JP6896787B2 - Optical film, optical laminate and flexible image display device - Google Patents

Optical film, optical laminate and flexible image display device Download PDF

Info

Publication number
JP6896787B2
JP6896787B2 JP2019081774A JP2019081774A JP6896787B2 JP 6896787 B2 JP6896787 B2 JP 6896787B2 JP 2019081774 A JP2019081774 A JP 2019081774A JP 2019081774 A JP2019081774 A JP 2019081774A JP 6896787 B2 JP6896787 B2 JP 6896787B2
Authority
JP
Japan
Prior art keywords
film
optical film
reflection
optical
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019081774A
Other languages
Japanese (ja)
Other versions
JP2020154274A (en
Inventor
一喜 大松
一喜 大松
仁之 福井
仁之 福井
真義 唐澤
真義 唐澤
柱烈 張
柱烈 張
智熙 柳
智熙 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JP2020154274A publication Critical patent/JP2020154274A/en
Application granted granted Critical
Publication of JP6896787B2 publication Critical patent/JP6896787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Description

本発明は、ポリイミド、ポリアミド及びポリアミドイミドからなる群から選択される少なくとも1種を含む光学フィルムに関する。 The present invention relates to an optical film containing at least one selected from the group consisting of polyimide, polyamide and polyamideimide.

近年、ポリイミド系樹脂を含む光学フィルムは、例えば、テレビ、パソコン、スマートフォン、タブレッド、及び電子ペーパーのような画像表示装置に対して機能を付与するための機能性フィルムとして使用されている。このような画像表示装置の使用者は、該表示装置に適用された光学フィルムを介して直接目視で表示された画像を視認するため、該光学フィルムには優れたフィルム外観が要求される。 In recent years, optical films containing polyimide resins have been used as functional films for imparting functions to image display devices such as televisions, personal computers, smartphones, tabbeds, and electronic paper. Since a user of such an image display device directly visually recognizes an image displayed visually through an optical film applied to the display device, the optical film is required to have an excellent film appearance.

フィルム外観の不良には、例えば、光学フィルムの組成に由来する不良と、光学フィルムの製造方法に由来する不良がある。前者は、例えば、添加剤(より具体的には、シリカ粒子等)が可視光と相互作用して外観が損なわれる不良である。後者は、量産性に優れるロール・ツー・ロール方式で光学フィルムを製造する場合に、例えば光学フィルムのタックが不適切であることに起因してロールから光学フィルムがスムーズに繰り出されず、光学フィルム同士が摺動して光学フィルム表面に傷が生じる不良である。このため、後者では、光学フィルムの繰り出し安定性(巻き出し安定性)が要求される。 Poor film appearance includes, for example, defects derived from the composition of the optical film and defects derived from the method for producing the optical film. The former is, for example, a defect in which an additive (more specifically, silica particles or the like) interacts with visible light to impair the appearance. In the latter case, when the optical film is manufactured by the roll-to-roll method having excellent mass productivity, the optical film is not smoothly drawn out from the roll due to improper tacking of the optical film, for example, and the optical films are not fed to each other smoothly. Is a defect that causes scratches on the surface of the optical film due to sliding. Therefore, in the latter case, the feeding stability (unwinding stability) of the optical film is required.

特開2009−215412号公報Japanese Unexamined Patent Publication No. 2009-2154412

しかしながら、本発明者の検討によれば、上記2つの外観不良はトレードオフの関係にあり、例えば、特許文献1に記載されているようなポリイミド系樹脂とシリカ粒子とを含む光学フィルムは、これらを高い水準で両立することができない場合があった。 However, according to the study of the present inventor, the above two appearance defects are in a trade-off relationship, and for example, an optical film containing a polyimide resin and silica particles as described in Patent Document 1 is such. In some cases, it was not possible to achieve both at a high level.

従って、本発明の目的は、優れた繰り出し安定性及び優れたフィルム外観を兼ね備えた光学フィルム、並びに光学フィルムを含む光学積層体及びフレキシブル画像表示装置を提供することである。 Therefore, an object of the present invention is to provide an optical film having excellent feeding stability and excellent film appearance, and an optical laminate including the optical film and a flexible image display device.

本発明者らは、上記課題を解決するために鋭意検討した結果、ポリイミド、ポリアミド及びポリアミドイミドからなる群から選択される少なくとも1種を含む光学フィルムにおいて、反射(SCE)b*/反射(SCI)b*を所定範囲に調整すれば、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち本発明には、以下の態様が含まれる。
[1]ポリイミド、ポリアミド及びポリアミドイミドからなる群から選択される少なくとも1種を含む光学フィルムであって、式(1)
0.04≦反射(SCE)b*/反射(SCI)b*≦1.50・・・(1)
[式(1)中、反射(SCE)b*はSCE方式で求められる該光学フィルムを反射した光のL*a*b*表色系におけるb*を示し、反射(SCI)b*はSCI方式で求められる該光学フィルムを反射した光のL*a*b*表色系におけるb*を示す]
を満たす、光学フィルム。
[2]式(2)
反射(SCE)a*/反射(SCI)a*≦2.5・・・(2)
[式(2)中、反射(SCE)a*はSCE方式で求められる前記光学フィルムを反射した光のL*a*b*表色系におけるa*を示し、反射(SCI)a*はSCI方式で求められる前記光学フィルムを反射した光のL*a*b*表色系におけるa*を示す]
を更に満たす、[1]に記載の光学フィルム。
[3]ヘーズが1%以下であり、全光線透過率Ttが85%以上である、[1]又は[2]に記載の光学フィルム。
[4]シリカ粒子を更に含む、[1]〜[3]のいずれかに記載の光学フィルム。
[5]前記シリカ粒子が水溶性アルコール分散シリカゾルを溶媒置換したシリカ粒子である、[4]に記載の光学フィルム。
[6]紫外線吸収剤を更に含む、[1]〜[5]のいずれかに記載の光学フィルム。
[7]シリカ粒子を更に含み、
ハンセン溶解球法で決定される三次元距離Raが式(3)
Ra≦8.0・・・(3)
[式(3)中、Raは、溶解度パラメータ空間における、前記シリカ粒子と、前記ポリイミド、前記ポリアミドおよび前記ポリアミドイミドからなる群から選択される少なくとも1種との三次元距離を示す]
を満たす、[1]〜[6]のいずれかに記載の光学フィルム。
[8][1]〜[7]のいずれかに記載の光学フィルムと、該光学フィルムの少なくとも一方の面にハードコート層とを有する、光学積層体。
[9][8]に記載の光学積層体を備える、フレキシブル画像表示装置。
[10]更に偏光板を備える、[9]に記載のフレキシブル画像表示装置。
[11]更にタッチセンサを備える、[9]又は[10]に記載のフレキシブル画像表示装置。
As a result of diligent studies to solve the above problems, the present inventors have conducted reflection (SCE) b * / reflection (SCI) in an optical film containing at least one selected from the group consisting of polyimide, polyamide and polyamide-imide. ) B * was adjusted to a predetermined range to solve the above-mentioned problems, and the present invention was completed. That is, the present invention includes the following aspects.
[1] An optical film containing at least one selected from the group consisting of polyimide, polyamide and polyamide-imide, wherein the formula (1) is used.
0.04 ≤ reflection (SCE) b * / reflection (SCI) b * ≤ 1.50 ... (1)
[In the formula (1), the reflection (SCE) b * indicates b * in the L * a * b * color system of the light reflected by the optical film obtained by the SCE method, and the reflection (SCI) b * is the SCI. Indicates b * in the L * a * b * color system of the light reflected by the optical film obtained by the method]
An optical film that meets the requirements.
[2] Equation (2)
Reflection (SCE) a * / Reflection (SCI) a * ≤ 2.5 ... (2)
[In the formula (2), the reflection (SCE) a * indicates a * in the L * a * b * color system of the light reflected by the optical film obtained by the SCE method, and the reflection (SCI) a * is the SCI. Indicates a * in the L * a * b * color system of the light reflected by the optical film obtained by the method]
The optical film according to [1], which further satisfies the above.
[3] The optical film according to [1] or [2], wherein the haze is 1% or less and the total light transmittance Tt is 85% or more.
[4] The optical film according to any one of [1] to [3], further containing silica particles.
[5] The optical film according to [4], wherein the silica particles are silica particles obtained by subjecting the water-soluble alcohol-dispersed silica sol to a solvent.
[6] The optical film according to any one of [1] to [5], further comprising an ultraviolet absorber.
[7] Further containing silica particles
The three-dimensional distance Ra determined by the Hansen melting sphere method is Eq. (3).
Ra ≤ 8.0 ... (3)
[In formula (3), Ra indicates the three-dimensional distance between the silica particles and at least one selected from the group consisting of the polyimide, the polyamide and the polyamide-imide in the solubility parameter space].
The optical film according to any one of [1] to [6], which satisfies the above conditions.
[8] An optical laminate having the optical film according to any one of [1] to [7] and a hard coat layer on at least one surface of the optical film.
[9] A flexible image display device including the optical laminate according to [8].
[10] The flexible image display device according to [9], further comprising a polarizing plate.
[11] The flexible image display device according to [9] or [10], further including a touch sensor.

本発明によれば、画像表示装置における光学フィルムとして使用された場合に、優れた繰り出し安定性及び優れたフィルム外観を兼ね備えた光学フィルムを提供することができる。また、本発明によれば、優れた繰り出し安定性及び優れたフィルム外観を兼ね備えた光学フィルムを含む光学積層体及びフレキシブル画像表示装置を提供することができる。 According to the present invention, it is possible to provide an optical film having excellent feeding stability and excellent film appearance when used as an optical film in an image display device. Further, according to the present invention, it is possible to provide an optical laminate including an optical film having excellent feeding stability and excellent film appearance, and a flexible image display device.

以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without departing from the spirit of the present invention.

<光学フィルム>
本発明の光学フィルムは、ポリイミド、ポリアミド及びポリアミドイミドからなる群から選択される少なくとも1種を含み、式(1)
0.04≦反射(SCE)b*/反射(SCI)b*≦1.50・・・(1)
[式(1)中、反射(SCE)b*はSCE方式で求められる該光学フィルムを反射した光のL*a*b*表色系におけるb*を示し、反射(SCI)b*はSCI方式で求められる該光学フィルムを反射した光のL*a*b*表色系におけるb*を示す]
を満たす。
<Optical film>
The optical film of the present invention contains at least one selected from the group consisting of polyimide, polyamide and polyamide-imide, and formula (1).
0.04 ≤ reflection (SCE) b * / reflection (SCI) b * ≤ 1.50 ... (1)
[In the formula (1), the reflection (SCE) b * indicates b * in the L * a * b * color system of the light reflected by the optical film obtained by the SCE method, and the reflection (SCI) b * is the SCI. Indicates b * in the L * a * b * color system of the light reflected by the optical film obtained by the method]
Meet.

[1.式(1)]
本発明の光学フィルムの式(1)の比[反射(SCE)b*/反射(SCI)b*]が0.1以上であると、光学フィルムの表面が適度な平滑性を有するため、光学フィルムは適度なタックを有し、繰り出し安定性に優れ、光学フィルム同士の摺動に由来する外観不良が生じにくい。一方、本発明の光学フィルムの式(1)の比[反射(SCE)b*/反射(SCI)b*]が1.9以下であると、光学フィルムの組成に由来する外観不良が生じにくいため、フィルム外観に優れる。よって、式(1)を満たすと、優れた繰り出し安定性及び優れたフィルム外観を兼ね備える。光学フィルムの式(1)の比[反射(SCE)b*/反射(SCI)b*]は、繰り出し安定性及び/又はフィルム外観を更に向上させる観点から、好ましくは0.05以上、より好ましくは0.1以上、更に好ましくは0.13以上である。また、光学フィルムの式(1)の比[反射(SCE)b*/反射(SCI)b*]は、繰り出し安定性及び/又はフィルム外観を更に向上させる観点から、好ましくは1.4以下、より好ましくは1.2以下、更に好ましくは1.1以下である。これらの複数の上限値と下限値とを任意に組合せることができる。
[1. Equation (1)]
When the ratio [reflection (SCE) b * / reflection (SCI) b *] of the formula (1) of the optical film of the present invention is 0.1 or more, the surface of the optical film has appropriate smoothness. The film has an appropriate tack, is excellent in feeding stability, and is less likely to cause appearance defects due to sliding between optical films. On the other hand, when the ratio [reflection (SCE) b * / reflection (SCI) b *] of the formula (1) of the optical film of the present invention is 1.9 or less, appearance defects due to the composition of the optical film are unlikely to occur. Therefore, the film appearance is excellent. Therefore, when the formula (1) is satisfied, it has both excellent feeding stability and excellent film appearance. The ratio [reflection (SCE) b * / reflection (SCI) b *] of the formula (1) of the optical film is preferably 0.05 or more, more preferably, from the viewpoint of further improving the feeding stability and / or the appearance of the film. Is 0.1 or more, more preferably 0.13 or more. Further, the ratio [reflection (SCE) b * / reflection (SCI) b *] of the formula (1) of the optical film is preferably 1.4 or less from the viewpoint of further improving the feeding stability and / or the appearance of the film. It is more preferably 1.2 or less, still more preferably 1.1 or less. These plurality of upper limit values and lower limit values can be arbitrarily combined.

(反射(SCE)b*)
光学フィルムの反射(SCE)b*は、SCE(Specular Component Excluded:正反射光を除く)方式で求められる該光学フィルムを反射した光のL*a*b*表色系におけるb*であり、本明細書において、光学フィルム平面の垂直方向から所定の角度傾けた方向から入射する、波長380〜780nmの範囲における入射光に対する反射光のうち、正反射光を除いた拡散反射光のCIE1976L*a*b*表色系のb*値をいう。反射(SCE)b*は、好ましくは−2.5以上、好ましくは−2.4以上、更に好ましくは−2.3以上である。反射(SCE)b*は、好ましくは−0.08以下、好ましくは−0.1以下、更に好ましくは−0.3以下である。これらの複数の上限値と下限値とを任意に組合せることができる。光学フィルムの反射(SCE)b*は、例えば、分光測色計を用いて測定することができる。測定方法は、実施例に記載の方法により測定できる。
(Reflection (SCE) b *)
The reflection (SCE) b * of the optical film is b * in the L * a * b * color system of the light reflected by the optical film, which is obtained by the SCE (Special Component Excluded) method. In the present specification, CIE1976L * a of diffusely reflected light excluding positively reflected light among reflected light with respect to incident light in a wavelength range of 380 to 780 nm, which is incident from a direction tilted by a predetermined angle from the vertical direction of the optical film plane. * B * Refers to the b * value of the color system. The reflection (SCE) b * is preferably −2.5 or higher, preferably -2.4 or higher, and more preferably -2.3 or higher. The reflection (SCE) b * is preferably −0.08 or less, preferably −0.1 or less, and more preferably −0.3 or less. These plurality of upper limit values and lower limit values can be arbitrarily combined. The reflection (SCE) b * of the optical film can be measured, for example, using a spectrophotometer. The measuring method can be measured by the method described in Examples.

(反射(SCI)b*)
光学フィルムの反射(SCI)b*は、SCI(Specular Component Included:正反射光を含む)方式で求められる前記光学フィルムを反射した光のL*a*b*表色系におけるb*であり、本明細書において、光学フィルム平面の垂直方向から所定の角度傾けた方向から入射する、波長380〜780nmの範囲における入射光に対する反射光(正反射光を含む反射光)のCIE1976L*a*b*表色系のb*値をいう。反射(SCI)b*は、好ましくは−2.9以上、より好ましくは−2.7以上、更に好ましくは−2.5以上である。反射(SCI)b*は、好ましくは−1.4以下、より好ましくは−1.6以下、更に好ましくは−2.0以下である。これらの複数の上限値と下限値とを任意に組合せることができる。光学フィルムの反射(SCI)b*は、例えば、分光測色計を用いて測定することができる。測定方法は、実施例に記載の方法により測定できる。
(Reflection (SCI) b *)
The reflection (SCI) b * of the optical film is b * in the L * a * b * color system of the light reflected by the optical film, which is obtained by the SCI (Specular Component Integrated) method. In the present specification, CIE1976L * a * b * of reflected light (reflected light including specular reflected light) with respect to incident light in the wavelength range of 380 to 780 nm, which is incident from a direction tilted by a predetermined angle from the vertical direction of the optical film plane. Refers to the b * value of the color system. The reflection (SCI) b * is preferably -2.9 or more, more preferably -2.7 or more, still more preferably -2.5 or more. The reflection (SCI) b * is preferably −1.4 or less, more preferably −1.6 or less, still more preferably −2.0 or less. These plurality of upper limit values and lower limit values can be arbitrarily combined. The reflection (SCI) b * of the optical film can be measured, for example, using a spectrophotometer. The measuring method can be measured by the method described in Examples.

式(1)の数値を所定の数値範囲内に調整する手段としては、例えば、白色光と光学フィルム内の成分との相互作用を低減する手段が挙げられる。該相互作用を低減する手段としては、例えば、光学フィルムの膜厚、添加剤(より具体的には、シリカ粒子、紫外線吸収剤、及び増白剤等)の添加、添加剤の特性(より具体的には、粒子径、表面修飾、及び含有量等)を所定の範囲に調整する手段が挙げられる。この中でも、シリカ粒子の粒子径、表面修飾、及び含有量の調整は、シリカ粒子が光学フィルムにおいて凝集しにくく、一次粒子の形態で存在することを可能にするため、シリカ粒子は光学フィルムにおいて均一に分散しやすくなる。そして、光学フィルム表面において凹凸形状に起因する白色光との相互作用が低減され、かつ光学フィルム内においてその凝集体と白色光との相互作用が低減されるため、視認性の低下の抑制(フィルム外観品質の低下の抑制)に寄与すると考えられる。 As a means for adjusting the numerical value of the formula (1) within a predetermined numerical range, for example, a means for reducing the interaction between the white light and the components in the optical film can be mentioned. As means for reducing the interaction, for example, the film thickness of the optical film, the addition of additives (more specifically, silica particles, ultraviolet absorbers, whitening agents, etc.), and the characteristics of the additives (more specifically). Specific examples include means for adjusting the particle size, surface modification, content, etc.) within a predetermined range. Among these, the adjustment of the particle size, surface modification, and content of the silica particles makes it possible for the silica particles to be less likely to aggregate in the optical film and to exist in the form of primary particles, so that the silica particles are uniform in the optical film. It becomes easy to disperse in. Then, the interaction with white light due to the uneven shape on the surface of the optical film is reduced, and the interaction between the aggregate and the white light in the optical film is reduced, so that the deterioration of visibility is suppressed (film). It is considered to contribute to the suppression of deterioration of appearance quality).

[2.式(2)]
本発明の光学フィルムは、好ましくは、式(2)
反射(SCE)a*/反射(SCI)a*≦2.5・・・(2)
[式(2)中、反射(SCE)a*はSCE方式で求められる前記光学フィルムを反射した光のL*a*b*表色系におけるa*を示し、反射(SCI)a*はSCI方式で求められる前記光学フィルムを反射した光のL*a*b*表色系におけるa*を示す]
を満たす。
光学フィルムが式(2)を満たすと、光学フィルムの繰り出し安定性及び/又はフィルム外観が更に向上する。光学フィルムの式(2)の比[反射(SCE)a*/反射(SCI)a*]は、光学フィルムの繰り出し安定性及び/又はフィルム外観を更に向上させる観点から、好ましくは2.2以下、より好ましくは2.0以下、更に好ましくは1.8以下である。また、光学フィルムの式(2)の比[反射(SCE)a*/反射(SCI)a*]は、光学フィルムの繰り出し安定性及び/又はフィルム外観を更に向上させる観点から、好ましくは0.0以上、より好ましくは0.1以上である。これらの複数の上限値と下限値とを任意に組合せることができる。式(2)の数値を所定の数値範囲内に調整する手段としては、例えば、上記の式(1)の数値を所定の数値範囲内に調整する手段が挙げられる。
[2. Equation (2)]
The optical film of the present invention preferably has the formula (2).
Reflection (SCE) a * / Reflection (SCI) a * ≤ 2.5 ... (2)
[In the formula (2), the reflection (SCE) a * indicates a * in the L * a * b * color system of the light reflected by the optical film obtained by the SCE method, and the reflection (SCI) a * is the SCI. Indicates a * in the L * a * b * color system of the light reflected by the optical film obtained by the method]
Meet.
When the optical film satisfies the formula (2), the feeding stability and / or the film appearance of the optical film is further improved. The ratio [reflection (SCE) a * / reflection (SCI) a *] of the formula (2) of the optical film is preferably 2.2 or less from the viewpoint of further improving the feeding stability and / or the film appearance of the optical film. , More preferably 2.0 or less, still more preferably 1.8 or less. Further, the ratio [reflection (SCE) a * / reflection (SCI) a *] of the formula (2) of the optical film is preferably 0. It is 0 or more, more preferably 0.1 or more. These plurality of upper limit values and lower limit values can be arbitrarily combined. As a means for adjusting the numerical value of the formula (2) within a predetermined numerical range, for example, a means for adjusting the numerical value of the above formula (1) within a predetermined numerical range can be mentioned.

(反射(SCE)a*)
光学フィルムの反射(SCE)a*は、SCE方式で求められる該光学フィルムを反射した光のL*a*b*表色系におけるa*であり、本明細書において、光学フィルム平面の垂直方向から所定の角度傾けた方向から入射する、波長380〜780nmの範囲における入射光に対する反射光のうち、正反射光を除いた拡散反射光のCIE1976L*a*b*表色系のa*値をいう。反射(SCE)a*は、好ましくは−0.01以上、好ましくは0.0以上である。反射(SCE)a*は、好ましくは0.6以下、好ましくは0.5以下、更に好ましくは0.4以下である。これらの複数の上限値と下限値とを任意に組合せることができる。光学フィルムの反射(SCE)a*は、例えば、分光測色計を用いて測定することができる。測定方法は、実施例に記載の方法により測定できる。
(Reflection (SCE) a *)
The reflection (SCE) a * of the optical film is a * in the L * a * b * color system of the light reflected by the optical film determined by the SCE method, and in the present specification, the vertical direction of the optical film plane. Of the reflected light with respect to the incident light in the wavelength range of 380 to 780 nm, which is incident from a direction tilted by a predetermined angle, the a * value of the diffused reflected light excluding the normal reflected light is the a * value of the CIE1976L * a * b * color system. Say. The reflection (SCE) a * is preferably −0.01 or higher, preferably 0.0 or higher. The reflection (SCE) a * is preferably 0.6 or less, preferably 0.5 or less, and more preferably 0.4 or less. These plurality of upper limit values and lower limit values can be arbitrarily combined. The reflection (SCE) a * of the optical film can be measured, for example, using a spectrophotometer. The measuring method can be measured by the method described in Examples.

(反射(SCI)a*)
光学フィルムの反射(SCI)a*は、SCI方式で求められる前記光学フィルムを反射した光のL*a*b*表色系におけるa*であり、本明細書において、光学フィルム平面の垂直方向から所定の角度傾けた方向から入射する、波長380〜780nmの範囲における入射光に対する反射光(正反射光を含む反射光)のCIE1976L*a*b*表色系のa*値をいう。反射(SCI)a*は、好ましくは−0.03以上、より好ましくは0.0以上、更に好ましくは0.1以上である。反射(SCI)a*は、好ましくは0.28以下、より好ましくは0.27以下、更に好ましくは0.26以下である。これらの複数の上限値と下限値とを任意に組合せることができる。光学フィルムの反射(SCI)a*は、例えば、分光測色計を用いて測定することができる。測定方法は、実施例に記載の方法により測定できる。
(Reflection (SCI) a *)
The reflection (SCI) a * of the optical film is a * in the L * a * b * color system of the light reflected by the optical film determined by the SCI method, and in the present specification, the vertical direction of the optical film plane. Refers to the a * value of the CIE1976L * a * b * color system of the reflected light (reflected light including the normal reflected light) with respect to the incident light in the wavelength range of 380 to 780 nm, which is incident from the direction tilted by a predetermined angle. The reflection (SCI) a * is preferably −0.03 or more, more preferably 0.0 or more, and further preferably 0.1 or more. The reflection (SCI) a * is preferably 0.28 or less, more preferably 0.27 or less, still more preferably 0.26 or less. These plurality of upper limit values and lower limit values can be arbitrarily combined. The reflection (SCI) a * of the optical film can be measured, for example, using a spectrophotometer. The measuring method can be measured by the method described in Examples.

[3.ヘーズ]
本発明の光学フィルムのヘーズは、光学フィルムの繰り出し安定性及び/又はフィルム外観を更に向上させる観点から、好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.5%以下、特に好ましくは0.3%以下である。光学フィルムのヘーズは、JIS K 7136:2000に準拠して測定することができる。測定方法は、実施例にて詳細に説明する。光学フィルムのヘーズは、添加剤の光学フィルムにおける分散性の程度を示すため、光学フィルムのヘーズが上記範囲内であると、光学フィルムの繰り出し安定性及び/又はフィルム外観に優れる。
[3. Haze]
The haze of the optical film of the present invention is preferably 1% or less, more preferably 0.8% or less, still more preferably 0.5% or less, from the viewpoint of further improving the feeding stability and / or film appearance of the optical film. , Especially preferably 0.3% or less. The haze of the optical film can be measured according to JIS K 7136: 2000. The measuring method will be described in detail in Examples. Since the haze of the optical film indicates the degree of dispersibility of the additive in the optical film, when the haze of the optical film is within the above range, the feeding stability of the optical film and / or the appearance of the film is excellent.

[4.全光線透過率]
本発明の光学フィルムの全光線透過率は、好ましくは85%以上、より好ましくは87%以上、更に好ましくは89%以上である。光学フィルムの全光線透過率は、JIS K 7361−1:1997に準拠して測定することができる。測定方法は、実施例にて詳細に説明する。光学フィルムの全光線透過率が上記数値範囲であると、画像表示装置に組み込んだ際に、十分なフィルム外観を確保することができる。また、光学フィルムの全光線透過率が上記数値範囲であると、一定の明るさを確保しやすくなり得るため、例えば、表示素子等の発光強度を抑えることが可能となり、画像表示装置の消費電力を削減することができる。
[4. Total light transmittance]
The total light transmittance of the optical film of the present invention is preferably 85% or more, more preferably 87% or more, still more preferably 89% or more. The total light transmittance of the optical film can be measured according to JIS K 7361-1: 1997. The measuring method will be described in detail in Examples. When the total light transmittance of the optical film is within the above numerical range, a sufficient film appearance can be ensured when incorporated into an image display device. Further, when the total light transmittance of the optical film is within the above numerical range, it is possible to easily secure a constant brightness, so that it is possible to suppress the light emission intensity of the display element or the like, and the power consumption of the image display device is consumed. Can be reduced.

[5.黄色度]
本発明の光学フィルムの黄色度は、好ましくは3.0以下、より好ましくは2.7以下、更に好ましくは2.5以下である。光学フィルムの黄色度は、JIS K 7373:2006に準拠して測定することができる。測定方法は、実施例にて詳細に説明する。
[5. Yellowness]
The yellowness of the optical film of the present invention is preferably 3.0 or less, more preferably 2.7 or less, still more preferably 2.5 or less. The yellowness of the optical film can be measured according to JIS K 7373: 2006. The measuring method will be described in detail in Examples.

[6.膜厚]
本発明の光学フィルムの膜厚は、好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは30μm以上である。また、該膜厚は、好ましくは120μm以下、より好ましくは100μm以下、更に好ましくは80μm以下、特に好ましくは60μm以下である。膜厚が30μm以上であると光学フィルムをデバイスとしたときの内部の保護の観点で有利であり、膜厚が120μm以下であると耐折性、コスト、透明性などの観点で有利である。測定方法は、実施例にて詳細に説明する。
[6. Film thickness]
The film thickness of the optical film of the present invention is preferably 10 μm or more, more preferably 20 μm or more, still more preferably 30 μm or more. The film thickness is preferably 120 μm or less, more preferably 100 μm or less, still more preferably 80 μm or less, and particularly preferably 60 μm or less. When the film thickness is 30 μm or more, it is advantageous from the viewpoint of internal protection when the optical film is used as a device, and when the film thickness is 120 μm or less, it is advantageous from the viewpoint of folding resistance, cost, transparency and the like. The measuring method will be described in detail in Examples.

[7.溶解度パラメータ]
本発明者は、光学フィルム内の組成が分散不良に起因して凝集等を引き起こし、フィルム外観品質を低下させることを見出し、光学フィルムのような固体系における溶質(例えば、添加剤、より具体的には、紫外線吸収剤、シリカ粒子、及び増白剤等)と媒体(例えば、樹脂、より具体的には、ポリイミド、ポリアミド及びポリアミドイミドからなる群から選択される少なくとも1種の樹脂)との親和性を評価する指標としてハンセン溶解度パラメータ(Hansen Solubility Parameter;以下、HSPと略すことがある)を導入した。本発明者が鋭意検討した結果、下記の式(3)〜式(5)を導き出した。すなわち、本発明の光学フィルムは、フィルム外観品質の低下を抑制する観点(特に、白味を帯びる不具合の発生を抑制する観点)から、HSPに関する式(3)
Ra≦8.0・・・(3)
[式(3)中、RaはHSP空間における前記溶質と前記媒体との間の三次元距離を表す]
を満たすことが好ましい。
また、本発明の光学フィルムは、フィルム外観品質の低下をさらに抑制する観点から、式(3)に加え、HSPに関する式(4)
Δδ≦2.0・・・(4)[式(4)中、Δδは、前記溶質及び前記媒体の間のHSPの分散項、極性項及び水素結合項の合計δの差を表す]
、又は式(5)
Δδ≦4.5・・・(5)[式(5)中、Δδは、前記溶質及び前記媒体の間のHSPの極性項δの差を表す]
を満たすことがより好ましい。
また、本発明の光学フィルムは、フィルム外観品質の低下をさらに抑制する観点から、式(3)〜式(5)をすべて満たすことが更に好ましい。
[7. Solubility parameter]
The present inventor has found that the composition in the optical film causes aggregation and the like due to poor dispersion and deteriorates the appearance quality of the film, and solutes in solid systems such as optical films (for example, additives, more specifically). A UV absorber, silica particles, whitening agent, etc.) and a medium (for example, a resin, more specifically, at least one resin selected from the group consisting of polyimide, polyamide, and polyamide-imide). The Hansen solubility parameter (hereinafter, may be abbreviated as HSP) was introduced as an index for evaluating the affinity. As a result of diligent studies by the present inventor, the following equations (3) to (5) have been derived. That is, the optical film of the present invention has the formula (3) related to HSP from the viewpoint of suppressing deterioration of film appearance quality (particularly, from the viewpoint of suppressing the occurrence of whitish defects).
Ra ≤ 8.0 ... (3)
[In formula (3), Ra represents the three-dimensional distance between the solute and the medium in the HSP space]
It is preferable to satisfy.
Further, the optical film of the present invention has the formula (4) related to HSP in addition to the formula (3) from the viewpoint of further suppressing the deterioration of the film appearance quality.
Δδ t ≤ 2.0 ... (4) [In formula (4), Δδ t represents the difference of the total δ t of the dispersion term, polarity term and hydrogen bond term of HSP between the solute and the medium. ]
, Or formula (5)
Δδ p ≤ 4.5 ... (5) [In formula (5), Δδ p represents the difference in the polarity term δ p of HSP between the solute and the medium]
It is more preferable to satisfy.
Further, the optical film of the present invention more preferably satisfies all of the formulas (3) to (5) from the viewpoint of further suppressing the deterioration of the film appearance quality.

(7−1.HSP値の算出方法)
HSP値は、ハンセン溶解球法(Hansen Solubility Sphere法)を用いて、算出する。以下にその詳細を説明する。対象となる組成(前記溶質及び前記媒体)をHSP値が既知の溶媒に溶解又は分散させ、当該組成の特定の溶媒に対する溶解性又は分散性を評価する。溶解性及び分散性の評価は、それぞれ対象とする組成が溶媒に溶解したか否か及び分散したか否かを目視で判定して行う。これを複数の溶媒について行う。この溶媒の種類は、δが幅広く異なる溶媒を用いることが好ましく、より具体的には、好ましくは10種以上、より好ましくは15種以上、更に好ましくは18種以上である。次に、得られた溶解性又は分散性の評価結果をHSPの分散項δ、極性項δおよび水素結合項δからなる三次元空間(HSP空間)にプロットする。対象の組成が溶解又は分散する溶媒が内側に含まれ、かつ対象の組成が溶解又は分散しない溶媒が外側になり、さらに半径が最小となる球(Hansen球)を作成する。得られたHansen球の中心座標(δ,δ,δ)を対象とする組成のHSPとする。
(7-1. Method of calculating HSP value)
The HSP value is calculated using the Hansen Solubility Sphere method. The details will be described below. The composition of interest (the solute and the medium) is dissolved or dispersed in a solvent having a known HSP value, and the solubility or dispersibility of the composition in a specific solvent is evaluated. The solubility and dispersibility are evaluated by visually determining whether or not the target composition is dissolved in a solvent and whether or not it is dispersed. This is done for multiple solvents. As the type of the solvent, it is preferable to use a solvent having a wide range of δ t , more specifically, 10 kinds or more, more preferably 15 kinds or more, and further preferably 18 kinds or more. Next, the obtained solubility or dispersibility evaluation results are plotted in a three-dimensional space (HSP space) consisting of the dispersion term δ d , the polarity term δ p and the hydrogen bond term δ h of HSP. A sphere (Hansen sphere) is created in which a solvent in which the target composition dissolves or disperses is contained inside, and a solvent in which the target composition does not dissolve or disperse is on the outside, and the radius is further minimized. Let the HSP of the composition targeting the center coordinates (δ d , δ p, δ h) of the obtained Hansen sphere.

(7−2.δt、Δδt、Δδ及びRaの算出方法)
7−1.HSP値の算出方法を用いて、光学フィルム内の2種の成分、例えば、樹脂を成分1とし、シリカを成分2としたときのHSP値(δd1,δp1,δh1:成分1のHSP値、δd2,δp2,δh2:成分2のHSP値)を算出したとする。
HSPの分散項、極性項及び水素結合項の合計δ並びに成分1及び成分2の間の当該合計の差Δδは、それぞれ式(6)及び式(7)を用いて算出される。得られるδはヒルデブランド(Hildebrand)のHSPに相当する。
δ =δ +δ +δ ・・・(6)
Δδ=|δt2−δt1|・・・(7)
Δδは、フィルム外観品質の低下をさらに抑制する観点から、好ましくは3.5以下、より好ましくは3.0以下、更に好ましくは2.0以下、更により好ましくは1.0以下、特に好ましくは0.5以下である。
成分1及び成分2の間のHSPの極性項の差Δδは、式(8)を用いて算出される。
Δδ=|δp2−δp1|・・・(8)
Δδは、フィルム外観品質の低下をさらに抑制する観点から、好ましくは4.5以下、より好ましくは3.5以下、更に好ましくは3.0以下、更により好ましくは2.0以下、特に好ましくは1.0以下である。
HSP空間における成分1と成分2との間の三次元距離Ra(>0)は式(9)を用いて算出される。
Ra=4(δd2−δd1+(δp2−δp1+(δh2−δh1・・・(9)
Ra値が小さいほど、成分1と成分2との親和性が良好であることを示す。Ra値は、フィルム外観品質の低下をさらに抑制する観点から、好ましくは8.0以下、より好ましくは7.0以下、更に好ましくは6.0以下、更により好ましくは5.5以下、特に好ましくは5.0以下である。
(7-2.δ t, Δδ t, method of calculating the .DELTA..delta p and Ra)
7-1. Using the method of calculating HSP value, HSP value (δ d1 , δ p1 , δ h1 : HSP of component 1) when two kinds of components in the optical film, for example, resin is component 1 and silica is component 2. It is assumed that the value, δ d2 , δ p2 , δ h2 : HSP value of component 2) is calculated.
HSP variance terms of the total [delta] t and the total difference .DELTA..delta t of between components 1 and 2 of the polarity term and hydrogen bond is calculated using the respective formulas (6) and (7). The obtained δ t corresponds to the HSP of Hildebrand.
δ t 2 = δ d 2 + δ p 2 + δ h 2 ... (6)
Δδ t = | δ t2- δ t1 | ... (7)
Δδ t is preferably 3.5 or less, more preferably 3.0 or less, still more preferably 2.0 or less, still more preferably 1.0 or less, particularly preferably, from the viewpoint of further suppressing deterioration of film appearance quality. Is 0.5 or less.
The difference Δδ p of the polar terms of HSP between component 1 and component 2 is calculated using the formula (8).
Δδ p = | δ p2- δ p1 | ... (8)
Δδ p is preferably 4.5 or less, more preferably 3.5 or less, still more preferably 3.0 or less, still more preferably 2.0 or less, particularly preferably, from the viewpoint of further suppressing deterioration of film appearance quality. Is 1.0 or less.
The three-dimensional distance Ra (> 0) between the component 1 and the component 2 in the HSP space is calculated using the equation (9).
Ra 2 = 4 (δ d2- δ d1 ) 2 + (δ p2- δ p1 ) 2 + (δ h2- δ h1 ) 2 ... (9)
The smaller the Ra value, the better the affinity between the component 1 and the component 2. The Ra value is preferably 8.0 or less, more preferably 7.0 or less, still more preferably 6.0 or less, still more preferably 5.5 or less, particularly preferably, from the viewpoint of further suppressing deterioration of film appearance quality. Is 5.0 or less.

[8.ポリイミド、ポリアミド、ポリアミドイミド]
本発明の光学フィルムは、ポリイミド系樹脂及びポリアミド系樹脂からなる群から選択される少なくとも1種の樹脂を含む。ポリイミド系樹脂とは、イミド基を含む繰返し構造単位を含有する重合体(以下、ポリイミドと記載することがある)、並びにイミド基及びアミド基の両方を含む繰返し構造単位を含有する重合体(以下、ポリアミドイミドと記載することがある)からなる群から選択される少なくとも1種の重合体を示す。また、ポリアミド系樹脂とは、アミド基を含む繰り返し構造単位を含有する重合体を示す。
[8. Polyimide, polyamide, polyamide-imide]
The optical film of the present invention contains at least one resin selected from the group consisting of polyimide-based resins and polyamide-based resins. The polyimide-based resin is a polymer containing a repeating structural unit containing an imide group (hereinafter, may be referred to as polyimide) and a polymer containing a repeating structural unit containing both an imide group and an amide group (hereinafter, referred to as a polyimide). , Polyamidoimide) to be selected from the group consisting of at least one polymer. Further, the polyamide-based resin indicates a polymer containing a repeating structural unit containing an amide group.

ポリイミド系樹脂は、式(10)で表される繰り返し構造単位を有することが好ましい。ここで、Gは4価の有機基であり、Aは2価の有機基である。ポリイミド系樹脂は、G及び/又はAが異なる、2種類以上の式(10)で表される繰り返し構造単位を含んでいてもよい。

Figure 0006896787
The polyimide resin preferably has a repeating structural unit represented by the formula (10). Here, G is a tetravalent organic group and A is a divalent organic group. The polyimide-based resin may contain two or more types of repeating structural units represented by the formula (10), which differ in G and / or A.
Figure 0006896787

ポリイミド系樹脂は、光学フィルムの各種物性を損なわない範囲で、式(11)、式(12)及び式(13)で表される繰り返し構造単位からなる群から選択される1以上を含んでいてもよい。 The polyimide resin contains one or more selected from the group consisting of the repeating structural units represented by the formulas (11), (12) and (13) as long as the various physical properties of the optical film are not impaired. May be good.

Figure 0006896787
Figure 0006896787

式(10)及び式(11)中、G及びGは、それぞれ独立して、4価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。G及びGとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基並びに4価の炭素数6以下の鎖式炭化水素基が例示される。光学フィルムの黄色度(YI値)を抑制しやすいことから、なかでも、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)又は式(27)で表される基が好ましい。 In formulas (10) and (11), G and G 1 are independently tetravalent organic groups, and may be preferably substituted with a hydrocarbon group or a hydrocarbon group substituted with fluorine. It is an organic group. Examples of G and G 1 include formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), and formula (28). ) Or a group represented by the formula (29) and a chain hydrocarbon group having a tetravalent carbon number of 6 or less. Since it is easy to suppress the yellowness (YI value) of the optical film, among them, the formula (20), the formula (21), the formula (22), the formula (23), the formula (24), the formula (25), the formula The group represented by (26) or the formula (27) is preferable.

Figure 0006896787
Figure 0006896787

式(20)〜式(29)中、
*は結合手を表し、
Zは、単結合、−O−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−、−C(CF−、−Ar−、−SO−、−CO−、−O−Ar−O−、−Ar−O−Ar−、−Ar−CH−Ar−、−Ar−C(CH−Ar−又は−Ar−SO−Ar−を表す。Arはフッ素原子で置換されていてもよい炭素数6〜20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。
In equations (20) to (29),
* Represents a bond
Z is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- , or Represents −Ar−SO 2 −Ar−. Ar represents an arylene group having 6 to 20 carbon atoms which may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.

式(12)中、Gは3価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Gとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基並びに3価の炭素数6以下の鎖式炭化水素基が例示される。 In formula (12), G 2 is a trivalent organic group, preferably an organic group that may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The G 2, equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) or Examples thereof include a group in which any one of the bonds of the group represented by the formula (29) is replaced with a hydrogen atom, and a chain hydrocarbon group having a trivalent carbon number of 6 or less.

式(13)中、Gは2価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Gとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基及び炭素数6以下の鎖式炭化水素基が例示される。 In formula (13), G 3 is a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a hydrocarbon group substituted with fluorine. The G 3, equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) or Among the group bonds represented by the formula (29), a group in which two non-adjacent groups are replaced with hydrogen atoms and a chain hydrocarbon group having 6 or less carbon atoms are exemplified.

式(10)〜(13)中、A、A、A及びAは、それぞれ独立して、2価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。A、A、A及びAとしては、式(30)、式(31)、式(32)、式(33)、式(34)、式(35)、式(36)、式(37)もしくは式(38)で表される基;それらがメチル基、フルオロ基、クロロ基もしくはトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。 In formulas (10) to (13), A, A 1 , A 2 and A 3 are independently divalent organic groups, preferably substituted with a hydrocarbon group or a hydrocarbon group substituted with fluorine. It is an organic group that may be used. As A, A 1 , A 2 and A 3 , the formula (30), the formula (31), the formula (32), the formula (33), the formula (34), the formula (35), the formula (36), the formula ( 37) or a group represented by the formula (38); a group in which they are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and a chain hydrocarbon group having 6 or less carbon atoms are exemplified.

Figure 0006896787
Figure 0006896787

式(30)〜式(38)中、
*は結合手を表し、
、Z及びZは、それぞれ独立して、単結合、−O−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−、−C(CF−、−SO−又は−CO−を表す。
1つの例は、Z及びZが−O−であり、かつ、Zが−CH−、−C(CH−、−C(CF−又は−SO−である。ZとZとの各環に対する結合位置、及び、ZとZとの各環に対する結合位置は、それぞれ、各環に対してメタ位又はパラ位であることが好ましい。
In equations (30) to (38),
* Represents a bond
Z 1, Z 2 and Z 3 are each independently a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 Represents −, −C (CF 3 ) 2- , −SO 2- or −CO−.
One example is that Z 1 and Z 3 are -O- and Z 2 is -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- or -SO 2- . is there. It is preferable that the bonding position of Z 1 and Z 2 with respect to each ring and the bonding position of Z 2 and Z 3 with respect to each ring are in the meta position or the para position with respect to each ring, respectively.

ポリイミド系樹脂は、視認性(フィルム外観)を向上させやすい観点から、式(10)で表される繰り返し構造単位と式(13)で表される繰り返し構造単位を少なくとも有するポリアミドイミドであることが好ましい。また、ポリアミド系樹脂は、式(13)で表される繰り返し構造単位を少なくとも有することが好ましい。 The polyimide resin is a polyamide-imide having at least a repeating structural unit represented by the formula (10) and a repeating structural unit represented by the formula (13) from the viewpoint of easily improving visibility (film appearance). preferable. Further, the polyamide resin preferably has at least a repeating structural unit represented by the formula (13).

本発明の一実施態様において、ポリイミド系樹脂は、ジアミン及びテトラカルボン酸化合物(酸クロライド化合物、テトラカルボン酸二無水物等のテトラカルボン酸化合物類縁体)、並びに、必要に応じて、ジカルボン酸化合物(酸クロライド化合物等のジカルボン酸化合物類縁体)、トリカルボン酸化合物(酸クロライド化合物、トリカルボン酸無水物等のトリカルボン酸化合物類縁体)等を反応(重縮合)させて得られる縮合型高分子である。式(10)又は式(11)で表される繰り返し構造単位は、通常、ジアミン及びテトラカルボン酸化合物から誘導される。式(12)で表される繰り返し構造単位は、通常、ジアミン及びトリカルボン酸化合物から誘導される。式(13)で表される繰り返し構造単位は、通常、ジアミン及びジカルボン酸化合物から誘導される。 In one embodiment of the present invention, the polyimide-based resin is a diamine and a tetracarboxylic acid compound (a tetracarboxylic acid compound analog such as an acid chloride compound and a tetracarboxylic acid dianhydride), and, if necessary, a dicarboxylic acid compound. (Dicarboxylic acid compound analogs such as acid chloride compounds), tricarboxylic acid compounds (tricarboxylic acid compound analogs such as acid chloride compounds and tricarboxylic acid anhydrides), etc. are reacted (hypercondensation) to obtain condensed polymers. .. The repeating structural unit represented by the formula (10) or the formula (11) is usually derived from a diamine and a tetracarboxylic acid compound. The repeating structural unit represented by the formula (12) is usually derived from a diamine and a tricarboxylic acid compound. The repeating structural unit represented by the formula (13) is usually derived from a diamine and a dicarboxylic acid compound.

本発明の一実施態様において、ポリアミド系樹脂は、ジアミンとジカルボン酸化合物とを反応(重縮合)させて得られる縮合型高分子である。すなわち、式(13)で表される繰り返し構造単位は、通常、ジアミン及びジカルボン酸化合物から誘導される。 In one embodiment of the present invention, the polyamide resin is a condensation type polymer obtained by reacting (polycondensing) a diamine and a dicarboxylic acid compound. That is, the repeating structural unit represented by the formula (13) is usually derived from a diamine and a dicarboxylic acid compound.

テトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を併用してもよい。テトラカルボン酸化合物は、二無水物の他、酸クロライド化合物等のテトラカルボン酸化合物類縁体であってもよい。 Examples of the tetracarboxylic acid compound include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride. The tetracarboxylic acid compound may be used alone or in combination of two or more. The tetracarboxylic dian compound may be a tetracarboxylic dian compound analog such as an acid chloride compound in addition to the dianhydride.

芳香族テトラカルボン酸二無水物の具体例としては、4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,2−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物及び4,4’−(p−フェニレンジオキシ)ジフタル酸二無水物及び4,4’−(m−フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Specific examples of aromatic tetracarboxylic dianhydrides include 4,4'-oxydiphthalic acid dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2', 3,. 3'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-Diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Dihydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride (6FDA), 1,2-bis ( 2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3,4-dicarboxyphenyl) ethane dianhydride , 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride and Examples thereof include 4,4'-(p-phenylenedioxy) diphthalic acid dianhydride and 4,4'-(m-phenylenedioxy) diphthalic acid dianhydride. These can be used alone or in combination of two or more.

脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、ジシクロヘキシル3,3’,4,4’−テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4−ブタンテトラカルボン酸二無水物、1,2,3,4−ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。 Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydride. The cyclic aliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. Cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo [2.2] .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl3,3', 4,4'-tetracarboxylic dianhydride and their positional isomers can be mentioned. .. These can be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride and the like. These can be used alone or in combination of two or more. Further, a cyclic aliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may be used in combination.

上記テトラカルボン酸二無水物の中でも、高透明性及び低着色性の観点から、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物及び4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物が好ましい。また、テトラカルボン酸として、上記テトラカルボン酸化合物の無水物の水付加体を用いてもよい。 Among the above tetracarboxylic dianhydrides, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.2] octo-7-ene, from the viewpoint of high transparency and low colorability. -2,3,5,6-tetracarboxylic dianhydride and 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride, and mixtures thereof are preferred. Further, as the tetracarboxylic acid, a water adduct of the anhydride of the tetracarboxylic acid compound may be used.

トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。
具体例としては、1,2,4−ベンゼントリカルボン酸の無水物;2,3,6−ナフタレントリカルボン酸−2,3−無水物;フタル酸無水物と安息香酸とが単結合、−CH−、−C(CH−、−C(CF−、−SO−もしくはフェニレン基で連結された化合物が挙げられる。
Examples of the tricarboxylic acid compound include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and two or more of them may be used in combination.
As a specific example, an anhydride of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; a single bond of phthalic anhydride and benzoic acid, -CH 2 -, - C (CH 3) 2 -, - C (CF 3) 2 -, - SO 2 - or a compound linked phenylene group.

ジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられ、それらを2種以上併用してもよい。それらの具体例としては、テレフタル酸ジクロリド(テレフタロイルクロリド(TPC));イソフタル酸ジクロリド;ナフタレンジカルボン酸ジクロリド;4,4’−ビフェニルジカルボン酸ジクロリド;3,3’−ビフェニルジカルボン酸ジクロリド;4,4’−オキシビス(ベンゾイルクロリド)(OBBC);炭素数8以下である鎖式炭化水素のジカルボン酸化合物及び2つの安息香酸が単結合、−CH−、−C(CH−、−C(CF−、−SO−もしくはフェニレン基で連結された化合物が挙げられる。 Examples of the dicarboxylic acid compound include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples thereof include terephthalic acid dichloride (terephthaloyl chloride (TPC)); isophthalic acid dichloride; naphthalenedicarboxylic acid dichloride; 4,4'-biphenyldicarboxylic acid dichloride; 3,3'-biphenyldicarboxylic acid dichloride; 4 , 4'-Oxybis (benzoyl chloride) (OBBC); a dicarboxylic acid compound of a chain hydrocarbon having 8 or less carbon atoms and two benzoic acids are single-bonded, -CH 2- , -C (CH 3 ) 2- , Examples thereof include compounds linked by -C (CF 3 ) 2- , -SO 2- or a phenylene group.

ジアミンとしては、例えば、脂肪族ジアミン、芳香族ジアミン又はこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、芳香環がベンゼン環であることが好ましい。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。 Examples of the diamine include aliphatic diamines, aromatic diamines, and mixtures thereof. In addition, in this embodiment, "aromatic diamine" represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be contained in a part of the structure. The aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, it is preferable that the aromatic ring is a benzene ring. Further, the "aliphatic diamine" represents a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be contained as a part of the structure thereof.

脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン及び1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン、4,4’−ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Examples of the aliphatic diamine include an acyclic aliphatic diamine such as hexamethylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornanediamine, 4,4'-. Examples thereof include cyclic aliphatic diamines such as diaminodicyclohexylmethane. These can be used alone or in combination of two or more.

芳香族ジアミンとしては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、2,4−トルエンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン;4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ジアミノジフェニルスルホン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)ベンジジン(2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノジフェニル(TFMB))、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−アミノ−3−メチルフェニル)フルオレン、9,9−ビス(4−アミノ−3−クロロフェニル)フルオレン、9,9−ビス(4−アミノ−3−フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Examples of the aromatic diamine include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylene diamine, p-xylylene diamine, 1,5-diaminonaphthalene, and 2,6-diaminonaphthalene. Aromatic amines having one aromatic ring, such as, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'. -Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis ( 4-Aminophenoxy) benzene, 4,4'-diaminodiphenyl sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [ 4- (4-Aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) benzidine (2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl (TFMB)), 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-methylphenyl) fluorene, 9,9-bis (4) Examples thereof include aromatic diamines having two or more aromatic rings, such as −amino-3-chlorophenyl) fluorene and 9,9-bis (4-amino-3-fluorophenyl) fluorene. These can be used alone or in combination of two or more.

上記ジアミンの中でも、高透明性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましい。2,2’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)ベンジジン、4,4’−ビス(4−アミノフェノキシ)ビフェニル及び4,4’−ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることが更に好ましく、2,2’−ビス(トリフルオロメチル)ベンジジンを用いることが更により好ましい。 Among the above diamines, from the viewpoint of high transparency and low colorability, it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure. One selected from the group consisting of 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) benzidine, 4,4'-bis (4-aminophenoxy) biphenyl and 4,4'-diaminodiphenyl ether. It is even more preferable to use the above, and even more preferably to use 2,2'-bis (trifluoromethyl) benzidine.

ポリイミド系樹脂は、上記ジアミン、テトラカルボン酸化合物、トリカルボン酸化合物、ジカルボン酸化合物等の各原料を慣用の方法、例えば、撹拌等の方法により混合した後、得られた中間体をイミド化触媒及び必要に応じて脱水剤の存在下で、イミド化することにより得られる。ポリアミド系樹脂は、上記ジアミン、ジカルボン酸化合物等の各原料を慣用の方法、例えば、撹拌等の方法により混合することで得られる。 In the polyimide-based resin, each raw material such as the diamine, the tetracarboxylic acid compound, the tricarboxylic acid compound, and the dicarboxylic acid compound is mixed by a conventional method, for example, a method such as stirring, and then the obtained intermediate is used as an imidization catalyst and an imidization catalyst. It is obtained by imidization in the presence of a dehydrating agent, if necessary. The polyamide resin can be obtained by mixing each of the raw materials such as the diamine and the dicarboxylic acid compound by a conventional method, for example, a method such as stirring.

イミド化工程で使用されるイミド化触媒としては、特に限定されないが、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N−エチルピペリジン、N−プロピルピペリジン、N−ブチルピロリジン、N−ブチルピペリジン、及びN−プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びに2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、2−エチルピリジン、3−エチルピリジン、4−エチルピリジン、2,4−ジメチルピリジン、2,4,6−トリメチルピリジン、3,4−シクロペンテノピリジン、5,6,7,8−テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。 The imidization catalyst used in the imidization step is not particularly limited, and is, for example, an aliphatic amine such as tripropylamine, dibutylpropylamine, ethyldibutylamine; N-ethylpiperidin, N-propylpiperidin, N-butylpyrolidin. , N-butylpiperidin, and alicyclic amines such as N-propylhexahydroazepine (monocyclic); azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2] .2] Alicyclic amines (polycyclic) such as octane and azabicyclo [3.2.2] nonane; and 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3- Fragrances such as ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7,8-tetrahydroisoquinoline, and isoquinolin. Amine can be mentioned.

イミド化工程で使用される脱水剤としては、特に限定されないが、例えば無水酢酸、プロピオン酸無水物、イソ酪酸無水物、ピバル酸無水物、酪酸無水物、イソ吉草酸無水物などが挙げられる。 The dehydrating agent used in the imidization step is not particularly limited, and examples thereof include acetic anhydride, propionic anhydride, isobutyric anhydride, pivalic acid anhydride, butyric anhydride, and isovaleric acid anhydride.

各原料の混合及びイミド化工程において、反応温度は、特に限定されないが、例えば15〜350℃、好ましくは20〜100℃である。反応時間も特に限定されないが、例えば10分〜10時間程度である。必要に応じて、不活性雰囲気又は減圧の条件下において反応を行ってよい。また、反応は溶媒中で行ってよく、溶媒としては、例えばワニスの調製に使用される溶媒として例示のものが挙げられる。反応後、ポリイミド系樹脂又はポリアミド系樹脂を精製する。精製方法としては、例えば反応液に貧溶媒を加えて再沈殿法により樹脂を析出させ、乾燥し沈殿物を取りだし、必要に応じて沈殿物をメタノール等の溶媒で洗浄して乾燥させる方法等が挙げられる。
なお、ポリイミド系樹脂の製造は、例えば特開2006−199945号公報又は特開2008−163107号公報に記載の製造方法を参照してもよい。また、ポリイミド系樹脂は、市販品を使用することもでき、その具体例としては、三菱瓦斯化学(株)製ネオプリム(登録商標)、河村産業(株)製KPI−MX300F等が挙げられる。
In the mixing and imidization steps of each raw material, the reaction temperature is not particularly limited, but is, for example, 15 to 350 ° C, preferably 20 to 100 ° C. The reaction time is also not particularly limited, but is, for example, about 10 minutes to 10 hours. If necessary, the reaction may be carried out under conditions of an inert atmosphere or reduced pressure. The reaction may be carried out in a solvent, and examples of the solvent include those used for preparing a varnish. After the reaction, the polyimide resin or the polyamide resin is purified. Examples of the purification method include a method in which a poor solvent is added to the reaction solution, the resin is precipitated by a reprecipitation method, dried to remove the precipitate, and if necessary, the precipitate is washed with a solvent such as methanol and dried. Can be mentioned.
For the production of the polyimide resin, for example, the production method described in JP-A-2006-199945 or JP-A-2008-163107 may be referred to. As the polyimide resin, a commercially available product can be used, and specific examples thereof include Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Company, Ltd., KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd., and the like.

ポリイミド系樹脂又はポリアミド系樹脂の重量平均分子量は、好ましくは200,000以上、より好ましくは250,000以上、更に好ましくは300,000以上であり、好ましくは600,000以下、より好ましくは500,000以下である。ポリイミド系樹脂又はポリアミド系樹脂の重量平均分子量が大きいほど、フィルム化した際の高い耐屈曲性を発現しやすい傾向がある。そのため、光学フィルムの耐屈曲性を高める観点からは、重量平均分子量が上記の下限以上であることが好ましい。一方、ポリイミド系樹脂又はポリアミド系樹脂の重量平均分子量が小さいほど、ワニスの粘度を低くしやすく、加工性を向上させやすい傾向がある。また、ポリイミド系樹脂又はポリアミド系樹脂の延伸性が向上しやすい傾向がある。そのため、加工性及び延伸性の観点からは、重量平均分子量が上記の上限以下であることが好ましい。なお、本願において重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により求めることができ、例えば実施例に記載の方法により算出できる。 The weight average molecular weight of the polyimide resin or the polyamide resin is preferably 200,000 or more, more preferably 250,000 or more, still more preferably 300,000 or more, preferably 600,000 or less, more preferably 500, It is 000 or less. The larger the weight average molecular weight of the polyimide resin or the polyamide resin, the more likely it is that high bending resistance when formed into a film is exhibited. Therefore, from the viewpoint of enhancing the bending resistance of the optical film, it is preferable that the weight average molecular weight is at least the above lower limit. On the other hand, the smaller the weight average molecular weight of the polyimide resin or the polyamide resin, the easier it is to lower the viscosity of the varnish and improve the processability. In addition, the stretchability of the polyimide resin or the polyamide resin tends to be improved. Therefore, from the viewpoint of processability and stretchability, the weight average molecular weight is preferably not more than the above upper limit. In the present application, the weight average molecular weight can be obtained by gel permeation chromatography (GPC) measurement and converted to standard polystyrene, and can be calculated by, for example, the method described in Examples.

ポリイミド系樹脂のイミド化率は、好ましくは95〜100%、より好ましくは97〜100%、更に好ましくは98〜100%、特に好ましくは100%である。ワニスの安定性、得られた光学フィルムの機械物性の観点からは、イミド化率が上記の下限以上であることが好ましい。なお、イミド化率は、IR法、NMR法などにより求めることができる。上記観点から、ワニス中に含まれるポリイミド系樹脂のイミド化率が上記範囲内であることが好ましい。 The imidization ratio of the polyimide resin is preferably 95 to 100%, more preferably 97 to 100%, still more preferably 98 to 100%, and particularly preferably 100%. From the viewpoint of the stability of the varnish and the mechanical properties of the obtained optical film, the imidization ratio is preferably at least the above lower limit. The imidization rate can be determined by an IR method, an NMR method, or the like. From the above viewpoint, it is preferable that the imidization ratio of the polyimide resin contained in the varnish is within the above range.

本発明の好ましい一実施形態において、本発明の光学フィルムに含まれるポリイミド系樹脂又はポリアミド系樹脂は、例えば上記の含フッ素置換基等によって導入することができる、フッ素原子等のハロゲン原子を含んでよい。ポリイミド系樹脂又はポリアミド系樹脂がハロゲン原子を含む場合、光学フィルムの弾性率を向上させかつ黄色度(YI値)を低減させやすい。光学フィルムの弾性率が高いと、該フィルムにおけるキズ及びシワ等の発生を抑制しやすく、また、光学フィルムの黄色度が低いと、該フィルムの透明性を向上させやすくなる。ハロゲン原子は、好ましくはフッ素原子である。ポリイミド系樹脂又はポリアミド系樹脂にフッ素原子を含有させるために好ましい含フッ素置換基としては、例えばフルオロ基及びトリフルオロメチル基が挙げられる。 In a preferred embodiment of the present invention, the polyimide resin or the polyamide resin contained in the optical film of the present invention contains a halogen atom such as a fluorine atom which can be introduced by, for example, the above-mentioned fluorine-containing substituent or the like. Good. When the polyimide resin or the polyamide resin contains halogen atoms, it is easy to improve the elastic modulus of the optical film and reduce the yellowness (YI value). When the elastic modulus of the optical film is high, it is easy to suppress the occurrence of scratches and wrinkles in the film, and when the yellowness of the optical film is low, it is easy to improve the transparency of the film. The halogen atom is preferably a fluorine atom. Preferred fluorine-containing substituents for containing a fluorine atom in the polyimide-based resin or the polyamide-based resin include, for example, a fluoro group and a trifluoromethyl group.

ポリイミド系樹脂又はポリアミド系樹脂におけるハロゲン原子の含有量は、ポリイミド系樹脂又はポリアミド系樹脂の質量を基準として、好ましくは1〜40質量%、より好ましくは5〜40質量%であり、更に好ましくは5〜30質量%である。ハロゲン原子の含有量が1質量%以上であると、フィルム化した際の弾性率をより向上させ、吸水率を下げ、黄色度(YI値)をより低減し、透明性をより向上させやすい。ハロゲン原子の含有量が40質量%以下であると、合成が容易になる傾向がある。 The content of the halogen atom in the polyimide resin or the polyamide resin is preferably 1 to 40% by mass, more preferably 5 to 40% by mass, still more preferably 5 to 40% by mass, based on the mass of the polyimide resin or the polyamide resin. It is 5 to 30% by mass. When the content of the halogen atom is 1% by mass or more, the elastic modulus at the time of film formation is further improved, the water absorption rate is lowered, the yellowness (YI value) is further reduced, and the transparency is more likely to be improved. When the halogen atom content is 40% by mass or less, the synthesis tends to be easy.

本発明の一実施形態において、光学フィルム中におけるポリイミド系樹脂及び/又はポリアミド系樹脂の含有量は、光学フィルムの全質量を基準として、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上である。ポリイミド系樹脂及び/又はポリアミド系樹脂の含有量が上記の下限以上であることが、耐屈曲性等を高めやすい観点から好ましい。なお、光学フィルム中におけるポリイミド系樹脂及び/又はポリアミド系樹脂の含有量は、光学フィルムの全質量を基準として、通常100質量%以下である。 In one embodiment of the present invention, the content of the polyimide resin and / or the polyamide resin in the optical film is preferably 40% by mass or more, more preferably 50% by mass or more, based on the total mass of the optical film. More preferably, it is 70% by mass or more. It is preferable that the content of the polyimide resin and / or the polyamide resin is at least the above lower limit from the viewpoint of easily improving the bending resistance and the like. The content of the polyimide resin and / or the polyamide resin in the optical film is usually 100% by mass or less based on the total mass of the optical film.

[9.添加剤]
本発明の光学フィルムは、添加剤を更に含んでもよい。このような添加剤としては、例えば、シリカ粒子、紫外線吸収剤、増白剤、シリカ分散剤、酸化防止剤、pH調整剤、及びレベリング剤が挙げられる。
[9. Additive]
The optical film of the present invention may further contain additives. Examples of such additives include silica particles, ultraviolet absorbers, whitening agents, silica dispersants, antioxidants, pH regulators, and leveling agents.

(シリカ粒子)
本発明の光学フィルムは、添加剤としてシリカ粒子を更に含んでもよい。シリカ粒子の含有量は、該光学フィルムの総質量を基準として、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、好ましくは60質量部以下、より好ましくは50質量部以下、更に好ましくは45質量部以下である。また、シリカ粒子の含有量は、これらの上限値及び下限値のうち、任意の下限値と上限値とを選択して組合せることができる。シリカ粒子の含有量が上記上限値及び/又は下限値の数値範囲であると、本発明の光学フィルムにおいて、シリカ粒子が凝集しにくく、一次粒子の状態で均一に分散する傾向にあるため、本発明の光学フィルムの視認性の低下を抑制することができる。
(Silica particles)
The optical film of the present invention may further contain silica particles as an additive. The content of the silica particles is preferably 1 part by mass or more, more preferably 3 parts by mass or more, further preferably 5 parts by mass or more, and preferably 60 parts by mass or less, based on the total mass of the optical film. It is preferably 50 parts by mass or less, more preferably 45 parts by mass or less. Further, the content of the silica particles can be combined by selecting an arbitrary lower limit value and upper limit value among these upper limit values and lower limit values. When the content of the silica particles is within the numerical range of the upper limit value and / or the lower limit value, the silica particles are less likely to aggregate in the optical film of the present invention and tend to be uniformly dispersed in the state of the primary particles. It is possible to suppress a decrease in visibility of the optical film of the present invention.

シリカ粒子の粒子径は、好ましくは1nm以上、より好ましくは3nm以上、更に好ましくは5nm以上、特に好ましくは8nm以上であり、好ましくは30nm以下、より好ましくは28nm以下、更に好ましくは25nm以下、特に好ましくは20nm以下である。シリカ粒子の粒子径は、これらの上限値及び下限値のうち、任意の下限値と上限値とを選択して組合せることができる。シリカ粒子の含有量が上記上限値及び/又は下限値の数値範囲であると、本発明の光学フィルムにおいて、白色光における特定の波長の光と相互作用をしにくいため、本発明の光学フィルムの視認性の低下を抑制することができる。本明細書において、シリカ粒子の粒子径は、平均一次粒子径を示す。光学フィルム内のシリカ粒子の粒子径は、透過型電子顕微鏡(TEM)を用いた撮像から測定することができる。光学フィルムを作製する前(例えば、ワニスに添加する前)のシリカ粒子の粒子径は、レーザー回折式粒度分布計により測定することができる。シリカ粒子の粒子径の測定方法は、実施例にて詳細に説明する。 The particle size of the silica particles is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, particularly preferably 8 nm or more, preferably 30 nm or less, more preferably 28 nm or less, still more preferably 25 nm or less, particularly. It is preferably 20 nm or less. The particle size of the silica particles can be combined by selecting any lower limit value and upper limit value among these upper limit values and lower limit values. When the content of silica particles is in the numerical range of the upper limit value and / or the lower limit value, it is difficult for the optical film of the present invention to interact with light of a specific wavelength in white light. It is possible to suppress a decrease in visibility. In the present specification, the particle size of silica particles indicates the average primary particle size. The particle size of the silica particles in the optical film can be measured by imaging with a transmission electron microscope (TEM). The particle size of the silica particles before the optical film is produced (for example, before being added to the varnish) can be measured by a laser diffraction type particle size distribution meter. The method for measuring the particle size of the silica particles will be described in detail in Examples.

シリカ粒子の形態としては、例えば、シリカ粒子が有機溶媒等に分散したシリカゾル、及び気相法で調製したシリカ粉末が挙げられる。これらの中でも、作業性の観点からシリカゾルが好ましい。 Examples of the form of the silica particles include a silica sol in which the silica particles are dispersed in an organic solvent and the like, and a silica powder prepared by a vapor phase method. Among these, silica sol is preferable from the viewpoint of workability.

シリカ粒子は、表面処理を施してもよく、例えば、水溶性アルコール分散シリカゾルから溶媒(より具体的には、γ−ブチロラクトン等)置換したシリカ粒子であってもよい。水溶性アルコールは、該水溶性アルコール分子1個においてヒドロキシ基1個当たりの炭素数が3以下のアルコールであり、メタノール、エタノール、1−プロパノール、及び2−プロパノールなどが挙げられる。シリカ粒子とポリイミド系高分子の種類との相性によるが、通常、シリカ粒子が表面処理されると、光学フィルムに含まれるポリイミド系高分子との親和性が向上し、シリカ粒子の分散性が向上する傾向にあるため、本発明の視認性の低下を抑制することができる。 The silica particles may be surface-treated, and may be, for example, silica particles obtained by substituting a solvent (more specifically, γ-butyrolactone, etc.) with a water-soluble alcohol-dispersed silica sol. The water-soluble alcohol is an alcohol having 3 or less carbon atoms per hydroxy group in one water-soluble alcohol molecule, and examples thereof include methanol, ethanol, 1-propanol, and 2-propanol. Although it depends on the compatibility between the silica particles and the type of polyimide polymer, when the silica particles are surface-treated, the affinity with the polyimide polymer contained in the optical film is usually improved, and the dispersibility of the silica particles is improved. Therefore, it is possible to suppress a decrease in visibility of the present invention.

(紫外線吸収剤)
本発明の光学フィルムは、紫外線吸収剤を更に含んでもよい。例えば、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系紫外線吸収剤、及びシアノアクリレート系紫外線吸収剤などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。好適な市販の紫外線吸収剤としては、例えば、住化ケムテックス(株)製のSumisorb(登録商標) 340、(株)ADEKA製のアデカスタブ(登録商標) LA−31、及びBASFジャパン(株)製のチヌビン(登録商標) 1577等が挙げられる。紫外線吸収剤の含有量は、本発明の光学フィルムの質量を基準として、好ましくは1phr以上10phr以下、より好ましくは3phr以上6phr以下である。
(UV absorber)
The optical film of the present invention may further contain an ultraviolet absorber. For example, a triazine-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, a benzoate-based ultraviolet absorber, a cyanoacrylate-based ultraviolet absorber, and the like can be mentioned. These may be used alone or in combination of two or more. Suitable commercially available UV absorbers include, for example, Sumisorb® 340 manufactured by Sumika Chemtex Co., Ltd., ADEKA STAB® LA-31 manufactured by ADEKA Corporation, and BASF Japan Co., Ltd. Chinubin (registered trademark) 1577 and the like can be mentioned. The content of the ultraviolet absorber is preferably 1 phr or more and 10 phr or less, more preferably 3 phr or more and 6 phr or less, based on the mass of the optical film of the present invention.

(増白剤)
本発明の光学フィルムは、増白剤を更に含んでもよい。増白剤は、例えば、増白剤以外の添加剤を添加した場合に、色味を調整するために添加することができる。増白剤としてはモノアゾ系染料、トリアリールメタン系染料、フタロシアニン系染料、及びアンスラキノン系染料が挙げられる。これらの中でもアンスラキノン系染料が好ましい。好適な市販の増白剤としては、例えば、ランクセス社製のマクロレックス(登録商標) バイオレット B、住化ケムテックス(株)製のスミプラスト(登録商標) Violet B、及び三菱化学(株)製のダイアレジン(登録商標) ブルー G等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。増白剤の含有量は、本発明の光学フィルムの質量を基準として、好ましくは5ppm以上40ppm以下である。
(Whitening agent)
The optical film of the present invention may further contain a whitening agent. The whitening agent can be added to adjust the color when an additive other than the whitening agent is added, for example. Examples of the whitening agent include monoazo dyes, triarylmethane dyes, phthalocyanine dyes, and anthraquinone dyes. Among these, anthraquinone dyes are preferable. Suitable commercially available whitening agents include, for example, Macrolex® Violet B manufactured by LANXESS, Sumiplast® Violet B manufactured by Sumika Chemtex Co., Ltd., and Diaresin manufactured by Mitsubishi Chemical Corporation. (Registered trademark) Blue G and the like can be mentioned. These may be used alone or in combination of two or more. The content of the whitening agent is preferably 5 ppm or more and 40 ppm or less based on the mass of the optical film of the present invention.

[10.光学フィルムの製造方法] [10. Optical film manufacturing method]

本発明の光学フィルムの用途は特に限定されず、種々の用途に使用してよい。本発明の光学フィルムは、上記に述べたように単層であっても、積層体であってもよく、本発明の光学フィルムをそのまま使用してもよいし、更に他のフィルムとの積層体として使用してもよい。本発明の光学フィルムは、優れた面品質を有するため、画像表示装置等における光学フィルムとして有用である。 The use of the optical film of the present invention is not particularly limited, and it may be used for various purposes. As described above, the optical film of the present invention may be a single layer or a laminated body, the optical film of the present invention may be used as it is, or a laminated body with another film. May be used as. Since the optical film of the present invention has excellent surface quality, it is useful as an optical film in an image display device or the like.

本発明の光学フィルムは、画像表示装置の前面板、特にフレキシブルディスプレイの前面板(ウィンドウフィルム)として有用である。フレキシブルディスプレイは、例えば、フレキシブル機能層と、フレキシブル機能層に重ねられて前面板として機能する上記ポリイミド系フィルムを有する。すなわち、フレキシブルディスプレイの前面板は、フレキシブル機能層の上の視認側に配置される。この前面板は、フレキシブル機能層を保護する機能を有する。 The optical film of the present invention is useful as a front plate of an image display device, particularly a front plate (window film) of a flexible display. The flexible display has, for example, a flexible functional layer and the polyimide-based film that is superposed on the flexible functional layer and functions as a front plate. That is, the front plate of the flexible display is arranged on the visible side above the flexible functional layer. This front plate has a function of protecting the flexible functional layer.

[11.光学フィルムの製造方法]
本発明の光学フィルムは、特に限定されないが、例えば以下の工程:
(a)前記樹脂及び前記フィラーを含む液(以下、ワニスと記載することがある)を調製する工程(ワニス調製工程)、
(b)ワニスを基材に塗布して塗膜を形成する工程(塗布工程)、及び
(c)塗布された液(塗膜)を乾燥させて、光学フィルムを形成する工程(光学フィルム形成工程)
を含む方法によって製造することができる。
[11. Optical film manufacturing method]
The optical film of the present invention is not particularly limited, but for example, the following steps:
(A) A step of preparing a liquid containing the resin and the filler (hereinafter, may be referred to as varnish) (varnish preparation step).
(B) A step of applying varnish to a base material to form a coating film (coating step), and (c) a step of drying the applied liquid (coating film) to form an optical film (optical film forming step). )
It can be manufactured by a method including.

ワニス調製工程において、前記樹脂を溶媒に溶解し、前記フィラー及び必要に応じて他の添加剤を添加して撹拌混合することによりワニスを調製する。なお、フィラーとしてシリカを用いる場合、シリカを含むシリカゾルの分散液を、前記樹脂が溶解可能な溶媒、例えば下記のワニスの調製に用いられる溶媒で置換したシリカゾルを樹脂に添加してもよい。 In the varnish preparation step, the varnish is prepared by dissolving the resin in a solvent, adding the filler and, if necessary, other additives, and stirring and mixing. When silica is used as the filler, a silica sol obtained by substituting a dispersion liquid of silica sol containing silica with a solvent in which the resin can be dissolved, for example, a solvent used for preparing the following varnish may be added to the resin.

ワニスの調製に用いられる溶媒は、前記樹脂を溶解可能であれば特に限定されない。かかる溶媒としては、例えばN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等のアミド系溶媒;γ−ブチロラクトン(GBL)、γ−バレロラクトン等のラクトン系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せが挙げられる。これらの中でも、アミド系溶媒又はラクトン系溶媒が好ましい。これらの溶媒は単独又は二種以上組合せて使用できる。また、ワニスには水、アルコール系溶媒、ケトン系溶媒、非環状エステル系溶媒、エーテル系溶媒などが含まれてもよい。ワニスの固形分濃度は、好ましくは1〜25質量%、より好ましくは5〜20質量%である。 The solvent used for preparing the varnish is not particularly limited as long as the resin can be dissolved. Examples of such a solvent include amide-based solvents such as N, N-dimethylacetamide and N, N-dimethylformamide; lactone-based solvents such as γ-butyrolactone (GBL) and γ-valerolactone; dimethyl sulfoxide, dimethyl sulfoxide, sulfolane and the like. Sulfur-containing solvent; carbonate solvent such as ethylene carbonate and propylene carbonate; and combinations thereof. Among these, an amide solvent or a lactone solvent is preferable. These solvents can be used alone or in combination of two or more. Further, the varnish may contain water, an alcohol solvent, a ketone solvent, an acyclic ester solvent, an ether solvent and the like. The solid content concentration of the varnish is preferably 1 to 25% by mass, more preferably 5 to 20% by mass.

塗布工程において、公知の塗布方法により、基材上にワニスを塗布して塗膜を形成する。公知の塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、流涎成形法等が挙げられる。 In the coating step, a varnish is applied onto the substrate by a known coating method to form a coating film. Known coating methods include, for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen coating method, fountain coating method, dipping method, and the like. Examples include a spray method and a salivation molding method.

光学フィルム形成工程において、塗膜を乾燥し、基材から剥離することによって、光学フィルムを形成することができる。剥離後にさらに光学フィルムを乾燥する乾燥工程を行ってもよい。塗膜の乾燥は、通常50〜350℃の温度にて行うことができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。 In the optical film forming step, the optical film can be formed by drying the coating film and peeling it from the base material. After the peeling, a drying step of further drying the optical film may be performed. The coating film can be dried at a temperature of usually 50 to 350 ° C. If necessary, the coating film may be dried under an inert atmosphere or under reduced pressure conditions.

基材の例としては、金属系であれば、SUS板、樹脂系であればPETフィルム、PENフィルム、他のポリイミド系樹脂又はポリアミド系樹脂フィルム、シクロオレフィン系ポリマー(COP)フィルム、アクリル系フィルム等が挙げられる。中でも、平滑性、耐熱性に優れる観点から、PETフィルム、COPフィルム等が好ましく、さらに光学フィルムとの密着性及びコストの観点から、PETフィルムがより好ましい。 Examples of the base material are a SUS plate for metal, PET film, PEN film for resin, other polyimide resin or polyamide resin film, cycloolefin polymer (COP) film, acrylic film. And so on. Among them, PET film, COP film and the like are preferable from the viewpoint of excellent smoothness and heat resistance, and PET film is more preferable from the viewpoint of adhesion to an optical film and cost.

<光学積層体>
本発明の光学積層体は、本発明の光学フィルムと、該光学フィルムの少なくとも一方にハードコート層(保護フィルム)とを有する。光学積層体は、粘着層をさらに有してもよい。本発明の光学積層体は、例えば、本発明の光学フィルムとハードコート層とが粘着層を介して接着して、構成されてもよい。
<Optical laminate>
The optical laminate of the present invention has the optical film of the present invention and a hard coat layer (protective film) on at least one of the optical films. The optical laminate may further have an adhesive layer. The optical laminate of the present invention may be formed, for example, by adhering the optical film of the present invention and the hard coat layer via an adhesive layer.

(ハードコート層)
ハードコート層の厚さは特に限定されず、例えば、2〜100μmであってもよい。前記ハードコート層の厚さが前記の範囲にあると、十分な耐擦傷性を確保することができ、また耐屈曲性が低下しにくく、硬化収縮によるカール発生の問題が発生し難い傾向がある。
前記ハードコート層は、活性エネルギー線照射、或いは熱エネルギー付与により架橋構造を形成し得る反応性材料を含むハードコート組成物を硬化させて形成することができ、活性エネルギー線照射によるものが好ましい。活性エネルギー線は、活性種を発生する化合物を分解して活性種を発生させることができるエネルギー線と定義され、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線などが挙げられ、好ましくは紫外線が挙げられる。前記ハードコート組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。
(Hard coat layer)
The thickness of the hard coat layer is not particularly limited and may be, for example, 2 to 100 μm. When the thickness of the hard coat layer is within the above range, sufficient scratch resistance can be ensured, bending resistance is unlikely to decrease, and the problem of curl generation due to curing shrinkage tends to be less likely to occur. ..
The hard coat layer can be formed by curing a hard coat composition containing a reactive material capable of forming a crosslinked structure by irradiation with active energy rays or by applying heat energy, and those by irradiation with active energy rays are preferable. Active energy rays are defined as energy rays that can generate active species by decomposing compounds that generate active species, and are visible light, ultraviolet rays, infrared rays, X-rays, α rays, β rays, γ rays, and electron beams. And the like, preferably ultraviolet rays. The hard coat composition contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.

前記ラジカル重合性化合物は、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、炭素‐炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上である。前記ラジカル重合性化合物としては、反応性の高さの点から、好ましくは(メタ)アクリロイル基を有する化合物が挙げられ、具体的には1分子中に2〜6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーが挙げられ、好ましくはエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレートから選択された1種以上が挙げられる。 The radically polymerizable compound is a compound having a radically polymerizable group. The radically polymerizable group contained in the radically polymerizable compound may be a functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond, and specifically, a vinyl group. , (Meta) acryloyl group and the like. When the radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be the same or different from each other. The number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably 2 or more from the viewpoint of improving the hardness of the hard coat layer. Examples of the radically polymerizable compound include compounds having a (meth) acryloyl group, preferably from the viewpoint of high reactivity, and specifically, 2 to 6 (meth) acryloyl groups in one molecule. Compounds called polyfunctional acrylate monomers and epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates have a molecular weight of several hundreds of (meth) acryloyl groups in the molecule. Thousands of oligomers are mentioned, preferably one or more selected from epoxy (meth) acrylates, urethane (meth) acrylates and polyester (meth) acrylates.

前記カチオン重合性化合物は、エポキシ基、オキセタニル基、ビニルエーテル基等のカチオン重合性基を有する化合物である。前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上、より好ましくは3以上である。
また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との親和性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高くなりやすく、得られたハードコート層のカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加体のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等であり、ビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。
The cationically polymerizable compound is a compound having a cationically polymerizable group such as an epoxy group, an oxetanyl group, and a vinyl ether group. The number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of improving the hardness of the hard coat layer.
Further, as the cationically polymerizable compound, a compound having at least one of an epoxy group and an oxetanyl group as the cationically polymerizable group is preferable. A cyclic ether group such as an epoxy group or an oxetanyl group is preferable because the shrinkage associated with the polymerization reaction is small. Further, among the cyclic ether groups, compounds having an epoxy group are easily available, compounds having various structures are easily available, the durability of the obtained hard coat layer is not adversely affected, and the affinity with the radically polymerizable compound is easily controlled. There is an advantage. Further, among the cyclic ether groups, the oxetanyl group tends to have a higher degree of polymerization than the epoxy group, accelerates the network formation rate obtained from the cationically polymerizable compound of the obtained hard coat layer, and is mixed with the radically polymerizable compound. There are advantages such as forming an independent network without leaving unreacted monomers in the film even in the region where the polymer is formed.
Examples of the cationically polymerizable compound having an epoxy group include polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, or a cyclohexene ring or cyclopentene ring-containing compound with an appropriate oxidizing agent such as hydrogen peroxide or peracid. Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or its alkylene oxide adduct, polyglycidyl ester of aliphatic long chain polybasic acid, homopolymer of glycidyl (meth) acrylate, An aliphatic epoxy resin such as a copolymer; a glycidyl ether produced by reacting bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives such as their alkylene oxide adducts and caprolactone adducts with epichlorohydrin And novolak epoxy resin, and examples thereof include glycidyl ether type epoxy resin derived from bisphenols.

前記ハードコート組成物は重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等が挙げられ、適宜選択して用いられる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
ラジカル重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であればよい。例えば、熱ラジカル重合開始剤としては、過酸化水素、過安息香酸等の有機過酸化物、アゾビスブチロニトリル等のアゾ化合物等があげられる。
活性エネルギー線ラジカル重合開始剤としては、分子の分解でラジカルが生成されるType1型ラジカル重合開始剤と、3級アミンと共存して水素引き抜き型反応でラジカルを生成するType2型ラジカル重合開始剤があり、それらは単独でまたは併用して使用される。
カチオン重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であればよい。カチオン重合開始剤としては、芳香族ヨードニウム塩、芳香族スルホニウム塩、シクロペンタジエニル鉄(II)錯体等が使用できる。これらは、構造の違いによって活性エネルギー線照射または加熱のいずれかまたはいずれでもカチオン重合を開始することができる。
The hard coat composition may further contain a polymerization initiator. Examples of the polymerization initiator include a radical polymerization initiator, a cationic polymerization initiator, a radical and a cationic polymerization initiator, and the like, which are appropriately selected and used. These polymerization initiators are decomposed by at least one of active energy ray irradiation and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
The radical polymerization initiator may be any as long as it can release a substance that initiates radical polymerization by at least one of irradiation with active energy rays and heating. For example, examples of the thermal radical polymerization initiator include organic peroxides such as hydrogen peroxide and perbenzoic acid, and azo compounds such as azobisbutyronitrile.
Active energy ray radical polymerization initiators include Type 1 radical polymerization initiators, which generate radicals by decomposition of molecules, and Type 2 radical polymerization initiators, which coexist with tertiary amines and generate radicals by hydrogen abstraction type reaction. Yes, they are used alone or in combination.
The cationic polymerization initiator may be any one as long as it can release a substance that initiates cationic polymerization by at least one of activation energy ray irradiation and heating. As the cationic polymerization initiator, an aromatic iodonium salt, an aromatic sulfonium salt, a cyclopentadienyl iron (II) complex and the like can be used. These can initiate cationic polymerization by either irradiation with active energy rays or heating, depending on the structure.

前記重合開始剤の含有量は、前記ハードコート組成物全体100質量%に対して、好ましくは0.1〜10質量%である。前記重合開始剤の含有量が前記の範囲にあると、硬化を十分に進行させることができ、最終的に得られる塗膜の機械的物性や密着力を良好な範囲とすることができ、また、硬化収縮による接着力不良や割れ現象及びカール現象が発生し難くなる傾向がある。 The content of the polymerization initiator is preferably 0.1 to 10% by mass with respect to 100% by mass of the entire hard coat composition. When the content of the polymerization initiator is in the above range, curing can proceed sufficiently, and the mechanical properties and adhesive strength of the finally obtained coating film can be in a good range. , Poor adhesive strength due to curing shrinkage, cracking phenomenon and curling phenomenon tend to be less likely to occur.

前記ハードコート組成物はさらに溶剤、添加剤からなる群から選択される一つ以上をさらに含むことができる。
前記溶剤は、前記重合性化合物および重合開始剤を溶解または分散させることができるもので、本技術分野のハードコート組成物の溶剤として知られている溶剤であれば、本発明の効果を阻害しない範囲で、使用することができる。
前記添加剤は、無機粒子、レベリング剤、安定剤、界面活性剤、帯電防止剤、潤滑剤、防汚剤などをさらに含むことができる。
The hard coat composition can further contain one or more selected from the group consisting of solvents and additives.
The solvent can dissolve or disperse the polymerizable compound and the polymerization initiator, and any solvent known as a solvent for hard coat compositions in the present art does not impair the effects of the present invention. In the range, it can be used.
The additive may further contain inorganic particles, a leveling agent, a stabilizer, a surfactant, an antistatic agent, a lubricant, an antifouling agent and the like.

本発明の積層体は、例えば、フレキシブル画像表示装置に用いることができ、中でもフォルダブル表示装置やローラブル表示装置に好適に用いられる。 The laminate of the present invention can be used, for example, in a flexible image display device, and is particularly preferably used in a foldable display device and a rollable display device.

(円偏光板を有する光学積層体の製造方法)
円偏光板を有する光学積層体の製造方法の一例を説明する。偏光層/位相差層をこの順で備える円偏光板を有する光学積層体を製造する場合、まず、光学フィルム、偏光層、位相差層を別々に形成する。上述の方法により光学フィルムを製造する。例えば、基材としての保護フィルム上に配向層、偏光子、保護層をこの順に積層して偏光層を形成する。また、λ/4位相差板とポジティブCプレートとを粘着剤を用いて貼合させて、位相差層を形成する。
次いで、粘着剤を用いて、形成された光学フィルム、偏光層、及び位相差層を貼合させて、円偏光板を有する光学積層体製造する。偏光層と位相差層との貼合では、偏光層の吸収軸が位相差層の遅相軸(光軸)に対して実質的に45°となるようにして偏光層と位相差層とを貼合させる。このようにして光学フィルム/粘着剤層/偏光層(保護フィルム/配向層/偏光子/保護層)/粘着剤層/位相差層(λ/4位相差板/ポジティブCプレート)をこの順に積層した円偏光板を有する光学積層体を製造することができる。
(Manufacturing method of an optical laminate having a circularly polarizing plate)
An example of a method for manufacturing an optical laminate having a circularly polarizing plate will be described. When manufacturing an optical laminate having a circularly polarizing plate including a polarizing layer / a retardation layer in this order, first, an optical film, a polarizing layer, and a retardation layer are separately formed. An optical film is produced by the method described above. For example, an alignment layer, a polarizer, and a protective layer are laminated in this order on a protective film as a base material to form a polarizing layer. Further, the λ / 4 retardation plate and the positive C plate are bonded together with an adhesive to form a retardation layer.
Next, the formed optical film, polarizing layer, and retardation layer are bonded together using an adhesive to produce an optical laminate having a circular polarizing plate. In bonding the polarizing layer and the retarding layer, the polarizing layer and the retarding layer are separated so that the absorption axis of the polarizing layer is substantially 45 ° with respect to the slow axis (optical axis) of the retarding layer. Let them stick together. In this way, the optical film / adhesive layer / polarizing layer (protective film / alignment layer / polarizer / protective layer) / adhesive layer / retardation layer (λ / 4 retardation plate / positive C plate) are laminated in this order. It is possible to manufacture an optical laminate having a circularly polarizing plate.

本発明の円偏光板を有する光学積層体(以下、積層体ともいう)は、本発明の光学フィルムを含む。
(式(39))
本発明の円偏光板を有する積層体は、式(39)
透過b*−反射(SCE)b*≧4.0・・・(39)
[式(39)中、透過b*は該積層体を透過した光のL*a*b*表色系におけるb*を示し、反射(SCE)b*はSCE方式で求められる該積層体を反射した光のL*a*b*表色系におけるb*を示す]
を満たす。本発明の円偏光板を有する積層体は、式(39)を満たすと、光源からの光透過が大きく、外光の反射は小さくなることでニュートラル色相に近くなるため、優れた視認性を有する。
式(39)の数値(透過b*−反射(SCE)b*)は、円偏光板を有する積層体の視認性をさらに向上させる観点から、好ましくは4.2以上、より好ましくは4.5以上、さらに好ましくは5.0以上、特に好ましくは6.5以上である。
The optical laminate having the circularly polarizing plate of the present invention (hereinafter, also referred to as a laminate) includes the optical film of the present invention.
(Equation (39))
The laminate having the circularly polarizing plate of the present invention has the formula (39).
Transmission b * -reflection (SCE) b * ≧ 4.0 ... (39)
[In the formula (39), the transmitted b * indicates b * in the L * a * b * color system of the light transmitted through the laminated body, and the reflected (SCE) b * indicates the laminated body obtained by the SCE method. Indicates b * in the L * a * b * color system of the reflected light]
Meet. When the formula (39) is satisfied, the laminated body having the circularly polarizing plate of the present invention has excellent visibility because the light transmission from the light source is large and the reflection of external light is small, which is close to the neutral hue. ..
The numerical value of the formula (39) (transmission b * -reflection (SCE) b *) is preferably 4.2 or more, more preferably 4.5, from the viewpoint of further improving the visibility of the laminated body having the circularly polarizing plate. Above, more preferably 5.0 or more, particularly preferably 6.5 or more.

(透過b*)
円偏光板を有する積層体の透過b*は、円偏光板を有する積層体を透過した光のL*a*b*表色系におけるb*であり、本明細書において、円偏光板を有する積層体平面の垂直方向から入射する、波長380〜780nmの範囲における入射光(白色光)に対する透過光のCIE1976L*a*b*表色系のb*値をいう。透過b*は、好ましくは4.0以上、より好ましくは5.0以上、さらに好ましくは6.0以上である。円偏光板を有する積層体の透過b*は、紫外可視近赤外分光光度計を用いて測定でき、例えば実施例に記載の方法により測定できる。
(Transparent b *)
The transmission b * of the laminated body having the circular polarizing plate is b * in the L * a * b * color system of the light transmitted through the laminated body having the circular polarizing plate, and in the present specification, it has the circular polarizing plate. CIE1976L * a * b * B * value of the transmitted light with respect to the incident light (white light) in the wavelength range of 380 to 780 nm, which is incident from the vertical direction of the laminated body plane. The transmission b * is preferably 4.0 or more, more preferably 5.0 or more, still more preferably 6.0 or more. The transmission b * of the laminate having a circularly polarizing plate can be measured using an ultraviolet-visible near-infrared spectrophotometer, for example, by the method described in Examples.

(反射(SCE)b*)
円偏光板を有する積層体の反射(SCE)b*は、SCE方式で求められる該円偏光板を有する積層体を反射した光のL*a*b*表色系におけるb*であり、本明細書において、円偏光板を有する積層体平面の垂直方向から所定の角度傾けた方向から入射する、波長380〜780nmの範囲における入射光に対する反射光のうち、正反射光を除いた拡散反射光のCIE1976L*a*b*表色系のb*値をいう。反射(SCE)b*は、好ましくは1.5以下、好ましくは1.0以下、更に好ましくは0以下、特に好ましくは−1.5下である。円偏光板の反射(SCE)b*は、分光測色計を用いて測定することができ、例えば実施例に記載の方法により測定できる。
(反射(SCI)b*)
円偏光板の反射(SCI)b*は、SCI方式で求められる前記円偏光板を反射した光のL*a*b*表色系におけるb*であり、本明細書において、円偏光板平面の垂直方向から所定の角度傾けた方向から入射する、波長380〜780nmの範囲における入射光に対する反射光(正反射光を含む反射光)のCIE1976L*a*b*表色系のb*値をいう。円偏光板の反射(SCI)b*は、分光測色計を用いて測定することができ、例えば実施例に記載の方法により測定できる。
(Reflection (SCE) b *)
The reflection (SCE) b * of the laminated body having the circular polarizing plate is b * in the L * a * b * color system of the light reflected from the laminated body having the circular polarizing plate, which is obtained by the SCE method. In the specification, diffused reflected light excluding normal reflected light among the reflected light with respect to the incident light in the wavelength range of 380 to 780 nm, which is incident from the direction inclined by a predetermined angle from the vertical direction of the laminate plane having the circular polarizing plate. CIE1976L * a * b * Refers to the b * value of the color system. The reflection (SCE) b * is preferably 1.5 or less, preferably 1.0 or less, more preferably 0 or less, and particularly preferably -1.5 or less. The reflection (SCE) b * of the circularly polarizing plate can be measured using a spectrophotometer, for example, by the method described in Examples.
(Reflection (SCI) b *)
The reflection (SCI) b * of the circular polarizing plate is b * in the L * a * b * color system of the light reflected by the circular polarizing plate obtained by the SCI method, and in the present specification, the circular polarizing plate plane. CIE1976L * a * b * CIE1976L * a * b * color system b * value of the reflected light (reflected light including normal reflected light) for the incident light in the wavelength range of 380 to 780 nm, which is incident from the direction tilted by a predetermined angle from the vertical direction Say. The reflection (SCI) b * of the circularly polarizing plate can be measured using a spectrophotometer, for example, by the method described in Examples.

式(39)における透過b*−反射(SCE)b*を所定の数値範囲内に調整する手段としては、例えば、光学フィルムの透過b*−反射(SCE)b*を式(1)の数値範囲内に調整する手段、及び光学フィルムの組成変更による色相調節が挙げられる。 As a means for adjusting the transmission b * -reflection (SCE) b * in the formula (39) within a predetermined numerical range, for example, the transmission b * -reflection (SCE) b * of the optical film is the numerical value of the formula (1). Means for adjusting within the range and hue adjustment by changing the composition of the optical film can be mentioned.

<フレキシブル画像表示装置>
本発明のフレキシブル画像表示装置は、本発明の光学積層体を備える。例えば、フレキシブル画像表示装置は、光学積層体(フレキシブル画像表示装置用積層体)と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル画像表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル画像表示装置用積層体は、ウインドウ、偏光板、タッチセンサをさらに含有していてもよく、それらの積層順は任意であるが、視認側からウインドウ、偏光板、タッチセンサまたはウインドウ、タッチセンサ、偏光板の順に積層されていることが好ましい。タッチセンサの視認側に偏光板が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性が良くなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、前記ウインドウ、偏光板、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。偏光板は円偏光板であってもよい。
<Flexible image display device>
The flexible image display device of the present invention includes the optical laminate of the present invention. For example, the flexible image display device includes an optical laminate (a laminate for a flexible image display device) and an organic EL display panel, and the flexible image display device laminate is arranged on the visual side with respect to the organic EL display panel. , It is configured to be foldable. The laminated body for a flexible image display device may further contain a window, a polarizing plate, and a touch sensor, and the stacking order thereof is arbitrary, but the window, the polarizing plate, the touch sensor or the window, and the touch sensor are viewed from the visual side. , It is preferable that the polarizing plates are laminated in this order. The presence of a polarizing plate on the visual side of the touch sensor is preferable because the pattern of the touch sensor is difficult to see and the visibility of the displayed image is improved. Each member can be laminated using an adhesive, an adhesive, or the like. Further, a light-shielding pattern formed on at least one surface of any layer of the window, the polarizing plate, and the touch sensor can be provided. The polarizing plate may be a circular polarizing plate.

(ウインドウ)
ウインドウは、フレキシブル画像表示装置の視認側に配置され、その他の構成要素を外部からの衝撃または温湿度等の環境変化から保護する役割を担っている。従来このような保護層としてはガラスが使用されてきたが、フレキシブル画像表示装置におけるウインドウはガラスのようにリジッドで堅いものではなく、フレキシブルな特性を有する。前記ウインドウは、フレキシブルな透明基材からなり、少なくとも一面にハードコート層を含んでいてもよい。ウインドウが任意に含むハードコート層は、上述した光学積層体が有するハードコート層と同義である。
(Window)
The window is arranged on the visual side of the flexible image display device, and plays a role of protecting other components from external impacts or environmental changes such as temperature and humidity. Conventionally, glass has been used as such a protective layer, but the window in the flexible image display device is not rigid and hard like glass, but has flexible characteristics. The window is made of a flexible transparent substrate and may include a hard coat layer on at least one surface. The hard coat layer optionally included in the window is synonymous with the hard coat layer of the above-mentioned optical laminate.

(透明基材)
透明基材の可視域の透過率は、通常70%以上、好ましくは80%以上である。前記透明基材としては、透明性のある高分子フィルムであれば、本発明の効果を阻害しない範囲で、使用可能である。具体的には、用いられる高分子フィルムとしては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ノルボルネンまたはシクロオレフィンを含む単量体の単位を有するシクロオレフィン系誘導体等のポリオレフィン類、ジアセチルセルロース、トリアセチルセルロース、プロピオニルセルロース等の(変性)セルロース類、メチルメタクリレート(共)重合体等のアクリル類、スチレン(共)重合体等のポリスチレン類、アクリロニトリル・ブタジエン・スチレン共重合体類、アクリロニトリル・スチレン共重合体類、エチレン‐酢酸ビニル共重合体類、ポリ塩化ビニル類、ポリ塩化ビニリデン類、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアリレート等のポリエステル類、ナイロン等のポリアミド類、ポリイミド類、ポリアミドイミド類、ポリエーテルイミド類、ポリエーテルスルホン類、ポリスルホン類、ポリビニルアルコール類、ポリビニルアセタール類、ポリウレタン類、エポキシ樹脂類などのフィルムが挙げられ、透明性及び耐熱性に優れる点で、好ましくはポリアミド、ポリアミドイミド、ポリイミド、ポリエステル、オレフィン、アクリル又はセルロース系のフィルムが挙げられる。これらの高分子はそれぞれ単独または2種以上混合して使用することができる。これらのフィルムは未延伸のまま、あるいは1軸または2軸延伸したフィルムとして使用される。
高分子フィルムの中には、シリカ等の無機粒子、有機微粒子、ゴム粒子等を分散させることも好ましい。さらに、顔料や染料のような着色剤、蛍光増白剤、分散剤、可塑剤、熱安定剤、光安定剤、赤外線吸収剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、溶剤などの配合剤を含有させてもよい。前記透明基材の厚さは、通常5〜200μm、好ましくは、20〜100μmである。
(Transparent base material)
The transmittance of the transparent substrate in the visible region is usually 70% or more, preferably 80% or more. As the transparent substrate, any transparent polymer film can be used as long as it does not impair the effects of the present invention. Specifically, as the polymer film used, polyolefins such as cycloolefin-based derivatives having a monomer unit containing polyethylene, polypropylene, polymethylpentene, norbornene or cycloolefin, diacetylcellulose, triacetylcellulose, etc. (Modified) celluloses such as propionyl cellulose, acrylics such as methyl methacrylate (co) polymer, polystyrenes such as styrene (co) polymer, acrylonitrile / butadiene / styrene copolymers, acrylonitrile / styrene copolymers , Ethylene-vinyl acetate copolymers, polyvinyl chlorides, polyvinylidene chlorides, polyethylene terephthalates, polybutylene terephthalates, polyethylene naphthalates, polycarbonates, polyesters such as polyarylates, polyamides such as nylon, polyimides, polyamides Examples of films such as imides, polyetherimides, polyether sulfones, polysulfones, polyvinyl alcohols, polyvinyl acetals, polyurethanes, and epoxy resins are preferable because they are excellent in transparency and heat resistance. , Polyethyleneimide, Polyethylene, Polyester, Olefin, Acrylic or Cellulosic films. Each of these polymers can be used alone or in combination of two or more. These films are used unstretched or as uniaxially or biaxially stretched films.
It is also preferable to disperse inorganic particles such as silica, organic fine particles, rubber particles and the like in the polymer film. In addition, colorants such as pigments and dyes, optical brighteners, dispersants, plasticizers, heat stabilizers, light stabilizers, infrared absorbers, UV absorbers, antistatic agents, antioxidants, lubricants, solvents, etc. May contain a combination of the above. The thickness of the transparent substrate is usually 5 to 200 μm, preferably 20 to 100 μm.

(偏光板)
偏光板、中でも円偏光板は、直線偏光板にλ/4位相差板を積層することにより右若しくは左円偏光成分のみを透過させる機能を有する機能層である。たとえば外光を右円偏光に変換して有機ELパネルで反射されて左円偏光となった外光を遮断し、有機ELの発光成分のみを透過させることで反射光の影響を抑制して画像を見やすくするために用いられる。円偏光機能を達成するためには、直線偏光板の吸収軸とλ/4位相差板の遅相軸は理論上45°である必要があるが、実用的には45±10°である。直線偏光板とλ/4位相差板とは必ずしも隣接して積層される必要はなく、吸収軸と遅相軸の関係が前述の範囲を満足していればよい。全波長において完全な円偏光を達成することが好ましいが実用上は必ずしもその必要はないので本発明における円偏光板は楕円偏光板をも包含する。直線偏光板の視認側にさらにλ/4位相差フィルムを積層して、出射光を円偏光とすることで偏光サングラスをかけた状態での視認性を向上させることも好ましい。
(Polarizer)
A polarizing plate, particularly a circular polarizing plate, is a functional layer having a function of transmitting only a right or left circularly polarized light component by laminating a λ / 4 retardation plate on a linear polarizing plate. For example, the external light is converted to right-handed circularly polarized light and reflected by the organic EL panel to block the left-handed circularly polarized light, and only the light emitting component of the organic EL is transmitted to suppress the influence of the reflected light. It is used to make it easier to see. In order to achieve the circularly polarized light function, the absorption axis of the linear polarizing plate and the slow axis of the λ / 4 retardation plate need to be theoretically 45 °, but practically, they are 45 ± 10 °. The linear polarizing plate and the λ / 4 retardation plate do not necessarily have to be laminated adjacent to each other, and the relationship between the absorption axis and the slow phase axis may satisfy the above range. It is preferable to achieve perfect circularly polarized light at all wavelengths, but it is not always necessary in practical use. Therefore, the circularly polarizing plate in the present invention also includes an elliptical polarizing plate. It is also preferable to further laminate a λ / 4 retardation film on the visible side of the linear polarizing plate to convert the emitted light into circularly polarized light to improve the visibility when wearing polarized sunglasses.

直線偏光板は、透過軸方向に振動している光は通すが、それとは垂直な振動成分の偏光を遮断する機能を有する機能層である。前記直線偏光板は、直線偏光子単独または直線偏光子及びその少なくとも一面に貼り付けられた保護フィルムを備えた構成であってもよい。前記直線偏光板の厚さは、200μm以下であってもよく、好ましくは、0.5〜100μmである。厚さが前記の範囲にあると柔軟性が低下し難い傾向にある。
前記直線偏光子は、ポリビニルアルコール(PVA)系フィルムを染色、延伸することで製造されるフィルム型偏光子であってもよい。延伸によって配向したPVA系フィルムに、ヨウ素等の二色性色素が吸着、またはPVAに吸着した状態で延伸されることで二色性色素が配向し、偏光性能を発揮する。前記フィルム型偏光子の製造においては、他に膨潤、ホウ酸による架橋、水溶液による洗浄、乾燥等の工程を有していてもよい。延伸や染色工程はPVA系フィルム単独で行ってもよいし、ポリエチレンテレフタレートのような他のフィルムと積層された状態で行うこともできる。用いられるPVA系フィルムの厚さは、好ましくは10〜100μmであり、延伸倍率は好ましくは2〜10倍である。
さらに前記偏光子の他の一例としては、液晶偏光組成物を塗布して形成する液晶塗布型偏光子であってもよい。前記液晶偏光組成物は、液晶性化合物及び二色性色素化合物を含むことができる。前記液晶性化合物は液晶状態を示す性質を有していればよく、特にスメクチック相等の高次の配向状態を有していると高い偏光性能を発揮することができるため好ましい。また、液晶性化合物は重合性官能基を有していることも好ましい。
The linear polarizing plate is a functional layer having a function of transmitting light vibrating in the transmission axis direction but blocking polarization of a vibration component perpendicular to the linear polarizing plate. The linear polarizing plate may be configured to include a linear polarizing element alone or a linear polarizing element and a protective film attached to at least one surface thereof. The thickness of the linear polarizing plate may be 200 μm or less, preferably 0.5 to 100 μm. If the thickness is within the above range, the flexibility tends to be difficult to decrease.
The linear polarizer may be a film-type polarizer produced by dyeing and stretching a polyvinyl alcohol (PVA) -based film. A dichroic dye such as iodine is adsorbed on the PVA-based film oriented by stretching, or the dichroic dye is oriented in a state of being adsorbed on the PVA to exhibit polarization performance. In the production of the film-type polarizer, other steps such as swelling, cross-linking with boric acid, washing with an aqueous solution, and drying may be included. The stretching and dyeing steps may be performed on the PVA-based film alone, or may be performed in a state of being laminated with another film such as polyethylene terephthalate. The thickness of the PVA-based film used is preferably 10 to 100 μm, and the draw ratio is preferably 2 to 10 times.
Further, as another example of the polarizer, a liquid crystal coating type polarizer formed by coating a liquid crystal polarizing composition may be used. The liquid crystal polarizing composition may contain a liquid crystal compound and a dichroic dye compound. The liquid crystal compound may have a property of exhibiting a liquid crystal state, and is particularly preferable when it has a higher-order orientation state such as a smectic phase because it can exhibit high polarization performance. It is also preferable that the liquid crystal compound has a polymerizable functional group.

前記二色性色素は、前記液晶化合物とともに配向して二色性を示す色素であって、二色性色素自身が液晶性を有していてもよいし、重合性官能基を有していることもできる。液晶偏光組成物の中のいずれかの化合物は重合性官能基を有している。
前記液晶偏光組成物はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。
前記円偏光板は、液晶偏光層であってもよい。前記液晶偏光層は、配向膜上に液晶偏光組成物を塗布して液晶偏光層を形成することにより製造される。
液晶偏光層は、フィルム型偏光子に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、好ましくは0.5〜10μm、より好ましくは1〜5μmであってもよい。
前記配向膜は、例えば基材上に配向膜形成組成物を塗布し、ラビング、偏光照射等により配向性を付与することで製造することができる。前記配向膜形成組成物は、配向剤の他に溶剤、架橋剤、開始剤、分散剤、レベリング剤、シランカップリング剤等を含んでいてもよい。前記配向剤としては、例えば、ポリビニルアルコール類、ポリアクリレート類、ポリアミック酸類、ポリイミド類を使用できる。光配向を適用する場合にはシンナメート基を含む配向剤を使用することが好ましい。前記配向剤として使用される高分子の重量平均分子量は、10,000〜1,000,000程度であってもよい。前記配向膜の厚さは、配向規制力の観点から、好ましくは5〜10,000nm、より好ましは10〜500nmである。前記液晶偏光層は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウの透明基材としての役割を担うことも好ましい。
The dichroic dye is a dye that is oriented together with the liquid crystal compound to exhibit dichroism, and the dichroic dye itself may have liquid crystal properties or has a polymerizable functional group. You can also do it. Any compound in the liquid crystal polarizing composition has a polymerizable functional group.
The liquid crystal polarizing composition can further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like.
The circular polarizing plate may be a liquid crystal polarizing layer. The liquid crystal polarizing layer is manufactured by applying a liquid crystal polarizing composition on an alignment film to form a liquid crystal polarizing layer.
The liquid crystal polarizing layer can be formed to be thinner than the film-type polarizing element. The thickness of the liquid crystal polarizing layer may be preferably 0.5 to 10 μm, more preferably 1 to 5 μm.
The alignment film can be produced, for example, by applying an alignment film forming composition on a base material and imparting orientation by rubbing, polarized light irradiation, or the like. The alignment film forming composition may contain a solvent, a cross-linking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent, and the like in addition to the alignment agent. As the alignment agent, for example, polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides can be used. When applying photo-orientation, it is preferable to use an orientation agent containing a synnamate group. The weight average molecular weight of the polymer used as the alignment agent may be about 10,000 to 1,000,000. The thickness of the alignment film is preferably 5 to 10,000 nm, and more preferably 10 to 500 nm from the viewpoint of orientation regulating force. The liquid crystal polarizing layer can be peeled off from the base material, transferred and laminated, or the base material can be laminated as it is. It is also preferable that the base material serves as a protective film, a retardation plate, and a transparent base material for windows.

前記保護フィルムとしては、透明な高分子フィルムであればよく、前記透明基材に使用される材料、添加剤が使用できる。セルロース系フィルム、オレフィン系フィルム、アクリルフィルム、ポリエステル系フィルムが好ましい。エポキシ樹脂等のカチオン硬化組成物やアクリレート等のラジカル硬化組成物を塗布して硬化して得られるコーティング型の保護フィルムであってもよい。必要により可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記保護フィルムの厚さは、200μm以下であってもよく、好ましくは1〜100μmである。前記保護フィルムの厚さが前記の範囲にあると、保護フィルムの柔軟性が低下し難い。保護フィルムは、ウインドウの透明基材の役割を兼ねることもできる。 The protective film may be a transparent polymer film, and the materials and additives used for the transparent substrate can be used. Cellulose-based films, olefin-based films, acrylic films, and polyester-based films are preferable. It may be a coating type protective film obtained by applying a cationic curing composition such as an epoxy resin or a radical curing composition such as acrylate and curing the film. If necessary, plasticizers, UV absorbers, infrared absorbers, colorants such as pigments and dyes, optical brighteners, dispersants, heat stabilizers, light stabilizers, antistatic agents, antioxidants, lubricants, solvents, etc. May include. The thickness of the protective film may be 200 μm or less, preferably 1 to 100 μm. When the thickness of the protective film is within the above range, the flexibility of the protective film is unlikely to decrease. The protective film can also serve as a transparent substrate for the window.

前記λ/4位相差板は、入射光の進行方向に直交する方向(フィルムの面内方向)にλ/4の位相差を与えるフィルムである。前記λ/4位相差板は、セルロース系フィルム、オレフィン系フィルム、ポリカーボネート系フィルム等の高分子フィルムを延伸することで製造される延伸型位相差板であってもよい。必要により位相差調整剤、可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記延伸型位相差板の厚さは、200μm以下であってもよく、好ましくは1〜100μmである。厚さが前記の範囲にあるとフィルムの柔軟性が低下し難い傾向にある。
さらに前記λ/4位相差板の他の一例としては、液晶組成物を塗布して形成する液晶塗布型位相差板であってもよい。前記液晶組成物は、ネマチック、コレステリック、スメクチック等の液晶状態を示す性質を有する液晶性化合物を含む。液晶組成物の中の液晶性化合物を含むいずれかの化合物は重合性官能基を有している。前記液晶塗布型位相差板はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。前記液晶塗布型位相差板は、前記液晶偏光層での記載と同様に配向膜上に液晶組成物を塗布硬化して液晶位相差層を形成することで製造することができる。液晶塗布型位相差板は、延伸型位相差板に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、通常0.5〜10μm、好ましくは1〜5μmであってもよい。前記液晶塗布型位相差板は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウの透明基材としての役割を担うことも好ましい。
The λ / 4 retardation plate is a film that gives a phase difference of λ / 4 in a direction orthogonal to the traveling direction of incident light (in-plane direction of the film). The λ / 4 retardation plate may be a stretch-type retardation plate manufactured by stretching a polymer film such as a cellulose-based film, an olefin-based film, or a polycarbonate-based film. Phase difference adjusters, plasticizers, UV absorbers, infrared absorbers, colorants such as pigments and dyes, optical brighteners, dispersants, heat stabilizers, light stabilizers, antioxidants, antioxidants as needed , Lubricants, solvents and the like may be contained. The thickness of the stretchable retardation plate may be 200 μm or less, preferably 1 to 100 μm. When the thickness is in the above range, the flexibility of the film tends to be difficult to decrease.
Further, as another example of the λ / 4 retardation plate, a liquid crystal coating type retardation plate formed by coating a liquid crystal composition may be used. The liquid crystal composition contains a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric, and smectic. Any compound, including the liquid crystal compound in the liquid crystal composition, has a polymerizable functional group. The liquid crystal coating type retardation plate can further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent, and the like. The liquid crystal coating type retardation plate can be manufactured by coating and curing a liquid crystal composition on an alignment film to form a liquid crystal retardation layer in the same manner as described in the liquid crystal polarizing layer. The liquid crystal coating type retardation plate can be formed to be thinner than the stretch type retardation plate. The thickness of the liquid crystal polarizing layer may be usually 0.5 to 10 μm, preferably 1 to 5 μm. The liquid crystal coating type retardation plate can be peeled off from the base material, transferred and laminated, or the base material can be laminated as it is. It is also preferable that the base material serves as a protective film, a retardation plate, and a transparent base material for windows.

一般的には、短波長ほど複屈折が大きく長波長になるほど小さな複屈折を示す材料が多い。この場合には全可視光領域でλ/4の位相差を達成することはできないので、視感度の高い560nm付近に対してλ/4となるような面内位相差100〜180nm、好ましくは130〜150nmとなるように設計されることが多い。通常とは逆の複屈折率波長分散特性を有する材料を用いた逆分散λ/4位相差板を用いることは視認性をよくすることができるので好ましい。このような材料としては延伸型位相差板の場合は特開2007−232873号公報等、液晶塗布型位相差板の場合には特開2010−30979号公報記載されているものを用いることも好ましい。
また、他の方法としてはλ/2位相差板と組合せることで広帯域λ/4位相差板を得る技術も知られている(特開平10−90521号公報)。λ/2位相差板もλ/4位相差板と同様の材料方法で製造される。延伸型位相差板と液晶塗布型位相差板との組合せは任意であるが、どちらも液晶塗布型位相差板を用いることは厚さを薄くすることができるので好ましい。
前記円偏光板には斜め方向の視認性を高めるために、正のCプレートを積層する方法も知られている(特開2014−224837号公報)。正のCプレートも液晶塗布型位相差板であっても延伸型位相差板であってもよい。厚さ方向の位相差は、通常−200〜−20nm、好ましくは−140〜−40nmである。
In general, there are many materials that exhibit a larger birefringence as the wavelength becomes shorter and a smaller birefringence as the wavelength becomes longer. In this case, since it is not possible to achieve a phase difference of λ / 4 in the entire visible light region, an in-plane phase difference of 100 to 180 nm, preferably 130, is λ / 4 with respect to the vicinity of 560 nm, which has high visual sensitivity. It is often designed to be ~ 150 nm. It is preferable to use a reverse dispersion λ / 4 retardation plate using a material having a birefringence wavelength dispersion characteristic opposite to the usual one because visibility can be improved. As such a material, it is also preferable to use the material described in JP-A-2007-232873 in the case of a stretch-type retardation plate and in JP-A-2010-30979 in the case of a liquid crystal-coated retardation plate. ..
Further, as another method, a technique for obtaining a wideband λ / 4 retardation plate by combining with a λ / 2 retardation plate is also known (Japanese Patent Laid-Open No. 10-90521). The λ / 2 retardation plate is also manufactured by the same material method as the λ / 4 retardation plate. The combination of the stretchable retardation plate and the liquid crystal coating type retardation plate is arbitrary, but it is preferable to use the liquid crystal coating type retardation plate in both cases because the thickness can be reduced.
A method of laminating a positive C plate on the circularly polarizing plate in order to improve visibility in an oblique direction is also known (Japanese Patent Laid-Open No. 2014-224738). The positive C plate may be a liquid crystal coating type retardation plate or a stretched retardation plate. The phase difference in the thickness direction is usually −200 to −20 nm, preferably −140 to −40 nm.

(タッチセンサ)
タッチセンサは入力手段として用いられる。タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等様々な様式が提案されており、いずれの方式でも構わない。中でも静電容量方式が好ましい。静電容量方式タッチセンサは活性領域及び前記活性領域の外郭部に位置する非活性領域に区分される。活性領域は表示パネルで画面が表示される領域(表示部)に対応する領域であって、使用者のタッチが感知される領域であり、非活性領域は表示装置で画面が表示されない領域(非表示部)に対応する領域である。タッチセンサはフレキシブルな特性を有する基板と;前記基板の活性領域に形成された感知パターンと;前記基板の非活性領域に形成され、前記感知パターンとパッド部を介して外部の駆動回路と接続するための各センシングラインを含むことができる。フレキシブルな特性を有する基板としては、前記ウインドウの透明基板と同様の材料が使用できる。タッチセンサの基板は、その靱性が2,000MPa%以上であるものがタッチセンサのクラック抑制の面から好ましい。より好ましくは靱性が2,000〜30,000MPa%であってもよい。ここで、靭性は、高分子材料の引張実験を通じて得られる応力(MPa)−歪み(%)曲線(Stress-strain curve)で破壊点までの曲線の下部面積として定義される。
(Touch sensor)
The touch sensor is used as an input means. As the touch sensor, various types such as a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method have been proposed, and any method may be used. Of these, the capacitance method is preferable. The capacitive touch sensor is divided into an active region and an inactive region located outside the active region. The active area is an area corresponding to the area where the screen is displayed on the display panel (display unit), the area where the user's touch is sensed, and the inactive area is the area where the screen is not displayed on the display device (non-active area). This is the area corresponding to the display unit). The touch sensor is formed on a substrate having flexible characteristics; a sensing pattern formed in an active region of the substrate; and is formed in an inactive region of the substrate, and is connected to an external drive circuit via the sensing pattern and a pad portion. Each sensing line for can be included. As the substrate having flexible characteristics, the same material as the transparent substrate of the window can be used. The substrate of the touch sensor preferably has a toughness of 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch sensor. More preferably, the toughness may be 2,000 to 30,000 MPa%. Here, toughness is defined as the lower area of the curve to the fracture point by the stress-strain curve obtained through the tensile experiment of the polymer material.

前記感知パターンは、第1方向に形成された第1パターン及び第2方向に形成された第2パターンを備えることができる。第1パターンと第2パターンは互いに異なる方向に配置される。第1パターン及び第2パターンは、同一層に形成され、タッチされる地点を感知するためには、それぞれのパターンが電気的に接続されなければならない。第1パターンは各単位パターンが継ぎ手を介して互いに接続された形態であるが、第2パターンは各単位パターンがアイランド形態に互いに分離された構造になっているので、第2パターンを電気的に接続するためには別途のブリッジ電極が必要である。感知パターンは周知の透明電極素材を適用することができる。例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、インジウムガリウム亜鉛酸化物(IGZO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4−ethylenedioxythiophene))、炭素ナノチューブ(CNT)、グラフェン、金属ワイヤなどを挙げることができ、これらは単独または2種以上混合して使用することができる。好ましくはITOを使用することができる。金属ワイヤに使用される金属は特に限定されず、例えば、銀、金、アルミニウム、銅、鉄、ニッケル、チタン、テレニウム、クロムなどを挙げることができる。これらは単独または2種以上混合して使用することができる。 The sensing pattern can include a first pattern formed in the first direction and a second pattern formed in the second direction. The first pattern and the second pattern are arranged in different directions from each other. The first pattern and the second pattern are formed in the same layer, and each pattern must be electrically connected in order to sense the touched point. The first pattern is a form in which the unit patterns are connected to each other via a joint, but the second pattern has a structure in which the unit patterns are separated from each other into an island form, so that the second pattern is electrically connected. A separate bridge electrode is required for connection. A well-known transparent electrode material can be applied to the sensing pattern. For example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc oxide oxide (IZTO), indium gallium zinc oxide (IGZO), cadmium tin oxide (CTO). , PEDOT (poly (3,4-ethylenedioxythiophene)), carbon nanotubes (CNT), graphene, metal wire and the like, and these can be used alone or in combination of two or more. ITO can be preferably used. The metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, telenium, and chromium. These can be used alone or in combination of two or more.

ブリッジ電極は感知パターン上部に絶縁層を介して前記絶縁層上部に形成することができ、基板上にブリッジ電極が形成されており、その上に絶縁層及び感知パターンを形成することができる。前記ブリッジ電極は感知パターンと同じ素材で形成することもでき、モリブデン、銀、アルミニウム、銅、パラジウム、金、白金、亜鉛、スズ、チタンまたはこれらのうちの2種以上の合金などの金属で形成することもできる。第1パターンと第2パターンは電気的に絶縁されなければならないので、感知パターンとブリッジ電極の間には絶縁層が形成される。絶縁層は第1パターンの継ぎ手とブリッジ電極の間にのみ形成することもでき、感知パターンを覆う層の構造に形成することもできる。後者の場合は、ブリッジ電極は絶縁層に形成されたコンタクトホールを介して第2パターンを接続することができる。前記タッチセンサはパターンが形成されたパターン領域と、パターンが形成されていない非パターン領域間の透過率の差、具体的には、これらの領域における屈折率の差によって誘発される光透過率の差を適切に補償するための手段として基板と電極の間に光学調節層をさらに含むことができ、前記光学調節層は無機絶縁物質または有機絶縁物質を含むことができる。光学調節層は光硬化性有機バインダー及び溶剤を含む光硬化組成物を基板上にコーティングして形成することができる。前記光硬化組成物は無機粒子をさらに含むことができる。前記無機粒子によって光学調節層の屈折率が上昇することができる。
前記光硬化性有機バインダーは、例えば、アクリレート系単量体、スチレン系単量体、カルボン酸系単量体などの各単量体の共重合体を含むことができる。前記光硬化性有機バインダーは、例えば、エポキシ基含有繰り返し単位、アクリレート繰り返し単位、カルボン酸繰り返し単位などの互いに異なる各繰り返し単位を含む共重合体であってもよい。
前記無機粒子は、例えば、ジルコニア粒子、チタニア粒子、アルミナ粒子などを含むことができる。前記光硬化組成物は、光重合開始剤、重合性モノマー、硬化補助剤などの各添加剤をさらに含むこともできる。
The bridge electrode can be formed on the upper part of the insulating layer via the insulating layer on the upper part of the sensing pattern, the bridge electrode is formed on the substrate, and the insulating layer and the sensing pattern can be formed on the bridge electrode. The bridge electrode can also be formed of the same material as the sensing pattern and is made of a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium or an alloy of two or more of these. You can also do it. Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode. The insulating layer can be formed only between the joint of the first pattern and the bridge electrode, or can be formed in a layer structure covering the sensing pattern. In the latter case, the bridge electrode can connect the second pattern through a contact hole formed in the insulating layer. The touch sensor has a difference in transmittance between a patterned region in which a pattern is formed and a non-patterned region in which a pattern is not formed, specifically, a light transmittance induced by a difference in refractive index in these regions. An optical control layer can be further included between the substrate and the electrode as a means for appropriately compensating for the difference, and the optical control layer can include an inorganic insulating material or an organic insulating material. The optical control layer can be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate. The photocurable composition may further contain inorganic particles. The inorganic particles can increase the refractive index of the optical control layer.
The photocurable organic binder may contain, for example, a copolymer of each monomer such as an acrylate-based monomer, a styrene-based monomer, and a carboxylic acid-based monomer. The photocurable organic binder may be, for example, a copolymer containing different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
The inorganic particles can include, for example, zirconia particles, titania particles, alumina particles and the like. The photocuring composition may further contain additives such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.

(接着層(粘着剤層))
前記フレキシブル画像表示装置用積層体を形成する各層(ウインドウ、偏光板、タッチセンサ)並びに各層を構成するフィルム部材(直線偏光板、λ/4位相差板等)は接着剤によって形成することができる。接着剤としては、水系接着剤、有機溶剤系、無溶剤系接着剤、固体接着剤、溶剤揮散型接着剤、湿気硬化型接着剤、加熱硬化型接着剤、嫌気硬化型、活性エネルギー線硬化型接着剤、硬化剤混合型接着剤、熱溶融型接着剤、感圧型接着剤(粘着剤)、再湿型接着剤等汎用に使用されているものが使用できる。中でも水系溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、粘着剤がよくもちいられる。接着剤層の厚さは、求められる接着力等に応じて適宜調節することができ、通常0.01〜500μm、好ましくは0.1〜300μmであり、前記フレキシブル画像表示装置用積層体には複数存在するがそれぞれの厚さ及び用いられる粘着剤の種類は同じであっても異なっていてもよい。
(Adhesive layer (adhesive layer))
Each layer (window, polarizing plate, touch sensor) forming the laminate for the flexible image display device and the film member (linear polarizing plate, λ / 4 retardation plate, etc.) constituting each layer can be formed by an adhesive. .. Adhesives include water-based adhesives, organic solvent-based adhesives, solvent-free adhesives, solid adhesives, solvent volatilization adhesives, moisture-curable adhesives, heat-curable adhesives, anaerobic curable adhesives, and active energy ray-curable adhesives. General-purpose adhesives such as adhesives, hardener-mixed adhesives, heat-melt adhesives, pressure-sensitive adhesives (adhesives), and re-wet adhesives can be used. Of these, water-based solvent volatilization adhesives, active energy ray-curable adhesives, and adhesives are often used. The thickness of the adhesive layer can be appropriately adjusted according to the required adhesive strength and the like, and is usually 0.01 to 500 μm, preferably 0.1 to 300 μm. There are a plurality of them, but the thickness of each and the type of the pressure-sensitive adhesive used may be the same or different.

前記水系水系溶剤揮散型接着剤としてはポリビニルアルコール系ポリマー、でんぷん等の水溶性ポリマー、エチレン−酢酸ビニル系エマルジョン、スチレン−ブタジエン系エマルジョン等水分散状態のポリマーを主剤ポリマーとして使用することができる。水、前記主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、染料、顔料、無機フィラー、有機溶剤等を配合してもよい。前記水系水系溶剤揮散型接着剤によって接着する場合、前記水系水系溶剤揮散型接着剤を被接着層間に注入して被着層を貼合した後、乾燥させることで接着性を付与することができる。前記水系水系溶剤揮散型接着剤を用いる場合の接着層の厚さは、好ましくは0.01〜10μm、より好ましくは0.1〜1μmであってもよい。前記水系溶剤揮散型接着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び前記接着剤の種類は同じであっても異なっていてもよい。 As the water-based water-based solvent volatilization type adhesive, a polyvinyl alcohol-based polymer, a water-soluble polymer such as starch, an ethylene-vinyl acetate-based emulsion, a styrene-butadiene-based emulsion, or the like in an aqueous-dispersed state can be used as the main polymer. In addition to water and the main polymer, a cross-linking agent, a silane compound, an ionic compound, a cross-linking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent and the like may be blended. When adhering with the water-based water-based solvent volatilization type adhesive, the water-based water-based solvent volatilization type adhesive can be injected between the layers to be adhered, the adherend layers are bonded, and then dried to impart adhesiveness. .. When the water-based water-based solvent volatilization type adhesive is used, the thickness of the adhesive layer may be preferably 0.01 to 10 μm, more preferably 0.1 to 1 μm. When the water-based solvent volatilization type adhesive is used for forming a plurality of layers, the thickness of each layer and the type of the adhesive may be the same or different.

前記活性エネルギー線硬化型接着剤は、活性エネルギー線を照射して接着剤層を形成する反応性材料を含む活性エネルギー線硬化組成物の硬化により形成することができる。前記活性エネルギー線硬化組成物は、ハードコート組成物と同様のラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有することができる。前記ラジカル重合性化合物とは、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。接着層に用いられるラジカル重合性化合物としてはアクリロイル基を有する化合物が好ましい。接着剤組成物としての粘度を下げるために単官能の化合物を含むことも好ましい。 The active energy ray-curable adhesive can be formed by curing an active energy ray-curable composition containing a reactive material that is irradiated with active energy rays to form an adhesive layer. The active energy ray-curable composition can contain at least one polymer of a radical-polymerizable compound and a cationically polymerizable compound similar to the hard coat composition. The radically polymerizable compound is the same as the hard coat composition, and the same kind as the hard coat composition can be used. As the radically polymerizable compound used for the adhesive layer, a compound having an acryloyl group is preferable. It is also preferable to include a monofunctional compound in order to reduce the viscosity of the adhesive composition.

前記カチオン重合性化合物は、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。活性エネルギー線硬化組成物に用いられるカチオン重合性化合物としては、エポキシ化合物が特に好ましい。接着剤組成物としての粘度を下げるために単官能の化合物を反応性希釈剤として含むことも好ましい。
活性エネルギー線組成物には重合開始剤を更に含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等であり、適宜選択して用いることができる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。ハードコート組成物の記載の中で活性エネルギー線照射によりラジカル重合またはカチオン重合の内の少なくともいずれか開始することができる開始剤を使用することができる。
The cationically polymerizable compound is the same as the hard coat composition, and the same kind as the hard coat composition can be used. As the cationically polymerizable compound used in the active energy ray-curable composition, an epoxy compound is particularly preferable. It is also preferable to include a monofunctional compound as a reactive diluent in order to reduce the viscosity of the adhesive composition.
The active energy ray composition may further contain a polymerization initiator. The polymerization initiator includes a radical polymerization initiator, a cationic polymerization initiator, a radical and a cationic polymerization initiator, and the like, and can be appropriately selected and used. These polymerization initiators are decomposed by at least one of active energy ray irradiation and heating to generate radicals or cations to promote radical polymerization and cation polymerization. In the description of the hard coat composition, an initiator that can initiate at least one of radical polymerization or cationic polymerization by irradiation with active energy rays can be used.

前記活性エネルギー線硬化組成物は、更にイオン捕捉剤、酸化防止剤、連鎖移動剤、密着付与剤、熱可塑性樹脂、充填剤、流動粘度調整剤、可塑剤、消泡剤溶剤、添加剤、溶剤を含むことができる。前記活性エネルギー線硬化型接着剤によって接着する場合、前記活性エネルギー線硬化組成物を被接着層のいずれかまたは両方に塗布後貼合し、いずれかの被着層または両方の被着層を通して活性エネルギー線を照射して硬化させることで接着することができる。前記活性エネルギー線硬化型接着剤を用いる場合の接着層の厚さは、好ましくは0.01〜20μm、より好ましくは0.1〜10μmであってもよい。前記活性エネルギー線硬化型接着剤を複数層の形成に用いる場合には、それぞれの層の厚さ及び用いられる接着剤の種類は同じであっても異なっていてもよい。 The active energy ray-curing composition further comprises an ion trapping agent, an antioxidant, a chain transfer agent, an adhesion imparting agent, a thermoplastic resin, a filler, a fluid viscosity modifier, a plasticizer, a defoaming agent solvent, an additive, and a solvent. Can be included. When adhering with the active energy ray-curable adhesive, the active energy ray-curable composition is applied to either or both of the adherend layers and then bonded, and is activated through either or both adherend layers. Adhesion can be achieved by irradiating with energy rays and curing. When the active energy ray-curable adhesive is used, the thickness of the adhesive layer may be preferably 0.01 to 20 μm, more preferably 0.1 to 10 μm. When the active energy ray-curable adhesive is used for forming a plurality of layers, the thickness of each layer and the type of adhesive used may be the same or different.

前記粘着剤としては、主剤ポリマーに応じて、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等に分類され何れを使用することもできる。粘着剤には主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、粘着付与剤、可塑剤、染料、顔料、無機フィラー等を配合してもよい。前記粘着剤を構成する各成分を溶剤に溶解・分散させて粘着剤組成物を得て、該粘着剤組成物を基材上に塗布した後に乾燥させることで、粘着剤層接着層が形成される。粘着層は直接形成されてもよいし、別途基材に形成したものを転写することもできる。接着前の粘着面をカバーするためには離型フィルムを使用することも好ましい。前記粘着剤を用いる場合の接着層の厚さは、好ましくは1〜500μm、より好ましくは2〜300μmであってもよい。前記粘着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び用いられる粘着剤の種類は同じであっても異なっていてもよい。 The pressure-sensitive adhesive may be classified into acrylic pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and the like, depending on the main polymer. In addition to the main polymer, the pressure-sensitive adhesive may contain a cross-linking agent, a silane compound, an ionic compound, a cross-linking catalyst, an antioxidant, a tackifier, a plasticizing agent, a dye, a pigment, an inorganic filler and the like. A pressure-sensitive adhesive layer is formed by dissolving and dispersing each component constituting the pressure-sensitive adhesive in a solvent to obtain a pressure-sensitive adhesive composition, applying the pressure-sensitive adhesive composition onto a substrate, and then drying the mixture. To. The adhesive layer may be directly formed, or a separately formed base material may be transferred. It is also preferable to use a release film to cover the adhesive surface before bonding. When the pressure-sensitive adhesive is used, the thickness of the adhesive layer may be preferably 1 to 500 μm, more preferably 2 to 300 μm. When the pressure-sensitive adhesive is used for forming a plurality of layers, the thickness of each layer and the type of pressure-sensitive adhesive used may be the same or different.

(遮光パターン)
前記遮光パターンは前記フレキシブル画像表示装置のベゼルまたはハウジングの少なくとも一部として適用することができる。遮光パターンによって前記フレキシブル画像表示装置の辺縁部に配置される配線が隠されて視認されにくくすることで、画像の視認性が向上する。前記遮光パターンは単層または複層の形態であってもよい。遮光パターンのカラーは特に制限されることはなく、黒色、白色、金属色などの多様なカラーを有することができる。遮光パターンはカラーを具現するための顔料と、アクリル系樹脂、エステル系樹脂、エポキシ系樹脂、ポリウレタン、シリコーンなどの高分子で形成することができる。これらの単独または2種類以上の混合物で使用することもできる。前記遮光パターンは、印刷、リソグラフィ、インクジェットなど各種の方法にて形成することができる。遮光パターンの厚さは、通常1〜100μm、好ましくは2〜50μmである。また、光パターンの厚さ方向に傾斜等の形状を付与することも好ましい。
(Shading pattern)
The shading pattern can be applied as at least part of the bezel or housing of the flexible image display device. The light-shielding pattern hides the wiring arranged at the edge of the flexible image display device to make it difficult to see, thereby improving the visibility of the image. The shading pattern may be in the form of a single layer or multiple layers. The color of the light-shielding pattern is not particularly limited, and can have various colors such as black, white, and metallic. The light-shielding pattern can be formed of a pigment for embodying color and a polymer such as an acrylic resin, an ester resin, an epoxy resin, polyurethane, or silicone. They can also be used alone or in mixtures of two or more. The shading pattern can be formed by various methods such as printing, lithography, and inkjet. The thickness of the light-shielding pattern is usually 1 to 100 μm, preferably 2 to 50 μm. It is also preferable to give a shape such as an inclination in the thickness direction of the optical pattern.

以下、実施例により本発明を更に詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部を意味する。まず評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples. Unless otherwise specified, "%" and "part" in the example mean mass% and parts by mass. First, the evaluation method will be described.

<1.測定方法>
(光学フィルムの反射(SCE)a*、反射(SCE)b*、反射(SCI)a*、反射(SCI)b*)
実施例及び比較例で得られた光学フィルムを50mm×50mmの大きさにカットしたのち、黒PET((株)巴川製作所製「くっきりミエ〜ル」)と貼り合せ、反射光学測定用のサンプルを得た。
得られた評価用サンプルのSCE方式(正反射光除去)、及びSCI方式(正反射光を含む)の色相を、分光測色計(コニカミノルタ(株)製「CM−3700A」)で測定した。測定径はLAV:直径8mmとし、測定条件は、di:8°、de:8°(拡散照明・8°方向受光)、測定視野は2°とし、光源はD65光源を使用し、UV条件は100%Fullとした。ここで、色相とは、CIE1976L*a*b*色空間のa*およびb*を指す。加えて、光学フィルムの反射(SCE)a*及び反射(SCI)a*も上記と同様の条件で測定した。
<1. Measurement method>
(Reflection (SCE) a *, reflection (SCE) b *, reflection (SCI) a *, reflection (SCI) b * of optical film)
The optical films obtained in the examples and comparative examples are cut into a size of 50 mm × 50 mm, and then bonded to black PET (“Kikkari Mieru” manufactured by Tomoegawa Seisakusho Co., Ltd.) to prepare a sample for reflection optical measurement. Obtained.
The hues of the obtained evaluation sample by the SCE method (specular reflection light removal) and the SCI method (including specular light) were measured with a spectrophotometer (“CM-3700A” manufactured by Konica Minolta Co., Ltd.). .. The measurement diameter is LAV: diameter 8 mm, the measurement conditions are di: 8 °, de: 8 ° (diffuse illumination, 8 ° direction reception), the measurement field of view is 2 °, the light source is a D65 light source, and the UV conditions are. It was set to 100% Full. Here, the hue refers to a * and b * in the CIE1976L * a * b * color space. In addition, the reflection (SCE) a * and the reflection (SCI) a * of the optical film were also measured under the same conditions as described above.

(円偏光板を有する積層体の反射(SCE)b*)及び反射(SCI)b*)
円偏光板を有する積層体の反射(SCE)b*及び反射(SCI)b*は、測定対象を光学フィルムから円偏光板を有する積層体に変更した以外は、光学フィルムの測定方法と同様にして測定した。また、同様にして、反射(SCE)a*及び反射(SCI)a*も測定した。
(Reflection (SCE) b * and reflection (SCI) b * of a laminate having a circularly polarizing plate)
The reflection (SCE) b * and reflection (SCI) b * of the laminate having the circularly polarizing plate are the same as the measurement method of the optical film except that the measurement target is changed from the optical film to the laminate having the circularly polarizing plate. Was measured. Similarly, reflection (SCE) a * and reflection (SCI) a * were also measured.

(円偏光板を有する積層体の視感透過率Y)
視感透過率Yは、XYZ表色系における物体色の明度を示す物性値である。SCI方式のSCE方式の視感透過率Yは、分光測色計(コニカミノルタ(株)製「CM−3700A」)を用いて測定した。
(Visible transmittance Y of the laminated body having a circularly polarizing plate)
The visual transmittance Y is a physical characteristic value indicating the brightness of the object color in the XYZ color system. The visual transmittance Y of the SCI method and the SCE method was measured using a spectrocolorimeter (“CM-3700A” manufactured by Konica Minolta Co., Ltd.).

(光学フィルムの透過b*)
実施例及び比較例で得られた光学フィルムを50mm×50mmの大きさにカットし、透過光学測定を分光測色計(コニカミノルタ(株)製「CM−3700A」)を用いて測定した。測定径はLAV:直径25.4mmとし、測定視野は2°とした。また測定光源はD65光源を使用し、UV条件は100%Fullとした。ここで、色相とは、CIE1976L*a*b*色空間のa*及びb*を指す。
(Transmission b * of optical film)
The optical films obtained in Examples and Comparative Examples were cut into a size of 50 mm × 50 mm, and transmission optical measurements were measured using a spectrocolorimeter (“CM-3700A” manufactured by Konica Minolta Co., Ltd.). The measurement diameter was LAV: 25.4 mm in diameter, and the measurement field of view was 2 °. A D65 light source was used as the measurement light source, and the UV condition was 100% Full. Here, the hue refers to a * and b * in the CIE1976L * a * b * color space.

(円偏光板を有する積層体の透過b*)
円偏光板を有する積層体の透過b*は、測定対象を光学フィルムから円偏光板を有する積層体に変更した以外は、光学フィルムの測定方法と同様にして測定した。また、同様にして、円偏光板を有する積層体の透過a*も測定した。
(Transmission b * of a laminate having a circularly polarizing plate)
The transmission b * of the laminated body having the circularly polarizing plate was measured in the same manner as the measuring method of the optical film except that the measurement target was changed from the optical film to the laminated body having the circularly polarizing plate. Further, in the same manner, the transmission a * of the laminated body having the circularly polarizing plate was also measured.

(光学フィルム及び粘着剤層の膜厚)
マイクロメーター((株)ミツトヨ製「ID−C112XBS」)を用いて、10点以上の光学フィルムの膜厚を測定し、その平均値を算出した。同様にして、粘着剤層の厚さを測定し、その平均値を算出した。
(Film thickness of optical film and adhesive layer)
Using a micrometer (“ID-C112XBS” manufactured by Mitutoyo Co., Ltd.), the film thickness of 10 or more optical films was measured, and the average value was calculated. In the same manner, the thickness of the pressure-sensitive adhesive layer was measured, and the average value thereof was calculated.

(光学フィルムの全光線透過率及びヘーズ)
光学フィルムの全光線透過率及びヘーズは、それぞれJIS K 7361−1:1997、JIS K 7136:2000に準拠して、スガ試験機(株)製の全自動直読ヘーズコンピュータHGM−2DPを用いて測定した。測定試料は、実施例及び比較例の光学フィルムを30mm×30mmの大きさにカットして作製した。
(Total light transmittance and haze of optical film)
The total light transmittance and haze of the optical film are measured using a fully automatic direct reading haze computer HGM-2DP manufactured by Suga Testing Machine Co., Ltd. in accordance with JIS K 7361-1: 1997 and JIS K 7136: 2000, respectively. did. The measurement sample was prepared by cutting the optical films of Examples and Comparative Examples into a size of 30 mm × 30 mm.

(光学フィルムの黄色度)
光学フィルムの黄色度(Yellow Index:YI値)は、紫外可視近赤外分光光度計(日本分光(株)製「V−670」)を用いて測定した。サンプルがない状態でバックグランド測定を行った後、実施例及び比較例で得られた光学フィルムをサンプルホルダーにセットして、300〜800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求めた。得られた3刺激値からASTM D1925の規格に基づき、下記の式に基づいてYI値を算出した。
YI=100×(1.2769X−1.0592Z)/Y
(Yellowness of optical film)
The yellowness (Yellow Index: YI value) of the optical film was measured using an ultraviolet-visible near-infrared spectrophotometer (“V-670” manufactured by JASCO Corporation). After performing background measurement in the absence of a sample, the optical films obtained in Examples and Comparative Examples were set in a sample holder, transmittance was measured for light of 300 to 800 nm, and tristimulus values (X, Y, Z) was calculated. From the obtained tristimulus values, the YI value was calculated based on the following formula based on the ASTM D1925 standard.
YI = 100 × (1.2769X-1.0592Z) / Y

(シリカ粒子の粒子径)
シリカ粒子の粒子径は、JIS Z 8830に準じ、BET吸着法による比表面積測定値から算出した。シリカゾルを300℃で乾燥させた粉末の比表面積を比表面積測定装置(ユアサアイオニクス(株)製「モノソーブ(登録商標)MS−16」)を用いて測定した。
(Particle diameter of silica particles)
The particle size of the silica particles was calculated from the specific surface area measurement value by the BET adsorption method according to JIS Z 8830. The specific surface area of the powder obtained by drying the silica sol at 300 ° C. was measured using a specific surface area measuring device (“Monosorb (registered trademark) MS-16” manufactured by Yuasa Ionics Co., Ltd.).

(重量平均分子量)
ゲル浸透クロマトグラフィー(GPC)測定
(1)前処理方法
試料をγ−ブチロラクトン(GBL)に溶解させて20質量%溶液とした後、DMF溶離液にて100倍に希釈し、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(2)測定条件
カラム:TSKgel SuperAWM−H×2+SuperAW2500×1(6.0mm I.D.×150mm×3本)
溶離液:DMF(10mmolの臭化リチウム添加)
流量:0.6mL/分
検出器:RI検出器
カラム温度:40℃
注入量:20μL
分子量標準:標準ポリスチレン
(Weight average molecular weight)
Gel Permeation Chromatography (GPC) Measurement (1) Pretreatment Method After dissolving the sample in γ-butyrolactone (GBL) to make a 20% by mass solution, dilute it 100 times with a DMF eluent and use a 0.45 μm membrane filter. The filtered solution was used as the measurement solution.
(2) Measurement condition column: TSKgel SuperAWM-H × 2 + SuperAW2500 × 1 (6.0 mm ID × 150 mm × 3)
Eluent: DMF (10 mmol lithium bromide added)
Flow rate: 0.6 mL / min Detector: RI detector Column temperature: 40 ° C
Injection volume: 20 μL
Molecular weight standard: Standard polystyrene

(イミド化率)
イミド化率は、H−NMR測定により以下のようにして求めた。
(1)前処理方法
ポリイミド系高分子を含む光学フィルムを重水素化ジメチルスルホキシド(DMSO−d)に溶解させて2質量%溶液としたものを測定試料とした。
(2)測定条件
測定装置:JEOL製 400MHz NMR装置 JNM−ECZ400S/L1
標準物質:DMSO−d(2.5ppm)
試料温度:室温
積算回数:256回
緩和時間:5秒
(3)イミド化率解析方法
(ポリイミド樹脂のイミド化率)
ポリイミド樹脂を含む測定試料で得られたH−NMRスペクトルにおいて、観測されたベンゼンプロトンのうちイミド化前後で変化しない構造に由来するベンゼンプロトンAの積分値をIntとした。また、観測されたポリイミド樹脂中に残存するアミック酸構造に由来するアミドプロトンの積分値をIntとした。これらの積分値から以下の式に基づいてポリイミド樹脂のイミド化率を求めた。
イミド化率(%)=100×(1−α×Int/Int
上記式において、αはポリアミド酸(イミド化率0%)の場合におけるアミドプロトン1個に対するベンゼンプロトンAの個数割合である。
(Immidization rate)
The imidization ratio was determined by 1 H-NMR measurement as follows.
(1) Pretreatment Method An optical film containing a polyimide polymer was dissolved in deuterated dimethyl sulfoxide (DMSO-d 6 ) to prepare a 2% by mass solution, which was used as a measurement sample.
(2) Measurement conditions Measuring device: JEOL 400MHz NMR device JNM-ECZ400S / L1
Standard substance: DMSO-d 6 (2.5 ppm)
Sample temperature: Room temperature Accumulation number: 256 times Relaxation time: 5 seconds (3) Imidization rate analysis method (imidization rate of polyimide resin)
In the 1 H-NMR spectrum obtained from the measurement sample containing the polyimide resin, the integral value of the benzene proton A derived from the structure that does not change before and after imidization among the observed benzene protons was defined as Int A. Further, the integral value of the amide proton derived from the amic acid structure remaining in the observed polyimide resin was defined as Int B. From these integrated values, the imidization rate of the polyimide resin was determined based on the following formula.
Imidization rate (%) = 100 × (1-α × Int B / Int A )
In the above formula, α is the number ratio of benzene protons A to one amide proton in the case of polyamic acid (imidization ratio 0%).

(ポリアミドイミド樹脂のイミド化率)
ポリアミドイミド樹脂を含む測定試料で得られたH−NMRスペクトルにおいて、観測されたベンゼンプロトンのうちイミド化前後で変化しない構造に由来し、ポリアミドイミド樹脂中に残存するアミック酸構造に由来する構造に影響を受けないベンゼンプロトンCの積分値をIntとした。また、観測されたベンゼンプロトンのうちイミド化前後で変化しない構造に由来し、ポリアミドイミド樹脂中に残存するアミック酸構造に由来する構造に影響を受けるベンゼンプロトンDの積分値をIntとした。得られたInt及びIntから以下の式によりβ値を求めた。
β=Int/Int
次に、複数のポリアミドイミド樹脂について上記式のβ値及び上記式のポリイミド樹脂のイミド化率を求め、これらの結果から以下の相関式を得た。
イミド化率(%)=k×β+100
上記相関式中、kは定数である。
βを相関式に代入してポリアミドイミド樹脂のイミド化率(%)を得た。
(Imidization rate of polyamide-imide resin)
In the 1 H-NMR spectrum obtained from the measurement sample containing the polyamide-imide resin, the structure derived from the structure of the observed benzene protons that does not change before and after imidization and the structure derived from the amic acid structure remaining in the polyamide-imide resin. The integrated value of benzene proton C, which is not affected by the above, was defined as Int C. Further, among the observed benzene protons, the integral value of benzene proton D, which is derived from the structure that does not change before and after imidization and is influenced by the structure derived from the amic acid structure remaining in the polyamide-imide resin, was defined as Int D. The β value was calculated from the obtained Int C and Int D by the following formula.
β = Int D / Int C
Next, the β value of the above formula and the imidization rate of the polyimide resin of the above formula were obtained for a plurality of polyamide-imide resins, and the following correlation formula was obtained from these results.
Imidization rate (%) = k × β + 100
In the above correlation equation, k is a constant.
By substituting β into the correlation equation, the imidization rate (%) of the polyamide-imide resin was obtained.

(樹脂のHSP値の算出)
ポリアミドイミド樹脂1(PAI−1)の溶媒への溶解性を評価した。透明の容器に表1に示すような溶解度パラメータが既知の溶媒(出典:ポリマーハンドブック第4版)10mLとポリアミドイミド樹脂1 0.1gを投入し混合液を調製した。得られた混合物に対して累計6時間超音波処理を施した。超音波処理後の混合液の外観を目視にて観察し、得られた観察結果から下記の評価基準に基づいてポリアミドイミド樹脂1の溶媒への溶解性を評価した。評価結果を表1に示す。なお、同様にして、ポリアミドイミド樹脂2(PAI−2)及びポリイミド樹脂1(PI)についても、ポリアミドイミド樹脂1−溶媒系におけるポリアミドイミド樹脂1と樹脂の種類を変更した以外は同様にして溶媒への溶解性を評価した。
(評価基準)
1:混合液の外観は白濁している。
0:混合液の外観は透明である。
(Calculation of HSP value of resin)
The solubility of the polyamide-imide resin 1 (PAI-1) in a solvent was evaluated. A mixed solution was prepared by putting 10 mL of a solvent having a known solubility parameter as shown in Table 1 (Source: Polymer Handbook 4th Edition) and 0.1 g of a polyamide-imide resin into a transparent container. The resulting mixture was sonicated for a total of 6 hours. The appearance of the mixed solution after the ultrasonic treatment was visually observed, and the solubility of the polyamide-imide resin 1 in the solvent was evaluated based on the following evaluation criteria from the obtained observation results. The evaluation results are shown in Table 1. Similarly, the polyamide-imide resin 2 (PAI-2) and the polyimide resin 1 (PI) are also used in the same manner except that the types of the polyamide-imide resin 1 and the resin in the polyamide-imide resin 1-solvent system are changed. Solubility in was evaluated.
(Evaluation criteria)
1: The appearance of the mixed solution is cloudy.
0: The appearance of the mixed solution is transparent.

Figure 0006896787
Figure 0006896787

得られた樹脂の溶媒への溶解性の評価結果から上述のハンセン溶解球法を用いてハンセン球を作成した。得られたハンセン球の中心座標をHSP値とした。その結果を表2に示す。 From the evaluation result of the solubility of the obtained resin in a solvent, Hansen spheres were prepared by using the above-mentioned Hansen lysing sphere method. The center coordinates of the obtained Hansen sphere were used as the HSP value. The results are shown in Table 2.

Figure 0006896787
Figure 0006896787

(シリカのHSP値の算出)
シリカゾル1から溶媒を除去し、固形分であるシリカ1を取り出した。そのシリカ1の溶媒への分散性を評価した。透明の容器に表3に示すような溶解度パラメータが既知の溶媒(出典:ポリマーハンドブック第4版)10mLとシリカ1 0.1gとを投入し混合液を調製した。得られた混合物に対して累計6時間超音波処理を施した。超音波処理後の混合液の外観を目視にて観察し、得られた観察結果から下記の評価基準に基づいてシリカ1の溶媒への分散性を評価した。評価結果を表3に示す。なお、同様にして、メタノール分散シリカゾル(日産化学工業(株)製「MA−ST−L」、一次粒子径20〜25nm)、及びメタノール分散シリカゾル(シリカゾル2、一次粒子径10〜12nm)についても、シリカ1−溶媒系においてその原料であるシリカゾルの種類を変更した以外は同様にして溶媒への分散性を評価した。
(評価基準)
1:混合液の外観は白濁している。
0:混合液の外観は透明である。
(Calculation of HSP value of silica)
The solvent was removed from the silica sol 1 to take out the solid silica 1. The dispersibility of silica 1 in a solvent was evaluated. A mixed solution was prepared by putting 10 mL of a solvent having a known solubility parameter as shown in Table 3 (Source: Polymer Handbook 4th Edition) and 0.1 g of silica into a transparent container. The resulting mixture was sonicated for a total of 6 hours. The appearance of the mixed solution after the ultrasonic treatment was visually observed, and the dispersibility of silica 1 in the solvent was evaluated based on the following evaluation criteria from the obtained observation results. The evaluation results are shown in Table 3. Similarly, for the methanol-dispersed silica sol (“MA-ST-L” manufactured by Nissan Chemical Industry Co., Ltd., primary particle size 20 to 25 nm) and the methanol-dispersed silica sol (silica sol 2, primary particle size 10 to 12 nm). , The dispersibility in the solvent was evaluated in the same manner except that the type of the silica sol as the raw material was changed in the silica 1-solvent system.
(Evaluation criteria)
1: The appearance of the mixed solution is cloudy.
0: The appearance of the mixed solution is transparent.

Figure 0006896787
Figure 0006896787

シリカゾル中に分散しているそれぞれのシリカの溶媒への分散性の評価結果から上述のハンセン溶解球法を用いてハンセン球を作成した。得られたハンセン球の中心座標をHSP値とした。その結果を表4に示す。 Hansen spheres were prepared by using the above-mentioned Hansen-dissolved sphere method from the evaluation results of the dispersibility of each silica dispersed in the silica sol in a solvent. The center coordinates of the obtained Hansen sphere were used as the HSP value. The results are shown in Table 4.

Figure 0006896787
Figure 0006896787

(樹脂−シリカ系のHSP値)
表2及び表4から、式(6)〜式(9)を用いて樹脂−シリカ系のHSP値を算出した。その結果を表5に示す。
(Resin-silica HSP value)
From Tables 2 and 4, the HSP values of the resin-silica system were calculated using the formulas (6) to (9). The results are shown in Table 5.

Figure 0006896787
Figure 0006896787

表5に示すように、シリカ1,2−樹脂系のRa、Δδ及びΔδは、それぞれシリカ(MA−ST−L)−樹脂系のRa、Δδ及びΔδに比べ、小さかった。また、シリカ1,2−樹脂系のRa、Δδ、及びΔδは、それぞれ式(3)〜式(5)を満たしていた。 As shown in Table 5, silica-1,2 resin of Ra, .DELTA..delta t and .DELTA..delta p are silica respectively (MA-ST-L) - resin system Ra, compared to .DELTA..delta t and .DELTA..delta p, was small. Further, Ra, Δδ t , and Δδ p of the silica 1,2-resin system satisfied the formulas (3) to (5), respectively.

(弾性率)
粘着剤層の弾性率(引張弾性率)G’は、JIS K 7127に準拠した引っ張り試験により、電気機械式万能試験機(インストロン社製)を用いて測定した。測定条件は、試験速度5m/分及びロードセル5kNであった。
(Elastic modulus)
The elastic modulus (tensile elastic modulus) G'of the pressure-sensitive adhesive layer was measured by an electromechanical universal tester (manufactured by Instron) by a tensile test conforming to JIS K 7127. The measurement conditions were a test speed of 5 m / min and a load cell of 5 kN.

<2.評価方法>
(光学フィルムの繰り出し安定性及びフィルム外観の評価)
ロール・ツー・ロールで実施例及び比較例の光学フィルムを作製した。ロールから該光学フィルムを繰り出し(巻きだし)、繰り出した際の光学フィルムの状態を目視で観察した。観察結果から下記の評価基準に基づいて繰り出し安定性を評価した。優れているものから順に、◎、△、及び×で表記する。
(光学フィルムの繰り出し性の評価基準)
◎:ロールからフィルム端部を繰り出す際に、スムーズに繰り出せる。
○:ロールからフィルム端部を繰り出す際に、わずかに引っ掛かりが認められるが、スムーズに繰り出せる。
△:ロールからフィルム端部を繰り出す際に、引っ掛かりが認められるものの、フィルムにはキズがなく、またフィルムが切れることはない。
×:ロールからフィルム端部を繰り出す際に、引っ掛かりが認められ、フィルムにキズがつくか、フィルムが切れる。
<2. Evaluation method>
(Evaluation of optical film feeding stability and film appearance)
The optical films of Examples and Comparative Examples were produced by roll-to-roll. The optical film was unwound from the roll, and the state of the optical film when unwound was visually observed. From the observation results, the feeding stability was evaluated based on the following evaluation criteria. Indicated by ◎, △, and × in order from the best.
(Evaluation criteria for the drawability of optical film)
⊚: When the end of the film is fed out from the roll, it can be fed out smoothly.
◯: When the end of the film is extended from the roll, a slight catch is observed, but the film can be extended smoothly.
Δ: Although the film is caught when the edge of the film is extended from the roll, the film is not scratched and the film is not cut.
X: When the end of the film is extended from the roll, catching is recognized, and the film is scratched or the film is cut.

(円偏光板を有する積層体の視認性評価)
反射板(アルミ板、反射率97%)の表面に円偏光板を有する積層体を設置し、円偏光板を有する該積層体平面の垂直方向から45°傾けた角度から、観察者が円偏光板を有する積層体を目視にて観察した。観察結果から下記の評価基準に基づいて円偏光板を有する積層体の視認性を評価した。優れているものから順に、〇、△及び×で表記する。
(円偏光板を有する積層体の視認性の評価基準)
〇:反射板上、垂直方向に比べて45°斜面での色相変化なし
△:反射板上、垂直方向に比べて45°斜面での色相変化がややあり。
×:反射板上、垂直方向に比べて45°斜面での色相変化が大きい。
(Evaluation of visibility of laminated body having circular polarizing plate)
A laminate having a circularly polarizing plate is installed on the surface of a reflecting plate (aluminum plate, reflectance 97%), and the observer is circularly polarized from an angle of 45 ° from the vertical direction of the laminated body having the circularly polarizing plate. The laminated body having the plate was visually observed. From the observation results, the visibility of the laminated body having the circularly polarizing plate was evaluated based on the following evaluation criteria. Indicated by 〇, △ and × in order from the best one.
(Evaluation criteria for visibility of laminates with circularly polarizing plates)
〇: No change in hue on the reflector at 45 ° slope compared to the vertical direction Δ: There is a slight change in hue on the reflector at 45 ° slope compared to the vertical direction.
X: On the reflector, the hue change on the 45 ° slope is larger than in the vertical direction.

(フィルム外観品質の低下抑制の評価)
実施例及び比較例の光学フィルムを作製した。光学フィルムに黒紙を重ね、光学フィルム側から目視で光学フィルムの外観を観察した。白味を帯びているか否か(白濁の有無)を確認した。観察結果から下記の評価基準に基づいてフィルム外観品質の低下の抑制を評価した。
(フィルム外観品質の低下抑制の評価基準)
◎(非常に良い):透明である。
○(良い):透明であるが、わずかに白味を帯びている。
×(悪い):透明ではなく、白味を帯びている。
(Evaluation of suppression of deterioration of film appearance quality)
Optical films of Examples and Comparative Examples were produced. Black paper was placed on the optical film, and the appearance of the optical film was visually observed from the optical film side. It was confirmed whether or not it was whitish (whether or not it was cloudy). From the observation results, the suppression of deterioration of film appearance quality was evaluated based on the following evaluation criteria.
(Evaluation criteria for suppressing deterioration of film appearance quality)
◎ (Very good): Transparent.
○ (Good): Transparent, but slightly whitish.
× (bad): Not transparent but whitish.

<3.光学フィルムの製造>
[3−1.ポリイミド系高分子の製造]
〔製造例1:ポリイミド樹脂1〕
セパラブルフラスコにシリカゲル管、攪拌装置、及び温度計を取り付けた反応容器と、オイルバスとを準備した。オイルバスに設置した反応容器内に4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA) 75.52gと、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノジフェニル(TFMB) 54.44gとを投入した。反応容器内の内容物を400rpmで攪拌しながらN,N−ジメチルアセトアミド(DMAc) 519.84gを更に反応容器に投入し、反応容器内の内容物が均一な溶液になるまで攪拌を続けた。続いて、オイルバスを用いて容器内温度が20〜30℃の範囲になるように調整しながら更に20時間攪拌を続け、反応させてポリアミック酸を生成させた。30分後、撹拌速度を100rpmに変更した。20時間攪拌後、反応系温度を室温(25℃)に戻し、DMAc 649.8gを反応容器内に更に投入してポリマー濃度が反応容器内の内容物の総重量を基準として10重量%となるように調整した。更に、ピリジン 32.27gと、無水酢酸 41.65gとを反応容器内に投入し、室温で10時間攪拌してイミド化を行った。反応容器からポリイミドワニスを取り出した。得られたポリイミドワニスをメタノール中に滴下して再沈殿を行った。沈殿物を濾過で取り出し、乾燥させ粉体を得た。得られた粉体を更に加熱乾燥して溶媒を除去し、固形分としてポリイミド樹脂1を得た。得られたポリイミド樹脂1の重量平均分子量は320,000であり、イミド化率は98.6%であった。
<3. Manufacturing of optical film>
[3-1. Manufacture of polyimide-based polymers]
[Manufacturing Example 1: Polyimide Resin 1]
A reaction vessel equipped with a silica gel tube, a stirrer, and a thermometer in a separable flask, and an oil bath were prepared. 75.52 g of 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride (6FDA) and 2,2'-bis (trifluoromethyl) -4,4'-in a reaction vessel installed in an oil bath. 54.44 g of diaminodiphenyl (TFMB) was added. While stirring the contents in the reaction vessel at 400 rpm, 519.84 g of N, N-dimethylacetamide (DMAc) was further added to the reaction vessel, and stirring was continued until the contents in the reaction vessel became a uniform solution. Subsequently, stirring was continued for another 20 hours while adjusting the temperature inside the container to be in the range of 20 to 30 ° C. using an oil bath, and the reaction was carried out to generate a polyamic acid. After 30 minutes, the stirring speed was changed to 100 rpm. After stirring for 20 hours, the reaction system temperature is returned to room temperature (25 ° C.), and 649.8 g of DMAc is further added into the reaction vessel to bring the polymer concentration to 10% by weight based on the total weight of the contents in the reaction vessel. Adjusted as follows. Further, 32.27 g of pyridine and 41.65 g of acetic anhydride were put into a reaction vessel, and the mixture was stirred at room temperature for 10 hours for imidization. The polyimide varnish was taken out from the reaction vessel. The obtained polyimide varnish was added dropwise to methanol for reprecipitation. The precipitate was removed by filtration and dried to give a powder. The obtained powder was further heated and dried to remove the solvent, and a polyimide resin 1 was obtained as a solid content. The weight average molecular weight of the obtained polyimide resin 1 was 320,000, and the imidization ratio was 98.6%.

〔製造例2:ポリアミドイミド樹脂1〕
窒素ガス雰囲気下、容量1Lセパラブルフラスコに撹拌翼を備えた反応容器と、オイルバスとを準備した。オイルバスに設置した反応容器内にTFMB 45g(140.52mmol)とDMAc 768.55gとを投入した。反応容器内の内容物を室温で撹拌してTFMBをDMAcに溶解させた。次に、反応容器内に6FDA 18.92g(42.58mmol)を更に投入し、反応容器内の内容物を室温で3時間撹拌した。その後、4,4’−オキシビス(ベンゾイルクロリド)(OBBC) 4.19g(14.19mmol)、次いでテレフタロイルクロリド(TPC) 17.29g(85.16mmol)を反応容器に投入し、反応容器内の内容物を室温で1時間撹拌した。次いで、反応容器内に4−メチルピリジン 4.63g(49.68mmol)と無水酢酸 13.04g(127.75mmol)とを更に投入し、反応容器内の内容物を室温で30分間撹拌した。攪拌した後、オイルバスを用いて容器内温度を70℃に昇温し、70℃に維持して更に反応容器内の内容物を3時間撹拌し、反応液を得た。
得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、沈殿物を析出させた。析出した沈殿物を取り出し、メタノールで6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。ポリアミドイミド樹脂の重量平均分子量は、400,000であり、イミド化率98.8%であった。
[Production Example 2: Polyamide-imide Resin 1]
Under a nitrogen gas atmosphere, a reaction vessel equipped with a stirring blade and an oil bath were prepared in a separable flask having a capacity of 1 L. 45 g (140.52 mmol) of TFMB and 768.55 g of DMAc were charged into a reaction vessel installed in an oil bath. The contents in the reaction vessel were stirred at room temperature to dissolve TFMB in DMAc. Next, 18.92 g (42.58 mmol) of 6FDA was further charged into the reaction vessel, and the contents in the reaction vessel were stirred at room temperature for 3 hours. Then, 4.19 g (14.19 mmol) of 4,4'-oxybis (benzoyl chloride) (OBBC) and then 17.29 g (85.16 mmol) of terephthaloyl chloride (TPC) were put into the reaction vessel, and the inside of the reaction vessel was charged. The contents of the above were stirred at room temperature for 1 hour. Next, 4.63 g (49.68 mmol) of 4-methylpyridine and 13.04 g (127.75 mmol) of acetic anhydride were further added to the reaction vessel, and the contents in the reaction vessel were stirred at room temperature for 30 minutes. After stirring, the temperature inside the vessel was raised to 70 ° C. using an oil bath, maintained at 70 ° C., and the contents in the reaction vessel were further stirred for 3 hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature and poured into a large amount of methanol in the form of filaments to precipitate a precipitate. The precipitated precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamide-imide resin. The weight average molecular weight of the polyamide-imide resin was 400,000, and the imidization rate was 98.8%.

〔製造例3:ポリアミドイミド樹脂2〕
窒素ガス雰囲気下、容量1Lセパラブルフラスコに撹拌翼を備えた反応容器と、オイルバスとを準備した。オイルバスに設置した反応容器に、TFMB 45g(140.52mmol)と、DMAc 768.55gとを投入した。反応容器内の内容物を室温で撹拌しながらTFMBをDMAcに溶解させた。次に、反応容器内に6FDA 19.01g(42.79mmol)を更に投入し、反応容器内の内容物を室温で3時間撹拌した。その後、OBBC 4.21g(14.26mmol)、次いでTPC 17.30g(85.59mmol)を反応容器に投入し、反応容器内の内容物を室温で1時間撹拌した。次いで、反応容器内に4−メチルピリジン 4.63g(49.68mmol)と無水酢酸 13.04g(127.75mmol)とを更に投入し、反応容器内の内容物を室温で30分間撹拌した。攪拌した後、オイルバスを用いて容器内温度を70℃に昇温し、70℃に維持して更に3時間撹拌し、反応液を得た。
得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、沈殿物を析出させた。析出した沈殿物を取り出し、メタノールで6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。得られたポリアミドイミド樹脂の重量平均分子量は、365,000、イミド化率は98.9%であった。
[Production Example 3: Polyamide-imide Resin 2]
Under a nitrogen gas atmosphere, a reaction vessel equipped with a stirring blade and an oil bath were prepared in a separable flask having a capacity of 1 L. 45 g (140.52 mmol) of TFMB and 768.55 g of DMAc were put into a reaction vessel installed in an oil bath. TFMB was dissolved in DMAc while stirring the contents in the reaction vessel at room temperature. Next, 19.01 g (42.79 mmol) of 6FDA was further charged into the reaction vessel, and the contents in the reaction vessel were stirred at room temperature for 3 hours. Then, 4.21 g (14.26 mmol) of OBBC and then 17.30 g (85.59 mmol) of TPC were put into the reaction vessel, and the contents in the reaction vessel were stirred at room temperature for 1 hour. Next, 4.63 g (49.68 mmol) of 4-methylpyridine and 13.04 g (127.75 mmol) of acetic anhydride were further added to the reaction vessel, and the contents in the reaction vessel were stirred at room temperature for 30 minutes. After stirring, the temperature inside the container was raised to 70 ° C. using an oil bath, maintained at 70 ° C., and stirred for another 3 hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature and poured into a large amount of methanol in the form of filaments to precipitate a precipitate. The precipitated precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamide-imide resin. The weight average molecular weight of the obtained polyamide-imide resin was 365,000, and the imidization rate was 98.9%.

[3−2.シリカ粒子の製造]
〔製造例4 シリカゾル1〕
反応容器として容量1Lのフラスコと、湯浴とを準備した。湯浴に設置した反応容器内にメタノール分散シリカゾル(一次粒子径25nm、シリカ固形分30.5%) 442.6gと、γ−ブチロラクトン 301.6gとを投入した。湯浴を用いて容器内温度を45℃とし、エバポレータを用いて反応容器内の圧力を400hPaにして1時間維持し、次いで、反応容器内の圧力を250hPaにして1時間維持し、メタノールを蒸発させた。更に反応容器内の圧力を250hPaとし、容器内温度を70℃まで昇温して30分間加熱した。その結果、γ−ブチロラクトン分散シリカゾル(シリカゾル1、SGS7#09)を得た。得られたγ−ブチロラクトン分散シリカゾルの固形分は28.9%であった。
[3-2. Manufacture of silica particles]
[Production Example 4 Silica Sol 1]
A flask having a capacity of 1 L and a hot water bath were prepared as reaction vessels. 442.6 g of methanol-dispersed silica sol (primary particle size 25 nm, silica solid content 30.5%) and 301.6 g of γ-butyrolactone were charged into a reaction vessel placed in a hot water bath. The temperature inside the vessel was set to 45 ° C. using a hot water bath, the pressure inside the reaction vessel was set to 400 hPa and maintained for 1 hour using an evaporator, and then the pressure inside the reaction vessel was set to 250 hPa and maintained for 1 hour to evaporate methanol. I let you. Further, the pressure inside the reaction vessel was set to 250 hPa, the temperature inside the vessel was raised to 70 ° C., and the mixture was heated for 30 minutes. As a result, a γ-butyrolactone-dispersed silica sol (silica sol 1, SGS7 # 09) was obtained. The solid content of the obtained γ-butyrolactone-dispersed silica sol was 28.9%.

〔製造例5 シリカゾル2〕
メタノール分散シリカゾルの一次粒子径を10nmに変更し、シリカ固形分を22%に変更した以外は、製造例4と同様の方法で溶媒置換を行い、固形分20%のγ−ブチロラクトン分散シリカゾル(シリカゾル2)を得た。
[Production Example 5 Silica Sol 2]
Solvent substitution was carried out in the same manner as in Production Example 4 except that the primary particle size of the methanol-dispersed silica sol was changed to 10 nm and the silica solid content was changed to 22%. 2) was obtained.

〔製造例6 シリカゾル3〕
メタノール分散シリカゾル(一次粒子径25nm、シリカ固形分30.5%)をメタノール分散シリカゾル(日産化学工業(株)製「MA−ST−L」、一次粒子径40〜50nm)に変更した以外は、製造例4と同様の方法で溶媒置換を行い、固形分30.5%及び一次粒子径50nmのγ−ブチロラクトン分散シリカゾル(シリカゾル3)を得た。
[Production Example 6 Silica Sol 3]
Except for changing the methanol-dispersed silica sol (primary particle size 25 nm, silica solid content 30.5%) to methanol-dispersed silica sol (“MA-ST-L” manufactured by Nissan Chemical Industries, Ltd., primary particle size 40-50 nm). Solvent substitution was carried out in the same manner as in Production Example 4 to obtain a γ-butyrolactone-dispersed silica sol (silica sol 3) having a solid content of 30.5% and a primary particle size of 50 nm.

[3−3.ワニスの製造]
〔製造例7 ワニス1〕
γ−ブチロラクトンに、表6に示す組成で、ポリアミドイミド樹脂1と、シリカゾル1と、紫外線吸収剤としてのSumisorb(登録商標) 340と、増白剤としてSumiplast(登録商標) violet Bとを加え、固形分が10.2%となるようにワニス1を調製した。
[3-3. Varnish manufacturing]
[Manufacturing Example 7 Varnish 1]
To γ-butyrolactone, the polyamide-imide resin 1, the silica sol 1, the varnish (registered trademark) 340 as an ultraviolet absorber, and the sumiblast (registered trademark) violet B as a whitening agent were added in the composition shown in Table 6. Varnish 1 was prepared so that the solid content was 10.2%.

表6中、欄「樹脂」及び「シリカ粒子」の含有量の単位(wt%)は、樹脂及びシリカ粒子の総質量に対する割合(質量%)を示す。欄「紫外線吸収剤」の含有量の単位phrは、樹脂及びシリカ粒子の総質量に対する割合(質量%)を示す。 In Table 6, the unit (wt%) of the contents of the columns "resin" and "silica particles" indicates the ratio (mass%) of the resin and silica particles to the total mass. The unit ph of the content of the column "ultraviolet absorber" indicates the ratio (mass%) to the total mass of the resin and silica particles.

Figure 0006896787
Figure 0006896787

〔製造例8〜13:ワニス2〜8〕
表6に示す組成(成分の種類及び/又は含有量)に変更し、置換する溶媒をγ−ブチロラクトンからN,N−ジメチルアセトアミドに変更し、樹脂の固形分濃度を11.0%に変更した以外は、ワニス1と同様の方法でワニス3を調製した。また、表6に示す組成(成分の種類及び/又は含有量)に変更した以外は、ワニス1と同様の方法で、ワニス2及び4〜8をそれぞれ調製した。
[Production Examples 8 to 13: Varnishes 2 to 8]
The composition (type and / or content of the component) shown in Table 6 was changed, the solvent to be replaced was changed from γ-butyrolactone to N, N-dimethylacetamide, and the solid content concentration of the resin was changed to 11.0%. The varnish 3 was prepared in the same manner as the varnish 1 except that the varnish 1 was prepared. In addition, varnishes 2 and 4 to 8 were prepared in the same manner as in varnish 1 except that the composition (type and / or content of components) shown in Table 6 was changed.

〔実施例1〕
[3−4.光学フィルムの製造]
得られたワニス1をPETフィルム(東洋紡(株)製「コスモシャイン(登録商標) A4100」)上において流涎成形し、塗膜を成形した。流涎成形におけるPETの搬送速度は0.3m/分であった。その後、80℃で20分、90℃で20分加熱することによって塗膜を乾燥し、PETフィルムから塗膜を剥離した。その後、テンターにて200℃で12分、塗膜を横延伸しながら加熱することによって、厚さ51μmのポリアミドイミドフィルム1を得た。
[Example 1]
[3-4. Manufacturing of optical film]
The obtained varnish 1 was salivated on a PET film (“Cosmo Shine (registered trademark) A4100” manufactured by Toyobo Co., Ltd.) to form a coating film. The transport speed of PET in the salivation molding was 0.3 m / min. Then, the coating film was dried by heating at 80 ° C. for 20 minutes and 90 ° C. for 20 minutes, and the coating film was peeled off from the PET film. Then, the coating film was heated with a tenter at 200 ° C. for 12 minutes while laterally stretching the coating film to obtain a polyamide-imide film 1 having a thickness of 51 μm.

〔実施例2〕
塗工の膜厚を変更した以外は、実施例1と同様にして、膜厚29μmのポリアミドイミドフィルム2を得た。
[Example 2]
A polyamide-imide film 2 having a film thickness of 29 μm was obtained in the same manner as in Example 1 except that the film thickness of the coating was changed.

〔実施例3〕
ワニス1をワニス2に変更した以外は、実施例1と同様の方法で、膜厚50μmのポリアミドイミドフィルム3を得た。
[Example 3]
A polyamide-imide film 3 having a film thickness of 50 μm was obtained in the same manner as in Example 1 except that the varnish 1 was changed to the varnish 2.

〔実施例4〕
ワニス1をワニス3に変更した以外は、実施例1と同様の方法で、膜厚49μmのポリアミドイミドフィルム4を得た。
[Example 4]
A polyamide-imide film 4 having a film thickness of 49 μm was obtained in the same manner as in Example 1 except that the varnish 1 was changed to the varnish 3.

〔実施例5〕
ワニス1をワニス4に変更した以外は、実施例1と同様にして、膜厚48μmのポリアミドイミドフィルム5を得た。
[Example 5]
A polyamide-imide film 5 having a film thickness of 48 μm was obtained in the same manner as in Example 1 except that the varnish 1 was changed to the varnish 4.

〔実施例6〕
ワニス1をワニス5に変更した以外は、実施例1と同様にして、膜厚48μmのポリアミドイミドフィルム6を得た。
[Example 6]
A polyamide-imide film 6 having a film thickness of 48 μm was obtained in the same manner as in Example 1 except that the varnish 1 was changed to the varnish 5.

〔実施例7(参考例)
ワニス1をワニス6に変更した以外は、実施例1と同様にして、膜厚78μmのポリイミドフィルム7を得た。
[Example 7 (reference example) ]
A polyimide film 7 having a film thickness of 78 μm was obtained in the same manner as in Example 1 except that the varnish 1 was changed to the varnish 6.

〔比較例1〕
ワニス1をワニス7に変更した以外は、実施例1と同様にして、膜厚52μmのポリイミドフィルム8を得た。
[Comparative Example 1]
A polyimide film 8 having a film thickness of 52 μm was obtained in the same manner as in Example 1 except that the varnish 1 was changed to the varnish 7.

〔比較例2〕
ワニス1をワニス8に変更した以外は、実施例1と同様にして、膜厚50μmのポリアミドイミドフィルム9を得た。
[Comparative Example 2]
A polyamide-imide film 9 having a film thickness of 50 μm was obtained in the same manner as in Example 1 except that the varnish 1 was changed to the varnish 8.

得られたポリアミドイミドフィルム1〜6及び9並びにポリイミドフィルム7及び8の外観を目視で観察し、白濁の有無を確認した。ポリアミドイミドフィルム9のみ白濁の存在が確認され、それ以外のフィルムには白濁の存在は確認されなかった。 The appearances of the obtained polyamide-imide films 1 to 6 and 9 and the polyimide films 7 and 8 were visually observed to confirm the presence or absence of cloudiness. The presence of white turbidity was confirmed only in the polyamide-imide film 9, and the presence of white turbidity was not confirmed in the other films.

Figure 0006896787
Figure 0006896787

実施例1〜7の光学フィルムは、ポリアミドイミドを含み、式(1)を満たし、それらの繰り出し安定性の評価は◎、○及び△のいずれかであった。比較例1〜2の光学フィルムは、ポリアミドイミドを含み、式(1)を満たしておらず、それらの繰り出し安定性の評価結果はいずれも×であった。 The optical films of Examples 1 to 7 contained polyamide-imide, satisfied the formula (1), and the evaluation of their feeding stability was any of ⊚, ◯, and Δ. The optical films of Comparative Examples 1 and 2 contained polyamide-imide and did not satisfy the formula (1), and the evaluation results of their feeding stability were all x.

実施例1〜7の光学フィルムは、比較例1〜2の光学フィルムに比べ、繰り出し安定性及びフィルム外観ともに優れることが明らかである。 It is clear that the optical films of Examples 1 to 7 are superior in feeding stability and film appearance to the optical films of Comparative Examples 1 and 2.

また、実施例1〜7の光学フィルムでは、ハンセン溶解球法で決定される三次元距離Raが式(3)を満たし、それらのフィルム外観品質の低下抑制の評価結果は、いずれも○(良い)であった。比較例2の光学フィルムでは、三次元距離Raが式(3)を満たしておらず、そのフィルム外観品質の低下抑制の評価結果は、×(悪い)であった。ブチルアクリルレートを示す。MMAはメチルメタアクリルレートを示す。HEAはヒドロキシエチルアクリルレートを示す。AAはアクリル酸を示す。架橋剤及びSC剤の添加量は、単量体100部に対する質量である。 Further, in the optical films of Examples 1 to 7, the three-dimensional distance Ra determined by the Hansen melting sphere method satisfies the formula (3), and the evaluation results of suppressing the deterioration of the appearance quality of the films are all ◯ (good). )Met. In the optical film of Comparative Example 2, the three-dimensional distance Ra did not satisfy the formula (3), and the evaluation result of suppressing the deterioration of the film appearance quality was × (bad). Shows butyl acrylic rate. MMA indicates methyl methacrylic rate. HEA indicates hydroxyethyl acrylic rate. AA indicates acrylic acid. The amount of the cross-linking agent and the SC agent added is the mass with respect to 100 parts of the monomer.

Figure 0006896787
Figure 0006896787

(粘着剤層1の形成)
離型処理された基材(ポリエチレンテレフタレートフィルム、厚さ38μm)の離型処理面に、アプリケータを利用して粘着剤層形成用組成物1を塗布し、塗布層を形成した。塗布層を100℃で1分間乾燥させ、粘着剤層1を形成した。粘着剤層1の厚さは、25μmであった。
次いで、粘着剤層1上に、離型処理された別の基材(ポリエチレンテレフタレートフィルム、厚さ38μm)を貼合した。その後、温度23℃、相対湿度50%RHの条件で7日間養生させた。これにより、粘着剤層1を備えるフィルムを得た。得られた粘着剤層1の弾性率G’及び厚さを測定した。測定結果を表9にまとめた。
なお、以下で粘着剤層を積層させる場合、粘着剤層を積層した後に、離型処理した基材を剥離した。
(Formation of Adhesive Layer 1)
The pressure-sensitive adhesive layer forming composition 1 was applied to the release-treated surface of the release-treated base material (polyethylene terephthalate film, thickness 38 μm) using an applicator to form a coating layer. The coating layer was dried at 100 ° C. for 1 minute to form the pressure-sensitive adhesive layer 1. The thickness of the pressure-sensitive adhesive layer 1 was 25 μm.
Next, another base material (polyethylene terephthalate film, thickness 38 μm) that had been subjected to the mold release treatment was bonded onto the pressure-sensitive adhesive layer 1. Then, it was cured for 7 days under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH. As a result, a film including the pressure-sensitive adhesive layer 1 was obtained. The elastic modulus G'and the thickness of the obtained pressure-sensitive adhesive layer 1 were measured. The measurement results are summarized in Table 9.
When the pressure-sensitive adhesive layer is laminated below, the base material that has been released from the mold is peeled off after the pressure-sensitive adhesive layer is laminated.

(粘着剤層2の形成)
粘着剤層形成用組成物1を粘着剤層形成用組成物2に変更し、粘着剤層の厚さが5μmとなるように粘着剤層形成用組成物を塗布した以外は、粘着剤層1の形成と同様にして、粘着剤層2を形成した。粘着剤層2の弾性率及び厚さを表9にまとめた。
(Formation of Adhesive Layer 2)
The pressure-sensitive adhesive layer 1 except that the pressure-sensitive adhesive layer-forming composition 1 was changed to the pressure-sensitive adhesive layer-forming composition 2 and the pressure-sensitive adhesive layer-forming composition was applied so that the thickness of the pressure-sensitive adhesive layer was 5 μm. The pressure-sensitive adhesive layer 2 was formed in the same manner as in the formation of. The elastic modulus and thickness of the pressure-sensitive adhesive layer 2 are summarized in Table 9.

Figure 0006896787
Figure 0006896787

[3−6.偏光板の製造]
(配向膜形成用組成物の調製)
ポリマー1は、以下の構造単位からなる光反応性基を有するポリマーである。

Figure 0006896787
GPC測定より、得られたポリマー1の分子量は数平均分子量28,200、分散度(Mw/Mn)は1.82を示し、モノマー含有量は0.5%であった。ポリマー1を濃度5質量%で、シクロペンタノンに溶解した溶液を配向膜形成用組成物として用いた。 [3-6. Manufacture of polarizing plate]
(Preparation of composition for forming alignment film)
Polymer 1 is a polymer having a photoreactive group consisting of the following structural units.
Figure 0006896787
From the GPC measurement, the molecular weight of the obtained polymer 1 was 28,200 on a number average, the dispersity (Mw / Mn) was 1.82, and the monomer content was 0.5%. A solution in which polymer 1 was dissolved in cyclopentanone at a concentration of 5% by mass was used as a composition for forming an alignment film.

(配向膜の形成)
保護フィルム(トリアセチルセルロース:TAC)の上に、上記配向膜形成用組成物をバーコート法により塗布し、塗膜を形成した。塗膜を80℃で1分間乾燥させた。次いで、UV照射装置(SPOT CURE SP−7、ウシオ電機(株)製)及びワイヤーグリッド(ウシオ電機(株)製「UIS−27132##」)を用いて、露光量100mJ/cm(365nm基準)条件で、塗膜に偏光UVを照射した。これにより保護フィルム上に配向膜を形成した。配向膜は、配向性能を有しており、その厚さが100nmであった。
(Formation of alignment film)
The composition for forming an alignment film was applied onto a protective film (triacetyl cellulose: TAC) by a bar coating method to form a coating film. The coating was dried at 80 ° C. for 1 minute. Next, using a UV irradiation device (SPOT CURE SP-7, manufactured by Ushio, Inc.) and a wire grid (“UIS-27132 ##” manufactured by Ushio, Inc.), the exposure amount was 100 mJ / cm 2 (365 nm standard). ) Conditions, the coating film was irradiated with polarized UV. As a result, an alignment film was formed on the protective film. The alignment film had alignment performance, and its thickness was 100 nm.

(偏光子形成用組成物の調製)
(重合性液晶化合物)
重合性液晶化合物は、式(5)で表される重合性液晶化合物[以下、化合物(5)ともいう]と式(6)で表される重合性液晶化合物[以下、化合物(6)ともいう]とを用いた。

Figure 0006896787
Figure 0006896787
化合物(5)および化合物(6)は、Lub et al.Recl.Trav.Chim.Pays−Bas、115、321−328(1996)記載の方法により合成した。 (Preparation of composition for forming a polarizer)
(Polymerizable liquid crystal compound)
The polymerizable liquid crystal compound is a polymerizable liquid crystal compound represented by the formula (5) [hereinafter, also referred to as compound (5)] and a polymerizable liquid crystal compound represented by the formula (6) [hereinafter, also referred to as compound (6)]. ] And was used.
Figure 0006896787
Figure 0006896787
Compound (5) and compound (6) are described in Lub et al. Recl. Trav. Chim. It was synthesized by the method described in Pays-Bas, 115, 321-328 (1996).

(二色性色素)
二色性色素には、下記式(7)、式(8)、式(9)で示される特開2013−101328号公報の実施例に記載のアゾ色素を用いた。
(Dichroic pigment)
As the dichroic dye, the azo dye described in Examples of Japanese Patent Application Laid-Open No. 2013-101328 represented by the following formulas (7), (8) and (9) was used.

Figure 0006896787
Figure 0006896787
Figure 0006896787
Figure 0006896787
Figure 0006896787
Figure 0006896787

(偏光子層形成用組成物の調製)
偏光子層形成用組成物は、化合物(5)75質量部、化合物(6)25質量部、二色性染料としての上記式(7)、(8)、(9)で示されるアゾ色素各2.5質量部、重合開始剤としての2−ジメチルアミノ−2−ベンジル−1−(4−モルホリノフェニル)ブタン−1−オン(Irgacure 369、BASFジャパン社製)6質量部、およびレベリング剤としてのポリアクリレート化合物(BYK−361N、BYK−Chemie社製)1.2質量部を、トルエン400質量部に混合し、得られた混合物を80℃で1時間攪拌することにより調製した。
(Preparation of composition for forming a polarizer layer)
The composition for forming the polarizer layer is 75 parts by mass of compound (5), 25 parts by mass of compound (6), and each of the azo dyes represented by the above formulas (7), (8), and (9) as a dichroic dye. 2.5 parts by mass, 6 parts by mass of 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butane-1-one (Irgacure 369, manufactured by BASF Japan) as a polymerization initiator, and as a leveling agent. 1.2 parts by mass of the polyacrylate compound (BYK-361N, manufactured by BYK-Chemie) was mixed with 400 parts by mass of toluene, and the obtained mixture was prepared by stirring at 80 ° C. for 1 hour.

(偏光子の製造)
形成した配向膜上に、上記偏光子形成用組成物をバーコート法により塗布し、塗膜を形成した。塗膜を100℃で2分間加熱乾燥させた。次いで、室温まで冷却した。上記UV照射装置を用いて、積算光量1200mJ/cm(365nm基準)の条件で、塗膜に紫外線を照射した。これにより、配向膜上に偏光子を形成した。偏光子の厚さは3μmであった。
(Manufacturing of polarizer)
The above-mentioned composition for forming a polarizer was applied onto the formed alignment film by a bar coating method to form a coating film. The coating film was heated and dried at 100 ° C. for 2 minutes. Then it was cooled to room temperature. Using the above UV irradiation device, the coating film was irradiated with ultraviolet rays under the condition of an integrated light amount of 1200 mJ / cm 2 (365 nm standard). As a result, a polarizer was formed on the alignment film. The thickness of the polarizer was 3 μm.

(保護層の形成)
偏光子上に、ポリビニルアルコールと水とを含む組成物を塗布し、塗膜を形成した。塗膜を温度80℃で3分間乾燥した。これにより、偏光子上に保護層を形成した。保護層の厚さは、0.5μmであった。
以上により、保護フィルム、配向膜、偏光子、及び保護層の順に積層した偏光層を製造した。
(Formation of protective layer)
A composition containing polyvinyl alcohol and water was applied onto the polarizer to form a coating film. The coating film was dried at a temperature of 80 ° C. for 3 minutes. As a result, a protective layer was formed on the polarizer. The thickness of the protective layer was 0.5 μm.
From the above, a polarizing layer in which a protective film, an alignment film, a polarizer, and a protective layer are laminated in this order was produced.

(λ/4位相差板及びポジティブCプレートの形成)
下記に示す各成分を混合し、得られた混合物を80℃で1時間攪拌することにより、λ/4位相差層形成用組成物を得た。
下記式で示される化合物b−1:80質量部

Figure 0006896787
下記式で示される化合物b−2:20質量部
Figure 0006896787
重合開始剤(Irgacure369、2−ジメチルアミノ−2−ベンジル−1−(4−モルホリノフェニル)ブタン−1−オン、BASFジャパン社製):6質量部
レベリング剤(BYK−361N、ポリアクリレート化合物、BYK−Chemie社製):0.1質量部
溶剤(シクロペンタノン):400質量部 (Formation of λ / 4 retardation plate and positive C plate)
Each of the components shown below was mixed, and the obtained mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a λ / 4 retardation layer.
Compound b-1 represented by the following formula: 80 parts by mass
Figure 0006896787
Compound b-2: 20 parts by mass represented by the following formula
Figure 0006896787
Polymerization initiator (Irgacure369, 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butane-1-one, manufactured by BASF Japan Ltd.): 6 parts by mass leveling agent (BYK-361N, polyacrylate compound, BYK) -Chemie): 0.1 parts by mass Solvent (cyclopentanone): 400 parts by mass

第1基材フィルム(厚さ100μm、ポリエチレンテレフタレートフィルム(PET))の上に前記配向膜形成用組成物をバーコート法により塗布し、80℃の乾燥オーブン中で1分間加熱乾燥した。得られた乾燥被膜に偏光UV照射処理を施して第2配向膜を形成した。偏光UV処理は、上記UV照射装置を用いて、波長365nmで測定した積算光量が100mJ/cmである条件で行った。また、偏光UVの偏光方向は偏光層の吸収軸に対して45°となるように行った。このようにして、「第1基材フィルム/第2配向膜」からなる積層体を得た。第2配向膜の厚さは100nmであった。
「第1基材フィルム/第2配向膜」からなる積層体の第2配向膜上に、λ/4位相差層形成用組成物をバーコート法により塗布し、120℃の乾燥オーブンで1分間加熱乾燥した後、室温まで冷却した。得られた乾燥被膜に、上記UV照射装置を用いて、積算光量1000mJ/cm(365nm基準)の紫外線を照射することにより、位相差層を形成した。得られた位相差層の厚さをレーザー顕微鏡(オリンパス(株)製OLS3000)により測定したところ、2.0μmであった。位相差層は、面内方向にλ/4の位相差値を示すλ/4板であった。このようにして、「第1基材フィルム/第2配向膜/λ/4位相差層」からなる積層体を得た。
下記に示す各成分を混合し、得られた混合物を80℃で1時間攪拌することにより、 ポジティブc位相差層形成用組成物を得た。
下記式で示される化合物(LC242、BASFジャパン社製):100質量部

Figure 0006896787
重合開始剤(Irgacure 907、2−メチル−4’−(メチルチオ)−2−モルホリノプロピオフェノン、BASFジャパン社製):2.6質量部
レベリング剤(BYK−361N、ポリアクリレート化合物、BYK−Chemie社製):0.5重質量部
添加剤(LR9000、BASFジャパン社製):5.7質量部
溶剤(プロピレングリコール1−モノメチルエーテル2−アセテート):412質量部 The composition for forming an alignment film was applied onto a first base film (thickness 100 μm, polyethylene terephthalate film (PET)) by a bar coating method, and dried by heating in a drying oven at 80 ° C. for 1 minute. The obtained dry film was subjected to polarized UV irradiation treatment to form a second alignment film. The polarized UV treatment was carried out under the condition that the integrated light amount measured at a wavelength of 365 nm was 100 mJ / cm 2 using the above UV irradiation device. Further, the polarization direction of the polarized UV was set to 45 ° with respect to the absorption axis of the polarizing layer. In this way, a laminate made of "first base film / second alignment film" was obtained. The thickness of the second alignment film was 100 nm.
The composition for forming a λ / 4 retardation layer is applied by the bar coating method on the second alignment film of the laminate composed of the "first base film / second alignment film", and is placed in a drying oven at 120 ° C. for 1 minute. After heat-drying, it was cooled to room temperature. A retardation layer was formed by irradiating the obtained dry film with ultraviolet rays having an integrated light intensity of 1000 mJ / cm 2 (365 nm standard) using the above UV irradiation device. The thickness of the obtained retardation layer was measured with a laser microscope (OLS3000 manufactured by Olympus Corporation) and found to be 2.0 μm. The retardation layer was a λ / 4 plate showing a retardation value of λ / 4 in the in-plane direction. In this way, a laminate composed of "first base film / second alignment film / λ / 4 retardation layer" was obtained.
Each of the components shown below was mixed, and the obtained mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a positive c retardation layer.
Compound represented by the following formula (LC242, manufactured by BASF Japan Ltd.): 100 parts by mass
Figure 0006896787
Polymerization initiator (Irgacure 907, 2-methyl-4'-(methylthio) -2-morpholinopropiophenone, manufactured by BASF Japan, Inc.): 2.6 parts by mass leveling agent (BYK-361N, polyacrylate compound, BYK-Chemie) (Manufactured by): 0.5 parts by mass additive (LR9000, manufactured by BASF Japan): 5.7 parts by mass Solvent (propylene glycol 1-monomethyl ether 2-acetate): 412 parts by mass

前記λ/4位相差板と同様に第2基材フィルム(厚さ100μm、ポリエチレンテレフタレートフィルム(PET))の上に前記配向膜形成用組成物をバーコート法により塗布し、90℃の乾燥オーブン中で1分間加熱乾燥して第3配向膜を形成した。その後、第3配向膜上に、ポジティブC位相差層形成用組成物をバーコート法により塗布し、90℃の乾燥オーブンで1分間加熱乾燥した後、窒素雰囲気で上記UV照射装置を用いて、積算光量1000mJ/cm(365nm基準)の紫外線を照射することにより、ポジティブCプレートを形成した。得られたポジティブCプレートの厚さをレーザー顕微鏡(オリンパス株(式)製 OLS3000)により測定したところ、1.8μmであった。
その後、前記λ/4位相差板の第1基材フィルムの反対側に、ポジティブCプレートの第2基材フィルムを剥がした面を粘着剤層2を用いて貼合することで位相差層を作製した。
形成されたλ/4位相差板及びポジティブCプレートは、何れも重合性液晶化合物が配向した状態で硬化した層を含んでいた。
Similar to the λ / 4 retardation plate, the composition for forming an alignment film is applied onto a second base film (thickness 100 μm, polyethylene terephthalate film (PET)) by a bar coating method, and a drying oven at 90 ° C. A third alignment film was formed by heating and drying in the oven for 1 minute. Then, the composition for forming a positive C retardation layer was applied onto the third alignment film by the bar coating method, heated and dried in a drying oven at 90 ° C. for 1 minute, and then heated and dried in a nitrogen atmosphere using the above UV irradiation device. A positive C plate was formed by irradiating ultraviolet rays with an integrated light amount of 1000 mJ / cm 2 (365 nm standard). The thickness of the obtained positive C plate was measured with a laser microscope (OLS3000 manufactured by Olympus Corporation (formula)) and found to be 1.8 μm.
Then, the retardation layer is formed by bonding the surface of the positive C plate from which the second base film has been peeled off to the opposite side of the first base film of the λ / 4 retardation plate using the pressure-sensitive adhesive layer 2. Made.
Both the λ / 4 retardation plate and the positive C plate formed contained a layer cured in a state in which the polymerizable liquid crystal compound was oriented.

[3−7.円偏光板を有する積層体の製造]
ポリアミドイミドフィルム1、偏光層、粘着剤層1及び粘着剤層2を用いて、積層体1を製造した。積層体1は、ポリアミドイミドフィルム1/粘着剤層1/偏光層(保護フィルム/配向膜/偏光子/保護層)/粘着剤層2をこの順に備えていた。偏光層における保護フィルム側とは反対側に、粘着剤層2を介して、位相差層の第1基材フィルムを剥がした面を貼合した。位相差層は、λ/4位相差板(RWP)とポジティブCプレート(PosiC)とを積層した層である。その後、前記位相差層の偏光層とは反対側に粘着剤層1を設けた。これにより円偏光板を有する積層体1を製造した。積層体1は、ポリアミドイミドフィルム1/粘着剤層1/偏光層(保護フィルム/配向膜/偏光子/保護層)/粘着剤層2/位相差層(λ/4位相差板/ポジティブCプレート)/粘着剤層1をこの順で備えていた。ここで、位相差層における配向膜の表記は省略する。
なお、偏光層と位相差層との貼合では、偏光層の吸収軸が位相差層の遅相軸(光軸)に対して実質的に45°となるようにして粘着剤層2を介して偏光層と位相差層とを貼合した。
[3-7. Manufacture of laminate with circularly polarizing plate]
The laminate 1 was manufactured by using the polyamide-imide film 1, the polarizing layer, the pressure-sensitive adhesive layer 1, and the pressure-sensitive adhesive layer 2. The laminate 1 includes a polyamide-imide film 1 / adhesive layer 1 / polarizing layer (protective film / alignment film / polarizer / protective layer) / adhesive layer 2 in this order. On the side of the polarizing layer opposite to the protective film side, the surface from which the first base film of the retardation layer was peeled off was bonded via the pressure-sensitive adhesive layer 2. The retardation layer is a layer in which a λ / 4 retardation plate (RWP) and a positive C plate (PosiC) are laminated. After that, the pressure-sensitive adhesive layer 1 was provided on the side of the retardation layer opposite to the polarizing layer. As a result, the laminated body 1 having a circularly polarizing plate was manufactured. The laminate 1 is a polyamide-imide film 1 / adhesive layer 1 / polarizing layer (protective film / alignment film / polarizer / protective layer) / adhesive layer 2 / retardation layer (λ / 4 retardation plate / positive C plate). ) / Adhesive layer 1 was provided in this order. Here, the notation of the alignment film in the retardation layer is omitted.
In the bonding of the polarizing layer and the retardation layer, the absorption axis of the polarizing layer is substantially 45 ° with respect to the slow axis (optical axis) of the retardation layer via the pressure-sensitive adhesive layer 2. The polarizing layer and the retardation layer were bonded together.

円偏光板を有する積層体について、光学特性値を測定し、算出した。詳しくは、透過b*、透過a*、反射(SCE)方式のa*、b*及びYを測定した。得られた透過b*、反射(SCE)b*及び反射(SCI)b*から、透過b*−反射(SCE)b*を算出した。測定結果及び算出結果を表10にまとめた。 The optical characteristic values of the laminated body having the circularly polarizing plate were measured and calculated. Specifically, transmission b *, transmission a *, reflection (SCE) method a *, b *, and Y were measured. From the obtained transmission b *, reflection (SCE) b * and reflection (SCI) b *, transmission b * -reflection (SCE) b * was calculated. The measurement results and calculation results are summarized in Table 10.

〔実施例9〕
ポリアミドイミドフィルム1の代わりにポリアミドイミドフィルム5を前面板に適用した以外は、実施例8と同様にして、円偏光板を有する積層体2を製造し、光学特性値を測定し算出した。
[Example 9]
A laminate 2 having a circularly polarizing plate was produced in the same manner as in Example 8 except that the polyamide-imide film 5 was applied to the front plate instead of the polyamide-imide film 1, and the optical characteristic values were measured and calculated.

〔実施例10〕
ポリアミドイミドフィルム1の代わりにポリイミドフィルム7を前面板に適用した以外は、実施例8と同様にして、円偏光板を有する積層体3を製造し、光学特性値を測定し、算出した。
[Example 10]
A laminate 3 having a circularly polarizing plate was manufactured in the same manner as in Example 8 except that the polyimide film 7 was applied to the front plate instead of the polyamide-imide film 1, and the optical characteristic values were measured and calculated.

〔比較例3〕
ポリアミドイミドフィルム1の代わりにポリイミドフィルム8を前面板に適用した以外は、実施例8と同様にして、円偏光板を有する積層体4を製造し、光学特性値を測定し、算出した。
[Comparative Example 3]
A laminate 4 having a circularly polarizing plate was manufactured in the same manner as in Example 8 except that the polyimide film 8 was applied to the front plate instead of the polyamide-imide film 1, and the optical characteristic values were measured and calculated.

Figure 0006896787
Figure 0006896787

実施例8〜10の円偏光板を有する積層体は、式(39)を満たし、それらの視認性の評価は○及び△のいずれかであった。また、実施例8〜10の円偏光板を有する積層体は、式(40)も満たしていた。
比較例3の円偏光板は、式(39)を満たしておらず、その視認性の評価はXであった。また、比較例3の円偏光板を有する積層体は、式(40)も満たしていなかった。
The laminates having the circularly polarizing plates of Examples 8 to 10 satisfied the formula (39), and the evaluation of their visibility was either ◯ or Δ. Further, the laminate having the circularly polarizing plate of Examples 8 to 10 also satisfied the formula (40).
The circularly polarizing plate of Comparative Example 3 did not satisfy the formula (39), and the evaluation of its visibility was X. Further, the laminated body having the circularly polarizing plate of Comparative Example 3 did not satisfy the formula (40).

実施例8〜10の円偏光板を有する積層体は、比較例3の円偏光板を有する積層体に比べ、視認性に優れることは明らかである。 It is clear that the laminate having the circularly polarizing plate of Examples 8 to 10 is superior in visibility to the laminate having the circularly polarizing plate of Comparative Example 3.

Claims (9)

ポリアミドイミドを含む光学フィルムであって、式(1)
0.1≦反射(SCE)b*/反射(SCI)b*≦1.5・・・(1)
[式(1)中、反射(SCE)b*はSCE方式で求められる該光学フィルムを反射した光のL*a*b*表色系におけるb*を示し、反射(SCI)b*はSCI方式で求められる該光学フィルムを反射した光のL*a*b*表色系におけるb*を示す]
を満たし、ヘーズは1%以下であり、全光線透過率Ttは85%以上である、光学フィルム。
An optical film containing a polyamide-imide , wherein the formula (1)
0.1 ≤ reflection (SCE) b * / reflection (SCI) b * ≤ 1.5 ... (1)
[In the formula (1), the reflection (SCE) b * indicates b * in the L * a * b * color system of the light reflected by the optical film obtained by the SCE method, and the reflection (SCI) b * is the SCI. Indicates b * in the L * a * b * color system of the light reflected by the optical film obtained by the method]
An optical film having a haze of 1% or less and a total light transmittance Tt of 85% or more.
さらに式(2)
反射(SCE)a*/反射(SCI)a*≦2.5・・・(2)
[式(2)中、反射(SCE)a*はSCE方式で求められる前記光学フィルムを反射した光のL*a*b*表色系におけるa*を示し、反射(SCI)a*はSCI方式で求められる前記光学フィルムを反射した光のL*a*b*表色系におけるa*を示す]
を満たす、請求項1に記載の光学フィルム。
Further equation (2)
Reflection (SCE) a * / Reflection (SCI) a * ≤ 2.5 ... (2)
[In the formula (2), the reflection (SCE) a * indicates a * in the L * a * b * color system of the light reflected by the optical film obtained by the SCE method, and the reflection (SCI) a * is the SCI. Indicates a * in the L * a * b * color system of the light reflected by the optical film obtained by the method]
The optical film according to claim 1.
シリカ粒子を更に含む、請求項1又は2に記載の光学フィルム。 The optical film according to claim 1 or 2, further comprising silica particles. 前記シリカ粒子は水溶性アルコール分散シリカゾルを溶媒置換したシリカ粒子である、請求項3に記載の光学フィルム。 The optical film according to claim 3, wherein the silica particles are silica particles obtained by subjecting a water-soluble alcohol-dispersed silica sol to a solvent. 紫外線吸収剤をさらに含む、請求項1〜4のいずれかに記載の光学フィルム。 The optical film according to any one of claims 1 to 4, further comprising an ultraviolet absorber. 請求項1〜5のいずれかに記載の光学フィルムと、該光学フィルムの少なくとも一方の面にハードコート層とを有する、光学積層体。 An optical laminate having the optical film according to any one of claims 1 to 5 and a hard coat layer on at least one surface of the optical film. 請求項6に記載の光学積層体を備える、フレキシブル画像表示装置。 A flexible image display device including the optical laminate according to claim 6. 更に円偏光板を備える、請求項7に記載のフレキシブル画像表示装置。 The flexible image display device according to claim 7, further comprising a circularly polarizing plate. 更にタッチセンサを備える、請求項7又は8に記載のフレキシブル画像表示装置。 The flexible image display device according to claim 7 or 8, further comprising a touch sensor.
JP2019081774A 2018-04-27 2019-04-23 Optical film, optical laminate and flexible image display device Active JP6896787B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018087231 2018-04-27
JP2018087231 2018-04-27
JP2019048929 2019-03-15
JP2019048929 2019-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020167974A Division JP2021006926A (en) 2018-04-27 2020-10-02 Optical film, optical laminate, and flexible image display device

Publications (2)

Publication Number Publication Date
JP2020154274A JP2020154274A (en) 2020-09-24
JP6896787B2 true JP6896787B2 (en) 2021-06-30

Family

ID=68295451

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019081774A Active JP6896787B2 (en) 2018-04-27 2019-04-23 Optical film, optical laminate and flexible image display device
JP2020167974A Pending JP2021006926A (en) 2018-04-27 2020-10-02 Optical film, optical laminate, and flexible image display device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020167974A Pending JP2021006926A (en) 2018-04-27 2020-10-02 Optical film, optical laminate, and flexible image display device

Country Status (5)

Country Link
JP (2) JP6896787B2 (en)
KR (1) KR20210003876A (en)
CN (1) CN112041708B (en)
TW (1) TW201945472A (en)
WO (1) WO2019208611A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603440B2 (en) * 2019-09-12 2023-03-14 Dupont Electronics, Inc. Polyimide films and electronic devices
CN115104048A (en) * 2020-02-18 2022-09-23 住友化学株式会社 Optical laminate
JP7193559B2 (en) * 2020-02-18 2022-12-20 住友化学株式会社 optical laminate
WO2022010299A1 (en) * 2020-07-10 2022-01-13 코오롱인더스트리 주식회사 Light-transmitting film, and display device comprising same
WO2022176884A1 (en) * 2021-02-16 2022-08-25 富士フイルム株式会社 Method for producing optical film
KR102584535B1 (en) * 2021-05-27 2023-09-27 인하대학교 산학협력단 Transparent hybrid film containing fumed silica nanoparticles and method for manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186413A (en) * 1984-10-03 1986-05-01 Natl Inst For Res In Inorg Mater Preparation of transparent siliceous sol exhibiting luster color
JP5061901B2 (en) * 2005-08-29 2012-10-31 コニカミノルタアドバンストレイヤー株式会社 Liquid crystal display
JP2007133162A (en) * 2005-11-10 2007-05-31 Fujifilm Corp Antiglare film, its manufacturing method, polarizing plate and image display apparatus using the same
JP5327640B2 (en) * 2007-04-13 2013-10-30 宇部興産株式会社 Smooth polyimide film on one side
JP2009122416A (en) * 2007-11-15 2009-06-04 Toppan Printing Co Ltd Optical thin film
JP4957592B2 (en) * 2008-03-10 2012-06-20 新日本理化株式会社 Polyimide resin composition and molded body thereof
JP2011037956A (en) * 2009-08-07 2011-02-24 Mitsui Chemicals Tohcello Inc Resin composition and surface protective film obtained from the same
JP5614218B2 (en) * 2009-11-20 2014-10-29 東洋紡株式会社 Black heat-resistant light-shielding film and method for producing the same, aperture using the same, light quantity adjustment module, and heat-resistant light-shielding tape
JP2015134843A (en) * 2012-03-30 2015-07-27 新日本理化株式会社 highly transparent polyimide resin
CN109416426A (en) * 2016-06-30 2019-03-01 住友化学株式会社 Phase difference film

Also Published As

Publication number Publication date
JP2021006926A (en) 2021-01-21
TW201945472A (en) 2019-12-01
JP2020154274A (en) 2020-09-24
WO2019208611A1 (en) 2019-10-31
CN112041708A (en) 2020-12-04
CN112041708B (en) 2023-04-04
KR20210003876A (en) 2021-01-12

Similar Documents

Publication Publication Date Title
JP6896787B2 (en) Optical film, optical laminate and flexible image display device
JP6952735B2 (en) Optical film, optical laminate and flexible image display device
JP6738946B1 (en) Optical film
JP6722325B2 (en) Optical film
JP2021070764A (en) Optical film and flexible display device
JP6670967B1 (en) Optical film
WO2020230663A1 (en) Varnish, optical film, and method for manufacturing optical film
JP6799182B2 (en) Optical film, flexible display device, and resin composition
WO2021085404A1 (en) Optical laminate and flexible display device
JP2021075052A (en) Optical laminate and flexible display device
JP6595080B1 (en) Optical film, flexible display device, and resin composition
JP2020050864A (en) Composition
JP2022163714A (en) Optical laminate and flexible display device
JP2022163622A (en) Optical laminate and flexible display device
JP2021084941A (en) Optical film and flexible display device
WO2021075395A1 (en) Optical film
JP2021075702A (en) Polyamide-imide resin, optical film and flexible display device
CN116731513A (en) Optical film, laminate, and method for producing same
CN115206186A (en) Optical film
KR20190125207A (en) Optical film
JP2020100805A (en) Optical film, flexible display device, and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190708

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201002

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201013

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201020

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201106

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201110

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210112

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210330

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210609

R150 Certificate of patent or registration of utility model

Ref document number: 6896787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350