 n M (OR 2 ) m at least one kind of a partial hydrolyzate of alkoxide and a condensate of hydrolysis of alkoxide can be used. Moreover, as a partial hydrolyzate of said alkoxide, all the alkoxy groups do not need to be hydrolyzed, The thing by which 1 or more was hydrolyzed, and its mixture may be sufficient.
  • the condensate of hydrolysis of alkoxide a dimer or more of partially hydrolyzed alkoxide, specifically, a dimer to hexamer is used.
  • alkoxide represented by the above general formula R 1 n M (OR 2 ) m as the metal atom represented by M, silicon, zirconium, titanium, aluminum, and the like can be used. Examples of preferable metals include silicon and titanium. In the present invention, alkoxides may be used alone or in combination of two or more different metal atom alkoxides in the same solution.
  • R 1 n M (OR 2 ) m specific examples of the organic group represented by R 1 include, for example, a methyl group, an ethyl group, an n-propyl group, i Examples thereof include alkyl groups such as -propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-hexyl group, n-octyl group and others.
  • alkoxide represented by the general formula R 1 n M (OR 2 ) m specific examples of the organic group represented by R 2 include, for example, a methyl group, an ethyl group, an n-propyl group, i -Propyl group, n-butyl group, sec-butyl group, and the like. These alkyl groups in the same molecule may be the same or different.
  • a silane coupling agent or the like may be added.
  • silane coupling agent known organic reactive group containing organoalkoxysilane can be used.
  • an organoalkoxysilane having an epoxy group is preferably used.
  • ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, or ⁇ - (3, 4-epoxycyclohexyl) ethyltrimethoxysilane and the like can be used.
  • the above silane coupling agents may be used alone or in combination of two or more.
  • the sealant film 70 includes at least a sealant layer 71 that constitutes the inner surface 30 x of the laminate 30.
  • a material constituting the sealant layer 71 one or more resins selected from polyethylene such as low density polyethylene and linear low density polyethylene, and polypropylene can be used.
  • the sealant layer 71 may be a single layer or a multilayer.
  • the sealant layer 71 is preferably made of an unstretched film. “Unstretched” is a concept that includes not only a film that is not stretched at all, but also a film that is slightly stretched due to the tension applied during film formation.
  • the bag 10 composed of the laminate 30 is subjected to sterilization treatment such as boil treatment and retort treatment at a high temperature. Therefore, as the sealant layer 71, a layer having heat resistance that can withstand processing at these high temperatures is used.
  • the melting point of the material constituting the sealant layer 71 is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. By increasing the melting point of the sealant layer 71, the bag 10 can be retorted at a high temperature, and therefore the time required for the retort process can be shortened.
  • the melting point of the material constituting the sealant layer 71 is lower than the melting point of the resin constituting the base material 41.
  • a material mainly composed of propylene can be used as the material constituting the sealant layer 71.
  • the material having “propylene as a main component” means a material having a propylene content of 90% by mass or more.
  • Specific examples of the material mainly composed of propylene include propylene / ethylene block copolymer, propylene / ethylene random copolymer, polypropylene such as homopolypropylene, or a mixture of polypropylene and polyethylene.
  • the “propylene / ethylene block copolymer” means a material having a structural formula represented by the following formula (I).
  • the “propylene / ethylene random copolymer” means a material having a structural formula represented by the following formula (II).
  • “Homopolypropylene” means a material having the structural formula shown by the following formula (III).
  • the material may have a sea-island structure.
  • the “sea-island structure” means a structure in which polyethylene is discontinuously dispersed in a region where polypropylene is continuous.
  • examples of the material constituting the sealant layer 71 include polyethylene, polypropylene, or a combination thereof.
  • polyethylene include medium density polyethylene, linear low density polyethylene, and combinations thereof.
  • the material constituting the sealant layer 71 has a melting point of, for example, 100 ° C. or higher, more preferably 105 ° C. or higher, and still more preferably 110 ° C. or higher.
  • sealant film for forming the sealant layer 71 having a melting point of 100 ° C. or higher include TUX-HC manufactured by Mitsui Chemicals Tosero, L6101 manufactured by Toyobo, and LS700C manufactured by Idemitsu Unitech.
  • Specific examples of the sealant film for forming the sealant layer 71 having a melting point of 105 ° C. or higher include NB-1 manufactured by Tamapoly.
  • Specific examples of the sealant film 70 for forming a sealant layer having a melting point of 110 ° C. or higher include LS760C manufactured by Idemitsu Unitech, TUX-HZ manufactured by Mitsui Chemicals Tosero, and the like.
  • the sealant layer 71 includes a propylene / ethylene block copolymer.
  • the sealant film 70 including the sealant layer 71 is an unstretched film containing a propylene / ethylene block copolymer as a main component.
  • the propylene / ethylene block copolymer By using the propylene / ethylene block copolymer, the impact resistance of the sealant film 70 can be increased, and thereby the bag 10 can be prevented from being broken due to the impact at the time of dropping.
  • the puncture resistance of the laminated body 30 can be improved.
  • the strength of the seal portion formed by the sealant layer 71 (hereinafter also referred to as hot seal strength) at a high temperature, for example, at 100 ° C. or higher is low. For example, it becomes extremely small compared with the seal strength at room temperature.
  • the hot seal strength at 100 ° C. is 1 ⁇ 4 or less of the seal strength at 25 ° C. (hereinafter also referred to as room temperature seal strength).
  • the hot seal strength at a width of 15 mm at 100 ° C. is 20 N or less, preferably 15 N or less.
  • the sealant layer 71 may further contain a thermoplastic elastomer. By using a thermoplastic elastomer, the impact resistance and puncture resistance of the sealant film 70 can be further enhanced.
  • the thermoplastic elastomer is, for example, a hydrogenated styrene thermoplastic elastomer.
  • the hydrogenated styrene-based thermoplastic elastomer has a structure comprising a polymer block A mainly composed of at least one vinyl aromatic compound and a polymer block B mainly composed of at least one hydrogenated conjugated diene compound.
  • the thermoplastic elastomer may be an ethylene / ⁇ -olefin elastomer.
  • the ethylene / ⁇ -olefin elastomer is a low crystalline or amorphous copolymer elastomer, which is a random copolymer of 50 to 90% by mass of ethylene as a main component and ⁇ -olefin as a comonomer. is there.
  • the content of the propylene / ethylene block copolymer in the sealant layer 71 is, for example, 80% by mass or more, and preferably 90% by mass or more.
  • Examples of the method for producing a propylene / ethylene block copolymer include a method of polymerizing propylene, ethylene, and the like as raw materials using a catalyst.
  • a catalyst Ziegler-Natta type or metallocene catalyst can be used.
  • the thickness of the sealant layer 71 is preferably 30 ⁇ m or more, and more preferably 40 ⁇ m or more.
  • the thickness of the sealant layer 71 is preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the adhesive layer 45 includes an adhesive for bonding the first film 40 and the sealant film 70.
  • adhesives include ether-based two-component reactive adhesives and ester-based two-component reactive adhesives.
  • ether-based two-component reactive adhesives examples include polyether polyurethane.
  • the polyether polyurethane is a cured product produced by a reaction between a polyether polyol as a main agent and an isocyanate compound as a curing agent.
  • Isocyanate compounds include aromatic isocyanate compounds such as tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and the like.
  • Alicyclic isocyanate compounds such as aliphatic isocyanate and isophorone diisocyanate (IPDI), or adducts or multimers of the above-mentioned various isocyanate compounds can be used.
  • ester-based two-component reactive adhesive examples include polyester polyurethane and polyester.
  • Polyester polyurethane is a cured product produced by a reaction between a polyester polyol as a main agent and an isocyanate compound as a curing agent.
  • isocyanate compound examples are the same as in the case of the ether-based two-component reactive adhesive described above.
  • the layer structure of the lower film 16 is arbitrary as long as it has an inner surface that can be joined to the inner surface of the front film 14 and the inner surface of the back film 15.
  • the above-described laminate 30 may be used as the lower film 16.
  • a film having an inner surface constituted by a sealant layer and a configuration different from that of the laminate 30 may be used as the lower film 16.
  • a resin material containing PBT as a main component is prepared.
  • the film-like base material 41 is produced by extruding a resin material by a melt extrusion method such as a cast method or a tubular method.
  • an inorganic material such as aluminum oxide may be vapor-deposited on the film-like base material 41 to form the transparent vapor deposition layer 36.
  • a transparent gas barrier coating composition 37 may be formed by applying a transparent gas barrier composition on the transparent vapor deposition layer 36.
  • the printing layer 42 is formed on the substrate 41 or the transparent gas barrier coating film 37.
  • the 1st film 40 provided with these can be obtained.
  • a sealant film 70 including the first film 40 and the sealant layer 71 described above is prepared. Subsequently, the first film 40 and the sealant film 70 are laminated via the adhesive layer 45 by a dry laminating method. Thereby, the laminated body 30 provided with the 1st film 40 and the sealant film 70 can be obtained.
  • the front film 14 and the back film 15 which consist of the above-mentioned laminated body 30 are prepared.
  • the lower film 16 in a folded state is inserted between the front film 14 and the back film 15.
  • the inner surfaces of the films are heat-sealed to form seal portions such as the lower seal portion 12a and the side seal portion 13a.
  • the films bonded to each other by heat sealing are cut into an appropriate shape to obtain a bag 10 shown in FIG.
  • the contents 18 are filled into the bag 10 through the opening 11 b of the upper portion 11.
  • the contents 18 are cooked foods containing moisture, such as curry, stew, and soup.
  • items that can be heated by hot water can be stored in the bag 10 as contents.
  • the upper part 11 is heat-sealed to form an upper seal part.
  • the bag 10 in which the contents 18 are accommodated and sealed can be obtained.
  • Heating method of the contents Next, an example of a method for heating the contents 18 contained in the bag 10.
  • FIG. 6 is a cross-sectional view showing the bag 10 in a state where the pressure in the accommodating portion 17 is increased.
  • the laminated body 30 which comprises the surface film 14 and the back film 15 contains the base material 41 which has PBT as a main component. For this reason, the rigidity of the base material 41 is high. As a result, when the front film 14 and the back film 15 receive the force F2, the base material 41 in the front film 14 and the back film 15 is prevented from extending. Can do. Thereby, the force generated due to the pressure generated in the accommodating portion 17 is not the force F2 for extending the front film 14 and the back film 15, as shown in FIG. It can be mainly used as the force F1. For this reason, the force F1 applied to the steam release seal portion 20a can be increased. Thus, the steam release seal portion 20a is easily peeled off during heating, and the steam in the housing portion 17 can be released to the outside via the steam release mechanism 20.
  • the outer surface of the laminate 130 constituting the front film 14 and the back film 15, that is, the base material is made of nylon.
  • the heat resistance of nylon is lower than that of PBT or PET.
  • the pressure generated in the accommodating portion 17 is mainly used to stretch the laminated body 130 containing nylon, and therefore the force F1 applied to the steam release seal portion 20a cannot be increased. .
  • the laminated body 130 is torn before the vapor vent seal portion 20a is peeled off, or the seal portions other than the vapor vent seal portion 20a are peeled off.
  • the laminated body 30 which comprises the surface film 14 and the back surface film 15 contains the base material 41 which has PBT as a main component, the hot tensile elasticity modulus of the laminated body 30 Can be high. For this reason, the force F1 applied to the vapor vent seal part 20a during heating can be increased. Thereby, it can suppress that the laminated body 30 is torn before the vapor vent seal part 20a peels off, or seal parts other than the vapor vent seal part 20a peel off. That is, the vapor permeability of the bag 10 can be ensured.
  • the sealant layer 71 of the laminate 30 constituting the front film 14 and the back film 15 includes a propylene / ethylene block copolymer. For this reason, the hot seal strength of the sealant layer 71 at a high temperature can be lowered, whereby the steam release seal portion 20a is more easily peeled off during heating. Therefore, the vapor permeability of the bag 10 can be further improved. Moreover, when the sealant layer 71 further includes an elastomer, the impact resistance and puncture resistance of the sealant film 70 can be improved.
  • the laminated body 30 which comprises the surface film 14 and the back surface film 15 contains the base material 41 which has PBT as a main component
  • PBT is excellent in printability.
  • the printing layer 42 can be provided on the base material 41 containing PBT similarly to the case of polyethylene terephthalate (hereinafter also referred to as PET).
  • PET polyethylene terephthalate
  • PBT is excellent in heat resistance. For this reason, it is possible to prevent the base material 41 from being deformed or the strength of the base material 41 from being lowered when the bag 10 is subjected to boil processing or retort processing. PBT has high strength.
  • puncture resistance can be given to the laminated body 30 and the bag 10 similarly to the case where the laminated body which comprises the bag 10 contains nylon.
  • the puncture strength of the laminate 30 is preferably 11N or more, more preferably 13N or more, further preferably 15N or more, and particularly preferably 17N or more.
  • a method for measuring the piercing strength will be described in Example 1 described later.
  • PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 41 containing PBT is arrange
  • Second Embodiment A second embodiment of the present invention will be described with reference to FIGS.
  • first embodiment an example in which there is only one plastic film constituting the base material of the laminated body has been shown.
  • present embodiment an example in which two plastic films constituting the base material of the laminate are present will be described.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the description thereof may be omitted.
  • FIG. 8 is a cross-sectional view showing an example of the layer configuration of the stacked body 30 in the second embodiment.
  • the laminate 30 includes at least a first film 50, a second film 60, and a sealant film 70 in this order.
  • the first film 50 is located on the outer surface 30y side
  • the sealant film 70 is located on the inner surface 30x side opposite to the outer surface 30y.
  • the first film 50 includes at least a first base material 51.
  • the first film 50 may further include a print layer 52 positioned between the first base material 51 and the second base material 61.
  • the first film 50 may further include a printing layer 52 provided on the first base material 51.
  • the second film 60 includes at least a second base material 61.
  • the sealant film 70 includes at least a sealant layer 71.
  • the first film 50 and the second film 60 are joined by a first adhesive layer 55, and the second film 60 and the sealant film 70 are joined by a second adhesive layer 65. Therefore, the laminate 30 according to the present embodiment includes the first base material / printing layer / first adhesive layer / second base material / second adhesive layer / sealant layer in order from the outer surface side to the inner surface side. It can be said. Note that “/” represents a boundary between layers.
  • first film 50 the first adhesive layer 55, the second film 60, the second adhesive layer 65, and the sealant film 70 will be described in detail.
  • the first film 50 includes a first base material 51 that forms the outer surface 30 y of the laminate 30, and a printed layer 52 that is provided on the inner surface 30 x side of the first base material 51.
  • the 1st base material 51 contains polybutylene terephthalate as a main ingredient like base material 41 in the above-mentioned 1st embodiment.
  • the 1st base material 51 contains 51 mass% or more PBT.
  • the print layer 52 is a layer printed on the first base material 51 in order to show product information or give aesthetics to the bag 10, similarly to the print layer 42 in the first embodiment described above.
  • the first adhesive layer 55 includes a first adhesive for bonding the first film 50 and the second film 60.
  • the first adhesive include an ether-based two-component reactive adhesive, an ester-based two-component reactive adhesive, and the like, as in the case of the adhesive layer 45 in the first embodiment described above. be able to.
  • the second film 60 includes at least a second base material 61.
  • the 2nd base material 61 contains PET as a main component.
  • the 2nd base material 61 contains 51 mass% or more of PET.
  • the 2nd base material 61 can have heat resistance because the 2nd base material 61 contains PET.
  • fusing point of the 2nd base material 61 becomes high, and the hygroscopic property of the 2nd base material 61 becomes low.
  • the heat resistance of PET is higher than the heat resistance of PBT.
  • the heat resistance of the laminated body 30 can be improved. Thereby, for example, when the bag 10 is heated with a microwave oven and the temperature of the contents becomes high, it is possible to prevent the laminated body 30 from being damaged and the performance of the laminated body 30 from being deteriorated.
  • the thickness of the second substrate 61 is preferably 9 ⁇ m or more, more preferably 12 ⁇ m or more. Moreover, the thickness of the 2nd base material 61 becomes like this. Preferably it is 25 micrometers or less, More preferably, it is 20 micrometers or less. By setting the thickness of the second substrate 61 to 9 ⁇ m or more, the second substrate 61 has sufficient strength. Moreover, the 2nd base material 61 comes to show the outstanding moldability by the thickness of the 2nd base material 61 being 25 micrometers or less. For this reason, the process which processes the laminated body 30 and manufactures the bag 10 can be implemented efficiently.
  • the second adhesive layer 65 includes a second adhesive for bonding the second film 60 and the sealant film 70.
  • the second adhesive include ether-based two-component reaction type adhesives.
  • the ether-based two-component reaction type adhesive include polyurethane as in the case of the first adhesive. Polyurethane is a cured product produced by a reaction between a polyol as a main agent and an isocyanate compound as a curing agent.
  • polyether polyol and polyester polyol can be used as polyol, it is preferable to use polyester polyol.
  • aromatic isocyanate compounds and aliphatic isocyanate compounds exist as isocyanate compounds.
  • aromatic isocyanate compounds elute components that cannot be used in food applications under high-temperature environments such as heat sterilization.
  • the second adhesive layer 65 is in contact with the sealant film 70 as shown in FIG.
  • the component eluted from the aromatic isocyanate compound may adhere to the content of the bag 10 comprised by the laminated body 30.
  • a second adhesive constituting the second adhesive layer 65 a cured product produced by a reaction between a polyol as a main agent and an aliphatic isocyanate compound as a curing agent is used. Suggest to use. Thereby, it can prevent that the component which cannot be used for the food use resulting from the 2nd adhesive bond layer 65 adheres to the contents.
  • the second film 60 when the second film 60 does not have a barrier property such as a gas barrier property, and the first adhesive layer 55 includes an aromatic isocyanate compound, the second film 60 was eluted from the aromatic isocyanate compound. It is also conceivable that components adhere to the contents.
  • the polyol as the main agent and the aliphatic isocyanate compound as the curing agent react as the first adhesive constituting the first adhesive layer 55. It is preferable to use a cured product produced by the above.
  • the sealant film 70 includes at least a sealant layer 71 that constitutes the inner surface 30 x of the laminate 30.
  • a sealant layer 71 that constitutes the inner surface 30 x of the laminate 30.
  • the material constituting the sealant layer 71 as in the case of the first embodiment described above, one or two or more selected from polyethylene such as low density polyethylene and linear low density polyethylene, and polypropylene are used. Resin can be used.
  • the first film 50 and the second film 60 described above are prepared. Subsequently, the first film 50 and the second film 60 are laminated via the first adhesive layer 55 by a dry laminating method. Thereafter, the laminate including the first film 50 and the second film 60 and the sealant film 70 are laminated via the second adhesive layer 65 by a dry laminating method. Thereby, the laminated body 30 provided with the 1st film 50, the 2nd film 60, and the sealant film 70 can be obtained.
  • the second film 60 and the sealant film 70 are first laminated through the second adhesive layer 65, and then the first film 50 and the laminate including the second film 60 and the sealant film 70 are first bonded.
  • the laminated body 30 may be manufactured by laminating via the agent layer 55.
  • the laminated body 30 constituting the front film 14 and the back film 15 includes a first base material 51 containing PBT as a main component.
  • the rigidity of the first base material 51 is high.
  • the force generated due to the pressure generated in the housing portion 17 can be mainly used as a force for peeling off the steam release seal portion 20a, not a force for extending the front film 14 and the back film 15. it can.
  • sticker part 20a can be enlarged.
  • the steam release seal portion 20a is easily peeled off during heating, and the steam in the housing portion 17 can be released to the outside via the steam release mechanism 20.
  • the laminated body 30 which comprises the surface film 14 and the back surface film 15 of the bag 10 contains the 1st base material 51 which has PBT as a main component
  • PBT is excellent in printability.
  • the printing layer 52 can be provided on the 1st base material 51 containing PBT similarly to the case of polyethylene terephthalate (henceforth PET).
  • PBT is excellent in heat resistance. For this reason, when performing the boil process or the retort process on the bag 10, it is possible to prevent the first base material 51 from being deformed or the strength of the first base material 51 from being lowered. PBT has high strength.
  • the puncture strength of the laminated body 30 and the bag 10 can be increased similarly to the case where the laminated body constituting the bag 10 includes nylon.
  • the puncture strength of the laminate 30 is preferably 13N or more, more preferably 15N or more, and further preferably 17N or more.
  • PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the 1st substrate 51 containing PBT is arranged on outer surface 30y of layered product 30, the 1st substrate 51 absorbs moisture, and the lamination strength of layered product 30 will fall. Can be suppressed.
  • the laminated body 30 which comprises the surface film 14 and the back surface film 15 of the bag 10 contains the 2nd base material 61 which has PET as a main component, compared with the case where the 2nd base material 61 consists of PBT,
  • the heat resistance of the laminate 30 can be increased.
  • the surface film 14 and the back film 15 are prevented from being damaged and the performance of the surface film 14 and the back film 15 is reduced. can do.
  • the sealant layer 71 of the laminated body 30 which comprises the surface film 14 and the back film 15 of the bag 10 contains a propylene-ethylene block copolymer. For this reason, the impact resistance and puncture resistance of the bag 10 can be enhanced.
  • the first substrate 51 includes 51 mass% or more of PBT
  • the second substrate 61 includes 51 mass% or more of PET, whereby the stab resistance and heat resistance of the laminate 30.
  • the example which raises is shown.
  • the present invention is not limited to this, and the first substrate 51 includes 51% by mass or more of PET, and the second substrate 61 includes 51% by mass or more of PBT. You may increase the nature.
  • the PBT of the second substrate 61 the PBT according to the first configuration described in the first embodiment or the PBT according to the second configuration can be used.
  • the fact that the second base material 61 contains 51% by mass or more of PBT and the first base material 51 contains 51% by mass or more of PET contributes to the improvement of the dimensional stability and printability of the laminate 30.
  • both the 1st base material 51 and the 2nd base material 61 may contain 51 mass% or more of PBT. Also as PBT in this case, PBT which concerns on the 1st structure demonstrated with the above-mentioned 1st base material 51, or PBT which concerns on a 2nd structure can be used.
  • Table 1 summarizes examples of combinations of materials constituting the first base member 51 and the second base member 61.
  • the notation “PBT” means that 51 mass% or more of PBT is contained in the resin constituting the film of the first base material 51 or the second base material 61.
  • the expression “PET” means that 51% by mass or more of PET is contained in the resin constituting the film of the first base material 51 or the second base material 61.
  • the printing layer 52 is provided on the inner surface 30x side of the first base material 51 .
  • the present invention is not limited to this, and the outer surface 30y side of the first base material 51 is provided.
  • the printing layer 52 may be provided on the surface. Further, the print layer 52 may not be provided on the first base material 51.
  • the transparent vapor deposition layer 36 which consists of an inorganic material which has transparency in the position between the 1st base material 51 and the 2nd base material 61 in the 1st base material 51 or / and the 2nd base material 61 is provided. It may be.
  • the transparent vapor deposition layer 36 may be provided on the surface on the inner surface 30x side of the first base material 51 as shown in FIG. 9, and the surface on the outer surface 30y side of the second base material 61 as shown in FIG. May be provided.
  • a transparent gas barrier coating film 37 having transparency may be provided on the transparent vapor deposition layer 36. Specific configurations of the transparent vapor deposition layer 36 and the transparent gas barrier coating film 37 are the same as those in the first embodiment.
  • a covalent bond between a metal atom and a carbon atom may be formed at the interface between the transparent vapor deposition layer 36 and the first substrate 51 or the second substrate 61.
  • the transparent vapor deposition layer 36 contains aluminum oxide
  • a covalent bond between an aluminum atom and a carbon atom is formed at the interface between the first base material 51 or the second base material 61 and the transparent vapor deposition layer 36. can do.
  • Covalent bonds can be detected by XPS measurements.
  • the existence ratio of the covalent bond of an aluminum atom and a carbon atom is observed when the interface between the transparent vapor deposition layer 36 and the first substrate 51 or the second substrate 61 is measured by XPS measurement. It is preferable that it is within the range of 0.3% or more and 30% or less of all the bonds containing carbon atoms. Thereby, the adhesiveness of the transparent vapor deposition layer 36 and the 1st base material 51 or the 2nd base material 61 is strengthened, transparency is excellent, and the thing of the performance with sufficient balance as a gas barrier property vapor deposition film is obtained.
  • the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is less than 0.3%, the adhesion of the transparent vapor-deposited layer 36 is not sufficiently improved, and it is difficult to stably maintain the barrier property.
  • the AL (aluminum) / O (oxygen) ratio of the transparent vapor-deposited layer 36 mainly composed of aluminum oxide is such that the first substrate 51 or the second substrate 61 and the interface between the transparent vapor-deposited layer 36 are the first.
  • it is preferably 1.0 or less.
  • the transparent vapor deposition layer 36 When forming the transparent vapor deposition layer 36 on the 1st base material 51 or the 2nd base material 61, it pre-processes, such as a corona discharge process, a flame process, and a plasma process, to the surface of the 1st base material 51 or the 2nd base material 61 previously. You may give it.
  • a covalent bond between a metal atom and a carbon atom is formed at the interface between the transparent vapor deposition layer 36 and the first base material 51 or the second base material 61, the first group on which the transparent vapor deposition layer 36 is to be formed.
  • the surface of the material 51 or the second base 61 is preferably pretreated.
  • plasma is supplied to the surface of the first base material 51 or the second base material 61 in a reduced pressure environment of 0.1 Pa or more and 100 Pa or less by the pretreatment apparatus.
  • Plasma uses an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them as a plasma source gas, and the plasma source gas is excited by a potential difference due to a high-frequency voltage or the like. By doing so, it can be generated.
  • the plasma can be confined in the vicinity of the surface of the first substrate 51 or the second substrate 61 by the pretreatment. Thereby, the shape of the surface of the 1st substrate 51 or the 2nd substrate 61, a chemical bond state, and a functional group are changed, and the chemical property of the surface of the 1st substrate 51 or the 2nd substrate 61 is changed. Can be changed. This makes it possible to improve the adhesion between the first substrate 51 or the second substrate 61 and the transparent vapor deposition layer 36.
  • the bag 10 is a gusset type bag
  • the specific configuration of the bag 10 is not particularly limited.
  • the bag 10 may be a so-called pillow bag produced by forming a back-sealed seal portion so that a single laminate is formed into a cylindrical shape.
  • the bag 10 may be a four-side sealed bag or a three-side sealed bag.
  • the steam release mechanism 20 is formed by the steam release seal portion 20a having a shape protruding from the side seal portion 13a toward the inside of the bag 10.
  • An example configured is shown.
  • the specific configuration of the steam release mechanism 20 is not particularly limited as long as the steam in the housing portion 17 can be appropriately discharged to the outside.
  • the steam release mechanism 20 may be configured by a part of the back-sealed seal portion as in the case of Patent Document 1 described above.
  • Examples 1 to 4 and Comparative Examples 1 and 2 described below are examples relating to the case where there is only one plastic film constituting the base material of the laminate described in the first embodiment.
  • Examples 5 to 8 and Comparative Examples 3 and 4 are examples relating to the case where there are two plastic films constituting the base material of the laminate described in the second embodiment. First, Examples 1 to 4 and Comparative Examples 1 and 2 will be described.
  • Example 1 A film-like base material 41 including a plurality of layers 41a described in the first configuration and manufactured by a casting method was prepared.
  • the content of PBT in each layer 41a was 80%, the number of layers 41a was 1024, and the thickness of the base material 41 was 15 ⁇ m.
  • the print layer 42 was formed on the film-like base material 41 using a finart manufactured by DIC Graphics Corporation.
  • a film-like sealant film 70 including the sealant layer 71 was prepared.
  • As the sealant layer 71 an unstretched polypropylene film ZK500 manufactured by Toray Film Processing Co., Ltd. was used. ZK500 contains the above-mentioned propylene / ethylene block copolymer and elastomer. The thickness of the sealant layer 71 was 60 ⁇ m.
  • the first film 40 and the sealant film 70 were laminated through the adhesive layer 45 by a dry laminating method, and the laminated body 30 was produced.
  • the adhesive layer 45 a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used.
  • the main agent, RU-40 is a polyester polyol.
  • the piercing strength of the laminate 30 was measured according to JIS Z1707 7.4.
  • Tensilon universal material testing machine RTC-1310 manufactured by A & D was used. Specifically, as shown in FIG. 11, a semicircular needle 80 having a diameter of 1.0 mm and a tip shape radius of 0.5 mm from the outer surface 30y side with respect to the test piece of the laminated body 30 in a fixed state. was pierced at a speed of 50 mm / min (50 mm per minute), and the maximum value of stress until the needle 80 penetrated the laminate 30 was measured. About five or more test pieces, the maximum value of stress was measured, and the average value was defined as the piercing strength of the laminate 30. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the piercing strength was 16N.
  • the tensile modulus (hereinafter also referred to as hot tensile modulus) of the laminate 30 was measured according to JIS K7127 in an atmosphere of 100 ° C.
  • a measuring instrument RTC-1310A, a tensile tester with a thermostatic bath manufactured by Orientec Co., Ltd. was used. Specifically, first, the laminate 30 was cut out to produce a rectangular test piece having a width (short side) of 15 mm. Thereafter, the test piece was pulled at a speed of 50 mm / min in the long side direction, and the tensile stress applied to the test piece was measured. Ten specimens were measured for tensile stress.
  • the maximum value of the tensile stress gradient k (see FIG. 12) was calculated. And the average value of the maximum value of the inclination k of each test piece was made into the hot tensile elasticity modulus of the laminated body 30. FIG. As a result, the hot tensile elastic modulus was 164 MPa.
  • the inner surfaces 30x of the two laminates 30 were partially heat sealed. Then, the sealing strength between the laminated bodies 30 was measured based on JISZ17077.5 in 100 degreeC atmosphere.
  • a tensile tester RTC-1310A with a constant temperature bath manufactured by Orientec Co., Ltd. was used. Specifically, first, two heat-sealed laminates 30 were cut out to produce a rectangular test piece 90 having a width (short side) of 15 mm. In the test piece 90, as shown to FIG. 13A, the two laminated bodies 30 are peeled over 15 mm from one front-end
  • FIG. 14 is a diagram showing changes in tensile stress with respect to the spacing S.
  • the maximum value of the tensile stress was measured, and the average value was taken as the seal strength of the laminate 30.
  • the distance S between the grips 91 and 92 when starting the tension was 20 mm, and the distance S between the grips 91 and 92 when finishing the tension was 40 mm.
  • the environment during the measurement was a temperature of 100 ° C. and a relative humidity of 50%.
  • the seal strength at 15 mm width (hereinafter also referred to as hot seal strength) was 13N.
  • the seal strength was measured in the same manner as described above except that the environment during measurement was 23 ° C. and the relative humidity was 50%.
  • the seal strength at 15 mm width (hereinafter also referred to as room temperature seal strength) was 61N.
  • a bag 10 was produced, and the breathability of the bag 10 was evaluated. Specifically, first, the bag 10 shown in FIG. Thereafter, 100 g of water was filled into the bag 10 and the upper part 11 was heat-sealed to form an upper seal part. At this time, the length S1 of the bag 10 was 145 mm, and the length S2 was 140 mm. Subsequently, the contents were heated using a microwave oven, and it was confirmed whether or not the vapor vent seal portion 20a of the vapor vent mechanism 20 was properly peeled off. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside.
  • Example 2 As the base material of the first film, the PBT containing 100% by mass described in the second configuration described above is included, the melting point of the PBT is 224 ° C., and the IV value is 1.26 dl / g.
  • a laminate was prepared in the same manner as in Example 1 except that the film-like base material 41 was used.
  • the base material 41 was a single layer film composed only of PBT and an additive, and the thickness of the base material 41 was 15 ⁇ m. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the piercing strength was 15 N, and the hot tensile elastic modulus was 211 MPa.
  • the sealing strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 13 N, and the normal temperature seal strength at 15 mm width was 61 N. Moreover, the vapor permeability of the bag 10 produced using the laminated body 30 was evaluated in the same manner as in Example 1. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside.
  • Example 3 A laminate was produced in the same manner as in Example 1 except that an unstretched polypropylene film ZK99S manufactured by Toray Film Processing Co., Ltd. was used as the sealant film. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the puncture strength was 16 N, and the hot tensile elastic modulus was 181 MPa.
  • the sealing strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 28 N, and the normal temperature seal strength at 15 mm width was 68 N. Moreover, the vapor permeability of the bag 10 produced using the laminated body 30 was evaluated in the same manner as in Example 1. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside.
  • Example 4 A laminate was produced in the same manner as in Example 2 except that an unstretched polypropylene film ZK99S manufactured by Toray Film Processing Co., Ltd. was used as the sealant film. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the piercing strength was 15 N, and the hot tensile elastic modulus was 198 MPa.
  • the sealing strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 28 N, and the normal temperature seal strength at 15 mm width was 68 N. Moreover, the vapor permeability of the bag 10 produced using the laminated body 30 was evaluated in the same manner as in Example 1. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside.
  • Example 1 A laminate was produced in the same manner as in Example 1 except that a nylon film having a thickness of 15 ⁇ m (Bonyl W manufactured by Kojin Holdings Co., Ltd.) was used as the base material of the first film. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the piercing strength was 15 N and the hot tensile elastic modulus was 145 MPa.
  • the sealing strength of the laminate was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 13 N, and the normal temperature seal strength at 15 mm width was 61 N. Moreover, the vapor permeability of the bag produced using the laminated body was evaluated in the same manner as in Example 1. As a result, the steam release seal portion of the steam release mechanism could not be peeled off.
  • Example 2 A laminate was produced in the same manner as in Example 1 except that a PET film having a thickness of 12 ⁇ m (T4102 manufactured by Toyobo Co., Ltd.) was used as the base material of the first film. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the puncture strength was 10 N, and the hot tensile elastic modulus was 343 MPa.
  • the sealing strength of the laminate was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 13 N, and the normal temperature seal strength at 15 mm width was 61 N. Moreover, the vapor permeability of the bag produced using the laminated body was evaluated in the same manner as in Example 1. As a result, the steam release seal part was peeled off, and the steam in the housing part was able to escape to the outside.
  • the layer structure and evaluation results of the laminates of Examples 1 to 4 and Comparative Examples 1 and 2 are collectively shown in FIG.
  • the components of the laminate excluding the adhesive layer are described from the top in order from the outer surface side layer.
  • the first film 40 of the laminated body 30 contains PBT, thereby ensuring the vapor permeability in the bag 10 produced using the laminated body 30. did it.
  • the seal part other than the steam release seal part 20a did not retreat (peel), and the steam in the housing part escaped to the outside.
  • the evaluation result was “great” or “good”.
  • Example 5 In the same manner as in Example 1, a film-like first base material 51 including a plurality of layers described in the first configuration described above and manufactured by a casting method was prepared. The content of PBT in each layer was 80%, the number of layers was 1024, and the thickness of the first base material 51 was 15 ⁇ m. Subsequently, the print layer 52 was formed on the film-like first base material 51 using a finate manufactured by DIC Graphics Corporation.
  • a film-like second film 60 including the second substrate 61 was prepared.
  • the 2nd base material 61 what contains 100 mass% PET was used.
  • the thickness of the second substrate 61 was 12 ⁇ m.
  • a film-like sealant film 70 including the sealant layer 71 was prepared.
  • As the sealant layer 71 an unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. was used. The thickness of the sealant layer 71 was 60 ⁇ m.
  • the first film 50 and the second film 60 were laminated by the dry laminating method through the first adhesive layer 55.
  • a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used.
  • RU-40 contains a polyester polyol.
  • H-4 contains an aliphatic isocyanate compound.
  • the thickness of the first adhesive layer 55 was 3 ⁇ m.
  • the laminate of the first film 50 and the second film 60 and the sealant film 70 were laminated by the dry lamination method, and the laminate 30 was obtained.
  • the second adhesive layer 65 similarly to the first adhesive layer 55, a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used.
  • the thickness of the second adhesive layer 65 was 3 ⁇ m.
  • the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N.
  • Example 2 the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated.
  • the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside. That is, the evaluation results of both heat resistance and steamability were good.
  • Example 6 As the 1st base material 51 of the 1st film 50, it contains 100 mass% PBT explained by the above-mentioned 2nd composition, Melting
  • the first base 51 was a single layer film composed only of PBT and additives, and the thickness of the first base 51 was 15 ⁇ m.
  • the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, both evaluation results of heat resistance and steamability were good.
  • Example 7 Example except that PBT constituting the first base material 51 of Example 5 was used as the second base material 61 and PET constituting the second base material 61 of Example 5 was used as the first base material 51
  • the laminated body 30 was produced like the case of 5.
  • the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, both evaluation results of heat resistance and steamability were good.
  • Example 8 Example except that PBT constituting the first base material 51 of Example 6 was used as the second base material 61 and PET constituting the second base material 61 of Example 6 was used as the first base material 51
  • the laminated body 30 was produced like the case of 6.
  • the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, both evaluation results of heat resistance and steamability were good.
  • the laminated body 30 was produced like the case of Example 5 except having used the base material containing 100 mass% PET as the 1st base material 51 of the 1st film 50.
  • FIG. The thickness of the first base material 51 was 12 ⁇ m.
  • the puncture strength of the laminate 30 was measured in the same manner as in Example 1.
  • the piercing strength was 12N.
  • the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, both evaluation results of heat resistance and steamability were good.
  • Comparative Example 4 A laminated body 30 was produced in the same manner as in Comparative Example 3 except that a 15 ⁇ m thick nylon film (Bonil W manufactured by Kojin Holdings Co., Ltd.) was used as the second substrate 61 of the second film 60. .
  • the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, holes were formed in the laminate 30. Moreover, the steam vent seal part of the steam vent mechanism could not be peeled off. That is, both evaluation results of heat resistance and steamability were bad.
  • FIG. 16 summarizes the layer configurations and evaluation results of the laminates of Examples 5 to 8 and Comparative Examples 3 and 4.
  • the components of the laminate excluding the adhesive layer are described from the top in order from the outer surface side layer.
  • both the first base 51 and the second base 61 are made of PET.
  • a high piercing strength could be realized.
  • the second base material 61 is made of a material other than nylon, specifically, PBT or PET, the second base material 61 contains nylon. Compared to the case, it was possible to achieve better heat resistance and steamability.

Abstract

Provided is a pouch having piercing resistance and heat resistance. A laminate for forming a pouch having a steam venting mechanism comprises: a substrate containing 51 mass% or more of polybutylene terephthalate; and a sealant layer which comprises at least polypropylene and which forms the inner surface of the laminate.

Description

bag
 本発明は、蒸気抜き機構を備える袋に関する。 The present invention relates to a bag provided with a steam release mechanism.
 従来、調理済あるいは半調理済の液体、粘体あるいは液体と固体とが混在する内容物を、プラスチック製の積層体から構成された袋に充填密封したものが多く市場に出回っている。袋においては、積層体同士が接合されていない非シール部が、内容物が収容される収容部を構成している。また、積層体同士が接合されているシール部が、収容部を密封している。内容物は、例えば、カレー、シチュー、スープ等の調理済食品である。内容物は、袋に収容された状態で、電子レンジなどによって加熱される。 Conventionally, many cooked or semi-cooked liquids, viscous bodies, or a mixture of liquids and solids are filled and sealed in bags made of plastic laminates. In the bag, the non-seal part to which the laminated bodies are not joined constitutes an accommodation part in which the contents are accommodated. Moreover, the sealing part to which the laminated bodies are joined has sealed the accommodating part. The contents are, for example, cooked foods such as curry, stew, and soup. The contents are heated by a microwave oven or the like while being contained in a bag.
 ところで、密封された状態の袋に収容された内容物を、電子レンジを利用して加熱すると、加熱に伴って内容物に含まれる水分が蒸発して収容部の圧力が高まっていく。袋の収容部の圧力が高まると、袋が破裂して内容物が飛散し電子レンジ内を汚してしまうおそれがある。このような課題を考慮し、例えば特許文献1~3は、収容部の圧力が高まると収容部と外部とを自動的に連通させて収容部内の蒸気を外部に逃がす蒸気抜き機構を設けることを提案している。蒸気抜き機構は、例えば、その他のシール部に比べて弱いシール強度を有する蒸気抜きシール部を含む。 By the way, when the contents stored in the sealed bag are heated using a microwave oven, the moisture contained in the contents evaporates with the heating and the pressure in the storage portion increases. When the pressure in the bag storage portion increases, the bag may rupture and the contents may be scattered to contaminate the inside of the microwave oven. Taking such problems into consideration, for example, Patent Documents 1 to 3 provide a steam venting mechanism that automatically communicates the housing part with the outside when the pressure in the housing part increases and releases the steam in the housing part to the outside. is suggesting. The steam release mechanism includes, for example, a steam release seal portion having a weaker seal strength than other seal portions.
特開平10-95472号公報Japanese Patent Laid-Open No. 10-95472 特開2003-182780号公報JP 2003-182780 A 特開2008-308183号公報JP 2008-308183 A
 袋を構成するための積層体には、先端が尖った鋭利な部材が袋に接触した場合にも袋が破けてしまうことを抑制する特性、いわゆる耐突き刺し性が求められる。このため、従来の積層体は、例えば特許文献1,2に開示されているように、高い耐突き刺し性を有するナイロンを含むフィルムを備える。一方、ナイロンは、水分を吸収し易く、且つ耐熱性に乏しい。例えば、特許文献3において課題として挙げられているように、ナイロンの層を中間に含む積層体によって構成された袋を電子レンジで加熱すると、ナイロンの層に穴が開いてしまうことがある。この点を考慮し、袋を構成するフィルムとしては主に、ポリエチレンテレフタレート(以下、PETとも記す)を含むフィルムと、ナイロンを含むフィルムと、ポリエチレンなどの熱可塑性樹脂を含むフィルムと、を積層させた積層体が用いられている。この場合、ナイロンを2つのフィルムの間に設けることにより、ナイロンが水分を吸収することを抑制することができる。 The laminate for constituting the bag is required to have a characteristic that prevents the bag from being broken even when a sharp member with a sharp tip contacts the bag, so-called stab resistance. For this reason, the conventional laminated body is provided with the film containing nylon which has high puncture resistance property, for example, as disclosed in Patent Documents 1 and 2. On the other hand, nylon is easy to absorb moisture and has poor heat resistance. For example, as cited as a problem in Patent Document 3, when a bag made of a laminate including a nylon layer in the middle is heated in a microwave oven, a hole may be formed in the nylon layer. Considering this point, as a film constituting the bag, a film containing polyethylene terephthalate (hereinafter also referred to as PET), a film containing nylon, and a film containing a thermoplastic resin such as polyethylene are laminated. A laminated body is used. In this case, the nylon can be prevented from absorbing moisture by providing the nylon between the two films.
 しかしながら、ナイロンは、熱によって軟化し易いという特性を有している。このため、積層体がナイロンを含む場合、内容物に含まれる水分が蒸発することによって収容部に生じる圧力が、ナイロンを含むフィルムを伸ばすことに利用される。この結果、蒸気抜きシール部などの蒸気抜き機構に加わる力が小さくなってしまい、蒸気抜きシール部を剥離させることができず、収容部内の蒸気を外部に逃がすことができなくなってしまう可能性がある。 However, nylon has a characteristic that it is easily softened by heat. For this reason, when a laminated body contains nylon, the pressure which arises in a accommodating part when the water | moisture content contained in the content evaporates is utilized for extending the film containing nylon. As a result, the force applied to the steam release mechanism such as the steam release seal portion becomes small, the steam release seal portion cannot be peeled off, and the steam in the housing portion may not be allowed to escape to the outside. is there.
 また、特許文献3は、表面の層及び中間の層をともにPETで構成することを提案している。しかしながら、PETによっては十分な耐突き刺し性を実現することが困難であると考えられる。 Patent Document 3 proposes that both the surface layer and the intermediate layer are made of PET. However, it is considered difficult to achieve sufficient puncture resistance depending on PET.
 本発明は、このような課題を効果的に解決し得る袋を提供することを目的とする。 The present invention aims to provide a bag that can effectively solve such problems.
 本発明は、蒸気抜き機構を有する袋であって、前記袋を構成する積層体は、51質量%以上のポリブチレンテレフタレートを含む基材と、ポリプロピレンを少なくとも含み、前記積層体の内面を構成するシーラント層と、を備える、袋である。 The present invention is a bag having a vapor venting mechanism, wherein the laminate constituting the bag includes at least a base material containing 51% by mass or more of polybutylene terephthalate and polypropylene, and constitutes an inner surface of the laminate. And a sealant layer.
 本発明による袋において、前記積層体の突き刺し強度が13N以上であってもよい。 In the bag according to the present invention, the piercing strength of the laminate may be 13N or more.
 本発明による袋において、ポリブチレンテレフタレートを含む前記基材は、10層以上を含む多層構造部を有していてもよい。若しくは、ポリブチレンテレフタレートを含む前記基材は、1.10dl/g以上且つ1.35dl/g以下のIV値を有する単層構造からなっていてもよい。 In the bag according to the present invention, the base material including polybutylene terephthalate may have a multilayer structure including 10 layers or more. Alternatively, the base material containing polybutylene terephthalate may have a single layer structure having an IV value of 1.10 dl / g or more and 1.35 dl / g or less.
 本発明による袋において、前記シーラント層は、90質量%以上のポリプロピレンを含んでいてもよい。 In the bag according to the present invention, the sealant layer may contain 90% by mass or more of polypropylene.
 本発明による袋において、前記積層体は、外面側から内面側へ順に
  基材/印刷層/接着剤層/シーラント層、又は
  基材/透明蒸着層/透明ガスバリア性塗布膜/印刷層/接着剤層/シーラント層、を含んでいてもよい。
In the bag according to the present invention, the laminate is in the order from the outer surface side to the inner surface side: base material / printing layer / adhesive layer / sealant layer, or base material / transparent vapor deposition layer / transparent gas barrier coating film / printing layer / adhesive. A layer / sealant layer may be included.
 本発明による袋において、前記積層体は、外面側から内面側へ順に
  基材/透明蒸着層/透明ガスバリア性塗布膜/印刷層/接着剤層/シーラント層、を含み、
 前記透明蒸着層は、酸化アルミニウムを含み、前記基材と前記透明蒸着層との界面に、アルミニウム原子と炭素原子の共有結合が形成されていてもよい。
In the bag according to the present invention, the laminate includes a base material / a transparent deposition layer / a transparent gas barrier coating film / a printing layer / an adhesive layer / a sealant layer in order from the outer surface side to the inner surface side.
The transparent vapor deposition layer may contain aluminum oxide, and a covalent bond between an aluminum atom and a carbon atom may be formed at the interface between the base material and the transparent vapor deposition layer.
 本発明による袋において、前記積層体は、第1基材、第2基材及びシーラント層をこの順で少なくとも備え、前記第1基材と前記第2基材のうち、一方が、51質量%以上のポリブチレンテレフタレートを含む前記基材であり、他方が、ポリエチレンテレフタレートを含んでいてもよい。 In the bag according to the present invention, the laminate includes at least a first base material, a second base material, and a sealant layer in this order, and one of the first base material and the second base material is 51% by mass. It is the said base material containing the above polybutylene terephthalate, and the other may contain the polyethylene terephthalate.
 本発明による袋において、前記積層体は、前記第1基材と前記第2基材との間において前記第1基材又は前記第2基材に設けられた透明蒸着層と、前記透明蒸着層上に設けられた透明ガスバリア性塗布膜と、を更に含んでいてもよい。 The bag by this invention WHEREIN: The said laminated body is a transparent vapor deposition layer provided in the said 1st base material or the said 2nd base material between the said 1st base material and the said 2nd base material, The said transparent vapor deposition layer And a transparent gas barrier coating film provided thereon.
 本発明による袋において、前記透明蒸着層は、酸化アルミニウムを含み、前記第1基材又は前記第2基材と前記透明蒸着層との界面に、アルミニウム原子と炭素原子の共有結合が形成されていてもよい。 In the bag according to the present invention, the transparent vapor deposition layer includes aluminum oxide, and a covalent bond between an aluminum atom and a carbon atom is formed at an interface between the first base material or the second base material and the transparent vapor deposition layer. May be.
 本発明による袋において、前記第1基材が、ポリエチレンテレフタレートを含み、前記第2基材が、ポリブチレンテレフタレートを含んでいてもよい。 In the bag according to the present invention, the first base material may include polyethylene terephthalate, and the second base material may include polybutylene terephthalate.
 本発明による袋において、前記第1基材が、ポリブチレンテレフタレートを含み、前記第2基材が、ポリエチレンテレフタレートを含んでいてもよい。 In the bag according to the present invention, the first base material may include polybutylene terephthalate, and the second base material may include polyethylene terephthalate.
 本発明によれば、袋に耐突き刺し性及び耐熱性を持たせることができる。 According to the present invention, the bag can have puncture resistance and heat resistance.
本発明の第1の実施の形態における袋を示す正面図である。It is a front view which shows the bag in the 1st Embodiment of this invention. 図1に示す袋をIII-III線に沿って見た場合を示す断面図である。FIG. 3 is a cross-sectional view showing the bag shown in FIG. 1 as viewed along line III-III. 第1の実施の形態における積層体の層構成の一例を示す断面図である。It is sectional drawing which shows an example of the laminated constitution of the laminated body in 1st Embodiment. 積層体の第1フィルムの層構成の一例を示す断面図である。It is sectional drawing which shows an example of the laminated constitution of the 1st film of a laminated body. 第1の実施の形態における積層体の層構成のその他の例を示す断面図である。It is sectional drawing which shows the other example of the layer structure of the laminated body in 1st Embodiment. 収容部の圧力が高まった状態の袋を示す断面図である。It is sectional drawing which shows the bag of the state in which the pressure of the accommodating part increased. 収容部の圧力が高まった状態の、比較の形態による袋を示す断面図である。It is sectional drawing which shows the bag by the form of a comparison of the state which the pressure of the accommodating part increased. 第2の実施の形態における積層体の層構成の一例を示す断面図である。It is sectional drawing which shows an example of the laminated constitution of the laminated body in 2nd Embodiment. 第2の実施の形態における積層体の層構成のその他の例を示す断面図である。It is sectional drawing which shows the other example of the layer structure of the laminated body in 2nd Embodiment. 第2の実施の形態における積層体の層構成のその他の例を示す断面図である。It is sectional drawing which shows the other example of the layer structure of the laminated body in 2nd Embodiment. 突き刺し強度の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of piercing strength. 試験片の引張長さに対する引張応力の変化を示す図である。It is a figure which shows the change of the tensile stress with respect to the tensile length of a test piece. シール強度の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of seal strength. シール強度の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of seal strength. シール強度を測定するために積層体を引っ張る一対のつかみ具の間の間隔に対する引張応力の変化を示す図である。It is a figure which shows the change of the tensile stress with respect to the space | interval between a pair of grips which pulls a laminated body in order to measure a seal strength. 実施例1~4及び比較例1,2の評価結果を示す図である。It is a figure which shows the evaluation result of Examples 1-4 and Comparative Examples 1 and 2. FIG. 実施例5~8及び比較例3,4の評価結果を示す図である。It is a figure which shows the evaluation result of Examples 5-8 and Comparative Examples 3 and 4.
 第1の実施の形態
 図1乃至図7を参照して、本発明の第1の実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、縮尺および縦横の寸法比等を、実物のそれらから適宜変更し誇張してある。
First Embodiment A first embodiment of the present invention will be described with reference to FIGS. Note that, in the drawings attached to the present specification, for convenience of illustration and understanding, the scale and vertical / horizontal dimension ratios are appropriately changed and exaggerated from those of the actual ones.
 また、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。 In addition, as used in this specification, the shape and geometric conditions and the degree thereof are specified, for example, terms such as “parallel”, “orthogonal”, “identical”, length and angle values, etc. are strictly Without being bound by meaning, it should be interpreted including the extent to which similar functions can be expected.
 図1は、本実施の形態による袋10を示す正面図である。袋10は、内容物を収容する収容部17を備える。なお、図1においては、内容物が充填される前の状態の袋10が示されている。本実施の形態による袋10は、電子レンジによって内容物が加熱される電子レンジ用パウチとして好適に使用することができるよう構成されている。 FIG. 1 is a front view showing a bag 10 according to the present embodiment. The bag 10 includes a storage portion 17 that stores the contents. In addition, in FIG. 1, the bag 10 of the state before being filled with the content is shown. The bag 10 by this Embodiment is comprised so that it can be conveniently used as a pouch for microwave ovens in which the contents are heated with a microwave oven.
 図1に示すように、本実施の形態による袋10は、袋10に収容された内容物を加熱する際に発生する蒸気を外部に逃がすための蒸気抜き機構20を備える。蒸気抜き機構20は、蒸気の圧力が所定値以上になったときに袋10の内部と外部とを連通させて蒸気を逃がすとともに、蒸気抜き機構20以外の箇所から蒸気抜けが生じることを抑制するよう、構成されている。以下、袋10の構成について説明する。 As shown in FIG. 1, the bag 10 according to the present embodiment includes a steam venting mechanism 20 for escaping steam generated when the contents stored in the bag 10 are heated. The steam release mechanism 20 allows the inside and outside of the bag 10 to communicate with each other when the pressure of the steam reaches a predetermined value or more to release the steam, and suppresses the occurrence of steam escape from locations other than the steam release mechanism 20. It is configured as such. Hereinafter, the configuration of the bag 10 will be described.
 
 本実施の形態において、袋10は、自立可能に構成されたガセット式の袋である。袋10は、上部11、下部12及び側部13を含み、正面図において略矩形状の輪郭を有する。なお、「上部」、「下部」及び「側部」などの名称、並びに、「上方」、「下方」などの用語は、ガセット部を下にして袋10が自立している状態を基準として袋10やその構成要素の位置や方向を相対的に表したものに過ぎない。袋10の輸送時や使用時の姿勢などは、本明細書における名称や用語によっては限定されない。
In the present embodiment, the bag 10 is a gusseted bag configured to be able to stand on its own. The bag 10 includes an upper portion 11, a lower portion 12, and a side portion 13, and has a substantially rectangular outline in a front view. It should be noted that names such as “upper”, “lower” and “side”, and terms such as “upper” and “lower” refer to a bag based on the state in which the bag 10 is self-supporting with the gusset portion down. It is only a relative representation of the position and direction of 10 and its components. The attitude | position at the time of transport of the bag 10 or use is not limited by the name and terminology in this specification.
 図1に示すように、袋10は、表面を構成する表面フィルム14、裏面を構成する裏面フィルム15、及び、下部12を構成する下部フィルム16を備える。下部フィルム16は、折り返し部16fで折り返された状態で、表面フィルム14と裏面フィルム15との間に配置されている。 As shown in FIG. 1, the bag 10 includes a surface film 14 that constitutes the front surface, a back film 15 that constitutes the back surface, and a lower film 16 that constitutes the lower portion 12. The lower film 16 is disposed between the front film 14 and the back film 15 in a state where the lower film 16 is folded at the folded portion 16f.
 なお、上述の「表面フィルム」、「裏面フィルム」及び「下部フィルム」という用語は、位置関係に応じて各フィルムを区画したものに過ぎず、袋10を製造する際のフィルムの提供方法が、上述の用語によって限定されることはない。例えば、袋10は、表面フィルム14と裏面フィルム15と下部フィルム16が連設された1枚のフィルムを用いて製造されてもよく、表面フィルム14と下部フィルム16が連設された1枚のフィルムと1枚の裏面フィルム15の計2枚のフィルムを用いて製造されてもよく、1枚の表面フィルム14と1枚の裏面フィルム15と1枚の下部フィルム16の計3枚のフィルムを用いて製造されてもよい。 In addition, the term “surface film”, “back film” and “lower film” described above is merely a partition of each film according to the positional relationship, and the method of providing a film when manufacturing the bag 10 It is not limited by the above terms. For example, the bag 10 may be manufactured using one film in which the front film 14, the back film 15, and the lower film 16 are continuously provided, or one sheet in which the front film 14 and the lower film 16 are continuously provided. It may be manufactured using a total of two films, a film and one back film 15, and a total of three films, one surface film 14, one back film 15, and one lower film 16. May be used.
 表面フィルム14、裏面フィルム15及び下部フィルム16は、内面同士がシール部によって接合されている。図1などの袋10の平面図においは、シール部にハッチングが施されている。 The inner surfaces of the front film 14, the back film 15, and the lower film 16 are joined together by a seal portion. In the plan view of the bag 10 shown in FIG. 1 and the like, the seal portion is hatched.
 図1に示すように、シール部は、袋10の外縁に沿って延びる外縁シール部と、蒸気抜き機構20を構成する蒸気抜きシール部20aと、を有する。外縁シール部は、下部12に広がる下部シール部12a、及び、一対の側部13に沿って延びる一対の側部シール部13aを含む。なお、内容物が充填される前の状態の袋10においては、図1に示すように、袋10の上部11は開口部11bになっている。袋10に内容物を収容した後、表面フィルム14の内面と裏面フィルム15の内面とを上部11において接合することにより、上部シール部が形成されて袋10が封止される。 As shown in FIG. 1, the seal portion has an outer edge seal portion extending along the outer edge of the bag 10 and a steam vent seal portion 20 a constituting the steam vent mechanism 20. The outer edge seal portion includes a lower seal portion 12 a extending in the lower portion 12 and a pair of side seal portions 13 a extending along the pair of side portions 13. In addition, in the bag 10 in a state before being filled with the contents, as shown in FIG. 1, the upper portion 11 of the bag 10 is an opening 11b. After the contents are stored in the bag 10, the inner surface of the front film 14 and the inner surface of the back film 15 are joined at the upper portion 11, whereby an upper seal portion is formed and the bag 10 is sealed.
 側部シール部13a、蒸気抜きシール部20a及び後述する上部シール部は、表面フィルム14の内面と裏面フィルム15の内面とを接合することによって構成されるシール部である。一方、下部シール部12aは、表面フィルム14の内面と下部フィルム16の内面とを接合することによって構成されるシール部、及び、裏面フィルム15の内面と下部フィルム16の内面とを接合することによって構成されるシール部を含む。 The side seal portion 13a, the steam release seal portion 20a, and the upper seal portion described later are seal portions configured by joining the inner surface of the surface film 14 and the inner surface of the back film 15. On the other hand, the lower seal portion 12a is formed by bonding the inner surface of the surface film 14 and the inner surface of the lower film 16, and by bonding the inner surface of the back film 15 and the inner surface of the lower film 16. Including a configured seal.
 対向するフィルム同士を接合して袋10を封止することができる限りにおいて、シール部を形成するための方法が特に限られることはない。例えば、加熱などによってフィルムの内面を溶融させ、内面同士を溶着させることによって、すなわちヒートシールによって、シール部を形成してもよい。若しくは、接着剤などを用いて対向するフィルムの内面同士を接着することによって、シール部を形成してもよい。 As long as the opposing films can be joined and the bag 10 can be sealed, the method for forming the seal portion is not particularly limited. For example, the sealing portion may be formed by melting the inner surfaces of the film by heating or the like and welding the inner surfaces, that is, by heat sealing. Or you may form a seal | sticker part by adhere | attaching the inner surfaces of the opposing film using an adhesive agent etc.
 蒸気抜き機構
 以下、蒸気抜き機構20の構成について説明する。図2は、図1に示す袋10の蒸気抜き機構20をII-II線に沿って見た場合を示す断面図である。
Venting mechanism following describes the structure of venting mechanism 20. FIG. 2 is a cross-sectional view showing a case where the vapor venting mechanism 20 of the bag 10 shown in FIG. 1 is viewed along line II-II.
 蒸気抜き機構20の蒸気抜きシール部20aは、収容部17の圧力の増加に伴って剥離され易い形状を有している。例えば、蒸気抜きシール部20aは、側部シール部13aから袋10の内側に向かって突出した形状を有している。これにより、収容部17の圧力が増加した際に蒸気抜きシール部20aに加わる力を、側部シール部13aに加わる力よりも大きくすることができる。また、蒸気抜きシール部20aの幅は、側部シール部13aの幅よりも小さくなっている。また、図1及び図2に示すように、蒸気抜きシール部20aと側部13の外縁との間には非シール部20bが形成されている。これにより、側部シール部13aに比べて蒸気抜きシール部20aにおいて、シール部の剥離に起因する収容部17と外部との連通を生じ易くすることができる。 The steam release seal portion 20a of the steam release mechanism 20 has a shape that is easily peeled off as the pressure in the housing portion 17 increases. For example, the steam release seal portion 20 a has a shape protruding from the side seal portion 13 a toward the inside of the bag 10. Thereby, when the pressure of the accommodating part 17 increases, the force added to the steam release seal part 20a can be made larger than the force applied to the side seal part 13a. Moreover, the width | variety of the steam release seal | sticker part 20a is smaller than the width | variety of the side part seal | sticker part 13a. As shown in FIGS. 1 and 2, a non-seal portion 20 b is formed between the steam release seal portion 20 a and the outer edge of the side portion 13. Thereby, compared with the side seal part 13a, in the steam release seal part 20a, it is possible to easily cause communication between the housing part 17 and the outside due to peeling of the seal part.
 表面フィルム及び裏面フィルムの層構成
 次に、表面フィルム14及び裏面フィルム15の層構成について説明する。図3は、表面フィルム14及び裏面フィルム15を構成する積層体30を示す断面図である。
Next, the layer structure of the front film 14 and the back film 15 will be described. FIG. 3 is a cross-sectional view showing the laminated body 30 constituting the front film 14 and the back film 15.
 図3に示すように、積層体30は、第1フィルム40と、接着剤層45を介して第1フィルム40に積層されたシーラントフィルム70と、を備える。第1フィルム40は、外面30y側に位置しており、シーラントフィルム70は、外面30yの反対側の内面30x側に位置している。内面30xは、収容部17側に位置する面である。第1フィルム40は、基材41及び印刷層42を含む。また、シーラントフィルム70はシーラント層71を含む。従って、本実施の形態による積層体30は、外面30y側から内面30x側へ順に
  基材/印刷層/接着剤層/シーラント層
を備えている、と言える。なお、「/」は層と層の境界を表している。
As shown in FIG. 3, the laminate 30 includes a first film 40 and a sealant film 70 laminated on the first film 40 with an adhesive layer 45 interposed therebetween. The first film 40 is located on the outer surface 30y side, and the sealant film 70 is located on the inner surface 30x side opposite to the outer surface 30y. The inner surface 30x is a surface located on the accommodating portion 17 side. The first film 40 includes a base material 41 and a print layer 42. The sealant film 70 includes a sealant layer 71. Therefore, it can be said that the laminated body 30 by this Embodiment is equipped with the base material / printing layer / adhesive layer / sealant layer in order from the outer surface 30y side to the inner surface 30x side. Note that “/” represents a boundary between layers.
 以下、第1フィルム40、シーラントフィルム70及び接着剤層45についてそれぞれ詳細に説明する。 Hereinafter, each of the first film 40, the sealant film 70, and the adhesive layer 45 will be described in detail.
 (第1フィルム)
 図3に示すように、第1フィルム40は、積層体30の外面30yを構成する基材41と、基材41の内面30x側に設けられた印刷層42と、を少なくとも備える。印刷層42は、袋10に製品情報を示したり美感を付与したりするために基材41に印刷された層である。印刷層42は、文字、数字、記号、図形、絵柄などを表現する。印刷層42を構成する材料としては、グラビア印刷用のインキやフレキソ印刷用のインキを用いることができる。グラビア印刷用のインキの具体例としては、DICグラフィックス株式会社製のフィナートを挙げることができる。
(First film)
As shown in FIG. 3, the first film 40 includes at least a base material 41 constituting the outer surface 30 y of the laminate 30 and a printed layer 42 provided on the inner surface 30 x side of the base material 41. The printed layer 42 is a layer printed on the base material 41 in order to show product information or impart aesthetics to the bag 10. The print layer 42 expresses characters, numbers, symbols, figures, patterns, and the like. As a material constituting the printing layer 42, an ink for gravure printing or an ink for flexographic printing can be used. As a specific example of the ink for gravure printing, FINAT manufactured by DIC Graphics Corporation can be given.
 基材41は、主成分としてポリブチレンテレフタレート(以下、PBTとも記す)を含む。例えば、基材41は、51質量%以上のPBTを含む。以下、基材41がPBTを含むことの利点について説明する。 The base material 41 includes polybutylene terephthalate (hereinafter also referred to as PBT) as a main component. For example, the base material 41 includes 51% by mass or more of PBT. Hereinafter, the advantage that the base material 41 includes PBT will be described.
 PBTは、寸法安定性に優れており、従って印刷適性に優れる。このため、ポリエチレンテレフタレート(以下、PETとも記す)の場合と同様に、PBTを含む基材41上に印刷層42を設けることができる。 PBT has excellent dimensional stability and therefore excellent printability. For this reason, the printing layer 42 can be provided on the base material 41 containing PBT similarly to the case of polyethylene terephthalate (hereinafter also referred to as PET).
 また、PBTは、耐熱性に優れる。このため、袋10にボイル処理やレトルト処理を施す際に基材41が変形したり基材41の強度が低下したりすることを抑制することができる。レトルト処理とは、内容物を袋10に充填して袋10を密封した後、蒸気又は加熱温水を利用して袋10を加圧状態で加熱する処理である。レトルト処理の温度は、例えば120℃以上である。ボイル処理とは、内容物を袋10に充填して袋10を密封した後、袋10を大気圧下で湯煎する処理である。ボイル処理の温度は、例えば90℃以上且つ100℃以下である。
 また、PBTが耐熱性を有することにより、消費者が袋10を加熱する際に収容部17に生じる圧力によって基材41が伸びてしまうことを抑制することができる。このことにより、収容部17に生じる圧力を、蒸気抜き機構20の蒸気抜きシール部20aを剥離させる力として効果的に利用することができる。このため、加熱時に蒸気抜き機構20を介して収容部17内の蒸気を外部に逃がすことができる。
Moreover, PBT is excellent in heat resistance. For this reason, it is possible to prevent the base material 41 from being deformed or the strength of the base material 41 from being lowered when the bag 10 is subjected to boil processing or retort processing. The retort process is a process of heating the bag 10 in a pressurized state using steam or heated hot water after filling the bag 10 with the contents and sealing the bag 10. The temperature of retort processing is 120 degreeC or more, for example. The boil process is a process of filling the bag 10 with the contents and sealing the bag 10 and then bathing the bag 10 under atmospheric pressure. The temperature of boil processing is 90 degreeC or more and 100 degrees C or less, for example.
Moreover, when PBT has heat resistance, it can suppress that the base material 41 expands with the pressure which arises in the accommodating part 17 when a consumer heats the bag 10. FIG. Thereby, the pressure generated in the housing part 17 can be effectively used as a force for peeling off the steam release seal part 20a of the steam release mechanism 20. For this reason, the vapor | steam in the accommodating part 17 can be escaped outside via the vapor removal mechanism 20 at the time of a heating.
 また、PBTは、高い強度を有する。このため、袋10を構成する積層体がナイロンを含む場合と同様に、袋10に耐突き刺し性を持たせることができる。 Also, PBT has high strength. For this reason, the stab resistance can be given to the bag 10 similarly to the case where the laminated body which comprises the bag 10 contains nylon.
 また、PBTは、ナイロンに比べて水分を吸収しにくいという特性を有する。このため、PBTを含む基材41を積層体30の外面30yに配置した場合であっても、基材41が水分を吸収して積層体30のラミネート強度が低下してしまうことを抑制することができる。 Also, PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 41 containing PBT is arrange | positioned on the outer surface 30y of the laminated body 30, it suppresses that the base material 41 absorbs a water | moisture content and the laminate strength of the laminated body 30 falls. Can do.
 以下、PBTを含む基材41の構成について詳細に説明する。本実施の形態における、PBTを含む基材41の構成としては、下記の第1の構成又は第2の構成のいずれを採用してもよい。 Hereinafter, the configuration of the base material 41 including PBT will be described in detail. As the configuration of the base material 41 including PBT in the present embodiment, any of the following first configuration or second configuration may be adopted.
 〔基材の第1の構成〕
 第1の構成に係る基材41におけるPBTの含有率は、51質量%以上が好ましく、60質量%以上がより好ましく、さらには70質量%以上、特には75質量%以上が好ましく、最も好ましくは80質量%以上である。PBTの含有率を51質量%以上にすることにより、第1フィルム40に優れたインパクト強度および耐ピンホール性を持たせることができる。
[First Configuration of Substrate]
The content of PBT in the base material 41 according to the first configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further 70% by mass or more, particularly preferably 75% by mass or more, and most preferably. 80% by mass or more. By setting the content of PBT to 51% by mass or more, the first film 40 can have excellent impact strength and pinhole resistance.
 主たる構成成分として用いるPBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり、最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは、重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。 PBT used as a main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, most preferably 100 mol% or more of terephthalic acid as a dicarboxylic acid component. Mol%. 1,4-butanediol as the glycol component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol during polymerization. It is not included except by-products generated by the ether bond of butanediol.
 基材41は、PBT以外のポリエステル樹脂を含んでいてもよい。これにより、例えばフィルム状の基材41を二軸延伸させる場合の成膜性や基材41の力学特性を調整することができる。
 PBT以外のポリエステル樹脂としては、PET、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂や、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等のジオール成分が共重合されたPBT樹脂を挙げることができる。
The base material 41 may contain a polyester resin other than PBT. Thereby, for example, the film formability when the film-like substrate 41 is biaxially stretched and the mechanical properties of the substrate 41 can be adjusted.
Polyester resins other than PBT include polyester resins such as PET, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), as well as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, and biphenyldicarboxylic acid. , PBT resin copolymerized with dicarboxylic acid such as cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5 -Diols such as pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, polycarbonate diol Min can be mentioned copolymerized PBT resin.
 これらPBT以外のポリエステル樹脂の添加量は、49質量%以下が好ましく、40質量%以下がより好ましい。PBT以外のポリエステル樹脂の添加量が49質量%を超えると、PBTとしての力学特性が損なわれ、インパクト強度や耐ピンホール性、絞り成形性が不十分となることが考えられる。 The amount of the polyester resin other than PBT is preferably 49% by mass or less, and more preferably 40% by mass or less. If the addition amount of the polyester resin other than PBT exceeds 49% by mass, the mechanical properties as PBT may be impaired, and impact strength, pinhole resistance, and drawability may be insufficient.
 基材41は、添加剤として、柔軟なポリエーテル成分、ポリカーボネート成分、ポリエステル成分の少なくともいずれかを共重合したポリエステル系およびポリアミド系エラストマーを含んでいてもよい。これにより、屈曲時の耐ピンホール性を改善することができる。添加剤の添加量は、例えば20質量%である。添加剤の添加量が20質量%を超えると、添加剤としての効果が飽和することや、基材41の透明性が低下することなどが起こり得る。 The base material 41 may contain, as an additive, a polyester-based or polyamide-based elastomer obtained by copolymerizing at least one of a flexible polyether component, a polycarbonate component, and a polyester component. Thereby, the pinhole resistance at the time of bending can be improved. The additive amount of the additive is, for example, 20% by mass. When the addition amount of the additive exceeds 20% by mass, the effect as the additive may be saturated, or the transparency of the base material 41 may be reduced.
 第1の構成に係るフィルム状の基材41を作製する方法の一例について説明する。ここでは、キャスト法によってフィルム状の基材41を作製する方法について説明する。より具体的には、キャスト時に同一の組成の樹脂を多層化してキャストする方法について説明する。 An example of a method for producing the film-like base material 41 according to the first configuration will be described. Here, a method for producing the film-like base material 41 by a casting method will be described. More specifically, a method of casting a resin having the same composition in multiple layers during casting will be described.
 PBTは結晶化速度が速いため、キャスト時にも結晶化が進行する。このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、結晶が大きなサイズに成長してしまい、得られた未延伸原反の降伏応力が高くなる。このため、未延伸原反を二軸延伸する際に破断しやすくなる。また、得られた二軸延伸フィルムの降伏応力が高くなり、二軸延伸フィルムの成形性が不十分になってしまうことが考えられる。
 これに対して、キャスト時に同一の樹脂を多層化すれば、未延伸シートの延伸応力を低減することができる。このため、安定した二軸延伸が可能となり、また、得られた二軸延伸フィルムの降伏応力が低くなる。このことにより、柔軟かつ破断強度の高いフィルムを得ることができる。
Since PBT has a high crystallization speed, crystallization proceeds even during casting. At this time, when cast as a single layer without being multi-layered, there is no barrier that can suppress the growth of the crystal, so the crystal grows to a large size, and the resulting unstretched original fabric is obtained. The yield stress of becomes higher. For this reason, it becomes easy to fracture when the unstretched original fabric is biaxially stretched. Moreover, it is possible that the yield stress of the obtained biaxially stretched film becomes high and the moldability of the biaxially stretched film becomes insufficient.
On the other hand, if the same resin is multilayered at the time of casting, the stretching stress of the unstretched sheet can be reduced. For this reason, stable biaxial stretching is possible, and the yield stress of the obtained biaxially stretched film is reduced. Thereby, a flexible and high breaking strength film can be obtained.
 図4は、第1フィルムの層構成の一例を示す断面図である。樹脂を多層化してキャストすることによって基材41が作製される場合、図4に示すように、第1フィルム40の基材41は、複数の層41aを含む多層構造部からなる。複数の層41aはそれぞれ、主成分としてPBTを含む。例えば、複数の層41aはそれぞれ、好ましくは51質量%以上のPBTを含み、より好ましくは60質量%以上のPBTを含む。なお、複数の層41aにおいては、n番目の層41aの上にn+1番目の層41aが直接積層されている。すなわち、複数の層41aの間には、接着剤層や接着層が介在されていない。 FIG. 4 is a cross-sectional view showing an example of the layer structure of the first film. When the base material 41 is produced by casting the resin in multiple layers, as shown in FIG. 4, the base material 41 of the first film 40 is composed of a multilayer structure including a plurality of layers 41a. Each of the plurality of layers 41a includes PBT as a main component. For example, each of the plurality of layers 41a preferably includes 51% by mass or more of PBT, and more preferably includes 60% by mass or more of PBT. In the plurality of layers 41a, the (n + 1) th layer 41a is directly stacked on the nth layer 41a. That is, no adhesive layer or adhesive layer is interposed between the plurality of layers 41a.
 多層化によりPBTフィルムの特性が改善される原因については、下記のように推測する。樹脂を積層する場合、樹脂の組成が同一の場合であっても層の界面が存在し、その界面により結晶化が加速される。一方、層の厚みを越えた大きな結晶の成長は抑制される。このため、結晶(球晶)のサイズが小さくなるものと考えられる。 The reason why the properties of the PBT film are improved by multilayering is estimated as follows. When the resins are laminated, even if the resin composition is the same, a layer interface exists, and crystallization is accelerated by the interface. On the other hand, the growth of large crystals beyond the layer thickness is suppressed. For this reason, it is considered that the size of the crystal (spherulite) becomes small.
 多層化により球晶のサイズを小さくするための具体的な方法としては、一般的な多層化装置(多層フィードブロック、スタティックミキサー、多層マルチマニホールドなど)を用いることができる。例えば、例えば、二台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂を、フィードブロックやスタティックミキサー、マルチマニホールドダイ等を用いて多層に積層する方法等を使用することができる。なお、同一の組成の樹脂を多層化する場合、一台の押出機のみを用いて、押出機からダイまでのメルトラインに上述の多層化装置を導入することも可能である。 As a specific method for reducing the size of spherulites by multilayering, a general multilayering apparatus (multilayer feed block, static mixer, multilayer multimanifold, etc.) can be used. For example, for example, a method of laminating thermoplastic resins sent out from different flow paths using two or more extruders using a feed block, a static mixer, a multi-manifold die, or the like can be used. . In addition, when multilayering resin of the same composition, it is also possible to introduce the above multilayering apparatus into the melt line from the extruder to the die using only one extruder.
 基材41は、少なくとも10層以上、好ましくは60層以上、より好ましくは250層以上、更に好ましくは1000層以上の層41aを含む多層構造部からなる。層数を多くすることにより、未延伸原反の状態のPBTにおける球晶のサイズを小さくすることができ、その後の二軸延伸を安定に実施することができる。また、二軸延伸フィルムの状態のPBTの降伏応力を小さくすることができる。好ましくは、未延伸原反のPBTにおける球晶の直径は、500nm以下である。 The substrate 41 is composed of a multilayer structure including at least 10 layers, preferably 60 layers or more, more preferably 250 layers or more, and even more preferably 1000 layers or more. By increasing the number of layers, the size of spherulites in the unstretched raw PBT can be reduced, and the subsequent biaxial stretching can be carried out stably. Moreover, the yield stress of PBT in the state of a biaxially stretched film can be made small. Preferably, the diameter of the spherulite in the unstretched raw PBT is 500 nm or less.
 PBTの未延伸原反を二軸延伸して二軸延伸フィルムを作製する際の、縦延伸方向(以下、MD)における延伸温度(以下、MD延伸温度とも記す)は、好ましくは40℃以上であり、より好ましくは45℃以上である。MD延伸温度を40℃以上にすることにより、フィルムの破断が生じることを抑制することができる。また、MD延伸温度は、好ましくは100℃以下であり、より好ましくは95℃以下である。MD延伸温度を100℃以下にすることにより、二軸延伸フィルムの配向が生じないという現象を抑制することができる。 The stretching temperature (hereinafter also referred to as MD stretching temperature) in the longitudinal stretching direction (hereinafter referred to as MD) when producing a biaxially stretched film by biaxially stretching the unstretched raw material of PBT is preferably 40 ° C. or higher. Yes, more preferably 45 ° C or higher. By setting the MD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken. Moreover, MD extending | stretching temperature becomes like this. Preferably it is 100 degrees C or less, More preferably, it is 95 degrees C or less. The phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed by setting the MD stretching temperature to 100 ° C. or lower.
 MDにおける延伸倍率(以下、MD延伸倍率とも記す)は、好ましくは2.5倍以上である。これにより、二軸延伸フィルムを配向させ、良好な力学特性や均一な厚みを実現することができる。MD延伸倍率は、例えば5倍以下である。 The draw ratio in MD (hereinafter also referred to as MD draw ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement | achieved. MD stretch ratio is 5 times or less, for example.
 横延伸方向(以下、TDとも記す)における延伸温度(以下、TD延伸温度とも記す)は、好ましくは40℃以上である。TD延伸温度を40℃以上にすることにより、フィルムの破断が生じることを抑制することができる。また、TD延伸温度は、好ましくは100℃以下である。TD延伸温度を100℃以下にすることにより、二軸延伸フィルムの配向が生じないという現象を抑制することができる。 The stretching temperature (hereinafter also referred to as TD stretching temperature) in the transverse stretching direction (hereinafter also referred to as TD) is preferably 40 ° C. or higher. By setting the TD stretching temperature to 40 ° C. or higher, the film can be prevented from being broken. The TD stretching temperature is preferably 100 ° C. or lower. By setting the TD stretching temperature to 100 ° C. or lower, the phenomenon that the orientation of the biaxially stretched film does not occur can be suppressed.
 TDにおける延伸倍率(以下、TD延伸倍率とも記す)は、好ましくは2.5倍以上である。これにより、二軸延伸フィルムを配向させ、良好な力学特性や均一な厚みを実現することができる。MD延伸倍率は、例えば5倍以下である。 The stretching ratio in TD (hereinafter also referred to as TD stretching ratio) is preferably 2.5 times or more. Thereby, a biaxially stretched film can be oriented and a favorable mechanical characteristic and uniform thickness can be implement | achieved. MD stretch ratio is 5 times or less, for example.
 TDリラックス率は、好ましくは0.5%以上である。これにより、PBTの二軸延伸フィルムの熱固定時に破断が生じることを抑制することができる。また、TDリラックス率は、好ましくは10%以下である。これにより、PBTの二軸延伸フィルムにたるみなどが生じて厚みムラが発生することを抑制することができる。 TD relaxation rate is preferably 0.5% or more. Thereby, it can suppress that a fracture | rupture arises at the time of heat setting of the biaxially stretched film of PBT. The TD relaxation rate is preferably 10% or less. Thereby, sagging etc. arise in a biaxially stretched film of PBT, and it can control that thickness unevenness generate | occur | produces.
 図4に示す基材41の層41aの厚みは、好ましくは3nm以上であり、より好ましくは10nm以上である。また、層41aの厚みは、好ましくは200nm以下であり、より好ましくは100nm以下である。
 また、基材41の厚みは、好ましくは9μm以上であり、より好ましくは12μm以上である。また、基材41の厚みは、好ましくは25μm以下であり、より好ましくは20μm以下である。基材41の厚みを9μm以上にすることにより、基材41が十分な強度を有するようになる。また、基材41の厚みを25μm以下にすることにより、基材41が優れた成形性を示すようになる。このため、基材41を含む積層体30を加工して袋10を製造する工程を効率的に実施することができる。
The thickness of the layer 41a of the base material 41 shown in FIG. 4 is preferably 3 nm or more, more preferably 10 nm or more. The thickness of the layer 41a is preferably 200 nm or less, and more preferably 100 nm or less.
The thickness of the base material 41 is preferably 9 μm or more, and more preferably 12 μm or more. Moreover, the thickness of the base material 41 is preferably 25 μm or less, more preferably 20 μm or less. By setting the thickness of the base material 41 to 9 μm or more, the base material 41 has sufficient strength. Moreover, the base material 41 comes to show the moldability which was excellent by making the thickness of the base material 41 into 25 micrometers or less. For this reason, the process which processes the laminated body 30 containing the base material 41 and manufactures the bag 10 can be implemented efficiently.
 〔基材の第2の構成〕
 第2の構成に係る基材41は、ブチレンテレフタレートを主たる繰返し単位とするポリエステルを含む単層フィルムからなる。例えば、基材41は、グリコール成分としての1,4-ブタンジオール、又はそのエステル形成性誘導体と、二塩基酸成分としてのテレフタル酸、又はそのエステル形成性誘導体を主成分とし、それらを縮合して得られるホモ、またはコポリマータイプのポリエステルを含む。第2の構成に係る基材41におけるPBTの含有率は、51質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、さらには80質量%以上が好ましく、最も好ましくは90質量%以上である。また、第2の構成に係る基材41は、ポリブチレンテレフタレートと添加剤のみで構成されていることが好ましい。
[Second Configuration of Base Material]
The base material 41 according to the second configuration is made of a single layer film containing polyester having butylene terephthalate as a main repeating unit. For example, the base material 41 is mainly composed of 1,4-butanediol as the glycol component or an ester-forming derivative thereof and terephthalic acid as the dibasic acid component or the ester-forming derivative thereof, and condenses them. Homo- or copolymer-type polyester obtained. The content of PBT in the base material 41 according to the second configuration is preferably 51% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, further preferably 80% by mass or more, and most preferably. Is 90% by mass or more. Moreover, it is preferable that the base material 41 which concerns on a 2nd structure is comprised only with the polybutylene terephthalate and the additive.
 基材41に機械的強度を付与するためには、PBTのうち、融点が200℃以上且つ250℃以下、IV値(固有粘度)が1.10dl/g以上且つ1.35dl/g以下のものが好ましい。さらには、融点が215℃以上且つ225℃以下、IV値が1.15dl/g以上且つ1.30dl/g以下のものが特に好ましい。これらのIV値は、基材41を構成する材料全体によって満たされていてもよい。IV値は、JIS K 7367-5:2000に基づいて算出され得る。 In order to impart mechanical strength to the substrate 41, PBT having a melting point of 200 ° C. or more and 250 ° C. or less and an IV value (intrinsic viscosity) of 1.10 dl / g or more and 1.35 dl / g or less Is preferred. Furthermore, those having a melting point of 215 ° C. or more and 225 ° C. or less and an IV value of 1.15 dl / g or more and 1.30 dl / g or less are particularly preferable. These IV values may be satisfied by the whole material constituting the base material 41. The IV value can be calculated based on JIS K 7367-5: 2000.
 第2の構成に係る基材41は、PETなどPBT以外のポリエステル樹脂を30質量%以下の範囲で含んでいてもよい。基材41がPBTに加えてPETを含むことにより、PBT結晶化を抑制することができ、PBTフィルムの延伸加工性を向上させることができる。基材41のPBTに配合するPETとしては、エチレンテレフタレートを主たる繰返し単位とするポリエステルを用いることができる。例えば、グリコール成分としてのエチレングリコール、二塩基酸成分としてのテレフタル酸を主成分としたホモタイプを好ましく用いることができる。良好な機械的強度特性を付与するためには、PETのうち、融点が240℃以上且つ265℃以下、IV値が0.55dl/g以上且つ0.90dl/g以下のものが好ましい。さらには、融点が245℃以上且つ260℃以下、IV値が0.60dl/g以上且つ0.80dl/g以下のものが特に好ましい。
 PETの配合量を30質量%以下にすることにより、未延伸原反及び延伸フィルムの剛性が高くなり過ぎることを抑制することができる。これにより、延伸フィルムがもろくなり、延伸フィルムの耐圧強度、衝撃強度、突刺し強度などが低下してしまうことを抑制することができる。また、未延伸原反を延伸する際の延伸不調が発生することを抑制することができる。
The base material 41 which concerns on a 2nd structure may contain polyester resins other than PBT, such as PET, in 30 mass% or less. When the base material 41 contains PET in addition to PBT, PBT crystallization can be suppressed, and the stretchability of the PBT film can be improved. As PET mix | blended with PBT of the base material 41, the polyester which uses ethylene terephthalate as a main repeating unit can be used. For example, a homotype mainly composed of ethylene glycol as a glycol component and terephthalic acid as a dibasic acid component can be preferably used. In order to impart good mechanical strength characteristics, among PET, those having a melting point of 240 ° C. or more and 265 ° C. or less and an IV value of 0.55 dl / g or more and 0.90 dl / g or less are preferable. Furthermore, those having a melting point of 245 ° C. or more and 260 ° C. or less and an IV value of 0.60 dl / g or more and 0.80 dl / g or less are particularly preferable.
By setting the blending amount of PET to 30% by mass or less, it is possible to suppress the unstretched raw fabric and the stretched film from becoming too rigid. Thereby, a stretched film becomes brittle and it can suppress that the pressure resistance strength, impact strength, puncture strength, etc. of a stretched film fall. Moreover, it is possible to suppress the occurrence of stretching failure when the unstretched raw fabric is stretched.
 基材41は、必要に応じて、滑剤、アンチブロッキング剤、無機増量剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、着色剤、結晶化抑制剤、結晶化促進剤等の添加剤を含んでいてもよい。また、基材41の原料として用いるポリエステル系樹脂ペレットは、加熱溶融時の加水分解による粘度低下を避けるため、加熱溶融前に水分率が0.05重量%以下、好ましくは0.01重量%以下になるように十分予備乾燥を行った上で使用するのが好ましい。 The base material 41 is a lubricant, an antiblocking agent, an inorganic extender, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, a plasticizer, a colorant, a crystallization inhibitor, a crystallization accelerator, if necessary. Etc. may be contained. The polyester resin pellets used as the raw material of the base material 41 have a moisture content of 0.05% by weight or less, preferably 0.01% by weight or less before heating and melting in order to avoid a decrease in viscosity due to hydrolysis during heating and melting. It is preferable to use after sufficiently pre-drying so that
 第2の構成に係るフィルム状の基材41を作製する方法の一例について説明する。 An example of a method for producing the film-like base material 41 according to the second configuration will be described.
 上述の構成の基材41のフィルムを安定的に作製するためには、未延伸原反の状態における結晶の成長を抑制することが重要になる。具体的には、押出されたPBT系溶融体を冷却して成膜する際、該ポリマーの結晶化温度領域をある速度以上で冷却する、すなわち原反冷却速度が重要な因子となる。原反冷却速度は、例えば200℃/秒以上、好ましくは250℃/秒以上、特に好ましくは350℃/秒以上である。高い冷却速度で成膜された未延伸原反は、低い結晶状態を保っているため、延伸時のバブルの安定性が向上する。さらには高速での成膜も可能になるので、フィルムの生産性も向上する。冷却速度が200℃/秒未満である場合、得られた未延伸原反の結晶性が高くなり延伸性が低下することが考えられる。また、極端な場合には、延伸バブルが破裂し、延伸が継続しないことも考えられる。 In order to stably produce the film of the base material 41 having the above-described configuration, it is important to suppress the crystal growth in the unstretched raw fabric. Specifically, when forming the film by cooling the extruded PBT melt, the crystallization temperature region of the polymer is cooled at a certain rate or more, that is, the raw fabric cooling rate is an important factor. The raw fabric cooling rate is, for example, 200 ° C./second or more, preferably 250 ° C./second or more, particularly preferably 350 ° C./second or more. Since the unstretched original film formed at a high cooling rate maintains a low crystalline state, the stability of the bubbles during stretching is improved. Furthermore, since film formation at high speed is possible, film productivity is also improved. When the cooling rate is less than 200 ° C./sec, it is considered that the crystallinity of the obtained unstretched original fabric is increased and the stretchability is lowered. In extreme cases, the stretching bubble may burst and stretching may not continue.
 PBTを主成分として含む未延伸原反は、雰囲気温度を25℃以下、好ましくは20℃以下に保ちながら、二軸延伸を行う空間まで搬送されることが好ましい。これにより、滞留時間が長くなった場合であっても、成膜直後の未延伸原反の結晶性を維持することができる。 It is preferable that the unstretched raw material containing PBT as a main component is conveyed to a space where biaxial stretching is performed while maintaining the atmospheric temperature at 25 ° C. or lower, preferably 20 ° C. or lower. Thereby, even if it is a case where residence time becomes long, the crystallinity of the unstretched original fabric immediately after film-forming can be maintained.
 未延伸原反を延伸させて延伸フィルムを得るための二軸延伸法は、特には限定されない。例えば、チューブラー法又はテンター法により、縦方向及び横方向を同時に延伸してもよく、若しくは、縦方向及び横方向を逐次延伸してもよい。このうち、チューブラー法は、周方向の物性バランスが良好な延伸フィルムを得ることができ、特に好ましく採用される。 The biaxial stretching method for obtaining a stretched film by stretching an unstretched raw fabric is not particularly limited. For example, the longitudinal direction and the lateral direction may be simultaneously stretched by the tubular method or the tenter method, or the longitudinal direction and the lateral direction may be sequentially stretched. Among these, the tubular method can obtain a stretched film having a good balance of physical properties in the circumferential direction, and is particularly preferably employed.
 チューブラー法において、延伸空間に導かれた未延伸原反は、一対の低速ニップロール間に挿通された後、中に空気を圧入しながら延伸用ヒーターで加熱される。延伸終了後、延伸フィルムには、冷却ショルダーエアーリングによりエアーが吹き付けられる。延伸倍率は、延伸安定性や延伸フィルムの強度物性、透明性、および厚み均一性を考慮すると、MD、およびTDそれぞれ2.7倍以上且つ4.5倍以下であることが好ましい。延伸倍率を2.7倍以上にすることにより、延伸フィルムの引張弾性率や衝撃強度を十分に確保することができる。また、延伸倍率を4.5倍以下にすることにより、延伸により過度な分子鎖のひずみが発生することを抑制し、延伸加工時に破断やパンクが発生することを抑制できるので、延伸フィルムを安定に作製することができる。 In the tubular method, the unstretched raw material introduced into the stretching space is inserted between a pair of low-speed nip rolls, and then heated by a stretching heater while air is being pressed therein. After stretching, air is blown onto the stretched film by a cooling shoulder air ring. The stretching ratio is preferably 2.7 times or more and 4.5 times or less for MD and TD, respectively, in consideration of stretching stability, strength physical properties of the stretched film, transparency, and thickness uniformity. By setting the draw ratio to 2.7 times or more, it is possible to sufficiently ensure the tensile elastic modulus and impact strength of the stretched film. In addition, by setting the draw ratio to 4.5 times or less, it is possible to suppress the occurrence of excessive molecular chain distortion due to stretching, and to suppress the occurrence of breakage and puncture during the stretching process, so that the stretched film can be stabilized. Can be produced.
 延伸温度は、40℃以上且つ80℃以下が好ましく、特に好ましくは45℃以上且つ65℃以下である。上述の高い冷却速度で製造した未延伸原反は、結晶性が低いため、延伸温度が比較的に低温の場合であっても、安定して未延伸原反を延伸することができる。また、延伸温度を80℃以下にすることにより、延伸バブルの揺れを抑制し、厚み精度の良好な延伸フィルムを得ることができる。また、延伸温度を40℃以上にすることにより、低温延伸による過度な延伸配向結晶化が発生することを抑制して、フィルムの白化等を防ぐことができる。 The stretching temperature is preferably 40 ° C. or higher and 80 ° C. or lower, and particularly preferably 45 ° C. or higher and 65 ° C. or lower. Since the unstretched original fabric produced at the above-described high cooling rate has low crystallinity, the unstretched original fabric can be stably stretched even when the stretching temperature is relatively low. Further, by setting the stretching temperature to 80 ° C. or less, it is possible to suppress stretching bubble shaking and obtain a stretched film with good thickness accuracy. In addition, by setting the stretching temperature to 40 ° C. or higher, it is possible to suppress the occurrence of excessive stretch-oriented crystallization due to low-temperature stretching, thereby preventing whitening of the film.
 上述のようにして作製される基材41は、例えば、ブチレンテレフタレートを主たる繰返し単位とするポリエステルを含む単一の層によって構成されている。上述の作製方法によれば、高い冷却速度で未延伸原反を成膜するので、未延伸原反が単一の層によって構成される場合であっても、低い結晶状態を保つことができ、このため、安定して未延伸原反を延伸することができる。 The base material 41 produced as described above is constituted by a single layer containing, for example, polyester having butylene terephthalate as a main repeating unit. According to the above-described production method, since the unstretched raw film is formed at a high cooling rate, even when the unstretched raw fabric is constituted by a single layer, a low crystalline state can be maintained, For this reason, an unstretched original fabric can be extended | stretched stably.
 上述の第1の構成及び第2の構成のいずれにおいても、基材41は、PBTを主成分として含む。このため、積層体30の引張弾性率を高くすることができる。特に、高温の雰囲気下、例えば100℃の雰囲気下における積層体30の引張弾性率(以下、熱間引張弾性率とも記す)を高くすることができる。積層体30の熱間引張弾性率は、150MPa以上であることが好ましく、160MPa以上であることがより好ましく、180MPa以上であることが更に好ましい。積層体30が高い熱間引張弾性率を有することにより、後述する実施例で示すように、積層体30を用いて作製した袋10の蒸通性を確保することができる。熱間引張弾性率の測定方法については、後述する実施例1において説明する。 In both the first configuration and the second configuration described above, the base material 41 includes PBT as a main component. For this reason, the tensile elasticity modulus of the laminated body 30 can be made high. In particular, the tensile modulus of elasticity (hereinafter also referred to as hot tensile modulus) of the laminate 30 in a high temperature atmosphere, for example, in an atmosphere of 100 ° C. can be increased. The hot tensile elastic modulus of the laminate 30 is preferably 150 MPa or more, more preferably 160 MPa or more, and further preferably 180 MPa or more. Since the laminated body 30 has a high hot tensile elastic modulus, as shown in the Example mentioned later, the transmissibility of the bag 10 produced using the laminated body 30 is securable. A method for measuring the hot tensile elastic modulus will be described in Example 1 described later.
 〔ガスバリア層〕
 図5は、積層体30の層構成のその他の例を示す断面図である。図5に示すように、積層体30の第1フィルム40は、基材41の内面30x側に位置し、透明性を有する透明ガスバリア層35を更に含んでいてもよい。この場合、印刷層42は、透明ガスバリア層35の内面30x側に位置する。図5に示す例における積層体30は、外面側から内面側へ順に
  基材/透明ガスバリア層/印刷層/接着剤層/シーラント層
を備えている、と言える。
[Gas barrier layer]
FIG. 5 is a cross-sectional view illustrating another example of the layer configuration of the stacked body 30. As shown in FIG. 5, the 1st film 40 of the laminated body 30 is located in the inner surface 30x side of the base material 41, and may further contain the transparent gas barrier layer 35 which has transparency. In this case, the printing layer 42 is located on the inner surface 30 x side of the transparent gas barrier layer 35. It can be said that the laminated body 30 in the example shown in FIG. 5 includes a base material / transparent gas barrier layer / printing layer / adhesive layer / sealant layer in order from the outer surface side to the inner surface side.
 以下、透明ガスバリア層35について説明する。透明ガスバリア層35は、基材41の内面30x側の面上に形成され、透明性を有する無機材料からなる透明蒸着層36を少なくとも含む。また、透明ガスバリア層35は、透明蒸着層36の内面30x側の面上に形成され、透明性を有する透明ガスバリア性塗布膜37を更に含んでいてもよい。この場合、積層体30は、外面側から内面側へ順に
  基材/透明蒸着層/透明ガスバリア性塗布膜/印刷層/接着剤層/シーラント層
を備えている、と言える。
Hereinafter, the transparent gas barrier layer 35 will be described. The transparent gas barrier layer 35 is formed on the surface on the inner surface 30x side of the substrate 41 and includes at least a transparent vapor deposition layer 36 made of an inorganic material having transparency. The transparent gas barrier layer 35 may further include a transparent gas barrier coating film 37 that is formed on the inner surface 30x side of the transparent vapor deposition layer 36 and has transparency. In this case, it can be said that the laminated body 30 is provided with a base material / transparent deposition layer / transparent gas barrier coating film / printing layer / adhesive layer / sealant layer in order from the outer surface side to the inner surface side.
 透明蒸着層36は、酸素ガスおよび水蒸気などの透過を阻止するガスバリア性の機能を有する層として機能する。なお、透明蒸着層36は二層以上設けられてもよい。透明蒸着層36を二層以上有する場合、それぞれが、同一の組成であってもよいし、異なる組成であってもよい。透明蒸着層36の形成方法としては、例えば、真空蒸着法、スパッタリング法、およびイオンプレ-ティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、および光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を挙げることができる。具体的には、ローラー式蒸着膜成膜装置を用いて、成膜ローラー上において蒸着層を形成することができる。 The transparent vapor-deposited layer 36 functions as a layer having a gas barrier function that prevents permeation of oxygen gas and water vapor. Two or more transparent vapor deposition layers 36 may be provided. When it has two or more transparent vapor deposition layers 36, each may have the same composition or different compositions. As a method for forming the transparent vapor deposition layer 36, for example, a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, or a plasma chemical vapor deposition method, Examples thereof include a chemical vapor deposition method (chemical vapor deposition method, CVD method) such as a thermal chemical vapor deposition method and a photochemical vapor deposition method. Specifically, a vapor deposition layer can be formed on a film formation roller using a roller-type vapor deposition film forming apparatus.
 透明蒸着層36は、アルミニウム酸化物(酸化アルミニウム)、珪素酸化物などの、透明性を有する無機物で形成されている。透明蒸着層36としては、酸化アルミニウムの非結晶性の薄膜を使用することが好ましい。具体的には、透明蒸着層36は、式AlOX(式中、Xは、0.5~1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜である。透明蒸着層36は、膜表面から内面に向かう深さ方向に向かってXの値が減少している酸化アルミニウムの非結晶性の薄膜を使用することができる。酸化アルミニウムの非結晶性の薄膜は、式AlOX(式中、Xは、0.5~1.5の範囲の数を表す。)で表され、その薄膜表面から内面に向かう深さ方向に向かってXの値が増加していることが好ましい。なお、上記の式中のXの値としては、基本的には、X=0.5以上のものを使用することができるが、X=1.0未満になると、着色が激しく、かつ、透明性に劣ることから、X=1.0以上のものを使用することが好ましい。また、X=1.5のものは、Alと酸素とが完全に酸化した状態のものであることから、上限としては、X=1.5までのものを使用することができる。なお、上記の式中のXの値が0の場合、完全な無機単体(純物質)であり、透明ではない。 The transparent vapor-deposited layer 36 is formed of a transparent inorganic material such as aluminum oxide (aluminum oxide) or silicon oxide. As the transparent vapor deposition layer 36, it is preferable to use an amorphous thin film of aluminum oxide. Specifically, the transparent vapor deposition layer 36 is an amorphous thin film of aluminum oxide represented by the formula AlOX (wherein X represents a number in the range of 0.5 to 1.5). As the transparent vapor-deposited layer 36, an amorphous thin film of aluminum oxide in which the value of X decreases in the depth direction from the film surface toward the inner surface can be used. The amorphous thin film of aluminum oxide is represented by the formula AlOX (wherein X represents a number in the range of 0.5 to 1.5), and extends in the depth direction from the thin film surface toward the inner surface. It is preferable that the value of X increases. In addition, as a value of X in the above formula, a value of X = 0.5 or more can be basically used. However, when X is less than 1.0, coloring is intense and transparent. Since it is inferior in property, it is preferable to use the thing of X = 1.0 or more. Moreover, since the thing of X = 1.5 is a thing in which Al and oxygen were completely oxidized, the thing to X = 1.5 can be used as an upper limit. In addition, when the value of X in said formula is 0, it is a perfect inorganic simple substance (pure substance), and is not transparent.
 なお、Xの値の減少割合は、例えば、X線光電子分光装置(Xray Photoelectron Spectroscopy:XPS)、二次イオン質量分析装置(Secondary Ion Mass Spectroscopy:SIMS)などの表面分析装置を用い、深さ方向にイオンエッチングするなどして分析する方法を利用して、透明蒸着層36の元素分析を行うことより確認することができる。 In addition, the decreasing rate of the value of X is determined by using a surface analyzer such as an X-ray photoelectron spectrometer (Xray Photoelectron Spectroscopy: XPS) or a secondary ion mass spectrometer (Secondary Ion Mass Spectroscopy: SIMS). This can be confirmed by performing an elemental analysis of the transparent vapor deposition layer 36 using a method of analyzing by ion etching or the like.
 透明蒸着層36は、アルミニウム原子と炭素原子の共有結合を含む無機化合物の混合物からなる層であってもよい。この場合において、透明蒸着層36は、X線光電子分光装置(測定条件:X線源AlKα、X線出力120W)を用い、深さ方向にイオンエッチングにより測定したピークにアルミニウム原子と炭素原子の共有結合の存在を示し、また、透明性を有しかつ酸素、水蒸気等の透過を妨げるガスバリア性を有してもよい。 The transparent vapor deposition layer 36 may be a layer made of a mixture of inorganic compounds containing a covalent bond between an aluminum atom and a carbon atom. In this case, the transparent vapor deposition layer 36 uses an X-ray photoelectron spectrometer (measuring conditions: X-ray source AlKα, X-ray output 120 W) and shares aluminum atoms and carbon atoms at the peak measured by ion etching in the depth direction. It may have a gas barrier property that indicates the presence of a bond and has transparency and prevents permeation of oxygen, water vapor, and the like.
 透明蒸着層36と基材41との界面には、金属原子と炭素原子の共有結合が形成されていてもよい。例えば、透明蒸着層36が酸化アルミニウムを含む場合、基材41と透明蒸着層36との界面には、アルミニウム原子と炭素原子の共有結合が形成されているものとすることができる。共有結合は、X線光電子分光法による測定(以下、略して「XPS測定」という)によって検出され得る。 A covalent bond between a metal atom and a carbon atom may be formed at the interface between the transparent vapor deposition layer 36 and the substrate 41. For example, when the transparent vapor deposition layer 36 contains aluminum oxide, the covalent bond of an aluminum atom and a carbon atom shall be formed in the interface of the base material 41 and the transparent vapor deposition layer 36. The covalent bond can be detected by measurement by X-ray photoelectron spectroscopy (hereinafter referred to as “XPS measurement” for short).
 また、透明蒸着層36においては、アルミニウム原子と炭素原子の共有結合の存在比率が、XPS測定により透明蒸着層36と基材41との界面を測定した場合に観察される炭素原子を含む全結合のうちの0.3%以上且つ30%以下の範囲内であることが好ましい。これにより、透明蒸着層36と基材41との密着性が強化され、透明性も優れ、ガスバリア性の蒸着フィルムとしてバランスのよい性能のものが得られる。 Moreover, in the transparent vapor deposition layer 36, all the bonds containing the carbon atom observed when the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is measured when the interface between the transparent vapor deposition layer 36 and the substrate 41 is measured by XPS measurement. It is preferable that it is within the range of 0.3% or more and 30% or less. Thereby, the adhesiveness of the transparent vapor deposition layer 36 and the base material 41 is strengthened, the transparency is excellent, and a gas barrier vapor deposition film having a well-balanced performance is obtained.
 アルミニウム原子と炭素原子の共有結合の存在比率が0.3%未満であると、透明蒸着層36の密着性の改善が不十分であり、バリア性を安定して維持することが困難になる。 If the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is less than 0.3%, the adhesion of the transparent vapor-deposited layer 36 is not sufficiently improved, and it is difficult to stably maintain the barrier property.
 さらに、酸化アルミニウムを主成分とする透明蒸着層36の、AL(アルミニウム)/O(酸素)比が、基材41と透明蒸着層36との界面から、基材41とは反対側の透明蒸着層36の表面に向かって3nmまでの範囲内において、1.0以下であることが好ましい。
 透明蒸着層36と基材41との界面から、基材41とは反対側の透明蒸着層36の表面に向かう範囲内において、AL/Oの比が1.0を超えると、基材41と透明蒸着層36との間の密着性が不十分となり、かつアルミニウムの割合が高まり、透明蒸着層36の透明性が低下する。
Further, the transparent vapor deposition layer 36 containing aluminum oxide as a main component has an AL (aluminum) / O (oxygen) ratio of transparent vapor deposition on the side opposite to the base material 41 from the interface between the base material 41 and the transparent vapor deposition layer 36. In the range of up to 3 nm toward the surface of the layer 36, it is preferably 1.0 or less.
When the AL / O ratio exceeds 1.0 within a range from the interface between the transparent vapor deposition layer 36 and the base material 41 toward the surface of the transparent vapor deposition layer 36 on the side opposite to the base material 41, Adhesiveness with the transparent vapor deposition layer 36 becomes insufficient, the proportion of aluminum increases, and the transparency of the transparent vapor deposition layer 36 decreases.
 透明蒸着層36の厚みは、例えば30Å以上且つ150Åである。30Å未満であると、透明ガスバリア性塗布膜37を併用した場合であってもガスバリア性が不十分となる場合がある。一方、150Åを超えると、積層体30のガスバリア性能を維持できない場合がある。この理由は定かではないが、透明蒸着層36の厚みが150Åを超えると積層体30の屈曲性が低下し、積層体30を袋10に使用した場合に透明蒸着層36の一部に亀裂ないしピンホールが発生してガスバリア性が低下するものと考えられる。透明蒸着層36の厚みは、好ましくは、40Å以上且つ130Å以下、より好ましくは、50Å以上且つ120Å以下である。なお、透明蒸着層36の厚みは、例えば、蛍光X線分析装置(商品名:RIX2000型、株式会社理学製)を用いて、ファンダメンタルパラメーター法で測定することができる。また、透明蒸着層36の厚みを変更する手段としては、透明蒸着層36の堆積速度を変更する方法、蒸着する速度を変更する方法などによって行うことができる。 The thickness of the transparent vapor deposition layer 36 is, for example, 30 mm or more and 150 mm. If it is less than 30 mm, the gas barrier property may be insufficient even when the transparent gas barrier coating film 37 is used in combination. On the other hand, if it exceeds 150 mm, the gas barrier performance of the laminate 30 may not be maintained. The reason for this is not clear, but if the thickness of the transparent vapor deposition layer 36 exceeds 150 mm, the flexibility of the laminate 30 is reduced, and when the laminate 30 is used in the bag 10, a part of the transparent vapor deposition layer 36 is not cracked. It is considered that pinholes are generated and gas barrier properties are lowered. The thickness of the transparent vapor deposition layer 36 is preferably 40 mm or more and 130 mm or less, more preferably 50 mm or more and 120 mm or less. The thickness of the transparent vapor-deposited layer 36 can be measured by a fundamental parameter method using, for example, a fluorescent X-ray analyzer (trade name: RIX2000 type, manufactured by Rigaku Corporation). Moreover, as a means to change the thickness of the transparent vapor deposition layer 36, it can carry out by the method of changing the deposition rate of the transparent vapor deposition layer 36, the method of changing the vapor deposition rate, etc.
 基材41の内面30x側の面上に透明蒸着層36を形成する場合、基材41の内面30x側の面に予めコロナ放電処理、フレーム処理、プラズマ処理などの前処理を施しておいてもよい。特に、透明蒸着層36と基材41との界面に、金属原子と炭素原子の共有結合を形成する場合には、透明蒸着層36を形成しようとする基材41の面に対し前処理を施すことが好ましい。前処理がプラズマ処理である場合、前処理装置により、0.1Pa以上100Pa以下の減圧環境下において、基材41の面に対してプラズマを供給する。プラズマは、アルゴン等の不活性ガス単独又は酸素、窒素、炭酸ガス及びそれらの1種以上のガスとの混合ガスをプラズマ原料ガスとして用い、高周波電圧等による電位差によって、プラズマ原料ガスを励起状態にすることにより、発生させることができる。 In the case where the transparent vapor deposition layer 36 is formed on the inner surface 30x side surface of the base material 41, the surface of the base material 41 on the inner surface 30x side may be subjected to pretreatment such as corona discharge treatment, flame processing, and plasma processing in advance. Good. In particular, when a covalent bond between a metal atom and a carbon atom is formed at the interface between the transparent vapor deposition layer 36 and the base material 41, the surface of the base material 41 on which the transparent vapor deposition layer 36 is to be formed is pretreated. It is preferable. When the pretreatment is plasma treatment, plasma is supplied to the surface of the base material 41 in a reduced pressure environment of 0.1 Pa or more and 100 Pa or less by the pretreatment apparatus. Plasma uses an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them as a plasma source gas, and the plasma source gas is excited by a potential difference due to a high-frequency voltage or the like. By doing so, it can be generated.
 前処理により、基材41の表面近傍にプラズマを閉じ込めることができる。これにより、基材41の表面の形状や、化学的な結合状態や官能基を変化させ、基材41の表面の化学的性状を変化させることができる。このことにより、基材41と透明蒸着層36との密着性を向上させることが可能となる。 The plasma can be confined in the vicinity of the surface of the base material 41 by the pretreatment. Thereby, the shape of the surface of the base material 41, a chemical bonding state, and a functional group can be changed, and the chemical properties of the surface of the base material 41 can be changed. As a result, the adhesion between the base material 41 and the transparent vapor deposition layer 36 can be improved.
 透明ガスバリア性塗布膜37は、酸素ガスおよび水蒸気などの透過を抑制する層として機能する層である。透明ガスバリア性塗布膜37は、一般式R M(OR(ただし、式中、R、Rは、炭素数1~8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも一種以上のアルコキシドと、上記のようなポリビニルアルコ-ル系樹脂および/またはエチレン・ビニルアルコ-ル共重合体とを含有し、さらに、ゾルゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合する透明ガスバリア性組成物により得られる。 The transparent gas barrier coating film 37 is a layer that functions as a layer that suppresses permeation of oxygen gas, water vapor, and the like. The transparent gas barrier coating film 37 has a general formula R 1 n M (OR 2 ) m (where R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, and M represents a metal atom) , N represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M), and a polyvinyl alcohol as described above A transparent gas barrier composition containing a benzene-based resin and / or an ethylene / vinyl alcohol copolymer, and further polycondensed by a sol-gel method in the presence of a sol-gel method catalyst, an acid, water, and an organic solvent. can get.
 上記の一般式R M(ORで表されるアルコキシドとしては、アルコキシドの部分加水分解物、アルコキシドの加水分解の縮合物の少なくとも一種以上を使用することができる。また、上記のアルコキシドの部分加水分解物としては、アルコキシ基のすべてが加水分解されている必要はなく、1個以上が加水分解されているもの、および、その混合物であってもよい。アルコキシドの加水分解の縮合物としては、部分加水分解アルコキシドの2量体以上のもの、具体的には、2~6量体のものを使用される。 As the alkoxide represented by the general formula R 1 n M (OR 2 ) m , at least one kind of a partial hydrolyzate of alkoxide and a condensate of hydrolysis of alkoxide can be used. Moreover, as a partial hydrolyzate of said alkoxide, all the alkoxy groups do not need to be hydrolyzed, The thing by which 1 or more was hydrolyzed, and its mixture may be sufficient. As the condensate of hydrolysis of alkoxide, a dimer or more of partially hydrolyzed alkoxide, specifically, a dimer to hexamer is used.
 上記の一般式R M(ORで表されるアルコキシドにおいて、Mで表される金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、その他などを使用することができる。好ましい金属としては、例えば、ケイ素、チタンなどを挙げることができる。また、本発明において、アルコキシドの用い方としては、単独または二種以上の異なる金属原子のアルコキシドを同一溶液中に混合して使うこともできる。 In the alkoxide represented by the above general formula R 1 n M (OR 2 ) m , as the metal atom represented by M, silicon, zirconium, titanium, aluminum, and the like can be used. Examples of preferable metals include silicon and titanium. In the present invention, alkoxides may be used alone or in combination of two or more different metal atom alkoxides in the same solution.
 また、上記の一般式R M(ORで表されるアルコキシドにおいて、Rで表される有機基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基、その他などのアルキル基を挙げることができる。また、上記の一般式R M(ORで表されるアルコキシドにおいて、Rで表される有機基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、その他などを挙げることができる。なお、同一分子中にこれらのアルキル基は同一であっても、異なってもよい。 In the alkoxide represented by the general formula R 1 n M (OR 2 ) m , specific examples of the organic group represented by R 1 include, for example, a methyl group, an ethyl group, an n-propyl group, i Examples thereof include alkyl groups such as -propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-hexyl group, n-octyl group and others. In the alkoxide represented by the general formula R 1 n M (OR 2 ) m , specific examples of the organic group represented by R 2 include, for example, a methyl group, an ethyl group, an n-propyl group, i -Propyl group, n-butyl group, sec-butyl group, and the like. These alkyl groups in the same molecule may be the same or different.
 上記の透明ガスバリア性組成物を調製する際、例えば、シランカップリング剤などを添加してもよい。上記のシランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができる。特に、エポキシ基を有するオルガノアルコキシシランが好適に用いられ、具体的には、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、または、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシランなどを使用することができる。上記のようなシランカップリング剤は、一種または二種以上を混合して用いてもよい。 When preparing the above transparent gas barrier composition, for example, a silane coupling agent or the like may be added. As said silane coupling agent, known organic reactive group containing organoalkoxysilane can be used. In particular, an organoalkoxysilane having an epoxy group is preferably used. Specifically, for example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, or β- (3, 4-epoxycyclohexyl) ethyltrimethoxysilane and the like can be used. The above silane coupling agents may be used alone or in combination of two or more.
 (シーラントフィルム)
 シーラントフィルム70は、積層体30の内面30xを構成するシーラント層71を少なくとも含む。シーラント層71を構成する材料としては、低密度ポリエチレン、直鎖状低密度ポリエチレンなどのポリエチレン、ポリプロピレンから選択される1種または2種以上の樹脂を用いることができる。シーラント層71は、単層であってもよく、多層であってもよい。また、シーラント層71は、好ましくは未延伸のフィルムからなる。なお「未延伸」とは、全く延伸されていないフィルムだけでなく、製膜の際に加えられる張力に起因してわずかに延伸されているフィルムも含む概念である。
(Sealant film)
The sealant film 70 includes at least a sealant layer 71 that constitutes the inner surface 30 x of the laminate 30. As a material constituting the sealant layer 71, one or more resins selected from polyethylene such as low density polyethylene and linear low density polyethylene, and polypropylene can be used. The sealant layer 71 may be a single layer or a multilayer. The sealant layer 71 is preferably made of an unstretched film. “Unstretched” is a concept that includes not only a film that is not stretched at all, but also a film that is slightly stretched due to the tension applied during film formation.
 上述のように、積層体30から構成された袋10には、ボイル処理やレトルト処理などの殺菌処理が高温で施される。従って、シーラント層71は、これらの高温での処理に耐える耐熱性を有するものが用いられる。 As described above, the bag 10 composed of the laminate 30 is subjected to sterilization treatment such as boil treatment and retort treatment at a high temperature. Therefore, as the sealant layer 71, a layer having heat resistance that can withstand processing at these high temperatures is used.
 シーラント層71を構成する材料の融点は、150℃以上であることが好ましく、160℃以上であることがより好ましい。シーラント層71の融点を高くすることにより、袋10のレトルト処理を高温で実施することが可能になり、このため、レトルト処理に要する時間を短くすることができる。なお、シーラント層71を構成する材料の融点は、基材41を構成する樹脂の融点より低い。 The melting point of the material constituting the sealant layer 71 is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. By increasing the melting point of the sealant layer 71, the bag 10 can be retorted at a high temperature, and therefore the time required for the retort process can be shortened. The melting point of the material constituting the sealant layer 71 is lower than the melting point of the resin constituting the base material 41.
 レトルト処理の観点で考える場合、シーラント層71を構成する材料として、プロピレンを主成分とする材料を用いることができる。ここで、プロピレンを「主成分とする」材料とは、プロピレンの含有率が90質量%以上である材料を意味する。プロピレンを主成分とする材料としては、具体的には、プロピレン・エチレンブロック共重合体、プロピレン・エチレンランダム共重合体、ホモポリプロピレンなどのポリプロピレン、又はポリプロピレンとポリエチレンとを混合したものなどを挙げることができる。ここで、「プロピレン・エチレンブロック共重合体」とは、下記の式(I)に示される構造式を有する材料を意味する。また、「プロピレン・エチレンランダム共重合体」とは、下記の式(II)に示される構造式を有する材料を意味する。また、「ホモポリプロピレン」とは、下記の式(III)に示される構造式を有する材料を意味する。 When considering from the viewpoint of retort treatment, a material mainly composed of propylene can be used as the material constituting the sealant layer 71. Here, the material having “propylene as a main component” means a material having a propylene content of 90% by mass or more. Specific examples of the material mainly composed of propylene include propylene / ethylene block copolymer, propylene / ethylene random copolymer, polypropylene such as homopolypropylene, or a mixture of polypropylene and polyethylene. Can do. Here, the “propylene / ethylene block copolymer” means a material having a structural formula represented by the following formula (I). The “propylene / ethylene random copolymer” means a material having a structural formula represented by the following formula (II). “Homopolypropylene” means a material having the structural formula shown by the following formula (III).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 プロピレンを主成分とする材料として、ポリプロピレンとポリエチレンとを混合したものを用いる場合には、材料は、海島構造を有していてもよい。ここで、「海島構造」とは、ポリプロピレンが連続する領域の内に、ポリエチレンが不連続に分散している構造をいう。 In the case of using a mixture of polypropylene and polyethylene as a material mainly composed of propylene, the material may have a sea-island structure. Here, the “sea-island structure” means a structure in which polyethylene is discontinuously dispersed in a region where polypropylene is continuous.
 ボイル処理の観点で考える場合、シーラント層71を構成する材料の例として、ポリエチレン、ポリプロピレン又はこれらの組み合わせなどを挙げることができる。ポリエチレンとしては、中密度ポリエチレン、直鎖状低密度ポリエチレン又はこれらの組み合わせなどを挙げることができる。例えば、上述のレトルト処理の観点からシーラント層71を構成する材料として挙げた材料を用いることも可能である。シーラント層71を構成する材料は、例えば100℃以上、より好ましくは105℃以上、更に好ましくは110℃以上の融点を有する。シーラント層71を構成する材料としてポリエチレンを用いる場合、100℃以上の融点は、例えば、ポリエチレンの密度が0.920g/cm以上である場合に実現され得る。また、100℃以上の融点を有するシーラント層71を構成するためのシーラントフィルムの具体例としては、三井化学東セロ製TUX-HC、東洋紡製L6101、出光ユニテック製LS700C等を挙げることができる。105℃以上の融点を有するシーラント層71を構成するためのシーラントフィルムの具体例としては、タマポリ製NB-1等を挙げることができる。110℃以上の融点を有するシーラント層を構成するためのシーラントフィルム70の具体例としては、出光ユニテック製LS760C、三井化学東セロ製TUX-HZ等を挙げることができる。 When considered from the viewpoint of boil processing, examples of the material constituting the sealant layer 71 include polyethylene, polypropylene, or a combination thereof. Examples of polyethylene include medium density polyethylene, linear low density polyethylene, and combinations thereof. For example, it is also possible to use the materials mentioned as the material constituting the sealant layer 71 from the viewpoint of the above retort processing. The material constituting the sealant layer 71 has a melting point of, for example, 100 ° C. or higher, more preferably 105 ° C. or higher, and still more preferably 110 ° C. or higher. When polyethylene is used as the material constituting the sealant layer 71, a melting point of 100 ° C. or higher can be realized, for example, when the density of polyethylene is 0.920 g / cm 3 or higher. Specific examples of the sealant film for forming the sealant layer 71 having a melting point of 100 ° C. or higher include TUX-HC manufactured by Mitsui Chemicals Tosero, L6101 manufactured by Toyobo, and LS700C manufactured by Idemitsu Unitech. Specific examples of the sealant film for forming the sealant layer 71 having a melting point of 105 ° C. or higher include NB-1 manufactured by Tamapoly. Specific examples of the sealant film 70 for forming a sealant layer having a melting point of 110 ° C. or higher include LS760C manufactured by Idemitsu Unitech, TUX-HZ manufactured by Mitsui Chemicals Tosero, and the like.
 好ましくは、シーラント層71は、プロピレン・エチレンブロック共重合体を含む。例えば、シーラント層71を含むシーラントフィルム70は、プロピレン・エチレンブロック共重合体を主成分とする未延伸フィルムである。プロピレン・エチレンブロック共重合体を用いることにより、シーラントフィルム70の耐衝撃性を高めることができ、これにより、落下時の衝撃により袋10が破袋してしまうことを抑制することができる。また、積層体30の耐突き刺し性を高めることができる。 Preferably, the sealant layer 71 includes a propylene / ethylene block copolymer. For example, the sealant film 70 including the sealant layer 71 is an unstretched film containing a propylene / ethylene block copolymer as a main component. By using the propylene / ethylene block copolymer, the impact resistance of the sealant film 70 can be increased, and thereby the bag 10 can be prevented from being broken due to the impact at the time of dropping. Moreover, the puncture resistance of the laminated body 30 can be improved.
 また、プロピレン・エチレンブロック共重合体を用いることにより、高温時、例えば100℃以上のときの、シーラント層71によって構成されるシール部の強度(以下、熱間シール強度とも言う)が、低温時、例えば室温のときのシール強度に比べて極めて小さくなる。例えば、100℃のときの熱間シール強度が、25℃のときのシール強度(以下、常温シール強度とも言う)の4分の1以下になる。また、例えば、100℃のときの15mm幅における熱間シール強度は、20N以下、好ましくは15N以下である。シール部が低い熱間シール強度を有することにより、後述する実施例で示すように、積層体30をシールすることによって作製した袋10の蒸通性を確保することができる。熱間シール強度及び常温シール強度の測定方法については、後述する実施例1において説明する。 Further, by using a propylene / ethylene block copolymer, the strength of the seal portion formed by the sealant layer 71 (hereinafter also referred to as hot seal strength) at a high temperature, for example, at 100 ° C. or higher is low. For example, it becomes extremely small compared with the seal strength at room temperature. For example, the hot seal strength at 100 ° C. is ¼ or less of the seal strength at 25 ° C. (hereinafter also referred to as room temperature seal strength). Further, for example, the hot seal strength at a width of 15 mm at 100 ° C. is 20 N or less, preferably 15 N or less. When the seal portion has a low hot seal strength, the vaporability of the bag 10 produced by sealing the laminated body 30 can be ensured as shown in Examples described later. A method for measuring the hot seal strength and the normal temperature seal strength will be described in Example 1 described later.
 また、シーラント層71は、熱可塑性エラストマーを更に含んでいてもよい。熱可塑性エラストマーを用いることにより、シーラントフィルム70の耐衝撃性や耐突き刺し性を更に高めることができる。 The sealant layer 71 may further contain a thermoplastic elastomer. By using a thermoplastic elastomer, the impact resistance and puncture resistance of the sealant film 70 can be further enhanced.
 熱可塑性エラストマーは、例えば水添スチレン系熱可塑性エラストマーである。水添スチレン系熱可塑性エラストマーは、少なくとも1個のビニル芳香族化合物を主体とする重合体ブロックAと少なくとも1個の水素添加された共役ジエン化合物を主体とする重合体ブロックBからなる構造を有する。また、熱可塑性エラストマーは、エチレン・α-オレフィンエラストマーであってもよい。エチレン・α-オレフィンエラストマーは、低結晶性もしくは非晶性の共重合体エラストマーであり、主成分としての50~90質量%のエチレンと共重合モノマーとしてのα-オレフィンとのランダム共重合体である。 The thermoplastic elastomer is, for example, a hydrogenated styrene thermoplastic elastomer. The hydrogenated styrene-based thermoplastic elastomer has a structure comprising a polymer block A mainly composed of at least one vinyl aromatic compound and a polymer block B mainly composed of at least one hydrogenated conjugated diene compound. . The thermoplastic elastomer may be an ethylene / α-olefin elastomer. The ethylene / α-olefin elastomer is a low crystalline or amorphous copolymer elastomer, which is a random copolymer of 50 to 90% by mass of ethylene as a main component and α-olefin as a comonomer. is there.
 シーラント層71におけるプロピレン・エチレンブロック共重合体の含有率は、例えば80質量%以上であり、好ましくは90質量%以上である。 The content of the propylene / ethylene block copolymer in the sealant layer 71 is, for example, 80% by mass or more, and preferably 90% by mass or more.
 プロピレン・エチレンブロック共重合体の製造方法としては、触媒を用いて原料であるプロピレンやエチレンなどを重合させる方法が挙げられる。触媒としては、チーグラー・ナッタ型やメタロセン触媒などを用いることができる。 Examples of the method for producing a propylene / ethylene block copolymer include a method of polymerizing propylene, ethylene, and the like as raw materials using a catalyst. As the catalyst, Ziegler-Natta type or metallocene catalyst can be used.
 シーラント層71の厚みは、好ましくは30μm以上であり、より好ましくは40μm以上である。また、シーラント層71の厚みは、好ましくは100μm以下であり、より好ましくは80μm以下である。 The thickness of the sealant layer 71 is preferably 30 μm or more, and more preferably 40 μm or more. The thickness of the sealant layer 71 is preferably 100 μm or less, and more preferably 80 μm or less.
 (接着剤層)
 接着剤層45は、第1フィルム40とシーラントフィルム70とを接着するための接着剤を含む。接着剤の例としては、エーテル系の二液反応型接着剤、エステル系の二液反応型接着剤などを挙げることができる。
(Adhesive layer)
The adhesive layer 45 includes an adhesive for bonding the first film 40 and the sealant film 70. Examples of adhesives include ether-based two-component reactive adhesives and ester-based two-component reactive adhesives.
 エーテル系の二液反応型接着剤としては、例えば、ポリエーテルポリウレタンなどを挙げることができる。ポリエーテルポリウレタンは、主剤としてのポリエーテルポリオールと、硬化剤としてのイソシアネート化合物が反応することにより生成される硬化物である。イソシアネート化合物としては、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)などの芳香族系イソシアネート化合物、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)などの脂肪族系イソシアネート、イソホロンジイソシアネート(IPDI)などの脂環式系イソシアネート化合物、あるいは、上記各種イソシアネート化合物の付加体または多量体を用いることができる。 Examples of ether-based two-component reactive adhesives include polyether polyurethane. The polyether polyurethane is a cured product produced by a reaction between a polyether polyol as a main agent and an isocyanate compound as a curing agent. Isocyanate compounds include aromatic isocyanate compounds such as tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and the like. Alicyclic isocyanate compounds such as aliphatic isocyanate and isophorone diisocyanate (IPDI), or adducts or multimers of the above-mentioned various isocyanate compounds can be used.
 エステル系の二液反応型接着剤としては、例えば、ポリエステルポリウレタンやポリエステルなどが挙げられる。ポリエステルポリウレタンは、主剤としてのポリエステルポリオールと、硬化剤としてのイソシアネート化合物とが反応することにより生成される硬化物である。イソシアネート化合物の例は、上述のエーテル系の二液反応型接着剤の場合と同様である。 Examples of the ester-based two-component reactive adhesive include polyester polyurethane and polyester. Polyester polyurethane is a cured product produced by a reaction between a polyester polyol as a main agent and an isocyanate compound as a curing agent. Examples of the isocyanate compound are the same as in the case of the ether-based two-component reactive adhesive described above.
 下部フィルムの層構成
 次に、下部フィルム16の層構成について説明する。
Next, the layer structure of the lower film 16 will be described.
 表面フィルム14の内面及び裏面フィルム15の内面と接合可能な内面を有する限りにおいて、下部フィルム16の層構成は任意である。例えば、表面フィルム14及び裏面フィルム15と同様に、下部フィルム16として上述の積層体30を用いてもよい。若しくは、内面がシーラント層によって構成され、且つ積層体30とは異なる構成のフィルムを、下部フィルム16として用いてもよい。 The layer structure of the lower film 16 is arbitrary as long as it has an inner surface that can be joined to the inner surface of the front film 14 and the inner surface of the back film 15. For example, similar to the front film 14 and the back film 15, the above-described laminate 30 may be used as the lower film 16. Alternatively, a film having an inner surface constituted by a sealant layer and a configuration different from that of the laminate 30 may be used as the lower film 16.
 第1フィルムの製造方法
 次に、第1フィルム40の製造方法の一例について説明する。
Method for Manufacturing First Film Next, an example of a method for manufacturing the first film 40 will be described.
 まず、主成分としてPBTを含む樹脂材料を準備する。続いて、キャスト法やチューブラー法などの溶融押出法で樹脂材料を押し出すことにより、フィルム状の基材41を作製する。続いて、アルミニウム酸化物などの無機材料をフィルム状の基材41に蒸着させて、透明蒸着層36を形成してもよい。続いて、透明蒸着層36上に透明ガスバリア性組成物を塗布して、透明ガスバリア性塗布膜37を形成してもよい。その後、基材41上又は透明ガスバリア性塗布膜37上に印刷層42を形成する。このようにして、基材41と、印刷層42とを備える第1フィルム40、あるいは、基材41と、透明蒸着層36及び透明ガスバリア性塗布膜37を含む透明ガスバリア層35と、印刷層42とを備える第1フィルム40を得ることができる。 First, a resin material containing PBT as a main component is prepared. Subsequently, the film-like base material 41 is produced by extruding a resin material by a melt extrusion method such as a cast method or a tubular method. Subsequently, an inorganic material such as aluminum oxide may be vapor-deposited on the film-like base material 41 to form the transparent vapor deposition layer 36. Subsequently, a transparent gas barrier coating composition 37 may be formed by applying a transparent gas barrier composition on the transparent vapor deposition layer 36. Thereafter, the printing layer 42 is formed on the substrate 41 or the transparent gas barrier coating film 37. Thus, the 1st film 40 provided with the base material 41 and the printing layer 42, or the base material 41, the transparent gas barrier layer 35 containing the transparent vapor deposition layer 36 and the transparent gas barrier coating film 37, and the printing layer 42. The 1st film 40 provided with these can be obtained.
 積層体の製造方法
 次に、積層体30の製造方法の一例について説明する。
Method for producing a laminate Next, an example of a method for producing a laminate 30.
 まず、上述の第1フィルム40、及び、シーラント層71を含むシーラントフィルム70を準備する。続いて、ドライラミネート法により、接着剤層45を介して第1フィルム40とシーラントフィルム70とを積層する。これによって、第1フィルム40及びシーラントフィルム70を備える積層体30を得ることができる。 First, a sealant film 70 including the first film 40 and the sealant layer 71 described above is prepared. Subsequently, the first film 40 and the sealant film 70 are laminated via the adhesive layer 45 by a dry laminating method. Thereby, the laminated body 30 provided with the 1st film 40 and the sealant film 70 can be obtained.
 袋の製造方法
 上述の積層体30からなる表面フィルム14及び裏面フィルム15を準備する。また、表面フィルム14と裏面フィルム15との間に、折り返した状態の下部フィルム16を挿入する。続いて、各フィルムの内面同士をヒートシールして、下部シール部12a、側部シール部13aなどのシール部を形成する。また、ヒートシールによって互いに接合されたフィルムを適切な形状に切断して、図1に示す袋10を得る。続いて、上部11の開口部11bを介して内容物18を袋10に充填する。内容物18は、例えば、カレー、シチュー、スープ等の、水分を含む調理済食品である。また食品以外にも、湯煎等によって加熱され得るものを内容物として袋10に収容することができる。その後、上部11をヒートシールして上部シール部を形成する。このようにして、内容物18が収容され封止された袋10を得ることができる。
Manufacturing method of bag The front film 14 and the back film 15 which consist of the above-mentioned laminated body 30 are prepared. In addition, the lower film 16 in a folded state is inserted between the front film 14 and the back film 15. Subsequently, the inner surfaces of the films are heat-sealed to form seal portions such as the lower seal portion 12a and the side seal portion 13a. Further, the films bonded to each other by heat sealing are cut into an appropriate shape to obtain a bag 10 shown in FIG. Subsequently, the contents 18 are filled into the bag 10 through the opening 11 b of the upper portion 11. The contents 18 are cooked foods containing moisture, such as curry, stew, and soup. In addition to food, items that can be heated by hot water can be stored in the bag 10 as contents. Thereafter, the upper part 11 is heat-sealed to form an upper seal part. Thus, the bag 10 in which the contents 18 are accommodated and sealed can be obtained.
 内容物の加熱方法
 次に、袋10に収容された内容物18の加熱方法の一例について説明する。
Heating method of the contents Next, an example of a method for heating the contents 18 contained in the bag 10.
 まず、下部12を下にして袋10を自立させた状態で、袋10を電子レンジの内部に載置する。次に、電子レンジを利用して内容物を加熱する。これによって、内容物18の温度が高くなり、これに伴って、内容物18に含まれる水分が蒸発して収容部17の圧力が高まる。図6は、収容部17の圧力が高まった状態の袋10を示す断面図である。 First, the bag 10 is placed inside the microwave oven in a state where the bag 10 is self-supporting with the lower portion 12 facing down. Next, the contents are heated using a microwave oven. As a result, the temperature of the contents 18 increases, and accordingly, the water contained in the contents 18 evaporates and the pressure in the accommodating portion 17 increases. FIG. 6 is a cross-sectional view showing the bag 10 in a state where the pressure in the accommodating portion 17 is increased.
 収容部17の圧力が高くなると、図6に示すように、収容部17から受ける力によって表面フィルム14及び裏面フィルム15が外側に膨らむ。ここで本実施の形態においては、表面フィルム14及び裏面フィルム15を構成する積層体30が、PBTを主成分とする基材41を含む。このため、基材41の剛性が高くなっており、この結果、表面フィルム14及び裏面フィルム15が力F2を受けた場合に表面フィルム14及び裏面フィルム15における基材41が伸びることを抑制することができる。これにより、収容部17に生じる圧力に起因して生じる力を、図6に示すように、表面フィルム14及び裏面フィルム15を伸ばすための力F2ではなく、蒸気抜きシール部20aを剥離させるための力F1として主に利用することができる。このため、蒸気抜きシール部20aに加わる力F1を大きくすることができる。このことにより、加熱時に蒸気抜きシール部20aが剥離し易くなり、蒸気抜き機構20を介して収容部17の蒸気を外部に逃がすことができる。 When the pressure of the accommodating part 17 becomes high, the surface film 14 and the back film 15 swell outward due to the force received from the accommodating part 17 as shown in FIG. Here, in this Embodiment, the laminated body 30 which comprises the surface film 14 and the back film 15 contains the base material 41 which has PBT as a main component. For this reason, the rigidity of the base material 41 is high. As a result, when the front film 14 and the back film 15 receive the force F2, the base material 41 in the front film 14 and the back film 15 is prevented from extending. Can do. Thereby, the force generated due to the pressure generated in the accommodating portion 17 is not the force F2 for extending the front film 14 and the back film 15, as shown in FIG. It can be mainly used as the force F1. For this reason, the force F1 applied to the steam release seal portion 20a can be increased. Thus, the steam release seal portion 20a is easily peeled off during heating, and the steam in the housing portion 17 can be released to the outside via the steam release mechanism 20.
 次に、本実施の形態の効果を、図7に示す比較の形態と比較して説明する。比較の形態においては、表面フィルム14及び裏面フィルム15を構成する積層体130の外面、すなわち基材が、ナイロンによって構成されている。ナイロンの耐熱性は、PBTやPETに比べて低い。このため、収容部17の圧力が高くなると、積層体130中のナイロンがシーラント層とともに伸び、表面フィルム14及び裏面フィルム15が外側に膨らむ。このように、比較の形態においては、収容部17に生じる圧力が、ナイロンを含む積層体130を伸ばすことに主に利用されるので、蒸気抜きシール部20aに加わる力F1を大きくすることができない。このため、蒸気抜きシール部20aが剥離するよりも前に積層体130が破れてしまったり、蒸気抜きシール部20a以外のシール部が剥離されてしまったりすることが考えられる。 Next, the effect of this embodiment will be described in comparison with the comparative embodiment shown in FIG. In the comparative form, the outer surface of the laminate 130 constituting the front film 14 and the back film 15, that is, the base material is made of nylon. The heat resistance of nylon is lower than that of PBT or PET. For this reason, when the pressure of the accommodating part 17 becomes high, the nylon in the laminated body 130 will extend with a sealant layer, and the surface film 14 and the back film 15 will swell outside. As described above, in the comparative embodiment, the pressure generated in the accommodating portion 17 is mainly used to stretch the laminated body 130 containing nylon, and therefore the force F1 applied to the steam release seal portion 20a cannot be increased. . For this reason, it is possible that the laminated body 130 is torn before the vapor vent seal portion 20a is peeled off, or the seal portions other than the vapor vent seal portion 20a are peeled off.
 これに対して、本実施の形態によれば、表面フィルム14及び裏面フィルム15を構成する積層体30が、PBTを主成分とする基材41を含むので、積層体30の熱間引張弾性率を高くすることができる。このため、加熱時に蒸気抜きシール部20aに加わる力F1を大きくすることができる。このことにより、蒸気抜きシール部20aが剥離するよりも前に積層体30が破れてしまったり、蒸気抜きシール部20a以外のシール部が剥離されてしまったりすることを抑制することができる。すなわち、袋10の蒸通性を確保することができる。 On the other hand, according to this Embodiment, since the laminated body 30 which comprises the surface film 14 and the back surface film 15 contains the base material 41 which has PBT as a main component, the hot tensile elasticity modulus of the laminated body 30 Can be high. For this reason, the force F1 applied to the vapor vent seal part 20a during heating can be increased. Thereby, it can suppress that the laminated body 30 is torn before the vapor vent seal part 20a peels off, or seal parts other than the vapor vent seal part 20a peel off. That is, the vapor permeability of the bag 10 can be ensured.
 また、本実施の形態によれば、表面フィルム14及び裏面フィルム15を構成する積層体30のシーラント層71が、プロピレン・エチレンブロック共重合体を含む。このため、高温時のシーラント層71の熱間シール強度を低くすることができ、これにより、加熱時に蒸気抜きシール部20aがより剥離し易くなる。従って、袋10の蒸通性を更に高めることができる。また、シーラント層71がエラストマーを更に含むことにより、シーラントフィルム70の耐衝撃性や耐突き刺し性を高めることができる。 Further, according to the present embodiment, the sealant layer 71 of the laminate 30 constituting the front film 14 and the back film 15 includes a propylene / ethylene block copolymer. For this reason, the hot seal strength of the sealant layer 71 at a high temperature can be lowered, whereby the steam release seal portion 20a is more easily peeled off during heating. Therefore, the vapor permeability of the bag 10 can be further improved. Moreover, when the sealant layer 71 further includes an elastomer, the impact resistance and puncture resistance of the sealant film 70 can be improved.
 また、本実施の形態によれば、表面フィルム14及び裏面フィルム15を構成する積層体30が、PBTを主成分とする基材41を含むことにより、下記の効果を奏することができる。
 まず、PBTは、印刷適性に優れる。このため、ポリエチレンテレフタレート(以下、PETとも記す)の場合と同様に、PBTを含む基材41上に印刷層42を設けることができる。
 また、PBTは、耐熱性に優れる。このため、袋10にボイル処理やレトルト処理を施す際に基材41が変形したり基材41の強度が低下したりすることを抑制することができる。
 また、PBTは、高い強度を有する。このため、袋10を構成する積層体がナイロンを含む場合と同様に、積層体30及び袋10に耐突き刺し性を持たせることができる。積層体30の突き刺し強度は、11N以上であることが好ましく、13N以上であることがより好ましく、15N以上であることがさらに好ましく、17N以上であることが特に好ましい。突き刺し強度の測定方法については、後述する実施例1において説明する。
 また、PBTは、ナイロンに比べて水分を吸収しにくいという特性を有する。このため、PBTを含む基材41を積層体30の外面30yに配置した場合であっても、基材41が水分を吸収して積層体30のラミネート強度が低下してしまうことを抑制することができる。
Moreover, according to this Embodiment, when the laminated body 30 which comprises the surface film 14 and the back surface film 15 contains the base material 41 which has PBT as a main component, there can exist the following effect.
First, PBT is excellent in printability. For this reason, the printing layer 42 can be provided on the base material 41 containing PBT similarly to the case of polyethylene terephthalate (hereinafter also referred to as PET).
Moreover, PBT is excellent in heat resistance. For this reason, it is possible to prevent the base material 41 from being deformed or the strength of the base material 41 from being lowered when the bag 10 is subjected to boil processing or retort processing.
PBT has high strength. For this reason, puncture resistance can be given to the laminated body 30 and the bag 10 similarly to the case where the laminated body which comprises the bag 10 contains nylon. The puncture strength of the laminate 30 is preferably 11N or more, more preferably 13N or more, further preferably 15N or more, and particularly preferably 17N or more. A method for measuring the piercing strength will be described in Example 1 described later.
PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the base material 41 containing PBT is arrange | positioned on the outer surface 30y of the laminated body 30, it suppresses that the base material 41 absorbs a water | moisture content and the laminate strength of the laminated body 30 falls. Can do.
 第2の実施の形態
 図8乃至図10を参照して、本発明の第2の実施の形態について説明する。上述の第1の実施の形態においては、積層体の基材を構成するプラスチックフィルムが1つのみである例を示した。本実施の形態においては、積層体の基材を構成するプラスチックフィルムが2つ存在する例について説明する。本実施の形態において、第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。また、第1の実施の形態において得られる作用効果が本実施の形態においても得られることが明らかである場合、その説明を省略することもある。
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. In the above-described first embodiment, an example in which there is only one plastic film constituting the base material of the laminated body has been shown. In the present embodiment, an example in which two plastic films constituting the base material of the laminate are present will be described. In the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Moreover, when it is clear that the effect obtained in the first embodiment can be obtained in the present embodiment, the description thereof may be omitted.
 図8は、第2の実施の形態における積層体30の層構成の一例を示す断面図である。図8に示すように、積層体30は、第1フィルム50、第2フィルム60及びシーラントフィルム70をこの順で少なくとも含む。第1フィルム50は、外面30y側に位置しており、シーラントフィルム70は、外面30yの反対側の内面30x側に位置している。 FIG. 8 is a cross-sectional view showing an example of the layer configuration of the stacked body 30 in the second embodiment. As shown in FIG. 8, the laminate 30 includes at least a first film 50, a second film 60, and a sealant film 70 in this order. The first film 50 is located on the outer surface 30y side, and the sealant film 70 is located on the inner surface 30x side opposite to the outer surface 30y.
 第1フィルム50は、第1基材51を少なくとも含む。また、第1フィルム50は、第1基材51と第2基材61の間に位置する印刷層52を更に含んでいてもよい。例えば、第1フィルム50は、第1基材51に設けられた印刷層52を更に含んでいてもよい。第2フィルム60は、第2基材61を少なくとも含む。シーラントフィルム70は、シーラント層71を少なくとも含む。また、第1フィルム50と第2フィルム60とは第1接着剤層55によって接合されており、第2フィルム60とシーラントフィルム70とは第2接着剤層65によって接合されている。従って、本実施の形態による積層体30は、外面側から内面側へ順に
  第1基材/印刷層/第1接着剤層/第2基材/第2接着剤層/シーラント層
を備えている、と言える。なお、「/」は層と層の境界を表している。
The first film 50 includes at least a first base material 51. The first film 50 may further include a print layer 52 positioned between the first base material 51 and the second base material 61. For example, the first film 50 may further include a printing layer 52 provided on the first base material 51. The second film 60 includes at least a second base material 61. The sealant film 70 includes at least a sealant layer 71. The first film 50 and the second film 60 are joined by a first adhesive layer 55, and the second film 60 and the sealant film 70 are joined by a second adhesive layer 65. Therefore, the laminate 30 according to the present embodiment includes the first base material / printing layer / first adhesive layer / second base material / second adhesive layer / sealant layer in order from the outer surface side to the inner surface side. It can be said. Note that “/” represents a boundary between layers.
 以下、第1フィルム50、第1接着剤層55、第2フィルム60、第2接着剤層65及びシーラントフィルム70についてそれぞれ詳細に説明する。 Hereinafter, each of the first film 50, the first adhesive layer 55, the second film 60, the second adhesive layer 65, and the sealant film 70 will be described in detail.
 (第1フィルム)
 図8に示す例において、第1フィルム50は、積層体30の外面30yを構成する第1基材51と、第1基材51の内面30x側に設けられた印刷層52と、を含む。第1基材51は、上述の第1の実施の形態における基材41と同様に、主成分としてポリブチレンテレフタレートを含む。例えば、第1基材51は、51質量%以上のPBTを含む。PBTを含む第1基材51の構成としては、上述の第1の実施の形態における基材41に関して説明した第1の構成又は第2の構成のいずれを採用してもよい。印刷層52は、上述の第1の実施の形態における印刷層42と同様に、袋10に製品情報を示したり美感を付与したりするために第1基材51に印刷された層である。
(First film)
In the example illustrated in FIG. 8, the first film 50 includes a first base material 51 that forms the outer surface 30 y of the laminate 30, and a printed layer 52 that is provided on the inner surface 30 x side of the first base material 51. The 1st base material 51 contains polybutylene terephthalate as a main ingredient like base material 41 in the above-mentioned 1st embodiment. For example, the 1st base material 51 contains 51 mass% or more PBT. As the configuration of the first base material 51 including PBT, any of the first configuration and the second configuration described with respect to the base material 41 in the first embodiment described above may be adopted. The print layer 52 is a layer printed on the first base material 51 in order to show product information or give aesthetics to the bag 10, similarly to the print layer 42 in the first embodiment described above.
 (第1接着剤層)
 第1接着剤層55は、第1フィルム50と第2フィルム60とを接着するための第1接着剤を含む。第1接着剤の例としては、上述の第1の実施の形態における接着剤層45の場合と同様に、エーテル系の二液反応型接着剤、エステル系の二液反応型接着剤などを挙げることができる。
(First adhesive layer)
The first adhesive layer 55 includes a first adhesive for bonding the first film 50 and the second film 60. Examples of the first adhesive include an ether-based two-component reactive adhesive, an ester-based two-component reactive adhesive, and the like, as in the case of the adhesive layer 45 in the first embodiment described above. be able to.
 (第2フィルム)
 第2フィルム60は、第2基材61を少なくとも含む。第2基材61は、主成分としてPETを含む。例えば、第2基材61は、51質量%以上のPETを含む。第2基材61がPETを含むことにより、第2基材61が耐熱性を有することができる。例えば、第2基材61がナイロンを含む場合に比べて、第2基材61の融点が高くなり、また、第2基材61の吸湿性が低くなる。これにより、袋10を電子レンジで加熱するとき、加過熱された水などに起因して第2基材61に穴が開いてしまうことを抑制することができる。また、PETの耐熱性は、PBTの耐熱性よりも高い。このため、本実施の形態によれば、第2基材61がPBTからなる場合に比べても、積層体30の耐熱性を高めることができる。これにより、例えば、袋10を電子レンジで加熱して内容物の温度が高くなった時に積層体30がダメージを受けて積層体30の性能が低下することを抑制することができる。
(Second film)
The second film 60 includes at least a second base material 61. The 2nd base material 61 contains PET as a main component. For example, the 2nd base material 61 contains 51 mass% or more of PET. The 2nd base material 61 can have heat resistance because the 2nd base material 61 contains PET. For example, compared with the case where the 2nd base material 61 contains nylon, melting | fusing point of the 2nd base material 61 becomes high, and the hygroscopic property of the 2nd base material 61 becomes low. Thereby, when heating the bag 10 with a microwave oven, it can suppress that a hole opens in the 2nd base material 61 resulting from the overheated water. Moreover, the heat resistance of PET is higher than the heat resistance of PBT. For this reason, according to this Embodiment, compared with the case where the 2nd base material 61 consists of PBT, the heat resistance of the laminated body 30 can be improved. Thereby, for example, when the bag 10 is heated with a microwave oven and the temperature of the contents becomes high, it is possible to prevent the laminated body 30 from being damaged and the performance of the laminated body 30 from being deteriorated.
 第2基材61の厚みは、好ましくは9μm以上であり、より好ましくは12μm以上である。また、第2基材61の厚みは、好ましくは25μm以下であり、より好ましくは20μm以下である。第2基材61の厚みを9μm以上にすることにより、第2基材61が十分な強度を有するようになる。また、第2基材61の厚みを25μm以下にすることにより、第2基材61が優れた成形性を示すようになる。このため、積層体30を加工して袋10を製造する工程を効率的に実施することができる。 The thickness of the second substrate 61 is preferably 9 μm or more, more preferably 12 μm or more. Moreover, the thickness of the 2nd base material 61 becomes like this. Preferably it is 25 micrometers or less, More preferably, it is 20 micrometers or less. By setting the thickness of the second substrate 61 to 9 μm or more, the second substrate 61 has sufficient strength. Moreover, the 2nd base material 61 comes to show the outstanding moldability by the thickness of the 2nd base material 61 being 25 micrometers or less. For this reason, the process which processes the laminated body 30 and manufactures the bag 10 can be implemented efficiently.
 (第2接着剤層)
 第2接着剤層65は、第2フィルム60とシーラントフィルム70とを接着するための第2接着剤を含む。第2接着剤の例としては、エーテル系の二液反応型接着剤を挙げることができる。エーテル系の二液反応型接着剤としては、第1接着剤の場合と同様に、ポリウレタンなどを挙げることができる。ポリウレタンは、主剤としてのポリオールと、硬化剤としてのイソシアネート化合物とが反応することにより生成される硬化物である。なお、ポリオールとしては、ポリエーテルポリオールやポリエステルポリオールを用いることができるが、ポリエステルポリオールを用いることが好ましい。
(Second adhesive layer)
The second adhesive layer 65 includes a second adhesive for bonding the second film 60 and the sealant film 70. Examples of the second adhesive include ether-based two-component reaction type adhesives. Examples of the ether-based two-component reaction type adhesive include polyurethane as in the case of the first adhesive. Polyurethane is a cured product produced by a reaction between a polyol as a main agent and an isocyanate compound as a curing agent. In addition, although polyether polyol and polyester polyol can be used as polyol, it is preferable to use polyester polyol.
 イソシアネート化合物としては、上述のように、芳香族系イソシアネート化合物及び脂肪族系イソシアネート化合物が存在する。このうち芳香族系イソシアネート化合物は、加熱殺菌などの高温環境下において、食品用途で使用できない成分が溶出する。ところで、第2接着剤層65は、図8に示すように、シーラントフィルム70に接している。このため、第2接着剤層65が芳香族系イソシアネート化合物を含む場合、芳香族系イソシアネート化合物から溶出された成分が、積層体30によって構成された袋10の内容物に付着することがある。 As described above, aromatic isocyanate compounds and aliphatic isocyanate compounds exist as isocyanate compounds. Among these, aromatic isocyanate compounds elute components that cannot be used in food applications under high-temperature environments such as heat sterilization. Incidentally, the second adhesive layer 65 is in contact with the sealant film 70 as shown in FIG. For this reason, when the 2nd adhesive bond layer 65 contains an aromatic isocyanate compound, the component eluted from the aromatic isocyanate compound may adhere to the content of the bag 10 comprised by the laminated body 30. FIG.
 このような課題を考慮し、第2接着剤層65を構成する第2接着剤として、主剤としてのポリオールと、硬化剤としての脂肪族系イソシアネート化合物とが反応することにより生成される硬化物を用いることを提案する。これにより、第2接着剤層65に起因する食品用途で使用できない成分が内容物に付着することを防止することができる。 In consideration of such problems, as a second adhesive constituting the second adhesive layer 65, a cured product produced by a reaction between a polyol as a main agent and an aliphatic isocyanate compound as a curing agent is used. Suggest to use. Thereby, it can prevent that the component which cannot be used for the food use resulting from the 2nd adhesive bond layer 65 adheres to the contents.
 なお、第2フィルム60がガスバリア性などのバリア性を有さない場合であって、且つ上述の第1接着剤層55が芳香族系イソシアネート化合物を含む場合、芳香族系イソシアネート化合物から溶出された成分が内容物に付着することも考えられる。この場合、第2接着剤層65の場合と同様に、第1接着剤層55を構成する第1接着剤として、主剤としてのポリオールと、硬化剤としての脂肪族系イソシアネート化合物とが反応することにより生成される硬化物を用いることが好ましい。 In addition, when the second film 60 does not have a barrier property such as a gas barrier property, and the first adhesive layer 55 includes an aromatic isocyanate compound, the second film 60 was eluted from the aromatic isocyanate compound. It is also conceivable that components adhere to the contents. In this case, as in the case of the second adhesive layer 65, the polyol as the main agent and the aliphatic isocyanate compound as the curing agent react as the first adhesive constituting the first adhesive layer 55. It is preferable to use a cured product produced by the above.
 (シーラントフィルム)
 シーラントフィルム70は、積層体30の内面30xを構成するシーラント層71を少なくとも含む。シーラント層71を構成する材料としては、上述の第1の実施の形態の場合と同様に、低密度ポリエチレン、直鎖状低密度ポリエチレンなどのポリエチレン、ポリプロピレンから選択される1種または2種以上の樹脂を用いることができる。
(Sealant film)
The sealant film 70 includes at least a sealant layer 71 that constitutes the inner surface 30 x of the laminate 30. As the material constituting the sealant layer 71, as in the case of the first embodiment described above, one or two or more selected from polyethylene such as low density polyethylene and linear low density polyethylene, and polypropylene are used. Resin can be used.
 積層体の製造方法
 次に、積層体30の製造方法の一例について説明する。
Method for producing a laminate Next, an example of a method for producing a laminate 30.
 まず、上述の第1フィルム50、及び第2フィルム60を準備する。続いて、ドライラミネート法により、第1フィルム50と第2フィルム60とを、第1接着剤層55を介して積層する。その後、ドライラミネート法により、第1フィルム50及び第2フィルム60を含む積層体と、シーラントフィルム70とを、第2接着剤層65を介して積層する。これによって、第1フィルム50、第2フィルム60及びシーラントフィルム70を備える積層体30を得ることができる。 First, the first film 50 and the second film 60 described above are prepared. Subsequently, the first film 50 and the second film 60 are laminated via the first adhesive layer 55 by a dry laminating method. Thereafter, the laminate including the first film 50 and the second film 60 and the sealant film 70 are laminated via the second adhesive layer 65 by a dry laminating method. Thereby, the laminated body 30 provided with the 1st film 50, the 2nd film 60, and the sealant film 70 can be obtained.
 若しくは、まず第2フィルム60とシーラントフィルム70とを第2接着剤層65を介して積層し、その後、第1フィルム50と、第2フィルム60及びシーラントフィルム70を含む積層体とを第1接着剤層55を介して積層することにより、積層体30を製造してもよい。 Alternatively, the second film 60 and the sealant film 70 are first laminated through the second adhesive layer 65, and then the first film 50 and the laminate including the second film 60 and the sealant film 70 are first bonded. The laminated body 30 may be manufactured by laminating via the agent layer 55.
 以下、本実施の形態に係る積層体30が奏する効果について説明する。 Hereinafter, effects produced by the laminate 30 according to the present embodiment will be described.
 本実施の形態においては、表面フィルム14及び裏面フィルム15を構成する積層体30が、PBTを主成分とする第1基材51を含む。このため、第1基材51の剛性が高くなっており、この結果、表面フィルム14及び裏面フィルム15が力を受けた場合に表面フィルム14及び裏面フィルム15における第1基材51が伸びることを抑制することができる。これにより、収容部17に生じる圧力に起因して生じる力を、表面フィルム14及び裏面フィルム15を伸ばすための力ではなく、蒸気抜きシール部20aを剥離させるための力として主に利用することができる。このため、蒸気抜きシール部20aに加わる力を大きくすることができる。このことにより、加熱時に蒸気抜きシール部20aが剥離し易くなり、蒸気抜き機構20を介して収容部17の蒸気を外部に逃がすことができる。 In the present embodiment, the laminated body 30 constituting the front film 14 and the back film 15 includes a first base material 51 containing PBT as a main component. For this reason, the rigidity of the first base material 51 is high. As a result, when the front film 14 and the back film 15 receive force, the first base material 51 in the front film 14 and the back film 15 extends. Can be suppressed. Thereby, the force generated due to the pressure generated in the housing portion 17 can be mainly used as a force for peeling off the steam release seal portion 20a, not a force for extending the front film 14 and the back film 15. it can. For this reason, the force added to the steam release seal | sticker part 20a can be enlarged. Thus, the steam release seal portion 20a is easily peeled off during heating, and the steam in the housing portion 17 can be released to the outside via the steam release mechanism 20.
 その他にも、袋10の表面フィルム14及び裏面フィルム15を構成する積層体30が、PBTを主成分とする第1基材51を含むことにより、下記の効果を奏することができる。
 まず、PBTは、印刷適性に優れる。このため、ポリエチレンテレフタレート(以下、PETとも記す)の場合と同様に、PBTを含む第1基材51上に印刷層52を設けることができる。
 また、PBTは、耐熱性に優れる。このため、袋10にボイル処理やレトルト処理を施す際に第1基材51が変形したり第1基材51の強度が低下したりすることを抑制することができる。
 また、PBTは、高い強度を有する。このため、袋10を構成する積層体がナイロンを含む場合と同様に、積層体30及び袋10の突き刺し強度を高めることができる。積層体30の突き刺し強度は、13N以上であることが好ましく、15N以上であることがより好ましく、17N以上であることがさらに好ましい。
 また、PBTは、ナイロンに比べて水分を吸収しにくいという特性を有する。このため、PBTを含む第1基材51を積層体30の外面30yに配置した場合であっても、第1基材51が水分を吸収して積層体30のラミネート強度が低下してしまうことを抑制することができる。
In addition, when the laminated body 30 which comprises the surface film 14 and the back surface film 15 of the bag 10 contains the 1st base material 51 which has PBT as a main component, there can exist the following effect.
First, PBT is excellent in printability. For this reason, the printing layer 52 can be provided on the 1st base material 51 containing PBT similarly to the case of polyethylene terephthalate (henceforth PET).
Moreover, PBT is excellent in heat resistance. For this reason, when performing the boil process or the retort process on the bag 10, it is possible to prevent the first base material 51 from being deformed or the strength of the first base material 51 from being lowered.
PBT has high strength. For this reason, the puncture strength of the laminated body 30 and the bag 10 can be increased similarly to the case where the laminated body constituting the bag 10 includes nylon. The puncture strength of the laminate 30 is preferably 13N or more, more preferably 15N or more, and further preferably 17N or more.
PBT has a characteristic that it is less likely to absorb moisture than nylon. For this reason, even if it is a case where the 1st substrate 51 containing PBT is arranged on outer surface 30y of layered product 30, the 1st substrate 51 absorbs moisture, and the lamination strength of layered product 30 will fall. Can be suppressed.
 また、袋10の表面フィルム14及び裏面フィルム15を構成する積層体30が、PETを主成分とする第2基材61を含むことにより、第2基材61がPBTからなる場合に比べて、積層体30の耐熱性を高めることができる。これにより、例えば、袋10を電子レンジで加熱して内容物の温度が高くなった時に表面フィルム14及び裏面フィルム15がダメージを受けて表面フィルム14及び裏面フィルム15の性能が低下することを抑制することができる。 Moreover, the laminated body 30 which comprises the surface film 14 and the back surface film 15 of the bag 10 contains the 2nd base material 61 which has PET as a main component, compared with the case where the 2nd base material 61 consists of PBT, The heat resistance of the laminate 30 can be increased. Thereby, for example, when the bag 10 is heated in a microwave oven and the temperature of the contents is increased, the surface film 14 and the back film 15 are prevented from being damaged and the performance of the surface film 14 and the back film 15 is reduced. can do.
 また、本実施の形態によれば、袋10の表面フィルム14及び裏面フィルム15を構成する積層体30のシーラント層71が、プロピレン・エチレンブロック共重合体を含む。このため、袋10の耐衝撃性や耐突き刺し性を高めることができる。 Moreover, according to this Embodiment, the sealant layer 71 of the laminated body 30 which comprises the surface film 14 and the back film 15 of the bag 10 contains a propylene-ethylene block copolymer. For this reason, the impact resistance and puncture resistance of the bag 10 can be enhanced.
 なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。 Note that various modifications can be made to the above-described embodiment. Hereinafter, modified examples will be described with reference to the drawings as necessary. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding parts in the above embodiment are used for the parts that can be configured in the same manner as in the above embodiment. A duplicate description is omitted. In addition, when it is clear that the operational effects obtained in the above-described embodiment can be obtained in the modified example, the description thereof may be omitted.
 (層構成の変形例)
 上述の本実施の形態においては、第1基材51が51質量%以上のPBTを含み、第2基材61が51質量%以上のPETを含むことによって積層体30の耐突き刺し性及び耐熱性を高める例を示した。しかしながら、これに限られることはなく、第1基材51が51質量%以上のPETを含み、第2基材61が51質量%以上のPBTを含むことによって積層体30の耐突き刺し性及び耐熱性を高めてもよい。第2基材61のPBTとしては、上述の第1の実施の形態で説明した第1の構成に係るPBT又は第2の構成に係るPBTを用いることができる。
(Modification of layer structure)
In the present embodiment described above, the first substrate 51 includes 51 mass% or more of PBT, and the second substrate 61 includes 51 mass% or more of PET, whereby the stab resistance and heat resistance of the laminate 30. The example which raises is shown. However, the present invention is not limited to this, and the first substrate 51 includes 51% by mass or more of PET, and the second substrate 61 includes 51% by mass or more of PBT. You may increase the nature. As the PBT of the second substrate 61, the PBT according to the first configuration described in the first embodiment or the PBT according to the second configuration can be used.
 第2基材61が51質量%以上のPBTを含み、第1基材51が51質量%以上のPETを含むことは、積層体30の寸法安定性、印刷適性の向上にも寄与する。 The fact that the second base material 61 contains 51% by mass or more of PBT and the first base material 51 contains 51% by mass or more of PET contributes to the improvement of the dimensional stability and printability of the laminate 30.
 また、第1基材51及び第2基材61の両方が、51質量%以上のPBTを含んでいてもよい。この場合のPBTとしても、上述の第1基材51で説明した第1の構成に係るPBT又は第2の構成に係るPBTを用いることができる。 Moreover, both the 1st base material 51 and the 2nd base material 61 may contain 51 mass% or more of PBT. Also as PBT in this case, PBT which concerns on the 1st structure demonstrated with the above-mentioned 1st base material 51, or PBT which concerns on a 2nd structure can be used.
 第1基材51及び第2基材61を構成する材料の組み合わせの例をまとめて表1に示す。なお、表1において、「PBT」という表記は、第1基材51又は第2基材61のフィルムを構成する樹脂中に51質量%以上のPBTが含まれることを意味する。また、表1において、「PET」という表記は、第1基材51又は第2基材61のフィルムを構成する樹脂中に51質量%以上のPETが含まれることを意味する。
Figure JPOXMLDOC01-appb-T000004
Table 1 summarizes examples of combinations of materials constituting the first base member 51 and the second base member 61. In Table 1, the notation “PBT” means that 51 mass% or more of PBT is contained in the resin constituting the film of the first base material 51 or the second base material 61. In Table 1, the expression “PET” means that 51% by mass or more of PET is contained in the resin constituting the film of the first base material 51 or the second base material 61.
Figure JPOXMLDOC01-appb-T000004
 また、上述の本実施の形態においては、第1基材51の内面30x側に印刷層52が設けられる例を示したが、これに限られることはなく、第1基材51の外面30y側に印刷層52が設けられていてもよい。また、第1基材51に印刷層52が設けられていなくてもよい。 In the above-described embodiment, the example in which the printing layer 52 is provided on the inner surface 30x side of the first base material 51 has been described. However, the present invention is not limited to this, and the outer surface 30y side of the first base material 51 is provided. The printing layer 52 may be provided on the surface. Further, the print layer 52 may not be provided on the first base material 51.
 また、第1基材51と第2基材61との間の位置において、第1基材51又は/及び第2基材61に、透明性を有する無機材料からなる透明蒸着層36が設けられていてもよい。透明蒸着層36は、図9に示すように、第1基材51の内面30x側の面に設けられていてもよく、図10に示すように、第2基材61の外面30y側の面に設けられていてもよい。また、透明蒸着層36の上に、透明性を有する透明ガスバリア性塗布膜37が設けられていてもよい。透明蒸着層36及び透明ガスバリア性塗布膜37の具体的な構成は、上述の第1の実施の形態の場合と同様である。 Moreover, the transparent vapor deposition layer 36 which consists of an inorganic material which has transparency in the position between the 1st base material 51 and the 2nd base material 61 in the 1st base material 51 or / and the 2nd base material 61 is provided. It may be. The transparent vapor deposition layer 36 may be provided on the surface on the inner surface 30x side of the first base material 51 as shown in FIG. 9, and the surface on the outer surface 30y side of the second base material 61 as shown in FIG. May be provided. A transparent gas barrier coating film 37 having transparency may be provided on the transparent vapor deposition layer 36. Specific configurations of the transparent vapor deposition layer 36 and the transparent gas barrier coating film 37 are the same as those in the first embodiment.
 透明蒸着層36と第1基材51又は第2基材61との界面には、金属原子と炭素原子の共有結合が形成されていてもよい。例えば、透明蒸着層36が酸化アルミニウムを含む場合、第1基材51又は第2基材61と透明蒸着層36との界面には、アルミニウム原子と炭素原子の共有結合が形成されているものとすることができる。共有結合は、XPS測定によって検出され得る。 A covalent bond between a metal atom and a carbon atom may be formed at the interface between the transparent vapor deposition layer 36 and the first substrate 51 or the second substrate 61. For example, when the transparent vapor deposition layer 36 contains aluminum oxide, a covalent bond between an aluminum atom and a carbon atom is formed at the interface between the first base material 51 or the second base material 61 and the transparent vapor deposition layer 36. can do. Covalent bonds can be detected by XPS measurements.
 また、透明蒸着層36においては、アルミニウム原子と炭素原子の共有結合の存在比率が、XPS測定により透明蒸着層36と第1基材51又は第2基材61との界面を測定した場合に観察される炭素原子を含む全結合のうちの0.3%以上且つ30%以下の範囲内であることが好ましい。これにより、透明蒸着層36と第1基材51又は第2基材61との密着性が強化され、透明性も優れ、ガスバリア性の蒸着フィルムとしてバランスのよい性能のものが得られる。 Moreover, in the transparent vapor deposition layer 36, the existence ratio of the covalent bond of an aluminum atom and a carbon atom is observed when the interface between the transparent vapor deposition layer 36 and the first substrate 51 or the second substrate 61 is measured by XPS measurement. It is preferable that it is within the range of 0.3% or more and 30% or less of all the bonds containing carbon atoms. Thereby, the adhesiveness of the transparent vapor deposition layer 36 and the 1st base material 51 or the 2nd base material 61 is strengthened, transparency is excellent, and the thing of the performance with sufficient balance as a gas barrier property vapor deposition film is obtained.
 アルミニウム原子と炭素原子の共有結合の存在比率が0.3%未満であると、透明蒸着層36の密着性の改善が不十分であり、バリア性を安定して維持することが困難になる。 If the abundance ratio of the covalent bond between the aluminum atom and the carbon atom is less than 0.3%, the adhesion of the transparent vapor-deposited layer 36 is not sufficiently improved, and it is difficult to stably maintain the barrier property.
 さらに、酸化アルミニウムを主成分とする透明蒸着層36の、AL(アルミニウム)/O(酸素)比が、第1基材51又は第2基材61と透明蒸着層36との界面から、第1基材51又は第2基材61とは反対側の透明蒸着層36の表面に向かって3nmまでの範囲内において、1.0以下であることが好ましい。
 透明蒸着層36と第1基材51又は第2基材61との界面から、第1基材51又は第2基材61とは反対側の透明蒸着層36の表面に向かう範囲内において、AL/Oの比が1.0を超えると、第1基材51又は第2基材61と透明蒸着層36との間の密着性が不十分となり、かつアルミニウムの割合が高まり、透明蒸着層36の透明性が低下する。
Furthermore, the AL (aluminum) / O (oxygen) ratio of the transparent vapor-deposited layer 36 mainly composed of aluminum oxide is such that the first substrate 51 or the second substrate 61 and the interface between the transparent vapor-deposited layer 36 are the first. In the range up to 3 nm toward the surface of the transparent vapor deposition layer 36 on the side opposite to the base material 51 or the second base material 61, it is preferably 1.0 or less.
In the range from the interface between the transparent deposition layer 36 and the first substrate 51 or the second substrate 61 toward the surface of the transparent deposition layer 36 on the side opposite to the first substrate 51 or the second substrate 61, AL When the ratio of / O exceeds 1.0, the adhesion between the first base material 51 or the second base material 61 and the transparent vapor deposition layer 36 becomes insufficient, and the ratio of aluminum increases, so that the transparent vapor deposition layer 36 The transparency of the is reduced.
 第1基材51又は第2基材61に透明蒸着層36を形成する場合、第1基材51又は第2基材61の面に予めコロナ放電処理、フレーム処理、プラズマ処理などの前処理を施しておいてもよい。特に、透明蒸着層36と第1基材51又は第2基材61との界面に、金属原子と炭素原子の共有結合を形成する場合には、透明蒸着層36を形成しようとする第1基材51又は第2基材61の面に対し前処理を施すことが好ましい。前処理がプラズマ処理である場合、前処理装置により、0.1Pa以上100Pa以下の減圧環境下において、第1基材51又は第2基材61の面に対してプラズマを供給する。プラズマは、アルゴン等の不活性ガス単独又は酸素、窒素、炭酸ガス及びそれらの1種以上のガスとの混合ガスをプラズマ原料ガスとして用い、高周波電圧等による電位差によって、プラズマ原料ガスを励起状態にすることにより、発生させることができる。 When forming the transparent vapor deposition layer 36 on the 1st base material 51 or the 2nd base material 61, it pre-processes, such as a corona discharge process, a flame process, and a plasma process, to the surface of the 1st base material 51 or the 2nd base material 61 previously. You may give it. In particular, when a covalent bond between a metal atom and a carbon atom is formed at the interface between the transparent vapor deposition layer 36 and the first base material 51 or the second base material 61, the first group on which the transparent vapor deposition layer 36 is to be formed. The surface of the material 51 or the second base 61 is preferably pretreated. When the pretreatment is plasma treatment, plasma is supplied to the surface of the first base material 51 or the second base material 61 in a reduced pressure environment of 0.1 Pa or more and 100 Pa or less by the pretreatment apparatus. Plasma uses an inert gas such as argon alone or a mixed gas of oxygen, nitrogen, carbon dioxide and one or more of them as a plasma source gas, and the plasma source gas is excited by a potential difference due to a high-frequency voltage or the like. By doing so, it can be generated.
 前処理により、第1基材51又は第2基材61の表面近傍にプラズマを閉じ込めることができる。これにより、第1基材51又は第2基材61の表面の形状や、化学的な結合状態や官能基を変化させ、第1基材51又は第2基材61の表面の化学的性状を変化させることができる。このことにより、第1基材51又は第2基材61と透明蒸着層36との密着性を向上させることが可能となる。 The plasma can be confined in the vicinity of the surface of the first substrate 51 or the second substrate 61 by the pretreatment. Thereby, the shape of the surface of the 1st substrate 51 or the 2nd substrate 61, a chemical bond state, and a functional group are changed, and the chemical property of the surface of the 1st substrate 51 or the 2nd substrate 61 is changed. Can be changed. This makes it possible to improve the adhesion between the first substrate 51 or the second substrate 61 and the transparent vapor deposition layer 36.
 (袋の変形例)
 上述の第1の実施の形態及び第2の実施の形態においては、袋10がガセット式の袋である例を示したが、袋10の具体的な構成が特に限定されることはない。例えば、袋10は、1枚の積層体が筒状になるように背貼りシール部を形成することによって作製される、いわゆるピロー袋であってもよい。また、袋10は、四方シール袋や三方シール袋であってもよい。
(Bag variant)
In the first embodiment and the second embodiment described above, an example in which the bag 10 is a gusset type bag has been shown, but the specific configuration of the bag 10 is not particularly limited. For example, the bag 10 may be a so-called pillow bag produced by forming a back-sealed seal portion so that a single laminate is formed into a cylindrical shape. The bag 10 may be a four-side sealed bag or a three-side sealed bag.
 また、上述の第1の実施の形態及び第2の実施の形態においては、蒸気抜き機構20が、側部シール部13aから袋10の内側に向かって突出した形状を有する蒸気抜きシール部20aによって構成される例を示した。しかしながら、収容部17の蒸気を適切に外部に排出することができる限りにおいて、蒸気抜き機構20の具体的な構成は特には限られない。例えば、袋10がピロー袋である場合、蒸気抜き機構20が、上述の特許文献1の場合と同様に、背貼りシール部の一部によって構成されていてもよい。 In the first and second embodiments described above, the steam release mechanism 20 is formed by the steam release seal portion 20a having a shape protruding from the side seal portion 13a toward the inside of the bag 10. An example configured is shown. However, the specific configuration of the steam release mechanism 20 is not particularly limited as long as the steam in the housing portion 17 can be appropriately discharged to the outside. For example, when the bag 10 is a pillow bag, the steam release mechanism 20 may be configured by a part of the back-sealed seal portion as in the case of Patent Document 1 described above.
 次に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of the following examples unless it exceeds the gist.
 以下に説明する実施例1~4及び比較例1,2は、第1の実施の形態において説明した、積層体の基材を構成するプラスチックフィルムが1つのみである場合に関する例である。また、実施例5~8及び比較例3,4は、第2の実施の形態において説明した、積層体の基材を構成するプラスチックフィルムが2つ存在する場合に関する例である。まず、実施例1~4及び比較例1,2について説明する。 Examples 1 to 4 and Comparative Examples 1 and 2 described below are examples relating to the case where there is only one plastic film constituting the base material of the laminate described in the first embodiment. Examples 5 to 8 and Comparative Examples 3 and 4 are examples relating to the case where there are two plastic films constituting the base material of the laminate described in the second embodiment. First, Examples 1 to 4 and Comparative Examples 1 and 2 will be described.
 (実施例1)
 上述の第1の構成で説明した、複数の層41aを含み、キャスト法で作製されたフィルム状の基材41を準備した。各層41aにおけるPBTの含有率は80%であり、層41aの層数は1024であり、基材41の厚みは15μmであった。続いて、フィルム状の基材41上に、DICグラフィックス株式会社製のフィナートを用いて印刷層42を形成した。
(Example 1)
A film-like base material 41 including a plurality of layers 41a described in the first configuration and manufactured by a casting method was prepared. The content of PBT in each layer 41a was 80%, the number of layers 41a was 1024, and the thickness of the base material 41 was 15 μm. Subsequently, the print layer 42 was formed on the film-like base material 41 using a finart manufactured by DIC Graphics Corporation.
 また、シーラント層71を含むフィルム状のシーラントフィルム70を準備した。シーラント層71としては、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK500を用いた。ZK500は、上述のプロピレン・エチレンブロック共重合体及びエラストマーを含む。シーラント層71の厚みは60μmであった。 Further, a film-like sealant film 70 including the sealant layer 71 was prepared. As the sealant layer 71, an unstretched polypropylene film ZK500 manufactured by Toray Film Processing Co., Ltd. was used. ZK500 contains the above-mentioned propylene / ethylene block copolymer and elastomer. The thickness of the sealant layer 71 was 60 μm.
 その後、ドライラミネート法により、接着剤層45を介して第1フィルム40とシーラントフィルム70とを積層し、積層体30を作製した。接着剤層45としては、ロックペイント株式会社製の2液型ポリウレタン系接着剤(主剤:RU-40、硬化剤:H-4)を用いた。なお、主剤のRU-40は、ポリエステルポリオールである。 Thereafter, the first film 40 and the sealant film 70 were laminated through the adhesive layer 45 by a dry laminating method, and the laminated body 30 was produced. As the adhesive layer 45, a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used. The main agent, RU-40, is a polyester polyol.
 続いて、積層体30の突き刺し強度を、JIS Z1707 7.4に準拠して測定した。測定器としては、A&D製のテンシロン万能材料試験機RTC-1310を用いた。具体的には、図11に示すように、固定されている状態の積層体30の試験片に対して、外面30y側から、直径1.0mm、先端形状半径0.5mmの半円形の針80を、50mm/分(1分あたり50mm)の速度で突き刺し、針80が積層体30を貫通するまでの応力の最大値を測定した。5個以上の試験片について、応力の最大値を測定し、その平均値を積層体30の突き刺し強度とした。測定時の環境は、温度23℃、相対湿度50%とした。結果、突き刺し強度は16Nであった。 Subsequently, the piercing strength of the laminate 30 was measured according to JIS Z1707 7.4. As a measuring instrument, Tensilon universal material testing machine RTC-1310 manufactured by A & D was used. Specifically, as shown in FIG. 11, a semicircular needle 80 having a diameter of 1.0 mm and a tip shape radius of 0.5 mm from the outer surface 30y side with respect to the test piece of the laminated body 30 in a fixed state. Was pierced at a speed of 50 mm / min (50 mm per minute), and the maximum value of stress until the needle 80 penetrated the laminate 30 was measured. About five or more test pieces, the maximum value of stress was measured, and the average value was defined as the piercing strength of the laminate 30. The environment during the measurement was a temperature of 23 ° C. and a relative humidity of 50%. As a result, the piercing strength was 16N.
 また、100℃の雰囲気下において、積層体30の引張弾性率(以下、熱間引張弾性率とも記す)を、JIS K7127に準拠して測定した。測定器としては、オリエンテック社製の恒温槽付き引張試験機 RTC-1310Aを用いた。具体的には、まず、積層体30を切り出して、15mmの幅(短辺)を有する矩形状の試験片を作製した。その後、試験片をその長辺方向において50mm/分の速度で引っ張り、試験片に加えられる引張応力を測定した。5個の試験片について、引張応力を測定した。また、各試験片について、引張応力の傾きk(図12参照)の最大値を算出した。そして、各試験片の傾きkの最大値の平均値を、積層体30の熱間引張弾性率とした。結果、熱間引張弾性率は164MPaであった。 Further, the tensile modulus (hereinafter also referred to as hot tensile modulus) of the laminate 30 was measured according to JIS K7127 in an atmosphere of 100 ° C. As a measuring instrument, RTC-1310A, a tensile tester with a thermostatic bath manufactured by Orientec Co., Ltd. was used. Specifically, first, the laminate 30 was cut out to produce a rectangular test piece having a width (short side) of 15 mm. Thereafter, the test piece was pulled at a speed of 50 mm / min in the long side direction, and the tensile stress applied to the test piece was measured. Ten specimens were measured for tensile stress. For each test piece, the maximum value of the tensile stress gradient k (see FIG. 12) was calculated. And the average value of the maximum value of the inclination k of each test piece was made into the hot tensile elasticity modulus of the laminated body 30. FIG. As a result, the hot tensile elastic modulus was 164 MPa.
 続いて、2枚の積層体30の内面30x同士を部分的にヒートシールした。その後、100℃の雰囲気下において、積層体30間のシール強度を、JIS Z1707 7.5に準拠して測定した。測定器としては、オリエンテック社製の恒温槽付き引張試験機 RTC-1310Aを用いた。具体的には、まず、ヒートシールされた2枚の積層体30を切り出して、15mmの幅(短辺)を有する矩形状の試験片90を作製した。試験片90においては、図13Aに示すように、その長辺方向の一方の先端から15mmにわたって、2枚の積層体30が剥離されている。その後、図13Bに示すように、2枚の積層体30のうち既に剥離されている部分をそれぞれ、測定器のつかみ具91及びつかみ具92で把持した。また、つかみ具91,92をそれぞれ、2枚の積層体30がまだ接合されている部分の面方向に対して直交する方向において互いに逆向きに、300mm/分の速度で引っ張り、引張応力の最大値(図14参照)を測定した。図14は、間隔Sに対する引張応力の変化を示す図である。
 5個の試験片90について、引張応力の最大値を測定し、その平均値を積層体30のシール強度とした。引っ張りを開始する際の、つかみ具91,92間の間隔Sは20mmとし、引っ張りを終了する際の、つかみ具91,92間の間隔Sは40mmとした。測定時の環境は、温度100℃、相対湿度50%とした。結果、15mm幅におけるシール強度(以下、熱間シール強度とも言う)は13Nであった。また、測定時の環境を23℃、相対湿度50%とした以外は上記と同様にしてシール強度を測定した。結果、15mm幅におけるシール強度(以下、常温シール強度とも言う)は61Nであった。
Subsequently, the inner surfaces 30x of the two laminates 30 were partially heat sealed. Then, the sealing strength between the laminated bodies 30 was measured based on JISZ17077.5 in 100 degreeC atmosphere. As a measuring instrument, a tensile tester RTC-1310A with a constant temperature bath manufactured by Orientec Co., Ltd. was used. Specifically, first, two heat-sealed laminates 30 were cut out to produce a rectangular test piece 90 having a width (short side) of 15 mm. In the test piece 90, as shown to FIG. 13A, the two laminated bodies 30 are peeled over 15 mm from one front-end | tip of the long side direction. Thereafter, as shown in FIG. 13B, the already peeled portions of the two laminates 30 were respectively gripped by the grips 91 and 92 of the measuring instrument. In addition, each of the grips 91 and 92 is pulled at a speed of 300 mm / min in directions opposite to each other in the direction orthogonal to the surface direction of the portion where the two laminated bodies 30 are still joined, Values (see FIG. 14) were measured. FIG. 14 is a diagram showing changes in tensile stress with respect to the spacing S. FIG.
For the five test pieces 90, the maximum value of the tensile stress was measured, and the average value was taken as the seal strength of the laminate 30. The distance S between the grips 91 and 92 when starting the tension was 20 mm, and the distance S between the grips 91 and 92 when finishing the tension was 40 mm. The environment during the measurement was a temperature of 100 ° C. and a relative humidity of 50%. As a result, the seal strength at 15 mm width (hereinafter also referred to as hot seal strength) was 13N. Further, the seal strength was measured in the same manner as described above except that the environment during measurement was 23 ° C. and the relative humidity was 50%. As a result, the seal strength at 15 mm width (hereinafter also referred to as room temperature seal strength) was 61N.
 続いて、積層体30を用いて、袋10を作製し、袋10の蒸通性を評価した。具体的には、まず、積層体30を用いて図1に示す袋10を作製した。その後、水100gを袋10の内部に充填し、上部11をヒートシールして上部シール部を形成した。このとき、袋10の長さS1を145mm、長さS2を140mmとした。続いて、電子レンジを用いて内容物を加熱し、蒸気抜き機構20の蒸気抜きシール部20aが適切に剥離するか否かを確認した。結果、蒸気抜きシール部20aが剥離し、収容部17内の蒸気を外部に逃がすことができた。 Subsequently, using the laminate 30, a bag 10 was produced, and the breathability of the bag 10 was evaluated. Specifically, first, the bag 10 shown in FIG. Thereafter, 100 g of water was filled into the bag 10 and the upper part 11 was heat-sealed to form an upper seal part. At this time, the length S1 of the bag 10 was 145 mm, and the length S2 was 140 mm. Subsequently, the contents were heated using a microwave oven, and it was confirmed whether or not the vapor vent seal portion 20a of the vapor vent mechanism 20 was properly peeled off. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside.
 (実施例2)
 第1フィルムの基材として、上述の第2の構成で説明した、100質量%のPBTを含み、PBTの融点が224℃、IV値が1.26dl/gであり、チューブラー法で作製されたフィルム状の基材41を用いたこと以外は、実施例1の場合と同様にして、積層体を作製した。基材41はPBT及び添加剤のみで構成される単層のフィルムであり、基材41の厚みは15μmであった。また、実施例1の場合と同様にして、積層体の突き刺し強度及び熱間引張弾性率を測定した。結果、突き刺し強度は15Nであり、熱間引張弾性率は211MPaであった。
(Example 2)
As the base material of the first film, the PBT containing 100% by mass described in the second configuration described above is included, the melting point of the PBT is 224 ° C., and the IV value is 1.26 dl / g. A laminate was prepared in the same manner as in Example 1 except that the film-like base material 41 was used. The base material 41 was a single layer film composed only of PBT and an additive, and the thickness of the base material 41 was 15 μm. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the piercing strength was 15 N, and the hot tensile elastic modulus was 211 MPa.
 また、実施例1の場合と同様にして、積層体30のシール強度を測定した。結果、15mm幅における熱間シール強度は13Nであり、15mm幅における常温シール強度は61Nであった。また、実施例1の場合と同様にして、積層体30を用いて作製した袋10の蒸通性を評価した。結果、蒸気抜きシール部20aが剥離し、収容部17内の蒸気を外部に逃がすことができた。 Further, the sealing strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 13 N, and the normal temperature seal strength at 15 mm width was 61 N. Moreover, the vapor permeability of the bag 10 produced using the laminated body 30 was evaluated in the same manner as in Example 1. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside.
 (実施例3)
 シーラントフィルムとして、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK99Sを用いたこと以外は、実施例1の場合と同様にして、積層体を作製した。また、実施例1の場合と同様にして、積層体の突き刺し強度及び熱間引張弾性率を測定した。結果、突き刺し強度は16Nであり、熱間引張弾性率は181MPaであった。
(Example 3)
A laminate was produced in the same manner as in Example 1 except that an unstretched polypropylene film ZK99S manufactured by Toray Film Processing Co., Ltd. was used as the sealant film. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the puncture strength was 16 N, and the hot tensile elastic modulus was 181 MPa.
 また、実施例1の場合と同様にして、積層体30のシール強度を測定した。結果、15mm幅における熱間シール強度は28Nであり、15mm幅における常温シール強度は68Nであった。また、実施例1の場合と同様にして、積層体30を用いて作製した袋10の蒸通性を評価した。結果、蒸気抜きシール部20aが剥離し、収容部17内の蒸気を外部に逃がすことができた。 Further, the sealing strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 28 N, and the normal temperature seal strength at 15 mm width was 68 N. Moreover, the vapor permeability of the bag 10 produced using the laminated body 30 was evaluated in the same manner as in Example 1. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside.
 (実施例4)
 シーラントフィルムとして、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK99Sを用いたこと以外は、実施例2の場合と同様にして、積層体を作製した。また、実施例1の場合と同様にして、積層体の突き刺し強度及び熱間引張弾性率を測定した。結果、突き刺し強度は15Nであり、熱間引張弾性率は198MPaであった。
Example 4
A laminate was produced in the same manner as in Example 2 except that an unstretched polypropylene film ZK99S manufactured by Toray Film Processing Co., Ltd. was used as the sealant film. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the piercing strength was 15 N, and the hot tensile elastic modulus was 198 MPa.
 また、実施例1の場合と同様にして、積層体30のシール強度を測定した。結果、15mm幅における熱間シール強度は28Nであり、15mm幅における常温シール強度は68Nであった。また、実施例1の場合と同様にして、積層体30を用いて作製した袋10の蒸通性を評価した。結果、蒸気抜きシール部20aが剥離し、収容部17内の蒸気を外部に逃がすことができた。 Further, the sealing strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 28 N, and the normal temperature seal strength at 15 mm width was 68 N. Moreover, the vapor permeability of the bag 10 produced using the laminated body 30 was evaluated in the same manner as in Example 1. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside.
 (比較例1)
 第1フィルムの基材として、厚み15μmのナイロンフィルム(興人ホールディングス株式会社製 ボニールW)を用いたこと以外は、実施例1の場合と同様にして、積層体を作製した。また、実施例1の場合と同様にして、積層体の突き刺し強度及び熱間引張弾性率を測定した。結果、突き刺し強度は15Nであり、熱間引張弾性率は145MPaであった。
(Comparative Example 1)
A laminate was produced in the same manner as in Example 1 except that a nylon film having a thickness of 15 μm (Bonyl W manufactured by Kojin Holdings Co., Ltd.) was used as the base material of the first film. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the piercing strength was 15 N and the hot tensile elastic modulus was 145 MPa.
 また、実施例1の場合と同様にして、積層体のシール強度を測定した。結果、15mm幅における熱間シール強度は13Nであり、15mm幅における常温シール強度は61Nであった。また、実施例1の場合と同様にして、積層体を用いて作製した袋の蒸通性を評価した。結果、蒸気抜き機構の蒸気抜きシール部を剥離させることができなかった。 Further, the sealing strength of the laminate was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 13 N, and the normal temperature seal strength at 15 mm width was 61 N. Moreover, the vapor permeability of the bag produced using the laminated body was evaluated in the same manner as in Example 1. As a result, the steam release seal portion of the steam release mechanism could not be peeled off.
 (比較例2)
 第1フィルムの基材として、厚み12μmのPETフィルム(東洋紡株式会社製 T4102)を用いたこと以外は、実施例1の場合と同様にして、積層体を作製した。また、実施例1の場合と同様にして、積層体の突き刺し強度及び熱間引張弾性率を測定した。結果、突き刺し強度は10Nであり、熱間引張弾性率は343MPaであった。
(Comparative Example 2)
A laminate was produced in the same manner as in Example 1 except that a PET film having a thickness of 12 μm (T4102 manufactured by Toyobo Co., Ltd.) was used as the base material of the first film. Further, the puncture strength and hot tensile elastic modulus of the laminate were measured in the same manner as in Example 1. As a result, the puncture strength was 10 N, and the hot tensile elastic modulus was 343 MPa.
 また、実施例1の場合と同様にして、積層体のシール強度を測定した。結果、15mm幅における熱間シール強度は13Nであり、15mm幅における常温シール強度は61Nであった。また、実施例1の場合と同様にして、積層体を用いて作製した袋の蒸通性を評価した。結果、蒸気抜きシール部が剥離し、収容部内の蒸気を外部に逃がすことができた。 Further, the sealing strength of the laminate was measured in the same manner as in Example 1. As a result, the hot seal strength at 15 mm width was 13 N, and the normal temperature seal strength at 15 mm width was 61 N. Moreover, the vapor permeability of the bag produced using the laminated body was evaluated in the same manner as in Example 1. As a result, the steam release seal part was peeled off, and the steam in the housing part was able to escape to the outside.
 実施例1~4及び比較例1,2の積層体の層構成及び評価結果を、図15にまとめて示す。図15において、「層構成」の欄には、接着剤層を除く積層体の構成要素を、外面側の層から順に上から記載している。実施例1~4と比較例1の比較から分かるように、積層体30の第1フィルム40がPBTを含むことにより、積層体30を用いて作製した袋10における蒸通性を確保することができた。なお、蒸通性に関して、実施例1~4及び比較例2においては、加熱時に、蒸気抜きシール部20a以外のシール部が後退(剥離)することなく、収容部内の蒸気が外部に逃げたので、評価結果を「great」又は「good」とした。また、実施例1、2及び比較例2については、実施例3、4の場合に比べて、蒸気抜きシール部が剥離して収容部内の蒸気が外部に逃げ始める際の収容部内の圧力が小さかったので、評価結果を「great」とした。また、比較例1については、加熱時に、蒸気抜きシール部20a以外のシール部が剥離して収容部内の蒸気が外部に逃げたので、評価結果を「bad」とした。 The layer structure and evaluation results of the laminates of Examples 1 to 4 and Comparative Examples 1 and 2 are collectively shown in FIG. In FIG. 15, in the “layer configuration” column, the components of the laminate excluding the adhesive layer are described from the top in order from the outer surface side layer. As can be seen from the comparison between Examples 1 to 4 and Comparative Example 1, the first film 40 of the laminated body 30 contains PBT, thereby ensuring the vapor permeability in the bag 10 produced using the laminated body 30. did it. Regarding steamability, in Examples 1 to 4 and Comparative Example 2, during heating, the seal part other than the steam release seal part 20a did not retreat (peel), and the steam in the housing part escaped to the outside. The evaluation result was “great” or “good”. Further, in Examples 1 and 2 and Comparative Example 2, the pressure in the housing part when the steam release seal part peels off and the steam in the housing part begins to escape to the outside is smaller than in Examples 3 and 4. Therefore, the evaluation result was set to “great”. In Comparative Example 1, the seal part other than the steam vent seal part 20a was peeled off during the heating, and the steam in the housing part escaped to the outside. Therefore, the evaluation result was “bad”.
 蒸気抜きシール部20aの熱間シール強度が低いほど、加熱時に蒸気抜きシール部20aが剥離し易くなる。また、積層体30の熱間引張弾性率が高いほど、加熱時に蒸気抜き機構20に加わる力を、基材41を含む第1フィルム40ではなくシーラント層71を含むシーラントフィルム70に集中させることができる。従って、熱間シール強度が低いほど、また、熱間引張弾性率が高いほど、加熱時に蒸気抜きシール部20aが剥離し易くなり、このため、収容部内の蒸気が外部に抜けやすくなる。すなわち、蒸通性が向上する。図15に示すように、実施例1、2及び比較例2においては、熱間シール強度が20N以下であり、且つ、熱間弾性引張率が150MPa以上である。このため、実施例1、2及び比較例2においては、良好な蒸通性が得られたと考えられる。 The lower the hot seal strength of the steam vent seal portion 20a, the easier the steam vent seal portion 20a peels during heating. Further, as the hot tensile elastic modulus of the laminate 30 is higher, the force applied to the steam release mechanism 20 during heating can be concentrated on the sealant film 70 including the sealant layer 71 instead of the first film 40 including the base material 41. it can. Therefore, the lower the hot seal strength and the higher the hot tensile elastic modulus, the easier the steam release seal portion 20a is peeled off during heating, and the steam in the housing portion is more likely to escape to the outside. That is, the permeability is improved. As shown in FIG. 15, in Examples 1 and 2 and Comparative Example 2, the hot seal strength is 20 N or less and the hot elastic tensile modulus is 150 MPa or more. For this reason, in Examples 1 and 2 and Comparative Example 2, it is considered that good vapor permeability was obtained.
 また、実施例1~4と比較例2の比較から分かるように、積層体30の第1フィルム40がPBTを含むことにより、PETを用いる場合に比べて、高い突き刺し強度を実現することができた。 Further, as can be seen from the comparison between Examples 1 to 4 and Comparative Example 2, when the first film 40 of the laminate 30 contains PBT, it is possible to achieve a high piercing strength as compared with the case of using PET. It was.
 次に、第2の実施の形態において説明した、積層体の基材を構成するプラスチックフィルムが2つ存在する場合に関する実施例5~8及び比較例3,4について説明する。 Next, Examples 5 to 8 and Comparative Examples 3 and 4 in the case where there are two plastic films constituting the base material of the laminate described in the second embodiment will be described.
 (実施例5)
 実施例1の場合と同様にして、上述の第1の構成で説明した、複数の層を含み、キャスト法で作製されたフィルム状の第1基材51を準備した。各層におけるPBTの含有率は80%であり、層の層数は1024であり、第1基材51の厚みは15μmであった。続いて、フィルム状の第1基材51上に、DICグラフィックス株式会社製のフィナートを用いて印刷層52を形成した。
(Example 5)
In the same manner as in Example 1, a film-like first base material 51 including a plurality of layers described in the first configuration described above and manufactured by a casting method was prepared. The content of PBT in each layer was 80%, the number of layers was 1024, and the thickness of the first base material 51 was 15 μm. Subsequently, the print layer 52 was formed on the film-like first base material 51 using a finate manufactured by DIC Graphics Corporation.
 また、第2基材61を含むフィルム状の第2フィルム60を準備した。第2基材61としては、100質量%のPETを含むものを用いた。第2基材61の厚みは12μmであった。 Further, a film-like second film 60 including the second substrate 61 was prepared. As the 2nd base material 61, what contains 100 mass% PET was used. The thickness of the second substrate 61 was 12 μm.
 また、シーラント層71を含むフィルム状のシーラントフィルム70を準備した。シーラント層71としては、東レフィルム加工株式会社製の未延伸ポリプロピレンフィルム ZK207を用いた。シーラント層71の厚みは60μmであった。 Further, a film-like sealant film 70 including the sealant layer 71 was prepared. As the sealant layer 71, an unstretched polypropylene film ZK207 manufactured by Toray Film Processing Co., Ltd. was used. The thickness of the sealant layer 71 was 60 μm.
 次に、第1接着剤層55を介して第1フィルム50と第2フィルム60とをドライラミネート法により積層した。第1接着剤層55としては、ロックペイント株式会社製の2液型ポリウレタン系接着剤(主剤:RU-40、硬化剤:H-4)を用いた。RU-40は、ポリエステルポリオールを含む。H-4は、脂肪族系イソシアネート化合物を含む。第1接着剤層55の厚みは、3μmであった。 Next, the first film 50 and the second film 60 were laminated by the dry laminating method through the first adhesive layer 55. As the first adhesive layer 55, a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used. RU-40 contains a polyester polyol. H-4 contains an aliphatic isocyanate compound. The thickness of the first adhesive layer 55 was 3 μm.
 次に、第1フィルム50及び第2フィルム60の積層体と、シーラントフィルム70とをドライラミネート法により積層し、積層体30を得た。第2接着剤層65としては、第1接着剤層55と同様に、ロックペイント株式会社製の2液型ポリウレタン系接着剤(主剤:RU-40、硬化剤:H-4)を用いた。第2接着剤層65の厚みは、3μmであった。 Next, the laminate of the first film 50 and the second film 60 and the sealant film 70 were laminated by the dry lamination method, and the laminate 30 was obtained. As the second adhesive layer 65, similarly to the first adhesive layer 55, a two-component polyurethane adhesive (main agent: RU-40, curing agent: H-4) manufactured by Rock Paint Co., Ltd. was used. The thickness of the second adhesive layer 65 was 3 μm.
 続いて、実施例1の場合と同様にして、積層体30の突き刺し強度を測定した。結果、突き刺し強度は17Nであった。 Subsequently, the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N.
 続いて、実施例1の場合と同様にして、積層体30を用いて作製した袋10の耐熱性及び蒸通性を評価した。結果、蒸気抜きシール部20aが剥離し、収容部17内の蒸気を外部に逃がすことができた。すなわち、耐熱性及び蒸通性のいずれの評価結果も良好(good)であった。 Subsequently, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, the steam release seal part 20a was peeled off, and the steam in the housing part 17 was able to escape to the outside. That is, the evaluation results of both heat resistance and steamability were good.
 (実施例6)
 第1フィルム50の第1基材51として、上述の第2の構成で説明した、100質量%のPBTを含み、PBTの融点が224℃、IV値が1.26dl/gであり、チューブラー法で作製された単層フィルムを用いたこと以外は、実施例5の場合と同様にして、積層体30を作製した。第1基材51はPBT及び添加剤のみで構成される単層のフィルムであり、第1基材51の厚みは15μmであった。
(Example 6)
As the 1st base material 51 of the 1st film 50, it contains 100 mass% PBT explained by the above-mentioned 2nd composition, Melting | fusing point of PBT is 224 degreeC, IV value is 1.26 dl / g, Tubular A laminate 30 was produced in the same manner as in Example 5 except that the single-layer film produced by the method was used. The first base 51 was a single layer film composed only of PBT and additives, and the thickness of the first base 51 was 15 μm.
 続いて、実施例1の場合と同様にして、積層体30の突き刺し強度を測定した。結果、突き刺し強度は17Nであった。また、実施例1の場合と同様にして、積層体30を用いて作製した袋10の耐熱性及び蒸通性を評価した。結果、耐熱性及び蒸通性のいずれの評価結果も良好(good)であった。 Subsequently, the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, both evaluation results of heat resistance and steamability were good.
 (実施例7)
 実施例5の第1基材51を構成するPBTを第2基材61として用い、実施例5の第2基材61を構成するPETを第1基材51として用いたこと以外は、実施例5の場合と同様にして、積層体30を作製した。
(Example 7)
Example except that PBT constituting the first base material 51 of Example 5 was used as the second base material 61 and PET constituting the second base material 61 of Example 5 was used as the first base material 51 The laminated body 30 was produced like the case of 5. FIG.
 続いて、実施例1の場合と同様にして、積層体30の突き刺し強度を測定した。結果、突き刺し強度は17Nであった。また、実施例1の場合と同様にして、積層体30を用いて作製した袋10の耐熱性及び蒸通性を評価した。結果、耐熱性及び蒸通性のいずれの評価結果も良好(good)であった。 Subsequently, the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, both evaluation results of heat resistance and steamability were good.
 (実施例8)
 実施例6の第1基材51を構成するPBTを第2基材61として用い、実施例6の第2基材61を構成するPETを第1基材51として用いたこと以外は、実施例6の場合と同様にして、積層体30を作製した。
(Example 8)
Example except that PBT constituting the first base material 51 of Example 6 was used as the second base material 61 and PET constituting the second base material 61 of Example 6 was used as the first base material 51 The laminated body 30 was produced like the case of 6. FIG.
 続いて、実施例1の場合と同様にして、積層体30の突き刺し強度を測定した。結果、突き刺し強度は17Nであった。また、実施例1の場合と同様にして、積層体30を用いて作製した袋10の耐熱性及び蒸通性を評価した。結果、耐熱性及び蒸通性のいずれの評価結果も良好(good)であった。 Subsequently, the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, both evaluation results of heat resistance and steamability were good.
 (比較例3)
 第1フィルム50の第1基材51として、100質量%のPETを含む基材を用いたこと以外は、実施例5の場合と同様にして、積層体30を作製した。第1基材51の厚みは12μmであった。
(Comparative Example 3)
The laminated body 30 was produced like the case of Example 5 except having used the base material containing 100 mass% PET as the 1st base material 51 of the 1st film 50. FIG. The thickness of the first base material 51 was 12 μm.
 続いて、実施例1の場合と同様にして、積層体30の突き刺し強度を測定した。結果、突き刺し強度は12Nであった。また、実施例1の場合と同様にして、積層体30を用いて作製した袋10の耐熱性及び蒸通性を評価した。結果、耐熱性及び蒸通性のいずれの評価結果も良好(good)であった。 Subsequently, the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 12N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, both evaluation results of heat resistance and steamability were good.
 (比較例4)
 第2フィルム60の第2基材61として、厚み15μmのナイロンフィルム(興人ホールディングス株式会社製 ボニールW)を用いたこと以外は、比較例3の場合と同様にして、積層体30を作製した。
(Comparative Example 4)
A laminated body 30 was produced in the same manner as in Comparative Example 3 except that a 15 μm thick nylon film (Bonil W manufactured by Kojin Holdings Co., Ltd.) was used as the second substrate 61 of the second film 60. .
 続いて、実施例1の場合と同様にして、積層体30の突き刺し強度を測定した。結果、突き刺し強度は17Nであった。また、実施例1の場合と同様にして、積層体30を用いて作製した袋10の耐熱性及び蒸通性を評価した。結果、積層体30に穴が形成された。また、蒸気抜き機構の蒸気抜きシール部を剥離させることができなかった。すなわち、耐熱性及び蒸通性のいずれの評価結果も不良(bad)であった。 Subsequently, the puncture strength of the laminate 30 was measured in the same manner as in Example 1. As a result, the piercing strength was 17N. Further, in the same manner as in Example 1, the heat resistance and vapor permeability of the bag 10 produced using the laminate 30 were evaluated. As a result, holes were formed in the laminate 30. Moreover, the steam vent seal part of the steam vent mechanism could not be peeled off. That is, both evaluation results of heat resistance and steamability were bad.
 実施例5~8及び比較例3,4の積層体の層構成及び評価結果を、図16にまとめて示す。図16において、「層構成」の欄には、接着剤層を除く積層体の構成要素を、外面側の層から順に上から記載している。実施例5~8と比較例3の比較から分かるように、第1基材51又は第2基材61がPBTを含むことにより、第1基材51及び第2基材61の両方がPETを含む場合に比べて、高い突き刺し強度を実現することができた。また、実施例5~8と比較例4の比較から分かるように、第2基材61としてナイロン以外の材料、具体的にはPBT又はPETを用いることにより、第2基材61がナイロンを含む場合に比べて、良好な耐熱性及び蒸通性を実現することができた。 FIG. 16 summarizes the layer configurations and evaluation results of the laminates of Examples 5 to 8 and Comparative Examples 3 and 4. In FIG. 16, in the “layer configuration” column, the components of the laminate excluding the adhesive layer are described from the top in order from the outer surface side layer. As can be seen from the comparison between Examples 5 to 8 and Comparative Example 3, when the first base 51 or the second base 61 contains PBT, both the first base 51 and the second base 61 are made of PET. Compared to the case of inclusion, a high piercing strength could be realized. Further, as can be seen from the comparison between Examples 5 to 8 and Comparative Example 4, when the second base material 61 is made of a material other than nylon, specifically, PBT or PET, the second base material 61 contains nylon. Compared to the case, it was possible to achieve better heat resistance and steamability.
10 袋
11 上部
12 下部
12a 下部シール部
13 側部
13a 側部シール部
14 表面フィルム
15 裏面フィルム
16 下部フィルム
17 収容部
18 内容物
20 蒸気抜き機構
20a 蒸気抜きシール部
20b 非シール部
30 積層体
35 透明ガスバリア層
36 透明蒸着層
37 透明ガスバリア性塗布膜
40 第1フィルム
41 基材
41a 層
42 印刷層
45 接着剤層
50 第1フィルム
51 第1基材
52 印刷層
55 第1接着剤層
60 第2フィルム
61 第2基材
65 第2接着剤層
70 シーラントフィルム
71 シーラント層
80 針
90 試験片
DESCRIPTION OF SYMBOLS 10 Bag 11 Upper part 12 Lower part 12a Lower seal part 13 Side part 13a Side part seal part 14 Surface film 15 Back surface film 16 Lower film 17 Storage part 18 Contents 20 Vapor vent mechanism 20a Vapor vent seal part 20b Non-seal part 30 Laminate 35 Transparent gas barrier layer 36 Transparent vapor deposition layer 37 Transparent gas barrier coating film 40 First film 41 Base material 41a Layer 42 Print layer 45 Adhesive layer 50 First film 51 First base material 52 Print layer 55 First adhesive layer 60 Second Film 61 Second substrate 65 Second adhesive layer 70 Sealant film 71 Sealant layer 80 Needle 90 Test piece

Claims (12)

  1.  蒸気抜き機構を有する袋であって、
     前記袋を構成する積層体は、
     51質量%以上のポリブチレンテレフタレートを含む基材と、
     ポリプロピレンを少なくとも含み、前記積層体の内面を構成するシーラント層と、を備える、袋。
    A bag having a steam release mechanism,
    The laminate constituting the bag is
    A substrate containing 51% by weight or more of polybutylene terephthalate;
    A bag comprising at least a polypropylene and a sealant layer constituting an inner surface of the laminate.
  2.  前記積層体の突き刺し強度が13N以上である、請求項1に記載の袋。 The bag according to claim 1, wherein the piercing strength of the laminate is 13N or more.
  3.  ポリブチレンテレフタレートを含む前記基材は、10層以上を含む多層構造部を有する、請求項1又は2に記載の袋。 The bag according to claim 1 or 2, wherein the base material containing polybutylene terephthalate has a multilayer structure part including 10 layers or more.
  4.  ポリブチレンテレフタレートを含む前記基材は、1.10dl/g以上且つ1.35dl/g以下のIV値を有する単層構造からなる、請求項1又は2に記載の袋。 The bag according to claim 1 or 2, wherein the base material containing polybutylene terephthalate has a single-layer structure having an IV value of 1.10 dl / g or more and 1.35 dl / g or less.
  5.  前記シーラント層は、90質量%以上のポリプロピレンを含む、請求項1乃至4のいずれか一項に記載の袋。 The bag according to any one of claims 1 to 4, wherein the sealant layer includes 90% by mass or more of polypropylene.
  6.  前記積層体は、外面側から内面側へ順に
      基材/印刷層/接着剤層/シーラント層、又は
      基材/透明蒸着層/透明ガスバリア性塗布膜/印刷層/接着剤層/シーラント層、を含む、請求項1乃至5のいずれか一項に記載の袋。
    The laminate is composed of a base material / printing layer / adhesive layer / sealant layer or base material / transparent deposition layer / transparent gas barrier coating film / printing layer / adhesive layer / sealant layer in order from the outer surface side to the inner surface side. The bag as described in any one of Claims 1 thru | or 5 containing.
  7.  前記積層体は、外面側から内面側へ順に
      基材/透明蒸着層/透明ガスバリア性塗布膜/印刷層/接着剤層/シーラント層、を含み、
     前記透明蒸着層は、酸化アルミニウムを含み、
     前記基材と前記透明蒸着層との界面に、アルミニウム原子と炭素原子の共有結合が形成されている、請求項6に記載の袋。
    The laminate includes, in order from the outer surface side to the inner surface side, a base material / transparent vapor deposition layer / transparent gas barrier coating film / printing layer / adhesive layer / sealant layer.
    The transparent vapor deposition layer includes aluminum oxide,
    The bag according to claim 6, wherein a covalent bond between an aluminum atom and a carbon atom is formed at an interface between the base material and the transparent vapor deposition layer.
  8.  前記積層体は、第1基材、第2基材及びシーラント層をこの順で少なくとも備え、
     前記第1基材と前記第2基材のうち、一方が、51質量%以上のポリブチレンテレフタレートを含む前記基材であり、他方が、ポリエチレンテレフタレートを含む、請求項1乃至5のいずれか一項に記載の袋。
    The laminate includes at least a first base material, a second base material, and a sealant layer in this order,
    One of the first base material and the second base material is the base material containing 51% by mass or more of polybutylene terephthalate, and the other contains polyethylene terephthalate. The bag according to item.
  9.  前記積層体は、前記第1基材と前記第2基材との間において前記第1基材又は前記第2基材に設けられた透明蒸着層と、前記透明蒸着層上に設けられた透明ガスバリア性塗布膜と、を更に含む、請求項8に記載の袋。 The laminate includes a transparent vapor deposition layer provided on the first base material or the second base material between the first base material and the second base material, and a transparent material provided on the transparent vapor deposition layer. The bag according to claim 8, further comprising a gas barrier coating film.
  10.  前記透明蒸着層は、酸化アルミニウムを含み、
     前記第1基材又は前記第2基材と前記透明蒸着層との界面に、アルミニウム原子と炭素原子の共有結合が形成されている、請求項9に記載の袋。
    The transparent vapor deposition layer includes aluminum oxide,
    The bag according to claim 9, wherein a covalent bond between an aluminum atom and a carbon atom is formed at an interface between the first base material or the second base material and the transparent vapor deposition layer.
  11.  前記第1基材が、ポリエチレンテレフタレートを含み、
     前記第2基材が、ポリブチレンテレフタレートを含む、請求項8乃至10のいずれか一項に記載の袋。
    The first substrate comprises polyethylene terephthalate;
    The bag according to any one of claims 8 to 10, wherein the second base material contains polybutylene terephthalate.
  12.  前記第1基材が、ポリブチレンテレフタレートを含み、
     前記第2基材が、ポリエチレンテレフタレートを含む、請求項8乃至10のいずれか一項に記載の袋。
    The first substrate comprises polybutylene terephthalate;
    The bag according to any one of claims 8 to 10, wherein the second base material includes polyethylene terephthalate.
PCT/JP2017/033130 2016-09-15 2017-09-13 Pouch WO2018052042A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016180800 2016-09-15
JP2016-180800 2016-09-15
JP2017065938 2017-03-29
JP2017-065938 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018052042A1 true WO2018052042A1 (en) 2018-03-22

Family

ID=61619578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033130 WO2018052042A1 (en) 2016-09-15 2017-09-13 Pouch

Country Status (1)

Country Link
WO (1) WO2018052042A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189490A1 (en) * 2018-03-28 2019-10-03 大日本印刷株式会社 Packaging material and retort pouch or microwavable pouch provided with packaging material
WO2019189479A1 (en) * 2018-03-28 2019-10-03 大日本印刷株式会社 Packaging material and retort pouch or microwavable pouch provided with packaging material
JP2020055633A (en) * 2018-03-28 2020-04-09 大日本印刷株式会社 Packaging material and bag including packaging material
WO2020080131A1 (en) * 2018-10-16 2020-04-23 東洋紡株式会社 Layered film
JP2021053807A (en) * 2019-09-26 2021-04-08 大日本印刷株式会社 Packaging material and packaged product including packaging material
JP2021062916A (en) * 2019-03-06 2021-04-22 大日本印刷株式会社 Pouch
JP7296050B2 (en) 2018-09-28 2023-06-22 大日本印刷株式会社 Barrier laminated film, method for producing barrier laminated film, and packaging material provided with barrier laminated film
JP7443834B2 (en) 2019-03-06 2024-03-06 大日本印刷株式会社 pouch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164619A (en) * 1989-07-03 1991-07-16 Polyplastics Co Microwave oven cooking bag
WO2004009468A2 (en) * 2002-07-23 2004-01-29 Fritson Ag Food package and method for heating a food package using microwave
JP2006143223A (en) * 2004-11-16 2006-06-08 Dainippon Printing Co Ltd Packaging bag for microwave heating
WO2014050951A1 (en) * 2012-09-28 2014-04-03 大日本印刷株式会社 Transparent vapor-deposited film
JP2015147309A (en) * 2014-02-05 2015-08-20 東レ株式会社 biaxially oriented polyester film
JP2015196512A (en) * 2014-03-31 2015-11-09 大日本印刷株式会社 pouch
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164619A (en) * 1989-07-03 1991-07-16 Polyplastics Co Microwave oven cooking bag
WO2004009468A2 (en) * 2002-07-23 2004-01-29 Fritson Ag Food package and method for heating a food package using microwave
JP2006143223A (en) * 2004-11-16 2006-06-08 Dainippon Printing Co Ltd Packaging bag for microwave heating
WO2014050951A1 (en) * 2012-09-28 2014-04-03 大日本印刷株式会社 Transparent vapor-deposited film
JP2015147309A (en) * 2014-02-05 2015-08-20 東レ株式会社 biaxially oriented polyester film
JP2015196512A (en) * 2014-03-31 2015-11-09 大日本印刷株式会社 pouch
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019189490A1 (en) * 2018-03-28 2021-04-08 大日本印刷株式会社 Retort pouch or microwave pouch with packaging material and packaging material
WO2019189479A1 (en) * 2018-03-28 2019-10-03 大日本印刷株式会社 Packaging material and retort pouch or microwavable pouch provided with packaging material
JP2020055633A (en) * 2018-03-28 2020-04-09 大日本印刷株式会社 Packaging material and bag including packaging material
WO2019189490A1 (en) * 2018-03-28 2019-10-03 大日本印刷株式会社 Packaging material and retort pouch or microwavable pouch provided with packaging material
JP7371616B2 (en) 2018-03-28 2023-10-31 大日本印刷株式会社 Packaging materials and retort pouches or microwave pouches containing packaging materials
JPWO2019189479A1 (en) * 2018-03-28 2021-03-18 大日本印刷株式会社 Retort pouch or microwave pouch with packaging material and packaging material
JP7296050B2 (en) 2018-09-28 2023-06-22 大日本印刷株式会社 Barrier laminated film, method for producing barrier laminated film, and packaging material provided with barrier laminated film
WO2020080131A1 (en) * 2018-10-16 2020-04-23 東洋紡株式会社 Layered film
JPWO2020080131A1 (en) * 2018-10-16 2021-02-15 東洋紡株式会社 Laminated film
JP2021062916A (en) * 2019-03-06 2021-04-22 大日本印刷株式会社 Pouch
JP7443834B2 (en) 2019-03-06 2024-03-06 大日本印刷株式会社 pouch
JP2021053807A (en) * 2019-09-26 2021-04-08 大日本印刷株式会社 Packaging material and packaged product including packaging material
JP7385822B2 (en) 2019-09-26 2023-11-24 大日本印刷株式会社 Packaging materials and packaging products comprising packaging materials

Similar Documents

Publication Publication Date Title
WO2018052042A1 (en) Pouch
JP2018047954A (en) bag
JP2024009168A (en) bag
WO2018062331A1 (en) Laminated body
JP6875049B2 (en) Multilayer film for food packaging
WO2018181405A1 (en) Laminate, and bag composed of said laminate
JP7207427B2 (en) Method for producing gas barrier film
WO2019189490A1 (en) Packaging material and retort pouch or microwavable pouch provided with packaging material
JP2022019782A (en) Laminate and bag constituted of the same
JP5298416B2 (en) Sealant film, packaging material and packaging container using the sealant film
JP2022093021A (en) Barrier film, laminate and packaging container
JP2016222277A (en) Packing bag
JP7124285B2 (en) Laminate and bag composed of the laminate
JP6375805B2 (en) Laminated film and packaging material
JP2019131290A (en) bag
JP2018058358A (en) Laminate and bag composed of the laminate
JP2019006422A (en) Packaging bag and laminate
JP7056174B2 (en) Laminated body and bag composed of the laminated body
JP7033266B2 (en) A method for manufacturing a laminated body, a bag composed of the laminated body, and the laminated body.
WO2009112176A1 (en) Multilayer film for packaging coffee and instant beverages
JP2018167573A (en) Laminate and bag composed of laminate
JP7056175B2 (en) Laminated body and bag composed of the laminated body
JP2022019783A (en) Laminate and bag constituted of the same
JP7153251B2 (en) Infusion container using a laminate and a lid material composed of the laminate
JP6424997B1 (en) Sealant film and packaging material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850943

Country of ref document: EP

Kind code of ref document: A1