WO2019189483A1 - Varnish containing transparent polyimide-based polymer and solvent - Google Patents

Varnish containing transparent polyimide-based polymer and solvent Download PDF

Info

Publication number
WO2019189483A1
WO2019189483A1 PCT/JP2019/013392 JP2019013392W WO2019189483A1 WO 2019189483 A1 WO2019189483 A1 WO 2019189483A1 JP 2019013392 W JP2019013392 W JP 2019013392W WO 2019189483 A1 WO2019189483 A1 WO 2019189483A1
Authority
WO
WIPO (PCT)
Prior art keywords
varnish
solvent
film
transparent polyimide
polyimide polymer
Prior art date
Application number
PCT/JP2019/013392
Other languages
French (fr)
Japanese (ja)
Inventor
紘子 杉山
池内 淳一
友美 西村
皓史 宮本
志成 林
奇明 呂
宗銘 李
Original Assignee
住友化学株式会社
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 財團法人工業技術研究院 filed Critical 住友化学株式会社
Priority to JP2020509267A priority Critical patent/JPWO2019189483A1/en
Priority to KR1020207030804A priority patent/KR20210005607A/en
Priority to CN201980021181.7A priority patent/CN111936581A/en
Publication of WO2019189483A1 publication Critical patent/WO2019189483A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a varnish containing a transparent polyimide polymer and a solvent.
  • polyimide polymer films have been used as functional films for imparting functions to image display devices such as televisions, personal computers, smartphones, tab reds, and electronic paper.
  • high transparency is required for a functional film used for a display portion of an electronic device such as a display or a touch panel in the image display device.
  • a method for producing such a polyimide polymer film a method is known in which a varnish containing a polyimide polymer and a solvent is applied onto a substrate to form a coating film, and then the coating film is dried.
  • Patent Document 1 describes a method for producing a film using a varnish containing a polyamideimide resin and butyl acetate.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a varnish having high transparency over a long period of time.
  • the present invention includes the following aspects.
  • a varnish containing a transparent polyimide polymer and a solvent The integral value of the peak derived from the peroxide detected by the chemiluminescence detection liquid chromatography method is 700,000 or less,
  • JIS Japanese Industrial Standard
  • varnish A varnish containing a transparent polyimide polymer and a solvent, The peroxide value of the solvent detected by the method based on JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, is 20 mg / kg or less, When a film containing the transparent polyimide polymer having a thickness of 50 to 80 ⁇ m was produced from the varnish, the total light transmittance of the film measured according to Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it, varnish. [5] The varnish according to any one of [1] to [4], wherein the total light transmittance is 90% or more.
  • JIS Japanese Industrial Standard
  • the varnish of the present invention is Including a transparent polyimide polymer and a solvent,
  • the integral value of the peak derived from the peroxide detected by the chemiluminescence detection liquid chromatography method is 700,000 or less,
  • JIS Japanese Industrial Standard
  • the varnish of the present invention is Including a transparent polyimide polymer and a solvent,
  • the peroxide value of the varnish detected by a method in accordance with JPI-5S-46-96 is a peroxide value of 2.5 mg / kg or less.
  • the varnish of the present invention is Including a transparent polyimide polymer and a solvent,
  • the peroxide value of the solvent detected by the method based on JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, is 20 mg / kg or less,
  • JPI-5S-46-96 a peroxide value test method of the Japan Petroleum Institute standard kerosene
  • the total light transmittance of the film measured in accordance with Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it.
  • the integrated value of the peak derived from peroxide is the integrated value of the peak derived from peroxide detected by the chemiluminescence detection liquid chromatographic method by adding the luminol solution to the solvent for preparing the varnish.
  • the peroxide acts as an oxidizing agent for the luminol reaction in the solvent-luminol liquid system.
  • the peroxide-derived peak includes a luminescence peak generated by the reaction between the peroxide and luminol.
  • the integrated value of the peak derived from peroxide can be measured, for example, by the method described in the examples.
  • the integral value of the peak derived from peroxide is 700,000 or less.
  • the solvent is one kind of solvent, it means that the integral value of the peak derived from the peroxide of one kind of solvent is 700,000 or less.
  • the solvent is a mixed solvent composed of two kinds of solvents, and the integrated value of one of the two solvents in the mixed solvent is much larger than the integrated value of the other solvent (for example, It can be determined that the integral value of one solvent is dominant. In such a case, it means that the integral value of the peak derived from the peroxide of one solvent is 700,000 or less.
  • the integral value of the peak derived from the peroxide is 700,000 or less, so the concentration of the peroxide dissolved in the solvent in the varnish is sufficiently low, so the reaction rate between the peroxide and the transparent polyimide polymer is high. It becomes extremely slow, and the transparent polyimide polymer in the varnish is less likely to be oxidized by peroxide over time. In such a case, since the solvent and the transparent polyimide polymer are unlikely to deteriorate with time, a varnish having high transparency can be provided even after long-term storage (for example, 3 months or more) of the solvent and varnish. .
  • the integral value of the peak derived from the peroxide is preferably 500,000 or less, more preferably 350,000 or less, still more preferably 100,000 or less, particularly preferably 50,000 or less, from the viewpoint of maintaining high transparency over a long period of time. is there.
  • a means for adjusting the integral value of the peak derived from the peroxide to 700,000 or less for example, means for reducing the concentration of peroxide in the varnish (more specifically, generation of peroxide in the varnish is performed. And the like). It is considered that the peroxide in the varnish is generated mainly by the reaction between the solvent molecules in the varnish and dissolved oxygen (oxidation reaction of the solvent molecules). For this reason, as means for inhibiting peroxide in the varnish, for example, means for reducing the dissolved oxygen concentration in the varnish, and means for selecting the type of solvent that hardly reacts with oxygen to generate peroxide. Can be mentioned.
  • a bubbling process is performed on the solvent with an inert gas (more specifically, a rare gas such as argon gas and neon gas, and nitrogen gas).
  • an inert gas more specifically, a rare gas such as argon gas and neon gas, and nitrogen gas.
  • means for substituting the dissolved oxygen in the solvent with an inert gas, and means for reducing the oxygen concentration in the gas phase in contact with the solvent under a reduced-pressure atmosphere or an inert gas atmosphere is preferably, for example, 10 minutes or more and 1 hour or less from the viewpoint of sufficiently achieving replacement of dissolved oxygen and reducing the cost.
  • a bubbling process when performing a bubbling process with respect to the mixed solvent containing 2 types of ester, you may perform a bubbling process of at least one of those solvents, before mixing 2 types of solvents. After mixing the two solvents, a bubbling process may be performed on the mixed solvent. Moreover, you may perform a bubbling process with respect to a varnish after preparing a varnish. The solvent will be described later.
  • the sum (weighted average) of the product of the integral value of each solvent and the mass ratio of each solvent in the varnish is the varnish integral value (converted integral value of varnish) ) Varnish may be evaluated.
  • the converted integral value of the varnish is preferably 350,000 or less, more preferably 250,000 or less, further preferably 180,000 or less, particularly preferably 50,000 or less, and very particularly preferably 25,000 or less.
  • the peroxide value can be measured according to or based on the Peroxide Value Test Method JPI-5S-46-96 of the Petroleum Institute Standard Kerosene. In the measurement of the peroxide value, a solvent for preparing a varnish (a solvent before preparing the varnish) or a varnish can be used as a measurement target.
  • the peroxide value is measured according to the peroxide test method JPI-5S-46-96. First, the solvent to be measured is dissolved in toluene. Next, a potassium iodide solution is added to a solvent dissolved in toluene, and iodine released at this time can be determined by titration with a sodium thiosulfate standard solution.
  • the peroxide acts as an oxidizing agent for potassium iodide in the measurement object-toluene solution of potassium iodide.
  • the peroxide value of the solvent can be measured, for example, by the method described in the examples.
  • the peroxide value of the solvent is 20 mg / kg.
  • the solvent is one kind of solvent, it means that the peroxide value of one kind of solvent is 20 mg / kg or less.
  • the solvent is a mixed solvent composed of two kinds of solvents, and the peroxide value of one of the two solvents in the mixed solvent is much larger than the peroxide number of the other solvent ( For example, it can be determined that the peroxide value of one solvent is dominant. In such a case, it means that one peroxide value is 20 mg / kg.
  • the peroxide value is 20 mg / kg or less.
  • the concentration of the peroxide dissolved in the solvent in the varnish is sufficiently low, the reaction rate between the peroxide and the transparent polyimide polymer is extremely slow, It is believed that the transparent polyimide polymer in the varnish is less likely to be oxidized by the peroxide over time.
  • a varnish having high transparency can be provided even after storage of the solvent for a long period (for example, 3 months or more).
  • the peroxide value is preferably 15 mg / kg or less, more preferably 10 mg / kg or less, still more preferably 5 mg / kg or less, particularly preferably less than 1 mg / kg from the viewpoint of maintaining high transparency of the varnish for a longer period of time. is there.
  • the solvent is a mixed solvent composed of two or more solvents
  • the sum of the product of the peroxide value of each solvent and the mass ratio of each solvent in the varnish (weighted average) is the varnish peroxide value Varnish may be evaluated as (oxide value).
  • the converted peroxide value of the varnish is preferably 10 mg / kg or less, more preferably 7.5 mg / kg or less, further preferably 5 mg / kg or less, particularly preferably 2.5 mg / kg or less, very particularly preferably. Is less than 0.5 mg / kg.
  • the peroxide value is measured according to the above-mentioned JPI-5S-46-96.
  • the peroxide value is measured in the same manner as when the measurement target is a solvent, except that the measurement target is changed from a solvent to a varnish, the mass of the measurement target is changed, and the measurement target is diluted with a solvent.
  • the peroxide value of the varnish can be measured, for example, by the method described in the examples.
  • the peroxide value is 2.5 mg / kg.
  • a varnish having high transparency can be provided even after long-term storage of the varnish for the same reason as when the measurement target is a solvent.
  • an optical film having high transparency can be obtained.
  • the transparent polyimide polymer in the optical film is less likely to deteriorate over time for the same reason as when the object to be measured is varnish. Can be obtained.
  • the peroxide value of the varnish is preferably 2.0 mg / kg or less, more preferably 1.5 mg / kg or less, still more preferably 1.1 mg / kg or less, from the viewpoint of maintaining high transparency of the varnish for a longer period of time. Particularly preferably, it is less than 1 mg / kg.
  • the total light transmittance of the transparent polyimide polymer film having a thickness of 50 to 80 ⁇ m is preferably 80% or more, more preferably 82% or more, still more preferably 85% or more, even more preferably 88% or more, It is particularly preferably 90% or more, further particularly preferably 91% or more, particularly preferably 92% or more.
  • the transmittance is in the above range, for example, when a display device is produced by combining a film formed from the varnish of the present invention and an EL element, the same as when combined with a film having a low transmittance. Since the EL element can be driven with less power to obtain brightness, it can contribute to power saving.
  • the varnish used for forming the film is preferably transparent over a long period of time. Whether the varnish is transparent over a long period of time can be confirmed, for example, by an accelerated test in which the varnish is stored at 50 ° C. for 1 week.
  • the total light transmittance of the transparent polyimide polymer film can be measured using a haze meter in accordance with JIS K 7105: 1981, for example.
  • the thickness of the transparent polyimide polymer film can be measured, for example, using a micrometer.
  • the total light transmittance of the film is measured using a haze meter as described above, and the total light transmittance obtained is 80 ⁇ m in thickness. You may convert into total light transmittance.
  • the total light transmittance can be converted, for example, using the Lambert-Beer law as follows. Here, a method for converting the total light transmittance Tt 50 measured at a thickness of 50 ⁇ m into a total light transmittance at 80 ⁇ m will be described.
  • T transmittance
  • x optical path length
  • absorption constant
  • the solvent preferably has high transparency over a long period of time, while having basic characteristics as a composition of the varnish.
  • the former is a characteristic in which a transparent polyimide polymer is dissolved or dispersed and the viscosity of the varnish is adjusted to a viscosity suitable for coating.
  • the latter is, for example, a characteristic that a solvent molecule does not easily react with oxygen, or does not easily generate a peroxide having a high reaction activity even if it reacts with oxygen, and a characteristic that does not readily dissolve oxygen.
  • examples of the solvent include aprotic polar solvents (more specifically, N, N-dimethylacetamide (hereinafter sometimes referred to as DMAc), dimethyl sulfoxide, and the like).
  • carboxylic acid esters more specifically, acetic acid esters, cyclic carboxylic acid esters, and the like.
  • examples of the acetate include butyl acetate (hereinafter sometimes referred to as vinegar buty), amyl acetate, and isoamyl acetate.
  • examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (hereinafter sometimes referred to as GBL). These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • At least one solvent selected from the group consisting of GBL, DMAc, butyl acetate, amyl acetate, and isoamyl acetate is preferable, and is selected from the above solvents.
  • At least two or more esters are more preferable. Examples of the combination of at least two kinds of esters include GBL and DMAc, GBL and butyl acetate, GBL and amyl acetate, GBL and isoamyl acetate, DMAc and butyl acetate, DMAc and amyl acetate, DMAc and isoamyl acetate, and butyl acetate.
  • the mixing ratio is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2.
  • the mixing ratio is preferably 1 to 8: 1 to 8: 1 to 8, more preferably 2 to 7: 2 to 7: 2 to 7. .
  • the content of one of the two or more solvents is usually 10% by mass or more, preferably 20% by mass or more, more preferably 30%, based on the total amount of the solvent. It is 90 mass% or less normally, Preferably it is 80 mass% or less, More preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less.
  • Examples of the transparent polyimide polymer include polyimide and polyamideimide, and comprehensively include polyimide, polyamideimide, and derivatives thereof.
  • a polyimide means a polymer containing a repeating structural unit containing an imide group.
  • Polyamideimide is a polymer containing a repeating unit containing both an imide group and an amide group.
  • the transparent polyimide polymer preferably contains mainly a repeating structural unit represented by the formula (10) from the viewpoint of the transparency of the transparent polyimide polymer film.
  • the repeating structural unit represented by the formula (10) is preferably 40 mol% or more, more preferably 50 mol% or more, further preferably 70 mol, based on all repeating structural units of the transparent polyimide polymer. % Or more, particularly preferably 90 mol% or more, and still more preferably 98 mol% or more. 100 mol% may be sufficient as the repeating structural unit represented by Formula (10).
  • G is a tetravalent organic group
  • A is a divalent organic group.
  • the transparent polyimide-based polymer may include two or more repeating structural units represented by the formula (10) in which G and / or A are different.
  • the transparent polyimide polymer is any one of repeating structural units represented by the formula (11), the formula (12) and the formula (13) as long as various physical properties of the obtained transparent polyimide polymer film are not impaired. The above may be further included.
  • G and G 1 represent a tetravalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the G and G 1, for example, formula (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), wherein And groups represented by (28) and formula (29), and chain hydrocarbon groups having 6 or less tetravalent carbon atoms.
  • Z in the formula (26) is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH ( CH 3 ) —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —Ar—, —SO 2 —, —CO—, —O—Ar—O—, —Ar—O—Ar.
  • -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) represents a 2 -Ar- or -Ar-SO 2 -Ar-.
  • Ar represents an arylene group having 6 to 20 carbon atoms which may be substituted with a fluorine atom (more specifically, a phenylene group or the like).
  • G and G 1 preferably represent groups represented by formulas (20) to (27).
  • G 2 represents a trivalent organic group, and preferably represents an organic group that may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Examples of the trivalent organic group represented by G 2 include formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), and formula. (27), a group in which any one of the bonds of the groups represented by formula (28) and formula (29) is replaced by a hydrogen atom, and a trivalent hydrocarbon group having 6 or less carbon atoms. It is done.
  • G 3 represents a divalent organic group, and preferably represents an organic group that may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Examples of the divalent organic group represented by G 3 include formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), and formula.
  • (27) A group in which two non-adjacent bonds in the groups represented by formula (28) and formula (29) are each replaced by a hydrogen atom, and a divalent chain hydrocarbon having 6 or less carbon atoms Groups.
  • A, A 1 , A 2 and A 3 all represent a divalent organic group, preferably substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Represents a good organic group.
  • A, A 1 , A 2 and A 3 for example, the following formula (30), formula (31), formula (32), formula (33), formula (34), formula (35), formula (36) ), A group represented by formula (37) and formula (38); a group in which they are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and a chain hydrocarbon having 6 or less carbon atoms Groups.
  • Z 1 , Z 2 and Z 3 in Formula (34) to Formula (36) are each independently a single bond, —O—, -CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, - SO 2 - or an -CO-.
  • Z 1 and Z 3 are —O— and Z 2 is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —.
  • Z 1 and Z 2 , and Z 2 and Z 3 are each preferably in a meta position or a para position with respect to each ring.
  • the repeating structural unit represented by the formula (10) and the formula (11) is usually derived from a diamine and a tetracarboxylic acid compound.
  • the repeating structural unit represented by the formula (12) is usually derived from a diamine and a tricarboxylic acid compound.
  • the repeating structural unit represented by the formula (13) is usually derived from a diamine and a dicarboxylic acid compound.
  • These carboxylic acid compounds may be carboxylic acid compound analogs (more specifically, carboxylic acid anhydrides, alkanoyl halides, and the like).
  • tetracarboxylic acid compound examples include an aromatic tetracarboxylic acid compound such as an aromatic tetracarboxylic dianhydride and an aliphatic tetracarboxylic acid compound such as an aliphatic tetracarboxylic dianhydride. These tetracarboxylic acid compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as a tetracarboxylic acid chloride compound in addition to the tetracarboxylic dianhydride.
  • aromatic tetracarboxylic dianhydride examples include non-condensed polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and condensed polycyclic aromatic tetra Carboxylic dianhydrides are mentioned.
  • Non-condensed polycyclic aromatic tetracarboxylic dianhydrides include, for example, 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2, 2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3- Dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene)
  • Examples of the condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalene tetracarboxylic dianhydride.
  • aromatic tetracarboxylic dianhydride preferably 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 '-Benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,3' , 4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Anhydride, 2,2-bis (3
  • aliphatic tetracarboxylic dianhydride examples include cyclic or acyclic aliphatic tetracarboxylic dianhydrides.
  • the cycloaliphatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure.
  • cycloaliphatic tetracarboxylic dianhydride examples include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and 1, Cycloalkanetetracarboxylic dianhydrides such as 2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic Examples thereof include acid dianhydride, dicyclohexyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, and regioisomers thereof.
  • One of these cycloaliphatic tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in combination.
  • Examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. It is done.
  • One of these acyclic aliphatic tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in combination.
  • the tetracarboxylic acid compound is preferably an alicyclic tetracarboxylic dianhydride or a non-condensed polycyclic aromatic tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) More preferred is propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA). These suitable tetracarboxylic acid compounds may be used singly or in combination of two or more.
  • the raw material monomer may further contain a tricarboxylic acid compound and / or a dicarboxylic acid compound.
  • a tricarboxylic acid compound examples include aromatic tricarboxylic acid, aliphatic tricarboxylic acid, and related acid chloride compounds and acid anhydrides. These tricarboxylic acid compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • tricarboxylic acid compound examples include 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic anhydride and benzoic acid having a single bond, Examples include compounds linked by —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a phenylene group.
  • dicarboxylic acid compound examples include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds and acid anhydrides. These dicarboxylic acid compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • dicarboxylic acid compound examples include terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; terephthalic acid dichloride (terephthaloyl chloride (TPC)); , 4′-oxybis (benzoyl chloride) (OBBC); a dicarboxylic acid compound of a chain hydrocarbon having 8 or less carbon atoms and two benzoic acids are —CH 2 —, —C (CH 3 ) 2 —, —C Examples thereof include compounds linked by (CF 3 ) 2 —, —SO 2 —, or a phenylene group.
  • TPC terephthaloyl chloride
  • OBBC 4′-oxybis (benzoyl chloride)
  • a dicarboxylic acid compound of a chain hydrocarbon having 8 or less carbon atoms and two benzoic acids are
  • the ratio of the tetracarboxylic acid compound to the total of the tetracarboxylic acid compound, tricarboxylic acid compound, and dicarboxylic acid compound is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, and even more. Preferably it is 90 mol% or more, Most preferably, it is 98 mol% or more.
  • diamines examples include aliphatic diamines, aromatic diamines, or mixtures thereof.
  • aromatic diamine refers to a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure.
  • the aromatic ring may be a single ring or a condensed ring.
  • the aromatic ring include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Of the aromatic rings, a benzene ring is preferable.
  • aliphatic diamine means a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure. .
  • aliphatic diamine examples include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, and 4, And cycloaliphatic diamines such as 4'-diaminodicyclohexylmethane. These aliphatic diamines may be used alone or in combination of two or more.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6- Aromatic diamines having one aromatic ring such as diaminonaphthalene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3, 3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-
  • the diamine can also have a fluorine-based substituent.
  • fluorine-based substituent include a perfluoroalkyl group having 1 to 5 carbon atoms such as a trifluoromethyl group and a fluoro group.
  • the diamines from the viewpoint of high transparency and low colorability, it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure.
  • aromatic diamines having a biphenyl structure Use one or more selected from the group consisting of 2,2′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) benzidine (TFMB), and 4,4′-bis (4-aminophenoxy) biphenyl Is more preferable.
  • the diamine is preferably a diamine having a biphenyl structure and a fluorine-based substituent. Examples of the diamine having a biphenyl structure and a fluorine-based substituent include 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl (TFMB).
  • the molar ratio between the diamine in the raw material monomer and the carboxylic acid compound such as a tetracarboxylic acid compound is preferably within a range of 0.9 mol to 1.1 mol of the tetracarboxylic acid with respect to 1.00 mol of the diamine. Can be adjusted. In order to develop high folding resistance, it is preferable that the obtained transparent polyimide polymer has a high molecular weight. Therefore, the amount of tetracarboxylic acid is more preferably 0.98 mol with respect to 1.00 mol of diamine. It is more than 1.02 mol, More preferably, it is 0.99 mol% or more and 1.01 mol% or less.
  • the proportion of amino groups in the resulting polymer terminal is low, such as tetracarboxylic acid compound with respect to 1.00 mol of diamine.
  • the amount of the carboxylic acid compound is preferably 1.00 mol or more.
  • the amount of fluorine in the obtained transparent polyimide polymer is preferably based on the mass of the transparent polyimide polymer.
  • the amount may be 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and particularly preferably 20% by mass or more. Since the raw material cost tends to increase as the proportion of fluorine increases, the upper limit of the amount of fluorine is preferably 40% by mass or less.
  • a fluorine-type substituent may exist in either diamine or a carboxylic acid compound, and may exist in both. By including a fluorine-based substituent, the YI value may be particularly reduced.
  • the polystyrene equivalent weight average molecular weight of the transparent polyimide polymer is preferably 200,000 or more, more preferably 200,000 or more and 500,000 or less.
  • the polystyrene-equivalent weight average molecular weight can be measured using a gel permeation chromatography (GPC) method.
  • the varnish of the present invention may further contain an additive as long as the transparency is not impaired.
  • the additive include inorganic particles, ultraviolet absorbers, antioxidants, mold release agents, stabilizers, colorants, flame retardants, lubricants, thickeners, and leveling agents.
  • the varnish has a good defoaming property because it is easy to handle in the coating process.
  • the defoaming property can be adjusted by adjusting the combination and ratio of resin and solvent and the viscosity.
  • an acetate solvent ethyl acetate, butyl acetate, amyl acetate, isoamyl acetate
  • the defoaming property tends to be good.
  • the method for producing the varnish includes, for example, a polymerization step in which a raw material monomer of a transparent polyimide polymer is polymerized in a solvent A to obtain a transparent polyimide polymer precursor, and the transparent polyimide in the solvent A containing a tertiary amine.
  • the manufacturing process of a varnish may further include the varnish extraction process which extracts a varnish from a reaction container. Moreover, you may implement an imidation process in a pressure-reduced atmosphere.
  • the polyimide polymer solution is once brought into contact with a poor solvent for the polyimide polymer that is a solute, the polyimide polymer is taken out as a solid content, and the obtained solid content is taken as a good solvent.
  • the varnish may be prepared by re-dissolving the varnish, or the solution obtained by re-dissolution may be further diluted with the solvent B to prepare the varnish.
  • the raw material monomer of the transparent polyimide polymer is polymerized in the solvent A to obtain a transparent polyimide polymer precursor.
  • the amount of the raw material monomer in the total liquid containing the raw material monomer and the solvent A can be 3 to 60% by mass, preferably 10 to 60% by mass.
  • the polymerization rate tends to increase, and the molecular weight can be increased. Further, the polymerization time can be shortened, and the coloring of the transparent polyimide polymer tends to be suppressed.
  • the solvent A can be the same as those mentioned above.
  • each component of the raw material monomer and the solvent A is not particularly limited, and all of them may be mixed simultaneously or separately, but after mixing at least a part of the diamine and the solvent It is preferable to add a carboxylic acid compound.
  • the diamine and carboxylic acid compound may be added in portions, or may be added stepwise for each compound.
  • the polymerization of the raw material monomer is promoted to form a transparent polyimide polymer precursor.
  • the reaction solution may be heated to about 40 to 90 ° C.
  • the imidization process described later can also proceed in parallel with the progress of the raw material monomer polymerization process. In this case, the reaction solution may be heated to a higher temperature in accordance with the imidization conditions described later.
  • the polymerization reaction time can be, for example, 24 hours or less, or 1 hour or less, or 1 to 24 hours.
  • the reaction solution may contain a tertiary amine during the polymerization step of the transparent polyimide polymer precursor.
  • the tertiary amine may be added before mixing the diamine and the solvent A, may be added after mixing, or may be added after mixing the diamine, the solvent, and the carboxylic acid compound. Moreover, after diluting with a part of the solvent to be used, it may be added to the reaction solution.
  • the tertiary amine can function as a polymerization catalyst for the raw material monomer in the solvent A in the polymerization step or as an imidization catalyst for the transparent polyimide polymer precursor in the solvent A in the imidization step.
  • Examples of the tertiary amine include a tertiary amine represented by the formula (d) (hereinafter sometimes referred to as a tertiary amine D).
  • R 1D is a trivalent aliphatic hydrocarbon group having 8 to 15 carbon atoms.
  • Examples of the tertiary amine D include 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4 , 6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7,8-tetrahydroisoquinoline, and isoquinoline.
  • the boiling point of the tertiary amine is preferably 120 ° C. or higher, more preferably 140 ° C. or higher, still more preferably 170 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the upper limit of the boiling point of the tertiary amine is not particularly defined, it is usually 350 ° C. or lower.
  • the transparent polyimide polymer precursor is imidized in a solvent A containing a tertiary amine to obtain a transparent polyimide polymer solution. More specifically, by heating a reaction solution containing a tertiary amine in a reduced-pressure atmosphere, the imidation of the transparent polyimide polymer precursor is promoted, and water produced as a by-product while producing polyimide is retained. Can be left. It is preferable to imidize the transparent polyimide polymer precursor in the solvent A in the reaction vessel in which the above polymerization is performed.
  • the tertiary amine may be added during or before the polymerization step for polymerizing the raw material monomer to produce a transparent polyimide polymer precursor as described above, but produces a transparent polyimide polymer precursor. It may be added after the process. Further, chemical imidization may be performed without adding a reduced pressure atmosphere by adding acetic anhydride together with a tertiary amine.
  • the production reaction of the transparent polyimide polymer precursor and the imidization reaction may be performed simultaneously.
  • the bond of an amide group may be cut
  • a film obtained from a varnish containing such a transparent polyimide polymer may have a low folding resistance.
  • the pressure in the reaction solution is reduced and water in the reaction solution is quickly removed, so that the cleavage reaction of the amide group can be suppressed and the molecular weight of the resulting transparent polyimide polymer can be increased.
  • the imidization process is performed in a reduced-pressure atmosphere, so that the transparent polyimide polymer is included without going through a purification process. Even if the film is produced directly from the varnish, the film tends to have high folding resistance.
  • the amount of tertiary amine added to 100 parts by mass of the raw material monomer is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass. Part or more, more preferably 0.2 part by weight or more.
  • the amount of tertiary amine added is preferably small for the purpose of suppressing coloration of the film.
  • the addition amount of the tertiary amine is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, further preferably 5 parts by mass or less, still more preferably 2 parts by mass or less, particularly preferably 1 part by mass or less, Especially preferably, it is 0.7 mass part or less, Most preferably, it is 0.3 mass part or less.
  • the temperature of the imidization step is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 150 ° C. or higher and 210 ° C. or lower.
  • the temperature is preferably 20 to 100 ° C., more preferably 40 to 80 ° C.
  • the pressure is preferably 730 mmHg or less, more preferably 700 mmHg or less, and even more preferably 675 mmHg or less.
  • the pressure in the imidization step can be, for example, 350 mmHg or more, and may be 500 mmHg or more.
  • the pressure in the imidization step is set near the saturated vapor pressure of the solvent in the imidization step, YI tends to be suppressed. A pressure within 50 mmHg from the saturated vapor pressure is preferred.
  • the heating time is, for example, 1 to 24 hours, preferably 1 to 12 hours, more preferably 2 to 9 hours, further preferably 2 to 8 hours, even more preferably 2 to 6 hours, and particularly preferably 2 to 5 hours. It is. Stirring is preferred during heating.
  • reaction time becomes long, molecular weight will become high, but there exists a tendency for the yellowishness of a transparent polyimide type polymer to become strong easily.
  • reaction time is short, the molecular weight of the transparent polyimide polymer tends to be low, and the yellow color of the transparent polyimide polymer tends to be weak.
  • the imidization step is preferably performed in a reduced-pressure atmosphere.
  • the oxygen concentration in the gas phase contacting the liquid phase containing the solvent A in the reaction vessel is low, so that the dissolution of oxygen into the solvent A is reduced, and the transparent polyimide It is considered that the peroxide concentration in the polymer solution is reduced.
  • the imidization step by heating the reaction solution in a reduced pressure atmosphere may be performed in a state where the oxygen concentration in the gas phase of the reaction vessel is low.
  • the oxygen concentration may be low from the time of charging.
  • the oxygen concentration is preferably 0.02% or less, and more preferably 0.01% or less.
  • the oxygen concentration is high when heated to a high temperature, it causes coloring in particular.
  • the temperature of the reaction solution is 130 ° C. or higher
  • the oxygen concentration is preferably 0.02% or lower.
  • oxygen is not substantially generated.
  • the oxygen concentration in the imidization step can be grasped, for example, by analyzing the oxygen concentration in the gas removed from the reaction vessel when the pressure inside the reaction vessel is reduced. If it is difficult to measure the oxygen concentration during decompression, the oxygen concentration may be measured by sampling the gas phase before and after decompression.
  • the imidization step may be performed in an inert gas atmosphere instead of the reduced pressure atmosphere.
  • the solution After heating, the solution is returned to atmospheric pressure and cooled to obtain a transparent polyimide polymer solution.
  • acetic anhydride may be added together with the tertiary amine, and chemical imidization may be performed at a lower temperature.
  • the water generated by the imidization reaction is removed by the reaction with acetic anhydride, so that it is not necessary to remove the water by reducing the pressure.
  • the transparent polyimide polymer may be once taken out from the imidized transparent polyimide polymer solution, and then redissolved in a solvent and used in the next dilution step.
  • Examples of the extraction method include a method of adding a poor solvent for the transparent polyimide polymer to the imidized transparent polyimide polymer solution to precipitate the transparent polyimide polymer, followed by filtration and extraction. It is done. (Dilution process) In the subsequent dilution step, the transparent polyimide polymer or a solution thereof is diluted with the solvent B to prepare a varnish. More specifically, solvent B is further added to the obtained transparent polyimide polymer or a solution thereof to adjust the concentration of the transparent polyimide polymer to obtain a varnish.
  • a suitable solids concentration in the varnish is preferably 5 to 25% by weight.
  • the varnish which contains 30 mass% or more of transparent polyimide type polymers with respect to the total amount of the solid content in a varnish is used, one of the main components mentioned later is a transparent polyimide type polymer.
  • a transparent polyimide polymer film can be easily obtained.
  • the concentration of the transparent polyimide polymer is preferably 10% by mass or more, more preferably 13% by mass or more based on the total mass of the varnish.
  • Dilution can be performed in the reaction vessel, and can also be performed on the solution recovered from the reaction vessel.
  • the solvent B when the solvent B is added to the transparent polyimide polymer solvent after imidization to dilute the concentration of the transparent polyimide polymer in the reaction vessel, it remains in the reaction vessel in the next extraction step.
  • the amount of the polymer can be reduced, and the yield of the polymer can be improved. Further, when the amount of the polymer remaining in the reaction vessel is reduced, the coloring (for example, yellow) of the obtained transparent polyimide polymer is improved in the subsequent polymerization and imidation repeating steps using this reaction vessel.
  • the solvent B for dilution can be the same as those mentioned above.
  • the solvent B and the solvent A may be the same type or different from each other.
  • the dilution in the reaction vessel can be performed a plurality of times using a plurality of different types of solvents B.
  • varnish extraction process Subsequently, in the varnish extraction step, the varnish is extracted from the reaction vessel.
  • the extracted varnish can be used in a film forming process described later.
  • Casting can be performed on a resin substrate, a stainless steel belt, or a glass substrate by a roll-to-roll or batch method.
  • the resin base material include PET, PEN, polyimide, and polyamideimide.
  • PET is preferable from the viewpoints of adhesion to the film and cost.
  • a certain amount of an organic solvent is volatilized by passing the coating film through a dryer that contacts a heated gas with the surface of the coating film, May be peeled off from the support as a self-supporting film.
  • the working temperature is adjusted depending on the substrate used, and when a resin substrate is used, it is generally carried out at or below the glass transition temperature thereof.
  • the heating may be performed at an appropriate temperature of 50 to 300 ° C., and the heating temperature may be adjusted in multiple stages or a temperature gradient may be provided. It is also suitable to carry out under an inert atmosphere or under reduced pressure as appropriate.
  • the peeled transparent polyimide polymer film may be further heated at 80 to 300 ° C.
  • the optical film of the present invention is formed from the varnish.
  • the transparent polyimide polymer film is used as an optical film, and is useful, for example, as a front plate of a display device, particularly as a front plate (window film) of a flexible display device.
  • the flexible display device includes, for example, a flexible functional layer and an optical film that is stacked on the flexible functional layer and functions as a front plate. That is, the front plate of the flexible display device is disposed on the viewing side on the flexible functional layer. This front plate has a function of protecting the flexible functional layer.
  • Display devices include wearable devices such as televisions, smartphones, mobile phones, car navigation systems, tablet PCs, portable game machines, electronic paper, indicators, bulletin boards, watches, and smart watches.
  • Examples of the flexible display device include all display devices having flexible characteristics, and among them, a foldable display device and a rollable display device that are preferably foldable.
  • the flexible display device of the present invention includes the optical film.
  • the optical film of the present invention is preferably used as a front plate in a flexible display device, and the front plate may be referred to as a window film.
  • the flexible display device includes a flexible display device laminate and an organic EL display panel.
  • the flexible display device laminate is arranged on the viewing side with respect to the organic EL display panel, and is configured to be bendable.
  • the laminate for a flexible display device may contain a window film, a polarizing plate (preferably a circularly polarizing plate), and a touch sensor, and the order of stacking thereof is arbitrary, but the window film, the polarizing plate, It is preferable that the touch sensor or window film, the touch sensor, and the polarizing plate are laminated in this order.
  • the presence of a polarizing plate on the viewing side of the touch sensor is preferable because the touch sensor pattern is less visible and the visibility of the display image is improved.
  • Each member can be laminated
  • the flexible display device of the present invention may further include a polarizing plate, preferably a circular polarizing plate.
  • the circularly polarizing plate is a functional layer having a function of transmitting only a right or left circularly polarized component by laminating a ⁇ / 4 retardation plate on a linearly polarizing plate. For example, external light is converted into right circularly polarized light, the external light reflected by the organic EL panel and turned into left circularly polarized light is blocked, and only the light emitting component of the organic EL is transmitted to suppress the influence of the reflected light and image Used to make it easier to see.
  • the absorption axis of the linearly polarizing plate and the slow axis of the ⁇ / 4 retardation plate need to be 45 ° theoretically, but practically 45 ⁇ 10 °.
  • the linearly polarizing plate and the ⁇ / 4 retardation plate are not necessarily laminated adjacent to each other as long as the relationship between the absorption axis and the slow axis satisfies the above range.
  • the circular polarization plate in the present invention includes an elliptical polarization plate because it is not always necessary in practice. It is also preferable to further improve the visibility in a state where polarized sunglasses are applied by laminating a ⁇ / 4 retardation film on the viewing side of the linearly polarizing plate and making the emitted light circularly polarized.
  • the linear polarizing plate is a functional layer having a function of blocking polarized light having a vibration component perpendicular to the light that is oscillating in the transmission axis direction.
  • the linear polarizing plate may include a linear polarizer alone or a linear polarizer and a protective film attached to at least one surface thereof.
  • the linear polarizing plate may have a thickness of 200 ⁇ m or less, preferably 0.5 to 100 ⁇ m. When the thickness is in the above range, flexibility tends to be difficult to decrease.
  • the linear polarizer may be a film-type polarizer manufactured by dyeing and stretching a polyvinyl alcohol (PVA) film.
  • a dichroic dye such as iodine is adsorbed on a PVA-based film oriented by stretching or is stretched in a state of being adsorbed to PVA, whereby the dichroic dye is oriented and exhibits polarizing performance.
  • other processes such as swelling, crosslinking with boric acid, washing with an aqueous solution, and drying may be included.
  • the stretching or dyeing process may be performed by a PVA film alone or in a state where it is laminated with another film such as polyethylene terephthalate.
  • the thickness of the PVA film used is preferably 10 to 100 ⁇ m, and the draw ratio is preferably 2 to 10 times.
  • a liquid crystal-coated polarizer formed by coating a liquid crystal polarizing composition may be used.
  • the liquid crystal polarizing composition may include a liquid crystal compound and a dichroic dye compound.
  • the liquid crystalline compound only needs to have the property of exhibiting a liquid crystal state.
  • the liquid crystalline compound preferably has a higher-order alignment state such as a smectic phase because it can exhibit high polarization performance.
  • the liquid crystal compound preferably has a polymerizable functional group.
  • the dichroic dye is a dye that is aligned with the liquid crystal compound and exhibits dichroism, and the dichroic dye itself may have liquid crystallinity or have a polymerizable functional group. You can also. Any compound in the liquid crystal polarizing composition has a polymerizable functional group.
  • the liquid crystal polarizing composition may further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a crosslinking agent, a silane coupling agent, and the like.
  • the liquid crystal polarizing layer is manufactured by applying a liquid crystal polarizing composition on an alignment film to form a liquid crystal polarizing layer.
  • the liquid crystal polarizing layer can be formed thinner than a film-type polarizer.
  • the thickness of the liquid crystal polarizing layer may be preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the alignment film can be produced, for example, by applying an alignment film forming composition on a substrate and imparting alignment by rubbing, polarized light irradiation, or the like.
  • the alignment film forming composition may contain a solvent, a crosslinking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent and the like in addition to the aligning agent.
  • the aligning agent include polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides. When applying photo-alignment, it is preferable to use an aligning agent containing a cinnamate group.
  • the polymer used as the aligning agent may have a weight average molecular weight of about 10,000 to 1,000,000.
  • the thickness of the alignment film is preferably 5 to 10,000 nm, and more preferably 10 to 500 nm, from the viewpoint of alignment regulating force.
  • the liquid crystal polarizing layer can be peeled off from the base material, transferred and laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a transparent base material for a protective film, a retardation plate, or a window.
  • the protective film may be a transparent polymer film, and materials and additives used for the transparent substrate can be used.
  • a cellulose film, an olefin film, an acrylic film, and a polyester film are preferred.
  • It may be a coating-type protective film obtained by applying and curing a cationic curing composition such as an epoxy resin or a radical curing composition such as an acrylate.
  • plasticizers, ultraviolet absorbers, infrared absorbers, colorants such as pigments and dyes, fluorescent brighteners, dispersants, thermal stabilizers, light stabilizers, antistatic agents, antioxidants, lubricants, solvents, etc. May be included.
  • the protective film may have a thickness of 200 ⁇ m or less, preferably 1 to 100 ⁇ m. When the thickness of the protective film is within the above range, the flexibility of the protective film is difficult to decrease.
  • the protective film can also serve as a transparent substrate of the window.
  • the ⁇ / 4 phase difference plate is a film that gives a phase difference of ⁇ / 4 in a direction (in-plane direction of the film) orthogonal to the traveling direction of incident light.
  • the ⁇ / 4 retardation plate may be a stretched retardation plate manufactured by stretching a polymer film such as a cellulose film, an olefin film, or a polycarbonate film. If necessary, retardation adjusting agents, plasticizers, UV absorbers, infrared absorbers, colorants such as pigments and dyes, fluorescent brighteners, dispersants, heat stabilizers, light stabilizers, antistatic agents, antioxidants Further, it may contain a lubricant, a solvent and the like.
  • the stretchable retardation plate may have a thickness of 200 ⁇ m or less, preferably 1 to 100 ⁇ m. When the thickness is in the above range, the flexibility of the film tends not to decrease.
  • a liquid crystal coating type retardation plate formed by applying a liquid crystal composition may be used as another example of the ⁇ / 4 retardation plate.
  • the liquid crystal composition includes a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric, and smectic. Any compound including a liquid crystal compound in the liquid crystal composition has a polymerizable functional group.
  • the liquid crystal-coated retardation plate may further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a crosslinking agent, a silane coupling agent, and the like.
  • the liquid crystal coating type retardation plate can be produced by coating and curing a liquid crystal composition on an alignment film to form a liquid crystal retardation layer, as described for the liquid crystal polarizing layer.
  • the liquid crystal coated retardation plate can be formed thinner than the stretched retardation plate.
  • the thickness of the liquid crystal polarizing layer may be usually 0.5 to 10 ⁇ m, preferably 1 to 5 ⁇ m.
  • the liquid crystal coating type retardation plate can be peeled off from the substrate, transferred, and laminated, or the substrate can be laminated as it is. It is also preferable that the base material plays a role as a transparent base material for a protective film, a retardation plate, or a window.
  • the positive C plate may also be a liquid crystal coated retardation plate or a stretched retardation plate.
  • the retardation in the thickness direction is usually ⁇ 200 to ⁇ 20 nm, preferably ⁇ 140 to ⁇ 40 nm.
  • the flexible display device of the present invention may further include a touch sensor.
  • the touch sensor is used as input means.
  • Various types of touch sensors such as a resistive film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method have been proposed, and any method may be used. Of these, the electrostatic capacity method is preferable.
  • the capacitive touch sensor is divided into an active region and a non-active region located in an outer portion of the active region.
  • the active area is an area corresponding to an area (display unit) where the screen is displayed on the display panel, and is an area where a user's touch is sensed. This is a region corresponding to the display unit.
  • the touch sensor includes a flexible substrate; a sensing pattern formed in an active region of the substrate; and formed in an inactive region of the substrate and connected to an external driving circuit through the sensing pattern and a pad portion. Each sensing line can be included.
  • the substrate having flexible characteristics the same material as the transparent substrate of the window can be used.
  • the substrate of the touch sensor preferably has a toughness of 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch sensor. More preferably, the toughness may be 2,000 to 30,000 MPa%.
  • the toughness is defined as the area under the curve up to the fracture point in a stress-strain curve obtained through a tensile test of the polymer material.
  • the sensing pattern may include a first pattern formed in the first direction and a second pattern formed in the second direction.
  • the first pattern and the second pattern are arranged in different directions.
  • the first pattern and the second pattern are formed in the same layer, and each pattern must be electrically connected in order to sense a touched point.
  • the first pattern is a form in which each unit pattern is connected to each other through a joint, but the second pattern has a structure in which each unit pattern is separated from each other in an island form.
  • a separate bridge electrode is required for connection.
  • a known transparent electrode material can be applied to the sensing pattern.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • IZTO indium zinc tin oxide
  • IGZO indium gallium zinc oxide
  • CTO cadmium tin oxide
  • PEDOT poly (3,4-ethylenedithiothiophene)
  • carbon nanotube carbon nanotube
  • graphene metal wire, and the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • IZTO indium gallium zinc oxide
  • IGZO indium gallium zinc oxide
  • CTO cadmium tin oxide
  • PEDOT poly (3,4-ethylenedithiothiophene
  • CNT carbon nanotube
  • graphene metal wire, and the like.
  • the bridge electrode can be formed on the sensing pattern via the insulating layer and on the insulating layer.
  • the bridge electrode is formed on the substrate, and the insulating layer and the sensing pattern can be formed thereon.
  • the bridge electrode may be formed of the same material as the sensing pattern, and is formed of a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium, or an alloy of two or more of these. You can also Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode.
  • the insulating layer may be formed only between the joint of the first pattern and the bridge electrode, or may be formed in a layer structure covering the sensing pattern.
  • the bridge electrode can be connected to the second pattern via a contact hole formed in the insulating layer.
  • the touch sensor has a transmittance difference between a pattern area where a pattern is formed and a non-pattern area where a pattern is not formed, specifically, a light transmittance induced by a difference in refractive index in these areas.
  • an optical adjustment layer may be further included between the substrate and the electrode, and the optical adjustment layer may include an inorganic insulating material or an organic insulating material.
  • the optical adjustment layer can be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate.
  • the photocurable composition may further include inorganic particles.
  • the inorganic particles can increase the refractive index of the optical adjustment layer.
  • the photocurable organic binder can include, for example, a copolymer of monomers such as an acrylate monomer, a styrene monomer, and a carboxylic acid monomer.
  • the photocurable organic binder may be a copolymer including different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
  • Examples of the inorganic particles include zirconia particles, titania particles, and alumina particles.
  • the photocurable composition may further contain additives such as a photopolymerization initiator, a polymerizable monomer, and a curing auxiliary agent.
  • Adhesive layer Each layer (window, polarizing plate, touch sensor) forming the laminate for a flexible display device and a film member (linear polarizing plate, ⁇ / 4 retardation plate, etc.) constituting each layer can be bonded with an adhesive.
  • Adhesives include water-based adhesives, organic solvent-based adhesives, solvent-free adhesives, solid adhesives, solvent evaporation adhesives, moisture-curing adhesives, heat-curing adhesives, anaerobic-curing adhesives, active Commonly used materials such as energy ray curable adhesives, curing agent mixed adhesives, hot melt adhesives, pressure sensitive adhesives (adhesives), and rewet adhesives can be used.
  • the thickness of the adhesive layer can be appropriately adjusted according to the required adhesive force and the like, and is, for example, 0.01 to 500 ⁇ m, preferably 0.1 to 300 ⁇ m.
  • water-based solvent-evaporating adhesive water-soluble polymers such as polyvinyl alcohol polymers and starches, water-dispersed polymers such as ethylene-vinyl acetate emulsions and styrene-butadiene emulsions can be used as the main polymer.
  • a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent, and the like may be blended.
  • the water-based solvent volatile adhesive can be injected between the layers to be bonded, and the adhesion layer can be bonded, and then dried to provide adhesion.
  • the thickness of the adhesive layer in the case of using the water-based solvent volatile adhesive is usually 0.01 to 10 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the thickness of each layer and the type of the adhesive may be the same or different.
  • the active energy ray-curable adhesive can be formed by curing an active energy ray-curable composition containing a reactive material that irradiates active energy rays to form an adhesive layer.
  • the active energy ray-curable composition can contain at least one polymer of a radical polymerizable compound and a cationic polymerizable compound similar to the hard coat composition.
  • the radical polymerizable compound is the same as the hard coat composition, and the same kind as the hard coat composition can be used.
  • As the radical polymerizable compound used for the adhesive layer a compound having an acryloyl group is preferable. It is also preferable to contain a monofunctional compound in order to lower the viscosity of the adhesive composition.
  • the cationic polymerizable compound is the same as that of the hard coat composition, and the same kind as that of the hard coat composition can be used.
  • an epoxy compound is particularly preferable. It is also preferable to include a monofunctional compound as a reactive diluent in order to lower the viscosity of the adhesive composition.
  • the active energy ray composition may further contain a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radicals and cationic polymerization initiators, which can be appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of active energy ray irradiation and heating to generate radicals or cations to advance radical polymerization and cationic polymerization.
  • an initiator capable of initiating at least one of radical polymerization or cationic polymerization by irradiation with active energy rays can be used.
  • the active energy ray curable composition further includes an ion scavenger, an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, an antifoaming solvent, an additive, a solvent. Can be included.
  • an ion scavenger an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, an antifoaming solvent, an additive, a solvent.
  • the active energy ray curable composition When adhering with the active energy ray curable adhesive, the active energy ray curable composition is applied to either or both of the adherend layers and then bonded, and the active energy ray curable composition is activated through either of the adhering layers or both of the adhering layers. It can be bonded by irradiating with energy rays and curing.
  • the thickness of the adhesive layer is usually 0.01 to 20 ⁇ m, preferably 0.1 to 10 ⁇ m.
  • the thickness of each layer and the type of adhesive used may be the same or different.
  • the pressure-sensitive adhesives are classified into acrylic pressure-sensitive adhesives, urethane pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives and the like according to the main polymer, and any of them can be used.
  • the adhesive may contain a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a tackifier, a plasticizer, a dye, a pigment, an inorganic filler, and the like.
  • Each component constituting the pressure-sensitive adhesive is dissolved and dispersed in a solvent to obtain a pressure-sensitive adhesive composition, and the pressure-sensitive adhesive composition is applied onto a substrate and then dried to form a pressure-sensitive adhesive layer (adhesive layer). Is done.
  • the pressure-sensitive adhesive layer may be directly formed, or a layer separately formed on the substrate can be transferred. In order to cover the adhesive surface before bonding, it is also preferred to use a release film.
  • the thickness of the adhesive layer may be usually 1 to 500 ⁇ m, preferably 2 to 300 ⁇ m.
  • the thickness of each layer and the type of the pressure-sensitive adhesive used may be the same or different.
  • the light shielding pattern can be applied as at least part of a bezel or a housing of the flexible display device. The visibility of the image is improved by concealing the wiring arranged at the edge of the flexible display device by the light-shielding pattern and making it difficult to see.
  • the light shielding pattern may be a single layer or a multilayer.
  • the color of the light-shielding pattern is not particularly limited, and can have various colors such as black, white, and metal color.
  • the light shielding pattern can be formed of a pigment for embodying a color and a polymer such as an acrylic resin, an ester resin, an epoxy resin, polyurethane, or silicone. These can be used alone or in a mixture of two or more.
  • the light shielding pattern can be formed by various methods such as printing, lithography, and inkjet.
  • the thickness of the light shielding pattern is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m. It is also preferable to give a shape such as an inclination in the thickness direction of the light shielding pattern.
  • Example 1 Preparation of polyimide solution
  • 0.5 part by mass of isoquinoline as a catalyst tertiary amine
  • the reaction vessel was connected to a vacuum pump equipped with a solvent trap and a filter, and was installed in an oil bath.
  • GBL ⁇ -butyrolactone
  • TFMB 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl
  • the pressure in the reaction vessel was reduced to 400 mmHg, and then the internal temperature was raised to 180 ° C. After the internal temperature reached 180 ° C., the mixture was further heated and stirred for 5.5 hours and then returned to atmospheric pressure and cooled to 170 ° C. to obtain a polyimide solution.
  • the oxygen concentration in the reaction vessel was confirmed before and after decompression, it was less than 0.01%.
  • GBL was added at 170 degreeC, and the polyimide solution was obtained as a uniform solution whose solid content of a polyimide is 40 mass%.
  • the mass ratio of the solvent in the obtained varnish was approximately 5: 3.
  • the converted peroxide value of the obtained varnish was less than 1 mg / kg.
  • the solvent mass ratio (solvents other than GBL: GBL) in the varnishes prepared in Example 2 and Comparative Examples 1 to 3 was also approximately 5: 3.
  • Example 2 (1) Preparation of varnish Manufacture of the varnish of Example 1 except that the dilution solvent subjected to the bubbling treatment was changed from DMAc to butyl acetate and the temperature of the dilution solvent subjected to the bubbling treatment was changed from 155 ° C to 130 ° C. A varnish was obtained in the same manner as described above.
  • the butyl acetate subjected to the bubbling treatment was obtained by bubbling butyl acetate with nitrogen gas for 30 minutes.
  • the integrated value of the peak derived from the peroxide in the butyl acetate subjected to the bubbling treatment was 90,000.
  • the peroxide value of butyl acetate subjected to the bubbling treatment measured according to the JPI-5S-46-96 peroxide value test method of the Japan Petroleum Institute standard kerosene was less than 1 mg / kg.
  • Example 2 Film formation of polyimide film Except for changing from the varnish prepared in Example 1 (2) to the varnish prepared in Example 2 (1), the production method of Example 1 was used, and the thickness was 80 ⁇ m. A polyimide film was obtained. The converted peroxide value of the prepared varnish was less than 1 mg / kg.
  • Example 2 Film formation of polyimide film Except for changing from the varnish prepared in Example 1 (2) to the varnish prepared in Comparative Example 1 (1), the manufacturing method of Example 1 was used, and the thickness was 80 ⁇ m. A polyimide film was obtained. The converted peroxide value of the prepared varnish was 11 mg / kg.
  • Example 2 Film formation of polyimide film Except for changing from the varnish prepared in Example 1 (2) to the varnish prepared in Comparative Example 3 (1), the manufacturing method of Example 1 was used, and the thickness was 80 ⁇ m. A polyimide film was obtained. Moreover, the converted peroxide value of the prepared varnish was 51 mg / kg.
  • Example 3 (1) Synthesis of Polyamideimide A Nitrogen was passed through a reaction vessel equipped with a sufficiently dried stirrer and thermometer, and the inside of the vessel was replaced with nitrogen. To the reaction vessel, 250.00 parts by mass of 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl (TFMB) and 8,520 parts by mass of DMAc were added, and TFMB was added to DMAc while stirring at room temperature. Dissolved in.
  • TFMB 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl
  • the obtained reaction liquid was cooled, 12,781 parts by mass of methanol was added, and then 6,390 parts by mass of ion-exchanged water was added dropwise to precipitate a white solid.
  • the precipitated white solid was collected by centrifugal filtration and washed with methanol to obtain a wet cake containing a polyamideimide resin.
  • the obtained wet cake was dried at 80 ° C. under reduced pressure to obtain polyamideimide A.
  • Polyamideimide varnish B having a concentration of 8.7% by mass was prepared by adding the polyamideimide A to a solvent in which GBL and DMAc were mixed at 9: 1 (mass ratio).
  • GBL and DMAc a solvent that has passed for one week or more after opening was used.
  • the integrated value of the peak derived from the peroxide in DMAc was 460,000.
  • the peroxide value in GBL measured based on JPI-5S-46-96 was less than 1 mg / kg, and the peroxide value in DMAc was 13 mg / kg.
  • Example 3 Polyamideimide film formation As in Example 3, the obtained polyamideimide varnish B was formed on a smooth surface of a polyester substrate (trade name “A4100”, manufactured by Toyobo Co., Ltd.), and the thickness of the self-supporting film. was applied using an applicator so as to be 55 ⁇ m, dried at 50 ° C. for 30 minutes and then at 140 ° C. for 15 minutes, and then the obtained coating film was peeled off from the polyester substrate to obtain a self-supporting film. The obtained self-supporting film was fixed to a metal frame, and further annealed at 200 ° C. in the air to obtain a polyamideimide film (base material) having a thickness of 50 ⁇ m.
  • base material a polyamideimide film having a thickness of 50 ⁇ m.
  • Example 4 (1) Preparation of varnish Polyamideimide A obtained in Example 3 was added to a solvent in which GBL and butyl acetate were mixed at 9: 1 (mass ratio), and polyamideimide varnish C having a concentration of 8.9 mass% was added. Prepared. The peroxide value of polyamideimide varnish C measured in accordance with JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, was less than 1 mg / kg. As the GBL and butyl acetate, a solvent having passed for 1 week or more after opening was used. The integrated value of the peak derived from the peroxide in butyl acetate was 35,000.
  • the peroxide value in GBL measured based on JPI-5S-46-96 was less than 1 mg / kg, and the peroxide value in butyl acetate was less than 1 mg / kg. It was.
  • the peroxide value in GBL measured based on the peroxide value test method JPI-5S-46-96 of the Japan Petroleum Institute standard kerosene was less than 1 mg / kg, and the peroxide value in butyl acetate was 57 mg / kg. .
  • Measurement method and calculation method> (1) Method for calculating integral value of peroxide-derived peak (1-1) Measurement of chemiluminescence detection liquid chromatograph The peak derived from peroxide contained in a solvent is determined using a chemiluminescence detection liquid chromatograph method. It was measured. (Measurement condition) Column: Chemical Substance Evaluation Research Organization L-column2 ODS (5 ⁇ m, 4.6 mm ⁇ ⁇ 250 mm) Guard column: Sumipax (registered trademark) Filter PG-ODS (for analysis) manufactured by Sumika Chemical Analysis Co., Ltd.
  • the outflow rate of the gas was adjusted so as to be gradually 1 bubble / 1 second, and 2 mL of an aqueous potassium iodide solution (1.2 g / mL) was added.
  • the Erlenmeyer flask was shaken vigorously for 30 seconds. After leaving the Erlenmeyer flask for 5 minutes, 100 mL of water was added. Potentiometric titration was performed with 0.005 mol / L sodium thiosulfate standard solution, and the amount of sodium thiosulfate standard solution required for titration of the sample was determined.
  • the amount of sodium thiosulfate standard solution required for the blank test was determined by performing the blank test in the same procedure as above except that the sample 1 g was changed to 0 g, that is, the sample was not used. (Blank amount) was determined.
  • the outflow rate of the gas was adjusted so as to be gradually 1 bubble / 1 second, and 2 mL of an aqueous potassium iodide solution (1.2 g / mL) was added.
  • the Erlenmeyer flask was shaken vigorously for 30 seconds. After leaving the Erlenmeyer flask for 5 minutes, 100 mL of water was added. Potentiometric titration was performed with 0.005 mol / L sodium thiosulfate standard solution, and the amount of sodium thiosulfate standard solution required for titration of the sample was determined.
  • the amount of sodium thiosulfate standard solution required for the blank test was determined by performing the blank test in the same procedure as above except that the sample 1 g was changed to 0 g, that is, the sample was not used. (Blank amount) was determined. From the amount of the obtained two sodium thiosulfate standard solutions, the peroxide value was calculated using the formula described in (2) Method for measuring peroxide value (when the measurement target is a solvent). The peroxide value of DMAc used (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade, unopened product) was 0.0 mg / kg.
  • the ⁇ value was determined from the obtained Int C and Int D by the following formula.
  • Int D / Int C
  • the ⁇ value of the above formula and the imidization ratio of the polyimide resin of the above formula were determined for a plurality of polyamideimide resins, and the following correlation formula was obtained from these results.
  • Imidization rate (%) k ⁇ ⁇ + 100
  • k is a constant.
  • was substituted into the correlation equation to obtain the imidization ratio (%) of the polyamideimide resin.
  • Thickness Measurement The thickness of the transparent polyimide polymer film was measured using a Digimatic Thickness Gauge (product number 547-401 manufactured by Mitutoyo Corporation).
  • Tt total light transmittance
  • Haze The total light transmittance Tt of the transparent polyimide-based polymer films obtained in Examples and Comparative Examples was measured according to JIS K 7105: 1981 as a haze meter (suga It was measured by “Fully Automatic Direct Reading Haze Computer HGM-2DP” manufactured by Tester Co., Ltd.).
  • Examples and Comparative Examples of the varnish ultraviolet-visible-near infrared spectrophotometer (manufactured by JASCO Corporation "V-670") did.
  • the varnish was packed in a quartz cell having an optical path length of 1 cm, and this quartz cell was set to ultraviolet visible near infrared spectrophotometry.
  • the transmittance was measured by irradiating white light with a wavelength of 300 to 800 nm to obtain a b * value.
  • the resulting b * was the initial b * (before storage b *).
  • Varnish Storage Test Calculation of ⁇ YI Value
  • the varnishes obtained in Examples 1-2 and Comparative Examples 1-3 were stored at 60 ° C. for 2 weeks.
  • the varnishes obtained in Examples 3 to 4 and Comparative Example 4 were stored at 50 ° C. for 1 week.
  • the YI value of the film obtained by forming the varnish after storage was measured by the same method as the initial YI value, and was defined as the YI value after storage.
  • a difference ( ⁇ YI) was obtained from the initial YI value and the YI value after storage.
  • the varnishes of Examples 1 and 2 contained a transparent polyimide polymer and a solvent.
  • the total light transmittance of the polyimide films prepared from the varnishes of Examples 1 and 2 was 90% or more.
  • the integral values of the peaks derived from the peroxides of the solvents used in the preparation of the varnishes of Examples 1 and 2 were all 700,000 or less.
  • the peroxide values of the solvents were all 20 mg / kg or less.
  • the ⁇ b * values of the varnishes of Examples 1 and 2 were all 0.0.
  • the integral value of the peak derived from the peroxide of the solvent used in the preparation of the varnishes of Comparative Examples 1 to 3 exceeded 700,000. In addition, the peroxide values of the solvents all exceeded 20 mg / kg.
  • the ⁇ b * values of the varnishes of Comparative Examples 1 to 3 were 19.0, 22.1, and 10.8, respectively.
  • the varnishes of Examples 3 to 4 contained a transparent polyimide polymer and a solvent.
  • the total light transmittance of the polyamideimide films prepared from the varnishes of Examples 3 to 4 was 80% or more.
  • the integral values of the peaks derived from the peroxides of the solvents used in the preparation of the varnishes of Examples 3 to 4 were all 700,000 or less, and the peroxide values of the solvents were all 20 mg / kg or less. .
  • the peroxide values of the varnishes of Examples 3 to 4 were all 2.5 mg / kg or less.
  • the ⁇ b * values of the varnishes of Examples 3 to 4 were all 1.5 or less.

Abstract

This varnish comprises a transparent polyimide polymer and a solvent, wherein: the integrated value of a peroxide-derived peak detected by chemical light emission detection liquid chromatography is 700,000 or less; and when a film containing the transparent polyimide polymer and having a thickness of 50-80 μm is produced from the varnish, the total light transmittance of the film measured in accordance with Japanese Industrial Standards (JIS) K 7105:1981 is 80% or more.

Description

透明ポリイミド系高分子と溶媒とを含むワニスVarnish containing transparent polyimide polymer and solvent
 本発明は、透明ポリイミド系高分子と溶媒とを含むワニスに関する。 The present invention relates to a varnish containing a transparent polyimide polymer and a solvent.
 近年、ポリイミド系高分子のフィルムは、例えば、テレビ、パソコン、スマートフォン、タブレッド、及び電子ペーパーのような画像表示装置に対して機能を付与するための機能性フィルムとして使用されている。特に、上記画像表示装置内のディスプレイやタッチパネルのような電子デバイスの表示部分に使用される機能性フィルムには、高い透明性が求められる。
 このようなポリイミド系高分子のフィルムの製造方法として、ポリイミド系高分子と溶媒とを含むワニスを基材上に塗布して塗膜を形成し、塗膜を乾燥させて製造する方法が知られている。例えば、特許文献1には、ポリアミドイミド樹脂と酢酸ブチルとを含むワニスを用いたフィルムの製造方法が記載されている。
In recent years, polyimide polymer films have been used as functional films for imparting functions to image display devices such as televisions, personal computers, smartphones, tab reds, and electronic paper. In particular, high transparency is required for a functional film used for a display portion of an electronic device such as a display or a touch panel in the image display device.
As a method for producing such a polyimide polymer film, a method is known in which a varnish containing a polyimide polymer and a solvent is applied onto a substrate to form a coating film, and then the coating film is dried. ing. For example, Patent Document 1 describes a method for producing a film using a varnish containing a polyamideimide resin and butyl acetate.
特開2015-174905号公報JP2015-174905A
 しかしながら、ワニスを製造してから長期保存する場合や、ワニスに用いる溶媒を長期保存した後にワニスを製造する場合に、ワニス自体が着色して得られるポリイミド系高分子のフィルムの透明性が低下することがあった。透明性を回復させる対応策として、ワニスの精製方法、例えば、着色したワニスからポリイミド系高分子を析出等で取り出し、溶媒に再溶解させる方法があるが、コスト面で不利となる。
 このようにワニスが長期にわたり高い透明性を有することは困難であった。
However, when the varnish is produced for a long period of time or when the varnish is produced after the solvent used for the varnish is preserved for a long period of time, the transparency of the polyimide polymer film obtained by coloring the varnish itself decreases. There was a thing. As a countermeasure for restoring transparency, there is a method of purifying varnish, for example, a method of taking out a polyimide polymer from a colored varnish by precipitation or the like and re-dissolving it in a solvent, which is disadvantageous in terms of cost.
Thus, it was difficult for the varnish to have high transparency over a long period of time.
 本発明は上記課題に鑑みてなされたものであり、その目的は、長期にわたり高い透明性を有するワニスを提供することである。 The present invention has been made in view of the above problems, and an object thereof is to provide a varnish having high transparency over a long period of time.
 本発明者は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明には、以下の態様が含まれる。
[1]透明ポリイミド系高分子と、溶媒とを含むワニスであって、
 化学発光検出液体クロマトグラフ法により検出される過酸化物由来のピークの積分値が70万以下であり、
 該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS)K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる、ワニス。
[2]ワニスから厚さ80μmの透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS) K 7105:1981に準拠して測定したフィルムの全光線透過率が80%以上となる、[1]に記載のワニス。
[3]透明ポリイミド系高分子と、溶媒とを含むワニスであって、
 石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に準拠した方法により検出される該ワニスの過酸化物価が2.5mg/kg以下であり、
 該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS)K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる、ワニス。
[4]透明ポリイミド系高分子と、溶媒とを含むワニスであって、
 石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠した方法により検出される前記溶媒の過酸化物価が20mg/kg以下であり、
 該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS) K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる、ワニス。
[5]前記全光線透過率が90%以上である、[1]~[4]のいずれかに記載のワニス。
[6]前記溶媒が、少なくとも2種類のエステルを含む、[1]~[5]のいずれかに記載のワニス。
[7]前記透明ポリイミド系高分子のポリスチレン換算重量平均分子量が20万以上である、[1]~[6]のいずれかに記載のワニス。
[8][1]~[7]のいずれか記載のワニスから形成された光学フィルム。
[9]フレキシブル表示装置の前面板用のフィルムである、[8]に記載の光学フィルム。
[10][8]又は[9]に記載の光学フィルムを備えるフレキシブル表示装置。
[11]タッチセンサをさらに備える、[10]に記載のフレキシブル表示装置。
[12]偏光板をさらに備える、[10]又は[11]に記載のフレキシブル表示装置。
As a result of intensive studies in order to solve the above problems, the present inventors have completed the present invention. That is, the present invention includes the following aspects.
[1] A varnish containing a transparent polyimide polymer and a solvent,
The integral value of the peak derived from the peroxide detected by the chemiluminescence detection liquid chromatography method is 700,000 or less,
When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured in accordance with Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it, varnish.
[2] When a film containing a transparent polyimide polymer having a thickness of 80 μm is produced from varnish, the total light transmittance of the film measured in accordance with Japanese Industrial Standard (JIS) K 7105: 1981 is 80% or more. The varnish according to [1].
[3] A varnish containing a transparent polyimide polymer and a solvent,
The peroxide value of the varnish detected by a method in accordance with JPI-5S-46-96 is a peroxide value of 2.5 mg / kg or less.
When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured in accordance with Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it, varnish.
[4] A varnish containing a transparent polyimide polymer and a solvent,
The peroxide value of the solvent detected by the method based on JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, is 20 mg / kg or less,
When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured according to Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it, varnish.
[5] The varnish according to any one of [1] to [4], wherein the total light transmittance is 90% or more.
[6] The varnish according to any one of [1] to [5], wherein the solvent contains at least two types of esters.
[7] The varnish according to any one of [1] to [6], wherein the transparent polyimide polymer has a polystyrene-reduced weight average molecular weight of 200,000 or more.
[8] An optical film formed from the varnish according to any one of [1] to [7].
[9] The optical film according to [8], which is a film for a front plate of a flexible display device.
[10] A flexible display device comprising the optical film according to [8] or [9].
[11] The flexible display device according to [10], further including a touch sensor.
[12] The flexible display device according to [10] or [11], further including a polarizing plate.
 本発明によれば、長期(例えば、3ヶ月以上)にわたり高い透明性を有するワニスを提供することができる。 According to the present invention, it is possible to provide a varnish having high transparency over a long period (for example, 3 months or more).
<ワニス>
 本発明のワニスは、
 透明ポリイミド系高分子と、溶媒とを含み、
化学発光検出液体クロマトグラフ法により検出される過酸化物由来のピークの積分値が70万以下であり、
 該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS)K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる。
 また、本発明のワニスは、
 透明ポリイミド系高分子と、溶媒とを含み、
 石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に準拠した方法により検出される該ワニスの過酸化物価が2.5mg/kg以下であり、
 該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS)K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる。
 また、本発明のワニスは、
 透明ポリイミド系高分子と、溶媒とを含み、
 石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠した方法により検出される前記溶媒の過酸化物価が20mg/kg以下であり、
 該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS)K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる。
<Varnish>
The varnish of the present invention is
Including a transparent polyimide polymer and a solvent,
The integral value of the peak derived from the peroxide detected by the chemiluminescence detection liquid chromatography method is 700,000 or less,
When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured in accordance with Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it.
The varnish of the present invention is
Including a transparent polyimide polymer and a solvent,
The peroxide value of the varnish detected by a method in accordance with JPI-5S-46-96 is a peroxide value of 2.5 mg / kg or less.
When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured in accordance with Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it.
The varnish of the present invention is
Including a transparent polyimide polymer and a solvent,
The peroxide value of the solvent detected by the method based on JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, is 20 mg / kg or less,
When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured in accordance with Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it.
[1.過酸化物由来のピークの積分値]
 過酸化物由来のピークの積分値は、ワニスを調製する溶媒にルミノール液を添加して化学発光検出液体クロマトグラフ法により検出される過酸化物由来のピークの積分値である。
 本明細書において、過酸化物は、溶媒-ルミノール液の系において、ルミノール反応の酸化剤として働く。過酸化物由来のピークとは、過酸化物とルミノールとの反応により生成する発光のピークを含む。過酸化物由来のピークの積分値は、例えば、実施例に記載の方法で測定することができる。
[1. Integrated value of peroxide-derived peak]
The integrated value of the peak derived from peroxide is the integrated value of the peak derived from peroxide detected by the chemiluminescence detection liquid chromatographic method by adding the luminol solution to the solvent for preparing the varnish.
In the present specification, the peroxide acts as an oxidizing agent for the luminol reaction in the solvent-luminol liquid system. The peroxide-derived peak includes a luminescence peak generated by the reaction between the peroxide and luminol. The integrated value of the peak derived from peroxide can be measured, for example, by the method described in the examples.
 過酸化物由来のピークの積分値が70万以下であることを以下説明する。
 溶媒が1種の溶媒である場合は、1種の溶媒の過酸化物由来のピークの積分値が70万以下であることを意味する。
 溶媒が2種の溶媒からなる混合溶媒である場合であって、混合溶媒における2種の溶媒のうち、一方の溶媒の積分値が、他方の溶媒の積分値よりも非常に大きい場合(例えば、20倍以上大きい場合)、一方の溶媒の積分値が支配的であると判断することができる。かかる場合、一方の溶媒の過酸化物由来のピークの積分値が70万以下であることを意味する。 
The following explains that the integral value of the peak derived from peroxide is 700,000 or less.
When the solvent is one kind of solvent, it means that the integral value of the peak derived from the peroxide of one kind of solvent is 700,000 or less.
When the solvent is a mixed solvent composed of two kinds of solvents, and the integrated value of one of the two solvents in the mixed solvent is much larger than the integrated value of the other solvent (for example, It can be determined that the integral value of one solvent is dominant. In such a case, it means that the integral value of the peak derived from the peroxide of one solvent is 700,000 or less.
 過酸化物由来のピークの積分値が70万以下であると、ワニス中の溶媒に溶解する過酸化物の濃度が十分に低いため、過酸化物と透明ポリイミド系高分子等との反応速度が極端に遅くなり、ワニス中の透明ポリイミド系高分子が経時的に過酸化物により酸化されにくい。かかる場合、このように溶媒及び透明ポリイミド系高分子が経時的に劣化しにくいため、溶媒及びワニスの長期(例えば、3ヶ月以上)保管後であっても、高い透明性を有するワニスを提供できる。
 過酸化物由来のピークの積分値は、さらに長期にわたり高い透明性を維持する観点から、好ましくは50万以下、より好ましくは35万以下、さらに好ましくは10万以下、特に好ましくは5万以下である。
When the integral value of the peak derived from the peroxide is 700,000 or less, the concentration of the peroxide dissolved in the solvent in the varnish is sufficiently low, so the reaction rate between the peroxide and the transparent polyimide polymer is high. It becomes extremely slow, and the transparent polyimide polymer in the varnish is less likely to be oxidized by peroxide over time. In such a case, since the solvent and the transparent polyimide polymer are unlikely to deteriorate with time, a varnish having high transparency can be provided even after long-term storage (for example, 3 months or more) of the solvent and varnish. .
The integral value of the peak derived from the peroxide is preferably 500,000 or less, more preferably 350,000 or less, still more preferably 100,000 or less, particularly preferably 50,000 or less, from the viewpoint of maintaining high transparency over a long period of time. is there.
 過酸化物由来のピークの積分値を70万以下に調整する手段としては、例えば、ワニス中の過酸化物の濃度を低下させる手段(より具体的には、ワニス中で過酸化物の生成を阻害する手段等)が挙げられる。ワニス中の過酸化物は、主にワニス中の溶媒分子と溶存酸素との反応(溶媒分子の酸化反応)で生成すると考えられる。このため、ワニス中で過酸化物を阻害する手段としては、例えば、ワニス中の溶存酸素濃度を低減する手段、及び酸素と反応して過酸化物を生成しにくい溶媒の種類を選択する手段が挙げられる。ワニス中の溶存酸素濃度を低減する手段としては、例えば、不活性ガス(より具体的には、アルゴンガス及びネオンガスのような希ガス、並びに窒素ガス等)により溶媒に対してバブリング処理を実行して、溶媒中の溶存酸素を不活性ガスに置換させる手段、及び減圧雰囲気下又は不活性ガス雰囲気下として、溶媒と接触する気相の酸素濃度を低減する手段が挙げられる。バブリング処理の時間は、溶存酸素の置換を十分に達成し、かつコストを低減する観点から、例えば、10分以上1時間以下であることが好ましい。例えば、2種のエステルを含む混合溶媒に対してバブリング処理を実行する場合、2種の溶媒を混合する前にそれらの溶媒のうち、少なくとも一方のバブリング処理を実行してもよい。2種の溶媒を混合した後に、混合溶媒に対してバブリング処理を実行してもよい。また、ワニスを調製した後に、ワニスに対してバブリング処理を実行してもよい。溶媒については、後述する。 As a means for adjusting the integral value of the peak derived from the peroxide to 700,000 or less, for example, means for reducing the concentration of peroxide in the varnish (more specifically, generation of peroxide in the varnish is performed. And the like). It is considered that the peroxide in the varnish is generated mainly by the reaction between the solvent molecules in the varnish and dissolved oxygen (oxidation reaction of the solvent molecules). For this reason, as means for inhibiting peroxide in the varnish, for example, means for reducing the dissolved oxygen concentration in the varnish, and means for selecting the type of solvent that hardly reacts with oxygen to generate peroxide. Can be mentioned. As a means for reducing the dissolved oxygen concentration in the varnish, for example, a bubbling process is performed on the solvent with an inert gas (more specifically, a rare gas such as argon gas and neon gas, and nitrogen gas). And means for substituting the dissolved oxygen in the solvent with an inert gas, and means for reducing the oxygen concentration in the gas phase in contact with the solvent under a reduced-pressure atmosphere or an inert gas atmosphere. The time for the bubbling treatment is preferably, for example, 10 minutes or more and 1 hour or less from the viewpoint of sufficiently achieving replacement of dissolved oxygen and reducing the cost. For example, when performing a bubbling process with respect to the mixed solvent containing 2 types of ester, you may perform a bubbling process of at least one of those solvents, before mixing 2 types of solvents. After mixing the two solvents, a bubbling process may be performed on the mixed solvent. Moreover, you may perform a bubbling process with respect to a varnish after preparing a varnish. The solvent will be described later.
 溶媒が2種以上の溶媒からなる混合溶媒である場合、各溶媒の前記積分値と、ワニスにおける各溶媒の質量比率との積の和(加重平均)をワニスの積分値(ワニスの換算積分値)としてワニスを評価してもよい。かかる場合、ワニスの換算積分値は、好ましくは35万以下、より好ましくは25万以下、さらに好ましくは18万以下、特に好ましくは5万以下、非常に特に好ましくは2.5万以下である。 When the solvent is a mixed solvent composed of two or more solvents, the sum (weighted average) of the product of the integral value of each solvent and the mass ratio of each solvent in the varnish is the varnish integral value (converted integral value of varnish) ) Varnish may be evaluated. In such a case, the converted integral value of the varnish is preferably 350,000 or less, more preferably 250,000 or less, further preferably 180,000 or less, particularly preferably 50,000 or less, and very particularly preferably 25,000 or less.
[2.過酸化物価]
 過酸化物価は、石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠又は準拠して測定することができる。過酸化物価の測定では、ワニスを調製する溶媒(ワニスを調製する前の溶媒)又はワニスを測定対象とすることができる。
[2. Peroxide value]
The peroxide value can be measured according to or based on the Peroxide Value Test Method JPI-5S-46-96 of the Petroleum Institute Standard Kerosene. In the measurement of the peroxide value, a solvent for preparing a varnish (a solvent before preparing the varnish) or a varnish can be used as a measurement target.
(2-1.測定対象が溶媒である場合)
 測定対象がワニスを調製する溶媒である場合、過酸化物価は、前記過酸化物試験方法JPI-5S-46-96に依拠して測定する。まず、測定対象である溶媒をトルエンに溶解させる。次いで、トルエンに溶解した溶媒にヨウ化カリウム溶液を加え、このときに遊離したヨウ素を、チオ硫酸ナトリウム標準液で滴定することで求めることができる。本明細書において、過酸化物は、測定対象-ヨウ化カリウムのトルエン溶液の系において、ヨウ化カリウムの酸化剤として働く。溶媒の過酸化物価は、例えば、実施例に記載した方法で測定することができる。
(2-1. When the measurement target is a solvent)
When the object to be measured is a solvent for preparing a varnish, the peroxide value is measured according to the peroxide test method JPI-5S-46-96. First, the solvent to be measured is dissolved in toluene. Next, a potassium iodide solution is added to a solvent dissolved in toluene, and iodine released at this time can be determined by titration with a sodium thiosulfate standard solution. In the present specification, the peroxide acts as an oxidizing agent for potassium iodide in the measurement object-toluene solution of potassium iodide. The peroxide value of the solvent can be measured, for example, by the method described in the examples.
 溶媒の過酸化物価が20mg/kgであることを以下説明する。
 溶媒が1種の溶媒である場合は、1種の溶媒の過酸化物価が20mg/kg以下であることを意味する。
 溶媒が2種の溶媒からなる混合溶媒である場合であって、混合溶媒における2種の溶媒のうち,一方の溶媒の過酸化物価が、他方の溶媒の過酸化物価よりも非常に大きい場合(例えば、20倍以上大きい場合)、一方の溶媒の過酸化物価が支配的であると判断することができる。かかる場合、一方の過酸化物価が20mg/kgであることを意味する。
The following explains that the peroxide value of the solvent is 20 mg / kg.
When the solvent is one kind of solvent, it means that the peroxide value of one kind of solvent is 20 mg / kg or less.
When the solvent is a mixed solvent composed of two kinds of solvents, and the peroxide value of one of the two solvents in the mixed solvent is much larger than the peroxide number of the other solvent ( For example, it can be determined that the peroxide value of one solvent is dominant. In such a case, it means that one peroxide value is 20 mg / kg.
 測定対象が前記溶媒である場合、過酸化物価は、20mg/kg以下である。過酸化物価が20mg/kg以下であると、ワニス中の溶媒に溶解する過酸化物の濃度が十分に低いため、過酸化物と透明ポリイミド系高分子等との反応速度が極端に遅くなり、ワニス中の透明ポリイミド系高分子が経時的に過酸化物により酸化されにくいと考えられる。かかる場合、このように溶媒及び透明ポリイミド系高分子が経時的に劣化しにくいため、溶媒の長期(例えば、3ヶ月以上)保管後であっても、高い透明性を有するワニスを提供できる。このような高い透明性を有するワニスを用いて光学フィルムを製造することにより、高い透明性を有する光学フィルムを得ることができる。 When the measurement object is the solvent, the peroxide value is 20 mg / kg or less. When the peroxide value is 20 mg / kg or less, since the concentration of the peroxide dissolved in the solvent in the varnish is sufficiently low, the reaction rate between the peroxide and the transparent polyimide polymer is extremely slow, It is believed that the transparent polyimide polymer in the varnish is less likely to be oxidized by the peroxide over time. In such a case, since the solvent and the transparent polyimide polymer are unlikely to deteriorate with time, a varnish having high transparency can be provided even after storage of the solvent for a long period (for example, 3 months or more). By producing an optical film using such a highly transparent varnish, an optical film having high transparency can be obtained.
 過酸化物価は、さらに長期にわたりワニスの高い透明性を維持する観点から、好ましくは15mg/kg以下、より好ましくは10mg/kg以下、さらに好ましくは5mg/kg以下、特に好ましくは1mg/kg未満である。
 溶媒が2種以上の溶媒からなる混合溶媒である場合、各溶媒の過酸化物価と、ワニスにおける各溶媒の質量比率との積の和(加重平均)をワニスの過酸化物価(ワニスの換算過酸化物価)としてワニスを評価してもよい。かかる場合、ワニスの換算過酸化物価は、好ましくは10mg/kg以下、より好ましくは7.5mg/kg以下、さらに好ましくは5mg/kg以下、特に好ましくは2.5mg/kg以下、非常に特に好ましくは0.5mg/kg未満である。
The peroxide value is preferably 15 mg / kg or less, more preferably 10 mg / kg or less, still more preferably 5 mg / kg or less, particularly preferably less than 1 mg / kg from the viewpoint of maintaining high transparency of the varnish for a longer period of time. is there.
When the solvent is a mixed solvent composed of two or more solvents, the sum of the product of the peroxide value of each solvent and the mass ratio of each solvent in the varnish (weighted average) is the varnish peroxide value Varnish may be evaluated as (oxide value). In such a case, the converted peroxide value of the varnish is preferably 10 mg / kg or less, more preferably 7.5 mg / kg or less, further preferably 5 mg / kg or less, particularly preferably 2.5 mg / kg or less, very particularly preferably. Is less than 0.5 mg / kg.
(2-2.測定対象がワニスである場合)
 測定対象がワニスである場合、過酸化物価は、前記JPI-5S-46-96を準拠して測定する。測定対象を溶媒からワニスに変更し、測定対象の質量を変更し、溶媒で希釈した以外は、測定対象が溶媒である場合と同様の方法で、過酸化物価を測定する。ワニスの過酸化物価は、例えば、実施例に記載の方法で測定することができる。
(2-2. When the object to be measured is varnish)
When the object to be measured is varnish, the peroxide value is measured according to the above-mentioned JPI-5S-46-96. The peroxide value is measured in the same manner as when the measurement target is a solvent, except that the measurement target is changed from a solvent to a varnish, the mass of the measurement target is changed, and the measurement target is diluted with a solvent. The peroxide value of the varnish can be measured, for example, by the method described in the examples.
 測定対象がワニスである場合、過酸化物価は、2.5mg/kgである。過酸化物価が2.5mg/kg以下であると、測定対象が溶媒である場合と同様の理由で、ワニスの長期保管後であっても、高い透明性を有するワニスを提供できる。このような高い透明性を有するワニスを用いて光学フィルムを製造することにより、高い透明性を有する光学フィルムを得ることができる。
 また、過酸化物価が2.5mg/kg以下であると、測定対象がワニスである場合と同様の理由で、光学フィルム内の透明ポリイミド系高分子が経時的に劣化しにくいため、高い透明性を有する光学フィルムを得ることができる。
When the measurement target is varnish, the peroxide value is 2.5 mg / kg. When the peroxide value is 2.5 mg / kg or less, a varnish having high transparency can be provided even after long-term storage of the varnish for the same reason as when the measurement target is a solvent. By producing an optical film using such a highly transparent varnish, an optical film having high transparency can be obtained.
In addition, when the peroxide value is 2.5 mg / kg or less, the transparent polyimide polymer in the optical film is less likely to deteriorate over time for the same reason as when the object to be measured is varnish. Can be obtained.
 ワニスの過酸化物価は、さらに長期にわたりワニスの高い透明性を維持する観点から、好ましくは2.0mg/kg以下、より好ましくは1.5mg/kg以下、さらに好ましくは1.1mg/kg以下、特に好ましくは1mg/kg未満である。 The peroxide value of the varnish is preferably 2.0 mg / kg or less, more preferably 1.5 mg / kg or less, still more preferably 1.1 mg / kg or less, from the viewpoint of maintaining high transparency of the varnish for a longer period of time. Particularly preferably, it is less than 1 mg / kg.
[3.全光線透過率]
 厚さが50~80μmである透明ポリイミド系高分子のフィルムの全光線透過率は、好ましくは80%以上、より好ましくは82%以上、さらに好ましくは85%以上、さらにより好ましくは88%以上、とりわけ好ましくは90%以上、さらにとりわけ好ましくは91%以上、特に好ましくは92%以上である。透過率が前記の範囲にあると、例えば、本発明のワニスから形成されたフィルムとEL素子とを組合せて表示装置を作成した場合に、低い透過率のフィルムと組合せたときに比べて、同じ明るさを得るために少ない電力でEL素子を駆動できるため、省電力に寄与し得る。フィルムの高い透明性を確保するには、フィルムの形成に用いられるワニスが、長期にわたり、透明であることが好ましい。長期にわたりワニスが透明であることは、例えば、ワニスを50℃で1週間保管するという加速試験で確認できる。
[3. Total light transmittance]
The total light transmittance of the transparent polyimide polymer film having a thickness of 50 to 80 μm is preferably 80% or more, more preferably 82% or more, still more preferably 85% or more, even more preferably 88% or more, It is particularly preferably 90% or more, further particularly preferably 91% or more, particularly preferably 92% or more. When the transmittance is in the above range, for example, when a display device is produced by combining a film formed from the varnish of the present invention and an EL element, the same as when combined with a film having a low transmittance. Since the EL element can be driven with less power to obtain brightness, it can contribute to power saving. In order to ensure high transparency of the film, the varnish used for forming the film is preferably transparent over a long period of time. Whether the varnish is transparent over a long period of time can be confirmed, for example, by an accelerated test in which the varnish is stored at 50 ° C. for 1 week.
 透明ポリイミド系高分子のフィルムの全光線透過率は、例えば、ヘーズメータを用いて、JIS K 7105:1981に準拠して測定することができる。
 なお、透明ポリイミド系高分子のフィルムの厚さは、例えば、マイクロメーターを用いて測定することができる。
The total light transmittance of the transparent polyimide polymer film can be measured using a haze meter in accordance with JIS K 7105: 1981, for example.
The thickness of the transparent polyimide polymer film can be measured, for example, using a micrometer.
 また、透明ポリイミド系高分子のフィルムの厚さが80μm以外である場合、上述のようにヘーズメータを用いてそのフィルムの全光線透過率を測定し、得られた全光線透過率を厚さ80μmの全光線透過率に換算してもよい。
 全光線透過率の換算は、例えば、Lambert-Beerの法則を用いて以下のようにすることができる。ここでは、厚さ50μmで測定された全光線透過率Tt50を80μmでの全光線透過率に換算する方法を説明する。
 式(A)
Figure JPOXMLDOC01-appb-I000001
[式(A)中、Tは透過率を表し、xは光路長を表し、αは吸収定数を表す]
において、全光線透過率Tt50を透過率Tに代入し、フィルムの厚さ50μmを光路長xに代入する。その結果、吸収定数αが得られる。次いで、式(A)において、80μmをxに代入し、先に求めた吸収定数αを代入することで、厚さ80μmでの全光線透過率Tt80(80μm換算の全光線透過率)が得られる。
Further, when the thickness of the transparent polyimide polymer film is other than 80 μm, the total light transmittance of the film is measured using a haze meter as described above, and the total light transmittance obtained is 80 μm in thickness. You may convert into total light transmittance.
The total light transmittance can be converted, for example, using the Lambert-Beer law as follows. Here, a method for converting the total light transmittance Tt 50 measured at a thickness of 50 μm into a total light transmittance at 80 μm will be described.
Formula (A)
Figure JPOXMLDOC01-appb-I000001
[In formula (A), T represents transmittance, x represents optical path length, and α represents absorption constant]
The total light transmittance Tt 50 is substituted for the transmittance T, and the film thickness 50 μm is substituted for the optical path length x. As a result, an absorption constant α is obtained. Next, by substituting 80 μm into x and substituting the previously obtained absorption constant α in the formula (A), the total light transmittance Tt 80 (total light transmittance in terms of 80 μm) at a thickness of 80 μm is obtained. It is done.
[4.溶媒]
 溶媒は、ワニスの組成としての基本的な特性を備えた上で、さらに長期にわたり高い透明性を有することが好ましい。前者は、透明ポリイミド系高分子を溶解又は分散させ、かつワニスの粘度を塗布に適切な粘度にする特性である。後者は、例えば、溶媒分子が酸素と反応しにくく又は酸素と反応しても反応活性の高い過酸化物を生成しにくい特性、及び酸素を溶存させにくい特性である。
 このような特性を満たす観点から、溶媒としては、例えば、非プロトン性極性溶媒(より具体的には、N,N-ジメチルアセトアミド(以下、DMAcと記載することがある)、及びジメチルスルホキシド等)、及びカルボン酸エステル(より具体的には、酢酸エステル、及び環状カルボン酸エステル等)が挙げられる。酢酸エステルとしては、例えば、酢酸ブチル(以下、酢ブチと記載することがある)、酢酸アミル、及び酢酸イソアミルが挙げられる。環状カルボン酸エステルとしては、例えば、γ-ブチロラクトン(以下、GBLと記載することがある)が挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。
[4. solvent]
The solvent preferably has high transparency over a long period of time, while having basic characteristics as a composition of the varnish. The former is a characteristic in which a transparent polyimide polymer is dissolved or dispersed and the viscosity of the varnish is adjusted to a viscosity suitable for coating. The latter is, for example, a characteristic that a solvent molecule does not easily react with oxygen, or does not easily generate a peroxide having a high reaction activity even if it reacts with oxygen, and a characteristic that does not readily dissolve oxygen.
From the viewpoint of satisfying such characteristics, examples of the solvent include aprotic polar solvents (more specifically, N, N-dimethylacetamide (hereinafter sometimes referred to as DMAc), dimethyl sulfoxide, and the like). And carboxylic acid esters (more specifically, acetic acid esters, cyclic carboxylic acid esters, and the like). Examples of the acetate include butyl acetate (hereinafter sometimes referred to as vinegar buty), amyl acetate, and isoamyl acetate. Examples of the cyclic carboxylic acid ester include γ-butyrolactone (hereinafter sometimes referred to as GBL). These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 これらの溶媒の中でも、2つの特性をさらに向上させる観点から、GBL、DMAc、酢酸ブチル、酢酸アミル及び酢酸イソアミルからなる群から選択される少なくとも1種の溶媒が好ましく、及び前記溶媒から選択される少なくとも2種以上のエステルがより好ましい。前記少なくとも2種以上のエステルの組合せとしては、例えば、GBLとDMAc、GBLと酢酸ブチル、GBLと酢酸アミル、GBLと酢酸イソアミル、DMAcと酢酸ブチル、DMAcと酢酸アミル、DMAcと酢酸イソアミル、酢酸ブチルと酢酸アミル、酢酸ブチルと酢酸イソアミル、酢酸アミルと酢酸イソアミル、GBLとDMAcと酢酸ブチル、GBLとDMAcと酢酸アミル、GBLとDMAcと酢酸イソアミル、GBLと酢酸ブチルと酢酸アミル、GBLと酢酸ブチルと酢酸イソアミル、GBLと酢酸アミルと酢酸イソアミル、DMAcと酢酸ブチルと酢酸アミル、DMAcと酢酸ブチルと酢酸イソアミル、DMAcと酢酸アミルと酢酸イソアミル、酢酸ブチルと酢酸アミルと酢酸イソアミル、GBLとDMAcと酢酸ブチルと酢酸アミル、GBLとDMAcと酢酸ブチルと酢酸イソアミル、GBLとDMAcと酢酸アミルと酢酸イソアミル、GBLと酢酸ブチルと酢酸アミルと酢酸イソアミル、DMAcと酢酸ブチルと酢酸アミルと酢酸イソアミル、及びGBLとDMAcと酢酸ブチルと酢酸アミルと酢酸イソアミルとの組合せが挙げられ、好ましくはGBLと酢酸ブチル、GBLと酢酸アミル、GBLと酢酸イソアミル、酢酸ブチルと酢酸アミル、酢酸ブチルと酢酸イソアミル、酢酸アミルと酢酸イソアミル、GBLと酢酸ブチルと酢酸アミル、GBLと酢酸ブチルと酢酸イソアミル、GBLと酢酸アミルと酢酸イソアミル、酢酸ブチルと酢酸アミルと酢酸イソアミル、及びGBLと酢酸ブチルと酢酸アミルと酢酸イソアミルとの組合せが挙げられ、より好ましくはGBLと酢酸ブチル、GBLと酢酸アミル、GBLと酢酸イソアミル、GBLと酢酸ブチルと酢酸アミル、GBLと酢酸ブチルと酢酸イソアミル、GBLと酢酸アミルと酢酸イソアミル、及びGBLと酢酸ブチルと酢酸アミルと酢酸イソアミルとの組合せが挙げられる。
 2種の溶媒からなる混合溶媒の場合、その混合比(質量比)は、好ましくは1:9~9:1、より好ましくは2:8~8:2である。3種の溶媒からなる混合溶媒の場合、その混合比(質量比)は、好ましくは1~8:1~8:1~8、より好ましくは2~7:2~7:2~7である。
 2種以上の溶媒からなる場合、2種以上の溶媒のうちの1種の溶媒の含有率は、全溶媒量に対して、通常10質量%以上、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上であり、通常90質量%以下、好ましくは80質量%以下、より好ましくは70質量%以下、さらに好ましくは60質量%以下である。
Among these solvents, from the viewpoint of further improving two characteristics, at least one solvent selected from the group consisting of GBL, DMAc, butyl acetate, amyl acetate, and isoamyl acetate is preferable, and is selected from the above solvents. At least two or more esters are more preferable. Examples of the combination of at least two kinds of esters include GBL and DMAc, GBL and butyl acetate, GBL and amyl acetate, GBL and isoamyl acetate, DMAc and butyl acetate, DMAc and amyl acetate, DMAc and isoamyl acetate, and butyl acetate. And amyl acetate, butyl acetate and isoamyl acetate, amyl acetate and isoamyl acetate, GBL and DMAc and butyl acetate, GBL and DMAc and amyl acetate, GBL and DMAc and isoamyl acetate, GBL and butyl acetate and amyl acetate, GBL and butyl acetate Isoamyl acetate, GBL, amyl acetate and isoamyl acetate, DMAc and butyl acetate and amyl acetate, DMAc and butyl acetate and isoamyl acetate, DMAc and amyl acetate and isoamyl acetate, butyl acetate and amyl acetate and isoamyl acetate, GBL and DMAc and butyl acetate Amyl acetate, GBL and DMAc and butyl acetate and isoamyl acetate, GBL and DMAc and amyl acetate and isoamyl acetate, GBL and butyl acetate and amyl acetate and isoamyl acetate, DMAc and butyl acetate and amyl acetate and isoamyl acetate, and GBL and DMAc and And a combination of butyl acetate, amyl acetate and isoamyl acetate, preferably GBL and butyl acetate, GBL and amyl acetate, GBL and isoamyl acetate, butyl acetate and amyl acetate, butyl acetate and isoamyl acetate, amyl acetate and isoamyl acetate, GBL, butyl acetate, amyl acetate, GBL, butyl acetate, isoamyl acetate, GBL, amyl acetate, isoamyl acetate, butyl acetate, amyl acetate, isoamyl acetate, and combinations of GBL, butyl acetate, amyl acetate, and isoamyl acetate. More preferred GBL and butyl acetate, GBL and amyl acetate, GBL and isoamyl acetate, GBL and butyl acetate and amyl acetate, GBL and butyl acetate and isoamyl acetate, GBL and amyl acetate and isoamyl acetate, and GBL and butyl acetate and amyl acetate and acetic acid A combination with isoamyl is mentioned.
In the case of a mixed solvent composed of two solvents, the mixing ratio (mass ratio) is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. In the case of a mixed solvent composed of three solvents, the mixing ratio (mass ratio) is preferably 1 to 8: 1 to 8: 1 to 8, more preferably 2 to 7: 2 to 7: 2 to 7. .
In the case of comprising two or more solvents, the content of one of the two or more solvents is usually 10% by mass or more, preferably 20% by mass or more, more preferably 30%, based on the total amount of the solvent. It is 90 mass% or less normally, Preferably it is 80 mass% or less, More preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less.
[5.透明ポリイミド系高分子]
 (重合及びイミド化により得られる透明ポリイミド系高分子)
[5. Transparent polyimide polymer]
(Transparent polyimide polymer obtained by polymerization and imidization)
 透明ポリイミド系高分子としては、例えば、ポリイミド及びポリアミドイミドが挙げられ、ポリイミド、ポリアミドイミド、及びそれらの誘導体を包括的に含む。本明細書においてポリイミドとは、イミド基を含む繰返し構造単位を含有する重合体をいう。また、ポリアミドイミドとは、イミド基及びアミド基の両方を含む繰り返し単位を含有する重合体である。 Examples of the transparent polyimide polymer include polyimide and polyamideimide, and comprehensively include polyimide, polyamideimide, and derivatives thereof. In this specification, a polyimide means a polymer containing a repeating structural unit containing an imide group. Polyamideimide is a polymer containing a repeating unit containing both an imide group and an amide group.
 透明ポリイミド系高分子は、透明ポリイミド系高分子のフィルムの透明性の観点から、式(10)で表される繰り返し構造単位を主として含むことが好ましい。式(10)で表される繰り返し構造単位は、透明ポリイミド系高分子の全繰り返し構造単位に対し、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、殊更好ましくは90モル%以上であり、殊更さらに好ましくは98モル%以上である。式(10)で表される繰り返し構造単位は、100モル%であってもよい。また、式(10)中、Gは4価の有機基であり、Aは2価の有機基である。透明ポリイミド系高分子は、G及び/又はAが異なる、2種以上の式(10)で表される繰り返し構造単位を含んでもよい。 The transparent polyimide polymer preferably contains mainly a repeating structural unit represented by the formula (10) from the viewpoint of the transparency of the transparent polyimide polymer film. The repeating structural unit represented by the formula (10) is preferably 40 mol% or more, more preferably 50 mol% or more, further preferably 70 mol, based on all repeating structural units of the transparent polyimide polymer. % Or more, particularly preferably 90 mol% or more, and still more preferably 98 mol% or more. 100 mol% may be sufficient as the repeating structural unit represented by Formula (10). In Formula (10), G is a tetravalent organic group, and A is a divalent organic group. The transparent polyimide-based polymer may include two or more repeating structural units represented by the formula (10) in which G and / or A are different.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 透明ポリイミド系高分子は、得られる透明ポリイミド系高分子フィルムの各種物性を損なわない範囲で、式(11)、式(12)及び式(13)で表される繰り返し構造単位のいずれか1種以上をさらに含んでいてもよい。 The transparent polyimide polymer is any one of repeating structural units represented by the formula (11), the formula (12) and the formula (13) as long as various physical properties of the obtained transparent polyimide polymer film are not impaired. The above may be further included.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(10)及び式(11)中、G及びGは4価の有機基を表し、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基を表す。G及びGとしては、例えば、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基、並びに4価の炭素原子数6以下の鎖式炭化水素基が挙げられる。式(20)~式(29)中の*は結合手を表し、式(26)中のZは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは、フッ素原子で置換されていてもよい炭素原子数6~20のアリーレン基(より具体的には、フェニレン基等)を表す。得られるフィルムの黄色度を抑制する観点から、G及びGは、式(20)~式(27)で表される基を表すことが好ましい。 In formula (10) and formula (11), G and G 1 represent a tetravalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The G and G 1, for example, formula (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), wherein And groups represented by (28) and formula (29), and chain hydrocarbon groups having 6 or less tetravalent carbon atoms. * The in formula (20) to (29) represents a bond, Z in the formula (26) is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH ( CH 3 ) —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —Ar—, —SO 2 —, —CO—, —O—Ar—O—, —Ar—O—Ar. -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) represents a 2 -Ar- or -Ar-SO 2 -Ar-. Ar represents an arylene group having 6 to 20 carbon atoms which may be substituted with a fluorine atom (more specifically, a phenylene group or the like). From the viewpoint of suppressing the yellowness of the obtained film, G and G 1 preferably represent groups represented by formulas (20) to (27).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(12)中、Gは3価の有機基を表し、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基を表す。Gが表す3価の有機基としては、例えば、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、並びに3価の炭素原子数6以下の鎖式炭化水素基が挙げられる。 In Formula (12), G 2 represents a trivalent organic group, and preferably represents an organic group that may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Examples of the trivalent organic group represented by G 2 include formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), and formula. (27), a group in which any one of the bonds of the groups represented by formula (28) and formula (29) is replaced by a hydrogen atom, and a trivalent hydrocarbon group having 6 or less carbon atoms. It is done.
 式(13)中、Gは2価の有機基を表し、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基を表す。Gが表す2価の有機基としては、例えば、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のうち、隣接しない2つがそれぞれ水素原子に置き換わった基、並びに炭素原子数6以下の2価の鎖式炭化水素基が挙げられる。 In Formula (13), G 3 represents a divalent organic group, and preferably represents an organic group that may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Examples of the divalent organic group represented by G 3 include formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), and formula. (27) A group in which two non-adjacent bonds in the groups represented by formula (28) and formula (29) are each replaced by a hydrogen atom, and a divalent chain hydrocarbon having 6 or less carbon atoms Groups.
 式(10)~式(13)中、A、A、A及びAはいずれも2価の有機基を表し、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基を表す。A、A、A及びAとしては、例えば、下記の式(30)、式(31)、式(32)、式(33)、式(34)、式(35)、式(36)、式(37)及び式(38)で表される基;それらがメチル基、フルオロ基、クロロ基、又はトリフルオロメチル基で置換された基;並びに炭素原子数6以下の鎖式炭化水素基が挙げられる。
 式(30)~式(38)中の*は結合手を表し、式(34)~式(36)中のZ、Z及びZは、それぞれ独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-又は-CO-を表す。1つの例は、Z及びZが-O-であり、かつ、Zが-CH-、-C(CH-、-C(CF-又は-SO-を表す。ZとZ、及び、ZとZは、それぞれ、好ましくは各環に対してメタ位又はパラ位である。
In the formulas (10) to (13), A, A 1 , A 2 and A 3 all represent a divalent organic group, preferably substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Represents a good organic group. As A, A 1 , A 2 and A 3 , for example, the following formula (30), formula (31), formula (32), formula (33), formula (34), formula (35), formula (36) ), A group represented by formula (37) and formula (38); a group in which they are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and a chain hydrocarbon having 6 or less carbon atoms Groups.
* In Formula (30) to Formula (38) represents a bond, and Z 1 , Z 2 and Z 3 in Formula (34) to Formula (36) are each independently a single bond, —O—, -CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, - SO 2 - or an -CO-. One example is when Z 1 and Z 3 are —O— and Z 2 is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —. To express. Z 1 and Z 2 , and Z 2 and Z 3 are each preferably in a meta position or a para position with respect to each ring.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(10)及び式(11)で表される繰り返し構造単位は、通常、ジアミン及びテトラカルボン酸化合物から誘導される。式(12)で表される繰り返し構造単位は、通常、ジアミン及びトリカルボン酸化合物から誘導される。式(13)で表される繰り返し構造単位は、通常、ジアミン及びジカルボン酸化合物から誘導される。これらカルボン酸化合物(テトラカルボン酸化合物、トリカルボン酸化合物、及びジカルボン酸化合物)は、カルボン酸化合物類縁体(より具体的には、カルボン酸無水物、及びハロゲン化アルカノイル等)であってもよい。 The repeating structural unit represented by the formula (10) and the formula (11) is usually derived from a diamine and a tetracarboxylic acid compound. The repeating structural unit represented by the formula (12) is usually derived from a diamine and a tricarboxylic acid compound. The repeating structural unit represented by the formula (13) is usually derived from a diamine and a dicarboxylic acid compound. These carboxylic acid compounds (tetracarboxylic acid compounds, tricarboxylic acid compounds, and dicarboxylic acid compounds) may be carboxylic acid compound analogs (more specifically, carboxylic acid anhydrides, alkanoyl halides, and the like).
 (テトラカルボン酸化合物)
 テトラカルボン酸化合物としては、例えば、芳香族テトラカルボン酸二無水物のような芳香族テトラカルボン酸化合物、及び脂肪族テトラカルボン酸二無水物のような脂肪族テトラカルボン酸化合物が挙げられる。これらテトラカルボン酸化合物は、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、テトラカルボン酸二無水物の他、テトラカルボン酸クロライド化合物のようなテトラカルボン酸化合物類縁体であってもよい。
(Tetracarboxylic acid compound)
Examples of the tetracarboxylic acid compound include an aromatic tetracarboxylic acid compound such as an aromatic tetracarboxylic dianhydride and an aliphatic tetracarboxylic acid compound such as an aliphatic tetracarboxylic dianhydride. These tetracarboxylic acid compounds may be used individually by 1 type, and may be used in combination of 2 or more type. The tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as a tetracarboxylic acid chloride compound in addition to the tetracarboxylic dianhydride.
 芳香族テトラカルボン酸二無水物としては、例えば、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物、及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。
 非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(以下、6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。
Examples of the aromatic tetracarboxylic dianhydride include non-condensed polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and condensed polycyclic aromatic tetra Carboxylic dianhydrides are mentioned.
Non-condensed polycyclic aromatic tetracarboxylic dianhydrides include, for example, 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2, 2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3- Dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (hereinafter referred to as 6FDA) To describe 1,2-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3,4 -Dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3- Dicarboxyphenyl) methane dianhydride, 4,4 ′-(p-phenylenedioxy) diphthalic dianhydride, and 4,4 ′-(m-phenylenedioxy) diphthalic dianhydride.
 また、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば、2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。
 芳香族テトラカルボン酸二無水物としては、好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これら芳香族テトラカルボン酸二無水物は、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。
Examples of the condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalene tetracarboxylic dianhydride.
As the aromatic tetracarboxylic dianhydride, preferably 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 '-Benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,3' , 4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Anhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride, 1,2-bis (2,3- Dicarboxypheny ) Ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis ( 3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 4,4 ′-(p -Phenylenedioxy) diphthalic dianhydride and 4,4 '-(m-phenylenedioxy) diphthalic dianhydride. One of these aromatic tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in combination.
 脂肪族テトラカルボン酸二無水物としては、例えば、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。本明細書において、環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物をいう。環式脂肪族テトラカルボン酸二無水物としては、例えば、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、及び1,2,3,4-シクロペンタンテトラカルボン酸二無水物のようなシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物、並びにこれらの位置異性体が挙げられる。これら環式脂肪族テトラカルボン酸二無水物は、1種を単独で用いてもよく、2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物としては、例えば、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物が挙げられる。これら非環式脂肪族テトラカルボン酸二無水物は、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。 Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydrides. In this specification, the cycloaliphatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure. Examples of the cycloaliphatic tetracarboxylic dianhydride include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and 1, Cycloalkanetetracarboxylic dianhydrides such as 2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic Examples thereof include acid dianhydride, dicyclohexyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, and regioisomers thereof. One of these cycloaliphatic tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in combination. Examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. It is done. One of these acyclic aliphatic tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in combination.
 透明ポリイミド系高分子のフィルムの透明性をさらに向上させる観点から、テトラカルボン酸化合物は、脂環式テトラカルボン酸二無水物又は非縮合多環式の芳香族テトラカルボン酸二無水物が好ましく、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)がより好ましい。これら好適なテトラカルボン酸化合物は、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。 From the viewpoint of further improving the transparency of the transparent polyimide polymer film, the tetracarboxylic acid compound is preferably an alicyclic tetracarboxylic dianhydride or a non-condensed polycyclic aromatic tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) More preferred is propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA). These suitable tetracarboxylic acid compounds may be used singly or in combination of two or more.
 (トリカルボン酸化合物及びジカルボン酸化合物)
 原料モノマーは、トリカルボン酸化合物及び/又はジカルボン酸化合物をさらに含むことができる。
 トリカルボン酸化合物としては、例えば、芳香族トリカルボン酸、脂肪族トリカルボン酸、並びにそれらの類縁の酸クロライド化合物及び酸無水物が挙げられる。これらのトリカルボン酸化合物は、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。トリカルボン酸化合物としては、例えば、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-CH-、-C(CH-、-C(CF-、-SO-もしくはフェニレン基で連結された化合物が挙げられる。
(Tricarboxylic acid compound and dicarboxylic acid compound)
The raw material monomer may further contain a tricarboxylic acid compound and / or a dicarboxylic acid compound.
Examples of the tricarboxylic acid compound include aromatic tricarboxylic acid, aliphatic tricarboxylic acid, and related acid chloride compounds and acid anhydrides. These tricarboxylic acid compounds may be used individually by 1 type, and may be used in combination of 2 or more type. Examples of the tricarboxylic acid compound include 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic anhydride and benzoic acid having a single bond, Examples include compounds linked by —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a phenylene group.
 ジカルボン酸化合物としては、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、並びにそれらの類縁の酸クロライド化合物及び酸無水物等が挙げられる。これらのジカルボン酸化合物は、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。ジカルボン酸化合物としては、例えば、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;テレフタル酸ジクロリド(テレフタロイルクロリド(TPC));4,4’-オキシビス(ベンゾイルクロリド)(OBBC);炭素原子数8以下である鎖式炭化水素のジカルボン酸化合物及び2つの安息香酸が-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物が挙げられる。 Examples of the dicarboxylic acid compound include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds and acid anhydrides. These dicarboxylic acid compounds may be used individually by 1 type, and may be used in combination of 2 or more type. Examples of the dicarboxylic acid compound include terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; terephthalic acid dichloride (terephthaloyl chloride (TPC)); , 4′-oxybis (benzoyl chloride) (OBBC); a dicarboxylic acid compound of a chain hydrocarbon having 8 or less carbon atoms and two benzoic acids are —CH 2 —, —C (CH 3 ) 2 —, —C Examples thereof include compounds linked by (CF 3 ) 2 —, —SO 2 —, or a phenylene group.
 テトラカルボン酸化合物、トリカルボン酸化合物、及びジカルボン酸化合物の合計に対する、テトラカルボン酸化合物の割合は、好ましくは40モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、さらにより好ましくは90モル%以上、とりわけ好ましくは98モル%以上である。 The ratio of the tetracarboxylic acid compound to the total of the tetracarboxylic acid compound, tricarboxylic acid compound, and dicarboxylic acid compound is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, and even more. Preferably it is 90 mol% or more, Most preferably, it is 98 mol% or more.
 (ジアミン)
 ジアミンとしては、例えば、脂肪族ジアミン、芳香族ジアミン、又はそれらの混合物が挙げられる。なお、本明細書において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。芳香環は単環でも縮合環でもよい。芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、及びフルオレン環が挙げられるが、これらに限定されるわけではない。芳香環の中でも、好ましくはベンゼン環である。また、本明細書において、「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンをいい、その構造の一部に芳香環やその他の置換基を含んでいてもよい。
(Diamine)
Examples of diamines include aliphatic diamines, aromatic diamines, or mixtures thereof. In the present specification, the “aromatic diamine” refers to a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure. The aromatic ring may be a single ring or a condensed ring. Examples of the aromatic ring include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Of the aromatic rings, a benzene ring is preferable. In the present specification, “aliphatic diamine” means a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure. .
 脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミンのような非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン、及び4,4’-ジアミノジシクロヘキシルメタンのような環式脂肪族ジアミンが挙げられる。これら脂肪族ジアミンは、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。 Examples of the aliphatic diamine include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, and 4, And cycloaliphatic diamines such as 4'-diaminodicyclohexylmethane. These aliphatic diamines may be used alone or in combination of two or more.
 芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、及び1,5-ジアミノナフタレン、並びに2,6-ジアミノナフタレンのような芳香環を1つ有する芳香族ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ジアミノジフェニルスルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(以下、TFMBと記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、及び9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレンのような芳香環を2つ以上有する芳香族ジアミンが挙げられる。これら芳香族ジアミンは、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6- Aromatic diamines having one aromatic ring such as diaminonaphthalene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3, 3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3- Bis (4-aminophenoxy) benzene, 4,4'- Aminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl (hereinafter referred to as TFMB) 4,4'-bis (4-aminophenoxy) biphenyl, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-methylphenyl) fluorene 9,9-bis (4-amino-3-chlorophenyl) fluorene, and 9,9-bis (4-amino-3-fluorophenyl) fluorene Aromatic diamines having two or more aromatic rings, such as emissions and the like. These aromatic diamines may be used alone or in combination of two or more.
 ジアミンは、フッ素系置換基を有することもできる。フッ素系置換基としては、例えば、トリフルオロメチル基のような炭素原子数1~5のパーフルオロアルキル基及び、フルオロ基である。 The diamine can also have a fluorine-based substituent. Examples of the fluorine-based substituent include a perfluoroalkyl group having 1 to 5 carbon atoms such as a trifluoromethyl group and a fluoro group.
 上記ジアミンの中でも、高透明性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましい。2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、及び4,4’-ビス(4-アミノフェノキシ)ビフェニルからなる群から選ばれる1種以上を用いることがさらに好ましい。
 ジアミンは、ビフェニル構造及びフッ素系置換基を有するジアミンであることが好ましい。ビフェニル構造及びフッ素系置換基を有するジアミンとしては、例えば、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)が挙げられる。
Among the diamines, from the viewpoint of high transparency and low colorability, it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure. Use one or more selected from the group consisting of 2,2′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) benzidine (TFMB), and 4,4′-bis (4-aminophenoxy) biphenyl Is more preferable.
The diamine is preferably a diamine having a biphenyl structure and a fluorine-based substituent. Examples of the diamine having a biphenyl structure and a fluorine-based substituent include 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl (TFMB).
 原料モノマー中のジアミンと、テトラカルボン酸化合物等のカルボン酸化合物とのモル比は、ジアミン1.00モルに対して、好ましくはテトラカルボン酸0.9モル以上1.1モル以下の範囲で適宜調節できる。高い耐折性を発現するためには得られる透明ポリイミド系高分子が高分子量であることが好ましいことから、ジアミン1.00モルに対してテトラカルボン酸の量は、より好ましくは0.98モル以上1.02モル、さらに好ましくは0.99モル%以上1.01モル%以下である。
 また、得られる透明ポリイミド系高分子フィルムの黄色度を抑制する観点から、得られる高分子末端に占めるアミノ基の割合が低いことが好ましく、ジアミン1.00モルに対してテトラカルボン酸化合物等のカルボン酸化合物の量は、好ましくは1.00モル以上である。
The molar ratio between the diamine in the raw material monomer and the carboxylic acid compound such as a tetracarboxylic acid compound is preferably within a range of 0.9 mol to 1.1 mol of the tetracarboxylic acid with respect to 1.00 mol of the diamine. Can be adjusted. In order to develop high folding resistance, it is preferable that the obtained transparent polyimide polymer has a high molecular weight. Therefore, the amount of tetracarboxylic acid is more preferably 0.98 mol with respect to 1.00 mol of diamine. It is more than 1.02 mol, More preferably, it is 0.99 mol% or more and 1.01 mol% or less.
In addition, from the viewpoint of suppressing the yellowness of the obtained transparent polyimide polymer film, it is preferable that the proportion of amino groups in the resulting polymer terminal is low, such as tetracarboxylic acid compound with respect to 1.00 mol of diamine. The amount of the carboxylic acid compound is preferably 1.00 mol or more.
 ジアミン及びカルボン酸化合物(例えば、テトラカルボン酸化合物)の分子中のフッ素数を調整して、得られる透明ポリイミド系高分子中のフッ素量を、透明ポリイミド系高分子の質量を基準として、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上、特に好ましくは20質量%以上とすることができる。フッ素の割合が高いほど原料費が高くなる傾向があることから、フッ素量の上限は、好ましくは40質量%以下である。フッ素系置換基は、ジアミン又はカルボン酸化合物のいずれに存在してもよく、両方に存在してもよい。フッ素系置換基を含むことにより特にYI値が低減される場合がある。 Adjusting the number of fluorine in the molecule of diamine and carboxylic acid compound (for example, tetracarboxylic acid compound), the amount of fluorine in the obtained transparent polyimide polymer is preferably based on the mass of the transparent polyimide polymer. The amount may be 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and particularly preferably 20% by mass or more. Since the raw material cost tends to increase as the proportion of fluorine increases, the upper limit of the amount of fluorine is preferably 40% by mass or less. A fluorine-type substituent may exist in either diamine or a carboxylic acid compound, and may exist in both. By including a fluorine-based substituent, the YI value may be particularly reduced.
(ポリスチレン換算重量平均分子量)
 透明ポリイミド系高分子のポリスチレン換算重量平均分子量は、好ましくは20万以上、より好ましくは20万以上50万以下である。ポリスチレン換算重量平均分子量が前記の範囲にあると、本発明のワニスから得られる透明ポリイミド系高分子のフィルムの高い屈曲性が得られ、かつワニスの適度な粘度が得られ良好な加工性が得られる。なお、ポリスチレン換算重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法を用いて測定することができる。
(Weight average molecular weight in terms of polystyrene)
The polystyrene equivalent weight average molecular weight of the transparent polyimide polymer is preferably 200,000 or more, more preferably 200,000 or more and 500,000 or less. When the polystyrene-equivalent weight average molecular weight is in the above range, a high flexibility of the transparent polyimide polymer film obtained from the varnish of the present invention can be obtained, and an appropriate viscosity of the varnish can be obtained and good workability can be obtained. It is done. The polystyrene-equivalent weight average molecular weight can be measured using a gel permeation chromatography (GPC) method.
[6.添加剤]
 本発明のワニスは、透明性を損なわない範囲で、添加剤をさらに含んでもよい。添加剤としては、例えば、無機粒子、紫外線吸収剤、酸化防止剤、離型剤、安定剤、着色剤、難燃剤、滑剤、増粘剤及びレベリング剤が挙げられる。
[6. Additive]
The varnish of the present invention may further contain an additive as long as the transparency is not impaired. Examples of the additive include inorganic particles, ultraviolet absorbers, antioxidants, mold release agents, stabilizers, colorants, flame retardants, lubricants, thickeners, and leveling agents.
[ワニスの脱泡性]
 ワニスの脱泡性が良好であると、塗工工程での取り扱いが容易になるので好ましい。脱泡性は樹脂、溶媒の組合せや比率、粘度を調整することで調整することが可能となる。ポリイミド系樹脂の場合、酢酸エステル溶媒(酢酸エチル、酢酸ブチル、酢酸アミル、酢酸イソアミル)等を溶媒に用いた場合、脱泡性が良好になりやすい傾向がある。
[Defoaming property of varnish]
It is preferable that the varnish has a good defoaming property because it is easy to handle in the coating process. The defoaming property can be adjusted by adjusting the combination and ratio of resin and solvent and the viscosity. In the case of a polyimide resin, when an acetate solvent (ethyl acetate, butyl acetate, amyl acetate, isoamyl acetate) or the like is used as a solvent, the defoaming property tends to be good.
[7.ワニスの製造方法]
 ワニスの製造方法は、例えば、透明ポリイミド系高分子の原料モノマーを溶媒A中において重合して透明ポリイミド系高分子前駆体を得る重合工程と、第三級アミンを含む溶媒A中において該透明ポリイミド系高分子前駆体をイミド化して透明ポリイミド系高分子溶液を得るイミド化工程と、該透明ポリイミド系高分子溶液を溶媒Bで希釈してワニスを調製する希釈工程とを含む。ワニスの製造工程は、反応容器からワニスを抜き出すワニス抜き出し工程をさらに含んでもよい。また、イミド化工程は、減圧雰囲気下で実施してもよい。
 また、イミド化工程の後で、一旦、ポリイミド系高分子溶液を、溶質であるポリイミド系高分子に対する貧溶媒と接触させ、ポリイミド系高分子を固形分として取り出し、得られた固形分を良溶媒に再溶解してワニスを調製してもよいし、また再溶解した溶液をさらに溶媒Bで希釈してワニスを調製してもよい。
[7. Manufacturing method of varnish]
The method for producing the varnish includes, for example, a polymerization step in which a raw material monomer of a transparent polyimide polymer is polymerized in a solvent A to obtain a transparent polyimide polymer precursor, and the transparent polyimide in the solvent A containing a tertiary amine. An imidization step of imidizing a polymer precursor to obtain a transparent polyimide polymer solution, and a dilution step of diluting the transparent polyimide polymer solution with a solvent B to prepare a varnish. The manufacturing process of a varnish may further include the varnish extraction process which extracts a varnish from a reaction container. Moreover, you may implement an imidation process in a pressure-reduced atmosphere.
Also, after the imidization step, the polyimide polymer solution is once brought into contact with a poor solvent for the polyimide polymer that is a solute, the polyimide polymer is taken out as a solid content, and the obtained solid content is taken as a good solvent. The varnish may be prepared by re-dissolving the varnish, or the solution obtained by re-dissolution may be further diluted with the solvent B to prepare the varnish.
 (重合工程)
 重合工程では、透明ポリイミド系高分子の原料モノマーを溶媒A中において重合して透明ポリイミド系高分子前駆体を得る。原料モノマー及び溶媒Aを含む全液体に占める原料モノマーの量は、3~60質量%、好ましくは10~60質量%とすることができる。原料モノマーの量が多いと重合速度が上がる傾向があり、分子量を高くすることができる。また、重合時間を短縮することができ、透明ポリイミド系高分子の着色が抑えられる傾向にある。原料モノマーの量が多すぎると、重合物又は重合物を含む溶液の粘度が高くなる傾向にあるため、攪拌しにくくなったり、反応容器や攪拌翼などに重合物が付着して収率が低くなったりすることがある。なお、溶媒Aは、上述した溶媒で挙げたものとすることができる。
(Polymerization process)
In the polymerization step, the raw material monomer of the transparent polyimide polymer is polymerized in the solvent A to obtain a transparent polyimide polymer precursor. The amount of the raw material monomer in the total liquid containing the raw material monomer and the solvent A can be 3 to 60% by mass, preferably 10 to 60% by mass. When the amount of the raw material monomer is large, the polymerization rate tends to increase, and the molecular weight can be increased. Further, the polymerization time can be shortened, and the coloring of the transparent polyimide polymer tends to be suppressed. If the amount of the raw material monomer is too large, the viscosity of the polymer or the solution containing the polymer tends to be high, so that it becomes difficult to stir or the polymer adheres to the reaction vessel or the stirring blade and the yield is low. Sometimes it becomes. The solvent A can be the same as those mentioned above.
 原料モノマーの各成分、及び、溶媒Aの混合の順序は特に限定されず、全てを同時に混合しても良いし別々に混合してもよいが、ジアミンの少なくとも一部と溶媒とを混合した後にカルボン酸化合物を加えることが好ましい。ジアミン及びカルボン酸化合物は分割して加えても、化合物ごとに段階的に加えてもよい。 The order of mixing each component of the raw material monomer and the solvent A is not particularly limited, and all of them may be mixed simultaneously or separately, but after mixing at least a part of the diamine and the solvent It is preferable to add a carboxylic acid compound. The diamine and carboxylic acid compound may be added in portions, or may be added stepwise for each compound.
 重合反応溶液中の原料モノマーをよく撹拌することで原料モノマーの重合が促進され透明ポリイミド系高分子前駆体が形成される。必要に応じて、反応溶液を40~90℃程度に加熱してもよい。原料モノマーの重合工程の進行と同時並行で、後述するイミド化工程を進行させることもできる。この場合、後述するイミド化の条件に合せて反応溶液をさらに高温に加熱してもよい。
 重合の反応時間は、例えば、24時間以下とすることができ、1時間以下であってもよいし、1~24時間とすることができる。
By sufficiently stirring the raw material monomer in the polymerization reaction solution, the polymerization of the raw material monomer is promoted to form a transparent polyimide polymer precursor. If necessary, the reaction solution may be heated to about 40 to 90 ° C. The imidization process described later can also proceed in parallel with the progress of the raw material monomer polymerization process. In this case, the reaction solution may be heated to a higher temperature in accordance with the imidization conditions described later.
The polymerization reaction time can be, for example, 24 hours or less, or 1 hour or less, or 1 to 24 hours.
 反応溶液は透明ポリイミド系高分子前駆体の重合工程中に第三級アミンを含んでいてもよい。この場合、第三級アミンはジアミンと溶媒Aとを混合する前に加えても、混合した後に加えてもよく、ジアミンと溶媒とカルボン酸化合物とを混合した後に加えてもよい。
また、用いる溶媒の一部で希釈しておいてから反応溶液に加えてもよい。
The reaction solution may contain a tertiary amine during the polymerization step of the transparent polyimide polymer precursor. In this case, the tertiary amine may be added before mixing the diamine and the solvent A, may be added after mixing, or may be added after mixing the diamine, the solvent, and the carboxylic acid compound.
Moreover, after diluting with a part of the solvent to be used, it may be added to the reaction solution.
 〔第三級アミン〕
 第三級アミンは、重合工程での溶媒A中で原料モノマーの重合触媒として、又はイミド化工程での溶媒A中で透明ポリイミド系高分子前駆体のイミド化触媒として機能し得る。
第三級アミンの例としては、式(d)で表される第三級アミン(以下、第三級アミンDと記載することがある)が挙げられる。
[Tertiary amine]
The tertiary amine can function as a polymerization catalyst for the raw material monomer in the solvent A in the polymerization step or as an imidization catalyst for the transparent polyimide polymer precursor in the solvent A in the imidization step.
Examples of the tertiary amine include a tertiary amine represented by the formula (d) (hereinafter sometimes referred to as a tertiary amine D).
Figure JPOXMLDOC01-appb-C000006
 式(d)において、R1Dは炭素原子数8~15の三価の脂肪族炭化水素基である。
Figure JPOXMLDOC01-appb-C000006
In the formula (d), R 1D is a trivalent aliphatic hydrocarbon group having 8 to 15 carbon atoms.
 第三級アミンDとしては、例えば、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリンが挙げられる。 Examples of the tertiary amine D include 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4 , 6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7,8-tetrahydroisoquinoline, and isoquinoline.
 イミド化工程を減圧雰囲気下で行う場合、第三級アミンの沸点は、好ましくは120℃以上、より好ましくは140℃以上、さらに好ましくは170℃以上、とりわけ好ましくは200℃以上である。第三級アミンの沸点の上限は特に規定されないが、通常350℃以下である。第三級アミンの沸点が前記の範囲にあると、減圧中の水分の留去に際して、系外に除かれる第三級アミン量が抑制される傾向にあるため好ましい。 When the imidization step is performed in a reduced pressure atmosphere, the boiling point of the tertiary amine is preferably 120 ° C. or higher, more preferably 140 ° C. or higher, still more preferably 170 ° C. or higher, and particularly preferably 200 ° C. or higher. Although the upper limit of the boiling point of the tertiary amine is not particularly defined, it is usually 350 ° C. or lower. When the boiling point of the tertiary amine is in the above range, it is preferable because the amount of the tertiary amine removed outside the system tends to be suppressed when water is distilled off under reduced pressure.
 (イミド化工程)
 続いて、イミド化工程では、第三級アミンを含む溶媒A中において前記透明ポリイミド系高分子前駆体をイミド化して透明ポリイミド系高分子溶液を得る。より具体的には、減圧雰囲気下で、第三級アミンを含む反応溶液を加熱することによって透明ポリイミド系高分子前駆体のイミド化を促進し、ポリイミドを生成しつつ副生する水等を留去することができる。上記の重合を行った反応容器内で、溶媒A中の透明ポリイミド系高分子前駆体をイミド化することが好適である。第三級アミンは、上述のように原料モノマーを重合して透明ポリイミド系高分子前駆体を生成する重合工程中又は重合工程前に加えてもよいが、透明ポリイミド系高分子前駆体を生成する工程の後に加えてもよい。また、無水酢酸を第三級アミンと共に加えることによって、減圧雰囲気にすることなく、化学イミド化を行ってもよい。
(Imidization process)
Subsequently, in the imidization step, the transparent polyimide polymer precursor is imidized in a solvent A containing a tertiary amine to obtain a transparent polyimide polymer solution. More specifically, by heating a reaction solution containing a tertiary amine in a reduced-pressure atmosphere, the imidation of the transparent polyimide polymer precursor is promoted, and water produced as a by-product while producing polyimide is retained. Can be left. It is preferable to imidize the transparent polyimide polymer precursor in the solvent A in the reaction vessel in which the above polymerization is performed. The tertiary amine may be added during or before the polymerization step for polymerizing the raw material monomer to produce a transparent polyimide polymer precursor as described above, but produces a transparent polyimide polymer precursor. It may be added after the process. Further, chemical imidization may be performed without adding a reduced pressure atmosphere by adding acetic anhydride together with a tertiary amine.
 透明ポリイミド系高分子前駆体の生成反応とイミド化反応とを、同時に進行させてもよい。その場合、イミド化反応で生成する水によりアミド基の結合が切断され、得られる透明ポリイミド系高分子の分子量が低くなることがある。このような透明ポリイミド系高分子を含むワニスから得られるフィルムは、耐折性が低下することがある。イミド化工程の際に、減圧して反応溶液中の水を速やかに除去することで、アミド基の切断反応を抑制し、得られる透明ポリイミド系高分子の分子量を高くすることができる。したがって、特に透明ポリイミド系高分子前駆体の生成反応とイミド化反応とを同時に進行させる場合に、イミド化工程を減圧雰囲気下で行うことにより、精製工程を経ずに透明ポリイミド系高分子を含むワニスから直接フィルムを製造してもフィルムに高い耐折性を与えられる傾向がある。 The production reaction of the transparent polyimide polymer precursor and the imidization reaction may be performed simultaneously. In that case, the bond of an amide group may be cut | disconnected by the water produced | generated by imidation reaction, and the molecular weight of the transparent polyimide type polymer obtained may become low. A film obtained from a varnish containing such a transparent polyimide polymer may have a low folding resistance. In the imidization step, the pressure in the reaction solution is reduced and water in the reaction solution is quickly removed, so that the cleavage reaction of the amide group can be suppressed and the molecular weight of the resulting transparent polyimide polymer can be increased. Therefore, especially when the production reaction and the imidation reaction of the transparent polyimide polymer precursor proceed simultaneously, the imidization process is performed in a reduced-pressure atmosphere, so that the transparent polyimide polymer is included without going through a purification process. Even if the film is produced directly from the varnish, the film tends to have high folding resistance.
 前記の透明ポリイミド系高分子溶液において、耐折性向上の観点から、100質量部の原料モノマーに対する第三級アミンの添加量は、好ましくは0.05質量部以上、より好ましくは0.1質量部以上、さらに好ましくは0.2質量部以上である。一方、フィルムの着色を抑制する目的からは第三級アミンの添加量は少ないことが好ましい。第三級アミンの添加量は、好ましくは15質量部以下、より好ましくは10質量部以下、さらに好ましくは5質量部以下、さらにより好ましくは2質量部以下、とりわけ好ましくは1質量部以下、さらにとりわけ好ましくは0.7質量部以下、特に好ましくは0.3質量部以下である。 In the transparent polyimide polymer solution, from the viewpoint of improving folding resistance, the amount of tertiary amine added to 100 parts by mass of the raw material monomer is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass. Part or more, more preferably 0.2 part by weight or more. On the other hand, the amount of tertiary amine added is preferably small for the purpose of suppressing coloration of the film. The addition amount of the tertiary amine is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, further preferably 5 parts by mass or less, still more preferably 2 parts by mass or less, particularly preferably 1 part by mass or less, Especially preferably, it is 0.7 mass part or less, Most preferably, it is 0.3 mass part or less.
 イミド化工程の温度は、好ましくは100℃以上250℃以下、より好ましくは150℃以上210℃以下である。無水酢酸と第三級アミンとを同時に加えて化学イミド化する場合、その温度は好ましくは20~100℃、より好ましくは40~80℃である。 The temperature of the imidization step is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 150 ° C. or higher and 210 ° C. or lower. When acetic anhydride and a tertiary amine are added simultaneously for chemical imidization, the temperature is preferably 20 to 100 ° C., more preferably 40 to 80 ° C.
 イミド化工程で減圧雰囲気にする場合、その圧力は、好ましくは730mmHg以下、より好ましくは700mmHg以下、さらに好ましくは675mmHg以下である。イミド化工程の圧力は、例えば、350mmHg以上とすることができ、500mmHg以上であってもよい。イミド化工程の温度における溶媒の蒸気圧によっては、反応の安定性を高めるために圧力は400mmHg以上で行うことが好ましいこともある。同じ理由で、600mmHgで行うことがより好ましいこともある。
 イミド化工程の圧力をイミド化工程の溶媒の飽和蒸気圧の近くに設定するとYIが抑制されやすい傾向がある。飽和蒸気圧から50mmHg以内の圧力が好ましい。
When the reduced pressure atmosphere is used in the imidization step, the pressure is preferably 730 mmHg or less, more preferably 700 mmHg or less, and even more preferably 675 mmHg or less. The pressure in the imidization step can be, for example, 350 mmHg or more, and may be 500 mmHg or more. Depending on the vapor pressure of the solvent at the temperature of the imidization step, it may be preferable to perform the pressure at 400 mmHg or higher in order to increase the stability of the reaction. For the same reason, it may be more preferable to carry out at 600 mmHg.
If the pressure in the imidization step is set near the saturated vapor pressure of the solvent in the imidization step, YI tends to be suppressed. A pressure within 50 mmHg from the saturated vapor pressure is preferred.
 加熱時間は、例えば、1~24時間、好ましくは1~12時間、より好ましくは2~9時間、さらに好ましくは2~8時間、さらにより好ましくは2~6時間、とりわけ好ましくは2~5時間である。加熱中には攪拌を行うことが好適である。
 反応時間が長くなると、分子量が高くなるが、透明ポリイミド系高分子の黄色味が強くなりやすい傾向がある。一方、反応時間が短いと透明ポリイミド系高分子の分子量が低くなりやすく、透明ポリイミド系高分子の黄色味は弱くなる傾向がある。
The heating time is, for example, 1 to 24 hours, preferably 1 to 12 hours, more preferably 2 to 9 hours, further preferably 2 to 8 hours, even more preferably 2 to 6 hours, and particularly preferably 2 to 5 hours. It is. Stirring is preferred during heating.
When reaction time becomes long, molecular weight will become high, but there exists a tendency for the yellowishness of a transparent polyimide type polymer to become strong easily. On the other hand, when the reaction time is short, the molecular weight of the transparent polyimide polymer tends to be low, and the yellow color of the transparent polyimide polymer tends to be weak.
 透明ポリイミド系高分子のフィルムの透明性の低下を抑制する観点から、イミド化工程は、減圧雰囲気下で実行することが好ましい。イミド化工程が減圧雰囲気下で実行されると、反応容器内の溶媒Aを含む液相と接触する気相中の酸素濃度が低いため、溶媒A中への酸素の溶け込みが低減し、透明ポリイミド系高分子溶液中の過酸化物濃度が低減すると考えられる。製造方法において、反応容器の気相中の酸素濃度が低い状態で、減圧雰囲気下での反応溶液の加熱によるイミド化工程が行われればよく、減圧雰囲気下での加熱より前、原料モノマー等の投入する時から当該酸素濃度が低くてもよい。酸素濃度は、0.02%以下にすることが好ましく、0.01%以下にすることがさらに好ましい。高温に加熱したときに酸素濃度が高いと、特に着色の原因となるので、例えば、反応溶液の温度が130℃以上のときに、酸素濃度を0.02%以下にすることが好ましい。前駆体の合成及び前駆体のイミド化において、実質的に酸素は発生しないことから、例えば原料投入前に反応容器内を窒素ガスで置換するなどして気相の酸素濃度を下げることにより、イミド化工程における気相の酸素濃度を低減することができる。イミド化工程の酸素濃度は、例えば反応容器内部を減圧する際に反応容器から除去するガス中の酸素濃度の分析をすることにより把握できる。減圧中の酸素濃度の測定が困難な場合、減圧前後の気相をサンプリングして酸素濃度を測定してもよい。減圧雰囲気下と同様に酸素濃度を下げる目的で、減圧雰囲気下に代えて不活性ガス雰囲気下でイミド化工程を実行してもよい。 From the viewpoint of suppressing the decrease in transparency of the transparent polyimide polymer film, the imidization step is preferably performed in a reduced-pressure atmosphere. When the imidization step is carried out under a reduced pressure atmosphere, the oxygen concentration in the gas phase contacting the liquid phase containing the solvent A in the reaction vessel is low, so that the dissolution of oxygen into the solvent A is reduced, and the transparent polyimide It is considered that the peroxide concentration in the polymer solution is reduced. In the production method, the imidization step by heating the reaction solution in a reduced pressure atmosphere may be performed in a state where the oxygen concentration in the gas phase of the reaction vessel is low. The oxygen concentration may be low from the time of charging. The oxygen concentration is preferably 0.02% or less, and more preferably 0.01% or less. If the oxygen concentration is high when heated to a high temperature, it causes coloring in particular. For example, when the temperature of the reaction solution is 130 ° C. or higher, the oxygen concentration is preferably 0.02% or lower. In the synthesis of the precursor and the imidization of the precursor, oxygen is not substantially generated. For example, by reducing the oxygen concentration in the gas phase by replacing the inside of the reaction vessel with nitrogen gas before starting the raw material, The oxygen concentration in the gas phase in the conversion step can be reduced. The oxygen concentration in the imidization step can be grasped, for example, by analyzing the oxygen concentration in the gas removed from the reaction vessel when the pressure inside the reaction vessel is reduced. If it is difficult to measure the oxygen concentration during decompression, the oxygen concentration may be measured by sampling the gas phase before and after decompression. For the purpose of lowering the oxygen concentration as in the reduced pressure atmosphere, the imidization step may be performed in an inert gas atmosphere instead of the reduced pressure atmosphere.
 加熱後に、大気圧に戻し、冷却することにより、透明ポリイミド系高分子溶液が得られる。 After heating, the solution is returned to atmospheric pressure and cooled to obtain a transparent polyimide polymer solution.
 透明ポリイミド系高分子の透明性の低下を抑制する別の方法として、無水酢酸を第三級アミンと合せて添加し、より低温で化学イミド化を行ってもよい。この場合、イミド化反応によって発生する水分は無水酢酸との反応で除かれるので、減圧により水分を除かなくてもよい。
 必要に応じて、イミド化された透明ポリイミド系高分子溶液から、透明ポリイミド系高分子を、一旦、取り出した後、溶媒に再溶解させて、次の希釈工程に用いてもよい。
 取り出し方法としては、例えば、イミド化された透明ポリイミド系高分子溶液に、該透明ポリイミド系高分子に対する貧溶媒を加えて、透明ポリイミド系高分子を析出させた後、ろ過して取り出す方法が挙げられる。
 (希釈工程)
 続く、希釈工程では、透明ポリイミド系高分子又はその溶液を溶媒Bで希釈してワニスを調製する。より具体的には、得られた透明ポリイミド系高分子、又はその溶液に対し、さらに、溶媒Bを加えて透明ポリイミド系高分子の濃度を調整してワニスを得る。好適なワニス中の固形分濃度は、好ましくは5~25質量%である。
 なお、ワニスからフィルムを作製する場合、ワニス中の固形分の全量に対して、透明ポリイミド系高分子を30質量%以上含むワニスを使用すれば、後述する主成分の1つが透明ポリイミド系高分子である透明ポリイミド系高分子フィルムを容易に得ることができる。透明ポリイミド系高分子の濃度は、ワニスの全質量を基準に10質量%以上が好ましく、13質量%以上がより好ましい。
As another method for suppressing the decrease in the transparency of the transparent polyimide polymer, acetic anhydride may be added together with the tertiary amine, and chemical imidization may be performed at a lower temperature. In this case, the water generated by the imidization reaction is removed by the reaction with acetic anhydride, so that it is not necessary to remove the water by reducing the pressure.
If necessary, the transparent polyimide polymer may be once taken out from the imidized transparent polyimide polymer solution, and then redissolved in a solvent and used in the next dilution step.
Examples of the extraction method include a method of adding a poor solvent for the transparent polyimide polymer to the imidized transparent polyimide polymer solution to precipitate the transparent polyimide polymer, followed by filtration and extraction. It is done.
(Dilution process)
In the subsequent dilution step, the transparent polyimide polymer or a solution thereof is diluted with the solvent B to prepare a varnish. More specifically, solvent B is further added to the obtained transparent polyimide polymer or a solution thereof to adjust the concentration of the transparent polyimide polymer to obtain a varnish. A suitable solids concentration in the varnish is preferably 5 to 25% by weight.
In addition, when producing a film from a varnish, if the varnish which contains 30 mass% or more of transparent polyimide type polymers with respect to the total amount of the solid content in a varnish is used, one of the main components mentioned later is a transparent polyimide type polymer. A transparent polyimide polymer film can be easily obtained. The concentration of the transparent polyimide polymer is preferably 10% by mass or more, more preferably 13% by mass or more based on the total mass of the varnish.
 希釈は反応容器内において行うことができ、反応容器から回収した後の溶液に対して行うこともできる。 Dilution can be performed in the reaction vessel, and can also be performed on the solution recovered from the reaction vessel.
 反応容器内において、イミド化後の透明ポリイミド系高分子溶媒に対して溶媒Bを追加して、反応容器内における透明ポリイミド系高分子の濃度を希釈させると、次の抜き出し工程で反応容器に残る高分子の量を低減できて、高分子の収率の向上が図れる。また、反応容器に残る高分子の量が減ると、この反応容器を用いた次の重合及びイミド化の繰り返し工程において、得られる透明ポリイミド系高分子の着色(例えば黄色)が改善される。 In the reaction vessel, when the solvent B is added to the transparent polyimide polymer solvent after imidization to dilute the concentration of the transparent polyimide polymer in the reaction vessel, it remains in the reaction vessel in the next extraction step. The amount of the polymer can be reduced, and the yield of the polymer can be improved. Further, when the amount of the polymer remaining in the reaction vessel is reduced, the coloring (for example, yellow) of the obtained transparent polyimide polymer is improved in the subsequent polymerization and imidation repeating steps using this reaction vessel.
 希釈用の溶媒Bは、上述した溶媒で挙げたものとすることができる。溶媒Bと溶媒Aは、同一種でもよいし、互いに異種でもよい。希釈用の溶媒Bとして、ポリイミド系樹脂に対する溶解性の高い溶媒を適切に選定することで、反応容器からの透明ポリイミド系高分子の回収率が高くなる。 The solvent B for dilution can be the same as those mentioned above. The solvent B and the solvent A may be the same type or different from each other. By appropriately selecting a solvent having high solubility in the polyimide resin as the solvent B for dilution, the recovery rate of the transparent polyimide polymer from the reaction vessel is increased.
 反応容器内での希釈を、異なる種類の複数の溶媒Bを用いて複数回行うこともできる。 The dilution in the reaction vessel can be performed a plurality of times using a plurality of different types of solvents B.
 (ワニス抜き出し工程)
 続いて、ワニス抜き出し工程では、反応容器から、ワニスを抜き出す。抜き出したワニスは、後述するフィルム形成工程に利用できる。
(Varnish extraction process)
Subsequently, in the varnish extraction step, the varnish is extracted from the reaction vessel. The extracted varnish can be used in a film forming process described later.
[8.透明ポリイミド系高分子のフィルムの製造方法]
 ワニスを用いた透明ポリイミド系高分子のフィルムの製造方法の一例を説明する。基材上にワニスを流延して塗膜を形成し、減圧、乾燥、及び加熱のような手段により塗膜から溶媒を除去し、基材から剥離する。これにより、透明ポリイミド系高分子フィルムが得られる。
[8. Method for producing transparent polyimide polymer film]
An example of a method for producing a transparent polyimide polymer film using varnish will be described. A varnish is cast on the base material to form a coating film, and the solvent is removed from the coating film by means such as reduced pressure, drying, and heating, and then peeled off from the base material. Thereby, a transparent polyimide polymer film is obtained.
 流延は、ロール・ツー・ロールやバッチ方式により、樹脂基材、ステンレス鋼ベルト、又はガラス基材上に行うことができる。樹脂基材としては、例えば、PET、PEN、ポリイミド、及びポリアミドイミドが挙げられる。これらの樹脂基材のうち、フィルムとの密着性及びコストの観点で、PETが好ましい。 Casting can be performed on a resin substrate, a stainless steel belt, or a glass substrate by a roll-to-roll or batch method. Examples of the resin base material include PET, PEN, polyimide, and polyamideimide. Of these resin substrates, PET is preferable from the viewpoints of adhesion to the film and cost.
 本発明の透明ポリイミド系高分子のフィルムの製造方法では、加温した気体を塗膜の表面に接触させる乾燥機に塗膜を通過させるなどして、一定量の有機溶媒を揮発させ、塗膜を自己支持性フィルムとして支持体から剥離して得てもよい。実施温度は用いる基材により調節され、樹脂基材を用いる場合はそれらのガラス転移温度以下で行われるのが一般的である。通常、50~300℃の適切な温度に加熱すればよく、加熱温度は多段階で調節したり、温度勾配をつけたりしてもよい。適宜、不活性雰囲気あるいは減圧の条件下でおこなうことも好適である。 In the method for producing a transparent polyimide polymer film of the present invention, a certain amount of an organic solvent is volatilized by passing the coating film through a dryer that contacts a heated gas with the surface of the coating film, May be peeled off from the support as a self-supporting film. The working temperature is adjusted depending on the substrate used, and when a resin substrate is used, it is generally carried out at or below the glass transition temperature thereof. Usually, the heating may be performed at an appropriate temperature of 50 to 300 ° C., and the heating temperature may be adjusted in multiple stages or a temperature gradient may be provided. It is also suitable to carry out under an inert atmosphere or under reduced pressure as appropriate.
 また、必要に応じて、剥離された透明ポリイミド系高分子フィルムをさらに80~300℃で加熱してもよい。 If necessary, the peeled transparent polyimide polymer film may be further heated at 80 to 300 ° C.
<光学フィルム>
 本発明の光学フィルムは、前記ワニスから形成される。前記の、透明ポリイミド系高分子のフィルムは光学フィルムとして用いられ、例えば、表示装置の前面板、特にフレキシブル表示装置の前面板(ウインドウフィルム)として有用である。フレキシブル表示装置は、例えば、フレキシブル機能層と、フレキシブル機能層に重ねられて前面板として機能する光学フィルムを有する。すなわち、フレキシブル表示装置の前面板は、フレキシブル機能層の上の視認側に配置される。この前面板は、フレキシブル機能層を保護する機能を有する。
<Optical film>
The optical film of the present invention is formed from the varnish. The transparent polyimide polymer film is used as an optical film, and is useful, for example, as a front plate of a display device, particularly as a front plate (window film) of a flexible display device. The flexible display device includes, for example, a flexible functional layer and an optical film that is stacked on the flexible functional layer and functions as a front plate. That is, the front plate of the flexible display device is disposed on the viewing side on the flexible functional layer. This front plate has a function of protecting the flexible functional layer.
 表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。フレキシブル表示装置としては、フレキシブル特性を有する全ての表示装置、中でも好ましくは折り曲げ可能な、フォルダブル表示装置やローラブル表示装置が挙げられる。 Display devices include wearable devices such as televisions, smartphones, mobile phones, car navigation systems, tablet PCs, portable game machines, electronic paper, indicators, bulletin boards, watches, and smart watches. Examples of the flexible display device include all display devices having flexible characteristics, and among them, a foldable display device and a rollable display device that are preferably foldable.
<フレキシブル表示装置>
 本発明のフレキシブル表示装置は、前記光学フィルムを備える。本発明の光学フィルムは、好ましくはフレキシブル表示装置において前面板として用いられ、該前面板はウインドウフィルムと称されることがある。該フレキシブル表示装置は、フレキシブル表示装置用積層体と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル表示装置用積層体は、ウインドウフィルム、偏光板(好ましくは円偏光板)、タッチセンサを含有していてもよく、それらの積層順は任意であるが、視認側からウインドウフィルム、偏光板、タッチセンサ又はウインドウフィルム、タッチセンサ、偏光板の順に積層されていることが好ましい。タッチセンサの視認側に偏光板が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性が良くなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、前記ウインドウフィルム、偏光板、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。
<Flexible display device>
The flexible display device of the present invention includes the optical film. The optical film of the present invention is preferably used as a front plate in a flexible display device, and the front plate may be referred to as a window film. The flexible display device includes a flexible display device laminate and an organic EL display panel. The flexible display device laminate is arranged on the viewing side with respect to the organic EL display panel, and is configured to be bendable. The laminate for a flexible display device may contain a window film, a polarizing plate (preferably a circularly polarizing plate), and a touch sensor, and the order of stacking thereof is arbitrary, but the window film, the polarizing plate, It is preferable that the touch sensor or window film, the touch sensor, and the polarizing plate are laminated in this order. The presence of a polarizing plate on the viewing side of the touch sensor is preferable because the touch sensor pattern is less visible and the visibility of the display image is improved. Each member can be laminated | stacked using an adhesive agent, an adhesive, etc. Moreover, the light-shielding pattern formed in at least one surface of the any one layer of the said window film, a polarizing plate, and a touch sensor can be comprised.
[偏光板]
 本発明のフレキシブル表示装置は、偏光板、好ましくは円偏光板をさらに備えてよい。円偏光板は、直線偏光板にλ/4位相差板を積層することにより右若しくは左円偏光成分のみを透過させる機能を有する機能層である。たとえば外光を右円偏光に変換して有機ELパネルで反射されて左円偏光となった外光を遮断し、有機ELの発光成分のみを透過させることで反射光の影響を抑制して画像を見やすくするために用いられる。円偏光機能を達成するためには、直線偏光板の吸収軸とλ/4位相差板の遅相軸は理論上45°である必要があるが、実用的には45±10°である。直線偏光板とλ/4位相差板とは必ずしも隣接して積層される必要はなく、吸収軸と遅相軸の関係が前述の範囲を満足していればよい。全波長において完全な円偏光を達成することが好ましいが実用上は必ずしもその必要はないので本発明における円偏光板は楕円偏光板をも包含する。直線偏光板の視認側にさらにλ/4位相差フィルムを積層して、出射光を円偏光とすることで偏光サングラスをかけた状態での視認性を向上させることも好ましい。
[Polarizer]
The flexible display device of the present invention may further include a polarizing plate, preferably a circular polarizing plate. The circularly polarizing plate is a functional layer having a function of transmitting only a right or left circularly polarized component by laminating a λ / 4 retardation plate on a linearly polarizing plate. For example, external light is converted into right circularly polarized light, the external light reflected by the organic EL panel and turned into left circularly polarized light is blocked, and only the light emitting component of the organic EL is transmitted to suppress the influence of the reflected light and image Used to make it easier to see. In order to achieve the circular polarization function, the absorption axis of the linearly polarizing plate and the slow axis of the λ / 4 retardation plate need to be 45 ° theoretically, but practically 45 ± 10 °. The linearly polarizing plate and the λ / 4 retardation plate are not necessarily laminated adjacent to each other as long as the relationship between the absorption axis and the slow axis satisfies the above range. Although it is preferable to achieve complete circular polarization at all wavelengths, the circular polarization plate in the present invention includes an elliptical polarization plate because it is not always necessary in practice. It is also preferable to further improve the visibility in a state where polarized sunglasses are applied by laminating a λ / 4 retardation film on the viewing side of the linearly polarizing plate and making the emitted light circularly polarized.
 直線偏光板は、透過軸方向に振動している光は通すが、それとは垂直な振動成分の偏光を遮断する機能を有する機能層である。前記直線偏光板は、直線偏光子単独又は直線偏光子及びその少なくとも一面に貼り付けられた保護フィルムを備えた構成であってもよい。前記直線偏光板の厚さは、200μm以下であってもよく、好ましくは、0.5~100μmである。厚さが前記の範囲にあると柔軟性が低下し難い傾向にある。
 前記直線偏光子は、ポリビニルアルコール(PVA)系フィルムを染色、延伸することで製造されるフィルム型偏光子であってもよい。延伸によって配向したPVA系フィルムに、ヨウ素等の二色性色素が吸着、又はPVAに吸着した状態で延伸されることで二色性色素が配向し、偏光性能を発揮する。前記フィルム型偏光子の製造においては、他に膨潤、ホウ酸による架橋、水溶液による洗浄、乾燥等の工程を有していてもよい。延伸や染色工程はPVA系フィルム単独で行ってもよいし、ポリエチレンテレフタレートのような他のフィルムと積層された状態で行うこともできる。用いられるPVA系フィルムの厚さは好ましくは10~100μmであり、延伸倍率は好ましくは2~10倍である。
 さらに前記偏光子の他の一例としては、液晶偏光組成物を塗布して形成する液晶塗布型偏光子であってもよい。前記液晶偏光組成物は、液晶性化合物及び二色性色素化合物を含むことができる。前記液晶性化合物は液晶状態を示す性質を有していればよく、特にスメクチック相等の高次の配向状態を有していると高い偏光性能を発揮することができるため好ましい。また、液晶性化合物は重合性官能基を有していることも好ましい。
The linear polarizing plate is a functional layer having a function of blocking polarized light having a vibration component perpendicular to the light that is oscillating in the transmission axis direction. The linear polarizing plate may include a linear polarizer alone or a linear polarizer and a protective film attached to at least one surface thereof. The linear polarizing plate may have a thickness of 200 μm or less, preferably 0.5 to 100 μm. When the thickness is in the above range, flexibility tends to be difficult to decrease.
The linear polarizer may be a film-type polarizer manufactured by dyeing and stretching a polyvinyl alcohol (PVA) film. A dichroic dye such as iodine is adsorbed on a PVA-based film oriented by stretching or is stretched in a state of being adsorbed to PVA, whereby the dichroic dye is oriented and exhibits polarizing performance. In the production of the film-type polarizer, other processes such as swelling, crosslinking with boric acid, washing with an aqueous solution, and drying may be included. The stretching or dyeing process may be performed by a PVA film alone or in a state where it is laminated with another film such as polyethylene terephthalate. The thickness of the PVA film used is preferably 10 to 100 μm, and the draw ratio is preferably 2 to 10 times.
Furthermore, as another example of the polarizer, a liquid crystal-coated polarizer formed by coating a liquid crystal polarizing composition may be used. The liquid crystal polarizing composition may include a liquid crystal compound and a dichroic dye compound. The liquid crystalline compound only needs to have the property of exhibiting a liquid crystal state. In particular, the liquid crystalline compound preferably has a higher-order alignment state such as a smectic phase because it can exhibit high polarization performance. The liquid crystal compound preferably has a polymerizable functional group.
 前記二色性色素は、前記液晶化合物とともに配向して二色性を示す色素であって、二色性色素自身が液晶性を有していてもよいし、重合性官能基を有していることもできる。液晶偏光組成物の中のいずれかの化合物は重合性官能基を有している。
 前記液晶偏光組成物はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。
 前記液晶偏光層は、配向膜上に液晶偏光組成物を塗布して液晶偏光層を形成することにより製造される。
 液晶偏光層は、フィルム型偏光子に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、好ましくは0.5~10μm、より好ましくは1~5μmであってもよい。
 前記配向膜は、例えば基材上に配向膜形成組成物を塗布し、ラビング、偏光照射等により配向性を付与することで製造することができる。前記配向膜形成組成物は、配向剤の他に溶剤、架橋剤、開始剤、分散剤、レベリング剤、シランカップリング剤等を含んでいてもよい。前記配向剤としては、例えば、ポリビニルアルコール類、ポリアクリレート類、ポリアミック酸類、ポリイミド類を使用できる。光配向を適用する場合にはシンナメート基を含む配向剤を使用することが好ましい。前記配向剤として使用される高分子の重量平均分子量が10,000~1,000,000程度であってもよい。前記配向膜の厚さは、配向規制力の観点から、好ましくは5~10,000nm、より好ましは10~500nmである。前記液晶偏光層は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウの透明基材としての役割を担うことも好ましい。
The dichroic dye is a dye that is aligned with the liquid crystal compound and exhibits dichroism, and the dichroic dye itself may have liquid crystallinity or have a polymerizable functional group. You can also. Any compound in the liquid crystal polarizing composition has a polymerizable functional group.
The liquid crystal polarizing composition may further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a crosslinking agent, a silane coupling agent, and the like.
The liquid crystal polarizing layer is manufactured by applying a liquid crystal polarizing composition on an alignment film to form a liquid crystal polarizing layer.
The liquid crystal polarizing layer can be formed thinner than a film-type polarizer. The thickness of the liquid crystal polarizing layer may be preferably 0.5 to 10 μm, more preferably 1 to 5 μm.
The alignment film can be produced, for example, by applying an alignment film forming composition on a substrate and imparting alignment by rubbing, polarized light irradiation, or the like. The alignment film forming composition may contain a solvent, a crosslinking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent and the like in addition to the aligning agent. Examples of the aligning agent include polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides. When applying photo-alignment, it is preferable to use an aligning agent containing a cinnamate group. The polymer used as the aligning agent may have a weight average molecular weight of about 10,000 to 1,000,000. The thickness of the alignment film is preferably 5 to 10,000 nm, and more preferably 10 to 500 nm, from the viewpoint of alignment regulating force. The liquid crystal polarizing layer can be peeled off from the base material, transferred and laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a transparent base material for a protective film, a retardation plate, or a window.
 前記保護フィルムとしては、透明な高分子フィルムであればよく、前記透明基材に使用される材料、添加剤が使用できる。セルロース系フィルム、オレフィン系フィルム、アクリルフィルム、ポリエステル系フィルムが好ましい。エポキシ樹脂等のカチオン硬化組成物やアクリレート等のラジカル硬化組成物を塗布して硬化して得られるコーティング型の保護フィルムであってもよい。必要により可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記保護フィルムの厚さは、200μm以下であってもよく、好ましくは1~100μmである。前記保護フィルムの厚さが前記の範囲にあると、保護フィルムの柔軟性が低下し難い。保護フィルムは、ウインドウの透明基材の役割を兼ねることもできる。 The protective film may be a transparent polymer film, and materials and additives used for the transparent substrate can be used. A cellulose film, an olefin film, an acrylic film, and a polyester film are preferred. It may be a coating-type protective film obtained by applying and curing a cationic curing composition such as an epoxy resin or a radical curing composition such as an acrylate. If necessary, plasticizers, ultraviolet absorbers, infrared absorbers, colorants such as pigments and dyes, fluorescent brighteners, dispersants, thermal stabilizers, light stabilizers, antistatic agents, antioxidants, lubricants, solvents, etc. May be included. The protective film may have a thickness of 200 μm or less, preferably 1 to 100 μm. When the thickness of the protective film is within the above range, the flexibility of the protective film is difficult to decrease. The protective film can also serve as a transparent substrate of the window.
 前記λ/4位相差板は、入射光の進行方向に直交する方向(フィルムの面内方向)にλ/4の位相差を与えるフィルムである。前記λ/4位相差板は、セルロース系フィルム、オレフィン系フィルム、ポリカーボネート系フィルム等の高分子フィルムを延伸することで製造される延伸型位相差板であってもよい。必要により位相差調整剤、可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記延伸型位相差板の厚さは、200μm以下であってもよく、好ましくは1~100μmである。厚さが前記の範囲にあるとフィルムの柔軟性が低下し難い傾向にある。
 さらに前記λ/4位相差板の他の一例としては、液晶組成物を塗布して形成する液晶塗布型位相差板であってもよい。前記液晶組成物は、ネマチック、コレステリック、スメクチック等の液晶状態を示す性質を有する液晶性化合物を含む。液晶組成物の中の液晶性化合物を含むいずれかの化合物は重合性官能基を有している。前記液晶塗布型位相差板はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。前記液晶塗布型位相差板は、前記液晶偏光層での記載と同様に配向膜上に液晶組成物を塗布硬化して液晶位相差層を形成することで製造することができる。液晶塗布型位相差板は、延伸型位相差板に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、通常0.5~10μm、好ましくは1~5μmであってもよい。前記液晶塗布型位相差板は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウの透明基材としての役割を担うことも好ましい。
The λ / 4 phase difference plate is a film that gives a phase difference of λ / 4 in a direction (in-plane direction of the film) orthogonal to the traveling direction of incident light. The λ / 4 retardation plate may be a stretched retardation plate manufactured by stretching a polymer film such as a cellulose film, an olefin film, or a polycarbonate film. If necessary, retardation adjusting agents, plasticizers, UV absorbers, infrared absorbers, colorants such as pigments and dyes, fluorescent brighteners, dispersants, heat stabilizers, light stabilizers, antistatic agents, antioxidants Further, it may contain a lubricant, a solvent and the like. The stretchable retardation plate may have a thickness of 200 μm or less, preferably 1 to 100 μm. When the thickness is in the above range, the flexibility of the film tends not to decrease.
Furthermore, as another example of the λ / 4 retardation plate, a liquid crystal coating type retardation plate formed by applying a liquid crystal composition may be used. The liquid crystal composition includes a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric, and smectic. Any compound including a liquid crystal compound in the liquid crystal composition has a polymerizable functional group. The liquid crystal-coated retardation plate may further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a crosslinking agent, a silane coupling agent, and the like. The liquid crystal coating type retardation plate can be produced by coating and curing a liquid crystal composition on an alignment film to form a liquid crystal retardation layer, as described for the liquid crystal polarizing layer. The liquid crystal coated retardation plate can be formed thinner than the stretched retardation plate. The thickness of the liquid crystal polarizing layer may be usually 0.5 to 10 μm, preferably 1 to 5 μm. The liquid crystal coating type retardation plate can be peeled off from the substrate, transferred, and laminated, or the substrate can be laminated as it is. It is also preferable that the base material plays a role as a transparent base material for a protective film, a retardation plate, or a window.
 一般的には、短波長ほど複屈折が大きく長波長になるほど小さな複屈折を示す材料が多い。この場合には全可視光領域でλ/4の位相差を達成することはできないので、視感度の高い560nm付近に対してλ/4となるような面内位相差100~180nm、好ましくは130~150nmとなるように設計されることが多い。通常とは逆の複屈折率波長分散特性を有する材料を用いた逆分散λ/4位相差板を用いることは視認性をよくすることができるので好ましい。このような材料としては延伸型位相差板の場合は特開2007-232873号公報等、液晶塗布型位相差板の場合には特開2010-30979号公報に記載されているものを用いることも好ましい。
 また、他の方法としてはλ/2位相差板と組合せることで広帯域λ/4位相差板を得る技術も知られている(特開平10-90521号公報)。λ/2位相差板もλ/4位相差板と同様の材料方法で製造される。延伸型位相差板と液晶塗布型位相差板との組合せは任意であるが、どちらも液晶塗布型位相差板を用いることは厚さを薄くすることができるので好ましい。
 前記円偏光板には斜め方向の視認性を高めるために、正のCプレートを積層する方法も知られている(特開2014-224837号公報)。正のCプレートも液晶塗布型位相差板であっても延伸型位相差板であってもよい。厚さ方向の位相差は、通常-200~-20nm、好ましくは-140~-40nmである。
In general, there are many materials that exhibit higher birefringence as the wavelength is shorter and smaller birefringence as the wavelength is longer. In this case, since a phase difference of λ / 4 cannot be achieved in the entire visible light region, an in-plane phase difference of 100 to 180 nm, preferably 130, becomes λ / 4 with respect to the vicinity of 560 nm having high visibility. It is often designed to be ˜150 nm. It is preferable to use a reverse dispersion λ / 4 phase difference plate using a material having birefringence wavelength dispersion characteristics opposite to that of normal, since the visibility can be improved. As such materials, those described in Japanese Patent Application Laid-Open No. 2007-232873 and the like in the case of a stretching type phase difference plate, and those described in Japanese Patent Application Laid-Open No. 2010-30979 in the case of a liquid crystal coating type phase difference plate may be used. preferable.
As another method, a technique for obtaining a broadband λ / 4 phase difference plate by combining with a λ / 2 phase difference plate is also known (Japanese Patent Laid-Open No. 10-90521). The λ / 2 retardation plate is also manufactured by the same material method as the λ / 4 retardation plate. Although the combination of the stretchable retardation plate and the liquid crystal coating type retardation plate is arbitrary, it is preferable to use the liquid crystal coating type retardation plate for both because the thickness can be reduced.
In order to improve the visibility in the oblique direction on the circularly polarizing plate, a method of laminating a positive C plate is also known (Japanese Patent Laid-Open No. 2014-224837). The positive C plate may also be a liquid crystal coated retardation plate or a stretched retardation plate. The retardation in the thickness direction is usually −200 to −20 nm, preferably −140 to −40 nm.
[タッチセンサ]
 本発明のフレキシブル表示装置は、タッチセンサをさらに備えていてもよい。タッチセンサは入力手段として用いられる。タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等様々な様式が提案されており、いずれの方式でも構わない。中でも静電容量方式が好ましい。静電容量方式タッチセンサは活性領域及び前記活性領域の外郭部に位置する非活性領域に区分される。活性領域は表示パネルで画面が表示される領域(表示部)に対応する領域であって、使用者のタッチが感知される領域であり、非活性領域は表示装置で画面が表示されない領域(非表示部)に対応する領域である。タッチセンサはフレキシブルな特性を有する基板と;前記基板の活性領域に形成された感知パターンと;前記基板の非活性領域に形成され、前記感知パターンとパッド部を介して外部の駆動回路と接続するための各センシングラインを含むことができる。フレキシブルな特性を有する基板としては、前記ウインドウの透明基板と同様の材料が使用できる。タッチセンサの基板は、その靱性が2,000MPa%以上であるものがタッチセンサのクラック抑制の面から好ましい。より好ましくは靱性が2,000~30,000MPa%であってもよい。ここで、靭性は、高分子材料の引張実験を通じて得られる応力(MPa)-歪み(%)曲線(Stress-strain curve)で破壊点までの曲線の下部面積として定義される。
[Touch sensor]
The flexible display device of the present invention may further include a touch sensor. The touch sensor is used as input means. Various types of touch sensors such as a resistive film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method have been proposed, and any method may be used. Of these, the electrostatic capacity method is preferable. The capacitive touch sensor is divided into an active region and a non-active region located in an outer portion of the active region. The active area is an area corresponding to an area (display unit) where the screen is displayed on the display panel, and is an area where a user's touch is sensed. This is a region corresponding to the display unit. The touch sensor includes a flexible substrate; a sensing pattern formed in an active region of the substrate; and formed in an inactive region of the substrate and connected to an external driving circuit through the sensing pattern and a pad portion. Each sensing line can be included. As the substrate having flexible characteristics, the same material as the transparent substrate of the window can be used. The substrate of the touch sensor preferably has a toughness of 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch sensor. More preferably, the toughness may be 2,000 to 30,000 MPa%. Here, the toughness is defined as the area under the curve up to the fracture point in a stress-strain curve obtained through a tensile test of the polymer material.
 前記感知パターンは、第1方向に形成された第1パターン及び第2方向に形成された第2パターンを備えることができる。第1パターンと第2パターンは互いに異なる方向に配置される。第1パターン及び第2パターンは、同一層に形成され、タッチされる地点を感知するためには、それぞれのパターンが電気的に接続されなければならない。第1パターンは各単位パターンが継ぎ手を介して互いに接続された形態であるが、第2パターンは各単位パターンがアイランド形態に互いに分離された構造になっているので、第2パターンを電気的に接続するためには別途のブリッジ電極が必要である。感知パターンは周知の透明電極素材を適用することができる。例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、インジウムガリウム亜鉛酸化物(IGZO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4-ethylenedioxythiophene))、炭素ナノチューブ(CNT)、グラフェン、金属ワイヤなどを挙げることができ、これらは単独又は2種以上混合して使用することができる。好ましくはITOを使用することができる。金属ワイヤに使用される金属は特に限定されず、例えば、銀、金、アルミニウム、銅、鉄、ニッケル、チタン、テレニウム、クロムなどを挙げることができる。これらは単独又は2種以上混合して使用することができる。 The sensing pattern may include a first pattern formed in the first direction and a second pattern formed in the second direction. The first pattern and the second pattern are arranged in different directions. The first pattern and the second pattern are formed in the same layer, and each pattern must be electrically connected in order to sense a touched point. The first pattern is a form in which each unit pattern is connected to each other through a joint, but the second pattern has a structure in which each unit pattern is separated from each other in an island form. A separate bridge electrode is required for connection. A known transparent electrode material can be applied to the sensing pattern. For example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc tin oxide (IZTO), indium gallium zinc oxide (IGZO), cadmium tin oxide (CTO) , PEDOT (poly (3,4-ethylenedithiothiophene)), carbon nanotube (CNT), graphene, metal wire, and the like. These can be used alone or in combination of two or more. Preferably ITO can be used. The metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, telenium, and chromium. These can be used alone or in admixture of two or more.
 ブリッジ電極は感知パターン上部に絶縁層を介して前記絶縁層上部に形成することができ、基板上にブリッジ電極が形成されており、その上に絶縁層及び感知パターンを形成することができる。前記ブリッジ電極は感知パターンと同じ素材で形成することもでき、モリブデン、銀、アルミニウム、銅、パラジウム、金、白金、亜鉛、スズ、チタン又はこれらのうちの2種以上の合金などの金属で形成することもできる。第1パターンと第2パターンは電気的に絶縁されなければならないので、感知パターンとブリッジ電極の間には絶縁層が形成される。絶縁層は第1パターンの継ぎ手とブリッジ電極の間にのみ形成することもでき、感知パターンを覆う層の構造に形成することもできる。後者の場合は、ブリッジ電極は絶縁層に形成されたコンタクトホールを介して第2パターンを接続することができる。前記タッチセンサはパターンが形成されたパターン領域と 、パターンが形成されていない非パターン領域間の透過率の差、具体的には、これらの領域における屈折率の差によって誘発される光透過率の差を適切に補償するための手段として基板と電極の間に光学調節層をさらに含むことができ、前記光学調節層は無機絶縁物質又は有機絶縁物質を含むことができる。光学調節層は光硬化性有機バインダー及び溶剤を含む光硬化組成物を基板上にコーティングして形成することができる。前記光硬化組成物は無機粒子をさらに含むことができる。前記無機粒子によって光学調節層の屈折率を上昇させることができる。
 前記光硬化性有機バインダーは、例えば、アクリレート系単量体、スチレン系単量体、カルボン酸系単量体などの各単量体の共重合体を含むことができる。前記光硬化性有機バインダーは、例えば、エポキシ基含有繰り返し単位、アクリレート繰り返し単位、カルボン酸繰り返し単位などの互いに異なる各繰り返し単位を含む共重合体であってもよい。
 前記無機粒子は、例えば、ジルコニア粒子、チタニア粒子、アルミナ粒子などを含むことができる。前記光硬化組成物は、光重合開始剤、重合性モノマー、硬化補助剤などの各添加剤をさらに含むこともできる。
The bridge electrode can be formed on the sensing pattern via the insulating layer and on the insulating layer. The bridge electrode is formed on the substrate, and the insulating layer and the sensing pattern can be formed thereon. The bridge electrode may be formed of the same material as the sensing pattern, and is formed of a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium, or an alloy of two or more of these. You can also Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode. The insulating layer may be formed only between the joint of the first pattern and the bridge electrode, or may be formed in a layer structure covering the sensing pattern. In the latter case, the bridge electrode can be connected to the second pattern via a contact hole formed in the insulating layer. The touch sensor has a transmittance difference between a pattern area where a pattern is formed and a non-pattern area where a pattern is not formed, specifically, a light transmittance induced by a difference in refractive index in these areas. As a means for appropriately compensating for the difference, an optical adjustment layer may be further included between the substrate and the electrode, and the optical adjustment layer may include an inorganic insulating material or an organic insulating material. The optical adjustment layer can be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate. The photocurable composition may further include inorganic particles. The inorganic particles can increase the refractive index of the optical adjustment layer.
The photocurable organic binder can include, for example, a copolymer of monomers such as an acrylate monomer, a styrene monomer, and a carboxylic acid monomer. The photocurable organic binder may be a copolymer including different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
Examples of the inorganic particles include zirconia particles, titania particles, and alumina particles. The photocurable composition may further contain additives such as a photopolymerization initiator, a polymerizable monomer, and a curing auxiliary agent.
[接着層]
 前記フレキシブル表示装置用積層体を形成する各層(ウインドウ、偏光板、タッチセンサ)並びに各層を構成するフィルム部材(直線偏光板、λ/4位相差板等)は接着剤によって接着することができる。接着剤としては、水系接着剤、有機溶剤系接着剤、無溶剤系接着剤、固体接着剤、溶剤揮散型接着剤、湿気硬化型接着剤、加熱硬化型接着剤、嫌気硬化型接着剤、活性エネルギー線硬化型接着剤、硬化剤混合型接着剤、熱溶融型接着剤、感圧型接着剤(粘着剤)、再湿型接着剤等、汎用に使用されているものが使用できる。中でも水系溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、粘着剤がよく用いられる。接着層の厚さは、求められる接着力等に応じて適宜調節することができ、例えば0.01~500μm、好ましくは0.1~300μmである。接着層は、前記フレキシブル表示装置用積層体には複数存在してよいが、それぞれの厚さ及び用いられる接着剤の種類は同じであっても異なっていてもよい。
[Adhesive layer]
Each layer (window, polarizing plate, touch sensor) forming the laminate for a flexible display device and a film member (linear polarizing plate, λ / 4 retardation plate, etc.) constituting each layer can be bonded with an adhesive. Adhesives include water-based adhesives, organic solvent-based adhesives, solvent-free adhesives, solid adhesives, solvent evaporation adhesives, moisture-curing adhesives, heat-curing adhesives, anaerobic-curing adhesives, active Commonly used materials such as energy ray curable adhesives, curing agent mixed adhesives, hot melt adhesives, pressure sensitive adhesives (adhesives), and rewet adhesives can be used. Of these, water-based solvent volatile adhesives, active energy ray-curable adhesives, and pressure-sensitive adhesives are often used. The thickness of the adhesive layer can be appropriately adjusted according to the required adhesive force and the like, and is, for example, 0.01 to 500 μm, preferably 0.1 to 300 μm. There may be a plurality of adhesive layers in the laminate for a flexible display device, but the thickness and the type of adhesive used may be the same or different.
 前記水系溶剤揮散型接着剤としてはポリビニルアルコール系ポリマー、でんぷん等の水溶性ポリマー、エチレン-酢酸ビニル系エマルジョン、スチレン-ブタジエン系エマルジョン等水分散状態のポリマーを主剤ポリマーとして使用することができる。水、前記主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、染料、顔料、無機フィラー、有機溶剤等を配合してもよい。前記水系溶剤揮散型接着剤によって接着する場合、前記水系溶剤揮散型接着剤を被接着層間に注入して被着層を貼合した後、乾燥させることで接着性を付与することができる。前記水系溶剤揮散型接着剤を用いる場合の接着層の厚さは、通常0.01~10μm、好ましくは0.1~1μmであってもよい。前記水系溶剤揮散型接着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び前記接着剤の種類は同じであっても異なっていてもよい。 As the water-based solvent-evaporating adhesive, water-soluble polymers such as polyvinyl alcohol polymers and starches, water-dispersed polymers such as ethylene-vinyl acetate emulsions and styrene-butadiene emulsions can be used as the main polymer. In addition to water and the main polymer, a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent, and the like may be blended. In the case of bonding with the water-based solvent volatile adhesive, the water-based solvent volatile adhesive can be injected between the layers to be bonded, and the adhesion layer can be bonded, and then dried to provide adhesion. The thickness of the adhesive layer in the case of using the water-based solvent volatile adhesive is usually 0.01 to 10 μm, preferably 0.1 to 1 μm. When the water-based solvent volatile adhesive is used for forming a plurality of layers, the thickness of each layer and the type of the adhesive may be the same or different.
 前記活性エネルギー線硬化型接着剤は、活性エネルギー線を照射して接着剤層を形成する反応性材料を含む活性エネルギー線硬化組成物の硬化により形成することができる。前記活性エネルギー線硬化組成物は、ハードコート組成物と同様のラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有することができる。前記ラジカル重合性化合物とは、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。接着層に用いられるラジカル重合性化合物としてはアクリロイル基を有する化合物が好ましい。接着剤組成物としての粘度を下げるために単官能の化合物を含むことも好ましい。 The active energy ray-curable adhesive can be formed by curing an active energy ray-curable composition containing a reactive material that irradiates active energy rays to form an adhesive layer. The active energy ray-curable composition can contain at least one polymer of a radical polymerizable compound and a cationic polymerizable compound similar to the hard coat composition. The radical polymerizable compound is the same as the hard coat composition, and the same kind as the hard coat composition can be used. As the radical polymerizable compound used for the adhesive layer, a compound having an acryloyl group is preferable. It is also preferable to contain a monofunctional compound in order to lower the viscosity of the adhesive composition.
 前記カチオン重合性化合物は、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。活性エネルギー線硬化組成物に用いられるカチオン重合性化合物としては、エポキシ化合物が特に好ましい。接着剤組成物の粘度を下げるために単官能の化合物を反応性希釈剤として含むことも好ましい。
 活性エネルギー線組成物には重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等であり、適宜選択して用いることができる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。ハードコート組成物の記載の中で活性エネルギー線照射によりラジカル重合又はカチオン重合の内の少なくともいずれか開始することができる開始剤を使用することができる。
The cationic polymerizable compound is the same as that of the hard coat composition, and the same kind as that of the hard coat composition can be used. As the cationic polymerizable compound used in the active energy ray-curable composition, an epoxy compound is particularly preferable. It is also preferable to include a monofunctional compound as a reactive diluent in order to lower the viscosity of the adhesive composition.
The active energy ray composition may further contain a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radicals and cationic polymerization initiators, which can be appropriately selected and used. These polymerization initiators are decomposed by at least one of active energy ray irradiation and heating to generate radicals or cations to advance radical polymerization and cationic polymerization. In the description of the hard coat composition, an initiator capable of initiating at least one of radical polymerization or cationic polymerization by irradiation with active energy rays can be used.
 前記活性エネルギー線硬化組成物はさらに、イオン捕捉剤、酸化防止剤、連鎖移動剤、密着付与剤、熱可塑性樹脂、充填剤、流動粘度調整剤、可塑剤、消泡剤溶剤、添加剤、溶剤を含むことができる。前記活性エネルギー線硬化型接着剤によって接着する場合、前記活性エネルギー線硬化組成物を被接着層のいずれか又は両方に塗布後貼合し、いずれかの被着層又は両方の被着層を通して活性エネルギー線を照射して硬化させることで接着することができる。前記活性エネルギー線硬化型接着剤を用いる場合の接着層の厚さは、通常0.01~20μm、好ましくは0.1~10μmであってもよい。前記活性エネルギー線硬化型接着剤を複数層の形成に用いる場合には、それぞれの層の厚さ及び用いられる接着剤の種類は同じであっても異なっていてもよい。 The active energy ray curable composition further includes an ion scavenger, an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, an antifoaming solvent, an additive, a solvent. Can be included. When adhering with the active energy ray curable adhesive, the active energy ray curable composition is applied to either or both of the adherend layers and then bonded, and the active energy ray curable composition is activated through either of the adhering layers or both of the adhering layers. It can be bonded by irradiating with energy rays and curing. When the active energy ray-curable adhesive is used, the thickness of the adhesive layer is usually 0.01 to 20 μm, preferably 0.1 to 10 μm. When the active energy ray-curable adhesive is used for forming a plurality of layers, the thickness of each layer and the type of adhesive used may be the same or different.
 前記粘着剤としては、主剤ポリマーに応じて、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等に分類され何れを使用することもできる。粘着剤には主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、粘着付与剤、可塑剤、染料、顔料、無機フィラー等を配合してもよい。前記粘着剤を構成する各成分を溶剤に溶解・分散させて粘着剤組成物を得て、該粘着剤組成物を基材上に塗布した後に乾燥させることで、粘着層(接着層)が形成される。粘着層は直接形成されてもよいし、別途基材に形成したものを転写することもできる。接着前の粘着面をカバーするためには離型フィルムを使用することも好ましい。前記粘着剤を用いる場合の接着層の厚さは、通常1~500μm、好ましくは2~300μmであってもよい。前記粘着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び用いられる粘着剤の種類は同じであっても異なっていてもよい。 The pressure-sensitive adhesives are classified into acrylic pressure-sensitive adhesives, urethane pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives and the like according to the main polymer, and any of them can be used. In addition to the main polymer, the adhesive may contain a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a tackifier, a plasticizer, a dye, a pigment, an inorganic filler, and the like. Each component constituting the pressure-sensitive adhesive is dissolved and dispersed in a solvent to obtain a pressure-sensitive adhesive composition, and the pressure-sensitive adhesive composition is applied onto a substrate and then dried to form a pressure-sensitive adhesive layer (adhesive layer). Is done. The pressure-sensitive adhesive layer may be directly formed, or a layer separately formed on the substrate can be transferred. In order to cover the adhesive surface before bonding, it is also preferred to use a release film. When the pressure-sensitive adhesive is used, the thickness of the adhesive layer may be usually 1 to 500 μm, preferably 2 to 300 μm. When the pressure-sensitive adhesive is used for forming a plurality of layers, the thickness of each layer and the type of the pressure-sensitive adhesive used may be the same or different.
[遮光パターン]
 前記遮光パターンは前記フレキシブル表示装置のベゼル又はハウジングの少なくとも一部として適用することができる。遮光パターンによって前記フレキシブル表示装置の辺縁部に配置される配線が隠されて視認されにくくすることで、画像の視認性が向上する。前記遮光パターンは単層又は複層の形態であってもよい。遮光パターンのカラーは特に制限されることはなく、黒色、白色、金属色などの多様なカラーを有することができる。遮光パターンはカラーを具現するための顔料と、アクリル系樹脂、エステル系樹脂、エポキシ系樹脂、ポリウレタン、シリコーンなどの高分子で形成することができる。これらの単独又は2種類以上の混合物で使用することもできる。前記遮光パターンは、印刷、リソグラフィ、インクジェットなど各種の方法にて形成することができる。遮光パターンの厚さは、通常1~100μm、好ましくは2~50μmである。また、遮光パターンの厚さ方向に傾斜等の形状を付与することも好ましい。
[Shading pattern]
The light shielding pattern can be applied as at least part of a bezel or a housing of the flexible display device. The visibility of the image is improved by concealing the wiring arranged at the edge of the flexible display device by the light-shielding pattern and making it difficult to see. The light shielding pattern may be a single layer or a multilayer. The color of the light-shielding pattern is not particularly limited, and can have various colors such as black, white, and metal color. The light shielding pattern can be formed of a pigment for embodying a color and a polymer such as an acrylic resin, an ester resin, an epoxy resin, polyurethane, or silicone. These can be used alone or in a mixture of two or more. The light shielding pattern can be formed by various methods such as printing, lithography, and inkjet. The thickness of the light shielding pattern is usually 1 to 100 μm, preferably 2 to 50 μm. It is also preferable to give a shape such as an inclination in the thickness direction of the light shielding pattern.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記しない限り、質量%及び質量部を意味する。まず評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “parts” in the examples mean mass% and parts by mass. First, the evaluation method will be described.
<1.ポリイミドワニスの製造及びポリイミドフィルムの製膜>
(実施例1)
(1)ポリイミド溶液の調製
 窒素雰囲気下、反応容器に、触媒(第三級アミン)としてのイソキノリン0.5質量部を投入した。反応容器は、溶媒トラップ及びフィルターを取り付けた真空ポンプが接続され、オイルバスに設置されていた。次に、反応容器に溶媒Aとしてγ-ブチロラクトン(GBL)305.58質量部と、ジアミンとしての2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)104.43質量部とをさらに投入した、反応容器内の内容物を撹拌して完溶させた。さらにテトラカルボン酸二無水物としての4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)145.59質量部を反応容器へ投入した後、反応容器内の内容物を撹拌しつつ、オイルバスで昇温を開始した。加えたTFMBと6FDAとのモル比(6FDA:TFMB)は1.00:0.995であり、原料モノマーの濃度は45質量%であった。原料モノマー100質量部に対する第三級アミンの量は0.2質量部であった。反応容器内の内温が120℃に到達したところで、反応容器内の圧力を400mmHgまで減圧し、続けて内温180℃まで昇温した。内温が180℃に到達した後、さらに5.5時間加熱撹拌を行った後に大気圧まで復圧し、170℃まで冷却しポリイミド溶液を得た。減圧前後に反応容器中の酸素濃度を確認したところ、0.01%未満であった。170℃にてGBLを加えてポリイミドの固形分が40質量%である均一溶液として、ポリイミド溶液を得た。なお、GBLの過酸化物由来のピークの積分値及び過酸化物価は、それぞれ後述する希釈溶媒の積分値及び過酸化物価に対して非常に小さく、無視できるものであった。このため、ワニスにおける全溶媒において希釈溶媒が積分値及び過酸化物価に支配的であると判断し、希釈溶媒の積分値及び過酸化物価で実施例と比較例とを比較検討した。
<1. Manufacture of polyimide varnish and film formation of polyimide film>
Example 1
(1) Preparation of polyimide solution In a nitrogen atmosphere, 0.5 part by mass of isoquinoline as a catalyst (tertiary amine) was charged into a reaction vessel. The reaction vessel was connected to a vacuum pump equipped with a solvent trap and a filter, and was installed in an oil bath. Next, 305.58 parts by mass of γ-butyrolactone (GBL) as solvent A and 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl (TFMB) 104.43 as diamine in the reaction vessel. The contents in the reaction vessel into which the mass part was further added were stirred and completely dissolved. Furthermore, after putting 145.59 parts by mass of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) as tetracarboxylic dianhydride into the reaction vessel, the contents in the reaction vessel were stirred. Meanwhile, the temperature started to rise in the oil bath. The molar ratio of TFMB to 6FDA (6FDA: TFMB) was 1.00: 0.995, and the concentration of the raw material monomer was 45% by mass. The amount of the tertiary amine relative to 100 parts by mass of the raw material monomer was 0.2 parts by mass. When the internal temperature in the reaction vessel reached 120 ° C, the pressure in the reaction vessel was reduced to 400 mmHg, and then the internal temperature was raised to 180 ° C. After the internal temperature reached 180 ° C., the mixture was further heated and stirred for 5.5 hours and then returned to atmospheric pressure and cooled to 170 ° C. to obtain a polyimide solution. When the oxygen concentration in the reaction vessel was confirmed before and after decompression, it was less than 0.01%. GBL was added at 170 degreeC, and the polyimide solution was obtained as a uniform solution whose solid content of a polyimide is 40 mass%. Note that the integrated value and peroxide value of the peak derived from the peroxide of GBL were very small and negligible with respect to the integrated value and peroxide value of the diluent solvent described later, respectively. For this reason, it was judged that the diluting solvent was dominant in the integral value and the peroxide value in all the solvents in the varnish, and the examples and comparative examples were compared and examined based on the integral value and the peroxide value of the diluting solvent.
(2)ワニスの製造
 希釈溶媒(溶媒B)としてのN,N-ジメチルアセトアミド(DMAc)を30分間窒素ガスでバブリング処理を実行した。バブリング処理後のDMAc中の過酸化物由来のピークの積分値は31万であった。また石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠して測定したバブリング処理後のDMAcの過酸化物価は1mg/kg未満であった。上記(1)で得られたポリイミド溶液に、バブリング処理を施したDMAcを155℃で加えてポリイミドの固形分が20質量%である均一溶液とし、反応容器から取り出し、ワニスを得た。得られたワニスにおける溶媒の質量比率(DMAc:GBL)は、おおよそ5:3であった。得られたワニスの換算過酸化物価は1mg/kg未満であった。
 同様に、実施例2及び比較例1~3で調製したワニスにおける溶媒の質量比率(GBL以外の溶媒:GBL)も、おおよそ5:3であった。
(2) Manufacture of varnish N, N-dimethylacetamide (DMAc) as a diluting solvent (solvent B) was bubbled with nitrogen gas for 30 minutes. The integrated value of the peak derived from the peroxide in DMAc after the bubbling treatment was 310,000. In addition, the peroxide value of DMAc after bubbling treatment measured according to the JPO-5S-46-96 peroxide value test method of the Japan Petroleum Institute standard kerosene was less than 1 mg / kg. To the polyimide solution obtained in (1) above, DMAc subjected to bubbling treatment was added at 155 ° C. to obtain a uniform solution having a polyimide solid content of 20% by mass, and taken out from the reaction vessel to obtain a varnish. The mass ratio of the solvent in the obtained varnish (DMAc: GBL) was approximately 5: 3. The converted peroxide value of the obtained varnish was less than 1 mg / kg.
Similarly, the solvent mass ratio (solvents other than GBL: GBL) in the varnishes prepared in Example 2 and Comparative Examples 1 to 3 was also approximately 5: 3.
(3)ポリイミドフィルムの製膜
 上記(2)で調製したワニス200.00質量部に(2)で準備したDMAcを加えて15質量%溶液を調製し、それをPET(ポリエチレンテレフタラート)フィルム上で流涎成形した後、50℃で30分、続いて140℃で10分加熱してPET上に塗膜を形成した。得られた塗膜をPETから剥離してさらに200℃40分加熱して、厚さ80μmのポリイミドフィルムを得た。
(3) Film formation of polyimide film DMAc prepared in (2) is added to 200.00 parts by mass of varnish prepared in (2) above to prepare a 15% by mass solution on a PET (polyethylene terephthalate) film. Then, the coating film was formed on PET by heating at 50 ° C. for 30 minutes and then at 140 ° C. for 10 minutes. The obtained coating film was peeled from PET and further heated at 200 ° C. for 40 minutes to obtain a polyimide film having a thickness of 80 μm.
(実施例2)
(1)ワニスの調製
 バブリング処理を施した希釈溶媒をDMAcから酢酸ブチルに変更し、バブリング処理を施した希釈溶媒の温度を155℃から130℃に変更した以外は、実施例1のワニスの製造方法と同様にしてワニスを得た。バブリング処理を施した酢酸ブチルは、酢酸ブチルを30分間窒素ガスでバブリング処理を実行して得た。バブリング処理を施した酢酸ブチル中の過酸化物由来のピークの積分値は9万であった。また石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠して測定したバブリング処理を施した酢酸ブチルの過酸化物価は1mg/kg未満であった。
(Example 2)
(1) Preparation of varnish Manufacture of the varnish of Example 1 except that the dilution solvent subjected to the bubbling treatment was changed from DMAc to butyl acetate and the temperature of the dilution solvent subjected to the bubbling treatment was changed from 155 ° C to 130 ° C. A varnish was obtained in the same manner as described above. The butyl acetate subjected to the bubbling treatment was obtained by bubbling butyl acetate with nitrogen gas for 30 minutes. The integrated value of the peak derived from the peroxide in the butyl acetate subjected to the bubbling treatment was 90,000. The peroxide value of butyl acetate subjected to the bubbling treatment measured according to the JPI-5S-46-96 peroxide value test method of the Japan Petroleum Institute standard kerosene was less than 1 mg / kg.
(2)ポリイミドフィルムの製膜
 実施例1(2)で調製したワニスから実施例2(1)で調製したワニスに変更した以外は、実施例1の製造方法と同様にして、厚さ80μmのポリイミドフィルムを得た。調製したワニスの換算過酸化物価は1mg/kg未満であった。
(2) Film formation of polyimide film Except for changing from the varnish prepared in Example 1 (2) to the varnish prepared in Example 2 (1), the production method of Example 1 was used, and the thickness was 80 μm. A polyimide film was obtained. The converted peroxide value of the prepared varnish was less than 1 mg / kg.
(比較例1)
(1)ワニスの調製
 バブリング処理を施した希釈溶媒をDMAcからシクロペンタノン(以下、CPと記載することもある)に変更し、バブリング処理を施した希釈溶媒の温度を155℃から130℃に変更した以外は、実施例1のワニスの製造方法と同様にしてワニスを得た。バブリング処理を施したシクロペンタノンは、シクロペンタノンを30分間窒素ガスでバブリングして得た。バブリング処理を施したシクロペンタノン中の過酸化物由来のピークの積分値は74万であった。また石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠して測定したバブリング処理を施したシクロペンタノンの過酸化物価は21mg/kgであった。
(Comparative Example 1)
(1) Preparation of varnish The diluted solvent subjected to the bubbling treatment was changed from DMAc to cyclopentanone (hereinafter sometimes referred to as “CP”), and the temperature of the diluted solvent subjected to the bubbling treatment was changed from 155 ° C. to 130 ° C. A varnish was obtained in the same manner as in the method for producing a varnish of Example 1, except that the change was made. The cyclopentanone subjected to the bubbling treatment was obtained by bubbling cyclopentanone with nitrogen gas for 30 minutes. The integrated value of the peak derived from the peroxide in the cyclopentanone subjected to the bubbling treatment was 740,000. The peroxide value of cyclopentanone subjected to bubbling treatment measured according to the JPI-5S-46-96 peroxide value test method of the Japan Petroleum Institute standard kerosene was 21 mg / kg.
(2)ポリイミドフィルムの製膜
 実施例1(2)で調製したワニスから比較例1(1)で調製したワニスに変更した以外は、実施例1の製造方法と同様にして、厚さ80μmのポリイミドフィルムを得た。調製したワニスの換算過酸化物価は11mg/kgであった。
(2) Film formation of polyimide film Except for changing from the varnish prepared in Example 1 (2) to the varnish prepared in Comparative Example 1 (1), the manufacturing method of Example 1 was used, and the thickness was 80 μm. A polyimide film was obtained. The converted peroxide value of the prepared varnish was 11 mg / kg.
(比較例2)
(1)ワニスの調製
 希釈溶媒を、バブリング処理を施したシクロペンタノンからバブリング処理を施さなかったシクロペンタノンに変更した以外は、比較例1の製造方法と同様にしてワニスを得た。シクロペンタノンの過酸化物由来のピークの積分値は1137万であった。また石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠して測定したバブリング処理を施さなかったシクロペンタノンの過酸化物価は57mg/kgであった。
(Comparative Example 2)
(1) Preparation of varnish A varnish was obtained in the same manner as in the production method of Comparative Example 1, except that the diluting solvent was changed from cyclopentanone subjected to bubbling treatment to cyclopentanone not subjected to bubbling treatment. The integrated value of the peak derived from the peroxide of cyclopentanone was 11.37 million. Further, the peroxide value of cyclopentanone not subjected to the bubbling treatment, which was measured according to the JPE-5S-46-96 peroxide value test method of the Japan Petroleum Institute standard kerosene, was 57 mg / kg.
(2)ポリイミドフィルムの製膜
 実施例1(2)で調製したワニスから比較例2(1)で調製したワニスに変更した以外は、実施例1の製造方法と同様にして、厚さ80μmのポリイミドフィルムを得た。また調製したワニスの換算過酸化物価は29mg/kgであった。
(2) Formation of polyimide film 80 μm in thickness in the same manner as in the production method of Example 1, except that the varnish prepared in Example 1 (2) was changed to the varnish prepared in Comparative Example 2 (1). A polyimide film was obtained. Moreover, the converted peroxide value of the prepared varnish was 29 mg / kg.
(比較例3)
(1)ワニスの調製
 バブリング処理を施した希釈溶媒を、DMAcからメチルイソブチルケトン(MIBK)に変更し、バブリング処理を施した希釈溶媒の温度を155℃から130℃に変更した以外は、実施例1のワニスの製造方法と同様にしてワニスを得た。バブリング処理を施したMIBKは、MIBKを30分間窒素ガスでバブリングして得た。バブリング処理を施したMIBK中の過酸化物由来のピークの積分値は452万であった。また石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠して測定したバブリング処理を施したMIBKの過酸化物価は102mg/kgであった。
(Comparative Example 3)
(1) Preparation of varnish Examples except that the diluted solvent subjected to the bubbling treatment was changed from DMAc to methyl isobutyl ketone (MIBK), and the temperature of the diluted solvent subjected to the bubbling treatment was changed from 155 ° C to 130 ° C. A varnish was obtained in the same manner as in No. 1 varnish production method. MIBK subjected to bubbling treatment was obtained by bubbling MIBK with nitrogen gas for 30 minutes. The integral value of the peak derived from the peroxide in the MIBK subjected to the bubbling treatment was 45.2 million. In addition, the peroxide value of MIBK subjected to bubbling treatment measured according to the method for testing the peroxide value of the Japan Petroleum Institute standard kerosene JPI-5S-46-96 was 102 mg / kg.
(2)ポリイミドフィルムの製膜
 実施例1(2)で調製したワニスから比較例3(1)で調製したワニスに変更した以外は、実施例1の製造方法と同様にして、厚さ80μmのポリイミドフィルムを得た。また、調製したワニスの換算過酸化物価は51mg/kgであった。
(2) Film formation of polyimide film Except for changing from the varnish prepared in Example 1 (2) to the varnish prepared in Comparative Example 3 (1), the manufacturing method of Example 1 was used, and the thickness was 80 μm. A polyimide film was obtained. Moreover, the converted peroxide value of the prepared varnish was 51 mg / kg.
<2.ポリアミドイミドワニスの製造及びポリアミドイミドフィルムの製膜>
(実施例3)
(1)ポリアミドイミドAの合成
 十分に乾燥させた撹拌機と温度計を備える反応容器に、窒素を導通させ、容器内を窒素で置換した。該反応容器に、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)250.00質量部、及びDMAc8,520質量部を加え、室温で撹拌しながらTFMBをDMAcに溶解させた。次に、フラスコに、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)104.57質量部を加えて反応させた。
 次いで、4,4’-オキシビス(ベンゾイルクロリド)(OBBC)23.16質量部とテレフタロイルクロリド(TPC)95.62質量部とを加えて反応させた。
 次いで、無水酢酸168.23質量部を加え、15分間撹拌した後、4-ピコリン51.14質量部を加え、反応容器を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を冷却し、メタノール12,781質量部を加え、次いでイオン交換水を6,390質量部滴下し、白色固体を析出させた。析出した白色固体を遠心ろ過により捕集し、メタノールで洗浄することにより、ポリアミドイミド樹脂を含むウェットケーキを得た。得られたウェットケーキを減圧下、80℃で乾燥させることによりポリアミドイミドAを得た。
<2. Manufacture of polyamideimide varnish and film formation of polyamideimide film>
Example 3
(1) Synthesis of Polyamideimide A Nitrogen was passed through a reaction vessel equipped with a sufficiently dried stirrer and thermometer, and the inside of the vessel was replaced with nitrogen. To the reaction vessel, 250.00 parts by mass of 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl (TFMB) and 8,520 parts by mass of DMAc were added, and TFMB was added to DMAc while stirring at room temperature. Dissolved in. Next, 104.57 parts by mass of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask for reaction.
Subsequently, 23.16 parts by mass of 4,4′-oxybis (benzoyl chloride) (OBBC) and 95.62 parts by mass of terephthaloyl chloride (TPC) were added and reacted.
Next, 168.23 parts by mass of acetic anhydride was added and stirred for 15 minutes, then 51.14 parts by mass of 4-picoline was added, the reaction vessel was heated to 70 ° C., and further stirred for 3 hours to obtain a reaction solution. .
The obtained reaction liquid was cooled, 12,781 parts by mass of methanol was added, and then 6,390 parts by mass of ion-exchanged water was added dropwise to precipitate a white solid. The precipitated white solid was collected by centrifugal filtration and washed with methanol to obtain a wet cake containing a polyamideimide resin. The obtained wet cake was dried at 80 ° C. under reduced pressure to obtain polyamideimide A.
(2)ワニスの調製
 前記ポリアミドイミドAを、GBLとDMAcとを9:1(質量比)で混合した溶剤中に添加し、濃度8.7質量%のポリアミドイミドワニスBを調製した。
 石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に準拠して測定したポリアミドイミドワニスBの過酸化物価は、2.0mg/kgであった。
 上記GBLとDMAcとは、開封後1週間以上経過した溶媒を用いた。
 DMAc中の過酸化物由来のピークの積分値は46万であった。
 また石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠して測定したGBL中の過酸化物価は1mg/kg未満、DMAc中の過酸化物価は13mg/kgであった。
(2) Preparation of varnish Polyamideimide varnish B having a concentration of 8.7% by mass was prepared by adding the polyamideimide A to a solvent in which GBL and DMAc were mixed at 9: 1 (mass ratio).
The peroxide value of polyamideimide varnish B measured in accordance with JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, was 2.0 mg / kg.
As the GBL and DMAc, a solvent that has passed for one week or more after opening was used.
The integrated value of the peak derived from the peroxide in DMAc was 460,000.
Further, the peroxide value in GBL measured based on JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, was less than 1 mg / kg, and the peroxide value in DMAc was 13 mg / kg.
(3)ポリアミドイミドフィルムの製膜
実施例3と同様に、得られたポリアミドイミドワニスBをポリエステル基材(商品名「A4100」、東洋紡(株)製)の平滑面上に自立膜の厚さが55μmとなるようにアプリケーターを用いて塗布し、50℃で30分間、次いで140℃で15分間乾燥後、得られた塗膜をポリエステル基材から剥離して、自立膜を得た。得られた自立膜を金枠に固定し、さらに大気下で、200℃でアニールして、厚さ50μmのポリアミドイミドフィルム(基材)を得た。
(3) Polyamideimide film formation As in Example 3, the obtained polyamideimide varnish B was formed on a smooth surface of a polyester substrate (trade name “A4100”, manufactured by Toyobo Co., Ltd.), and the thickness of the self-supporting film. Was applied using an applicator so as to be 55 μm, dried at 50 ° C. for 30 minutes and then at 140 ° C. for 15 minutes, and then the obtained coating film was peeled off from the polyester substrate to obtain a self-supporting film. The obtained self-supporting film was fixed to a metal frame, and further annealed at 200 ° C. in the air to obtain a polyamideimide film (base material) having a thickness of 50 μm.
(実施例4)
(1)ワニスの調製
 実施例3で得られたポリアミドイミドAをGBLと酢酸ブチルを9:1(質量比)で混合した溶剤中に添加し、濃度8.9質量%のポリアミドイミドワニスCを調製した。
 石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に準拠して測定したポリアミドイミドワニスCの過酸化物価は、1mg/kg未満であった。
上記GBLと酢酸ブチルは、開封後1週間以上経過した溶媒を用いた。
 酢酸ブチル中の過酸化物由来のピークの積分値は3.5万であった。
 また石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠して測定したGBL中の過酸化物価は1mg/kg未満、酢酸ブチル中の過酸化物価は1mg/kg未満であった。
Example 4
(1) Preparation of varnish Polyamideimide A obtained in Example 3 was added to a solvent in which GBL and butyl acetate were mixed at 9: 1 (mass ratio), and polyamideimide varnish C having a concentration of 8.9 mass% was added. Prepared.
The peroxide value of polyamideimide varnish C measured in accordance with JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, was less than 1 mg / kg.
As the GBL and butyl acetate, a solvent having passed for 1 week or more after opening was used.
The integrated value of the peak derived from the peroxide in butyl acetate was 35,000.
In addition, the peroxide value in GBL measured based on JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, was less than 1 mg / kg, and the peroxide value in butyl acetate was less than 1 mg / kg. It was.
(2)ポリアミドイミドフィルムの製膜
 ポリアミドイミドワニスCを用いる以外は、実施例3のフィルムの製造方法と同様にすることで、厚さ50μmのフィルムを得た。
(2) Polyamideimide film formation Except for using polyamideimide varnish C, a film having a thickness of 50 μm was obtained in the same manner as in the film production method of Example 3.
(比較例4)
(1)ワニスの調製
 前期実施例3で得られたポリアミドイミドAをGBLとシクロペンタノンとを9:1(質量比)で混合した溶剤中に添加し、濃度9.0質量%のポリアミドイミドワニスDを調製した。
 石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に準拠して測定したポリアミドイミドワニスDの過酸化物価は、2.6mg/kgであった。
 上記GBLとシクロペンタノンは、開封後1週間以上経過した溶媒を用いた。
 シクロペンタノン中の過酸化物由来の蛍光スペクトルの積分値は1,173万であった。
 また石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠して測定したGBL中の過酸化物価は1mg/kg未満、酢酸ブチル中の過酸化物価は57mg/kgであった。
(Comparative Example 4)
(1) Preparation of varnish Polyamideimide A obtained in Example 3 in the previous period was added to a solvent in which GBL and cyclopentanone were mixed at a ratio of 9: 1 (mass ratio), and a polyamideimide having a concentration of 9.0 mass%. Varnish D was prepared.
The peroxide value of polyamideimide varnish D measured in accordance with the JPE-5S-46-96 peroxide value test method of Japan Petroleum Institute standard kerosene was 2.6 mg / kg.
For GBL and cyclopentanone, a solvent that has passed for 1 week or more after opening was used.
The integrated value of the fluorescence spectrum derived from peroxide in cyclopentanone was 11.73 million.
In addition, the peroxide value in GBL measured based on the peroxide value test method JPI-5S-46-96 of the Japan Petroleum Institute standard kerosene was less than 1 mg / kg, and the peroxide value in butyl acetate was 57 mg / kg. .
(2)ポリアミドイミドフィルムの製膜
ポリアミドイミドワニスDを用いる以外は、実施例3のフィルムの製造方法と同様にすることで、厚さ50μmのフィルムを得た。
(2) Film formation of polyamideimide film Except for using polyamideimide varnish D, a film having a thickness of 50 µm was obtained in the same manner as the film manufacturing method of Example 3.
<3.測定方法及び算出方法>
(1)過酸化物由来のピークの積分値の算出方法
(1-1)化学発光検出液体クロマトグラフの測定
 溶媒に含まれる過酸化物由来のピークは、化学発光検出液体クロマトグラフ法を用いて測定した。
(測定条件)
カラム:化学物質評価研究機構製L-column2 ODS(5μm、4.6mmφ×250mm)
ガードカラム:(株)住化分析センター製 SUMIPAX(登録商標) Filter PG-ODS(分析用)
カラム温度:40℃
移動相A:水
移動相B:アセトニトリル
移動相の送液:移動相A及び移動相Bの混合比を次のように変えて濃度勾配制御した。
注入後の時間(分);   0~90    90~100
移動相A(vol%); 90→  0      0
移動相B(vol%); 10→100    100
流量:1.0mL/分
注入量:5μL
検出器:化学発光検出器(日本分光(株)製「CL2027型)
フローセル温度:55℃
応答速度(RESPONSE):標準(STD)
ゲイン(GAIN):100
アッテネーション(ATTEN):1
ポスト添加溶液:ルミノール液
ポスト添加流量:0.1mL/分
<3. Measurement method and calculation method>
(1) Method for calculating integral value of peroxide-derived peak (1-1) Measurement of chemiluminescence detection liquid chromatograph The peak derived from peroxide contained in a solvent is determined using a chemiluminescence detection liquid chromatograph method. It was measured.
(Measurement condition)
Column: Chemical Substance Evaluation Research Organization L-column2 ODS (5 μm, 4.6 mmφ × 250 mm)
Guard column: Sumipax (registered trademark) Filter PG-ODS (for analysis) manufactured by Sumika Chemical Analysis Co., Ltd.
Column temperature: 40 ° C
Mobile phase A: Water mobile phase B: Transfer of acetonitrile mobile phase: The concentration ratio was controlled by changing the mixing ratio of mobile phase A and mobile phase B as follows.
Time after injection (minutes); 0-90 90-100
Mobile phase A (vol%); 90 → 0 0
Mobile phase B (vol%); 10 → 100 100
Flow rate: 1.0 mL / min Injection volume: 5 μL
Detector: Chemiluminescence detector ("CL2027 type" manufactured by JASCO Corporation)
Flow cell temperature: 55 ° C
Response speed (RESPONSE): Standard (STD)
Gain (GAIN): 100
Attenuation (ATTEN): 1
Post addition solution: Luminol solution Post addition flow rate: 0.1 mL / min
(1-2)積分値の算出方法
 化学発光クロマトグラムのピークを積分し、複数のピークが存在する場合は合計して積分値とした。
(1-2) Calculation method of integral value The peaks of the chemiluminescence chromatogram were integrated, and when there were a plurality of peaks, the total value was obtained as the integrated value.
(2)過酸化物価の測定方法(測定対象が溶媒である場合)
 溶媒の過酸化物価の測定は、石油学会規格灯油の過酸化物価試験方法JPI-5S-46-49に依拠して実施した。本試験では、過酸化物(以下の反応式ではROOHと表記)をよう化カリウム溶液と混合し過酸化物を還元した後に、遊離したよう素をチオ硫酸ナトリウム標準液で滴定し、過酸化物価をmg/kg(ppm)として算出することができる。反応は次の式による。
  2KI + ROOH +HO → I + 2KOH + ROH
  I +2Na → Na + 2NaI
(2) Method for measuring peroxide value (when measuring object is solvent)
The measurement of the peroxide value of the solvent was carried out based on the method for testing the peroxide value of the Japan Petroleum Institute Standard Kerosene, JPI-5S-46-49. In this test, peroxide (represented as ROOH in the following reaction formula) was mixed with potassium iodide solution to reduce the peroxide, then titrated the released iodine with sodium thiosulfate standard solution, and the peroxide value was determined. Can be calculated as mg / kg (ppm). The reaction is according to the following formula:
2KI + ROOH + H 2 O → I 2 + 2KOH + ROH
I 2 + 2Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2NaI
(2-1)測定方法
(予備実験)
 過酸化物価の測定は、表1に示すように、得られる過酸化物価に応じて適切な試料の質量が存在する。
(2-1) Measurement method (preliminary experiment)
In the measurement of the peroxide value, as shown in Table 1, there is an appropriate sample mass depending on the obtained peroxide value.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 まず、適切な試料の質量を決定するために、予備実験を実施した。200mL三角フラスコ内を窒素ガスにて約3分間パージし、置換した。試料(溶媒)1gを三角フラスコにとり、天秤にて精秤した。トルエン25mLを加え、窒素ガスを約1分間激しく液中へ通気した。窒素ガスを通気したまま、酢酸溶液(JIS K 8180[塩酸(試薬)]4mLをJIS K 8355[酢酸(試薬)]996mLと混合したもの)20mLを加えた。
 ガスの流出速度が緩やかに1泡/1秒になるように調節し、ヨウ化カリウム水溶液(1.2g/mL)2mLを加えた。三角フラスコを30秒間激しく振り混ぜた。三角フラスコを5分間静置したのちに、水100mLを加えた。0.005mol/Lチオ硫酸ナトリウム標準液にて電位差滴定を行い、試料の滴定に要したチオ硫酸ナトリウム標準液の量を求めた。なお、本測定に先立ち、試料1gを0gに変更した以外、すなわち試料を使用しないこと以外は上記と同様の手順で、空試験を実施して、空試験に要したチオ硫酸ナトリウム標準液の量(ブランク量)を求めた。
First, preliminary experiments were performed to determine the appropriate sample mass. The 200 mL Erlenmeyer flask was purged with nitrogen gas for about 3 minutes and replaced. 1 g of a sample (solvent) was placed in an Erlenmeyer flask and precisely weighed with a balance. 25 mL of toluene was added, and nitrogen gas was vigorously bubbled into the liquid for about 1 minute. 20 mL of acetic acid solution (4 mL of JIS K 8180 [hydrochloric acid (reagent)] mixed with 996 mL of JIS K 8355 [acetic acid (reagent)]) was added while the nitrogen gas was being passed.
The outflow rate of the gas was adjusted so as to be gradually 1 bubble / 1 second, and 2 mL of an aqueous potassium iodide solution (1.2 g / mL) was added. The Erlenmeyer flask was shaken vigorously for 30 seconds. After leaving the Erlenmeyer flask for 5 minutes, 100 mL of water was added. Potentiometric titration was performed with 0.005 mol / L sodium thiosulfate standard solution, and the amount of sodium thiosulfate standard solution required for titration of the sample was determined. Prior to this measurement, the amount of sodium thiosulfate standard solution required for the blank test was determined by performing the blank test in the same procedure as above except that the sample 1 g was changed to 0 g, that is, the sample was not used. (Blank amount) was determined.
 得られた2つのチオ硫酸ナトリウム標準液の量から、次の式によって過酸化物価を算出した。
 PON = [(A-B)M×1000×8]/m
  PON:過酸化物価(mg/kg)
 A:試料の滴定に要したチオ硫酸ナトリウム標準液の量(mL)
 B:空試験に要したチオ硫酸ナトリウム標準液の量(mL)
 M:チオ硫酸ナトリウム標準液のモル濃度(mol/L)
 m:試料のはかり採り量(g)
From the amount of the obtained two sodium thiosulfate standard solutions, the peroxide value was calculated by the following formula.
PON = [(A−B) M × 1000 × 8] / m
PON: Peroxide value (mg / kg)
A: Amount of sodium thiosulfate standard solution required for titration of sample (mL)
B: Amount of sodium thiosulfate standard solution required for the blank test (mL)
M: molar concentration of sodium thiosulfate standard solution (mol / L)
m: Amount of sample taken (g)
(本試験)
 得られた過酸化物価の値に対応する表1に記載の試料の質量で、同様の手順で本試験を実施した。このようにして過酸化物価を得た。
(main exam)
This test was carried out in the same procedure with the mass of the sample shown in Table 1 corresponding to the peroxide value obtained. In this way a peroxide value was obtained.
(3)過酸化物価の測定方法(測定対象がワニスである場合)
 ワニスの過酸化物価の測定は、石油学会規格灯油の過酸化物価試験方法JPI-5S-46-49に準拠して実施した。
 200mL三角フラスコ内を窒素ガスにて約3分間パージし、置換した。試料(ワニス)1gを三角フラスコにとり、天秤にて精秤した。DMAc(富士フイルム和光純薬(株)製、超脱水グレード、未開封品)25mLを加えて溶解させ、更にトルエン25mLを滴下し、窒素ガスを約1分間激しく液中へ通気した。窒素ガスを通気したまま、酢酸溶液(JIS K 8180[塩酸(試薬)]4mLをJIS K 8355[酢酸(試薬)]996mLと混合したもの)20mLを加えた。
 ガスの流出速度が緩やかに1泡/1秒になるように調節し、ヨウ化カリウム水溶液(1.2g/mL)2mLを加えた。三角フラスコを30秒間激しく振り混ぜた。三角フラスコを5分間静置したのちに、水100mLを加えた。0.005mol/Lチオ硫酸ナトリウム標準液にて電位差滴定を行い、試料の滴定に要したチオ硫酸ナトリウム標準液の量を求めた。なお、本測定に先立ち、試料1gを0gに変更した以外、すなわち試料を使用しないこと以外は上記と同様の手順で、空試験を実施して、空試験に要したチオ硫酸ナトリウム標準液の量(ブランク量)を求めた。
 得られた2つのチオ硫酸ナトリウム標準液の量から、(2)過酸化物価の測定方法(測定対象が溶媒である場合)に記載の式を用いて過酸化物価を算出した。
 なお、使用したDMAc(富士フイルム和光純薬(株)製、超脱水グレード、未開封品)の過酸化物価は0.0mg/kgであった。
 測定対象を溶媒からワニスに変更し、予備試験を実施せずに測定試料の質量を表1に記載の質量から1gに変更し、更にDMAc25mLに溶解して測定を実施した以外は、(2)過酸化物価の測定方法(測定対象が溶媒である場合)と同様にして、ワニスの過酸化物価を測定した。
 後者の変更、すなわち測定試料の質量を通常より少なくし、DMAcで希釈する変更は、以下の不具合の発生を抑制するためである。測定試料の質量が多いと、沈殿物が生じて測定機器の電極に付着し、その結果、電位が不安定となる場合がある。
 (換算過酸化物価)
 ワニスの換算過酸化物価は、ワニス作製に用いた溶媒の過酸化物価の値及びワニスにおける溶媒の質量比率を用いて、加重平均により算出した。
(3) Peroxide value measurement method (when the measurement target is varnish)
The measurement of the peroxide value of the varnish was carried out according to the peroxide value test method JPI-5S-46-49 of the Japan Petroleum Institute standard kerosene.
The 200 mL Erlenmeyer flask was purged with nitrogen gas for about 3 minutes and replaced. 1 g of a sample (varnish) was placed in an Erlenmeyer flask and precisely weighed with a balance. 25 mL of DMAc (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade, unopened product) was added and dissolved, 25 mL of toluene was further added dropwise, and nitrogen gas was vigorously bubbled into the solution for about 1 minute. 20 mL of acetic acid solution (4 mL of JIS K 8180 [hydrochloric acid (reagent)] mixed with 996 mL of JIS K 8355 [acetic acid (reagent)]) was added while the nitrogen gas was being passed.
The outflow rate of the gas was adjusted so as to be gradually 1 bubble / 1 second, and 2 mL of an aqueous potassium iodide solution (1.2 g / mL) was added. The Erlenmeyer flask was shaken vigorously for 30 seconds. After leaving the Erlenmeyer flask for 5 minutes, 100 mL of water was added. Potentiometric titration was performed with 0.005 mol / L sodium thiosulfate standard solution, and the amount of sodium thiosulfate standard solution required for titration of the sample was determined. Prior to this measurement, the amount of sodium thiosulfate standard solution required for the blank test was determined by performing the blank test in the same procedure as above except that the sample 1 g was changed to 0 g, that is, the sample was not used. (Blank amount) was determined.
From the amount of the obtained two sodium thiosulfate standard solutions, the peroxide value was calculated using the formula described in (2) Method for measuring peroxide value (when the measurement target is a solvent).
The peroxide value of DMAc used (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade, unopened product) was 0.0 mg / kg.
(2) Except that the measurement object was changed from the solvent to the varnish, the mass of the measurement sample was changed from 1 mass to 1 g without carrying out the preliminary test, and the measurement was further performed by dissolving in 25 mL of DMAc. The peroxide value of the varnish was measured in the same manner as in the method for measuring the peroxide value (when the measurement target is a solvent).
The latter change, that is, the change in which the mass of the measurement sample is made smaller than usual and diluted with DMAc is to suppress the following problems. When the mass of the measurement sample is large, a precipitate is formed and adheres to the electrode of the measurement instrument, and as a result, the potential may become unstable.
(Converted peroxide value)
The converted peroxide value of the varnish was calculated by a weighted average using the value of the peroxide value of the solvent used for producing the varnish and the mass ratio of the solvent in the varnish.
(3)イミド化率の測定
 実施例及び比較例で使用したポリイミド樹脂及びポリアミドイミド樹脂のイミド化率は、NMRにより測定し、式(10)に表す部分構造に由来するシグナルを用いて算出した。測定条件及び得られた結果からイミド化率を算出する方法は次の通りである。
(3) Measurement of imidization rate The imidization rate of the polyimide resin and the polyamideimide resin used in Examples and Comparative Examples was measured by NMR and calculated using a signal derived from the partial structure represented by Formula (10). . The method for calculating the imidization rate from the measurement conditions and the obtained results is as follows.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(測定試料の調製方法)
 実施例1~2及び比較例1~3で得られたワニスに大過剰量の貧溶媒としてのメタノールを加えて再沈殿法により析出・乾燥させて得た樹脂を、重水素化ジメチルスルホキシド(DMSO-d)に溶解させて2質量%溶液としたものを測定試料とした。
 実施例3で得られたポリアミドイミド系樹脂(ポリアミドイミドA)を重水素化ジメチルスルホキシド(DMSO-d)に溶解させて2質量%溶液としたものを測定試料とした。
(Measurement sample preparation method)
Resins obtained by adding a large excess of methanol as a poor solvent to the varnishes obtained in Examples 1 and 2 and Comparative Examples 1 to 3 and precipitating and drying by reprecipitation were obtained as deuterated dimethyl sulfoxide (DMSO). What was dissolved in -d 6 ) to give a 2% by mass solution was used as a measurement sample.
A measurement sample was prepared by dissolving the polyamideimide resin (polyamideimide A) obtained in Example 3 in deuterated dimethyl sulfoxide (DMSO-d 6 ) to give a 2 mass% solution.
(NMRの測定条件)
測定装置:600MHz NMR装置(Bruker社製「AVANCE600」)
試料温度:303K
測定手法:H-NMR、HSQC
(NMR measurement conditions)
Measuring apparatus: 600 MHz NMR apparatus (“AVANCE600” manufactured by Bruker)
Sample temperature: 303K
Measurement method: 1 H-NMR, HSQC
(ポリイミド樹脂のイミド化率の算出方法)
 ポリイミド樹脂を含む溶液を測定試料として得られたH-NMRスペクトルにおいて、式(10)中のプロトン(A)に由来するシグナルの積分値をInt、プロトン(B)に由来するシグナルの積分値をIntとした。これらの値から、以下の式(NMR-1)によりイミド化率(%)を求めた。なお、プロトン(A)及びプロトン(B)に由来するシグナルに、それぞれ別の構造に由来するシグナルが重なる場合、そのシグナルにおいて重なりのない部分の強度を積分し、その部分の面積比から本来のシグナル強度を求め、イミド化率を算出した。
Figure JPOXMLDOC01-appb-M000009
(Calculation method of imidization ratio of polyimide resin)
In the 1 H-NMR spectrum obtained using the solution containing the polyimide resin as the measurement sample, the integral value of the signal derived from the proton (A) in the formula (10) is represented by Int A and the integral of the signal derived from the proton (B). The value was Int B. From these values, the imidization ratio (%) was determined by the following formula (NMR-1). In addition, when signals derived from protons (A) and protons (B) overlap with signals derived from different structures, the intensities of the non-overlapping portions in the signals are integrated, and the original area ratio of the portions is calculated from the area ratio of the portions. The signal intensity was determined and the imidization rate was calculated.
Figure JPOXMLDOC01-appb-M000009
(ポリアミドイミド樹脂のイミド化率の算出方法)
 ポリアミドイミド樹脂を含む測定試料から得られたH-NMRスペクトルにおいて、観測されたベンゼンプロトンのうちイミド化前後で変化しない構造に由来し、ポリアミドイミド樹脂中に残存するアミック酸構造に由来する構造に影響を受けないベンゼンプロトンCの積分値をIntとした。また、観測されたベンゼンプロトンのうちイミド化前後で変化しない構造に由来し、ポリアミドイミド樹脂中に残存するアミック酸構造に由来する構造に影響を受けるベンゼンプロトンDの積分値をIntとした。得られたInt及びIntから以下の式によりβ値を求めた。
  β=Int/Int
 次に、複数のポリアミドイミド樹脂について上記式のβ値及び上記式のポリイミド樹脂のイミド化率を求め、これらの結果から以下の相関式を得た。
  イミド化率(%)=k×β+100
 上記相関式中、kは定数である。
 βを相関式に代入してポリアミドイミド樹脂のイミド化率(%)を得た。
(Calculation method of imidization ratio of polyamide-imide resin)
In the 1 H-NMR spectrum obtained from the measurement sample containing the polyamide-imide resin, the structure derived from the structure of the observed benzene protons that does not change before and after imidation and derived from the amic acid structure remaining in the polyamide-imide resin The integral value of benzene proton C that is not affected by Int C was defined as Int C. Further, the integrated value of benzene protons D, which is derived from a structure that does not change before and after imidization among the observed benzene protons and is influenced by the structure derived from the amic acid structure remaining in the polyamideimide resin, was defined as Int D. The β value was determined from the obtained Int C and Int D by the following formula.
β = Int D / Int C
Next, the β value of the above formula and the imidization ratio of the polyimide resin of the above formula were determined for a plurality of polyamideimide resins, and the following correlation formula was obtained from these results.
Imidization rate (%) = k × β + 100
In the above correlation equation, k is a constant.
β was substituted into the correlation equation to obtain the imidization ratio (%) of the polyamideimide resin.
(4)厚さ測定
 透明ポリイミド系高分子フィルムの厚さは、デジマチック シックネスゲージ((株)ミツトヨ製「品番547-401)を用いて測定した。
(4) Thickness Measurement The thickness of the transparent polyimide polymer film was measured using a Digimatic Thickness Gauge (product number 547-401 manufactured by Mitutoyo Corporation).
(5)全光線透過率(Tt)及びHazeの測定
 実施例及び比較例で得られた透明ポリイミド系高分子フィルムの全光線透過率Ttを、JIS K 7105:1981に準拠して、ヘーズメータ(スガ試験機(株)製「全自動直読ヘーズコンピュータHGM-2DP」)により測定した。
(5) Measurement of total light transmittance (Tt) and Haze The total light transmittance Tt of the transparent polyimide-based polymer films obtained in Examples and Comparative Examples was measured according to JIS K 7105: 1981 as a haze meter (suga It was measured by “Fully Automatic Direct Reading Haze Computer HGM-2DP” manufactured by Tester Co., Ltd.).
(6)ポリスチレン換算重量平均分子量の測定
 ゲル浸透クロマトグラフィー(GPC)測定
(6-1)前処理方法
 試料をγ-ブチロラクトン(GBL)に溶かして20%溶液とした後、DMF溶離液にて100倍に希釈し、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(6-2)測定条件
カラム:TSKgel SuperAWM-H×2+SuperAW2500×1(6.0mm I.D.×150mm×3本)
溶離液:10mmol/L臭化リチウムを含むDMF溶液
流量:0.6mL/分
検出器:RI検出器
カラム温度:40℃
注入量:20μL
分子量標準:標準ポリスチレン
(6) Measurement of polystyrene-equivalent weight average molecular weight Gel permeation chromatography (GPC) measurement (6-1) Pretreatment method A sample was dissolved in γ-butyrolactone (GBL) to make a 20% solution, and then 100% with a DMF eluent. Diluted twice and filtered through a 0.45 μm membrane filter was used as a measurement solution.
(6-2) Measurement condition column: TSKgel SuperAWM-H × 2 + SuperAW2500 × 1 (6.0 mm ID × 150 mm × 3)
Eluent: DMF solution containing 10 mmol / L lithium bromide Flow rate: 0.6 mL / min Detector: RI detector Column temperature: 40 ° C.
Injection volume: 20 μL
Molecular weight standard: Standard polystyrene
<4.評価方法>
(1)ワニスのbの測定方法
 実施例及び比較例で得られたワニスのbを、紫外可視近赤外分光光度計(日本分光(株)製「V-670」)を用いて測定した。ワニスを光路長1cmの石英セルに詰め、この石英セルを紫外可視近赤外分光光度にセットした。波長300~800nmの白色光を照射して、透過率測定を行い、b値を得た。得られたbを初期のb(保管前のb)とした。
<4. Evaluation method>
(1) measured with the b * of the resulting varnish by b * measurement methods Examples and Comparative Examples of the varnish, ultraviolet-visible-near infrared spectrophotometer (manufactured by JASCO Corporation "V-670") did. The varnish was packed in a quartz cell having an optical path length of 1 cm, and this quartz cell was set to ultraviolet visible near infrared spectrophotometry. The transmittance was measured by irradiating white light with a wavelength of 300 to 800 nm to obtain a b * value. The resulting b * was the initial b * (before storage b *).
(2)ワニス保管試験:Δbの算出
 実施例1~2及び比較例1~3で得られたワニスを60℃、2週間保管した。実施例3~4及び比較例3で得られたワニスを50℃、1週間保管した。保管したワニスのbを測定し、保管後のbを得た。初期のb及び保管後のbから、差(Δb)を得た。
(2) Varnish Storage Test: Calculation of Δb * The varnishes obtained in Examples 1-2 and Comparative Examples 1-3 were stored at 60 ° C. for 2 weeks. The varnishes obtained in Examples 3 to 4 and Comparative Example 3 were stored at 50 ° C. for 1 week. The b * of the stored varnish was measured to obtain b * after storage. From the initial b * and after storage b *, to obtain a difference ([Delta] b *).
(3)フィルムの黄色度(YI値)の算出
 実施例及び比較例で得られた透明ポリイミド系高分子フィルムのそれぞれの黄色度(Yellow Index:YI値)を、紫外可視近赤外分光光度計(日本分光(株)製「V-670」)を用いて測定した。サンプルがない状態でバックグランド測定を行った後、ポリイミド系フィルムをサンプルホルダーにセットして、波長300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求めた。3刺激値から下記の式に基づいてYI値を算出した。得られたYI値を初期のYI値(保管前のYI値)とした。
 YI=100×(1.2769X-1.0592Z)/Y
(3) Calculation of yellowness (YI value) of film The yellowness (Yellow Index: YI value) of each of the transparent polyimide polymer films obtained in Examples and Comparative Examples was measured with an ultraviolet-visible near-infrared spectrophotometer. (“V-670” manufactured by JASCO Corporation). After performing background measurement in the absence of a sample, a polyimide film was set on a sample holder, transmittance was measured for light having a wavelength of 300 to 800 nm, and tristimulus values (X, Y, Z) were obtained. . The YI value was calculated from the tristimulus values based on the following formula. The obtained YI value was used as the initial YI value (YI value before storage).
YI = 100 × (1.2769X−1.0592Z) / Y
(4)ワニス保管試験:ΔYI値の算出
 実施例1~2及び比較例1~3で得られたワニスを60℃、2週間保管した。実施例3~4及び比較例4で得られたワニスを50℃、1週間保管した。保管後のワニスを製膜して得られたフィルムのYI値を初期のYI値と同様の方法で測定し、保管後のYI値とした。初期のYI値及び保管後のYI値から、差(ΔYI)を得た。
(4) Varnish Storage Test: Calculation of ΔYI Value The varnishes obtained in Examples 1-2 and Comparative Examples 1-3 were stored at 60 ° C. for 2 weeks. The varnishes obtained in Examples 3 to 4 and Comparative Example 4 were stored at 50 ° C. for 1 week. The YI value of the film obtained by forming the varnish after storage was measured by the same method as the initial YI value, and was defined as the YI value after storage. A difference (ΔYI) was obtained from the initial YI value and the YI value after storage.
(5)脱泡性
 実施例及び比較例で得られたワニスを、強く攪拌し、全体に泡を噛んだ状態にした後、それぞれ、直径7cm、深さ15cmの清浄なガラス瓶いっぱいに詰め、室温(25℃)環境下に8時間放置した。その後、ワニス表面の泡の有無を目視で確認した。目視での観察結果から、下記基準に基づいてワニスの脱泡性を評価した。
(評価基準)
 A(良好):ワニス表面に3cm以上の泡の層が残っていない。
 B(悪い):ワニス表面に3cm以上の泡の層が残っている。
(5) Defoaming property The varnishes obtained in the examples and comparative examples were vigorously stirred and filled with bubbles throughout, and then filled into clean glass bottles having a diameter of 7 cm and a depth of 15 cm, respectively, at room temperature. It was left in an environment (25 ° C.) for 8 hours. Thereafter, the presence or absence of bubbles on the varnish surface was visually confirmed. From the result of visual observation, the defoaming property of the varnish was evaluated based on the following criteria.
(Evaluation criteria)
A (good): No foam layer of 3 cm or more remained on the varnish surface.
B (Poor): A foam layer of 3 cm or more remains on the varnish surface.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例1~2のワニスは、透明ポリイミド系高分子と、溶媒とを含んでいた。実施例1~2のワニスから作製したポリイミドフィルムの全光線透過率は、90%以上であった。
実施例1~2のワニスの調製に用いた溶媒の過酸化物由来のピークの積分値は、いずれも70万以下であった。また、前記溶媒の過酸化物価は、いずれも20mg/kg以下であった。
 実施例1~2のワニスのΔbは、いずれも0.0であった。
The varnishes of Examples 1 and 2 contained a transparent polyimide polymer and a solvent. The total light transmittance of the polyimide films prepared from the varnishes of Examples 1 and 2 was 90% or more.
The integral values of the peaks derived from the peroxides of the solvents used in the preparation of the varnishes of Examples 1 and 2 were all 700,000 or less. The peroxide values of the solvents were all 20 mg / kg or less.
The Δb * values of the varnishes of Examples 1 and 2 were all 0.0.
 比較例1~3のワニスの調製に用いた溶媒の過酸化物由来のピークの積分値は、いずれも70万を超えていた。また、前記溶媒の過酸化物価は、いずれも20mg/kgを超えていた。
 比較例1~3のワニスのΔbは、それぞれ19.0、22.1、及び10.8であった。
The integral value of the peak derived from the peroxide of the solvent used in the preparation of the varnishes of Comparative Examples 1 to 3 exceeded 700,000. In addition, the peroxide values of the solvents all exceeded 20 mg / kg.
The Δb * values of the varnishes of Comparative Examples 1 to 3 were 19.0, 22.1, and 10.8, respectively.
 以上から、実施例1~2のワニスは、比較例1~3のワニスに比べ、Δbが小さく、長期にわたり透明性が高いことが明らかである。 From the above, it is clear that the varnishes of Examples 1 and 2 have small Δb * and high transparency over a long period of time compared to the varnishes of Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例3~4のワニスは透明ポリイミド系高分子と、溶媒とを含んでいた。実施例3~4のワニスから作製したポリアミドイミドフィルムの全光線透過率は、80%以上であった。
 実施例3~4のワニスの調製に用いた溶媒の過酸化物由来のピークの積分値は、いずれも70万以下であり、前記溶媒の過酸化物価は、いずれも20mg/kg以下であった。また、実施例3~4のワニスの過酸化物価は、いずれも2.5mg/kg以下であった。
 実施例3~4のワニスのΔbは、いずれも1.5以下であった。
The varnishes of Examples 3 to 4 contained a transparent polyimide polymer and a solvent. The total light transmittance of the polyamideimide films prepared from the varnishes of Examples 3 to 4 was 80% or more.
The integral values of the peaks derived from the peroxides of the solvents used in the preparation of the varnishes of Examples 3 to 4 were all 700,000 or less, and the peroxide values of the solvents were all 20 mg / kg or less. . The peroxide values of the varnishes of Examples 3 to 4 were all 2.5 mg / kg or less.
The Δb * values of the varnishes of Examples 3 to 4 were all 1.5 or less.
 比較例4のワニスの調製に用いた溶媒の過酸化物由来のピークの積分値は、70万を超えており、前記溶媒の過酸化物価は20mg/kgを超えていた。また、比較例4のワニスの過酸化物価は、2.5mg/kgを超えていた。
 比較例4のワニスのΔbは、23.4であった。
The integral value of the peak derived from the peroxide of the solvent used for the preparation of the varnish of Comparative Example 4 exceeded 700,000, and the peroxide value of the solvent exceeded 20 mg / kg. Moreover, the peroxide value of the varnish of the comparative example 4 exceeded 2.5 mg / kg.
The Δb * of the varnish of Comparative Example 4 was 23.4.
 以上から、実施例3~4のワニスは、比較例4のワニスに比べ、Δbが小さく、長期にわたり透明性が高いことが明らかである。 From the above, it is clear that the varnishes of Examples 3 to 4 have a smaller Δb * and higher transparency over a long period of time than the varnish of Comparative Example 4.

Claims (12)

  1.  透明ポリイミド系高分子と、溶媒とを含むワニスであって、
     化学発光検出液体クロマトグラフ法により検出される過酸化物由来のピークの積分値が70万以下であり、
     該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS) K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる、ワニス。
    A varnish containing a transparent polyimide polymer and a solvent,
    The integral value of the peak derived from the peroxide detected by the chemiluminescence detection liquid chromatography method is 700,000 or less,
    When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured according to Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it, varnish.
  2.  ワニスから厚さ80μmの透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS) K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる、請求項1に記載のワニス。 When a film containing a transparent polyimide polymer having a thickness of 80 μm is prepared from a varnish, the total light transmittance of the film measured in accordance with Japanese Industrial Standard (JIS) K 7105: 1981 is 80% or more. The varnish according to claim 1.
  3.  透明ポリイミド系高分子と、溶媒とを含むワニスであって、
     石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に準拠した方法により検出される該ワニスの過酸化物価が2.5mg/kg以下であり、
     該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS) K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる、ワニス。
    A varnish containing a transparent polyimide polymer and a solvent,
    The peroxide value of the varnish detected by a method in accordance with JPI-5S-46-96 is a peroxide value of 2.5 mg / kg or less.
    When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured according to Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it, varnish.
  4.  透明ポリイミド系高分子と、溶媒とを含むワニスであって、
     石油学会規格灯油の過酸化物価試験方法JPI-5S-46-96に依拠した方法により検出される前記溶媒の過酸化物価が20mg/kg以下であり、
     該ワニスから厚さ50~80μmの該透明ポリイミド系高分子を含むフィルムを作製したときに、日本工業規格(JIS) K 7105:1981に準拠して測定した該フィルムの全光線透過率が80%以上となる、ワニス。
    A varnish containing a transparent polyimide polymer and a solvent,
    The peroxide value of the solvent detected by the method based on JPI-5S-46-96, a peroxide value test method of the Japan Petroleum Institute standard kerosene, is 20 mg / kg or less,
    When a film containing the transparent polyimide polymer having a thickness of 50 to 80 μm was produced from the varnish, the total light transmittance of the film measured according to Japanese Industrial Standard (JIS) K 7105: 1981 was 80%. That's it, varnish.
  5.  ワニスから厚さ80μmの透明ポリイミド系高分子を含むフィルムを作製したときに、前記全光線透過率が90%以上である、請求項1~4のいずれかに記載のワニス。 The varnish according to any one of claims 1 to 4, wherein the total light transmittance is 90% or more when a film containing a transparent polyimide polymer having a thickness of 80 µm is produced from the varnish.
  6.  前記溶媒が、少なくとも2種類のエステルを含む、請求項1~5のいずれかに記載のワニス。 The varnish according to any one of claims 1 to 5, wherein the solvent contains at least two kinds of esters.
  7.  前記透明ポリイミド系高分子のポリスチレン換算重量平均分子量が20万以上である、請求項1~6のいずれかに記載のワニス。 The varnish according to any one of claims 1 to 6, wherein the transparent polyimide polymer has a polystyrene-equivalent weight average molecular weight of 200,000 or more.
  8.  請求項1~7のいずれか記載のワニスから形成された光学フィルム。 An optical film formed from the varnish according to any one of claims 1 to 7.
  9.  フレキシブル表示装置の前面板用のフィルムである、請求項8に記載の光学フィルム。 The optical film according to claim 8, which is a film for a front plate of a flexible display device.
  10.  請求項8又は9に記載の光学フィルムを備えるフレキシブル表示装置。 A flexible display device comprising the optical film according to claim 8 or 9.
  11.  タッチセンサをさらに備える、請求項10に記載のフレキシブル表示装置。 The flexible display device according to claim 10, further comprising a touch sensor.
  12.  偏光板をさらに備える、請求項10又は11に記載のフレキシブル表示装置。 The flexible display device according to claim 10, further comprising a polarizing plate.
PCT/JP2019/013392 2018-03-28 2019-03-27 Varnish containing transparent polyimide-based polymer and solvent WO2019189483A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020509267A JPWO2019189483A1 (en) 2018-03-28 2019-03-27 Varnish containing transparent polyimide polymer and solvent
KR1020207030804A KR20210005607A (en) 2018-03-28 2019-03-27 Varnish containing transparent polyimide polymer and solvent
CN201980021181.7A CN111936581A (en) 2018-03-28 2019-03-27 Varnish containing transparent polyimide-based polymer and solvent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063110 2018-03-28
JP2018063110 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189483A1 true WO2019189483A1 (en) 2019-10-03

Family

ID=68059176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013392 WO2019189483A1 (en) 2018-03-28 2019-03-27 Varnish containing transparent polyimide-based polymer and solvent

Country Status (5)

Country Link
JP (1) JPWO2019189483A1 (en)
KR (1) KR20210005607A (en)
CN (1) CN111936581A (en)
TW (1) TW201942272A (en)
WO (1) WO2019189483A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698865A (en) * 2021-09-03 2021-11-26 厦门三德信科技股份有限公司 Coating for improving impact strength of glass and preparation method thereof
WO2023276093A1 (en) * 2021-06-30 2023-01-05 昭和電工マテリアルズ株式会社 Resin composition and method for producing semiconductor device
WO2023249022A1 (en) * 2022-06-24 2023-12-28 三菱瓦斯化学株式会社 Method for producing polyimide varnish

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176505A (en) * 1994-12-26 1996-07-09 Toray Ind Inc Deaeration of polyimide varnish
JP2008308579A (en) * 2007-06-14 2008-12-25 Dic Corp Polyimide resin composition
WO2011040440A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Substrate for flexible device, thin film transistor substrate for flexible device, flexible device, substrate for thin film element, thin film element, thin film transistor, method for manufacturing substrate for thin film element, method for manufacturing thin film element, and method for manufacturing thin film transistor
WO2013047451A1 (en) * 2011-09-29 2013-04-04 Jsr株式会社 Resin composition, and film formation method using same
US20140238594A1 (en) * 2013-02-28 2014-08-28 Korea Advanced Institute Of Science And Technology Method for manufacturing colorless transparent glass-fabric reinforced polyimide film for flexible displays
JP2015503652A (en) * 2011-12-27 2015-02-02 コーロン インダストリーズ インク Polyamic acid solution
JP2019001989A (en) * 2017-06-16 2019-01-10 大日本印刷株式会社 Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117790A (en) * 2002-09-26 2004-04-15 Toppan Printing Co Ltd Display screen protective film
JP2015174905A (en) 2014-03-14 2015-10-05 Dic株式会社 Curable amide-imide resin, curable resin composition and hardened product of the composition
KR102560059B1 (en) * 2015-07-22 2023-07-27 스미또모 가가꾸 가부시키가이샤 Polyimide-based varnish, method for producing a polyimide-based film using the same, and polyimide-based film
KR102063207B1 (en) * 2016-03-03 2020-01-07 삼성에스디아이 주식회사 Adhesive film, optical member comprising the same and optical display apparatus comprising the same
WO2017169651A1 (en) * 2016-03-30 2017-10-05 コニカミノルタ株式会社 Display device surface member and manufacturing method therefor
KR102494637B1 (en) * 2016-09-30 2023-02-02 스미또모 가가꾸 가부시키가이샤 Manufacturing method of polyimide-based polymer varnish, manufacturing method of polyimide-based polymer film, and transparent polyimide-based polymer film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176505A (en) * 1994-12-26 1996-07-09 Toray Ind Inc Deaeration of polyimide varnish
JP2008308579A (en) * 2007-06-14 2008-12-25 Dic Corp Polyimide resin composition
WO2011040440A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Substrate for flexible device, thin film transistor substrate for flexible device, flexible device, substrate for thin film element, thin film element, thin film transistor, method for manufacturing substrate for thin film element, method for manufacturing thin film element, and method for manufacturing thin film transistor
WO2013047451A1 (en) * 2011-09-29 2013-04-04 Jsr株式会社 Resin composition, and film formation method using same
JP2015503652A (en) * 2011-12-27 2015-02-02 コーロン インダストリーズ インク Polyamic acid solution
US20140238594A1 (en) * 2013-02-28 2014-08-28 Korea Advanced Institute Of Science And Technology Method for manufacturing colorless transparent glass-fabric reinforced polyimide film for flexible displays
JP2019001989A (en) * 2017-06-16 2019-01-10 大日本印刷株式会社 Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276093A1 (en) * 2021-06-30 2023-01-05 昭和電工マテリアルズ株式会社 Resin composition and method for producing semiconductor device
CN113698865A (en) * 2021-09-03 2021-11-26 厦门三德信科技股份有限公司 Coating for improving impact strength of glass and preparation method thereof
CN113698865B (en) * 2021-09-03 2022-07-29 厦门三德信科技股份有限公司 Coating for improving impact strength of glass and preparation method thereof
WO2023249022A1 (en) * 2022-06-24 2023-12-28 三菱瓦斯化学株式会社 Method for producing polyimide varnish

Also Published As

Publication number Publication date
TW201942272A (en) 2019-11-01
JPWO2019189483A1 (en) 2021-05-13
CN111936581A (en) 2020-11-13
KR20210005607A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
CN112041707B (en) Optical film, optical laminate, and flexible image display device
JP6896787B2 (en) Optical film, optical laminate and flexible image display device
KR102077639B1 (en) Optical film
JP2019202551A (en) Optical laminate
WO2019189483A1 (en) Varnish containing transparent polyimide-based polymer and solvent
JP6568290B1 (en) Optical film
JP7361479B2 (en) Optical film containing transparent polyimide polymer
US11333932B2 (en) Optical film
WO2020230663A1 (en) Varnish, optical film, and method for manufacturing optical film
US20200103694A1 (en) Optical film
JP6799182B2 (en) Optical film, flexible display device, and resin composition
KR102103496B1 (en) Polyamideimide resin and optical film
KR20200097235A (en) Polyimide-based resin powder and method for producing polyimide-based resin powder
KR20200095406A (en) Optical film, flexible display device and resin composition
KR102144896B1 (en) Polyimide-based resin powder and method for producing polyimide-based resin powder
JP6611895B2 (en) Optical film
JP7365211B2 (en) optical film
WO2022220177A1 (en) Polarizing plate, laminate, and display device
KR20210110642A (en) optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775337

Country of ref document: EP

Kind code of ref document: A1