WO2022220177A1 - Polarizing plate, laminate, and display device - Google Patents

Polarizing plate, laminate, and display device Download PDF

Info

Publication number
WO2022220177A1
WO2022220177A1 PCT/JP2022/017098 JP2022017098W WO2022220177A1 WO 2022220177 A1 WO2022220177 A1 WO 2022220177A1 JP 2022017098 W JP2022017098 W JP 2022017098W WO 2022220177 A1 WO2022220177 A1 WO 2022220177A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
protective film
resin
film
Prior art date
Application number
PCT/JP2022/017098
Other languages
French (fr)
Japanese (ja)
Inventor
ボラム 片
雅明 筒渕
▲ビョン▼▲フン▼ 宋
柱烈 張
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020237029533A priority Critical patent/KR20230169078A/en
Priority to CN202280028080.4A priority patent/CN117120897A/en
Publication of WO2022220177A1 publication Critical patent/WO2022220177A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a polarizing plate, a laminate, and a display device.
  • Patent Document 1 describes a laminate for a flexible image display device, in which an optical laminate including a polarizing film and a window are bonded with an adhesive layer.
  • a window is a member that constitutes the outermost surface of the display device. Conventionally, glass has been used for the front plate.
  • Patent Document 2 proposes replacing the front plate with a resin film.
  • Patent Document 3 Japanese National Publication of International Patent Application No. 2008-529038 (Patent Document 3) describes a polarizing plate.
  • This polarizing plate has a cycloolefin polymer film laminated on one side of a polarizer and a cellulose acylate film laminated on the other side of the polarizer.
  • a protective film and a polarizer, The polarizer and the protective film are adjacent to each other, A polarizing plate in which the protective film has a yield strain of 4.0% or more when a tensile test is performed at a speed of 100 mm/min.
  • the protective film has a thickness direction retardation value Rth of 200 nm or more.
  • the polarizing plate which is hard to produce a dent in a screen is provided. Further, according to the present invention, a laminate and a display device having such a polarizing plate are provided.
  • a polarizing plate includes a protective film and a polarizer.
  • the polarizer and protective film are adjacent.
  • the polarizing plate can further comprise a retardation film, other protective films, an adhesive layer, and the like, which will be described later.
  • "Adjacent" means adjacent and in contact, i.e., there is nothing between the polarizer and the protective film, as well as being in a neighboring relationship, i.e., the polarizer and the protective film. is arranged via a thin layer (for example, a layer having a thickness of 10 ⁇ m or less) such as an adhesive layer or an alignment film.
  • a polarizing plate 10 in FIG. 1 includes a protective film 12 and a polarizer 11 .
  • the polarizer 11 and the protective film 12 are bonded together with an adhesive layer 13 .
  • Polarizing plate 20 in FIG. 2 includes protective film 22 , polarizer 21 and protective film 24 .
  • the polarizer 21 and the protective film 22 are bonded together with an adhesive layer 23 .
  • the polarizer 21 and protective film 24 are bonded together with an adhesive layer 25 .
  • the polarizer 20 comprises protective films 22, 24 on both sides of the polarizer 21, respectively.
  • a polarizing plate 30 in FIG. 3 includes a protective film 32 , a polarizer 31 and a retardation film 35 .
  • the polarizer 31 and the protective film 32 are bonded with an adhesive layer 33 .
  • the polarizer 31 and the retardation film 35 are laminated with an adhesive layer 34 .
  • the polarizing plate 30 can be a so-called circular polarizing plate. In this specification, a circularly polarizing plate, an elliptically polarizing plate, and the like may be simply referred to as a polarizing plate.
  • the thickness of the polarizing plate is not particularly limited because it varies depending on the functions required of the polarizing plate, the application of the polarizing plate, and the like.
  • the thickness of the polarizing plate is, for example, 10 ⁇ m or more and 500 ⁇ m or less, preferably 20 ⁇ m or more and 200 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the planar shape of the polarizing plate may be, for example, a square shape, preferably a square shape having long sides and short sides, more preferably a rectangle.
  • the length of the long side may be, for example, 10 mm or more and 1400 mm or less, preferably 50 mm or more and 600 mm or less.
  • the length of the short side is, for example, 5 mm or more and 800 mm or less, preferably 30 mm or more and 500 mm or less, and more preferably 50 mm or more and 300 mm or less.
  • Each layer constituting the polarizing plate may have rounded corners, notched edges, or perforated edges.
  • a polarizer has a function of selectively transmitting linearly polarized light in one direction from non-polarized light such as natural light.
  • the polarizer comprises a stretched film or stretched layer to which a dichroic dye is adsorbed, a cured product of a polymerizable liquid crystal compound and a dichroic dye, and the dichroic dye is dispersed in the cured product of the polymerizable liquid crystal compound, It can be an oriented liquid crystal layer or the like.
  • a dichroic dye is a dye that has different absorbances in the long-axis direction and the short-axis direction of the molecule.
  • a polarizing plate using a liquid crystal layer as a polarizer is preferred because there is no limitation in the bending direction compared to a stretched film or stretched layer to which a dichroic dye is adsorbed.
  • a polarizer which is a stretched film or stretched layer to which a dichroic dye is adsorbed, is usually produced by a process of uniaxially stretching a polyvinyl alcohol resin film and dyeing the polyvinyl alcohol resin film with a dichroic dye such as iodine. It can be produced through a step of adsorbing a chromatic dye, a step of treating a polyvinyl alcohol resin film on which a dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after treatment with an aqueous boric acid solution.
  • the thickness of the polarizer is usually 30 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less. Reducing the thickness of the polarizer is advantageous for thinning the polarizing plate.
  • the thickness of the polarizer is usually 1 ⁇ m or more, and may be, for example, 5 ⁇ m or more.
  • a polyvinyl alcohol-based resin is obtained by saponifying a polyvinyl acetate-based resin.
  • Polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acid-based compounds, olefin-based compounds, vinyl ether-based compounds, unsaturated sulfone-based compounds, and (meth)acrylamide-based compounds having an ammonium group.
  • (meth)acrylic means either acrylic or methacrylic.
  • (Meth) such as (meth)acrylate has the same meaning.
  • the degree of saponification of the polyvinyl alcohol resin is generally about 85 mol % or more and 100 mol % or less, preferably 98 mol % or more.
  • the polyvinyl alcohol-based resin may be modified, and aldehyde-modified polyvinyl formal, polyvinyl acetal, and the like can also be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
  • a polarizer which is a stretched layer to which a dichroic dye is adsorbed, is usually produced by applying a coating solution containing the polyvinyl alcohol resin onto a base film, uniaxially stretching the resulting laminated film, and uniaxially stretching.
  • a base film used to form a polarizer may be used as a protective film for the polarizer. If necessary, the base film may be peeled off from the polarizer.
  • the material and thickness of the base film may be the same as the material and thickness of the resin film described below.
  • a polarizer which is a stretched film or stretched layer to which a dichroic dye is adsorbed, may be used as a polarizing plate as it is, or may be laminated with a protective film described later on one or both sides thereof.
  • a resin film which will be described later, can be used as the protective film.
  • the polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity.
  • the polymerizable reactive group is a group that participates in a polymerization reaction, and is preferably a photopolymerizable reactive group.
  • a photopolymerizable reactive group refers to a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like.
  • Photopolymerizable functional groups include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
  • the type of polymerizable liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used.
  • the liquid crystallinity of the polymerizable liquid crystal compound may be thermotropic liquid crystal or lyotropic liquid crystal.
  • the phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
  • Dichroic dyes used in polarizers which are liquid crystal layers, preferably have a maximum absorption wavelength ( ⁇ MAX) in the range of 300 to 700 nm.
  • dichroic dyes include acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes, and anthraquinone dyes, among which azo dyes are preferred.
  • azo dyes include monoazo dyes, bisazo dyes, trisazo dyes, tetrakisazo dyes, and stilbene azo dyes, and preferably bisazo dyes and trisazo dyes.
  • Dichroic dyes may be used alone or in combination of two or more, preferably in combination of three or more. In particular, it is more preferable to combine three or more azo compounds.
  • a part of the dichroic dye may have a reactive group and may have liquid crystallinity.
  • a polarizer which is a liquid crystal layer, is obtained by, for example, coating an alignment film formed on a substrate film with a polarizer-forming composition containing a polymerizable liquid crystal compound and a dichroic dye, and polymerizing the polymerizable liquid crystal compound. It can be formed by curing.
  • a polarizer may be formed by coating a polarizer-forming composition on a substrate film to form a coating film, and stretching the coating film together with the substrate film.
  • a base film used to form a polarizer may be used as a protective film for the polarizer. The material and thickness of the base film may be the same as the material and thickness of the resin film described below.
  • a polarizer-forming composition containing a polymerizable liquid crystal compound and a dichroic dye, and a method for producing a polarizer using this composition are disclosed in JP-A-2013-37353, JP-A-2013-33249, JP-A-2013-33249, JP-A-2013-33249, Examples include those described in JP-A-2017-83843.
  • the polarizer-forming composition further contains additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer, in addition to the polymerizable liquid crystal compound and the dichroic dye. You can stay. Each of these components may be used alone or in combination of two or more.
  • the polymerization initiator that may be contained in the polarizer-forming composition is a compound capable of initiating the polymerization reaction of the polymerizable liquid crystal compound. Initiators are preferred. Specifically, photopolymerization initiators capable of generating active radicals or acids by the action of light may be mentioned, and among these, photopolymerization initiators capable of generating radicals by the action of light are preferred.
  • the content of the polymerization initiator is preferably 1 part by mass or more and 10 parts by mass or less, more preferably 3 parts by mass or more and 8 parts by mass or less with respect to 100 parts by weight of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the alignment state of the liquid crystal compound is easily stabilized.
  • the thickness of the polarizer which is the liquid crystal layer, is usually 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 8 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the polarizer which is a liquid crystal layer, may be used as a polarizing plate without peeling off the base film, or may be used as a polarizing plate by peeling off the base film from the polarizer.
  • a polarizer which is a liquid crystal layer, may be used as a polarizing plate by laminating a protective film on one or both sides thereof. A resin film described later can be used as the protective film.
  • the polarizer which is a liquid crystal layer, may have an overcoat layer on one side or both sides of the polarizer for the purpose of protecting the polarizer.
  • the overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the polarizer.
  • Materials constituting the overcoat layer include, for example, photocurable resins and water-soluble polymers.
  • a (meth)acrylic resin, a polyvinyl alcohol resin, or the like can be used as a material for forming the overcoat layer.
  • a polarizing plate has a protective film on at least one surface of a polarizer.
  • the polarizing plate preferably has a protective film at least on the viewing side of the polarizer.
  • the polarizer and protective film are adjacent.
  • the protective film may be attached to the polarizer with an adhesive layer.
  • the polarizer and the protective film may be laminated via an alignment film.
  • a protective film having a yield strain (hereinafter sometimes referred to as yield strain) of 4.0% or more when a tensile test is performed at a rate of 100 mm/min is used.
  • the polarizing plate may be provided with a protective film having a yield strain of 4.0% or more on at least one surface of the polarizer, preferably on at least the viewing side of the polarizer.
  • the polarizing plate is provided with a protective film having a yield strain of 4.0% or more on one side of the polarizer, the other side may or may not have the protective film. good.
  • the protective film laminated on the other side may have a yield strain of 4.0% or more or less than 4.0%.
  • Yield strain means the magnitude of strain at the yield point. Yield strain is a physical property representing strain until the protective film is plastically deformed. Since the yield strain of the protective film is 4.0% or more, it is possible to restore the original shape without leaving a dent on the screen even after a large deformation. .
  • the yield strain is preferably 4.5% or more, more preferably 5.0% or more, and even more preferably 6.0% or more. Yield strain can be, for example, 10% or less.
  • the yield strain of the protective film is measured by the method described in Examples below.
  • the protective film can be a resin film.
  • Resin films include, for example, cycloolefin resin films; cellulose acetate resin films made of resins such as triacetyl cellulose and diacetyl cellulose; polyester resin films made of resins such as polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate; resin film; (meth)acrylic resin film; polypropylene resin film; polyamide resin film; polyimide resin film; From the viewpoint of increasing the yield strain, the protective film preferably contains at least one selected from the group consisting of polyimide resins, polyamide resins, and polyamideimide resins, and the following polyimide resins or polyamideimide resins. It is more preferable to include
  • the polyimide resin has the formula (1): [In formula (1), Y represents a tetravalent organic group, X represents a divalent organic group, and * represents a bond].
  • Polyamideimide resin is a structural unit represented by formula (1), and formula (3): [In formula (3), Z and X independently represent a divalent organic group, * represents a bond] It can be a resin having a structural unit represented by.
  • Formulas (1) and (3) will be described below, but the description of formula (1) relates to both polyimide resins and polyamideimide resins, and the description of formula (3) relates to polyamideimide resins. Regarding.
  • the structural unit represented by formula (1) is a structural unit formed by reacting a tetracarboxylic acid compound and a diamine compound.
  • the structural unit represented by formula (3) is a structural unit formed by reacting a dicarboxylic acid compound and a diamine compound. At least one of a tetracarboxylic acid compound, a diamine compound and a dicarboxylic acid compound constituting the structural unit represented by formula (1) and the structural unit represented by formula (3) is an aromatic compound (aromatic tetracarboxylic acid compounds, aromatic diamine compounds and/or aromatic dicarboxylic acid compounds).
  • Y in formula (1) represents a tetravalent organic group, preferably a tetravalent organic group having 4 to 80 carbon atoms, more preferably a tetravalent organic group having 4 to 60 carbon atoms and having a cyclic structure represents a group.
  • Cyclic structures include alicyclic structures, aromatic ring structures, and heterocyclic structures.
  • the organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a substituent, and the substituent is preferably a halogen atom or a monovalent group optionally having a halogen atom.
  • hydrocarbon group for example, an alkyl group, an aryl group, etc.
  • an alkoxy group for example, an alkyl group, an aryl group, etc.
  • the number of carbon atoms in the monovalent hydrocarbon group, alkoxy group or aryloxy group which may have a halogen atom as the substituent is preferably 1 to 8.
  • the structural unit represented by formula (1) is a repeating unit, and the polyimide resin has a plurality of structural units represented by formula (1).
  • Y may be the same or different.
  • the polyimide-based resin may have one structure or two or more structures for Y in formula (1).
  • the polyimide resin or polyamideimide resin has a structural unit represented by formula (1), and as Y in formula (1), Formula (2):
  • R 1 independently represents a halogen atom or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom
  • R 2 to R 5 are , mutually independently represent a hydrogen atom or a monovalent hydrocarbon group which may have a halogen atom
  • m independently represents an integer of 0 to 3
  • n represents an integer of 1 to 4
  • * represents a bond, provided that in at least one benzene ring having R 2 to R 5 , at least one of R 2 to R 5 represents a monovalent hydrocarbon group which may have a halogen atom.
  • the polyamideimide resin has a structural unit represented by the formula (1) and a structural unit represented by the formula (3), As Z in equation (3), equation (4′′): [In the formula (4′′), W are each independently a single bond, —O—, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, —SO 2 —, —S—, —CO—, —PO—, —PO 2 —, —N(R C1 )— or —Si(R C2 ) 2 —, wherein R C1 and R C2 independently represent a hydrogen atom or a halogen atom; represents an optionally substituted alkyl group, R 8′ independently represents an alkyl group or an alkoxy group optionally containing a halogen atom, and p′ independently represents an integer of
  • the present inventors have found that when the polyimide resin or polyamideimide resin contains a structure represented by formula (2) as Y in formula (1), and the polyamideimide resin is represented by formula (1) and a structural unit represented by formula (3), and when Z in formula (3) contains a structure represented by formula (4′′), the resulting yellow protective film It was found that the index (YI) can be easily reduced, and the yield strain can be easily increased.
  • the polyimide resin or polyamideimide resin has the structure represented by formula (2) and / or , the structure represented by the formula (4′′) is included.
  • the structure represented by formula (2) and the structure represented by formula (4′′) both have an aromatic main chain and has a substituent.Such a structure is a structure that inhibits intermolecular packing because the resin skeleton is rigid and the side chain has a substituent.Polyimide resin or polyamide By including such a structure in the imide-based resin, the protective film has a high elastic modulus and high toughness, and it is thought that the stress up to yielding becomes higher.In addition, the obtained protective film has high transparency. As a result, the protective film can achieve both excellent yield strain and excellent optical properties.
  • Each R 1 in formula (2) independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom.
  • An alkyl group, an alkoxy group, an aryl group, or an aryloxy group which may have a halogen atom is an alkyl group which may have a halogen atom, an alkoxy group which may have a halogen atom, or a halogen atom.
  • Halogen atoms include, for example, fluorine, chlorine, bromine and iodine atoms.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-methyl-butyl group and 3-methylbutyl. groups, 2-ethyl-propyl groups, n-hexyl groups, and the like.
  • alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, hexyloxy and cyclohexyloxy groups.
  • aryl groups include phenyl, tolyl, xylyl, naphthyl, and biphenyl groups.
  • the aryloxy group includes, for example, a phenoxy group, a naphthyloxy group, a biphenyloxy group and the like.
  • R 1 is each independently preferably a halogen atom, or an optionally halogen atom-containing alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, Alternatively, it represents an aryloxy group having 6 to 12 carbon atoms.
  • n in formula (2) independently represents an integer of 0 to 3; m is preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0, from the viewpoint of easily increasing the yield strain, elastic modulus and transparency of the protective film.
  • R 2 , R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent hydrocarbon group which may have a halogen atom.
  • monovalent hydrocarbon groups include aromatic hydrocarbon groups, alicyclic hydrocarbon groups, and aliphatic hydrocarbon groups.
  • aromatic hydrocarbon group include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group.
  • the alicyclic hydrocarbon group includes cycloalkyl groups such as cyclopentyl group and cyclohexyl group.
  • Examples of aliphatic hydrocarbon groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-methyl-butyl group, Alkyl groups such as 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group, n-decyl group and the like are included.
  • Halogen atoms include those described above.
  • R 2 to R 5 are each independently preferably a hydrogen atom, or an aryl group having 6 to 12 carbon atoms, a cycloalkyl group having 4 to 8 carbon atoms, or a cycloalkyl group having 4 to 8 carbon atoms, or 1 to 1 carbon atoms, which may have a halogen atom. represents an alkyl group of 6. From the viewpoint of easily increasing the solubility of the resin in a solvent and easily improving the yield strain, elastic modulus and transparency of the protective film, each of R 2 to R 5 independently preferably has a hydrogen atom or a halogen atom.
  • alkyl group that may have a hydrogen atom or a halogen atom, more preferably represents a hydrogen atom or 1 to 6 alkyl groups that may have a halogen atom, more preferably a hydrogen atom or 1 to 6 that may have a halogen atom 3 represents an alkyl group.
  • At least one of R 2 to R 5 represents a monovalent hydrocarbon group optionally having a halogen atom. It is preferable from the viewpoint that it is easy to improve both the yield strain and the optical properties of the glass.
  • at least one benzene ring having R 2 to R 5 preferably has 2 to 4 of R 2 to R 5 One, more preferably three or four, still more preferably three are monovalent hydrocarbon groups which may have a halogen atom.
  • At least one of R 2 to R 5 more preferably represents a monovalent hydrocarbon group which may have a halogen atom. More preferably, at least one of R5 represents a monovalent hydrocarbon group which may have a halogen atom.
  • n in formula (2) represents an integer of 1 to 4, and from the viewpoint of easily improving the elastic modulus and transparency of the protective film and easily improving the yield strain of the protective film, n is preferably 1 to It is an integer of 3, more preferably 2 or 3, and still more preferably 2.
  • the structural unit represented by formula (1) may contain only one type of structure represented by formula (2) as Y, or may contain a plurality of types.
  • formula (2) is represented by formula (2′): [In formula (2′), * represents a bond] is represented by That is, the polyimide-based resin or polyamide-imide-based resin preferably contains a structure represented by formula (2′) as Y in formula (1).
  • the polyimide-based resin or polyamide-imide-based resin contains the structure represented by the formula (2′) as Y in the formula (1), the yield strain, elastic modulus, and transparency of the protective film are likely to be improved.
  • the polyimide-based resin or polyamide-imide-based resin includes a structure represented by formula (2) as Y in formula (1)
  • formula (1 ) in which Y is a structure represented by formula (2) (preferably formula (2')) is the total molar amount (100 mol%) of the structural units represented by formula (1) , preferably 30 mol% or more, more preferably 35 mol% or more, still more preferably 40 mol% or more, usually 100 mol% or less, preferably 90 mol% or less, more preferably 80 mol% or less, More preferably, it is 70 mol % or less.
  • the proportion of the structural unit represented by Y is the formula (2) is at least the above lower limit, the yield strain and elastic modulus of the protective film are likely to be increased. Moreover, it is easy to raise the breaking strain and transparency of a protective film as it is below said upper limit.
  • the ratio of structural units in which Y is represented by formula (2) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the tetravalent organic group for Y in the above formula (1) includes formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), Formula (26), Formula (27), Formula (28) and Formula (29): The structure represented by is mentioned.
  • W 1 is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom (eg - CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -), -Ar-, -SO 2 -, -S -, -CO-, -PO-, -PO 2 -, -N(R W1 )-, -Si(R W2 ) 2 -, -O-Ar-O-, -Ar-O-Ar-, -Ar represents -CH 2 -Ar-, -Ar-C(CH 3 ) 2 -Ar-, or -Ar-SO 2 -Ar-.
  • a halogen atom eg - CH 2 -, -CH 2 -CH 2 -,
  • Ar represents an arylene group having 6 to 20 carbon atoms which may have a fluorine atom, and specific examples thereof include a phenylene group.
  • R W1 and R W2 each independently represent a hydrogen atom or an alkyl group which may have a halogen atom.
  • the hydrogen atoms on the rings in formulas (20) to (29) are substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. good too.
  • Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include those exemplified above as R 1 in formula (2).
  • W 1 is preferably a single bond, —O—, —CH 2 —, —CH 2 —CH 2 —, —, from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film.
  • Polyimide-based resin or polyamideimide-based resin in the embodiment containing the structure represented by the formula (2) as Y in the formula (1), the polyimide-based resin or polyamideimide-based resin is represented by the formula (1)
  • the structural unit Y is represented by formula (2)
  • Y in formula (1) further has a structural unit represented by formula (26), the yield strain of the protective film is more likely to be improved. preferable from this point of view.
  • Formula (26) is preferably represented by formula (5):
  • B is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, -SO 2 -, -S-, -CO-, - represents COO-, -PO-, -PO 2 -, -N(R B1 )- or -Si(R B2 ) 2 -, wherein R B1 and R B2 each independently have a hydrogen atom or a halogen atom; R 7 independently represents a halogen atom or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom; t each represents independently represents an integer from 0 to 3, * represents a bond] is represented by
  • Y in the formula (1) is a structural unit represented by the formula (5) in the polyimide-based resin or polyamideimide
  • R 7 in formula (5) independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom.
  • the halogen atom and the alkyl group, alkoxy group, aryl group and aryloxy group which may have a halogen atom include those exemplified above as R 1 in formula (2).
  • R 7 is each independently preferably an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, and more It preferably represents an alkyl group having 1 to 3 carbon atoms which may have a halogen atom.
  • t in (5) independently represents an integer of 0 to 3, and is preferably an integer of 0 to 2 from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film. , more preferably 0 or 1, more preferably 0.
  • B in formula (5) is a single bond, —O—, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, —SO 2 —, —S—, —CO—, —COO -, -PO-, -PO 2 -, -N(R B1 )- or -Si(R B2 ) 2 -, wherein R B1 and R B2 each independently have a hydrogen atom or a halogen atom; represents an alkyl group that may be
  • a hydrogen atom is further Divalent groups excluding one are included.
  • a divalent hydrocarbon group which may have a halogen atom forms a ring in place of two hydrogen atoms among the hydrogen atoms contained in the group, i.e., the two hydrogen atoms are replaced as a bond, The two bonds may be linked to form a ring, and examples of the ring include a cycloalkane ring having 3 to 12 carbon atoms.
  • the alkyl group optionally substituted with a halogen atom for R B1 and R B2 in —N(R B1 )— and —Si(R B2 ) 2 — contained in B in formula (5) includes:
  • Examples of the alkyl group optionally having a halogen atom for R 1 in formula (2) include those exemplified above.
  • B in formula (5) is preferably a single bond or a divalent hydrocarbon optionally having a halogen atom from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film.
  • a group more preferably a single bond, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 - or -C(CF 3 ) 2 - , more preferably a single bond, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, even more preferably a single bond or —C(CF 3 ) 2 —, particularly preferably —C (CF 3 ) 2 -.
  • Equation (5) is derived from Equation (5′): [in formula (5′), * represents a bond] is preferably represented by That is, it is preferable that the polyimide-based resin or polyamide-imide-based resin has at least a part of the structural units represented by the formula (1) in which Y has a structural unit represented by the formula (5′). In this case, the yield strain, transparency, elastic modulus and flex resistance of the protective film are likely to be improved.
  • Polyimide-based resin or polyamideimide-based resin when Y in formula (1) contains a structural unit represented by formula (5), among the structural units represented by formula (1), in formula (1)
  • the ratio of structural units in which Y is a structure represented by formula (5), preferably formula (5′), is based on the total molar amount (100 mol%) of the structural units represented by formula (1). , preferably 30 mol% or more, more preferably 35 mol% or more, still more preferably 40 mol% or more, preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less .
  • the proportion of the structural unit represented by Y is the formula (5) is at least the above lower limit, the solubility of the resin in the solvent and the transparency of the protective film are likely to be improved. Moreover, it is easy to raise the yield strain and elastic modulus of a protective film as it is below said upper limit.
  • the ratio of structural units in which Y in formula (1) is represented by formula (5) can be measured using 1 H-NMR, for example, or can be calculated from the charging ratio of raw materials.
  • Y in formula (1) is a structural unit represented by formula (2), and Y in formula (1) contains a structural unit represented by formula (5)
  • the total ratio of the structural unit Y is represented by formula (2) and the structural unit Y is represented by formula (5) is based on the total molar amount of the structural units represented by formula (1) is preferably 50 mol % or more, more preferably 70 mol % or more, still more preferably 90 mol % or more, and usually 100 mol % or less.
  • the total ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • X in formula (1) represents a divalent organic group, preferably a divalent organic group having 4 to 40 carbon atoms.
  • Polyimide resin or polyamideimide resin from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, as X in formula (1), a divalent aromatic group, divalent It preferably contains at least one of an alicyclic group and a divalent aliphatic group, and more preferably contains a divalent aromatic group.
  • the divalent aromatic group for example, among the hydrogen atoms in the monovalent aromatic hydrocarbon groups exemplified above as R 2 to R 5 in formula (2), one hydrogen atom is replaced with a bond.
  • divalent aromatic hydrocarbon group groups in which at least one or more of the divalent aromatic hydrocarbon groups are linked by a linking group, for example, a linking group such as V1 described later.
  • a linking group for example, a linking group such as V1 described later.
  • the divalent alicyclic group for example, among the hydrogen atoms in the monovalent alicyclic hydrocarbon groups exemplified above as R 2 to R 5 in formula (2), one hydrogen atom is a bond a divalent alicyclic hydrocarbon group substituted with; among the divalent alicyclic hydrocarbon groups, groups in which at least one or more of the divalent alicyclic hydrocarbon groups are linked by a linking group, for example, a linking group such as V1 described later. be done.
  • divalent aliphatic group for example, among the hydrogen atoms in the monovalent aliphatic hydrocarbon groups exemplified above as R 2 to R 5 in formula (2), one hydrogen atom is replaced with a bond. divalent aliphatic hydrocarbon group; groups in which at least one or more of the divalent aliphatic hydrocarbon groups are linked by a linking group such as V1 described later.
  • X in formula (1) preferably represents a divalent organic group having 4 to 40 carbon atoms having a cyclic structure (alicyclic structure, aromatic ring structure, heterocyclic structure, etc.), more preferably 4 to It represents a 40 divalent aromatic group or a C4-40 divalent alicyclic group, more preferably a C4-40 divalent aromatic group.
  • a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the number is preferably 1-8.
  • the polyimide resin or polyamideimide resin may contain multiple types of X, and the multiple types of X may be the same or different.
  • X is represented by formula (10), formula (11), formula (12), formula (13), formula (14), formula (15), formula (16), formula (17) and formula (18) groups represented by formulas (10) to (18) in which hydrogen atoms are substituted with methyl, fluoro, chloro or trifluoromethyl groups.
  • the hydrogen atoms on the rings in formulas (10) to (18) are substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. good too.
  • Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include those exemplified above as R 1 in formula (2).
  • V 1 , V 2 and V 3 are each independently a single bond, -O-, -S-, -CH 2 -, -CH 2 represents -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -SO 2 -, -CO- or -N(Q)-.
  • Q represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a halogen atom.
  • the above monovalent hydrocarbon group which may have a halogen atom for R 2 to R 5 in formula (2) are exemplified.
  • V 1 and V 3 are a single bond, -O- or -S- and V 2 is -CH 2 -, -C(CH 3 ) 2 -, -C(CF 3 ) 2- or -SO 2 -.
  • the bonding positions of V 1 and V 2 to each ring and the bonding positions of V 2 and V 3 to each ring independently of each other are preferably meta-positions or para-positions, and more Para position is preferred.
  • A is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, -SO 2 -, -S-, -CO-, - represents PO-, -PO 2 -, -N(R A1 )- or -Si(R A2 ) 2 -, wherein R A1 and R A2 may independently have a hydrogen atom or a halogen atom; represents an alkyl group, R 6 independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom; s independently represents 0 to represents an integer of 4 and * represents a bond].
  • Polyimide-based resin or polyamideimide-based resin when X in the formula (1) has a structural unit represented by the formula (6), the yield strain of the protective film, breaking strain, elastic modulus and transparency are likely to be improved.
  • the polyimide-based resin or polyamide-imide-based resin may contain one or more groups represented by the formula (6) as X in the structural unit represented by the formula (1).
  • Each R 6 in formula (6) independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom.
  • Examples of the halogen atom, or the alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom include those exemplified above as R 1 in formula (2).
  • R 6 is each independently preferably an alkyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms. It represents a halogenated alkyl group, more preferably an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms (preferably a perfluoroalkyl group).
  • R 6 independently of one another represents a methyl group, a chloro group or a trifluoromethyl group.
  • s independently represents an integer of 0 to 4, preferably an integer of 1 to 3, more preferably 1 or 2 from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film , and more preferably 1.
  • s is 1, R 6 is substituted ortho to -A-, and R 6 is methyl, fluoro, chloro or trifluoro A methyl group is preferred.
  • the positions of the bonds are independent of each other, based on -A-, preferably meta-position or para-position. position, more preferably para position.
  • a in formula (6) is a single bond, —O—, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, —SO 2 —, —S—, —CO—, —PO -, -PO 2 -, -N(R A1 )- or -Si(R A2 ) 2 -, wherein R A1 and R A2 are independently of each other alkyl optionally having a hydrogen atom or a halogen atom represents a group.
  • the divalent hydrocarbon group which may have a halogen atom among the monovalent hydrocarbon groups which may have a halogen atom in R 2 to R 5 in formula (2), one hydrogen atom divalent groups other than A divalent hydrocarbon group which may have a halogen atom may form a ring in place of two hydrogen atoms among the hydrogen atoms contained in the group, i.e., the two hydrogen atoms are bonded Instead of the hand, the two bonds may be linked to form a ring.
  • the ring includes, for example, a cycloalkane ring having 3 to 12 carbon atoms.
  • Examples of the alkyl group optionally having a halogen atom represented by R A1 and R A2 include those exemplified above as the alkyl group optionally having a halogen atom for R 1 in formula (2). .
  • a in formula (6) is preferably a single bond, —CH 2 —, —CH 2 —CH 2 —, —CH, from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film.
  • R 6 is each independently a C 1-6 represents a halogenated alkyl group, s represents 1 or 2, and A preferably represents a single bond, -C(CH 3 ) 2 - or -C(CF 3 ) 2 -.
  • Formula (6) is preferably represented by formula (6′): is represented by That is, at least some of the plurality of X's in Formula (1) are preferably represented by Formula (6'). Such a form tends to improve yield strain, breaking strain, elastic modulus and transparency of the protective film.
  • the ratio of structural units in which X in formula (1) is a structure represented by formula (6) is the total number of structural units represented by formula (1).
  • the molar amount (100 mol %) is preferably 50 mol % or more, more preferably 70 mol % or more, still more preferably 80 mol % or more, and usually 100 mol % or less.
  • the proportion of the structural unit represented by formula (6) for X is at least the above lower limit, the transparency of the protective film can be more easily improved. Moreover, it is easy to raise the yield strain of a protective film as it is below said upper limit.
  • the ratio of structural units in which X in formula (1) is represented by formula (6) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • Polyamideimide resin as described above, in addition to the structural unit represented by formula (1), formula (3): It can have a structural unit represented by
  • Z in formula (3) represents a divalent organic group, preferably a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms.
  • Cyclic structures include alicyclic structures, aromatic ring structures, and heterocyclic structures.
  • the divalent organic group having an alicyclic structure and an aromatic ring structure includes a group in which two non-adjacent bonds of the groups represented by the above formulas (20) to (29) are replaced with hydrogen atoms, and divalent chain hydrocarbon groups having 6 or less carbon atoms.
  • a divalent organic group having a heterocyclic structure includes a group having a thiophene ring skeleton. From the viewpoint of easily reducing the YI value of the protective film, among the bonds of the groups represented by formulas (20) to (29), two non-adjacent bonds are replaced with hydrogen atoms, and it has a thiophene ring skeleton. groups are preferred.
  • a divalent organic group represented by is more preferable.
  • the hydrogen atoms on the rings in formulas (20) to (29) and formulas (20') to (29') are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, or It may be substituted with an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include those exemplified above as R 1 in formula (2).
  • Polyamideimide resin is represented by formula (4) as Z in formula (3):
  • W are each independently a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, -SO 2 -, -S-, - represents CO—, —PO—, —PO 2 —, —N(R C1 )— or —Si(R C2 ) 2 —, wherein R C1 and R C2 each independently have a hydrogen atom or a halogen atom; R 8 independently represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group which may have a halogen atom or a halogen atom; independently represents an integer of 0 to 4, q represents an integer of 0 to 4, * represents a bond] can include structures represented by When the polyamide-imide resin has a structural unit represented by formula (3) in which Z is formula (4), the yield strain, breaking
  • the bonding positions of W are independent of each other, preferably meta-position or para-position based on the bond. and more preferably at the para position.
  • Equation (4) is derived from Equation (4′): [In formula (4′), W, R 8 , p and q are as defined in formula (4)] is preferably represented by In other words, Z in formula (3) is preferably represented by formula (4′) in at least part of the structural units represented by formula (3) that may be contained in the polyamideimide resin. In this case, the yield strain, breaking strain, elastic modulus and transparency of the protective film are likely to be improved.
  • R 8 independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom.
  • examples of the halogen atom, or the alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom include those exemplified above as R 1 in formula (2).
  • R 8 is independently of each other, from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, preferably it may have a halogen atom, and has 1 to 6 carbon atoms. It represents an alkyl group or an alkoxy group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. Each p independently represents an integer of 0 to 4, preferably an integer of 0 to 2 from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film.
  • W in formulas (4) and (4′) is independently a single bond, —O—, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, —SO 2 —, —S—, —CO—, —PO—, —PO 2 —, —N(R C1 )—, or —Si(R C2 ) 2 —, and the yield strain, breaking strain, elastic modulus and transparency of the protective film From the viewpoint of facilitating improvement, preferably -O- or -S-, more preferably -O-.
  • R 1 C1 and R 2 C2 each independently represent a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a hydrogen atom or a halogen atom.
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a halogen atom the above monovalent hydrocarbon group which may have a halogen atom for R 2 to R 5 in formula (2) are exemplified.
  • q in the formulas (4) and (4′) is an integer in the range of 0 to 4, and when q is within this range, the yield strain, breaking strain, elastic modulus and transparency of the protective film are improved.
  • easy to let q in formulas (4) and (4') is preferably an integer in the range of 0 to 3, more preferably an integer in the range of 0 to 2.
  • a structural unit represented by formula (4) or formula (4′) in which q is 0 is, for example, a structural unit derived from terephthalic acid or isophthalic acid, and the structural unit is represented by formula (4) or formula (4 ') in p and q are each 0, or q is 0 and p is 1 or 2 (preferably R 8 is an alkyl group having 1 to 3 carbon atoms, a fluorinated alkyl group, or a carbon number 1 to 3 alkoxy groups).
  • the polyamide-imide resin preferably contains structural units derived from terephthalic acid.
  • Z may contain one or more structural units represented by the formula (4) or (4').
  • Z is represented by formula (4)
  • the ratio of the structural units is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, relative to the total molar amount of the structural units represented by formula (3). It is 100 mol % or less.
  • the proportion of structural units in which Z in formula (3) is represented by formula (4) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the above description of preferred proportions applies equally to the structure represented by formula (4′) and the structure represented by formula (4′′).
  • Z is represented by formula (4 ) is preferably 5 mol% or more, more preferably is 15 mol % or more, more preferably 30 mol % or more, particularly preferably 50 mol % or more, and usually 100 mol % or less.
  • the proportion of the structural unit represented by formula (4) for Z in formula (3) is at least the above lower limit, the yield strain, breaking strain, elastic modulus and transparency of the light protective film are likely to be improved.
  • the proportion of structural units in which Z in formula (3) is represented by formula (4) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the above description of preferred proportions applies equally to the structure represented by formula (4′) and the structure represented by formula (4′′).
  • Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms in R 24 include those exemplified above as R 1 in formula (2). be done.
  • the ratio of the structural unit represented by the formula (d1) is the structural unit represented by the formula (1) and the formula (3). is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 1 mol% or more, and preferably 30 mol% or less, based on the total molar amount of the represented structural unit; It is more preferably 20 mol % or less, still more preferably 10 mol % or less.
  • the ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • Examples of X in formula (3) include those exemplified above as X in formula (1), and preferred forms are also the same. Moreover, X in Formula (1) and X in Formula (3) may be the same or different. In one embodiment, the structural unit represented by formula (1) and/or the structural unit represented by formula (3) have one or more structures (or groups) represented by formula (6) as X. May contain seeds.
  • the ratio of structural units represented by formula (6) is Preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, relative to the total molar amount of the structural unit represented by 1) and the structural unit represented by formula (3) and is usually 100 mol % or less.
  • the ratio of the structural unit represented by formula (6) for X is within the above range, the yield strain, breaking strain, elastic modulus and transparency of the protective film are likely to be improved.
  • the ratio of structural units in which X is represented by formula (6) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • Polyamideimide resin in addition to the structural unit represented by the formula (1), the structural unit represented by the formula (3), further, the structural unit represented by the formula (30) and / or the formula (31) It may contain a structural unit represented by
  • Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Y 1 is represented by formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) and a group represented by the formula (29), a group in which a hydrogen atom in the group represented by the formulas (20) to (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group, and A tetravalent chain hydrocarbon group having 6 or less carbon atoms is exemplified.
  • the structural unit represented by formula (30) may contain multiple types of structures represented by Y 1 , and the multiple types of Y 1 may be the same or different. good too.
  • Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the structural unit represented by formula (31) may contain multiple types of structures represented by Y 2 , and the multiple types of Y 2 may be the same or different. good too.
  • X 1 and X 2 are each independently a divalent organic group, preferably a hydrocarbon group or a hydrocarbon group in which a hydrogen atom in the organic group is substituted with fluorine. is an organic group optionally substituted with As X 1 and X 2 , the above formula (10), formula (11), formula (12), formula (13), formula (14), formula (15), formula (16), formula (17) and a group represented by the formula (18); a group in which hydrogen atoms in the groups represented by the formulas (10) to (18) are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and A chain hydrocarbon group having 6 or less carbon atoms is exemplified.
  • the total ratio of the structural units represented by the formula (1) and the structural unit represented by the formula (3) is preferably 0.01 mol% or more, and more It is preferably 0.1 mol % or more, more preferably 1 mol % or more, preferably 30 mol % or less, more preferably 20 mol % or less, still more preferably 10 mol % or less.
  • the ratio can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the proportion of the structural unit represented by the formula (1) is expressed by the formula (1) Preferably 10 mol% or more, more preferably 15 mol% or more, still more preferably 20 mol%, relative to the total molar amount (100 mol%) of the structural unit represented by the structural unit represented by formula (3) and the structural unit represented by formula (3)
  • the content is particularly preferably 25 mol% or more, preferably 90 mol% or less, more preferably 70 mol% or less, still more preferably 60 mol% or less, and particularly preferably 50 mol% or less.
  • the proportion of the structural unit represented by the formula (1) when the proportion of the structural unit represented by the formula (1) is at least the above lower limit, thickening due to hydrogen bonding between the amide bonds in the formula (3) is suppressed, and the polyamideimide varnish is Viscosity can be reduced and production of protective films is easy.
  • the proportion of the structural unit represented by formula (1) in the polyamideimide resin is equal to or less than the above upper limit, the protective film containing the polyamideimide resin exhibits high surface hardness.
  • the above ratio can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the weight average molecular weight (hereinafter sometimes referred to as Mw) of the polyimide resin or polyamideimide resin contained in the protective film is preferably 100,000 or more, more preferably 150,000 or more, and still more preferably is 200,000 or more, more preferably 300,000 or more, more preferably 400,000 or more, still more preferably 500,000 or more, still more preferably 600,000 or more, preferably It is 1,500,000 or less, more preferably 1,200,000 or less, still more preferably 1,000,000 or less, still more preferably 800,000 or less.
  • Mw of the polyimide-based resin or the polyamide-imide-based resin is at least the above lower limit, the yield strain, breaking strain and elastic modulus of the resulting protective film are likely to be improved.
  • Mw can be determined, for example, by gel permeation chromatography (hereinafter sometimes referred to as GPC) measurement and standard polystyrene conversion, for example, it can be determined by the method described in Examples.
  • GPC gel permeation chromatography
  • the polyimide-based resin or polyamide-imide-based resin may contain halogen atoms such as fluorine atoms, which can be introduced by, for example, the fluorine-containing substituents described above.
  • halogen atoms such as fluorine atoms
  • the YI value of the protective film is likely to be reduced, and the breaking strain and elastic modulus are likely to be increased.
  • the elastic modulus of the protective film is high, it is easy to suppress the occurrence of scratches, wrinkles, and the like.
  • the YI value of the protective film is low, it becomes easier to improve the transparency and visibility of the film.
  • a halogen atom is preferably a fluorine atom.
  • Preferable fluorine-containing substituents for containing fluorine atoms in the polyimide resin or polyamideimide resin include, for example, a fluoro group and a trifluoromethyl group.
  • the content thereof when the polyimide resin or polyamideimide resin contains a halogen atom, the content thereof, respectively, based on the weight of the polyimide resin or polyamideimide resin, preferably 1 to 40 mass%, more preferably 5 to 40% by mass, more preferably 5 to 30% by mass.
  • the halogen atom content is at least the above lower limit, the YI value of the protective film is likely to be reduced, and the breaking strain and elastic modulus are likely to be increased. If the content of halogen atoms is below the above upper limit, synthesis becomes easier.
  • the imidization rate of the polyimide resin or polyamideimide resin is preferably 90% or more, more preferably 93% or more, and still more preferably 96% or more. From the viewpoint of easily increasing the yield strain and optical properties of the protective film, the imidization rate is preferably at least the above lower limit. Moreover, the upper limit of the imidization rate is 100% or less.
  • the imidization rate indicates the ratio of the molar amount of imide bonds in the resin to twice the molar amount of structural units derived from the tetracarboxylic acid compound in the polyimide resin or polyamideimide resin.
  • the polyimide resin or polyamideimide resin contains a tricarboxylic acid compound
  • a value twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin, derived from the tricarboxylic acid compound It shows the ratio of the molar amount of imide bonds in the polyimide resin to the total molar amount of the constituent units.
  • the imidization rate can be determined by IR method, NMR method, or the like.
  • the yellowness index (hereinafter sometimes referred to as YI value) of the protective film is preferably less than 3.0.
  • YI value is 3.0 or more, the YI value of the protective film is too high, so that the visibility of an image or the like through the protective film decreases.
  • the YI value of the protective film is preferably 2.8 or less, more preferably 2.6 or less, still more preferably 2.5 or less, preferably -5 or more, more preferably -2 or more is.
  • the YI value of the protective film is equal to or less than the above upper limit, the transparency becomes good, and when applied to a protective film or a front plate described later, it can contribute to high visibility.
  • the method for adjusting the YI value of the protective film to the above range is not particularly limited, but the method of using the above-mentioned polyimide resin or polyamideimide resin, the method of adding a blue dye, the method of thinning, the monomer mainly Examples include a method of introducing a side chain into the aromatic ring of the chain.
  • the tensile elastic modulus of the protective film is preferably 4.8 GPa or more, more preferably 5, from the viewpoint of easily improving the flex resistance of the polarizing plate and the laminate and from the viewpoint of easily preventing wrinkles, scratches, and the like. .2 GPa or more, more preferably 6.0 GPa or more, and usually 100 GPa or less.
  • the tensile modulus can be measured using a tensile tester (distance between chucks: 50 mm, tensile speed: 10 mm/min).
  • a method for increasing the tensile modulus a method of adding a rigid inorganic filler and a method of introducing a crosslinked structure are known.
  • the total light transmittance of the protective film is preferably 85% or higher, more preferably 88% or higher, still more preferably 89% or higher, still more preferably 90% or higher.
  • the total light transmittance is at least the above lower limit, visibility is likely to be improved when the protective film is incorporated into a display device.
  • the upper limit of total light transmittance is usually 100% or less.
  • the total light transmittance can be measured using a haze computer according to JIS K 7361-1:1997, for example.
  • the total light transmittance may be the total light transmittance within the thickness range of the protective film, which will be described later.
  • the plane orientation coefficient ⁇ P absolute value of the protective film is preferably 0.003 or more, more preferably 0.010 or more, and may be 0.050 or more, from the viewpoint of making it difficult for dents to occur.
  • the planar orientation coefficient ⁇ P absolute value of the protective film may be 0.600 or less, or may be 0.100 or less.
  • the plane orientation coefficient ⁇ P is a physical property value that is an index of the orientation state of the molecular chains of the polymer constituting the protective film, and the larger the plane orientation coefficient, the higher the degree of orientation of the protective film.
  • the plane orientation coefficient ⁇ P is defined by n x as the refractive index in the in-plane slow axis direction of the protective film (the direction in which the refractive index is maximized in the plane), and the in-plane fast axis direction (perpendicular to the in-plane slow axis direction
  • Planar orientation coefficient ⁇ P (n x +n y )/2-n z defined by
  • the in-plane retardation value R 0 of the protective film is preferably 0 nm or more and 200 nm or less, and more preferably 0 nm or more and 100 nm or less, from the viewpoint of making it difficult for dents to occur.
  • the thickness direction retardation value R th of the protective film is preferably 200 nm or more, more preferably 1000 nm or more.
  • the thickness direction retardation value R th of the protective film may be 10000 nm or less, or may be 5000 nm or less. In this specification, the retardation value and the like may be values at a wavelength of 590 nm.
  • the in-plane retardation value R 0 and the thickness direction retardation value R th are the refractive index in the in-plane slow axis direction (the direction in which the refractive index is maximized in the plane) of the film, and the in-plane fast axis direction
  • In-plane retardation value R 0 (n x ⁇ n y ) ⁇ d
  • the thickness of the protective film is usually 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the thickness of the protective film is usually 5 ⁇ m or more, preferably 10 ⁇ m or more. Within such a range, the bending resistance of the polarizing plate can be easily increased.
  • a hard coat layer may be formed on the resin film.
  • the hard coat layer may be formed on one side of the resin film, or may be formed on both sides.
  • the method for producing the polyimide resin and the polyamideimide resin is not particularly limited. In one embodiment, it can be produced using a tetracarboxylic acid compound and a diamine compound, which will be described later, as main raw materials, optionally using a dicarboxylic acid compound together.
  • a step of reacting a diamine compound and a tetracarboxylic acid compound to obtain a polyamic acid and when the polyimide resin is a polyamideimide resin, reacting the polyamic acid and a dicarboxylic acid to obtain a polyamideimide
  • It can be produced by a method including a step of obtaining a resin precursor and a step of imidizing the polyamic acid or the polyamide-imide resin precursor.
  • a tricarboxylic acid compound may be reacted.
  • the structural units represented by formulas (1) and (30) are usually derived from a diamine compound and a tetracarboxylic acid compound.
  • the structural unit represented by formula (3) is usually derived from a diamine compound and a dicarboxylic acid compound.
  • the structural unit represented by formula (31) is usually derived from a diamine compound and a tricarboxylic acid compound.
  • the tetracarboxylic acid compound used in the production of polyimide resins and polyamideimide resins has at least the formula (X): [In Formula (X), R 1 to R 5 , m and n are respectively the same as R 1 to R 5 , m and n in Formula (2)] It is preferable that the compound represented by is included.
  • the compound represented by formula (X) may be obtained by a conventional method such as reacting trimellitic anhydride or a derivative thereof with an aromatic diol, or a commercially available product may be used.
  • the tetracarboxylic acid compound in addition to the compound represented by formula (X), further has formula (Y): [in formula (Y), B, R 7 and t are respectively the same as B, R 7 and t in formula (5)] It is preferable that the compound represented by is included.
  • tetracarboxylic acid compounds include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride.
  • a tetracarboxylic acid compound may be used independently and may be used in combination of 2 or more type.
  • the tetracarboxylic acid compound may be a dianhydride or a tetracarboxylic acid compound analog such as an acid chloride compound.
  • aromatic tetracarboxylic dianhydrides include non-condensed polycyclic aromatic tetracarboxylic dianhydrides, monocyclic aromatic tetracarboxylic dianhydrides and condensed polycyclic aromatic tetracarboxylic dianhydrides.
  • Carboxylic acid dianhydrides are mentioned.
  • Non-condensed polycyclic aromatic tetracarboxylic dianhydrides include, for example, esters of trimellitic anhydride and 2,2',3,3',5,5'-hexamethyl-4,4'-biphenol compound (hereinafter sometimes referred to as TAHMBP), an ester of trimellitic anhydride and 2,2′,3,3′-tetramethyl-4,4′-biphenol (hereinafter referred to as TA23X-BP ), esters of trimellitic anhydride and 3,3′,5,5′-tetramethyl-4,4′-biphenol, 4,4′-oxydiphthalic dianhydride, 3,3′, 4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (hereinafter , BPDA), 2,2′,3,
  • Examples of monocyclic aromatic tetracarboxylic dianhydrides include 1,2,4,5-benzenetetracarboxylic dianhydride [also called pyromellitic dianhydride (hereinafter referred to as PMDA). There is)], and examples of the condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • TAHMBP Trimellitic anhydride
  • TA23X-BP an ester of trimellitic anhydride and 3,3′,5,5′-tetramethyl-4,4′-biphenol
  • 4,4′-oxydiphthalic dianhydride BPDA, 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 6FDA, bis(3,4-dicarboxyphenyl)methane dianhydride, and 4,4′-(p-phenylenedioxy)diphthalic acid dianhydrides.
  • BPDA 2,2′,3,3′-biphenyltetracarboxylic dianhydride
  • 6FDA bis(3,4-dicarboxyphenyl)methane dianhydride
  • 4,4′-(p-phenylenedioxy)diphthalic acid dianhydrides can be used singly or in combination of two or more.
  • Aliphatic tetracarboxylic dianhydrides include cyclic or acyclic aliphatic tetracarboxylic dianhydrides.
  • the cyclic aliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3′,4,4′-tetracarboxylic dianhydride and positional isomers thereof be done. These can be used alone or in combination of two or more.
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. and these can be used alone or in combination of two or more.
  • a cyclic aliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may also be used in combination.
  • TAHMBP TA23X-BP
  • trimellitic anhydride 3,3′,5,5′-tetramethyl-4 are used from the viewpoint of easily improving the yield strain and transparency of the protective film.
  • Dicarboxylic acid compounds used in the synthesis of polyamideimide resins aromatic dicarboxylic acids, aliphatic dicarboxylic acids and their analogous acid chloride compounds, acid anhydrides, etc., may be used in combination of two or more. .
  • terephthalic acid 2,5-bis(trifluoromethyl)terephthalic acid; isophthalic acid; 2,5-dimethylterephthalic acid; 2,5-dimethoxyterephthalic acid; naphthalenedicarboxylic acid; dicarboxylic acid; 3,3'-biphenyldicarboxylic acid; 2,2'-bis(trifluoromethyl)-4,4'-biphenyldicarboxylic acid; chain hydrocarbon having 8 or less carbon atoms, and 2 compounds in which two benzoic acids are linked by a single bond, —O—, —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a phenylene group;
  • Examples include acid chloride compounds.
  • dicarboxylic acid compounds 4,4′-oxybisbenzoic acid, terephthalic acid, isophthalic acid, 2-methoxyterephthalic acid, and 2,5-dimethylterephthalic acid are used from the viewpoint of easily improving the yield strain and transparency of the protective film.
  • the polyimide resin in addition to the tetracarboxylic acid compound used in the synthesis of the polyimide resin, other tetracarboxylic acids and tricarboxylic acids and their anhydrides and A derivative may be further reacted.
  • tetracarboxylic acids include water adducts of the above tetracarboxylic acid compound anhydrides.
  • tricarboxylic acid compounds include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, their analogous acid chloride compounds, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include anhydride of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; a single bond between phthalic anhydride and benzoic acid; , —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or compounds linked by a phenylene group.
  • Diamine compounds include, for example, aliphatic diamines, aromatic diamines, and mixtures thereof.
  • aromatic diamine refers to a diamine in which an amino group is directly bonded to an aromatic ring, and part of its structure may contain an aliphatic group or other substituents.
  • This aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and fluorene ring. Among these, a benzene ring is preferred.
  • aliphatic diamine refers to a diamine in which an amino group is directly bonded to an aliphatic group, and part of its structure may contain an aromatic ring or other substituents.
  • Aliphatic diamines include, for example, acyclic aliphatic diamines such as hexamethylenediamine, as well as 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine and 4,4' - Cycloaliphatic diamines such as diaminodicyclohexylmethane. These can be used alone or in combination of two or more.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
  • Preferred aromatic diamines include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2′-dimethylbenzidine, TFMB, 6FDAM, 4, 4'-bis(4-aminophenoxy)bipheny
  • diamine compounds 2,2′-dimethylbenzidine, TFMB, 4,4′-bis(4-aminophenoxy)biphenyl, 6FDAM and 4,4 It is more preferable to use one or more selected from the group consisting of '-diaminodiphenyl ether, and it is even more preferable to use TFMB and/or 6FDAM.
  • the amounts of the diamine compound, the tetracarboxylic acid compound and the dicarboxylic acid compound to be used can be appropriately selected depending on the ratio of each constituent unit of the desired resin.
  • the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, based on the total molar amount of the tetracarboxylic acid compound and optionally the dicarboxylic acid compound contained as 1 mol, More preferably 0.98 mol or more, particularly preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, still more preferably 1.05 mol or less, particularly preferably 1 0.02 mol or less.
  • the polyimide resin and the polyamideimide resin have a structure represented by formula (2). However, it is easy to obtain a high-molecular-weight resin, and as a result, it is easy to improve the yield strain and transparency of the resulting protective film.
  • the reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited, and may be, for example, 5 to 200° C.
  • the reaction time is also not particularly limited, and may be, for example, about 30 minutes to 72 hours.
  • the reaction temperature is The temperature is preferably 5 to 50°C, more preferably 5 to 40°C, still more preferably 5 to 25°C, and the reaction time is preferably 3 to 24 hours, more preferably 5 to 20 hours.
  • the reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent.
  • the solvent is not particularly limited as long as it does not affect the reaction, but examples include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, alcohol solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, ⁇ -valerolactone, propylene glycol methyl ether acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone;
  • the solvent used in the reaction is preferably a solvent that has been rigorously dehydrated to a water content of 700 ppm or less.
  • the reaction between the diamine compound and the tetracarboxylic acid compound may be carried out, if necessary, under an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere, or under reduced pressure conditions. It is preferably carried out with stirring in a strictly controlled dehydrated solvent under the same inert atmosphere as in the above.
  • an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere, or under reduced pressure conditions. It is preferably carried out with stirring in a strictly controlled dehydrated solvent under the same inert atmosphere as in the above.
  • the conditions for producing the polyamic acid and the dicarboxylic acid may be appropriately selected from the conditions for producing the reaction between the diamine compound and the tetracarboxylic acid compound.
  • Examples of the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and cycloaliphatic amines (monocyclic) such as N-propylhexahydroazepine; azabicyclo[2.2.1]heptane, azabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, and Alicyclic amines (polycyclic) such as azabicyclo[3.2.2]nonane; and pyridine, 2-methylpyridine (2-picoline), 3-methylpyridine (3-picoline), 4-methylpyridine (4 -picoline), 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine,
  • Acid anhydrides include conventional acid anhydrides used in imidization reactions, and specific examples thereof include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic acid anhydrides such as phthalic acid. and acid anhydrides.
  • the imidization step it is preferred to carry out the imidization step in stages, increasing the temperature to the optimum reaction temperature.
  • the stepwise imidization suppresses the decomposition of the resin, making it easier to obtain a high-molecular-weight polyimide resin.
  • the reaction temperature to be raised in the stepwise imidization step is preferably 40 to 85°C, more preferably 45 to 80°C. When the reaction temperature is within the above range, the imidization reaction tends to proceed sufficiently, and the Mw tends to increase sufficiently.
  • the reaction time is preferably 30 minutes to 10 hours, more preferably 30 minutes to 5 hours.
  • reaction time When the reaction time is within the above range, it is easy to suppress a decrease in Mw due to decomposition of the resin, and it is easy to suppress a decrease in imidization rate and reduction in molecular weight in the subsequent steps.
  • a resin having a high molecular weight By controlling the imidization step in addition to the synthesis conditions described above, a resin having a high molecular weight can be obtained.
  • the polyimide resin or polyamideimide resin is separated and purified by a conventional method such as filtration, concentration, extraction, crystallization, recrystallization, column chromatography, or a combination thereof.
  • the resin can be isolated by adding a large amount of alcohol such as methanol to the reaction solution containing the resin to precipitate the resin, followed by concentration, filtration, drying, and the like.
  • a protective film can be obtained by forming a film from the obtained resin by a known means such as a solvent casting method or a melt extrusion method.
  • the protective film may contain at least one filler in addition to the resin.
  • the filler include organic particles and inorganic particles, preferably inorganic particles.
  • Inorganic particles include metal oxide particles such as silica, zirconia, alumina, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, and cerium oxide, magnesium fluoride, sodium fluoride, and the like.
  • silica particles, zirconia particles, and alumina particles more preferably silica particles.
  • the protective film may further contain an ultraviolet absorber.
  • the ultraviolet absorber can be appropriately selected from those commonly used as ultraviolet absorbers in the field of resin materials.
  • the ultraviolet absorber may contain a compound that absorbs light with a wavelength of 400 nm or less.
  • Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone-based compounds, salicylate-based compounds, benzotriazole-based compounds, and triazine-based compounds.
  • Ultraviolet absorbers can be used alone or in combination of two or more.
  • the protective film may further contain additives other than fillers and ultraviolet absorbers.
  • additives include, for example, antioxidants, release agents, stabilizers, bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents.
  • the adhesive layer can be a layer that bonds the polarizer and the protective film together.
  • the adhesive layer can be formed from, for example, a water-based adhesive or an active energy ray-curable adhesive.
  • the thickness of the adhesive layer is, for example, 0.01-5 ⁇ m, preferably 0.1-3 ⁇ m.
  • water-based adhesives examples include polyvinyl alcohol-based resin aqueous solutions and water-based two-liquid type urethane-based emulsion adhesives.
  • Active energy ray-curable adhesives are adhesives that are cured by irradiation with active energy rays such as ultraviolet rays.
  • active energy ray-curable adhesives include adhesives containing a polymerizable compound and a photopolymerization initiator, adhesives containing a photoreactive resin, adhesives containing a binder resin and a photoreactive cross-linking agent, and the like. can.
  • Examples of the polymerizable compound include photopolymerizable monomers such as photocurable epoxy monomers, photocurable acrylic monomers, and photocurable urethane monomers, and oligomers derived from these monomers.
  • Examples of photopolymerization initiators include compounds containing substances that generate active species such as neutral radicals, cations, and anions upon irradiation with active energy rays such as ultraviolet rays.
  • a polarizing plate may comprise a retardation film.
  • the retardation film has at least one retardation layer.
  • the retardation layer included in the retardation film may be one layer or two or more layers.
  • the retardation layer is preferably laminated on the opposite side of the polarizer to the front plate side.
  • the retardation layer may have an overcoat layer for protecting its surface, a substrate film for supporting the retardation layer, and the like.
  • the retardation layer includes a ⁇ /4 layer and may further include at least one of a ⁇ /2 layer and a positive C layer. When the retardation layer includes a ⁇ /2 layer, a ⁇ /2 layer and a ⁇ /4 layer are laminated in order from the linear polarizing plate side.
  • the ⁇ / 4 layer and the positive C layer may be laminated in order from the linear polarizing plate side, and the positive C layer and ⁇ / 4 layer are laminated in order from the linear polarizing plate side. good too.
  • the thickness of the retardation layer is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 8 ⁇ m or less, and more preferably 1 ⁇ m or more and 6 ⁇ m or less.
  • the retardation layer may be formed from a resin film exemplified as a material for the protective film, or may be formed from a layer obtained by curing a polymerizable liquid crystal compound.
  • the retardation layer may further include an alignment film.
  • the retardation layer may have an adhesive layer or a pressure-sensitive adhesive layer for bonding the ⁇ /4 layer, the ⁇ /2 layer and the positive C layer.
  • the retardation layer can be formed by applying a composition containing the polymerizable liquid crystal compound to the substrate film and curing the composition.
  • An alignment film may be formed between the substrate film and the coating layer.
  • the material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film.
  • the retardation layer may be incorporated into the polarizing plate in a form having an alignment film and a base film.
  • the retardation layer can be laminated via a pressure-sensitive adhesive layer or an adhesive layer.
  • the pressure-sensitive adhesive layer can be a pressure-sensitive adhesive layer for bonding the polarizing plate and the front plate.
  • the pressure-sensitive adhesive layer can be a pressure-sensitive adhesive layer for bonding the polarizing plate and the touch sensor or display element.
  • the pressure-sensitive adhesive layer can be a pressure-sensitive adhesive layer for bonding the retardation film and the polarizer or the protective film.
  • the pressure-sensitive adhesive layer can be composed of, for example, a pressure-sensitive adhesive composition whose main component is a (meth)acrylic, rubber, urethane, ester, silicone, polyvinyl ether, or other resin. Among them, a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc., is preferable.
  • the adhesive composition may be active energy ray-curable or heat-curable.
  • Examples of the (meth)acrylic resin (base polymer) used in the adhesive composition include butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, and 2-(meth)acrylate. Polymers or copolymers containing one or more of (meth)acrylic acid esters such as ethylhexyl as monomers are preferably used.
  • the base polymer is preferably copolymerized with polar monomers.
  • Examples of polar monomers include (meth)acrylic acid, 2-hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylate, (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, glycidyl ( Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, such as meth)acrylate.
  • the adhesive composition may consist of the base polymer alone, but usually further contains a cross-linking agent.
  • the cross-linking agent is a metal ion having a valence of 2 or more, which forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound, which forms an amide bond with a carboxyl group; Epoxy compounds and polyols that form ester bonds with carboxyl groups; and polyisocyanate compounds that form amide bonds with carboxyl groups.
  • polyisocyanate compounds are preferred.
  • the active energy ray-curable pressure-sensitive adhesive composition has the property of being cured by being irradiated with an active energy ray such as an ultraviolet ray or an electron beam. It can be brought into close contact with an adherend such as a film. It can be cured by irradiation with active energy rays to adjust adhesion.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably UV-curable.
  • the active energy ray-curable pressure-sensitive adhesive composition contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent as described above. A photopolymerization initiator, a photosensitizer, and the like are also included as appropriate.
  • the adhesive composition includes fine particles for imparting light-scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than base polymers, adhesiveness imparting agents, fillers (metal powders and other inorganic powder, etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, and other additives.
  • the pressure-sensitive adhesive layer can be formed by applying an organic solvent-diluted solution of the pressure-sensitive adhesive composition onto a substrate and drying it.
  • an active energy ray-curable pressure-sensitive adhesive composition When an active energy ray-curable pressure-sensitive adhesive composition is used, a cured product having a desired degree of curing can be obtained by irradiating the formed pressure-sensitive adhesive layer with an active energy ray.
  • the thickness of the adhesive layer is, for example, 0.1-30 ⁇ m, preferably 0.5-20 ⁇ m, more preferably 1-10 ⁇ m.
  • the storage modulus of the pressure-sensitive adhesive layer is, for example, 0.001 to 1 MPa, preferably 0.01 to 0.3 MPa, more preferably 0.05 to 0.1 MPa at 25°C.
  • the storage elastic modulus of the pressure-sensitive adhesive layer can be measured with a rheometer. For example, a sample is prepared by stacking adhesive layers to a thickness of 150 ⁇ m, and the storage elastic modulus (G′) is measured using a rheometer (manufactured by Anton Parr, “MCR-301” (trade name)). be able to.
  • the measurement conditions can be a temperature of 25° C., a stress of 1% and a frequency of 1 Hz.
  • a laminate according to the present invention includes a front plate, an adhesive layer, and the polarizing plate of the present invention.
  • the front plate and the protective film are bonded with an adhesive layer.
  • the laminate can further include a touch sensor or the like, which will be described later.
  • a laminate 40 in FIG. 4 includes a front plate 47 , a protective film 42 , a polarizer 41 and a retardation film 45 .
  • the polarizer 41 and the protective film 42 are bonded with an adhesive layer 43 .
  • the polarizer 41 and the retardation film 45 are laminated with an adhesive layer 44 .
  • the front plate 47 and the protective film 42 are laminated with an adhesive layer 46 .
  • the laminate is preferably bendable. Bendable means that it can be bent without cracking.
  • the laminate may be bendable with at least one of the front plate side inside and outside, preferably bendable with the front plate side inside, and more preferably bendable with the front plate side inside. Cracks tend not to occur even when repeatedly bent with a radius of 2 mm.
  • bending includes a form of bending in which a curved surface is formed at the bent portion. In the form of bending, the radius of curvature of the bent inner surface is not particularly limited.
  • Bending also includes a form of refraction in which the angle of refraction of the inner surface is greater than 0° and less than 180°, and a form of folding in which the radius of curvature of the inner surface is close to zero or the angle of refraction of the inner surface is 0°. .
  • the material and thickness of the front plate are not limited as long as it is a plate-like body that can transmit light, and it may be composed of only one layer, or may be composed of two or more layers.
  • a glass plate for example, a glass plate, a glass film, etc.
  • a resin plate for example, a resin plate, a resin sheet, a resin film, etc.
  • a laminate with a plate-like body is exemplified.
  • the front plate can be a layer forming the outermost layer on the viewing side of the display device. The effect of the present invention is remarkable when the front plate is provided with a plate-like body made of resin.
  • the thickness of the front plate may be, for example, 20 ⁇ m or more and 200 ⁇ m or less, preferably 30 ⁇ m or more and 200 ⁇ m or less, and more preferably 40 ⁇ m or more and 100 ⁇ m or less.
  • resin plate-like bodies examples include cyclopolyolefin resin films; cellulose acetate resin films made of resins such as triacetyl cellulose and diacetyl cellulose; polyester films made of resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; resin film; polycarbonate resin film; (meth)acrylic resin film; polypropylene resin film; polyamide resin film; polyimide resin film; From the viewpoint of reducing dents remaining on the screen, the front plate preferably contains at least one selected from the group consisting of polyimide-based resins, polyamide-based resins, and polyamide-imide-based resins. Resins suitable for the front plate include the same resins as those suitable for the protective film described above.
  • the yield strain of the resin film is preferably 4.5% or more, more preferably 5.0% or more, from the viewpoint of reducing the dent remaining on the screen. 0% or more is more preferable. Yield strain can be, for example, 10% or less. The yield strain of the resin film is measured by the same method as the yield strain of the protective film.
  • the front plate may be a film having a hard coat layer on at least one surface of the resin film.
  • the front plate preferably has a hard coat layer on the surface opposite to the polarizing plate.
  • the hard coat layer may be formed on one surface of the resin film, or may be formed on both surfaces.
  • a resin film having a hard coat layer is preferably used because the surface of the front panel serves as a touch surface. By providing a hard coat layer, a resin film having improved hardness and scratch resistance can be obtained.
  • the hard coat layer is, for example, a cured layer of an ultraviolet curable resin.
  • UV curable resins examples include (meth)acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, and epoxy resins.
  • the hard coat layer may contain additives to improve strength. Additives are not limited and include inorganic fine particles, organic fine particles, or mixtures thereof.
  • an abrasion resistant layer is formed on the visible side of the hard coat layer.
  • the wear-resistant layer can improve wear resistance and prevent contamination with sebum and the like.
  • the front plate can have a wear-resistant layer, and the wear-resistant layer can be a layer that constitutes the viewing side surface of the front plate.
  • the abrasion resistant layer can include structures derived from fluorine compounds.
  • the fluorine compound a compound having a silicon atom and having a hydrolyzable group such as an alkoxy group or a halogen group on the silicon atom is preferable.
  • a coating film can be formed by the dehydration condensation reaction of the hydrolyzable groups, and the adhesion of the wear-resistant layer can be improved by reacting with active hydrogen on the substrate surface.
  • the fluorine compound preferably has a perfluoroalkyl group or a perfluoropolyether structure because it can impart water repellency.
  • Particularly preferred are fluorine-containing polyorganosiloxane compounds having a perfluoropolyether structure and a long-chain alkyl group having 4 or more carbon atoms. It is also preferable to use two or more kinds of compounds as the fluorine compound.
  • a fluorine compound that is preferably further contained is a fluorine-containing organosiloxane compound containing an alkylene group having 2 or more carbon atoms and a perfluoroalkylene group.
  • the thickness of the wear-resistant layer is, for example, 1 nm or more and 20 nm or less. Further, the wear-resistant layer has water repellency and a water contact angle of, for example, 110 to 125°. The contact angle hysteresis and sliding angle measured by the sliding method can be 3-20° and 2-55°, respectively. Furthermore, the wear-resistant layer contains a silanol condensation catalyst, an antioxidant, an antirust agent, an ultraviolet absorber, a light stabilizer, an antifungal agent, an antibacterial agent, an anti-biadhesion agent, a deodorant, a pigment, a flame retardant, and an antistatic agent. It may contain various additives such as agents.
  • a primer layer may be provided between the wear-resistant layer and the hard coat layer.
  • primer agents include UV-curing, heat-curing, moisture-curing, and two-liquid-curing epoxy compounds.
  • polyamic acid may be used, and it is also preferable to use a silane coupling agent.
  • the thickness of the primer layer is, for example, 0.001-2 ⁇ m.
  • the glass plate tempered glass for displays is preferably used.
  • the thickness of the glass plate is, for example, 20 ⁇ m or more and 1000 ⁇ m or less, and can be 20 ⁇ m or more and 100 ⁇ m or less.
  • the front plate can have excellent mechanical strength and surface hardness.
  • the front panel may not only have a function of protecting the front surface of the display device, but also have a function as a touch sensor, a blue light cut function, a viewing angle adjustment function, and the like.
  • the detection method is not limited as long as it is a sensor that can detect the touched position, and the detection method is not limited, such as resistive film method, capacitive coupling method, optical sensor method, ultrasonic method, electromagnetic induction coupling.
  • a touch sensor panel such as a system, a surface acoustic wave system, or the like is exemplified. Due to their low cost, touch sensor panels of resistive film type and capacitive coupling type are preferably used.
  • An example of a resistive touch sensor panel includes a pair of substrates facing each other, an insulating spacer sandwiched between the pair of substrates, and a transparent spacer provided as a resistive film on the entire inner surface of each substrate. It is composed of a conductive film and a touch position detection circuit.
  • a display device provided with a resistive touch sensor panel, when the surface of the front plate is touched, the opposed resistive films are short-circuited and current flows through the resistive films.
  • a touch position detection circuit detects the voltage change at this time, and the touched position is detected.
  • An example of a capacitive touch sensor panel includes a substrate, a position detection transparent electrode provided on the entire surface of the substrate, and a touch position detection circuit.
  • a display device provided with a capacitive coupling type touch sensor panel
  • the transparent electrode is grounded via the human body's capacitance at the touched point.
  • a touch position sensing circuit senses the grounding of the transparent electrode and the touched position is detected.
  • the display element is not particularly limited, and examples thereof include an organic electroluminescence (organic EL) display element, an inorganic electroluminescence (inorganic EL) display element, a liquid crystal display element, and the like.
  • a display device includes the laminate according to the present invention.
  • the laminate is arranged such that the front plate constitutes the viewing side surface.
  • the display device is not particularly limited, and examples thereof include display devices such as an organic EL display device, an inorganic EL display device, and a liquid crystal display device.
  • display devices such as an organic EL display device, an inorganic EL display device, and a liquid crystal display device.
  • the display device according to this embodiment can also be used as a flexible display that can be bent or rolled.
  • the display device according to the present invention can be used as mobile devices such as smartphones and tablets, televisions, digital photo frames, electronic signboards, measuring instruments and gauges, office equipment, medical equipment, computing equipment, and the like.
  • a polarizing plate and a laminate can be produced by a method including a step of bonding members together via a pressure-sensitive adhesive layer or an adhesive layer.
  • the laminate is, for example, a step of manufacturing a polarizing plate, a step of bonding the polarizing plate and the retardation film with an adhesive layer to obtain a circularly polarizing plate, and bonding the circularly polarizing plate and the front plate with an adhesive layer. It can be manufactured from a process including a step of obtaining a laminate by pressing.
  • the step of bonding the circularly polarizing plate and the front plate together with the adhesive layer to obtain the laminate can be performed so that the protective film and the front plate face each other with the adhesive layer interposed therebetween.
  • phase difference value Using a phase difference meter “KOBRA (registered trademark)-WPR” manufactured by Oji Scientific Instruments Co., Ltd., the in-plane retardation value and the thickness direction retardation value at a wavelength of 590 nm were measured at a temperature of 23°C.
  • the protective film to be measured was cut into JIS K6251 dumbbell shape No. 2 using a dumbbell cutter. Both ends of the small piece in the long side direction were sandwiched between upper and lower grips of a tensile tester [Autograph AGS-X tester manufactured by Shimadzu Corporation] so that the distance between the grips was 80 mm. A stress-strain curve was created by pulling the small piece in its long side direction at a tensile speed of 100 mm/min under an environment of temperature 23° C. and relative humidity 50%. In the resulting curve, the time when the linearity first became non-linear was defined as the yield point, and the strain (%) at that point was determined as the yield strain.
  • ⁇ -Butyrolactone (GBL) was added to the obtained PAI-1 resin to prepare 7.7% by mass of PAI-1 varnish.
  • the obtained PAI-1 varnish is applied on the smooth surface of the glass substrate using an applicator so that the thickness of the film finally obtained is 30 ⁇ m, dried at 140 ° C. for 30 minutes, and is freestanding.
  • a membrane was obtained.
  • the resulting self-supporting film was fixed to a metal frame and dried at 210° C. for 90 minutes to obtain a protective film A with a film thickness of 30 ⁇ m.
  • ⁇ Protective film B PAI-2>
  • 313.6 g of DMAc was added to a 1 L separable flask equipped with a stirring blade, and 16.77 g (52.37 mmol) of TFMB was added with stirring at room temperature to dissolve in DMAc.
  • 4.797 g (10.80 mmol) of 6FDA and 6.679 g (10.80 mmol) of tetracarboxylic dianhydride (TAHMBP) represented by the following formula (A) were added and stirred at room temperature for 16 hours.
  • TAHMBP tetracarboxylic dianhydride
  • TPC terephthaloyl chloride
  • 5.582 g (43.19 mmol) of N,N-diisopropylethylamine, 7.716 g (75.58 mmol) of acetic anhydride, and 4.022 g (43.19 mmol) of 4-methylpyridine were added to the flask and stirred at room temperature for 30 minutes. After that, the temperature was raised to 70° C. using an oil bath, and the mixture was further stirred for 3 hours to obtain a reaction liquid.
  • the resulting reaction solution is cooled to room temperature, stirred, and gradually added with methanol in an amount of 1.385 times the weight of the reaction solution, and then added in an amount of 0.6924 times the weight of the reaction solution. Water was added gradually. The deposited precipitate was taken out and washed with methanol. Next, the precipitate was dried under reduced pressure at 80° C. to obtain PAI-2 resin.
  • DMAc was added to the obtained PAI-2 resin to prepare 10.5% by mass of PAI-2 varnish.
  • the obtained PAI-2 varnish is applied on the smooth surface of the glass substrate using an applicator so that the thickness of the film finally obtained is 30 ⁇ m, dried at 140 ° C. for 30 minutes, and is freestanding.
  • a membrane was obtained.
  • the resulting self-supporting film was fixed to a metal frame and dried at 210° C. for 90 minutes to obtain a protective film B with a thickness of 30 ⁇ m.
  • COP-1> Cycloolefin polymer (COP) film manufactured by Nippon Zeon Co., Ltd., Zeonor film product name: ZF14, film thickness 23 ⁇ m
  • the following polarizer-forming composition was prepared.
  • the polarizer-forming composition comprises 75 parts by mass of compound (1-6), 25 parts by mass of compound (1-7), and the above formulas (2-1a), (2-1b), and (2) as dichroic dyes.
  • Polymerization initiator (Irgacure 369, 2-dimethylamino-2-benzyl-1-(4-morpholinophenyl) butan-1-one, manufactured by BASF Japan): 6 parts by mass Leveling agent (BYK-361N, polyacrylate compound, BYK -Chemie): 0.1 parts by mass Solvent (cyclopentanone): 400 parts by mass
  • the composition for forming an alignment film was applied onto the substrate film by a bar coating method, and dried by heating in a drying oven at 80° C. for 1 minute.
  • the resulting dry film was subjected to polarized UV irradiation treatment to form an alignment film.
  • polarized UV irradiation treatment light emitted from a UV irradiation device (SPOT CURE SP-7; manufactured by Ushio Inc.) is transmitted through a wire grid (UIS-27132##, manufactured by Ushio Inc.) to obtain a wavelength of The measurement was performed under the condition that the integrated amount of light measured at 365 nm was 100 mJ/cm 2 .
  • the polarization direction of the polarized UV was set at 45° with respect to the absorption axis of the polarizer.
  • a laminate composed of "base film/alignment film” was obtained.
  • the thickness of the alignment film was 100 nm.
  • the retardation layer composition was applied onto the alignment film by a bar coating method, dried by heating in a drying oven at 120° C. for 1 minute, and then cooled to room temperature.
  • a retardation layer was formed by irradiating the obtained dry film with ultraviolet light at an integrated light amount of 1000 mJ/cm 2 (365 nm standard) using the above UV irradiation device.
  • the thickness of the obtained retardation layer was measured with a laser microscope (OLS3000 manufactured by Olympus Corporation), it was 2.0 ⁇ m.
  • the retardation layer was a ⁇ /4 layer with reverse wavelength dispersion exhibiting a retardation value of ⁇ /4 in the in-plane direction.
  • a laminate was obtained.
  • the varnish coating was heated at 80° C. for 10 minutes, further heated at 100° C. for 10 minutes, and further heated at 90° C. for 10 minutes. After that, the coating film was heated (post-baked) at 200° C. for 25 minutes to obtain a polyimide film having a thickness of 40 ⁇ m.
  • the photocurable resin composition was applied by a roll-to-roll method so that the thickness after drying was 10 ⁇ m. After that, it was dried in an oven at 80° C. for 3 minutes and cured by irradiation with ultraviolet rays to obtain a front plate.
  • a high-pressure mercury lamp was used to irradiate the ultraviolet rays so that the lamination light amount was 500 mJ/cm 2 .
  • the thickness of the hard coat layer on the front plate was 10 ⁇ m.
  • the polarizer-forming composition was applied onto the formed alignment film by a bar coating method, dried by heating in a drying oven at 120° C. for 1 minute, and then cooled to room temperature.
  • a polarizer was formed by irradiating the dry film with ultraviolet rays at an integrated light amount of 1200 mJ/cm 2 (365 nm standard) using the above UV irradiation apparatus.
  • OLS3000 manufactured by Olympus Corporation When the thickness of the obtained polarizer was measured with a laser microscope (OLS3000 manufactured by Olympus Corporation), it was 1.8 ⁇ m.
  • a composition for a protective layer (overcoat layer, OC layer) was prepared.
  • the protective layer composition is composed of 3 parts by weight of polyvinyl alcohol resin powder (manufactured by Kuraray Co., Ltd., average degree of polymerization: 18000, trade name: KL-318) and polyamide epoxy resin (crosslinking agent, resin) per 100 parts by weight of water.
  • Ka Chemtex Co., Ltd., trade name: SR650 (30) was mixed with 1.5 parts by mass.
  • the protective layer composition was applied onto the polarizer by a bar coating method so that the thickness after drying was 1.0 ⁇ m, and dried at a temperature of 80° C. for 3 minutes.
  • the front plate and the circularly polarizing plate were laminated with an acrylic pressure-sensitive adhesive layer such that the surface of the front plate on which the hard coat layer was not formed faced the protective film surface of the circularly polarizing plate.
  • the laminate has a layer structure of "front plate/adhesive layer/circularly polarizing plate".
  • a sample was prepared by bonding the laminate to a substitute for an organic EL panel via an adhesive layer.
  • a substitute for the organic EL panel is "cycloolefin polymer (COP) film (thickness 25 ⁇ m) / acrylic adhesive layer (thickness 50 ⁇ m) / COP film (thickness 25 ⁇ m) / acrylic adhesive layer (thickness 50 ⁇ m) / glass plate ” layer structure.
  • the laminate was attached to a substitute for the organic EL panel so that the front plate constituted the surface of the sample.
  • Pen The tip is composed of polyacetal.
  • Polyacetal has a tensile modulus of about 3 GPa.
  • test pen was fixed to the surface of the front plate so as to contact it at an angle of 90 degrees.
  • a load of 200 gf or 500 gf was applied to the test pen.
  • the test pen was reciprocated once in a straight line of 30 mm at a speed of 500 mm/min. After that, the sample was allowed to stand in an environment of 23° C. and 50% relative humidity for 2 hours.
  • the recesses of the scratch marks were measured using a two-dimensional measuring machine (DEKTAK T-Standard 6M; manufactured by Veeco).
  • the dent of the scratch mark is the maximum depth (dent from the surroundings) on a straight line where the test pen is reciprocated on the front plate surface of the sample.
  • Table 1 shows the measured values of the scratch mark indentations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a polarizing plate comprising a protective film and a polarizer, wherein the polarizer and protective film are adjacent to each other and the protective film has a yield strain of 4.0% or more when subjected to tensile testing at a speed of 100 mm/minute.

Description

偏光板、積層体、及び表示装置Polarizing plate, laminate, and display device
本発明は、偏光板、積層体、及び表示装置に関する。 TECHNICAL FIELD The present invention relates to a polarizing plate, a laminate, and a display device.
特開2019-218513(特許文献1)には、偏光膜を含む光学積層体とウィンドウとが粘着剤層により貼合されたフレキシブル画像表示装置用積層体が記載されている。ウィンドウ(前面板)は、表示装置の最表面を構成する部材である。従来、前面板には、ガラスが用いられていた。特開2020-114673(特許文献2)には、前面板を樹脂フィルムで代替することが提案されている。 Japanese Patent Application Laid-Open No. 2019-218513 (Patent Document 1) describes a laminate for a flexible image display device, in which an optical laminate including a polarizing film and a window are bonded with an adhesive layer. A window (front plate) is a member that constitutes the outermost surface of the display device. Conventionally, glass has been used for the front plate. Japanese Patent Laid-Open No. 2020-114673 (Patent Document 2) proposes replacing the front plate with a resin film.
特表2008-529038(特許文献3)には、偏光板が記載されている。この偏光板は、偏光子の一方の面にシクロオレフィン系ポリマーフィルムが積層され、偏光子の他方の面にセルロースアシレートフィルムが積層されている。 Japanese National Publication of International Patent Application No. 2008-529038 (Patent Document 3) describes a polarizing plate. This polarizing plate has a cycloolefin polymer film laminated on one side of a polarizer and a cellulose acylate film laminated on the other side of the polarizer.
特開2019-218513JP 2019-218513 特開2020-114673JP 2020-114673 特表2008-529038Special table 2008-529038
樹脂フィルム製の前面板を備える表示装置に、スタイラスペンを押し当てて、筆記、操作、描画等がなされると、画面に凹みを生じることがあった。画面の凹みは、表示装置の外観を悪化させてしまう。本発明は、樹脂フィルム製の前面板が表示装置に適用された場合であっても、画面に凹みが生じにくい偏光板を提供することを目的とする。 When a stylus pen is pressed against a display device having a front panel made of a resin film to perform writing, manipulation, drawing, or the like, the screen may become dented. A dent in the screen deteriorates the appearance of the display device. SUMMARY OF THE INVENTION It is an object of the present invention to provide a polarizing plate in which the screen is less likely to be dented even when a front plate made of a resin film is applied to a display device.
[1] 保護フィルム、及び偏光子を備え、
前記偏光子と、前記保護フィルムとは、隣接しており、
前記保護フィルムは、100mm/分の速度で引張試験を行ったときの降伏歪みが4.0%以上である偏光板。
[2] 前記保護フィルムは、ポリイミド系樹脂、ポリアミド系樹脂、及びポリアミドイミド系樹脂からなる群から選ばれる少なくとも1種を含む、[1]に記載の偏光板。
[3] 前記保護フィルムは、厚み方向の位相差値Rthが200nm以上である、[1]又は[2]に記載の偏光板。
[4] 前記保護フィルムは、面配向係数ΔPの絶対値が0.003以上である、[1]~[3]のいずれかに記載の偏光板。
[5] 前記保護フィルムは、厚みが5μm以上60μm以下である、[1]~[4]のいずれかに記載の偏光板。
[6] 前面板、粘着剤層、及び、[1]~[5]のいずれかに記載の偏光板を備え、
前記前面板と、前記保護フィルムとは、粘着剤層により積層されている積層体。
[7] 前記前面板は、ポリイミド系樹脂、ポリアミド系樹脂、及びポリアミドイミド系樹脂からなる群から選ばれる少なくとも1種を含む、[6]に記載の積層体。
[8] 前記前面板は、前記偏光板側とは反対側の面にハードコート層を有する、[6]又は[7]に記載の積層体。
[9] [6]~[8]のいずれかに記載の積層体を備える表示装置。
[1] A protective film and a polarizer,
The polarizer and the protective film are adjacent to each other,
A polarizing plate in which the protective film has a yield strain of 4.0% or more when a tensile test is performed at a speed of 100 mm/min.
[2] The polarizing plate of [1], wherein the protective film contains at least one selected from the group consisting of polyimide-based resins, polyamide-based resins, and polyamideimide-based resins.
[3] The polarizing plate according to [1] or [2], wherein the protective film has a thickness direction retardation value Rth of 200 nm or more.
[4] The polarizing plate according to any one of [1] to [3], wherein the protective film has an absolute value of plane orientation coefficient ΔP of 0.003 or more.
[5] The polarizing plate according to any one of [1] to [4], wherein the protective film has a thickness of 5 μm or more and 60 μm or less.
[6] A front plate, an adhesive layer, and a polarizing plate according to any one of [1] to [5],
A laminate in which the front plate and the protective film are laminated by an adhesive layer.
[7] The laminate according to [6], wherein the front plate contains at least one selected from the group consisting of polyimide-based resins, polyamide-based resins, and polyamide-imide-based resins.
[8] The laminate according to [6] or [7], wherein the front plate has a hard coat layer on the surface opposite to the polarizing plate.
[9] A display device comprising the laminate according to any one of [6] to [8].
本発明によれば、樹脂フィルム製の前面板が表示装置に適用された場合であっても、画面に凹みが生じにくい偏光板が提供される。また、本発明によれば、かかる偏光板を備える積層体及び表示装置が提供される。 ADVANTAGE OF THE INVENTION According to this invention, even when the front plate made from a resin film is applied to a display apparatus, the polarizing plate which is hard to produce a dent in a screen is provided. Further, according to the present invention, a laminate and a display device having such a polarizing plate are provided.
本発明に係る偏光板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the polarizing plate which concerns on this invention. 本発明に係る偏光板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the polarizing plate which concerns on this invention. 本発明に係る偏光板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the polarizing plate which concerns on this invention. 本発明に係る積層体の一例を示す概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing which shows an example of the laminated body which concerns on this invention.
以下、図面を参照しつつ本発明に係る偏光板、積層体及び表示装置の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下の全ての図面においては、各構成要素を理解し易くするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a polarizing plate, a laminate, and a display device according to the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the scale of each component is adjusted appropriately to facilitate understanding, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
[偏光板]
本発明に係る偏光板は、保護フィルム、及び偏光子を備える。偏光子と、保護フィルムとは、隣接している。偏光板は、後述の位相差フィルム、その他の保護フィルム、粘着剤層等をさらに備えることができる。「隣接している」とは、隣にあって接していること、すなわち偏光子と保護フィルムとの間に何も存在しないことに加え、近隣関係にあること、すなわち、偏光子と保護フィルムとが接着剤層や配向膜のような薄い層(例えば、厚み10μm以下の層)を介して配置されていることをも意味する。
[Polarizer]
A polarizing plate according to the present invention includes a protective film and a polarizer. The polarizer and protective film are adjacent. The polarizing plate can further comprise a retardation film, other protective films, an adhesive layer, and the like, which will be described later. "Adjacent" means adjacent and in contact, i.e., there is nothing between the polarizer and the protective film, as well as being in a neighboring relationship, i.e., the polarizer and the protective film. is arranged via a thin layer (for example, a layer having a thickness of 10 μm or less) such as an adhesive layer or an alignment film.
図1の偏光板10は、保護フィルム12と偏光子11とを備える。偏光子11と保護フィルム12とは、接着剤層13により貼合されている。 A polarizing plate 10 in FIG. 1 includes a protective film 12 and a polarizer 11 . The polarizer 11 and the protective film 12 are bonded together with an adhesive layer 13 .
図2の偏光板20は、保護フィルム22と偏光子21と保護フィルム24とを備える。偏光子21と保護フィルム22とは、接着剤層23により貼合されている。偏光子21と保護フィルム24とは、接着剤層25により貼合されている。偏光板20は、偏光子21の両方の側に保護フィルム22、24をそれぞれ備える。 Polarizing plate 20 in FIG. 2 includes protective film 22 , polarizer 21 and protective film 24 . The polarizer 21 and the protective film 22 are bonded together with an adhesive layer 23 . The polarizer 21 and protective film 24 are bonded together with an adhesive layer 25 . The polarizer 20 comprises protective films 22, 24 on both sides of the polarizer 21, respectively.
図3の偏光板30は、保護フィルム32と偏光子31と位相差フィルム35とを備える。
偏光子31と保護フィルム32とは、接着剤層33により貼合されている。偏光子31と位相差フィルム35とは、粘着剤層34により積層されている。偏光板30は、いわゆる円偏光板であることができる。本明細書では、円偏光板、楕円偏光板等も単に偏光板と呼称することがある。
A polarizing plate 30 in FIG. 3 includes a protective film 32 , a polarizer 31 and a retardation film 35 .
The polarizer 31 and the protective film 32 are bonded with an adhesive layer 33 . The polarizer 31 and the retardation film 35 are laminated with an adhesive layer 34 . The polarizing plate 30 can be a so-called circular polarizing plate. In this specification, a circularly polarizing plate, an elliptically polarizing plate, and the like may be simply referred to as a polarizing plate.
偏光板の厚みは、偏光板に求められる機能及び偏光板の用途等に応じて異なるため、特に限定されない。偏光板の厚みは、例えば10μm以上500μm以下であり、好ましくは20μm以上200μm以下であり、より好ましく30μm以上100μm以下である。 The thickness of the polarizing plate is not particularly limited because it varies depending on the functions required of the polarizing plate, the application of the polarizing plate, and the like. The thickness of the polarizing plate is, for example, 10 μm or more and 500 μm or less, preferably 20 μm or more and 200 μm or less, and more preferably 30 μm or more and 100 μm or less.
偏光板の平面視形状は、例えば方形形状であってよく、好ましくは長辺と短辺とを有する方形形状であり、より好ましくは長方形である。偏光板の平面視形状が長方形である場合、長辺の長さは、例えば10mm以上1400mm以下であってよく、好ましくは50mm以上600mm以下である。短辺の長さは、例えば5mm以上800mm以下であり、好ましくは30mm以上500mm以下であり、より好ましくは50mm以上300mm以下である。偏光板を構成する各層は、角部がR加工されたり、端部が切り欠き加工されたり、穴あき加工されたりしていてもよい。 The planar shape of the polarizing plate may be, for example, a square shape, preferably a square shape having long sides and short sides, more preferably a rectangle. When the planar view shape of the polarizing plate is rectangular, the length of the long side may be, for example, 10 mm or more and 1400 mm or less, preferably 50 mm or more and 600 mm or less. The length of the short side is, for example, 5 mm or more and 800 mm or less, preferably 30 mm or more and 500 mm or less, and more preferably 50 mm or more and 300 mm or less. Each layer constituting the polarizing plate may have rounded corners, notched edges, or perforated edges.
[偏光子]
偏光子は、自然光等の非偏光な光線から、ある一方向の直線偏光を選択的に透過させる機能を有する。偏光子は、二色性色素を吸着させた延伸フィルム又は延伸層、重合性液晶化合物の硬化物及び二色性色素を含み、二色性色素が重合性液晶化合物の硬化物中に分散し、配向している液晶層等であることができる。二色性色素は、分子の長軸方向における吸光度と短軸方向における吸光度とが異なる性質を有する色素をいう。液晶層を偏光子として用いた偏光板は、二色性色素を吸着させた延伸フィルム又は延伸層に比べて、屈曲方向に制限がないため好ましい。
[Polarizer]
A polarizer has a function of selectively transmitting linearly polarized light in one direction from non-polarized light such as natural light. The polarizer comprises a stretched film or stretched layer to which a dichroic dye is adsorbed, a cured product of a polymerizable liquid crystal compound and a dichroic dye, and the dichroic dye is dispersed in the cured product of the polymerizable liquid crystal compound, It can be an oriented liquid crystal layer or the like. A dichroic dye is a dye that has different absorbances in the long-axis direction and the short-axis direction of the molecule. A polarizing plate using a liquid crystal layer as a polarizer is preferred because there is no limitation in the bending direction compared to a stretched film or stretched layer to which a dichroic dye is adsorbed.
(二色性色素を吸着させた延伸フィルム又は延伸層である偏光子)
二色性色素を吸着させた延伸フィルムである偏光子は、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムをヨウ素等の二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。
(Polarizer that is a stretched film or stretched layer to which a dichroic dye is adsorbed)
A polarizer, which is a stretched film to which a dichroic dye is adsorbed, is usually produced by a process of uniaxially stretching a polyvinyl alcohol resin film and dyeing the polyvinyl alcohol resin film with a dichroic dye such as iodine. It can be produced through a step of adsorbing a chromatic dye, a step of treating a polyvinyl alcohol resin film on which a dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after treatment with an aqueous boric acid solution.
偏光子の厚みは、通常30μm以下であり、好ましくは18μm以下、より好ましくは15μm以下である。偏光子の厚みを薄くすることは、偏光板の薄膜化に有利である。偏光子の厚みは、通常1μm以上であり、例えば5μm以上であってよい。 The thickness of the polarizer is usually 30 μm or less, preferably 18 μm or less, more preferably 15 μm or less. Reducing the thickness of the polarizer is advantageous for thinning the polarizing plate. The thickness of the polarizer is usually 1 μm or more, and may be, for example, 5 μm or more.
ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば不飽和カルボン酸系化合物、オレフィン系化合物、ビニルエーテル系化合物、不飽和スルホン系化合物、アンモニウム基を有する(メタ)アクリルアミド系化合物が挙げられる。本明細書において「(メタ)アクリル」とは、アクリルまたはメタクリルのいずれでもよいことを意味する。(メタ)アクリレート等の「(メタ)」も同様の意味である。 A polyvinyl alcohol-based resin is obtained by saponifying a polyvinyl acetate-based resin. Polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acid-based compounds, olefin-based compounds, vinyl ether-based compounds, unsaturated sulfone-based compounds, and (meth)acrylamide-based compounds having an ammonium group. . As used herein, "(meth)acrylic" means either acrylic or methacrylic. "(Meth)" such as (meth)acrylate has the same meaning.
ポリビニルアルコール系樹脂のケン化度は、通常85モル%以上100モル%以下程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール等も使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1000以上10000以下であり、好ましくは1500以上5000以下である。 The degree of saponification of the polyvinyl alcohol resin is generally about 85 mol % or more and 100 mol % or less, preferably 98 mol % or more. The polyvinyl alcohol-based resin may be modified, and aldehyde-modified polyvinyl formal, polyvinyl acetal, and the like can also be used. The degree of polymerization of the polyvinyl alcohol resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
二色性色素を吸着させた延伸層である偏光子は、通常、上記ポリビニルアルコール系樹脂を含む塗布液を基材フィルム上に塗布する工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムのポリビニルアルコール系樹脂層を二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたフィルムをホウ酸水溶液で処理する工程、及び水洗する工程を経て製造することができる。偏光子を形成するために用いる基材フィルムは、偏光子の保護フィルムとして用いてもよい。必要に応じて、基材フィルムを偏光子から剥離除去してもよい。基材フィルムの材料及び厚みは、後述する樹脂フィルムの材料及び厚みと同様であってよい。 A polarizer, which is a stretched layer to which a dichroic dye is adsorbed, is usually produced by applying a coating solution containing the polyvinyl alcohol resin onto a base film, uniaxially stretching the resulting laminated film, and uniaxially stretching. A step of adsorbing the dichroic dye by dyeing the polyvinyl alcohol-based resin layer of the laminated film obtained with a dichroic dye, a step of treating the film having the dichroic dye adsorbed with an aqueous boric acid solution, and It can be manufactured through a step of washing with water. A base film used to form a polarizer may be used as a protective film for the polarizer. If necessary, the base film may be peeled off from the polarizer. The material and thickness of the base film may be the same as the material and thickness of the resin film described below.
 二色性色素を吸着させた延伸フィルム又は延伸層である偏光子は、そのまま偏光板として用いてよく、その片面又は両面に後述の保護フィルムを貼り合わせてもよい。保護フィルムとしては、後述する樹脂フィルムを用いることができる。 A polarizer, which is a stretched film or stretched layer to which a dichroic dye is adsorbed, may be used as a polarizing plate as it is, or may be laminated with a protective film described later on one or both sides thereof. A resin film, which will be described later, can be used as the protective film.
(液晶層である偏光子)
液晶層を形成するために用いる重合性液晶化合物は、重合性反応基を有し、かつ、液晶性を示す化合物である。重合性反応基は、重合反応に関与する基であり、光重合性反応基であることが好ましい。光重合性反応基は、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。
中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。重合性液晶化合物の液晶性は、サーモトロピック性液晶であってもよいし、リオトロピック性液晶であってもよい。相秩序構造は、ネマチック液晶であってもよいし、スメクチック液晶であってもよい。
(Polarizer that is a liquid crystal layer)
The polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity. The polymerizable reactive group is a group that participates in a polymerization reaction, and is preferably a photopolymerizable reactive group. A photopolymerizable reactive group refers to a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like. Photopolymerizable functional groups include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group.
Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred. The type of polymerizable liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used. The liquid crystallinity of the polymerizable liquid crystal compound may be thermotropic liquid crystal or lyotropic liquid crystal. The phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
液晶層である偏光子に用いられる二色性色素としては、300~700nmの範囲に吸収極大波長(λMAX)を有するものが好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、及びアントラキノン色素等が挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、及びスチルベンアゾ色素等が挙げられ、好ましくはビスアゾ色素、及びトリスアゾ色素である。二色性色素は単独でも、2種以上を組み合わせてもよいが、3種以上を組み合わせることが好ましい。
特に、3種以上のアゾ化合物を組み合わせることがより好ましい。二色性色素の一部が反応性基を有していてもよく、また液晶性を有していてもよい。
Dichroic dyes used in polarizers, which are liquid crystal layers, preferably have a maximum absorption wavelength (λMAX) in the range of 300 to 700 nm. Examples of such dichroic dyes include acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes, and anthraquinone dyes, among which azo dyes are preferred. Examples of azo dyes include monoazo dyes, bisazo dyes, trisazo dyes, tetrakisazo dyes, and stilbene azo dyes, and preferably bisazo dyes and trisazo dyes. Dichroic dyes may be used alone or in combination of two or more, preferably in combination of three or more.
In particular, it is more preferable to combine three or more azo compounds. A part of the dichroic dye may have a reactive group and may have liquid crystallinity.
液晶層である偏光子は、例えば基材フィルム上に形成した配向膜上に、重合性液晶化合物及び二色性色素を含む偏光子形成用組成物を塗布し、重合性液晶化合物を重合して硬化させることによって形成することができる。基材フィルム上に、偏光子形成用組成物を塗布して塗膜を形成し、この塗膜を基材フィルムとともに延伸することによって、偏光子を形成してもよい。偏光子を形成するために用いる基材フィルムは、偏光子の保護フィルムとして用いてもよい。基材フィルムの材料及び厚みは、後述する樹脂フィルムの材料及び厚みと同様であってよい。 A polarizer, which is a liquid crystal layer, is obtained by, for example, coating an alignment film formed on a substrate film with a polarizer-forming composition containing a polymerizable liquid crystal compound and a dichroic dye, and polymerizing the polymerizable liquid crystal compound. It can be formed by curing. A polarizer may be formed by coating a polarizer-forming composition on a substrate film to form a coating film, and stretching the coating film together with the substrate film. A base film used to form a polarizer may be used as a protective film for the polarizer. The material and thickness of the base film may be the same as the material and thickness of the resin film described below.
重合性液晶化合物及び二色性色素を含む偏光子形成用組成物、及びこの組成物を用いた偏光子の製造方法としては、特開2013-37353号公報、特開2013-33249号公報、特開2017-83843号公報等に記載のものを例示することができる。偏光子形成用組成物は、重合性液晶化合物及び二色性色素に加えて、溶媒、重合開始剤、架橋剤、レベリング剤、酸化防止剤、可塑剤、増感剤等の添加剤をさらに含んでいてもよい。
これらの成分は、それぞれ1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
A polarizer-forming composition containing a polymerizable liquid crystal compound and a dichroic dye, and a method for producing a polarizer using this composition are disclosed in JP-A-2013-37353, JP-A-2013-33249, JP-A-2013-33249, JP-A-2013-33249, Examples include those described in JP-A-2017-83843. The polarizer-forming composition further contains additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer, in addition to the polymerizable liquid crystal compound and the dichroic dye. You can stay.
Each of these components may be used alone or in combination of two or more.
偏光子形成用組成物が含有していてもよい重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物であり、より低温条件下で、重合反応を開始できる点で、光重合性開始剤が好ましい。具体的には、光の作用により活性ラジカル又は酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。重合開始剤の含有量は、重合性液晶化合物の総量100重量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは3質量部以上8質量部以下である。この範囲内であると、重合性基の反応が十分に進行し、かつ、液晶化合物の配向状態を安定化させやすい。 The polymerization initiator that may be contained in the polarizer-forming composition is a compound capable of initiating the polymerization reaction of the polymerizable liquid crystal compound. Initiators are preferred. Specifically, photopolymerization initiators capable of generating active radicals or acids by the action of light may be mentioned, and among these, photopolymerization initiators capable of generating radicals by the action of light are preferred. The content of the polymerization initiator is preferably 1 part by mass or more and 10 parts by mass or less, more preferably 3 parts by mass or more and 8 parts by mass or less with respect to 100 parts by weight of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the alignment state of the liquid crystal compound is easily stabilized.
液晶層である偏光子の厚みは、通常10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上5μm以下である。 The thickness of the polarizer, which is the liquid crystal layer, is usually 10 μm or less, preferably 0.5 μm or more and 8 μm or less, and more preferably 1 μm or more and 5 μm or less.
液晶層である偏光子は、基材フィルムを剥離除去せずに偏光板として用いてもよく、基材フィルムを偏光子から剥離除去して偏光板としてもよい。液晶層である偏光子は、その片面又は両面に保護フィルムを貼り合わせて偏光板として用いてもよい。保護フィルムとしては、後述の樹脂フィルムを用いることができる。 The polarizer, which is a liquid crystal layer, may be used as a polarizing plate without peeling off the base film, or may be used as a polarizing plate by peeling off the base film from the polarizer. A polarizer, which is a liquid crystal layer, may be used as a polarizing plate by laminating a protective film on one or both sides thereof. A resin film described later can be used as the protective film.
液晶層である偏光子は、偏光子の保護等を目的として、偏光子の片面又は両面にオーバーコート層を有していてもよい。オーバーコート層は、例えば偏光子上にオーバーコート層を形成するための材料(組成物)を塗布することによって形成することができる。オーバーコート層を構成する材料としては、例えば光硬化性樹脂、水溶性ポリマー等が挙げられる。オーバーコート層を構成する材料としては、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂等を用いることができる。 The polarizer, which is a liquid crystal layer, may have an overcoat layer on one side or both sides of the polarizer for the purpose of protecting the polarizer. The overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the polarizer. Materials constituting the overcoat layer include, for example, photocurable resins and water-soluble polymers. A (meth)acrylic resin, a polyvinyl alcohol resin, or the like can be used as a material for forming the overcoat layer.
[保護フィルム]
偏光板は、偏光子の少なくとも一方の面に保護フィルムを備える。偏光板は、少なくとも偏光子の視認側に保護フィルムを備えることが好ましい。偏光子と、保護フィルムとは、隣接している。保護フィルムは、接着剤層により偏光子へ貼合されていてもよい。偏光子と保護フィルムとは、配向膜を介して積層されていてもよい。
[Protective film]
A polarizing plate has a protective film on at least one surface of a polarizer. The polarizing plate preferably has a protective film at least on the viewing side of the polarizer. The polarizer and protective film are adjacent. The protective film may be attached to the polarizer with an adhesive layer. The polarizer and the protective film may be laminated via an alignment film.
本発明では、100mm/分の速度で引張試験を行ったときの降伏歪み(以下、降伏歪みということがある。)が4.0%以上である保護フィルムを用いる。偏光板は、降伏歪みが4.0%以上である保護フィルムを、偏光子の少なくとも一方の面に備えていればよく、少なくとも偏光子の視認側に備えていることが好ましい。偏光板が、降伏歪みが4.0%以上である保護フィルムを、偏光子の一方の面に備える場合、他方の面には、保護フィルムを有してもよいし、有していなくてもよい。他方の面に積層される保護フィルムは、降伏歪みが4.0%以上であってもよいし、4.0%未満であってもよい。 In the present invention, a protective film having a yield strain (hereinafter sometimes referred to as yield strain) of 4.0% or more when a tensile test is performed at a rate of 100 mm/min is used. The polarizing plate may be provided with a protective film having a yield strain of 4.0% or more on at least one surface of the polarizer, preferably on at least the viewing side of the polarizer. When the polarizing plate is provided with a protective film having a yield strain of 4.0% or more on one side of the polarizer, the other side may or may not have the protective film. good. The protective film laminated on the other side may have a yield strain of 4.0% or more or less than 4.0%.
偏光板がこのような保護フィルムを備えていることで、樹脂フィルム製の前面板が表示装置に適用された場合であっても、画面に凹みが生じにくくなる傾向にある。降伏歪みは、降伏点における歪みの大きさを意味する。降伏歪みは、保護フィルムが塑性変形するまでの歪みを表す物性である。保護フィルムの降伏歪みが4.0%以上であることにより、大きな変形に対しても画面に凹みを残すことなく元の形状に復元することができるため、画面の凹みが生じにくくなると推測される。降伏歪みは、4.5%以上であることが好ましく、5.0%以上であることがより好ましく、6.0%以上であることがさらに好ましい。降伏歪みは、例えば、10%以下であることができる。保護フィルムの降伏歪みは、後述の実施例に記載された方法により測定される。 Since the polarizing plate is provided with such a protective film, even when a front plate made of a resin film is applied to a display device, the screen tends to be less likely to be dented. Yield strain means the magnitude of strain at the yield point. Yield strain is a physical property representing strain until the protective film is plastically deformed. Since the yield strain of the protective film is 4.0% or more, it is possible to restore the original shape without leaving a dent on the screen even after a large deformation. . The yield strain is preferably 4.5% or more, more preferably 5.0% or more, and even more preferably 6.0% or more. Yield strain can be, for example, 10% or less. The yield strain of the protective film is measured by the method described in Examples below.
保護フィルムは、樹脂フィルムであることができる。樹脂フィルムは、例えばシクロオレフィン系樹脂フィルム;トリアセチルセルロース、ジアセチルセルロース等の樹脂からなる酢酸セルロース系樹脂フィルム;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等の樹脂からなるポリエステル系樹脂フィルム;ポリカーボネート系樹脂フィルム;(メタ)アクリル系樹脂フィルム;ポリプロピレン系樹脂フィルム;ポリアミド系樹脂フィルム;ポリイミド系樹脂フィルム;ポリアミドイミド系樹脂フィルム等を挙げることができる。降伏歪みを高める観点から、保護フィルムは、ポリイミド系樹脂、ポリアミド系樹脂、及びポリアミドイミド系樹脂からなる群から選ばれる少なくとも1種を含むことが好ましく、以下のポリイミド系樹脂又はポリアミドイミド系樹脂を含むことがより好ましい。 The protective film can be a resin film. Resin films include, for example, cycloolefin resin films; cellulose acetate resin films made of resins such as triacetyl cellulose and diacetyl cellulose; polyester resin films made of resins such as polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate; resin film; (meth)acrylic resin film; polypropylene resin film; polyamide resin film; polyimide resin film; From the viewpoint of increasing the yield strain, the protective film preferably contains at least one selected from the group consisting of polyimide resins, polyamide resins, and polyamideimide resins, and the following polyimide resins or polyamideimide resins. It is more preferable to include
ポリイミド系樹脂は、式(1):
Figure JPOXMLDOC01-appb-I000001
[式(1)中、Yは4価の有機基を表し、Xは2価の有機基を表し、*は結合手を表す]で表される構成単位を有する樹脂であることができる。ポリアミドイミド系樹脂は、式(1)で表される構成単位、及び式(3):
Figure JPOXMLDOC01-appb-I000002
[式(3)中、Z及びXは、互いに独立に2価の有機基を表し、*は結合手を表す]
で表される構成単位を有する樹脂であることができる。以下において式(1)及び式(3)について説明するが、式(1)についての説明は、ポリイミド系樹脂及びポリアミドイミド系樹脂の両方に関し、式(3)についての説明は、ポリアミドイミド系樹脂に関する。
The polyimide resin has the formula (1):
Figure JPOXMLDOC01-appb-I000001
[In formula (1), Y represents a tetravalent organic group, X represents a divalent organic group, and * represents a bond]. Polyamideimide resin is a structural unit represented by formula (1), and formula (3):
Figure JPOXMLDOC01-appb-I000002
[In formula (3), Z and X independently represent a divalent organic group, * represents a bond]
It can be a resin having a structural unit represented by. Formulas (1) and (3) will be described below, but the description of formula (1) relates to both polyimide resins and polyamideimide resins, and the description of formula (3) relates to polyamideimide resins. Regarding.
式(1)で表される構成単位は、テトラカルボン酸化合物とジアミン化合物とが反応して形成される構成単位である。式(3)で表される構成単位は、ジカルボン酸化合物とジアミン化合物とが反応して形成される構成単位である。式(1)で表される構成単位、及び式(3)で表される構成単位を構成する、テトラカルボン酸化合物、ジアミン化合物及びジカルボン酸化合物の少なくとも1つが、芳香族化合物(芳香族テトラカルボン酸化合物、芳香族ジアミン化合物及び/又は芳香族ジカルボン酸化合物)であることが好ましい。 The structural unit represented by formula (1) is a structural unit formed by reacting a tetracarboxylic acid compound and a diamine compound. The structural unit represented by formula (3) is a structural unit formed by reacting a dicarboxylic acid compound and a diamine compound. At least one of a tetracarboxylic acid compound, a diamine compound and a dicarboxylic acid compound constituting the structural unit represented by formula (1) and the structural unit represented by formula (3) is an aromatic compound (aromatic tetracarboxylic acid compounds, aromatic diamine compounds and/or aromatic dicarboxylic acid compounds).
式(1)中のYは、4価の有機基を表し、好ましくは炭素数4~80の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~60の4価の有機基を表す。環状構造としては、脂環構造、芳香環構造、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が置換基で置換されていてもよい有機基であり、該置換基としては、好ましくはハロゲン原子、又は、ハロゲン原子を有してもよい、1価の炭化水素基(例えばアルキル基、アリール基等)、アルコキシ基、若しくはアリールオキシ基が挙げられる。該置換基としての、ハロゲン原子を有してもよい、1価の炭化水素基、アルコキシ基又はアリールオキシ基の炭素数は、好ましくは1~8である。式(1)で表される構成単位は繰り返し単位であり、ポリイミド系樹脂は、式(1)で表される構成単位を複数有する。複数の式(1)で表される構成単位において、Yは、互いに同一であってもよいし、異なっていてもよい。言い換えると、ポリイミド系樹脂は、式(1)中のYとして、1種類の構造を有していてもよいし、2種以上の構造を有していてもよい。 Y in formula (1) represents a tetravalent organic group, preferably a tetravalent organic group having 4 to 80 carbon atoms, more preferably a tetravalent organic group having 4 to 60 carbon atoms and having a cyclic structure represents a group. Cyclic structures include alicyclic structures, aromatic ring structures, and heterocyclic structures. The organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a substituent, and the substituent is preferably a halogen atom or a monovalent group optionally having a halogen atom. hydrocarbon group (for example, an alkyl group, an aryl group, etc.), an alkoxy group, or an aryloxy group. The number of carbon atoms in the monovalent hydrocarbon group, alkoxy group or aryloxy group which may have a halogen atom as the substituent is preferably 1 to 8. The structural unit represented by formula (1) is a repeating unit, and the polyimide resin has a plurality of structural units represented by formula (1). In a plurality of structural units represented by formula (1), Y may be the same or different. In other words, the polyimide-based resin may have one structure or two or more structures for Y in formula (1).
一態様において、得られる保護フィルムの降伏歪みを高めやすい観点から、ポリイミド系樹脂又はポリアミドイミド系樹脂は、式(1)で表される構成単位を有し、式(1)中のYとして、式(2):
Figure JPOXMLDOC01-appb-I000003
[式(2)中、Rは、互いに独立に、ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基を表し、R~Rは、互いに独立に、水素原子、又はハロゲン原子を有してもよい1価の炭化水素基を表し、mは、互いに独立に、0~3の整数を表し、nは1~4の整数を表し、*は結合手を表し、ただし、R~Rを有する少なくとも1つのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基を表す。]
で表される構造(4価の有機基)を少なくとも含むことができる。
一態様において、得られる保護フィルムの降伏歪みを高めやすい観点から、ポリアミドイミド系樹脂は、式(1)で表される構成単位と、式(3)で表される構成単位とを有し、式(3)中のZとして、式(4”):
Figure JPOXMLDOC01-appb-I000004
[式(4”)中、Wは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RC1)-又は-Si(RC2-を表し、RC1及びRC2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、R8’は、互いに独立に、ハロゲン原子を有してもよい、アルキル基、又はアルコキシ基を表し、p’は、互いに独立に、1~4の整数を表し、qは0~4の整数を表し、*は結合手を表す。]
で表される構造(2価の有機基)を少なくとも含むことができる。
In one aspect, from the viewpoint of easily increasing the yield strain of the resulting protective film, the polyimide resin or polyamideimide resin has a structural unit represented by formula (1), and as Y in formula (1), Formula (2):
Figure JPOXMLDOC01-appb-I000003
[In formula (2), R 1 independently represents a halogen atom or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom, and R 2 to R 5 are , mutually independently represent a hydrogen atom or a monovalent hydrocarbon group which may have a halogen atom, m independently represents an integer of 0 to 3, n represents an integer of 1 to 4 , * represents a bond, provided that in at least one benzene ring having R 2 to R 5 , at least one of R 2 to R 5 represents a monovalent hydrocarbon group which may have a halogen atom. ]
At least a structure (tetravalent organic group) represented by can be included.
In one aspect, from the viewpoint of easily increasing the yield strain of the resulting protective film, the polyamideimide resin has a structural unit represented by the formula (1) and a structural unit represented by the formula (3), As Z in equation (3), equation (4″):
Figure JPOXMLDOC01-appb-I000004
[In the formula (4″), W are each independently a single bond, —O—, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, —SO 2 —, —S—, —CO—, —PO—, —PO 2 —, —N(R C1 )— or —Si(R C2 ) 2 —, wherein R C1 and R C2 independently represent a hydrogen atom or a halogen atom; represents an optionally substituted alkyl group, R 8′ independently represents an alkyl group or an alkoxy group optionally containing a halogen atom, and p′ independently represents an integer of 1 to 4 represents, q represents an integer of 0 to 4, * represents a bond.]
It can contain at least a structure represented by (a divalent organic group).
本発明者らは、ポリイミド系樹脂又はポリアミドイミド系樹脂が式(1)中のYとして、式(2)で表される構造を含む場合、及び、ポリアミドイミド系樹脂が式(1)で表される構成単位と、式(3)で表される構成単位とを有し、式(3)中のZとして、式(4”)で表される構造を含む場合、得られる保護フィルムのイエローインデックス(YI)を低下させやすく、かつ、降伏歪みを高めやすいことを見出した。上記の場合、ポリイミド系樹脂、又はポリアミドイミド系樹脂には、式(2)で表される構造、及び/又は、式(4”)で表される構造が含まれることとなる。これらの構造を含む場合に降伏歪みを高めやすい理由は明らかではないが、式(2)で表される構造及び式(4”)で表される構造は、いずれも、芳香族系の主鎖を有すると共に、置換基を有している。このような構造は、樹脂骨格において剛直でありながら、側鎖に置換基を有するために分子間パッキングを阻害する構造である。ポリイミド系樹脂又はポリアミドイミド系樹脂がこのような構造を含むことにより、保護フィルムが高弾性率となりながら高靭性となり、降伏に至るまでの応力がより高くなると考えられる。また、得られる保護フィルムの透明性は高くなりやすく、YI値が低減しやすい。その結果、保護フィルムは優れた降伏歪みと優れた光学特性とを両立することができる。 The present inventors have found that when the polyimide resin or polyamideimide resin contains a structure represented by formula (2) as Y in formula (1), and the polyamideimide resin is represented by formula (1) and a structural unit represented by formula (3), and when Z in formula (3) contains a structure represented by formula (4″), the resulting yellow protective film It was found that the index (YI) can be easily reduced, and the yield strain can be easily increased.In the above case, the polyimide resin or polyamideimide resin has the structure represented by formula (2) and / or , the structure represented by the formula (4″) is included. Although the reason why the yield strain tends to increase when these structures are included is not clear, the structure represented by formula (2) and the structure represented by formula (4″) both have an aromatic main chain and has a substituent.Such a structure is a structure that inhibits intermolecular packing because the resin skeleton is rigid and the side chain has a substituent.Polyimide resin or polyamide By including such a structure in the imide-based resin, the protective film has a high elastic modulus and high toughness, and it is thought that the stress up to yielding becomes higher.In addition, the obtained protective film has high transparency. As a result, the protective film can achieve both excellent yield strain and excellent optical properties.
式(2)中のRは、互いに独立に、ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基を表す。なお、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基は、ハロゲン原子を有してもよいアルキル基、ハロゲン原子を有してもよいアルコキシ基、ハロゲン原子を有してもよいアリール基、又はハロゲン原子を有してもよいアリールオキシ基を表す。これは、同様の他の記載にも当てはまる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル基などが挙げられる。アルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基などが挙げられる。アリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などが挙げられる。アリールオキシ基としては、例えばフェノキシ基、ナフチルオキシ基、ビフェニルオキシ基などが挙げられる。Rは、互いに独立に、好ましくはハロゲン原子、又はハロゲン原子を有してもよい、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~12のアリール基、若しくは炭素数6~12のアリールオキシ基を表す。 Each R 1 in formula (2) independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom. An alkyl group, an alkoxy group, an aryl group, or an aryloxy group which may have a halogen atom is an alkyl group which may have a halogen atom, an alkoxy group which may have a halogen atom, or a halogen atom. represents an aryl group which may have or an aryloxy group which may have a halogen atom. This also applies to other descriptions of the same kind. Halogen atoms include, for example, fluorine, chlorine, bromine and iodine atoms. Examples of alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-methyl-butyl group and 3-methylbutyl. groups, 2-ethyl-propyl groups, n-hexyl groups, and the like. Examples of alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, hexyloxy and cyclohexyloxy groups. Examples of aryl groups include phenyl, tolyl, xylyl, naphthyl, and biphenyl groups. The aryloxy group includes, for example, a phenoxy group, a naphthyloxy group, a biphenyloxy group and the like. R 1 is each independently preferably a halogen atom, or an optionally halogen atom-containing alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, Alternatively, it represents an aryloxy group having 6 to 12 carbon atoms.
式(2)中のmは、互いに独立に、0~3の整数を表す。保護フィルムの降伏歪み、弾性率及び透明性を高めやすい観点から、mは、好ましくは0~2の整数であり、より好ましくは0又は1であり、さらに好ましくは0である。 m in formula (2) independently represents an integer of 0 to 3; m is preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0, from the viewpoint of easily increasing the yield strain, elastic modulus and transparency of the protective film.
式(2)中、R、R、R及びRは、互いに独立に、水素原子、又はハロゲン原子を有してもよい1価の炭化水素基を表す。1価の炭化水素基としては、芳香族炭化水素基、脂環族炭化水素基、脂肪族炭化水素基が挙げられる。芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などのアリール基などが挙げられる。脂環族炭化水素基としては、シクロペンチル基、シクロヘキシル基等のシクロアルキル基などが挙げられる。脂肪族炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基、n-デシル基等のアルキル基などが挙げられる。ハロゲン原子としては、上記に記載のものが挙げられる。R~Rは、互いに独立に、好ましくは水素原子、又はハロゲン原子を有してもよい、炭素数6~12のアリール基、炭素数4~8のシクロアルキル基、若しくは炭素数1~6のアルキル基を表す。樹脂の溶媒への溶解性を高めやすく、保護フィルムの降伏歪み、弾性率及び透明性を向上させやすい観点から、R~Rは、互いに独立に、好ましくは水素原子、又はハロゲン原子を有してもよいアルキル基を表し、より好ましくは水素原子、又はハロゲン原子を有してもよい1~6のアルキル基を表し、さらに好ましくは水素原子、又はハロゲン原子を有してもよい1~3のアルキル基を表す。 In formula (2), R 2 , R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent hydrocarbon group which may have a halogen atom. Examples of monovalent hydrocarbon groups include aromatic hydrocarbon groups, alicyclic hydrocarbon groups, and aliphatic hydrocarbon groups. Examples of the aromatic hydrocarbon group include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group. The alicyclic hydrocarbon group includes cycloalkyl groups such as cyclopentyl group and cyclohexyl group. Examples of aliphatic hydrocarbon groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-methyl-butyl group, Alkyl groups such as 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group, n-decyl group and the like are included. Halogen atoms include those described above. R 2 to R 5 are each independently preferably a hydrogen atom, or an aryl group having 6 to 12 carbon atoms, a cycloalkyl group having 4 to 8 carbon atoms, or a cycloalkyl group having 4 to 8 carbon atoms, or 1 to 1 carbon atoms, which may have a halogen atom. represents an alkyl group of 6. From the viewpoint of easily increasing the solubility of the resin in a solvent and easily improving the yield strain, elastic modulus and transparency of the protective film, each of R 2 to R 5 independently preferably has a hydrogen atom or a halogen atom. represents an alkyl group that may have a hydrogen atom or a halogen atom, more preferably represents a hydrogen atom or 1 to 6 alkyl groups that may have a halogen atom, more preferably a hydrogen atom or 1 to 6 that may have a halogen atom 3 represents an alkyl group.
式(2)中、R~Rを有する少なくとも1つのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基を表すことが、保護フィルムの降伏歪み及び光学特性を共に向上させやすい観点で好ましい。式(2)中、保護フィルムの降伏歪み及び光学特性を共により向上させやすい観点からは、R~Rを有する少なくとも1つのベンゼン環において、R~Rのうち好ましくは2~4つ、より好ましくは3又は4つ、さらに好ましくは3つが、ハロゲン原子を有してもよい1価の炭化水素基である。 In formula (2), in at least one benzene ring having R 2 to R 5 , at least one of R 2 to R 5 represents a monovalent hydrocarbon group optionally having a halogen atom. It is preferable from the viewpoint that it is easy to improve both the yield strain and the optical properties of the glass. In formula (2), from the viewpoint of facilitating the improvement of both the yield strain and the optical properties of the protective film, at least one benzene ring having R 2 to R 5 preferably has 2 to 4 of R 2 to R 5 One, more preferably three or four, still more preferably three are monovalent hydrocarbon groups which may have a halogen atom.
樹脂の溶媒への溶解性を高めやすく、保護フィルムの降伏歪み、破断歪、弾性率及び透明性をより向上させやすい観点から、nが2以上の場合、R~Rを有する少なくとも2つのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基を表すことがより好ましく、R~Rを有する全てのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基を表すことがさらに好ましい。 From the viewpoint of easily increasing the solubility of the resin in a solvent and easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, when n is 2 or more, at least two having R 2 to R 5 In the benzene ring, at least one of R 2 to R 5 more preferably represents a monovalent hydrocarbon group which may have a halogen atom. More preferably, at least one of R5 represents a monovalent hydrocarbon group which may have a halogen atom.
式(2)中のnは1~4の整数を表し、保護フィルムの弾性率及び透明性を向上させやすく、かつ、保護フィルムの降伏歪みを向上させやすい観点から、nは、好ましくは1~3の整数であり、より好ましくは2又は3であり、さらに好ましくは2である。なお、式(1)で表される構成単位は、Yとして、式(2)で表される構造を1種のみ含んでいてもよいし、複数種含んでいてもよい。 n in formula (2) represents an integer of 1 to 4, and from the viewpoint of easily improving the elastic modulus and transparency of the protective film and easily improving the yield strain of the protective film, n is preferably 1 to It is an integer of 3, more preferably 2 or 3, and still more preferably 2. The structural unit represented by formula (1) may contain only one type of structure represented by formula (2) as Y, or may contain a plurality of types.
一実施形態において、式(2)は、式(2’):
Figure JPOXMLDOC01-appb-I000005
[式(2’)中、*は結合手を表す]
で表される。すなわち、ポリイミド系樹脂又はポリアミドイミド系樹脂は、式(1)中のYとして、式(2’)で表される構造を含むことが好ましい。ポリイミド系樹脂又はポリアミドイミド系樹脂が式(1)中のYとして、式(2’)で表される構造を含む場合、保護フィルムの降伏歪み、弾性率、及び透明性を向上させやすい。
In one embodiment, formula (2) is represented by formula (2′):
Figure JPOXMLDOC01-appb-I000005
[In formula (2′), * represents a bond]
is represented by That is, the polyimide-based resin or polyamide-imide-based resin preferably contains a structure represented by formula (2′) as Y in formula (1). When the polyimide-based resin or polyamide-imide-based resin contains the structure represented by the formula (2′) as Y in the formula (1), the yield strain, elastic modulus, and transparency of the protective film are likely to be improved.
ポリイミド系樹脂又はポリアミドイミド系樹脂が、式(1)中のYとして式(2)で表される構造を含む一実施形態において、式(1)で表される構成単位のうち、式(1)中のYが式(2)(好ましくは式(2’))で表される構造である構成単位の割合は、式(1)で表される構成単位の総モル量(100モル%)に対して、好ましくは30モル%以上、より好ましくは35モル%以上、さらに好ましくは40モル%以上であり、通常100モル%以下、好ましくは90モル%以下、より好ましくは80モル%以下、さらに好ましくは70モル%以下である。Yが式(2)で表される構成単位の割合が上記の下限以上であると、保護フィルムの降伏歪み及び弾性率を高めやすい。また、上記の上限以下であると、保護フィルムの破断歪及び透明性を高めやすい。Yが式(2)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In one embodiment in which the polyimide-based resin or polyamide-imide-based resin includes a structure represented by formula (2) as Y in formula (1), among the structural units represented by formula (1), formula (1 ) in which Y is a structure represented by formula (2) (preferably formula (2')) is the total molar amount (100 mol%) of the structural units represented by formula (1) , preferably 30 mol% or more, more preferably 35 mol% or more, still more preferably 40 mol% or more, usually 100 mol% or less, preferably 90 mol% or less, more preferably 80 mol% or less, More preferably, it is 70 mol % or less. When the proportion of the structural unit represented by Y is the formula (2) is at least the above lower limit, the yield strain and elastic modulus of the protective film are likely to be increased. Moreover, it is easy to raise the breaking strain and transparency of a protective film as it is below said upper limit. The ratio of structural units in which Y is represented by formula (2) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
ポリイミド系樹脂又はポリアミドイミド系樹脂は、上記の式(1)中のYが式(2)で表される構成単位に加えて、又は、かかる構成単位に代えて、式(1)中のYが他の4価の有機基を表す構成単位を有していてよい。例えば、上記の式(1)中のYにおける4価の有機基としては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29):
Figure JPOXMLDOC01-appb-I000006
で表される構造が挙げられる。
Polyimide-based resin or polyamideimide-based resin, Y in the above formula (1) in addition to the structural unit represented by the formula (2), or instead of such a structural unit, Y in the formula (1) may have a structural unit representing another tetravalent organic group. For example, the tetravalent organic group for Y in the above formula (1) includes formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), Formula (26), Formula (27), Formula (28) and Formula (29):
Figure JPOXMLDOC01-appb-I000006
The structure represented by is mentioned.
式(20)~式(29)中、*は結合手を表し、Wは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基(例えば-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-)、-Ar-、-SO-、-S-、-CO-、-PO-、-PO-、-N(RW1)-、-Si(RW2-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-、又は-Ar-SO-Ar-を表す。Arは、フッ素原子を有してもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。RW1及びRW2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表す。なお、式(20)~式(29)における環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基で置換されていてもよい。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。 In formulas (20) to (29), * represents a bond, W 1 is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom (eg - CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -), -Ar-, -SO 2 -, -S -, -CO-, -PO-, -PO 2 -, -N(R W1 )-, -Si(R W2 ) 2 -, -O-Ar-O-, -Ar-O-Ar-, -Ar represents -CH 2 -Ar-, -Ar-C(CH 3 ) 2 -Ar-, or -Ar-SO 2 -Ar-. Ar represents an arylene group having 6 to 20 carbon atoms which may have a fluorine atom, and specific examples thereof include a phenylene group. R W1 and R W2 each independently represent a hydrogen atom or an alkyl group which may have a halogen atom. The hydrogen atoms on the rings in formulas (20) to (29) are substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. good too. Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include those exemplified above as R 1 in formula (2).
式(20)~式(29)で表される基の中でも、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、式(26)、式(28)又は式(29)で表される基が好ましく、式(26)で表される基がより好ましい。また、Wは、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-であり、より好ましくは単結合、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-であり、さらに好ましくは単結合、-C(CH-又は-C(CF-であり、さらにより好ましくは単結合又は-C(CF-であり、とりわけ好ましくは-C(CF-である。ポリイミド系樹脂又はポリアミドイミド系樹脂が、式(1)中のYとして式(2)で表される構造を含む実施形態においては、ポリイミド系樹脂又はポリアミドイミド系樹脂は、式(1)中のYが式(2)で表される構成単位に加えて、式(1)中のYが式(26)で表される構成単位をさらに有することが、保護フィルムの降伏歪みをより向上させやすい観点から好ましい。 Among the groups represented by formulas (20) to (29), from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, formula (26), formula (28) or formula ( 29) is preferable, and the group represented by formula (26) is more preferable. W 1 is preferably a single bond, —O—, —CH 2 —, —CH 2 —CH 2 —, —, from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film. CH(CH 3 )—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, more preferably a single bond, —O—, —CH 2 —, —CH(CH 3 )—, -C(CH 3 ) 2 - or -C(CF 3 ) 2 -, more preferably a single bond, -C(CH 3 ) 2 - or -C(CF 3 ) 2 -, still more preferably It is a single bond or -C(CF 3 ) 2 -, particularly preferably -C(CF 3 ) 2 -. Polyimide-based resin or polyamideimide-based resin, in the embodiment containing the structure represented by the formula (2) as Y in the formula (1), the polyimide-based resin or polyamideimide-based resin is represented by the formula (1) In addition to the structural unit Y is represented by formula (2), Y in formula (1) further has a structural unit represented by formula (26), the yield strain of the protective film is more likely to be improved. preferable from this point of view.
式(26)は、好ましくは式(5):

Figure JPOXMLDOC01-appb-I000007
[式(5)中、Bは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-COO-,-PO-、-PO-、-N(RB1)-又は-Si(RB2-を表し、RB1及びRB2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、Rは、互いに独立に、ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基を表し、tは、互いに独立に、0~3の整数を表し、*は結合手を表す]
で表される。ポリイミド系樹脂又はポリアミドイミド系樹脂が、式(1)中のYが式(2)で表される構成単位に加えて、式(1)中のYが式(5)で表される構成単位をさらに有する場合、樹脂の溶媒への溶解性ならびに保護フィルムの降伏歪み及び透明性を向上させやすい。
Formula (26) is preferably represented by formula (5):

Figure JPOXMLDOC01-appb-I000007
[In the formula (5), B is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, -SO 2 -, -S-, -CO-, - represents COO-, -PO-, -PO 2 -, -N(R B1 )- or -Si(R B2 ) 2 -, wherein R B1 and R B2 each independently have a hydrogen atom or a halogen atom; R 7 independently represents a halogen atom or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom; t each represents independently represents an integer from 0 to 3, * represents a bond]
is represented by In addition to the structural unit represented by the formula (2), Y in the formula (1) is a structural unit represented by the formula (5) in the polyimide-based resin or polyamideimide-based resin. When it further has, it is easy to improve the solubility of the resin in a solvent and the yield strain and transparency of the protective film.
式(5)中のRは、互いに独立に、ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基を表す。ハロゲン原子、並びにハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基及びアリールオキシ基としては、それぞれ式(2)のRとして上記に例示のものが挙げられる。保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させる観点から、Rは、互いに独立に、好ましくはハロゲン原子を有してもよい炭素数1~6のアルキル基であり、より好ましくはハロゲン原子を有してもよい炭素数1~3のアルキル基を表す。 R 7 in formula (5) independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom. Examples of the halogen atom and the alkyl group, alkoxy group, aryl group and aryloxy group which may have a halogen atom include those exemplified above as R 1 in formula (2). From the viewpoint of improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, R 7 is each independently preferably an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, and more It preferably represents an alkyl group having 1 to 3 carbon atoms which may have a halogen atom.
(5)中のtは、互いに独立に、0~3の整数を表し、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは0~2の整数であり、より好ましくは0又は1であり、さらに好ましくは0である。 t in (5) independently represents an integer of 0 to 3, and is preferably an integer of 0 to 2 from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film. , more preferably 0 or 1, more preferably 0.
式(5)中のBは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-COO-、-PO-、-PO-、-N(RB1)-又は-Si(RB2-を表し、RB1及びRB2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表す。 B in formula (5) is a single bond, —O—, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, —SO 2 —, —S—, —CO—, —COO -, -PO-, -PO 2 -, -N(R B1 )- or -Si(R B2 ) 2 -, wherein R B1 and R B2 each independently have a hydrogen atom or a halogen atom; represents an alkyl group that may be
ハロゲン原子を有してもよい2価の炭化水素基としては、式(2)中のR~Rにおけるハロゲン原子を有してもよい1価の炭化水素基のうち、水素原子をさらに1つ除いた2価の基が挙げられる。ハロゲン原子を有してもよい2価の炭化水素基は、その基に含まれる水素原子のうち、2つの水素原子に代わって環を形成、すなわち、該2つの水素原子を結合手に代え、その2つの結合手を連結させて環を形成してもよく、該環としては、例えば炭素数3~12のシクロアルカン環等が挙げられる。また、式(5)中のBに含まれる-N(RB1)-及び-Si(RB2-中のRB1及びRB2におけるハロゲン原子で置換されていてもよいアルキル基としては、式(2)中のRにおけるハロゲン原子を有してもよいアルキル基として上記に例示のものが挙げられる。 As the divalent hydrocarbon group which may have a halogen atom, among the monovalent hydrocarbon groups which may have a halogen atom for R 2 to R 5 in the formula (2), a hydrogen atom is further Divalent groups excluding one are included. A divalent hydrocarbon group which may have a halogen atom forms a ring in place of two hydrogen atoms among the hydrogen atoms contained in the group, i.e., the two hydrogen atoms are replaced as a bond, The two bonds may be linked to form a ring, and examples of the ring include a cycloalkane ring having 3 to 12 carbon atoms. In addition, the alkyl group optionally substituted with a halogen atom for R B1 and R B2 in —N(R B1 )— and —Si(R B2 ) 2 — contained in B in formula (5) includes: Examples of the alkyl group optionally having a halogen atom for R 1 in formula (2) include those exemplified above.
式(5)中のBは、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは単結合、又は、ハロゲン原子を有してもよい2価の炭化水素基であり、より好ましくは単結合、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-であり、さらに好ましくは単結合、-C(CH-又は-C(CF-であり、さらにより好ましくは単結合又は-C(CF-であり、とりわけ好ましくは-C(CF-である。 B in formula (5) is preferably a single bond or a divalent hydrocarbon optionally having a halogen atom from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film. a group, more preferably a single bond, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 - or -C(CF 3 ) 2 - , more preferably a single bond, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, even more preferably a single bond or —C(CF 3 ) 2 —, particularly preferably —C (CF 3 ) 2 -.
式(5)は、式(5’):
Figure JPOXMLDOC01-appb-I000008
[式(5’)中、*は結合手を表す]
で表されることが好ましい。すなわち、ポリイミド系樹脂又はポリアミドイミド系樹脂は、少なくとも一部の式(1)で表される構成単位として、Yが式(5’)で表される構成単位を有することが好ましい。この場合、保護フィルムの降伏歪み、透明性、弾性率及び耐屈曲性を向上させやすい。
Equation (5) is derived from Equation (5′):
Figure JPOXMLDOC01-appb-I000008
[in formula (5′), * represents a bond]
is preferably represented by That is, it is preferable that the polyimide-based resin or polyamide-imide-based resin has at least a part of the structural units represented by the formula (1) in which Y has a structural unit represented by the formula (5′). In this case, the yield strain, transparency, elastic modulus and flex resistance of the protective film are likely to be improved.
ポリイミド系樹脂又はポリアミドイミド系樹脂が、式(1)中のYが式(5)で表される構成単位を含む場合、式(1)で表される構成単位のうち、式(1)中のYが式(5)、好ましくは式(5’)で表される構造である構成単位の割合は、式(1)で表される構成単位の総モル量(100モル%)に対して、好ましくは30モル%以上、より好ましくは35モル%以上、さらに好ましくは40モル%以上であり、好ましくは90モル%以下、より好ましくは80モル%以下、さらに好ましくは70モル%以下である。Yが式(5)で表される構成単位の割合が上記の下限以上であると、樹脂の溶媒への溶解性、及び保護フィルムの透明性を向上しやすい。また、上記の上限以下であると、保護フィルムの降伏歪み及び弾性率を高めやすい。なお、式(1)中のYが式(5)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 Polyimide-based resin or polyamideimide-based resin, when Y in formula (1) contains a structural unit represented by formula (5), among the structural units represented by formula (1), in formula (1) The ratio of structural units in which Y is a structure represented by formula (5), preferably formula (5′), is based on the total molar amount (100 mol%) of the structural units represented by formula (1). , preferably 30 mol% or more, more preferably 35 mol% or more, still more preferably 40 mol% or more, preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less . When the proportion of the structural unit represented by Y is the formula (5) is at least the above lower limit, the solubility of the resin in the solvent and the transparency of the protective film are likely to be improved. Moreover, it is easy to raise the yield strain and elastic modulus of a protective film as it is below said upper limit. The ratio of structural units in which Y in formula (1) is represented by formula (5) can be measured using 1 H-NMR, for example, or can be calculated from the charging ratio of raw materials.
ポリイミド系樹脂又はポリアミドイミド系樹脂が、式(1)中のYが式(2)で表される構成単位、及び式(1)中のYが式(5)で表される構成単位を含む場合、Yが式(2)で表される構成単位、及びYが式(5)で表される構成単位との合計割合は、式(1)で表される構成単位の総モル量に対して、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上であり、通常100モル%以下である。該合計割合が上記範囲であると、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい。なお、該合計割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 Polyimide resin or polyamideimide resin, Y in formula (1) is a structural unit represented by formula (2), and Y in formula (1) contains a structural unit represented by formula (5) In the case, the total ratio of the structural unit Y is represented by formula (2) and the structural unit Y is represented by formula (5) is based on the total molar amount of the structural units represented by formula (1) is preferably 50 mol % or more, more preferably 70 mol % or more, still more preferably 90 mol % or more, and usually 100 mol % or less. When the total ratio is within the above range, the yield strain, breaking strain, elastic modulus and transparency of the protective film are likely to be improved. The total ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
式(1)中のXは、2価の有機基を表し、好ましくは炭素数4~40の2価の有機基を表す。ポリイミド系樹脂又はポリアミドイミド系樹脂は、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、式(1)中のXとして、2価の芳香族基、2価の脂環族基、及び2価の脂肪族基の少なくとも1種を含むことが好ましく、2価の芳香族基を含むことがより好ましい。2価の芳香族基としては、例えば式(2)中のR~Rとして上記に例示の1価の芳香族炭化水素基中の水素原子のうち、1つの水素原子が結合手に置き換わった2価の芳香族炭化水素基;該2価の芳香族炭化水素基のうち、少なくとも1つ以上を連結基、例えば後述のVなどの連結基により結合させた基が挙げられる。2価の脂環族基としては、例えば式(2)中のR~Rとして上記に例示の1価の脂環族炭化水素基中の水素原子のうち、1つの水素原子が結合手に置き換わった2価の脂環族炭化水素基;該2価の脂環族炭化水素基のうち、少なくとも1つ以上を連結基、例えば後述のV等の連結基により結合させた基が挙げられる。2価の脂肪族基としては、例えば式(2)中のR~Rとして上記に例示の1価の脂肪族炭化水素基中の水素原子のうち、1つの水素原子が結合手に置き換わった2価の脂肪族炭化水素基;該2価の脂肪族炭化水素基のうち、少なくとも1つ以上を連結基、例えば後述のV等の連結基により結合させた基が挙げられる。 X in formula (1) represents a divalent organic group, preferably a divalent organic group having 4 to 40 carbon atoms. Polyimide resin or polyamideimide resin, from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, as X in formula (1), a divalent aromatic group, divalent It preferably contains at least one of an alicyclic group and a divalent aliphatic group, and more preferably contains a divalent aromatic group. As the divalent aromatic group, for example, among the hydrogen atoms in the monovalent aromatic hydrocarbon groups exemplified above as R 2 to R 5 in formula (2), one hydrogen atom is replaced with a bond. divalent aromatic hydrocarbon group; groups in which at least one or more of the divalent aromatic hydrocarbon groups are linked by a linking group, for example, a linking group such as V1 described later. As the divalent alicyclic group, for example, among the hydrogen atoms in the monovalent alicyclic hydrocarbon groups exemplified above as R 2 to R 5 in formula (2), one hydrogen atom is a bond a divalent alicyclic hydrocarbon group substituted with; among the divalent alicyclic hydrocarbon groups, groups in which at least one or more of the divalent alicyclic hydrocarbon groups are linked by a linking group, for example, a linking group such as V1 described later. be done. As the divalent aliphatic group, for example, among the hydrogen atoms in the monovalent aliphatic hydrocarbon groups exemplified above as R 2 to R 5 in formula (2), one hydrogen atom is replaced with a bond. divalent aliphatic hydrocarbon group; groups in which at least one or more of the divalent aliphatic hydrocarbon groups are linked by a linking group such as V1 described later.
式(1)中のXは、好ましくは環状構造(脂環構造、芳香環構造、ヘテロ環構造など)を有する炭素数4~40の2価の有機基を表し、より好ましくは炭素数4~40の2価の芳香族基又は炭素数4~40の2価の脂環族基を表し、さらに好ましくは炭素数4~40の2価の芳香族基を表す。 X in formula (1) preferably represents a divalent organic group having 4 to 40 carbon atoms having a cyclic structure (alicyclic structure, aromatic ring structure, heterocyclic structure, etc.), more preferably 4 to It represents a 40 divalent aromatic group or a C4-40 divalent alicyclic group, more preferably a C4-40 divalent aromatic group.
該有機基は、有機基中の水素原子が、炭化水素基、又はフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基、及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。一実施形態において、ポリイミド系樹脂又はポリアミドイミド樹脂は、複数種のXを含み得、複数種のXは、互いに同一であってもよいし、異なっていてもよい。Xとしては、式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;それらの式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基が挙げられる。なお、式(10)~式(18)における環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基で置換されていてもよい。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。 In the organic group, a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The number is preferably 1-8. In one embodiment, the polyimide resin or polyamideimide resin may contain multiple types of X, and the multiple types of X may be the same or different. X is represented by formula (10), formula (11), formula (12), formula (13), formula (14), formula (15), formula (16), formula (17) and formula (18) groups represented by formulas (10) to (18) in which hydrogen atoms are substituted with methyl, fluoro, chloro or trifluoromethyl groups. The hydrogen atoms on the rings in formulas (10) to (18) are substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. good too. Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include those exemplified above as R 1 in formula (2).
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
式(10)~式(18)中、*は結合手を表し、V、V及びVは、互いに独立に、単結合、-O-、-S-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-CO-又は-N(Q)-を表す。
ここで、Qはハロゲン原子を有してもよい炭素数1~12の1価の炭化水素基を表す。
In formulas (10) to (18), * represents a bond, V 1 , V 2 and V 3 are each independently a single bond, -O-, -S-, -CH 2 -, -CH 2 represents -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -SO 2 -, -CO- or -N(Q)-.
Here, Q represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a halogen atom.
ハロゲン原子を有してもよい炭素数1~12の1価の炭化水素基としては、式(2)のR~Rにおけるハロゲン原子を有してもよい1価の炭化水素基として上記に例示のものが挙げられる。 As the monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a halogen atom, the above monovalent hydrocarbon group which may have a halogen atom for R 2 to R 5 in formula (2) are exemplified.
一実施形態において、V及びVが、単結合、-O-又は-S-であり、かつ、Vが-CH-、-C(CH-、-C(CF-又は-SO-であることができる。VとVとの各環に対する結合位置、及び、VとVとの各環に対する結合位置は、互いに独立に、各環に対して、好ましくはメタ位又はパラ位であり、より好ましくはパラ位である。 In one embodiment, V 1 and V 3 are a single bond, -O- or -S- and V 2 is -CH 2 -, -C(CH 3 ) 2 -, -C(CF 3 ) 2- or -SO 2 -. The bonding positions of V 1 and V 2 to each ring and the bonding positions of V 2 and V 3 to each ring independently of each other are preferably meta-positions or para-positions, and more Para position is preferred.
ポリイミド系樹脂又はポリアミドイミド系樹脂は、式(1)中のXとして、式(6):
Figure JPOXMLDOC01-appb-I000010
[式(6)中、Aは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RA1)-又は-Si(RA2-を表し、RA1及びRA2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、Rは互いに独立に、ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基を表し、sは、互いに独立に、0~4の整数を表し、*は結合手を表す]で表される構造を含み得る。ポリイミド系樹脂又はポリアミドイミド系樹脂が、式(1)中のXが式(6)で表される構成単位を有する場合、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい。ポリイミド系樹脂又はポリアミドイミド系樹脂は、式(1)で表される構成単位中のXとして、式(6)で表される基を1種又は複数種含んでよい。
Polyimide-based resin or polyamideimide-based resin, as X in formula (1), formula (6):
Figure JPOXMLDOC01-appb-I000010
[In the formula (6), A is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, -SO 2 -, -S-, -CO-, - represents PO-, -PO 2 -, -N(R A1 )- or -Si(R A2 ) 2 -, wherein R A1 and R A2 may independently have a hydrogen atom or a halogen atom; represents an alkyl group, R 6 independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom; s independently represents 0 to represents an integer of 4 and * represents a bond]. Polyimide-based resin or polyamideimide-based resin, when X in the formula (1) has a structural unit represented by the formula (6), the yield strain of the protective film, breaking strain, elastic modulus and transparency are likely to be improved. . The polyimide-based resin or polyamide-imide-based resin may contain one or more groups represented by the formula (6) as X in the structural unit represented by the formula (1).
式(6)中のRは、互いに独立に、ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基を表す。ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。 Each R 6 in formula (6) independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom. Examples of the halogen atom, or the alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom include those exemplified above as R 1 in formula (2).
これらの中でも、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、Rは、互いに独立に、好ましくは炭素数1~6のアルキル基又は炭素数1~6のハロゲン化アルキル基を表し、より好ましくは炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基(好ましくはパーフルオロアルキル基)を表す。好適な形態では、Rは、互いに独立に、メチル基、クロロ基又はトリフルオロメチル基を表す。sは、互いに独立に、0~4の整数を表し、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1である。本発明の好ましい実施形態では、各ベンゼン環において、sが1であり、-A-を基準とするオルト位にRが置換し、かつRがメチル基、フルオロ基、クロロ基又はトリフルオロメチル基であることが好ましい。 Among these, from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, R 6 is each independently preferably an alkyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms. It represents a halogenated alkyl group, more preferably an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms (preferably a perfluoroalkyl group). In a preferred form, R 6 independently of one another represents a methyl group, a chloro group or a trifluoromethyl group. s independently represents an integer of 0 to 4, preferably an integer of 1 to 3, more preferably 1 or 2 from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film , and more preferably 1. In a preferred embodiment of the present invention, in each benzene ring, s is 1, R 6 is substituted ortho to -A-, and R 6 is methyl, fluoro, chloro or trifluoro A methyl group is preferred.
式(6)において、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、結合手の位置は、互いに独立に、-A-を基準に、好ましくはメタ位又はパラ位であり、より好ましくはパラ位である。 In formula (6), from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, the positions of the bonds are independent of each other, based on -A-, preferably meta-position or para-position. position, more preferably para position.
式(6)中のAは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RA1)-又は-Si(RA2-を表し、RA1及びRA2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表す。 A in formula (6) is a single bond, —O—, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, —SO 2 —, —S—, —CO—, —PO -, -PO 2 -, -N(R A1 )- or -Si(R A2 ) 2 -, wherein R A1 and R A2 are independently of each other alkyl optionally having a hydrogen atom or a halogen atom represents a group.
ハロゲン原子を有してもよい2価の炭化水素基としては、式(2)のR~Rにおけるハロゲン原子を有してもよい1価の炭化水素基のうち、水素原子をさらに1つ除いた2価の基が挙げられる。ハロゲン原子を有してもよい2価の炭化水素基は、その基に含まれる水素原子のうち、2つの水素原子に代わって環を形成してもよく、すなわち、該2つの水素原子を結合手に代え、その2つの結合手を連結させて環を形成してもよい。該環としては、例えば炭素数3~12のシクロアルカン環等が挙げられる。また、RA1及びRA2が表すハロゲン原子を有してもよいアルキル基としては、式(2)中のRにおけるハロゲン原子を有してもよいアルキル基として上記に例示のものが挙げられる。 As the divalent hydrocarbon group which may have a halogen atom, among the monovalent hydrocarbon groups which may have a halogen atom in R 2 to R 5 in formula (2), one hydrogen atom divalent groups other than A divalent hydrocarbon group which may have a halogen atom may form a ring in place of two hydrogen atoms among the hydrogen atoms contained in the group, i.e., the two hydrogen atoms are bonded Instead of the hand, the two bonds may be linked to form a ring. The ring includes, for example, a cycloalkane ring having 3 to 12 carbon atoms. Examples of the alkyl group optionally having a halogen atom represented by R A1 and R A2 include those exemplified above as the alkyl group optionally having a halogen atom for R 1 in formula (2). .
式(6)中のAは、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは単結合、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-であり、より好ましくは単結合、-C(CH-又は-C(CF-であり、さらに好ましくは単結合又は-C(CF-であり、とりわけ好ましくは単結合である。 A in formula (6) is preferably a single bond, —CH 2 —, —CH 2 —CH 2 —, —CH, from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film. (CH 3 )—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, more preferably a single bond, —C(CH 3 ) 2 — or —C(CF 3 ) 2 — , more preferably a single bond or -C(CF 3 ) 2 -, particularly preferably a single bond.
保護フィルムの破断歪、弾性率及び透明性を向上させやすく、かつ、保護フィルムの降伏歪みを向上させやすい観点から、式(6)中、Rは、互いに独立に、炭素数1~6のハロゲン化アルキル基を表し、sは1又は2を表し、Aは単結合、-C(CH-又は-C(CF-を表すことが好ましい。 From the viewpoint of easily improving the breaking strain, elastic modulus and transparency of the protective film, and from the viewpoint of easily improving the yield strain of the protective film, in formula (6), R 6 is each independently a C 1-6 represents a halogenated alkyl group, s represents 1 or 2, and A preferably represents a single bond, -C(CH 3 ) 2 - or -C(CF 3 ) 2 -.
式(6)は、好ましくは式(6’):
Figure JPOXMLDOC01-appb-I000011
で表される。すなわち、式(1)中の複数のXの少なくとも一部は、式(6’)で表されることが好ましい。このような形態であると、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい。
Formula (6) is preferably represented by formula (6′):
Figure JPOXMLDOC01-appb-I000011
is represented by That is, at least some of the plurality of X's in Formula (1) are preferably represented by Formula (6'). Such a form tends to improve yield strain, breaking strain, elastic modulus and transparency of the protective film.
式(1)で表される構成単位のうち、式(1)中のXが式(6)で表される構造である構成単位の割合は、式(1)で表される構成単位の総モル量(100モル%)に対して、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上であり、通常100モル%以下である。Xが式(6)で表される構成単位の割合が上記の下限以上であると、保護フィルムの透明性をより高めやすい。また、上記の上限以下であると、保護フィルムの降伏歪みをより高めやすい。なお、式(1)中のXが式(6)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 Among the structural units represented by formula (1), the ratio of structural units in which X in formula (1) is a structure represented by formula (6) is the total number of structural units represented by formula (1). The molar amount (100 mol %) is preferably 50 mol % or more, more preferably 70 mol % or more, still more preferably 80 mol % or more, and usually 100 mol % or less. When the proportion of the structural unit represented by formula (6) for X is at least the above lower limit, the transparency of the protective film can be more easily improved. Moreover, it is easy to raise the yield strain of a protective film as it is below said upper limit. The ratio of structural units in which X in formula (1) is represented by formula (6) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
ポリアミドイミド系樹脂は、上記の通り、式(1)で表される構成単位に加えて、式(3):
Figure JPOXMLDOC01-appb-I000012
で表される構成単位を有することができる。
Polyamideimide resin, as described above, in addition to the structural unit represented by formula (1), formula (3):
Figure JPOXMLDOC01-appb-I000012
It can have a structural unit represented by
式(3)中のZは、2価の有機基を表し、好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基を有してもよい、炭素数4~40の2価の有機基を表し、より好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基を有してもよい、環状構造を有する炭素数4~40の2価の有機基を表す。環状構造としては、脂環構造、芳香環構造、ヘテロ環構造が挙げられる。脂環構造及び芳香環構造を有する2価の有機基としては、前述の式(20)~式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基、及び炭素数6以下の2価の鎖式炭化水素基が挙げられる。ヘテロ環構造を有する2価の有機基としてはチオフェン環骨格を有する基が挙げられる。保護フィルムのYI値を低減しやすい観点から、式(20)~式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基、及び、チオフェン環骨格を有する基が好ましい。 Z in formula (3) represents a divalent organic group, preferably a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. Represents a divalent organic group having a number of 4 to 40, more preferably a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms, which may have a cyclic structure It represents a divalent organic group having 4 to 40 carbon atoms. Cyclic structures include alicyclic structures, aromatic ring structures, and heterocyclic structures. The divalent organic group having an alicyclic structure and an aromatic ring structure includes a group in which two non-adjacent bonds of the groups represented by the above formulas (20) to (29) are replaced with hydrogen atoms, and divalent chain hydrocarbon groups having 6 or less carbon atoms. A divalent organic group having a heterocyclic structure includes a group having a thiophene ring skeleton. From the viewpoint of easily reducing the YI value of the protective film, among the bonds of the groups represented by formulas (20) to (29), two non-adjacent bonds are replaced with hydrogen atoms, and it has a thiophene ring skeleton. groups are preferred.
式(3)中のZとしては、式(20’)、式(21’)、式(22’)、式(23’)、式(24’)、式(25’)、式(26’)、式(27’)、式(28’)及び式(29’):
Figure JPOXMLDOC01-appb-I000013
[式(20’)~式(29’)中、W及び*は、式(20)~式(29)において定義した通りである]
で表される2価の有機基がより好ましい。なお、式(20)~式(29)及び式(20’)~式(29’)における環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基で置換されていてもよい。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。
As Z in formula (3), formula (20'), formula (21'), formula (22'), formula (23'), formula (24'), formula (25'), formula (26') ), formula (27′), formula (28′) and formula (29′):
Figure JPOXMLDOC01-appb-I000013
[In formulas (20′) to (29′), W 1 and * are as defined in formulas (20) to (29)]
A divalent organic group represented by is more preferable. The hydrogen atoms on the rings in formulas (20) to (29) and formulas (20') to (29') are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, or It may be substituted with an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include those exemplified above as R 1 in formula (2).
ポリアミドイミド系樹脂は、式(3)中のZとして、式(4):
Figure JPOXMLDOC01-appb-I000014
[式(4)中、Wは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RC1)-又は-Si(RC2-を表し、RC1及びRC2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、Rは、互いに独立に、ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基を表し、pは、互いに独立に、0~4の整数を表し、qは0~4の整数を表し、*は結合手を表す]
で表される構造を含み得る。ポリアミドイミド系樹脂が、Zが式(4)である式(3)で表される構成単位を有する場合、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい。なお、式(3)で表される構成単位は、Zとして式(4)で表される基を1種又は複数種含んでいてもよい。
Polyamideimide resin is represented by formula (4) as Z in formula (3):
Figure JPOXMLDOC01-appb-I000014
[In the formula (4), W are each independently a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, -SO 2 -, -S-, - represents CO—, —PO—, —PO 2 —, —N(R C1 )— or —Si(R C2 ) 2 —, wherein R C1 and R C2 each independently have a hydrogen atom or a halogen atom; R 8 independently represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group which may have a halogen atom or a halogen atom; independently represents an integer of 0 to 4, q represents an integer of 0 to 4, * represents a bond]
can include structures represented by When the polyamide-imide resin has a structural unit represented by formula (3) in which Z is formula (4), the yield strain, breaking strain, elastic modulus and transparency of the protective film are likely to be improved. The structural unit represented by formula (3) may contain one or more groups represented by formula (4) as Z.
保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、式(3)において、Wの結合位置は、互いに独立に、結合手を基準に、好ましくはメタ位又はパラ位であり、より好ましくはパラ位である。 From the viewpoint of easily improving the yield strain, breaking strain, elastic modulus, and transparency of the protective film, in formula (3), the bonding positions of W are independent of each other, preferably meta-position or para-position based on the bond. and more preferably at the para position.
式(4)は、式(4’):
Figure JPOXMLDOC01-appb-I000015
[式(4’)中、W、R、p及びqは式(4)において定義した通りである]
で表されることが好ましい。言い換えると、ポリアミドイミド系樹脂に含まれ得る式(3)で表される構成単位の少なくとも一部において、式(3)中のZが式(4’)で表されることが好ましい。この場合、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい。
Equation (4) is derived from Equation (4′):
Figure JPOXMLDOC01-appb-I000015
[In formula (4′), W, R 8 , p and q are as defined in formula (4)]
is preferably represented by In other words, Z in formula (3) is preferably represented by formula (4′) in at least part of the structural units represented by formula (3) that may be contained in the polyamideimide resin. In this case, the yield strain, breaking strain, elastic modulus and transparency of the protective film are likely to be improved.
式(4)及び式(4’)において、Rは、互いに独立に、ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基を表す。ハロゲン原子、又はハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、若しくはアリールオキシ基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。 In formulas (4) and (4′), R 8 independently represents a halogen atom, or an alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom. Examples of the halogen atom, or the alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom include those exemplified above as R 1 in formula (2).
これらの中でも、Rは、互いに独立に、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくはハロゲン原子を有してもよい、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基であり、より好ましくは炭素数1~3のアルキル基又は炭素数1~3のアルコキシ基を表す。pは、互いに独立に、0~4の整数を表し、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは0~2の整数である。 Among these, R 8 is independently of each other, from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film, preferably it may have a halogen atom, and has 1 to 6 carbon atoms. It represents an alkyl group or an alkoxy group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. Each p independently represents an integer of 0 to 4, preferably an integer of 0 to 2 from the viewpoint of easily improving the yield strain, breaking strain, elastic modulus and transparency of the protective film.
式(4)及び式(4’)中のWは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RC1)-又は-Si(RC2-を表し、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは-O-又は-S-を表し、より好ましくは-O-を表す。RC1及びRC2は、互いに独立に、水素原子又はハロゲン原子を有してもよい炭素数1~12の1価の炭化水素基を表す。ハロゲン原子を有してもよい炭素数1~12の1価の炭化水素基としては、式(2)のR~Rにおけるハロゲン原子を有してもよい1価の炭化水素基として上記に例示のものが挙げられる。 W in formulas (4) and (4′) is independently a single bond, —O—, a diphenylmethylene group, a divalent hydrocarbon group optionally having a halogen atom, —SO 2 —, —S—, —CO—, —PO—, —PO 2 —, —N(R C1 )—, or —Si(R C2 ) 2 —, and the yield strain, breaking strain, elastic modulus and transparency of the protective film From the viewpoint of facilitating improvement, preferably -O- or -S-, more preferably -O-. R 1 C1 and R 2 C2 each independently represent a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a hydrogen atom or a halogen atom. As the monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a halogen atom, the above monovalent hydrocarbon group which may have a halogen atom for R 2 to R 5 in formula (2) are exemplified.
式(4)及び式(4’)中のqは、0~4の範囲の整数であり、qがこの範囲内であると、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい。式(4)及び式(4’)中のqは、好ましくは0~3の範囲の整数であり、より好ましくは0~2の範囲の整数である。 q in the formulas (4) and (4′) is an integer in the range of 0 to 4, and when q is within this range, the yield strain, breaking strain, elastic modulus and transparency of the protective film are improved. easy to let q in formulas (4) and (4') is preferably an integer in the range of 0 to 3, more preferably an integer in the range of 0 to 2.
qが0である式(4)又は式(4’)で表される構成単位は、例えばテレフタル酸又はイソフタル酸に由来する構成単位であり、該構成単位は、式(4)又は式(4’)中のp及びqがそれぞれ0であるか、又は、qが0であり、pが1若しくは2(好ましくはRが炭素数1~3のアルキル基、フッ素化アルキル基、又は炭素数1~3のアルコキシ基である。)である構成単位であることが好ましい。保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい観点から、ポリアミドイミド系樹脂はテレフタル酸に由来する構成単位を含むことが好ましい。ポリアミドイミド系樹脂は、Zにおいて、式(4)又は式(4’)で表される構成単位を1種又は2種類以上含んでいてもよい。 A structural unit represented by formula (4) or formula (4′) in which q is 0 is, for example, a structural unit derived from terephthalic acid or isophthalic acid, and the structural unit is represented by formula (4) or formula (4 ') in p and q are each 0, or q is 0 and p is 1 or 2 (preferably R 8 is an alkyl group having 1 to 3 carbon atoms, a fluorinated alkyl group, or a carbon number 1 to 3 alkoxy groups). From the viewpoint of easily improving the yield strain, breaking strain, elastic modulus, and transparency of the protective film, the polyamide-imide resin preferably contains structural units derived from terephthalic acid. In the polyamide-imide resin, Z may contain one or more structural units represented by the formula (4) or (4').
一実施形態において、式(3)中のZとして、式(4)で表される構造を含む場合、式(3)で表される構成単位のうち、Zが式(4)で表される構成単位の割合は、式(3)で表される構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上であり、通常100モル%以下である。式(3)中のZが式(4)で表される構成単位の割合が上記の下限以上であると、保護フィルムの破断歪、弾性率及び透明性を向上させやすく、かつ、保護フィルムの降伏歪みを向上させやすい。該割合が上記の上限以下であると、式(4)由来のアミド結合間水素結合による樹脂ワニスの粘度上昇を抑制し、フィルムの加工性を向上させやすい。なお、式(3)中のZが式(4)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。上記の好ましい割合に関する記載は、式(4’)で表される構造、及び、式(4”)で表される構造にも同様に当てはまる。 In one embodiment, when the structure represented by formula (4) is included as Z in formula (3), among the structural units represented by formula (3), Z is represented by formula (4) The ratio of the structural units is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, relative to the total molar amount of the structural units represented by formula (3). It is 100 mol % or less. When the ratio of the structural unit represented by formula (4) where Z in formula (3) is at least the above lower limit, it is easy to improve the breaking strain, elastic modulus and transparency of the protective film, and the protective film It is easy to improve the yield strain. When the ratio is equal to or less than the above upper limit, the viscosity increase of the resin varnish due to hydrogen bonding between amide bonds derived from formula (4) is suppressed, and the workability of the film is easily improved. The proportion of structural units in which Z in formula (3) is represented by formula (4) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials. The above description of preferred proportions applies equally to the structure represented by formula (4′) and the structure represented by formula (4″).
一実施形態において、ポリアミドイミド系樹脂が、式(3)中のZとして式(4)で表される構造を含む場合、式(3)で表される構成単位のうち、Zが式(4)で表される構成単位の割合は、式(1)で表される構成単位と式(3)で表される構成単位との総モル量に対して、好ましくは5モル%以上、より好ましくは15モル%以上、さらに好ましくは30モル%以上、とりわけ好ましくは50モル%以上であり、通常100モル%以下である。式(3)中のZが式(4)で表される構成単位の割合が上記の下限以上であると、光保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい。該割合が上記の上限以下であると、式(4)由来のアミド結合間水素結合による樹脂ワニスの粘度上昇を抑制し、フィルムの加工性を向上させやすい。なお、式(3)中のZが式(4)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。上記の好ましい割合に関する記載は、式(4’)で表される構造、及び、式(4”)で表される構造にも同様に当てはまる。 In one embodiment, when the polyamideimide-based resin contains a structure represented by formula (4) as Z in formula (3), among the structural units represented by formula (3), Z is represented by formula (4 ) is preferably 5 mol% or more, more preferably is 15 mol % or more, more preferably 30 mol % or more, particularly preferably 50 mol % or more, and usually 100 mol % or less. When the proportion of the structural unit represented by formula (4) for Z in formula (3) is at least the above lower limit, the yield strain, breaking strain, elastic modulus and transparency of the light protective film are likely to be improved. When the ratio is equal to or less than the above upper limit, the viscosity increase of the resin varnish due to hydrogen bonding between amide bonds derived from formula (4) is suppressed, and the workability of the film is easily improved. The proportion of structural units in which Z in formula (3) is represented by formula (4) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials. The above description of preferred proportions applies equally to the structure represented by formula (4′) and the structure represented by formula (4″).
ポリアミドイミド系樹脂が、式(3)中のZが上記の式(20’)~式(29’)のいずれかで表される構成単位を有する場合、及び、式(3)中のZが式(4’)で表される構成単位を有する場合、ポリアミドイミド系樹脂は、式(1)及び式(3)で表される構成単位に加えて、次の式(d1):
Figure JPOXMLDOC01-appb-I000016
[式(d1)中、R24は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R25は、R24又は-C(=O)-*を表し、*は結合手を表す]
で表されるカルボン酸由来の構成単位をさらに有することが、アミド結合間水素結合による樹脂ワニスの粘度上昇を抑制し、フィルム加工性を高める観点から好ましい。
When the polyamideimide resin has a structural unit represented by any of the above formulas (20') to (29'), and Z in formula (3) is When having a structural unit represented by formula (4′), the polyamideimide resin has, in addition to the structural units represented by formulas (1) and (3), the following formula (d1):
Figure JPOXMLDOC01-appb-I000016
[In formula (d1), R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and R 25 is , R 24 or -C (= O) - * represents a bond]
It is preferable from the viewpoint of suppressing the viscosity increase of the resin varnish due to hydrogen bonding between amide bonds and improving the film processability.
24において、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。構成単位(d1)としては、具体的には、R24及びR25がいずれも水素原子である構成単位(ジカルボン酸化合物に由来する構成単位)、R24がいずれも水素原子であり、R25が-C(=O)-*を表す構成単位(トリカルボン酸化合物に由来する構成単位)などが挙げられる。 Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms in R 24 include those exemplified above as R 1 in formula (2). be done. Specific examples of the structural unit (d1) include structural units in which both R 24 and R 25 are hydrogen atoms (structural units derived from a dicarboxylic acid compound), R 24 in which both are hydrogen atoms, and R 25 is a structural unit representing -C(=O)-* (a structural unit derived from a tricarboxylic acid compound).
ポリアミドイミド系樹脂が、式(d1)で表される構成単位を含む場合、式(d1)で表される構成単位の割合は、式(1)で表される構成単位と式(3)で表される構成単位との総モル量に対して、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、さらに好ましくは1モル%以上であり、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下である。該割合が上記範囲内であると、アミド結合間水素結合による樹脂ワニスの粘度上昇を抑制し、フィルムの加工性を向上させやすい。なお、該割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 When the polyamideimide resin contains the structural unit represented by the formula (d1), the ratio of the structural unit represented by the formula (d1) is the structural unit represented by the formula (1) and the formula (3). is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 1 mol% or more, and preferably 30 mol% or less, based on the total molar amount of the represented structural unit; It is more preferably 20 mol % or less, still more preferably 10 mol % or less. When the ratio is within the above range, the increase in viscosity of the resin varnish due to hydrogen bonding between amide bonds is suppressed, and the workability of the film is easily improved. The ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
式(3)中のXとしては、式(1)中のXとして上記に例示したものが挙げられ、好ましい形態も同じである。また、式(1)中のXと式(3)中のXは、同一であってもよいし、異なっていてもよい。一実施形態では、式(1)で表される構成単位及び/又は式(3)で表される構成単位は、Xとして式(6)で表される構造(又は基)を1種又は複数種含んでいてもよい。 Examples of X in formula (3) include those exemplified above as X in formula (1), and preferred forms are also the same. Moreover, X in Formula (1) and X in Formula (3) may be the same or different. In one embodiment, the structural unit represented by formula (1) and/or the structural unit represented by formula (3) have one or more structures (or groups) represented by formula (6) as X. May contain seeds.
一実施形態において、式(1)及び式(3)中のXとして、式(6)で表される構造を含む場合、Xが式(6)で表される構成単位の割合は、式(1)で表される構成単位及び式(3)で表される構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上であり、通常100モル%以下である。Xが式(6)で表される構成単位の割合が上記の範囲内であると、保護フィルムの降伏歪み、破断歪、弾性率及び透明性を向上させやすい。なお、Xが式(6)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In one embodiment, when X in formulas (1) and (3) includes a structure represented by formula (6), the ratio of structural units represented by formula (6) is Preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, relative to the total molar amount of the structural unit represented by 1) and the structural unit represented by formula (3) and is usually 100 mol % or less. When the ratio of the structural unit represented by formula (6) for X is within the above range, the yield strain, breaking strain, elastic modulus and transparency of the protective film are likely to be improved. The ratio of structural units in which X is represented by formula (6) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
ポリアミドイミド系樹脂は、式(1)で表される構成単位、式(3)で表される構成単位に加えて、さらに、式(30)で表される構成単位及び/又は式(31)で表される構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-I000017
Polyamideimide resin, in addition to the structural unit represented by the formula (1), the structural unit represented by the formula (3), further, the structural unit represented by the formula (30) and / or the formula (31) It may contain a structural unit represented by
Figure JPOXMLDOC01-appb-I000017
式(30)において、Yは4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基、該式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基、並びに4価の炭素数6以下の鎖式炭化水素基が例示される。一実施形態において、式(30)で表される構成単位は、複数種のYで表される構造を含み得、複数種のYは、互いに同一であってもよいし、異なっていてもよい。 In formula (30), Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Y 1 is represented by formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) and a group represented by the formula (29), a group in which a hydrogen atom in the group represented by the formulas (20) to (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group, and A tetravalent chain hydrocarbon group having 6 or less carbon atoms is exemplified. In one embodiment, the structural unit represented by formula (30) may contain multiple types of structures represented by Y 1 , and the multiple types of Y 1 may be the same or different. good too.
式(31)において、Yは3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、上記の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が例示される。一実施形態において、式(31)で表される構成単位は、複数種のYで表される構造を含み得、複数種のYは、互いに同一であってもよいし、異なっていてもよい。 In formula (31), Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. As Y 2 , the above formulas (20), (21), (22), (23), (24), (25), (26), (27), (28) ), a group in which one of the bonds of the group represented by formula (29) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms. In one embodiment, the structural unit represented by formula (31) may contain multiple types of structures represented by Y 2 , and the multiple types of Y 2 may be the same or different. good too.
式(30)及び式(31)において、X及びXは、互いに独立に、2価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。X及びXとしては、上記の式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;該式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。 In formulas (30) and (31), X 1 and X 2 are each independently a divalent organic group, preferably a hydrocarbon group or a hydrocarbon group in which a hydrogen atom in the organic group is substituted with fluorine. is an organic group optionally substituted with As X 1 and X 2 , the above formula (10), formula (11), formula (12), formula (13), formula (14), formula (15), formula (16), formula (17) and a group represented by the formula (18); a group in which hydrogen atoms in the groups represented by the formulas (10) to (18) are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and A chain hydrocarbon group having 6 or less carbon atoms is exemplified.
ポリアミドイミド系樹脂が、式(30)で表される構成単位、及び/又は式(31)で表される構成単位を含む場合、式(30)で表される構成単位及び式(31)で表される構成単位の合計割合は、式(1)で表される構成単位と式(3)で表される構成単位との総モル量に対して、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、さらに好ましくは1モル%以上であり、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下である。該合計割合が上記範囲内であると、高弾性率の保護フィルムを得やすい。なお、該割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 When the polyamideimide resin contains the structural unit represented by the formula (30) and/or the structural unit represented by the formula (31), the structural unit represented by the formula (30) and the formula (31) The total ratio of the structural units represented by the formula (1) and the structural unit represented by the formula (3) is preferably 0.01 mol% or more, and more It is preferably 0.1 mol % or more, more preferably 1 mol % or more, preferably 30 mol % or less, more preferably 20 mol % or less, still more preferably 10 mol % or less. When the total ratio is within the above range, it is easy to obtain a protective film with a high elastic modulus. The ratio can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
ポリアミドイミド系樹脂が、式(1)で表される構成単位及び式(3)で表される構成単位を有する場合、式(1)で表される構成単位の割合は、式(1)で表される構成単位及び式(3)で表される構成単位の総モル量(100モル%)に対して、好ましくは10モル%以上、より好ましくは15モル%以上、さらに好ましくは20モル%以上、とりわけ好ましくは25モル%以上であり、好ましくは90モル%以下、より好ましくは70モル%以下、さらに好ましくは60モル%以下、とりわけ好ましくは50モル%以下である。
ポリアミドイミド系樹脂において、式(1)で表される構成単位の割合が上記の下限以上であると、式(3)中のアミド結合間の水素結合による増粘を抑制し、ポリアミドイミドワニスの粘度を低減することができ、保護フィルムの製造が容易である。ポリアミドイミド系樹脂において、式(1)で表される構成単位の割合が上記の上限以下であると、該ポリアミドイミド系樹脂を含んでなる保護フィルムは、高い表面硬度を発揮する。なお、上記割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
When the polyamideimide resin has a structural unit represented by the formula (1) and a structural unit represented by the formula (3), the proportion of the structural unit represented by the formula (1) is expressed by the formula (1) Preferably 10 mol% or more, more preferably 15 mol% or more, still more preferably 20 mol%, relative to the total molar amount (100 mol%) of the structural unit represented by the structural unit represented by formula (3) and the structural unit represented by formula (3) As described above, the content is particularly preferably 25 mol% or more, preferably 90 mol% or less, more preferably 70 mol% or less, still more preferably 60 mol% or less, and particularly preferably 50 mol% or less.
In the polyamideimide resin, when the proportion of the structural unit represented by the formula (1) is at least the above lower limit, thickening due to hydrogen bonding between the amide bonds in the formula (3) is suppressed, and the polyamideimide varnish is Viscosity can be reduced and production of protective films is easy. When the proportion of the structural unit represented by formula (1) in the polyamideimide resin is equal to or less than the above upper limit, the protective film containing the polyamideimide resin exhibits high surface hardness. The above ratio can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
保護フィルムに含まれるポリイミド系樹脂又はポリアミドイミド系樹脂の重量平均分子量(以下、Mwと称する場合がある)は、好ましくは100,000以上であり、より好ましくは150,000以上であり、さらに好ましくは200,000以上であり、さらに好ましくは300,000以上であり、さらに好ましくは400,000以上であり、さらに好ましくは500,000以上であり、さらに好ましくは600,000以上であり、好ましくは1,500,000以下であり、より好ましくは1,200,000以下であり、さらに好ましくは1,000,000以下であり、さらに好ましくは800,000以下である。ポリイミド系樹脂又はポリアミドイミド系樹脂のMwが上記の下限以上であると、得られる保護フィルムの降伏歪み、破断歪及び弾性率を向上させやすい。また、Mwが上記の上限以下であると、樹脂ワニスのゲル化を抑制しやすく、得られる保護フィルムの光学特性を向上させやすい。Mwは、例えばゲル浸透クロマトグラフィー(以下、GPCと記載することがある)測定を行い、標準ポリスチレン換算によって求めることができ、例えば実施例に記載の方法により求めることができる。 The weight average molecular weight (hereinafter sometimes referred to as Mw) of the polyimide resin or polyamideimide resin contained in the protective film is preferably 100,000 or more, more preferably 150,000 or more, and still more preferably is 200,000 or more, more preferably 300,000 or more, more preferably 400,000 or more, still more preferably 500,000 or more, still more preferably 600,000 or more, preferably It is 1,500,000 or less, more preferably 1,200,000 or less, still more preferably 1,000,000 or less, still more preferably 800,000 or less. When the Mw of the polyimide-based resin or the polyamide-imide-based resin is at least the above lower limit, the yield strain, breaking strain and elastic modulus of the resulting protective film are likely to be improved. Further, when the Mw is equal to or less than the above upper limit, gelation of the resin varnish is likely to be suppressed, and the optical properties of the resulting protective film are likely to be improved. Mw can be determined, for example, by gel permeation chromatography (hereinafter sometimes referred to as GPC) measurement and standard polystyrene conversion, for example, it can be determined by the method described in Examples.
一実施形態において、ポリイミド系樹脂又はポリアミドイミド系樹脂は、例えば上記の含フッ素置換基等によって導入することができる、フッ素原子等のハロゲン原子を含んでよい。ポリイミド系樹脂又はポリアミドイミド系樹脂がハロゲン原子を含む場合、保護フィルムのYI値を低減しやすく、かつ破断歪及び弾性率を高めやすい。保護フィルムの弾性率が高いと、傷及びシワ等の発生を抑制しやすい。また、保護フィルムのYI値が低いと、該フィルムの透明性及び視認性を向上させやすくなる。ハロゲン原子は、好ましくはフッ素原子である。ポリイミド系樹脂又はポリアミドイミド系樹脂にフッ素原子を含有させるために好ましい含フッ素置換基としては、例えばフルオロ基及びトリフルオロメチル基が挙げられる。 In one embodiment, the polyimide-based resin or polyamide-imide-based resin may contain halogen atoms such as fluorine atoms, which can be introduced by, for example, the fluorine-containing substituents described above. When the polyimide-based resin or polyamide-imide-based resin contains a halogen atom, the YI value of the protective film is likely to be reduced, and the breaking strain and elastic modulus are likely to be increased. When the elastic modulus of the protective film is high, it is easy to suppress the occurrence of scratches, wrinkles, and the like. Moreover, when the YI value of the protective film is low, it becomes easier to improve the transparency and visibility of the film. A halogen atom is preferably a fluorine atom. Preferable fluorine-containing substituents for containing fluorine atoms in the polyimide resin or polyamideimide resin include, for example, a fluoro group and a trifluoromethyl group.
ポリイミド系樹脂又はポリアミドイミド系樹脂がハロゲン原子を含有する場合、その含有量は、それぞれ、ポリイミド系樹脂又はポリアミドイミド系樹脂の質量を基準として、好ましくは1~40質量%、より好ましくは5~40質量%、さらに好ましくは5~30質量%である。ハロゲン原子の含有量が上記の下限以上であると、保護フィルムのYI値を低減しやすく、かつ破断歪及び弾性率を高めやすい。ハロゲン原子の含有量が上記の上限以下であると、合成がしやすくなる When the polyimide resin or polyamideimide resin contains a halogen atom, the content thereof, respectively, based on the weight of the polyimide resin or polyamideimide resin, preferably 1 to 40 mass%, more preferably 5 to 40% by mass, more preferably 5 to 30% by mass. When the halogen atom content is at least the above lower limit, the YI value of the protective film is likely to be reduced, and the breaking strain and elastic modulus are likely to be increased. If the content of halogen atoms is below the above upper limit, synthesis becomes easier.
ポリイミド系樹脂又はポリアミドイミド系樹脂のイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは96%以上である。保護フィルムの降伏歪み及び光学特性を高めやすい観点から、イミド化率が上記の下限以上であることが好ましい。また、イミド化率の上限は100%以下である。イミド化率は、ポリイミド系樹脂又はポリアミドイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、樹脂中のイミド結合のモル量の割合を示す。なお、ポリイミド系樹脂又はポリアミドイミド系樹脂がトリカルボン酸化合物を含む場合には、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができる。 The imidization rate of the polyimide resin or polyamideimide resin is preferably 90% or more, more preferably 93% or more, and still more preferably 96% or more. From the viewpoint of easily increasing the yield strain and optical properties of the protective film, the imidization rate is preferably at least the above lower limit. Moreover, the upper limit of the imidization rate is 100% or less. The imidization rate indicates the ratio of the molar amount of imide bonds in the resin to twice the molar amount of structural units derived from the tetracarboxylic acid compound in the polyimide resin or polyamideimide resin. Incidentally, when the polyimide resin or polyamideimide resin contains a tricarboxylic acid compound, a value twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin, derived from the tricarboxylic acid compound It shows the ratio of the molar amount of imide bonds in the polyimide resin to the total molar amount of the constituent units. Also, the imidization rate can be determined by IR method, NMR method, or the like.
保護フィルムの黄色度(以下、YI値と記載することがある)は3.0未満であることが好ましい。YI値が3.0以上である場合、保護フィルムのYI値が高すぎるために、保護フィルムを介して例えば画像等を視認する際の視認性が低下する。保護フィルムのYI値は、好ましくは2.8以下であり、より好ましくは2.6以下であり、さらに好ましくは2.5以下であり、好ましくは-5以上であり、より好ましくは-2以上である。保護フィルムのYI値が上記の上限以下であると、透明性が良好となり、保護フィルム、又は後述の前面板に適用した場合に、高い視認性に寄与することができる。なお、YI値は紫外可視近赤外分光光度計を用いて波長300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求め、YI=100×(1.2769X-1.0592Z)/Yの式に基づいて算出できる。保護フィルムのYI値を上記の範囲に調整する方法としては、特に限定されないが、前述のポリイミド系樹脂又はポリアミドイミド系樹脂を使用する方法、青色色素を添加する方法、薄膜化する方法、モノマー主鎖の芳香族環に側鎖を導入する方法等が挙げられる。 The yellowness index (hereinafter sometimes referred to as YI value) of the protective film is preferably less than 3.0. When the YI value is 3.0 or more, the YI value of the protective film is too high, so that the visibility of an image or the like through the protective film decreases. The YI value of the protective film is preferably 2.8 or less, more preferably 2.6 or less, still more preferably 2.5 or less, preferably -5 or more, more preferably -2 or more is. When the YI value of the protective film is equal to or less than the above upper limit, the transparency becomes good, and when applied to a protective film or a front plate described later, it can contribute to high visibility. In addition, the YI value is obtained by measuring the transmittance of light with a wavelength of 300 to 800 nm using an ultraviolet-visible near-infrared spectrophotometer, obtaining the tristimulus values (X, Y, Z), YI = 100 × (1.2769X −1.0592Z)/Y. The method for adjusting the YI value of the protective film to the above range is not particularly limited, but the method of using the above-mentioned polyimide resin or polyamideimide resin, the method of adding a blue dye, the method of thinning, the monomer mainly Examples include a method of introducing a side chain into the aromatic ring of the chain.
保護フィルムの引張弾性率は、偏光板及び積層体の耐屈曲性を向上させやすい観点、及び、シワや傷付き等を防止しやすい観点から、好ましくは4.8GPa以上であり、より好ましくは5.2GPa以上であり、さらに好ましくは6.0GPa以上であり、通常100GPa以下である。なお、引張弾性率は、引張試験機(チャック間距離50mm、引張速度10mm/分)を用いて測定できる。なお、引張弾性率を高める方法として、剛直な無機フィラーを添加する方法や架橋構造を導入する手法が知られている。しかし、このような手法を用いる場合、引張弾性率が向上する一方、降伏歪みの向上が見られない場合が多い。しかし、本実施形態の保護フィルムにおいては、これらを共に高めることが可能であり、耐屈曲性のさらなる向上が達成される。 The tensile elastic modulus of the protective film is preferably 4.8 GPa or more, more preferably 5, from the viewpoint of easily improving the flex resistance of the polarizing plate and the laminate and from the viewpoint of easily preventing wrinkles, scratches, and the like. .2 GPa or more, more preferably 6.0 GPa or more, and usually 100 GPa or less. The tensile modulus can be measured using a tensile tester (distance between chucks: 50 mm, tensile speed: 10 mm/min). As a method for increasing the tensile modulus, a method of adding a rigid inorganic filler and a method of introducing a crosslinked structure are known. However, when such a technique is used, it is often the case that the yield strain is not improved while the tensile modulus is improved. However, in the protective film of the present embodiment, it is possible to improve both of them, and a further improvement in flex resistance is achieved.
保護フィルムの全光線透過率は、好ましくは85%以上であり、より好ましくは88%以上であり、さらに好ましくは89%以上であり、さらに好ましくは90%以上である。全光線透過率が上記の下限以上であると、保護フィルムを、表示装置に組み込んだ際に視認性を高めやすい。高い全光線透過率を示すことにより、例えば、透過率の低いフィルムを用いた場合と比べて、一定の明るさを得るために必要な表示素子等の発光強度を抑えることが可能となる。このため、消費電力を削減することができる。全光線透過率の上限は、通常100%以下である。なお、全光線透過率は、例えばJIS K 7361-1:1997に準拠してヘーズコンピュータを用いて測定できる。全光線透過率は、後述する保護フィルムの厚さの範囲における全光線透過率であってよい。 The total light transmittance of the protective film is preferably 85% or higher, more preferably 88% or higher, still more preferably 89% or higher, still more preferably 90% or higher. When the total light transmittance is at least the above lower limit, visibility is likely to be improved when the protective film is incorporated into a display device. By exhibiting a high total light transmittance, for example, compared to the case of using a film with a low transmittance, it is possible to suppress the emission intensity of the display element or the like necessary to obtain a certain level of brightness. Therefore, power consumption can be reduced. The upper limit of total light transmittance is usually 100% or less. The total light transmittance can be measured using a haze computer according to JIS K 7361-1:1997, for example. The total light transmittance may be the total light transmittance within the thickness range of the protective film, which will be described later.
保護フィルムの面配向係数ΔP絶対値は、凹みを生じにくくする観点から、0.003以上であることが好ましく、0.010以上であることがより好ましく、0.050以上であってもよい。保護フィルムの面配向係数ΔP絶対値は、0.600以下であってもよいし、0.100以下であってもよい。 The plane orientation coefficient ΔP absolute value of the protective film is preferably 0.003 or more, more preferably 0.010 or more, and may be 0.050 or more, from the viewpoint of making it difficult for dents to occur. The planar orientation coefficient ΔP absolute value of the protective film may be 0.600 or less, or may be 0.100 or less.
面配向係数ΔPは、保護フィルムを構成する高分子の分子鎖の配向状態に関する指標となる物性値であり、面配向係数が大きい程、保護フィルムは高配向状態にあることを意味する。面配向係数ΔPは、保護フィルムの面内遅相軸方向(面内で屈折率が最大になる方向)の屈折率をn、面内進相軸方向(面内遅相軸方向と直交する方向)の屈折率をn、フィルムの厚み方向の屈折率をnとするとき、下記式:
  面配向係数ΔP=(n+n)/2-n
で定義される。
The plane orientation coefficient ΔP is a physical property value that is an index of the orientation state of the molecular chains of the polymer constituting the protective film, and the larger the plane orientation coefficient, the higher the degree of orientation of the protective film. The plane orientation coefficient ΔP is defined by n x as the refractive index in the in-plane slow axis direction of the protective film (the direction in which the refractive index is maximized in the plane), and the in-plane fast axis direction (perpendicular to the in-plane slow axis direction The following formula :
Planar orientation coefficient ΔP = (n x +n y )/2-n z
defined by
保護フィルムの面内位相差値Rは、凹みを生じにくくする観点から、好ましくは0nm以上200nm以下であり、より好ましくは0nm以上100nm以下である。保護フィルムの厚み方向の位相差値Rthは、好ましくは200nm以上であり、より好ましくは1000nm以上である。保護フィルムの厚み方向の位相差値Rthは、10000nm以下であってもよいし、5000nm以下であってもよい。本明細書において、位相差値等は、波長590nmにおける値であることができる。 The in-plane retardation value R 0 of the protective film is preferably 0 nm or more and 200 nm or less, and more preferably 0 nm or more and 100 nm or less, from the viewpoint of making it difficult for dents to occur. The thickness direction retardation value R th of the protective film is preferably 200 nm or more, more preferably 1000 nm or more. The thickness direction retardation value R th of the protective film may be 10000 nm or less, or may be 5000 nm or less. In this specification, the retardation value and the like may be values at a wavelength of 590 nm.
面内位相差値R及び厚み方向位相差値Rthは、フィルムの面内遅相軸方向(面内で屈折率が最大になる方向)の屈折率をn、面内進相軸方向(面内遅相軸方向と直交する方向)の屈折率をn、フィルムの厚み方向の屈折率をn、延伸フィルムの厚みをdとするとき、下記式:
  面内位相差値R=(n-n)×d
  厚み方向位相差値Rth=[(n+n)/2-n]×d
で定義される。
The in-plane retardation value R 0 and the thickness direction retardation value R th are the refractive index in the in-plane slow axis direction (the direction in which the refractive index is maximized in the plane) of the film, and the in-plane fast axis direction The following formula :
In-plane retardation value R 0 = (n x −n y )×d
Thickness direction retardation value R th = [(n x +n y )/2−n z ]×d
defined by
保護フィルムの厚みは、通常100μm以下であり、好ましくは80μm以下であり、より好ましくは60μm以下であり、さらに好ましくは40μm以下であり、なおさらに好ましくは30μm以下である。保護フィルムの厚みは、通常5μm以上であり、好ましくは10μm以上である。このような範囲であると、偏光板の耐屈曲性も高めやすい。 The thickness of the protective film is usually 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less, still more preferably 40 μm or less, and even more preferably 30 μm or less. The thickness of the protective film is usually 5 μm or more, preferably 10 μm or more. Within such a range, the bending resistance of the polarizing plate can be easily increased.
樹脂フィルム上にハードコート層が形成されていてもよい。ハードコート層は、樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及び耐スクラッチ性を向上させた保護フィルムとすることができる。 A hard coat layer may be formed on the resin film. The hard coat layer may be formed on one side of the resin film, or may be formed on both sides. By providing a hard coat layer, a protective film having improved hardness and scratch resistance can be obtained.
 <ポリイミド系樹脂及びポリアミドイミド系樹脂の製造方法>
ポリイミド系樹脂及びポリアミドイミド系樹脂の製造方法は特に限定されない。一実施形態においては、後述するテトラカルボン酸化合物及びジアミン化合物を主な原料として、場合によりジカルボン酸化合物を共に用いて、製造することができる。より具体的には、ジアミン化合物とテトラカルボン酸化合物とを反応させてポリアミック酸を得る工程、ポリイミド系樹脂がポリアミドイミド樹脂である場合には、該ポリアミック酸とジカルボン酸とを反応させてポリアミドイミド樹脂前駆体を得る工程、及び該ポリアミック酸又は該ポリアミドイミド樹脂前駆体をイミド化する工程を含む方法により製造できる。なお、テトラカルボン酸化合物やジカルボン酸化合物の他に、トリカルボン酸化合物を反応させてもよい。
<Method for producing polyimide resin and polyamideimide resin>
The method for producing the polyimide resin and the polyamideimide resin is not particularly limited. In one embodiment, it can be produced using a tetracarboxylic acid compound and a diamine compound, which will be described later, as main raw materials, optionally using a dicarboxylic acid compound together. More specifically, a step of reacting a diamine compound and a tetracarboxylic acid compound to obtain a polyamic acid, and when the polyimide resin is a polyamideimide resin, reacting the polyamic acid and a dicarboxylic acid to obtain a polyamideimide It can be produced by a method including a step of obtaining a resin precursor and a step of imidizing the polyamic acid or the polyamide-imide resin precursor. In addition to the tetracarboxylic acid compound and the dicarboxylic acid compound, a tricarboxylic acid compound may be reacted.
式(1)及び式(30)で表される構成単位は、通常、ジアミン化合物とテトラカルボン酸化合物とから誘導される。式(3)で表される構成単位は、通常、ジアミン化合物とジカルボン酸化合物とから誘導される。式(31)で表される構成単位は、通常、ジアミン化合物とトリカルボン酸化合物とから誘導される。 The structural units represented by formulas (1) and (30) are usually derived from a diamine compound and a tetracarboxylic acid compound. The structural unit represented by formula (3) is usually derived from a diamine compound and a dicarboxylic acid compound. The structural unit represented by formula (31) is usually derived from a diamine compound and a tricarboxylic acid compound.
ポリイミド系樹脂及びポリアミドイミド系樹脂の製造に用いられるテトラカルボン酸化合物は、少なくとも式(X):
Figure JPOXMLDOC01-appb-I000018
[式(X)中、R~R、m及びnは、それぞれ、式(2)中のR~R、m及びnと同じである]
で表される化合物を含むことが好ましい。
The tetracarboxylic acid compound used in the production of polyimide resins and polyamideimide resins has at least the formula (X):
Figure JPOXMLDOC01-appb-I000018
[In Formula (X), R 1 to R 5 , m and n are respectively the same as R 1 to R 5 , m and n in Formula (2)]
It is preferable that the compound represented by is included.
式(X)で表される化合物は、慣用の方法、例えば無水トリメリット酸又はその誘導体と芳香族ジオールとを反応させることにより得てもよいし、市販品を使用してもよい。 The compound represented by formula (X) may be obtained by a conventional method such as reacting trimellitic anhydride or a derivative thereof with an aromatic diol, or a commercially available product may be used.
一実施形態では、テトラカルボン酸化合物は、式(X)で表される化合物に加えて、さらに式(Y):
Figure JPOXMLDOC01-appb-I000019
[式(Y)中、B、R及びtは、それぞれ、式(5)中のB、R及びtと同じである]
で表される化合物を含むことが好ましい。
In one embodiment, the tetracarboxylic acid compound, in addition to the compound represented by formula (X), further has formula (Y):
Figure JPOXMLDOC01-appb-I000019
[in formula (Y), B, R 7 and t are respectively the same as B, R 7 and t in formula (5)]
It is preferable that the compound represented by is included.
テトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。 Examples of tetracarboxylic acid compounds include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride. A tetracarboxylic acid compound may be used independently and may be used in combination of 2 or more type. The tetracarboxylic acid compound may be a dianhydride or a tetracarboxylic acid compound analog such as an acid chloride compound.
芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば、無水トリメリット酸と2,2’,3,3’,5,5’-ヘキサメチル-4,4’-ビフェノールとのエステル化物(以下、TAHMBPと記載することがある)、無水トリメリット酸と2,2’,3,3’-テトラメチル-4,4’-ビフェノールとのエステル化物(以下、TA23X-BPと記載することがある)、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAと記載することがある)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(以下、6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物[ピロメリット酸二無水物ともいう(以下、PMDAと記載することがある)]が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。 Specific examples of aromatic tetracarboxylic dianhydrides include non-condensed polycyclic aromatic tetracarboxylic dianhydrides, monocyclic aromatic tetracarboxylic dianhydrides and condensed polycyclic aromatic tetracarboxylic dianhydrides. Carboxylic acid dianhydrides are mentioned. Non-condensed polycyclic aromatic tetracarboxylic dianhydrides include, for example, esters of trimellitic anhydride and 2,2',3,3',5,5'-hexamethyl-4,4'-biphenol compound (hereinafter sometimes referred to as TAHMBP), an ester of trimellitic anhydride and 2,2′,3,3′-tetramethyl-4,4′-biphenol (hereinafter referred to as TA23X-BP ), esters of trimellitic anhydride and 3,3′,5,5′-tetramethyl-4,4′-biphenol, 4,4′-oxydiphthalic dianhydride, 3,3′, 4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (hereinafter , BPDA), 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2 -bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl) Propane dianhydride, 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride (hereinafter sometimes referred to as 6FDA), 1,2-bis(2,3-dicarboxyphenyl)ethane dianhydride substance, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4- dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, 4,4'-(p-phenylenedioxy ) diphthalic dianhydride and 4,4′-(m-phenylenedioxy)diphthalic dianhydride. Examples of monocyclic aromatic tetracarboxylic dianhydrides include 1,2,4,5-benzenetetracarboxylic dianhydride [also called pyromellitic dianhydride (hereinafter referred to as PMDA). There is)], and examples of the condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalenetetracarboxylic dianhydride.
好ましくはTAHMBP、TA23X-BP、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、4,4’-オキシジフタル酸二無水物、BPDA、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、6FDA、ビス(3,4-ジカルボキシフェニル)メタン二無水物、及び4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独又は2種以上を組合せて使用できる。 Preferably TAHMBP, TA23X-BP, an ester of trimellitic anhydride and 3,3′,5,5′-tetramethyl-4,4′-biphenol, 4,4′-oxydiphthalic dianhydride, BPDA, 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 6FDA, bis(3,4-dicarboxyphenyl)methane dianhydride, and 4,4′-(p-phenylenedioxy)diphthalic acid dianhydrides. These can be used singly or in combination of two or more.
脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。 Aliphatic tetracarboxylic dianhydrides include cyclic or acyclic aliphatic tetracarboxylic dianhydrides. The cyclic aliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3′,4,4′-tetracarboxylic dianhydride and positional isomers thereof be done. These can be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. and these can be used alone or in combination of two or more. A cyclic aliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may also be used in combination.
上記テトラカルボン酸二無水物の中でも、保護フィルムの降伏歪み及び透明性を向上しやすい観点から、TAHMBP、TA23X-BP、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、PMDA、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、6FDA、並びにこれらの混合物が好ましく、TAHMBP、TA23X-BP、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、6FDA並びにこれらの混合物がより好ましい。 Among the tetracarboxylic dianhydrides, TAHMBP, TA23X-BP, trimellitic anhydride and 3,3′,5,5′-tetramethyl-4 are used from the viewpoint of easily improving the yield strain and transparency of the protective film. , Esterified product with 4'-biphenol, PMDA, 4,4'-oxydiphthalic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4' -biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2- Bis(3,4-dicarboxyphenyl)propane dianhydride, 6FDA, and mixtures thereof are preferred, TAHMBP, TA23X-BP, trimellitic anhydride and 3,3′,5,5′-tetramethyl-4, Esterified products with 4'-biphenol, 6FDA and mixtures thereof are more preferred.
 ポリアミドイミド系樹脂の合成に用いられるジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。具体例としては、テレフタル酸;2,5-ビス(トリフルオロメチル)テレフタル酸;イソフタル酸;2,5-ジメチルテレフタル酸;2,5-ジメトキシテレフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸が単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物並びに、それらの酸クロライド化合物が挙げられる。これらのジカルボン酸化合物の中でも、保護フィルムの降伏歪み及び透明性を向上しやすい観点から、4,4’-オキシビス安息香酸、テレフタル酸、イソフタル酸、2-メトキシテレフタル酸、2,5-ジメチルテレフタル酸、2,5-ジメトキシテレフタル酸、2,5-ビス(トリフルオロメチル)テレフタル酸、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジカルボン酸及びそれらの酸クロリドが好ましく、4,4’-オキシビス(ベンゾイルクロリド)、2,5-ジメチルテレフタル酸クロライド(以下、DMTPCと記載することがある)、2,5-ジメトキシテレフタル酸クロライド、2,5-ビス(トリフルオロメチル)テレフタル酸クロライド、2-メトキシテレフタル酸クロライド(以下、OMTPCと記載することがある)、テレフタロイルクロリド(以下、TPCと記載することがある)、イソフタロイルクロリドがより好ましく、TPC、2,5-ジメトキシテレフタル酸クロリド、DMTPC、OMTPCがさらに好ましい。 Dicarboxylic acid compounds used in the synthesis of polyamideimide resins, aromatic dicarboxylic acids, aliphatic dicarboxylic acids and their analogous acid chloride compounds, acid anhydrides, etc., may be used in combination of two or more. . Specific examples include terephthalic acid; 2,5-bis(trifluoromethyl)terephthalic acid; isophthalic acid; 2,5-dimethylterephthalic acid; 2,5-dimethoxyterephthalic acid; naphthalenedicarboxylic acid; dicarboxylic acid; 3,3'-biphenyldicarboxylic acid; 2,2'-bis(trifluoromethyl)-4,4'-biphenyldicarboxylic acid; chain hydrocarbon having 8 or less carbon atoms, and 2 compounds in which two benzoic acids are linked by a single bond, —O—, —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a phenylene group; Examples include acid chloride compounds. Among these dicarboxylic acid compounds, 4,4′-oxybisbenzoic acid, terephthalic acid, isophthalic acid, 2-methoxyterephthalic acid, and 2,5-dimethylterephthalic acid are used from the viewpoint of easily improving the yield strain and transparency of the protective film. acid, 2,5-dimethoxyterephthalic acid, 2,5-bis(trifluoromethyl)terephthalic acid, 2,2'-bis(trifluoromethyl)-4,4'-biphenyldicarboxylic acid and their acid chlorides are preferred , 4,4′-oxybis(benzoyl chloride), 2,5-dimethylterephthalyl chloride (hereinafter sometimes referred to as DMTPC), 2,5-dimethoxyterephthalyl chloride, 2,5-bis(trifluoromethyl ) Terephthaloyl chloride, 2-methoxyterephthaloyl chloride (hereinafter sometimes referred to as OMTPC), terephthaloyl chloride (hereinafter sometimes referred to as TPC), and isophthaloyl chloride are more preferable, and TPC, 2 ,5-dimethoxyterephthalic acid chloride, DMTPC and OMTPC are more preferred.
なお、上記ポリイミド系樹脂は、保護フィルムの各種物性を損なわない範囲で、上記のポリイミド系樹脂合成に用いられるテトラカルボン酸化合物に加えて、他のテトラカルボン酸及びトリカルボン酸並びにそれらの無水物及び誘導体をさらに反応させたものであってもよい。 Incidentally, the polyimide resin, in addition to the tetracarboxylic acid compound used in the synthesis of the polyimide resin, other tetracarboxylic acids and tricarboxylic acids and their anhydrides and A derivative may be further reacted.
他のテトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。 Other tetracarboxylic acids include water adducts of the above tetracarboxylic acid compound anhydrides.
トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物が挙げられる。 Examples of tricarboxylic acid compounds include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, their analogous acid chloride compounds, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include anhydride of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; a single bond between phthalic anhydride and benzoic acid; , —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or compounds linked by a phenylene group.
ジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。 Diamine compounds include, for example, aliphatic diamines, aromatic diamines, and mixtures thereof. In this embodiment, the term "aromatic diamine" refers to a diamine in which an amino group is directly bonded to an aromatic ring, and part of its structure may contain an aliphatic group or other substituents. This aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and fluorene ring. Among these, a benzene ring is preferred. The term "aliphatic diamine" refers to a diamine in which an amino group is directly bonded to an aliphatic group, and part of its structure may contain an aromatic ring or other substituents.
脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Aliphatic diamines include, for example, acyclic aliphatic diamines such as hexamethylenediamine, as well as 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine and 4,4' - Cycloaliphatic diamines such as diaminodicyclohexylmethane. These can be used alone or in combination of two or more.
芳香族ジアミンとしては、例えばp-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(以下、TFMBと記載することがある)、4,4’-(ヘキサフルオロプロピリデン)ジアニリン(以下、6FDAMと記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独又は2種以上を組合せて使用できる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene and 2,6-diaminonaphthalene. of, an aromatic diamine having one aromatic ring, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'- Diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4 -aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (hereinafter referred to as TFMB), 4,4'-(hexafluoropropylidene)dianiline (hereinafter sometimes referred to as 6FDAM), 4,4'-bis(4-aminophenoxy)biphenyl, 9,9 -bis(4-aminophenyl)fluorene, 9,9-bis(4-amino-3-methylphenyl)fluorene, 9,9-bis(4-amino-3-chlorophenyl)fluorene, 9,9-bis(4 aromatic diamines having two or more aromatic rings such as -amino-3-fluorophenyl)fluorene. These can be used singly or in combination of two or more.
芳香族ジアミンとしては、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、TFMB、6FDAM、4,4’-ビス(4-アミノフェノキシ)ビフェニルが挙げられ、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、TFMB、6FDAM、4,4’-ビス(4-アミノフェノキシ)ビフェニルが挙げられる。これらは単独又は2種以上を組合せて使用できる。 Preferred aromatic diamines include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2′-dimethylbenzidine, TFMB, 6FDAM, 4, 4'-bis(4-aminophenoxy)biphenyl, more preferably 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl Sulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2 '-dimethylbenzidine, TFMB, 6FDAM, 4,4'-bis(4-aminophenoxy)biphenyl. These can be used singly or in combination of two or more.
上記ジアミン化合物の中でも、保護フィルムの降伏歪み及び透明性を向上しやすい観点から、2,2’-ジメチルベンジジン、TFMB、4,4’-ビス(4-アミノフェノキシ)ビフェニル、6FDAM及び4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがより好ましく、TFMB及び/又は6FDAMを用いることがさらに好ましい。 Among the above diamine compounds, 2,2′-dimethylbenzidine, TFMB, 4,4′-bis(4-aminophenoxy)biphenyl, 6FDAM and 4,4 It is more preferable to use one or more selected from the group consisting of '-diaminodiphenyl ether, and it is even more preferable to use TFMB and/or 6FDAM.
ジアミン化合物、テトラカルボン酸化合物及びジカルボン酸化合物の使用量は、所望とする樹脂の各構成単位の比率に応じて適宜選択できる。 The amounts of the diamine compound, the tetracarboxylic acid compound and the dicarboxylic acid compound to be used can be appropriately selected depending on the ratio of each constituent unit of the desired resin.
一実施形態において、ジアミン化合物の使用量は、テトラカルボン酸化合物及び場合により含まれるジカルボン酸化合物の総モル量を1モルとして、好ましくは0.94モル以上、より好ましくは0.96モル以上、さらに好ましくは0.98モル以上、とりわけ好ましくは0.99モル以上であり、好ましくは1.20モル以下、より好ましくは1.10モル以下、さらに好ましくは1.05モル以下、とりわけ好ましくは1.02モル以下である。テトラカルボン酸化合物及び場合により含まれるジカルボン酸化合物に対するジアミン化合物の使用量が上記の範囲内であると、ポリイミド系樹脂及びポリアミドイミド系樹脂が式(2)で表される構造を有する場合であっても、高分子量の樹脂を得やすく、その結果、得られる保護フィルムの降伏歪み及び透明性を向上しやすい。 In one embodiment, the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, based on the total molar amount of the tetracarboxylic acid compound and optionally the dicarboxylic acid compound contained as 1 mol, More preferably 0.98 mol or more, particularly preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, still more preferably 1.05 mol or less, particularly preferably 1 0.02 mol or less. When the amount of the diamine compound used relative to the tetracarboxylic acid compound and optionally the dicarboxylic acid compound is within the above range, the polyimide resin and the polyamideimide resin have a structure represented by formula (2). However, it is easy to obtain a high-molecular-weight resin, and as a result, it is easy to improve the yield strain and transparency of the resulting protective film.
ジアミン化合物とテトラカルボン酸化合物との反応温度は、特に限定されず、例えば5~200℃であってもよく、反応時間も特に限定されず、例えば30分~72時間程度であってもよい。本発明の好適な実施形態においては、ポリイミド系樹脂又はポリアミドイミド系樹脂が式(2)で表される構造を有する場合であっても、樹脂のMwを高めやすい観点からは、反応温度は、好ましくは5~50℃、より好ましくは5~40℃、さらに好ましくは5~25℃であり、反応時間は、好ましくは3~24時間、より好ましくは5~20時間である。 The reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited, and may be, for example, 5 to 200° C., and the reaction time is also not particularly limited, and may be, for example, about 30 minutes to 72 hours. In a preferred embodiment of the present invention, even when the polyimide-based resin or polyamideimide-based resin has a structure represented by formula (2), from the viewpoint of easily increasing the Mw of the resin, the reaction temperature is The temperature is preferably 5 to 50°C, more preferably 5 to 40°C, still more preferably 5 to 25°C, and the reaction time is preferably 3 to 24 hours, more preferably 5 to 20 hours.
ジアミン化合物とテトラカルボン酸化合物との反応は、溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;N,N-ジメチルアセトアミド(以下、DMAcと記載することがある)、N,N-ジメチルホルムアミド(以下、DMFと記載することがある)等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せなどが挙げられる。これらの中でも、溶解性の観点から、アミド系溶媒を好適に使用できる。 The reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent. The solvent is not particularly limited as long as it does not affect the reaction, but examples include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, alcohol solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, γ-valerolactone, propylene glycol methyl ether acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane, heptane; alicyclic hydrocarbon solvents such as ethylcyclohexane; toluene, xylene Aromatic hydrocarbon solvents such as; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran and dimethoxyethane; chlorine-containing solvents such as chloroform and chlorobenzene; ), amide solvents such as N,N-dimethylformamide (hereinafter sometimes referred to as DMF); sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof. Among these, amide solvents can be preferably used from the viewpoint of solubility.
一実施形態においては、反応に使用する溶媒は、水分量700ppm以下まで厳密に脱水した溶媒であることが好ましい。水分量を上記の範囲に調整することにより、ポリイミド系樹脂又はポリアミドイミド系樹脂が式(2)で表される構造を有する場合であっても、樹脂を高分子化させやすい、 In one embodiment, the solvent used in the reaction is preferably a solvent that has been rigorously dehydrated to a water content of 700 ppm or less. By adjusting the water content to the above range, even if the polyimide resin or polyamideimide resin has a structure represented by formula (2), the resin is easily polymerized.
ジアミン化合物とテトラカルボン酸化合物との反応は、必要に応じて、窒素雰囲気、アルゴン雰囲気等の不活性雰囲気又は減圧の条件下において行ってもよく、高分子量の樹脂を得やすい観点からは、前記と同じ不活性雰囲気下、厳密に制御された脱水溶媒中で撹拌しながら行うことが好ましい。 The reaction between the diamine compound and the tetracarboxylic acid compound may be carried out, if necessary, under an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere, or under reduced pressure conditions. It is preferably carried out with stirring in a strictly controlled dehydrated solvent under the same inert atmosphere as in the above.
ポリアミック酸とジカルボン酸との製造条件は、ジアミン化合物とテトラカルボン酸化合物との反応における製造条件から適宜選択すればよい。 The conditions for producing the polyamic acid and the dicarboxylic acid may be appropriately selected from the conditions for producing the reaction between the diamine compound and the tetracarboxylic acid compound.
イミド化工程で使用するイミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。 Examples of the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and cycloaliphatic amines (monocyclic) such as N-propylhexahydroazepine; azabicyclo[2.2.1]heptane, azabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, and Alicyclic amines (polycyclic) such as azabicyclo[3.2.2]nonane; and pyridine, 2-methylpyridine (2-picoline), 3-methylpyridine (3-picoline), 4-methylpyridine (4 -picoline), 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7, Aromatic amines such as 8-tetrahydroisoquinoline and isoquinoline are included. Moreover, from the viewpoint of facilitating the imidization reaction, it is preferable to use an acid anhydride together with the imidization catalyst. Acid anhydrides include conventional acid anhydrides used in imidization reactions, and specific examples thereof include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic acid anhydrides such as phthalic acid. and acid anhydrides.
一実施形態では、イミド化工程を段階的に行い、最適な反応温度まで、昇温することが好ましい。段階的にイミド化することにより、樹脂の分解を抑制し、高分子量のポリイミド系樹脂を得やすい。段階的に行うイミド化工程の昇温させる反応温度は、好ましくは40~85℃であり、より好ましくは45~80℃である。反応温度が前記の範囲にあると、十分にイミド化反応が進行する傾向があり、またMwが十分に上がる傾向がある。その反応時間は、好ましくは30分~10時間、より好ましくは30分~5時間である。反応時間が前記の範囲内にあると、樹脂の分解が生じてMwが低下することを抑制しやすく、また、イミド化率が低下してその後の工程で低分子量化することを抑制しやすい。このように既述の合成条件に加えて、イミド化工程を制御することで、高分子量の樹脂を得ることができる。 In one embodiment, it is preferred to carry out the imidization step in stages, increasing the temperature to the optimum reaction temperature. The stepwise imidization suppresses the decomposition of the resin, making it easier to obtain a high-molecular-weight polyimide resin. The reaction temperature to be raised in the stepwise imidization step is preferably 40 to 85°C, more preferably 45 to 80°C. When the reaction temperature is within the above range, the imidization reaction tends to proceed sufficiently, and the Mw tends to increase sufficiently. The reaction time is preferably 30 minutes to 10 hours, more preferably 30 minutes to 5 hours. When the reaction time is within the above range, it is easy to suppress a decrease in Mw due to decomposition of the resin, and it is easy to suppress a decrease in imidization rate and reduction in molecular weight in the subsequent steps. By controlling the imidization step in addition to the synthesis conditions described above, a resin having a high molecular weight can be obtained.
ポリイミド系樹脂又はポリアミドイミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により分離精製して単離してもよく、好ましい形態では、樹脂を含む反応液に、多量のメタノール等のアルコールを加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。保護フィルムは、得られた樹脂を用いて、溶剤キャスト法、溶融押出法などの公知の手段により製膜することで得られる。 The polyimide resin or polyamideimide resin is separated and purified by a conventional method such as filtration, concentration, extraction, crystallization, recrystallization, column chromatography, or a combination thereof. In a preferred form, the resin can be isolated by adding a large amount of alcohol such as methanol to the reaction solution containing the resin to precipitate the resin, followed by concentration, filtration, drying, and the like. A protective film can be obtained by forming a film from the obtained resin by a known means such as a solvent casting method or a melt extrusion method.
保護フィルムは、樹脂に加えて、少なくとも1種のフィラーを含んでよい。フィラーとしては、例えば有機粒子、無機粒子などが挙げられ、好ましくは無機粒子である。無機粒子としては、シリカ、ジルコニア、アルミナ、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子などが挙げられ、これらの中でも、保護フィルムの降伏歪み、弾性率及び透明性を向上させやすい観点から、好ましくはシリカ粒子、ジルコニア粒子、アルミナ粒子が挙げられ、より好ましくはシリカ粒子が挙げられる。これらのフィラーは単独又は2種以上を組合せて使用できる。 The protective film may contain at least one filler in addition to the resin. Examples of the filler include organic particles and inorganic particles, preferably inorganic particles. Inorganic particles include metal oxide particles such as silica, zirconia, alumina, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, and cerium oxide, magnesium fluoride, sodium fluoride, and the like. Among these, from the viewpoint of easily improving the yield strain, elastic modulus and transparency of the protective film, preferred are silica particles, zirconia particles, and alumina particles, more preferably silica particles. These fillers can be used singly or in combination of two or more.
保護フィルムは、紫外線吸収剤をさらに含有してもよい。紫外線吸収剤は、樹脂材料の分野で紫外線吸収剤として通常用いられているものから、適宜選択することができる。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。紫外線吸収剤は単独又は二種以上を組合せて使用できる。 The protective film may further contain an ultraviolet absorber. The ultraviolet absorber can be appropriately selected from those commonly used as ultraviolet absorbers in the field of resin materials. The ultraviolet absorber may contain a compound that absorbs light with a wavelength of 400 nm or less. Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone-based compounds, salicylate-based compounds, benzotriazole-based compounds, and triazine-based compounds. Ultraviolet absorbers can be used alone or in combination of two or more.
保護フィルムは、フィラー及び紫外線吸収剤以外の他の添加剤をさらに含有していてもよい。他の添加剤としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。 The protective film may further contain additives other than fillers and ultraviolet absorbers. Other additives include, for example, antioxidants, release agents, stabilizers, bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents.
[接着剤層]
接着剤層は、偏光子と保護フィルムとを貼合する層であることができる。接着剤層は、例えば、水系接着剤又は活性エネルギー線硬化型接着剤から形成することができる。接着剤層の厚さは、例えば、0.01~5μm、好ましくは0.1~3μmである。
[Adhesive layer]
The adhesive layer can be a layer that bonds the polarizer and the protective film together. The adhesive layer can be formed from, for example, a water-based adhesive or an active energy ray-curable adhesive. The thickness of the adhesive layer is, for example, 0.01-5 μm, preferably 0.1-3 μm.
水系接着剤としては、例えばポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤等を挙げることができる。活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤である。活性エネルギー線硬化型接着剤としては、例えば重合性化合物及び光重合開始剤を含む接着剤、光反応性樹脂を含む接着剤、バインダー樹脂及び光反応性架橋剤を含む接着剤等を挙げることができる。重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマー、及びこれらモノマーに由来するオリゴマー等を挙げることができる。光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、カチオン、アニオンといった活性種を発生する物質を含む化合物を挙げることができる。 Examples of water-based adhesives include polyvinyl alcohol-based resin aqueous solutions and water-based two-liquid type urethane-based emulsion adhesives. Active energy ray-curable adhesives are adhesives that are cured by irradiation with active energy rays such as ultraviolet rays. Examples of active energy ray-curable adhesives include adhesives containing a polymerizable compound and a photopolymerization initiator, adhesives containing a photoreactive resin, adhesives containing a binder resin and a photoreactive cross-linking agent, and the like. can. Examples of the polymerizable compound include photopolymerizable monomers such as photocurable epoxy monomers, photocurable acrylic monomers, and photocurable urethane monomers, and oligomers derived from these monomers. Examples of photopolymerization initiators include compounds containing substances that generate active species such as neutral radicals, cations, and anions upon irradiation with active energy rays such as ultraviolet rays.
[位相差フィルム]
偏光板は位相差フィルムを備えることができる。位相差フィルムは、少なとも1層の位相差層を有する。位相差フィルムが有する位相差層は、1層であってもよく2層以上であってもよい。位相差層は、偏光子の前面板側とは反対側に積層されていることが好ましい。
位相差層は、その表面を保護するオーバーコート層、位相差層を支持する基材フィルム等を有していてもよい。位相差層は、λ/4層を含み、さらにλ/2層又はポジティブC層の少なくともいずれかを含んでいてもよい。位相差層がλ/2層を含む場合、直線偏光板側から順にλ/2層及びλ/4層を積層する。位相差層がポジティブC層を含む場合、直線偏光板側から順にλ/4層及びポジティブC層を積層してもよく、直線偏光板側から順にポジティブC層及びλ/4層を積層してもよい。位相差層の厚みは、例えば0.1μm以上10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上6μm以下である。
[Retardation film]
A polarizing plate may comprise a retardation film. The retardation film has at least one retardation layer. The retardation layer included in the retardation film may be one layer or two or more layers. The retardation layer is preferably laminated on the opposite side of the polarizer to the front plate side.
The retardation layer may have an overcoat layer for protecting its surface, a substrate film for supporting the retardation layer, and the like. The retardation layer includes a λ/4 layer and may further include at least one of a λ/2 layer and a positive C layer. When the retardation layer includes a λ/2 layer, a λ/2 layer and a λ/4 layer are laminated in order from the linear polarizing plate side. When the retardation layer includes a positive C layer, the λ / 4 layer and the positive C layer may be laminated in order from the linear polarizing plate side, and the positive C layer and λ / 4 layer are laminated in order from the linear polarizing plate side. good too. The thickness of the retardation layer is, for example, 0.1 μm or more and 10 μm or less, preferably 0.5 μm or more and 8 μm or less, and more preferably 1 μm or more and 6 μm or less.
位相差層は、保護フィルムの材料として例示した樹脂フィルムから形成してもよいし、重合性液晶化合物が硬化した層から形成してもよい。位相差層は、さらに配向膜を含んでもよい。位相差層は、λ/4層と、λ/2層及びポジティブC層とを貼合するための接着剤層や粘着剤層を有していてもよい。 The retardation layer may be formed from a resin film exemplified as a material for the protective film, or may be formed from a layer obtained by curing a polymerizable liquid crystal compound. The retardation layer may further include an alignment film. The retardation layer may have an adhesive layer or a pressure-sensitive adhesive layer for bonding the λ/4 layer, the λ/2 layer and the positive C layer.
重合性液晶化合物を硬化して位相差層を形成する場合、位相差層は、重合性液晶化合物を含む組成物を基材フィルムに塗布し硬化させることにより形成することができる。基材フィルムと塗布層との間に配向膜を形成してもよい。基材フィルムの材料及び厚みは、上記熱可塑性樹脂フィルムの材料及び厚みと同じであってよい。重合性液晶化合物を硬化してなる層から位相差層を形成する場合、位相差層は、配向膜及び基材フィルムを有する形態で偏光板に組み込まれてもよい。位相差層は、粘着剤層や接着剤層を介して積層されることができる。 When the retardation layer is formed by curing the polymerizable liquid crystal compound, the retardation layer can be formed by applying a composition containing the polymerizable liquid crystal compound to the substrate film and curing the composition. An alignment film may be formed between the substrate film and the coating layer. The material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film. When forming the retardation layer from a layer obtained by curing a polymerizable liquid crystal compound, the retardation layer may be incorporated into the polarizing plate in a form having an alignment film and a base film. The retardation layer can be laminated via a pressure-sensitive adhesive layer or an adhesive layer.
[粘着剤層]
粘着剤層は、偏光板と、前面板とを貼合するための粘着剤層であることができる。粘着剤層は、偏光板と、タッチセンサ又は表示素子とを貼合するための粘着剤層であることができる。粘着剤層は、位相差フィルムと、偏光子又は保護フィルムとを貼合するための粘着剤層であることができる。
[Adhesive layer]
The pressure-sensitive adhesive layer can be a pressure-sensitive adhesive layer for bonding the polarizing plate and the front plate. The pressure-sensitive adhesive layer can be a pressure-sensitive adhesive layer for bonding the polarizing plate and the touch sensor or display element. The pressure-sensitive adhesive layer can be a pressure-sensitive adhesive layer for bonding the retardation film and the polarizer or the protective film.
粘着剤層は、例えば、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系等の樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好ましい。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。 The pressure-sensitive adhesive layer can be composed of, for example, a pressure-sensitive adhesive composition whose main component is a (meth)acrylic, rubber, urethane, ester, silicone, polyvinyl ether, or other resin. Among them, a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc., is preferable. The adhesive composition may be active energy ray-curable or heat-curable.
粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルのうちの1種又は2種以上をモノマーとする重合体又は共重合体が好ましく用いられる。ベースポリマーは、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーが挙げられる。 Examples of the (meth)acrylic resin (base polymer) used in the adhesive composition include butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, and 2-(meth)acrylate. Polymers or copolymers containing one or more of (meth)acrylic acid esters such as ethylhexyl as monomers are preferably used. The base polymer is preferably copolymerized with polar monomers. Examples of polar monomers include (meth)acrylic acid, 2-hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylate, (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, glycidyl ( Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, such as meth)acrylate.
粘着剤組成物は、ベースポリマー単独からなるものであってよいが、通常は架橋剤を更に含む。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するもの等が挙げられる。中でも、ポリイソシアネート化合物が好適である。 The adhesive composition may consist of the base polymer alone, but usually further contains a cross-linking agent. The cross-linking agent is a metal ion having a valence of 2 or more, which forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound, which forms an amide bond with a carboxyl group; Epoxy compounds and polyols that form ester bonds with carboxyl groups; and polyisocyanate compounds that form amide bonds with carboxyl groups. Among them, polyisocyanate compounds are preferred.
活性エネルギー線硬化型粘着剤組成物は、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘接着性を有してフィルム等の被着体に密着させることができる。活性エネルギー線の照射により硬化して密着力の調整をすることができる。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、前記のようにベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物を含む。光重合開始剤や光増感剤等も適宜含む。 The active energy ray-curable pressure-sensitive adhesive composition has the property of being cured by being irradiated with an active energy ray such as an ultraviolet ray or an electron beam. It can be brought into close contact with an adherend such as a film. It can be cured by irradiation with active energy rays to adjust adhesion. The active energy ray-curable pressure-sensitive adhesive composition is preferably UV-curable. The active energy ray-curable pressure-sensitive adhesive composition contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent as described above. A photopolymerization initiator, a photosensitizer, and the like are also included as appropriate.
粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘接着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を更に含んでもよい。 The adhesive composition includes fine particles for imparting light-scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than base polymers, adhesiveness imparting agents, fillers (metal powders and other inorganic powder, etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, and other additives.
粘着剤層は、粘着剤組成物の有機溶剤希釈液を基材上に塗布し、乾燥させることにより形成することができる。活性エネルギー線硬化型粘着剤組成物を用いた場合は、形成された粘着剤層に、活性エネルギー線を照射することにより所望の硬化度を有する硬化物とすることができる。 The pressure-sensitive adhesive layer can be formed by applying an organic solvent-diluted solution of the pressure-sensitive adhesive composition onto a substrate and drying it. When an active energy ray-curable pressure-sensitive adhesive composition is used, a cured product having a desired degree of curing can be obtained by irradiating the formed pressure-sensitive adhesive layer with an active energy ray.
粘着剤層の厚さは、例えば、0.1~30μm、好ましくは0.5~20μm、より好ましくは1~10μmである。 The thickness of the adhesive layer is, for example, 0.1-30 μm, preferably 0.5-20 μm, more preferably 1-10 μm.
粘着剤層の貯蔵弾性率は、25℃において、例えば0.001~1MPaであり、好ましくは0.01~0.3MPaであり、より好ましくは0.05~0.1MPaである。貯蔵弾性率が0.001MPa以上である場合には、積層体の耐衝撃性が向上しやすく、1MPa以下である場合には、積層体の耐屈曲性が向上しやすい。粘着剤層の貯蔵弾性率は、レオメーターで測定することができる。例えば、粘着剤層を150μmになるように積み重ねて、サンプルを作製し、貯蔵弾性率(G’)を、レオメーター(Anton Parr社製「MCR-301」(商品名))を用いて測定することができる。測定条件は、温度25℃、応力1%及び周波数1Hzとすることができる。 The storage modulus of the pressure-sensitive adhesive layer is, for example, 0.001 to 1 MPa, preferably 0.01 to 0.3 MPa, more preferably 0.05 to 0.1 MPa at 25°C. When the storage elastic modulus is 0.001 MPa or more, the impact resistance of the laminate tends to be improved, and when it is 1 MPa or less, the flex resistance of the laminate tends to improve. The storage elastic modulus of the pressure-sensitive adhesive layer can be measured with a rheometer. For example, a sample is prepared by stacking adhesive layers to a thickness of 150 μm, and the storage elastic modulus (G′) is measured using a rheometer (manufactured by Anton Parr, “MCR-301” (trade name)). be able to. The measurement conditions can be a temperature of 25° C., a stress of 1% and a frequency of 1 Hz.
[積層体]
本発明に係る積層体は、前面板、粘着剤層、及び本発明の偏光板を備える。前面板と、保護フィルムとは、粘着剤層により貼合されている。積層体は、後述のタッチセンサ等をさらに備えることができる。
[Laminate]
A laminate according to the present invention includes a front plate, an adhesive layer, and the polarizing plate of the present invention. The front plate and the protective film are bonded with an adhesive layer. The laminate can further include a touch sensor or the like, which will be described later.
図4の積層体40は、前面板47と保護フィルム42と偏光子41と位相差フィルム45とを備える。偏光子41と保護フィルム42とは、接着剤層43により貼合されている。
偏光子41と位相差フィルム45とは、粘着剤層44により積層されている。前面板47と、保護フィルム42とは、粘着剤層46により積層されている。
A laminate 40 in FIG. 4 includes a front plate 47 , a protective film 42 , a polarizer 41 and a retardation film 45 . The polarizer 41 and the protective film 42 are bonded with an adhesive layer 43 .
The polarizer 41 and the retardation film 45 are laminated with an adhesive layer 44 . The front plate 47 and the protective film 42 are laminated with an adhesive layer 46 .
積層体は、屈曲可能であることが好ましい。屈曲可能とは、クラックを生じさせることなく屈曲させ得ることを意味する。積層体は、前面板側を内側および外側の少なくともいずれか一方にして屈曲可能であってよく、好ましくは前面板側を内側にして屈曲可能であり、より好ましくは前面板側を内側にして屈曲半径が2mmとなるように繰返しの屈曲を行った場合でもクラックが生じにくい傾向にある。本明細書において、屈曲には、曲げ部分に曲面が形成される折り曲げの形態が含まれる。折り曲げの形態において、折り曲げた内面の曲率半径は特に限定されない。また、屈曲には、内面の屈折角が0°より大きく180°未満である屈折の形態、および内面の曲率半径がゼロに近似、または内面の屈折角が0°である折り畳みの形態が含まれる。 The laminate is preferably bendable. Bendable means that it can be bent without cracking. The laminate may be bendable with at least one of the front plate side inside and outside, preferably bendable with the front plate side inside, and more preferably bendable with the front plate side inside. Cracks tend not to occur even when repeatedly bent with a radius of 2 mm. As used herein, bending includes a form of bending in which a curved surface is formed at the bent portion. In the form of bending, the radius of curvature of the bent inner surface is not particularly limited. Bending also includes a form of refraction in which the angle of refraction of the inner surface is greater than 0° and less than 180°, and a form of folding in which the radius of curvature of the inner surface is close to zero or the angle of refraction of the inner surface is 0°. .
[前面板]
前面板は、光を透過可能な板状体であれば、材料及び厚みは限定されず、また1層のみから構成されてよく、2層以上から構成されてもよい。前面板としては、ガラス製の板状体(例えばガラス板、ガラスフィルム等)、樹脂製の板状体(例えば樹脂板、樹脂シート、樹脂フィルム等)、ガラス製の板状体と樹脂製の板状体との積層体が例示される。前面板は、表示装置の視認側の最表層を構成する層であることができる。本発明の効果は、前面板が樹脂製の板状体を備える場合に顕著である。
[Front plate]
The material and thickness of the front plate are not limited as long as it is a plate-like body that can transmit light, and it may be composed of only one layer, or may be composed of two or more layers. As the front plate, a glass plate (for example, a glass plate, a glass film, etc.), a resin plate (for example, a resin plate, a resin sheet, a resin film, etc.), a glass plate and a resin plate. A laminate with a plate-like body is exemplified. The front plate can be a layer forming the outermost layer on the viewing side of the display device. The effect of the present invention is remarkable when the front plate is provided with a plate-like body made of resin.
前面板の厚みは、例えば20μm以上200μm以下であってよく、好ましくは30μm以上200μm以下であり、より好ましくは40μm以上100μm以下である。 The thickness of the front plate may be, for example, 20 μm or more and 200 μm or less, preferably 30 μm or more and 200 μm or less, and more preferably 40 μm or more and 100 μm or less.
樹脂製の板状体としては、例えばシクロポリオレフィン系樹脂フィルム;トリアセチルセルロース、ジアセチルセルロース等の樹脂からなる酢酸セルロース系樹脂フィルム;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等の樹脂からなるポリエステル系樹脂フィルム;ポリカーボネート系樹脂フィルム;(メタ)アクリル系樹脂フィルム;ポリプロピレン系樹脂フィルム;ポリアミド系樹脂フィルム;ポリイミド系樹脂フィルム;ポリアミドイミド計樹脂フィルム等を挙げることができる。
画面に残る凹みを小さくする観点から、前面板は、ポリイミド系樹脂、ポリアミド系樹脂、及びポリアミドイミド系樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。前面板に好適な樹脂としては、上述の保護フィルムに好適な樹脂と同様の樹脂が挙げられる。
Examples of resin plate-like bodies include cyclopolyolefin resin films; cellulose acetate resin films made of resins such as triacetyl cellulose and diacetyl cellulose; polyester films made of resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; resin film; polycarbonate resin film; (meth)acrylic resin film; polypropylene resin film; polyamide resin film; polyimide resin film;
From the viewpoint of reducing dents remaining on the screen, the front plate preferably contains at least one selected from the group consisting of polyimide-based resins, polyamide-based resins, and polyamide-imide-based resins. Resins suitable for the front plate include the same resins as those suitable for the protective film described above.
前面板が樹脂フィルムを備える場合、画面に残る凹みを小さくする観点から、樹脂フィルムの降伏歪みは、4.5%以上であることが好ましく、5.0%以上であることがより好ましく、6.0%以上であることがさらに好ましい。降伏歪みは、例えば、10%以下であることができる。樹脂フィルムの降伏歪みは、保護フィルムの降伏歪みと同様の方法により測定される。 When the front plate is provided with a resin film, the yield strain of the resin film is preferably 4.5% or more, more preferably 5.0% or more, from the viewpoint of reducing the dent remaining on the screen. 0% or more is more preferable. Yield strain can be, for example, 10% or less. The yield strain of the resin film is measured by the same method as the yield strain of the protective film.
前面板が樹脂フィルムを備える場合、前面板は、樹脂フィルムの少なくとも一方の面にハードコート層を有するフィルムであってもよい。前面板は、偏光板側とは反対側の面にハードコート層を有することが好ましい。ハードコート層は、樹脂フィルムの一方の面に形成されていてもよいし、両方の面に形成されていてもよい。後述する表示装置がタッチパネル方式の表示装置である場合には、前面板の表面がタッチ面となるため、ハードコート層を有する樹脂フィルムが好適に用いられる。ハードコート層を設けることにより、硬度及び耐スクラッチ性を向上させた樹脂フィルムとすることができる。ハードコート層は、例えば紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えば(メタ)アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。ハードコート層は、強度を向上させるために添加剤を含んでいてもよい。添加剤は限定されることはなく、無機系微粒子、有機系微粒子又はこれらの混合物が挙げられる。 When the front plate comprises a resin film, the front plate may be a film having a hard coat layer on at least one surface of the resin film. The front plate preferably has a hard coat layer on the surface opposite to the polarizing plate. The hard coat layer may be formed on one surface of the resin film, or may be formed on both surfaces. When the display device described below is a touch panel type display device, a resin film having a hard coat layer is preferably used because the surface of the front panel serves as a touch surface. By providing a hard coat layer, a resin film having improved hardness and scratch resistance can be obtained. The hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of UV curable resins include (meth)acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, and epoxy resins. The hard coat layer may contain additives to improve strength. Additives are not limited and include inorganic fine particles, organic fine particles, or mixtures thereof.
ハードコート層の視認側には、耐摩耗層が形成されていることも好ましい。耐摩耗層は、耐摩耗性を向上させたり、皮脂などによる汚染を防止したりすることができる。前面板は、耐摩耗層を有することができ、耐摩耗層は、前面板の視認側表面を構成する層であることができる。耐摩耗層はフッ素化合物由来の構造を含むことができる。フッ素化合物としてはケイ素原子を有し、ケイ素原子にアルコキシ基やハロゲンのような加水分解性の基を有する化合物が好ましい。加水分解性基が脱水縮合反応することにより塗膜を形成することができ、また基材表面の活性水素と反応することにより耐摩耗層の密着性を向上させることができる。さらにフッ素化合物は、パーフルオロアルキル基やパーフルオロポリエーテル構造を有すると撥水性を付与することができるので好ましい。特に好ましいのはパーフルオロポリエーテル構造と炭素数4以上の長鎖のアルキル基とを有する含フッ素ポリオルガノシロキサン化合物である。フッ素化合物としては2種類以上の化合物を用いることも好ましい。さらに含むことが好ましいフッ素化合物としては、炭素数2以上のアルキレン基、及びパーフルオロアルキレン基を含む含フッ素オルガノシロキサン化合物である。 It is also preferable that an abrasion resistant layer is formed on the visible side of the hard coat layer. The wear-resistant layer can improve wear resistance and prevent contamination with sebum and the like. The front plate can have a wear-resistant layer, and the wear-resistant layer can be a layer that constitutes the viewing side surface of the front plate. The abrasion resistant layer can include structures derived from fluorine compounds. As the fluorine compound, a compound having a silicon atom and having a hydrolyzable group such as an alkoxy group or a halogen group on the silicon atom is preferable. A coating film can be formed by the dehydration condensation reaction of the hydrolyzable groups, and the adhesion of the wear-resistant layer can be improved by reacting with active hydrogen on the substrate surface. Further, the fluorine compound preferably has a perfluoroalkyl group or a perfluoropolyether structure because it can impart water repellency. Particularly preferred are fluorine-containing polyorganosiloxane compounds having a perfluoropolyether structure and a long-chain alkyl group having 4 or more carbon atoms. It is also preferable to use two or more kinds of compounds as the fluorine compound. A fluorine compound that is preferably further contained is a fluorine-containing organosiloxane compound containing an alkylene group having 2 or more carbon atoms and a perfluoroalkylene group.
耐摩耗層の厚さは、例えば1nm以上20nm以下である。また、耐摩耗層は撥水性を有しており、水接触角が例えば110~125°である。滑落法で測定した接触角ヒステリシス及び滑落角は、それぞれ3~20°、2~55°であることができる。更に、耐摩耗層は、シラノール縮合触媒、酸化防止剤、防錆剤、紫外線吸収剤、光安定剤、防カビ剤、抗菌剤、生物付着防止剤、消臭剤、顔料、難燃剤、帯電防止剤等、各種の添加剤を含有していてもよい。 The thickness of the wear-resistant layer is, for example, 1 nm or more and 20 nm or less. Further, the wear-resistant layer has water repellency and a water contact angle of, for example, 110 to 125°. The contact angle hysteresis and sliding angle measured by the sliding method can be 3-20° and 2-55°, respectively. Furthermore, the wear-resistant layer contains a silanol condensation catalyst, an antioxidant, an antirust agent, an ultraviolet absorber, a light stabilizer, an antifungal agent, an antibacterial agent, an anti-biadhesion agent, a deodorant, a pigment, a flame retardant, and an antistatic agent. It may contain various additives such as agents.
耐摩耗層とハードコート層との間にはプライマー層を設けてもよい。プライマー剤として、例えば紫外線硬化型、熱硬化型、湿気硬化型、あるいは2液硬化型のエポキシ系化合物等のプライマー剤がある。また、プライマー剤として、ポリアミック酸を用いてもよく、シランカップリング剤を用いることも好ましい。プライマー層の厚さは、例えば0.001~2μmである。 A primer layer may be provided between the wear-resistant layer and the hard coat layer. Examples of primer agents include UV-curing, heat-curing, moisture-curing, and two-liquid-curing epoxy compounds. Moreover, as a primer agent, polyamic acid may be used, and it is also preferable to use a silane coupling agent. The thickness of the primer layer is, for example, 0.001-2 μm.
ガラス板としては、ディスプレイ用強化ガラスが好ましく用いられる。ガラス板の厚みは、例えば20μm以上1000μm以下であり、20μm以上100μm以下であることができる。ガラス板を用いることにより、前面板は、優れた機械的強度及び表面硬度を有することができる。 As the glass plate, tempered glass for displays is preferably used. The thickness of the glass plate is, for example, 20 μm or more and 1000 μm or less, and can be 20 μm or more and 100 μm or less. By using a glass plate, the front plate can have excellent mechanical strength and surface hardness.
前面板は、表示装置の前面を保護する機能を有するのみではなく、タッチセンサとして
の機能、ブルーライトカット機能、視野角調整機能等を有するものであってもよい。
The front panel may not only have a function of protecting the front surface of the display device, but also have a function as a touch sensor, a blue light cut function, a viewing angle adjustment function, and the like.
[タッチセンサ]
タッチセンサパネルとしては、タッチされた位置を検出可能なセンサであれば、検出方式は限定されることはなく、抵抗膜方式、静電容量結合方式、光センサ方式、超音波方式、電磁誘導結合方式、表面弾性波方式等のタッチセンサパネルが例示される。低コストであることから、抵抗膜方式、静電容量結合方式のタッチセンサパネルが好適に用いられる。
[Touch sensor]
As a touch sensor panel, the detection method is not limited as long as it is a sensor that can detect the touched position, and the detection method is not limited, such as resistive film method, capacitive coupling method, optical sensor method, ultrasonic method, electromagnetic induction coupling. A touch sensor panel such as a system, a surface acoustic wave system, or the like is exemplified. Due to their low cost, touch sensor panels of resistive film type and capacitive coupling type are preferably used.
抵抗膜方式のタッチセンサパネルの一例は、互いに対向配置された一対の基板と、それら一対の基板の間に挟持された絶縁性スペーサーと、各基板の内側の全面に抵抗膜として設けられた透明導電膜と、タッチ位置検知回路とにより構成されている。抵抗膜方式のタッチセンサパネルを設けた表示装置においては、前面板の表面がタッチされると、対向する抵抗膜が短絡して、抵抗膜に電流が流れる。タッチ位置検知回路が、このときの電圧の変化を検知し、タッチされた位置が検出される。 An example of a resistive touch sensor panel includes a pair of substrates facing each other, an insulating spacer sandwiched between the pair of substrates, and a transparent spacer provided as a resistive film on the entire inner surface of each substrate. It is composed of a conductive film and a touch position detection circuit. In a display device provided with a resistive touch sensor panel, when the surface of the front plate is touched, the opposed resistive films are short-circuited and current flows through the resistive films. A touch position detection circuit detects the voltage change at this time, and the touched position is detected.
静電容量結合方式のタッチセンサパネルの一例は、基板と、基板の全面に設けられた位置検出用透明電極と、タッチ位置検知回路とにより構成されている。静電容量結合方式のタッチセンサパネルを設けた表示装置においては、前面板の表面がタッチされると、タッチされた点で人体の静電容量を介して透明電極が接地される。タッチ位置検知回路が、透明電極の接地を検知し、タッチされた位置が検出される。 An example of a capacitive touch sensor panel includes a substrate, a position detection transparent electrode provided on the entire surface of the substrate, and a touch position detection circuit. In a display device provided with a capacitive coupling type touch sensor panel, when the surface of the front plate is touched, the transparent electrode is grounded via the human body's capacitance at the touched point. A touch position sensing circuit senses the grounding of the transparent electrode and the touched position is detected.
[表示素子]
表示素子としては特に限定されず、例えば有機エレクトロルミネッセンス(有機EL)表示素子、無機エレクトロルミネッセンス(無機EL)表示素子、液晶表示素子等を挙げることができる。
[Display element]
The display element is not particularly limited, and examples thereof include an organic electroluminescence (organic EL) display element, an inorganic electroluminescence (inorganic EL) display element, a liquid crystal display element, and the like.
[表示装置]
本発明に係る表示装置は、本発明に係る積層体を含む。積層体は、前面板が視認側の表面を構成するように配置される。表示装置は特に限定されず、例えば有機EL表示装置、無機EL表示装置、液晶表示装置等の表示装置が挙げられる。本実施形態に係る表示装置は、樹脂フィルム製の前面板が表示装置に適用された場合であっても、画面に凹みが生じにくい。本実施形態に係る表示装置は、屈曲又は巻回等が可能なフレキシブルディスプレイとして用いることもできる。
[Display device]
A display device according to the present invention includes the laminate according to the present invention. The laminate is arranged such that the front plate constitutes the viewing side surface. The display device is not particularly limited, and examples thereof include display devices such as an organic EL display device, an inorganic EL display device, and a liquid crystal display device. In the display device according to the present embodiment, even when a front plate made of a resin film is applied to the display device, the screen is less likely to be dented. The display device according to this embodiment can also be used as a flexible display that can be bent or rolled.
本発明に係る表示装置は、スマートフォン、タブレット等のモバイル機器、テレビ、デジタルフォトフレーム、電子看板、測定器や計器類、事務用機器、医療機器、電算機器等として用いることができる。 The display device according to the present invention can be used as mobile devices such as smartphones and tablets, televisions, digital photo frames, electronic signboards, measuring instruments and gauges, office equipment, medical equipment, computing equipment, and the like.
[偏光板の製造方法、積層体の製造方法]
偏光板及び積層体は、粘着剤層や接着剤層を介して、部材同士を貼合する工程を含む方法によって製造することができる。積層体は、例えば、偏光板を製造する工程、偏光板と位相差フィルムとを粘着剤層で貼り合わせて円偏光板を得る工程、及び円偏光板と前面板とを粘着剤層で貼り合わせて積層体を得る工程を含む工程から製造され得る。円偏光板と前面板とを粘着剤層で貼り合わせて積層体を得る工程は、前述の保護フィルムと前面板とが粘着剤層を介して対向するように行われることができる。
[Method for producing polarizing plate, method for producing laminate]
A polarizing plate and a laminate can be produced by a method including a step of bonding members together via a pressure-sensitive adhesive layer or an adhesive layer. The laminate is, for example, a step of manufacturing a polarizing plate, a step of bonding the polarizing plate and the retardation film with an adhesive layer to obtain a circularly polarizing plate, and bonding the circularly polarizing plate and the front plate with an adhesive layer. It can be manufactured from a process including a step of obtaining a laminate by pressing. The step of bonding the circularly polarizing plate and the front plate together with the adhesive layer to obtain the laminate can be performed so that the protective film and the front plate face each other with the adhesive layer interposed therebetween.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.
[厚みの測定]
積層体をなす各層の厚みは、接触式膜厚測定装置(株式会社ニコン製「MS-5C」)を用いて測定した。
[Thickness measurement]
The thickness of each layer forming the laminate was measured using a contact-type film thickness measuring device ("MS-5C" manufactured by Nikon Corporation).
[位相差値の測定]
王子計測機器株式会社製の位相差計“KOBRA(登録商標)-WPR”を用い、23℃の温度において、波長590nmでの面内位相差値、及び厚み方向の位相差値を測定した。
[Measurement of phase difference value]
Using a phase difference meter “KOBRA (registered trademark)-WPR” manufactured by Oji Scientific Instruments Co., Ltd., the in-plane retardation value and the thickness direction retardation value at a wavelength of 590 nm were measured at a temperature of 23°C.
[面配向係数の算出]
面配向係数ΔPは、上述の”KOBRA-WPR”を用いた測定で得られた3次元屈折率から、以下の定義式に従って、面配向係数ΔPを算出した。
ΔP=(n+n)/2-n
[Calculation of plane orientation coefficient]
The plane orientation coefficient ΔP was calculated from the three-dimensional refractive index obtained by the measurement using the above-mentioned "KOBRA-WPR" according to the following definitional formula.
ΔP = (n x +n y )/2-n z
 [降伏歪みの測定]
測定対象の保護フィルムから、ダンベルカッターを用いてJIS K6251ダンベル状2号形でカットした。引張試験機〔株式会社島津製作所製 オートグラフ AGS-X試験機〕の上下つかみ具で、つかみ具の間隔が80mmとなるように小片の長辺方向両端を挟んだ。温度23℃、相対湿度50%の環境下、引張速度100mm/分で小片をその長辺方向に引っ張って、応力-ひずみ曲線を作成した。得られた曲線において、最初に線形が非線形になった時を降伏点とし、その時の歪み(%)を降伏歪みとして求めた。
[Measurement of yield strain]
The protective film to be measured was cut into JIS K6251 dumbbell shape No. 2 using a dumbbell cutter. Both ends of the small piece in the long side direction were sandwiched between upper and lower grips of a tensile tester [Autograph AGS-X tester manufactured by Shimadzu Corporation] so that the distance between the grips was 80 mm. A stress-strain curve was created by pulling the small piece in its long side direction at a tensile speed of 100 mm/min under an environment of temperature 23° C. and relative humidity 50%. In the resulting curve, the time when the linearity first became non-linear was defined as the yield point, and the strain (%) at that point was determined as the yield strain.
[保護フィルムの準備]
以下の保護フィルムを準備した。
[Preparing protective film]
The following protective films were prepared.
<保護フィルムA:PAI-1>
窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、N,N-ジメチルアセトアミド(DMAc) 313.6gを加え、室温で撹拌しながら2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB) 18.36g(57.33mmol)を加えて、DMAcに溶解させた。次に、反応液を10℃に冷却した。冷却後、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA) 7.718g(17.37mol)を添加し、10℃を維持したまま、16時間撹拌した。その後、4,4’-オキシビス(ベンゾイルクロリド)(OBBC)1.709 g(5.791mmol)とテレフタロイルクロリド(TPC) 6.576g(32.39mmol)をフラスコに加え、10℃で2時間撹拌した。次いで、フラスコにN,N-ジイソプロピルエチルアミン 5.240g(40.54mmol) と無水酢酸 12.416g(121.6mmol)、4-メチルピリジン 3.775g(40.54mmol)を加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。得られた反応液を室温まで冷却し、攪拌し、反応液の質量の1.385倍の質量にあたるメタノールを徐々に投入し、その後、得られた反応液の質量の0.6924倍の質量にあたる水を徐々に投入した。析出した沈殿物を取り出し、メタノールで洗浄した。次に、80℃にて沈殿物の減圧乾燥を行い、PAI-1樹脂を得た。
<Protective film A: PAI-1>
In a nitrogen gas atmosphere, 313.6 g of N,N-dimethylacetamide (DMAc) was added to a 1 L separable flask equipped with a stirring blade, and 2,2′-bis(trifluoromethyl)-4, 2,2′-bis(trifluoromethyl)-4, 18.36 g (57.33 mmol) of 4′-diaminodiphenyl (TFMB) was added and dissolved in DMAc. The reaction was then cooled to 10°C. After cooling, 7.718 g (17.37 mol) of 4,4′-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA) was added to the flask and stirred for 16 hours while maintaining the temperature at 10°C. After that, 1.709 g (5.791 mmol) of 4,4′-oxybis(benzoyl chloride) (OBBC) and 6.576 g (32.39 mmol) of terephthaloyl chloride (TPC) were added to the flask and heated at 10° C. for 2 hours. Stirred. Next, 5.240 g (40.54 mmol) of N,N-diisopropylethylamine, 12.416 g (121.6 mmol) of acetic anhydride, and 3.775 g (40.54 mmol) of 4-methylpyridine were added to the flask and stirred at room temperature for 30 minutes. After that, the temperature was raised to 70° C. using an oil bath, and the mixture was further stirred for 3 hours to obtain a reaction liquid. The resulting reaction solution is cooled to room temperature, stirred, and gradually added with methanol corresponding to 1.385 times the mass of the reaction solution, and then 0.6924 times the mass of the resulting reaction solution. Water was added gradually. The deposited precipitate was taken out and washed with methanol. Next, the precipitate was dried under reduced pressure at 80° C. to obtain PAI-1 resin.
得られたPAI-1樹脂にγ-ブチロラクトン(GBL)を加え、7.7質量%のPAI-1ワニスを作製した。得られたPAI-1ワニスを、ガラス基材の平滑面上に最終的に得られるフィルムの膜厚が30μmになるようにアプリケーターを用いて塗工し、140℃で30分間、乾燥し、自立膜を得た。得られた自立膜を金枠に固定し、210℃で90分間、乾燥し、膜厚30μmの保護フィルムAを得た。 γ-Butyrolactone (GBL) was added to the obtained PAI-1 resin to prepare 7.7% by mass of PAI-1 varnish. The obtained PAI-1 varnish is applied on the smooth surface of the glass substrate using an applicator so that the thickness of the film finally obtained is 30 μm, dried at 140 ° C. for 30 minutes, and is freestanding. A membrane was obtained. The resulting self-supporting film was fixed to a metal frame and dried at 210° C. for 90 minutes to obtain a protective film A with a film thickness of 30 μm.
<保護フィルムB:PAI-2>
窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、DMAc 313.6gを加え、室温で撹拌しながらTFMB 16.77g(52.37mmol)を加えて、DMAcに溶解させた。次に、6FDA 4.797g(10.80mmol)と下記式(A)で表されるテトラカルボン酸二無水物(TAHMBP)6.679g(10.80mmol)を添加し、室温で16時間撹拌した。
<Protective film B: PAI-2>
In a nitrogen gas atmosphere, 313.6 g of DMAc was added to a 1 L separable flask equipped with a stirring blade, and 16.77 g (52.37 mmol) of TFMB was added with stirring at room temperature to dissolve in DMAc. Next, 4.797 g (10.80 mmol) of 6FDA and 6.679 g (10.80 mmol) of tetracarboxylic dianhydride (TAHMBP) represented by the following formula (A) were added and stirred at room temperature for 16 hours.
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
 その後、テレフタロイルクロリド(TPC) 6.576g(32.39mmol)をフラスコに加え、室温で2時間撹拌した。次いで、フラスコにN,N-ジイソプロピルエチルアミン 5.582g(43.19mmol)と無水酢酸 7.716g(75.58mmol)、4-メチルピリジン4.022g(43.19mmol)を加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。得られた反応液を室温まで冷却し、攪拌し、反応液の重量の1.385倍の質量にあたるメタノールを徐々に投入し、その後、得られた反応液の質量の0.6924倍の質量にあたる水を徐々に投入した。析出した沈殿物を取り出し、メタノールで洗浄した。次に、80℃にて沈殿物の減圧乾燥を行い、PAI-2樹脂を得た。 After that, 6.576 g (32.39 mmol) of terephthaloyl chloride (TPC) was added to the flask and stirred at room temperature for 2 hours. Next, 5.582 g (43.19 mmol) of N,N-diisopropylethylamine, 7.716 g (75.58 mmol) of acetic anhydride, and 4.022 g (43.19 mmol) of 4-methylpyridine were added to the flask and stirred at room temperature for 30 minutes. After that, the temperature was raised to 70° C. using an oil bath, and the mixture was further stirred for 3 hours to obtain a reaction liquid. The resulting reaction solution is cooled to room temperature, stirred, and gradually added with methanol in an amount of 1.385 times the weight of the reaction solution, and then added in an amount of 0.6924 times the weight of the reaction solution. Water was added gradually. The deposited precipitate was taken out and washed with methanol. Next, the precipitate was dried under reduced pressure at 80° C. to obtain PAI-2 resin.
得られた、PAI-2樹脂にDMAcを加え、10.5質量%のPAI-2ワニスを作製した。得られたPAI-2ワニスを、ガラス基材の平滑面上に最終的に得られるフィルムの膜厚が30μmになるようにアプリケーターを用いて塗工し、140℃で30分間、乾燥し、自立膜を得た。得られた自立膜を金枠に固定し、210℃で90分間、乾燥し、膜厚30μmの保護フィルムBを得た。 DMAc was added to the obtained PAI-2 resin to prepare 10.5% by mass of PAI-2 varnish. The obtained PAI-2 varnish is applied on the smooth surface of the glass substrate using an applicator so that the thickness of the film finally obtained is 30 μm, dried at 140 ° C. for 30 minutes, and is freestanding. A membrane was obtained. The resulting self-supporting film was fixed to a metal frame and dried at 210° C. for 90 minutes to obtain a protective film B with a thickness of 30 μm.
<保護フィルムC:COP-1>
シクロオレフィンポリマー(COP)フィルム(日本ゼオン株式会社製、ゼオノアフィルム 製品名:ZF14、膜厚23μm)
<Protective film C: COP-1>
Cycloolefin polymer (COP) film (manufactured by Nippon Zeon Co., Ltd., Zeonor film product name: ZF14, film thickness 23 μm)
<保護フィルムD:COP-2>
シクロオレフィンポリマー(COP)フィルム(日本ゼオン株式会社製、ゼオノアフィルム ZB12、膜厚50μm)
<Protective film D: COP-2>
Cycloolefin polymer (COP) film (manufactured by Nippon Zeon Co., Ltd., Zeonor film ZB12, film thickness 50 μm)
<保護フィルムE:TAC>
トリアセチルセルロース(TAC)フィルム(コニカミノルタ株式会社製、膜厚25μm)
<Protective film E: TAC>
Triacetyl cellulose (TAC) film (manufactured by Konica Minolta, film thickness 25 μm)
[偏光子]
以下の偏光子形成用組成物を準備した。偏光子形成用組成物は、化合物(1-6)75質量部、化合物(1-7)25質量部、二色性染料としての上記式(2-1a)、(2-1b)、(2-3a)で示されるアゾ色素各2.5質量部、重合開始剤としての2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(Irgacure369、BASFジャパン社製)6質量部、及びレベリング剤としてのポリアクリレート化合物(BYK-361N、BYK-Chemie社製)1.2質量部を、溶剤のトルエン400質量部に混合し、得られた混合物を80℃で1時間攪拌することにより調製した。
[Polarizer]
The following polarizer-forming composition was prepared. The polarizer-forming composition comprises 75 parts by mass of compound (1-6), 25 parts by mass of compound (1-7), and the above formulas (2-1a), (2-1b), and (2) as dichroic dyes. -3a) each 2.5 parts by mass of the azo dye, 2-dimethylamino-2-benzyl-1-(4-morpholinophenyl)butan-1-one as a polymerization initiator (Irgacure 369, manufactured by BASF Japan) 6 parts by mass and 1.2 parts by mass of a polyacrylate compound (BYK-361N, manufactured by BYK-Chemie) as a leveling agent are mixed with 400 parts by mass of toluene as a solvent, and the resulting mixture is heated at 80° C. for 1 hour. Prepared by stirring.
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000022
[位相差フィルム]
下記に示す各成分を混合し、得られた混合物を80℃で1時間攪拌することにより、位相差層用組成物を得た。
下記式で示される化合物b-1:80質量部
Figure JPOXMLDOC01-appb-I000023
[Retardation film]
The components shown below were mixed, and the resulting mixture was stirred at 80° C. for 1 hour to obtain a retardation layer composition.
Compound b-1 represented by the following formula: 80 parts by mass
Figure JPOXMLDOC01-appb-I000023
下記式で示される化合物b-2:20質量部
Figure JPOXMLDOC01-appb-I000024
Compound b-2 represented by the following formula: 20 parts by mass
Figure JPOXMLDOC01-appb-I000024
重合開始剤(Irgacure369、2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン、BASFジャパン社製):6質量部
レベリング剤(BYK-361N、ポリアクリレート化合物、BYK-Chemie社製):0.1質量部
溶剤(シクロペンタノン):400質量部
Polymerization initiator (Irgacure 369, 2-dimethylamino-2-benzyl-1-(4-morpholinophenyl) butan-1-one, manufactured by BASF Japan): 6 parts by mass Leveling agent (BYK-361N, polyacrylate compound, BYK -Chemie): 0.1 parts by mass Solvent (cyclopentanone): 400 parts by mass
基材フィルム上に配向膜形成用組成物をバーコート法により塗布し、80℃の乾燥オーブン中で1分間加熱乾燥した。得られた乾燥被膜に偏光UV照射処理を施して配向膜を形成した。偏光UV照射処理は、UV照射装置(SPOT CURE SP-7;ウシオ電機株式会社製)から照射される光を、ワイヤーグリッド(UIS-27132##、ウシオ電機株式会社製)を透過させて、波長365nmで測定した積算光量が100mJ/cmとなる条件で行った。また、偏光UVの偏光方向は偏光子の吸収軸に対して45°となるように行った。このようにして、「基材フィルム/配向膜」からなる積層体を得た。配向膜の厚みは100nmであった。 The composition for forming an alignment film was applied onto the substrate film by a bar coating method, and dried by heating in a drying oven at 80° C. for 1 minute. The resulting dry film was subjected to polarized UV irradiation treatment to form an alignment film. In the polarized UV irradiation treatment, light emitted from a UV irradiation device (SPOT CURE SP-7; manufactured by Ushio Inc.) is transmitted through a wire grid (UIS-27132##, manufactured by Ushio Inc.) to obtain a wavelength of The measurement was performed under the condition that the integrated amount of light measured at 365 nm was 100 mJ/cm 2 . Also, the polarization direction of the polarized UV was set at 45° with respect to the absorption axis of the polarizer. Thus, a laminate composed of "base film/alignment film" was obtained. The thickness of the alignment film was 100 nm.
配向膜上に、位相差層用組成物をバーコート法により塗布し、120℃の乾燥オーブンで1分間加熱乾燥した後、室温まで冷却した。得られた乾燥被膜に、上記UV照射装置を用いて、積算光量1000mJ/cm(365nm基準)の紫外線を照射することにより、位相差層を形成した。得られた位相差層の厚みをレーザー顕微鏡(オリンパス株式会社製OLS3000)により測定したところ、2.0μmであった。位相差層は、面内方向にλ/4の位相差値を示す逆波長分散性のλ/4層であった。
層体を得た。
The retardation layer composition was applied onto the alignment film by a bar coating method, dried by heating in a drying oven at 120° C. for 1 minute, and then cooled to room temperature. A retardation layer was formed by irradiating the obtained dry film with ultraviolet light at an integrated light amount of 1000 mJ/cm 2 (365 nm standard) using the above UV irradiation device. When the thickness of the obtained retardation layer was measured with a laser microscope (OLS3000 manufactured by Olympus Corporation), it was 2.0 μm. The retardation layer was a λ/4 layer with reverse wavelength dispersion exhibiting a retardation value of λ/4 in the in-plane direction.
A laminate was obtained.
[前面板]
以下の前面板を準備した。
[Front plate]
The following front panel was prepared.
<ポリアミドイミド樹脂の合成>
窒素ガス雰囲気下、セパラブルフラスコに撹拌翼を備えた反応容器と、オイルバスとを準備した。オイルバスに設置した反応容器に、TFMB45部と、DMAc768.55部とを投入した。反応容器内の内容物を室温で撹拌しながらTFMBをDMAcに溶解させた。反応容器内に6FDA19.01部をさらに投入し、反応容器内の内容物を室温で3時間撹拌した。OBBC4.21部、次いでTPC17.30部を反応容器に投入し、反応容器内の内容物を室温で1時間撹拌した。反応容器内に4-メチルピリジン4.63部と無水酢酸13.04部とをさらに投入し、反応容器内の内容物を室温で30分間撹拌した。撹拌した後、オイルバスを用いて容器内温度を70℃に昇温し、70℃に維持してさらに3時間撹拌し、反応液を得た。得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、沈殿物を析出させた。析出した沈殿物を取り出し、メタノール中に6時間浸漬した後、メタノールで洗浄した。100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂1を得た。得られたポリアミドイミド樹脂の重量平均分子量は400,000、イミド化率は99.0%であった。
<Synthesis of polyamideimide resin>
Under a nitrogen gas atmosphere, a separable flask equipped with a stirring blade and a reaction vessel and an oil bath were prepared. 45 parts of TFMB and 768.55 parts of DMAc were charged into a reaction vessel placed in an oil bath. TFMB was dissolved in DMAc while stirring the contents of the reaction vessel at room temperature. 19.01 parts of 6FDA was further charged into the reaction vessel, and the contents in the reaction vessel were stirred at room temperature for 3 hours. 4.21 parts of OBBC and then 17.30 parts of TPC were added to the reactor, and the contents of the reactor were stirred at room temperature for 1 hour. 4.63 parts of 4-methylpyridine and 13.04 parts of acetic anhydride were further charged into the reaction vessel, and the contents in the reaction vessel were stirred at room temperature for 30 minutes. After stirring, the temperature inside the container was raised to 70°C using an oil bath, and the mixture was stirred for another 3 hours while maintaining the temperature at 70°C to obtain a reaction liquid. The resulting reaction solution was cooled to room temperature and poured into a large amount of methanol in a filamentous form to deposit a precipitate. The deposited precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. The precipitate was dried under reduced pressure at 100° C. to obtain polyamide-imide resin 1. The resulting polyamide-imide resin had a weight average molecular weight of 400,000 and an imidization rate of 99.0%.
<前面板用光学フィルムの製造>
ポリアミドイミド樹脂(TPC/6FDA/OBBC/TFMB=60/30/10/100)をGBLで希釈し、GBL置換シリカゾルを加えて十分に混合することで、樹脂/シリカ粒子混合ワニスを得た。その際、樹脂とシリカ粒子の濃度が9.7質量%となるように混合ワニスを調製した。得られたポリアミドイミドワニスを目開き10μmのフィルターでろ過した後、ポリエステル基材(東洋紡株式会社製、商品名「A4100」)の平滑面上に最終的に得られるフィルムの膜厚が40μmとなるように塗布し、流涎成形し、ワニスの塗膜を成形した。この時、線速度は0.8m/分であった。ワニスの塗膜を、80℃で10分加熱し、さらに100℃で10分加熱し、さらに90℃で10分加熱した。
その後、200℃で25分、塗膜を加熱(ポストベーク)することにより、膜厚40μmのポリイミドフィルムを得た。
<Manufacture of optical film for front panel>
A resin/silica particle mixed varnish was obtained by diluting a polyamideimide resin (TPC/6FDA/OBBC/TFMB=60/30/10/100) with GBL, adding a GBL-substituted silica sol, and mixing thoroughly. At that time, a mixed varnish was prepared so that the concentration of the resin and silica particles was 9.7% by mass. After filtering the obtained polyamide-imide varnish with a filter having an opening of 10 μm, the thickness of the film finally obtained on the smooth surface of the polyester substrate (manufactured by Toyobo Co., Ltd., trade name “A4100”) is 40 μm. Then, the varnish coating film was molded by casting. At this time, the linear velocity was 0.8 m/min. The varnish coating was heated at 80° C. for 10 minutes, further heated at 100° C. for 10 minutes, and further heated at 90° C. for 10 minutes.
After that, the coating film was heated (post-baked) at 200° C. for 25 minutes to obtain a polyimide film having a thickness of 40 μm.
<ハードコート用光硬化性樹脂組成物の調製>
ウレタンアクリレート(Miwon Specialty Chemical Co., Ltd.「MIRAMER 620D」(商品名))19質量部、多官能アクリレート(Miwon Specialty Chemical Co., Ltd.「MIRAMER SP1106」(商品名))19質量部、五酸化アンチモン(東洋インキ(株)製「TYS-F90-KR」20質量部、メチルエチルケトン(東京化成工業(株)製)38質量部、レベリング剤(ビックケミージャパン(株)製「BYK」(登録商標)-307)0.3質量部を撹拌混合し、光硬化性樹脂組成物を得た。
<Preparation of Photocurable Resin Composition for Hard Coat>
Urethane acrylate (Miwon Specialty Chemical Co., Ltd. “MIRAMER 620D” (trade name)) 19 parts by mass, polyfunctional acrylate (Miwon Specialty Chemical Co., Ltd. “MIRAMER SP1106” (trade name)) 19 parts by mass, five Antimony oxide ("TYS-F90-KR" manufactured by Toyo Ink Co., Ltd. 20 parts by mass, methyl ethyl ketone (manufactured by Tokyo Chemical Industry Co., Ltd.) 38 parts by mass, leveling agent (manufactured by BYK Chemie Japan Co., Ltd. "BYK" (registered trademark )-307) 0.3 parts by mass were stirred and mixed to obtain a photocurable resin composition.
<前面板の製造>
上記記載のように製造したポリアミドイミドフィルムの片面に、上記光硬化性樹脂組成物を乾燥後の厚さが10μmとなるようにロール・ツー・ロール方式で塗工した。その後、80℃のオーブンで3分間乾燥を行い、紫外線を照射して硬化させることで、前面板を得た。紫外線の照射は、高圧水銀灯を用い、積層光量が500mJ/cmとなるように行った。前面板におけるハードコート層の厚さは10μmであった。
<Manufacture of front plate>
On one side of the polyamide-imide film produced as described above, the photocurable resin composition was applied by a roll-to-roll method so that the thickness after drying was 10 μm. After that, it was dried in an oven at 80° C. for 3 minutes and cured by irradiation with ultraviolet rays to obtain a front plate. A high-pressure mercury lamp was used to irradiate the ultraviolet rays so that the lamination light amount was 500 mJ/cm 2 . The thickness of the hard coat layer on the front plate was 10 μm.
[円偏光板の作製]
<直線偏光板の作製>
上述の保護フィルムA~Eにコロナ処理を施した。コロナ処理の条件は、出力0.3kW、処理速度3m/分とした。その後、保護フィルムA~E上に、配向膜形成用組成物をバーコート法により塗布し、80℃の乾燥オーブン中で1分間加熱乾燥した。得られた乾燥被膜に偏光UV照射処理を施して配向膜を形成した。偏光UV処理は、UV照射装置(SPOT CURE SP-7;ウシオ電機株式会社製)から照射される光を、ワイヤーグリッド(UIS-27132##、ウシオ電機株式会社製)を透過させて、波長365nmで測定した積算光量が100mJ/cmである条件で行った。配向膜の厚みは100nmであった。
[Production of circularly polarizing plate]
<Preparation of linear polarizing plate>
The protective films A to E described above were subjected to corona treatment. The corona treatment conditions were an output of 0.3 kW and a treatment speed of 3 m/min. After that, the alignment film-forming composition was applied onto the protective films A to E by a bar coating method, and dried by heating in a drying oven at 80° C. for 1 minute. The resulting dry film was subjected to polarized UV irradiation treatment to form an alignment film. In the polarized UV treatment, light emitted from a UV irradiation device (SPOT CURE SP-7; manufactured by Ushio Inc.) is transmitted through a wire grid (UIS-27132##, manufactured by Ushio Inc.) to obtain a wavelength of 365 nm. was 100 mJ/cm 2 . The thickness of the alignment film was 100 nm.
形成した配向膜上に、偏光子形成用組成物をバーコート法により塗布し、120℃の乾燥オーブンにて1分間加熱乾燥した後、室温まで冷却した。上記UV照射装置を用いて、積算光量1200mJ/cm(365nm基準)で紫外線を、乾燥被膜に照射することにより、偏光子を形成した。得られた偏光子の厚みをレーザー顕微鏡(オリンパス株式会社製 OLS3000)により測定したところ、1.8μmであった。 The polarizer-forming composition was applied onto the formed alignment film by a bar coating method, dried by heating in a drying oven at 120° C. for 1 minute, and then cooled to room temperature. A polarizer was formed by irradiating the dry film with ultraviolet rays at an integrated light amount of 1200 mJ/cm 2 (365 nm standard) using the above UV irradiation apparatus. When the thickness of the obtained polarizer was measured with a laser microscope (OLS3000 manufactured by Olympus Corporation), it was 1.8 μm.
保護層(オーバーコート層、OC層)用組成物を準備した。保護層用組成物は、水100質量部に対して、ポリビニルアルコール樹脂粉末(株式会社クラレ製、平均重合度18000、商品名:KL-318)3質量部と、ポリアミドエポキシ樹脂(架橋剤、住化ケムテックス株式会社製、商品名:SR650(30))1.5質量部とを混合して調製した。 A composition for a protective layer (overcoat layer, OC layer) was prepared. The protective layer composition is composed of 3 parts by weight of polyvinyl alcohol resin powder (manufactured by Kuraray Co., Ltd., average degree of polymerization: 18000, trade name: KL-318) and polyamide epoxy resin (crosslinking agent, resin) per 100 parts by weight of water. Ka Chemtex Co., Ltd., trade name: SR650 (30)) was mixed with 1.5 parts by mass.
偏光子上に、保護層用組成物をバーコート法により乾燥後の厚みが1.0μmとなるように塗工し、温度80℃で3分間乾燥した。 The protective layer composition was applied onto the polarizer by a bar coating method so that the thickness after drying was 1.0 μm, and dried at a temperature of 80° C. for 3 minutes.
<円偏光板の作製>
アクリル系粘着剤層を介して、OC層とλ/4層とを貼り合わせた。λ/4層の形成に用いた基材フィルムを剥離した。このようにして、保護フィルム/配向膜/偏光子/保護層(OC層)/粘着剤層/λ/4層の層構成を有する円偏光板を作製した。
<Production of circularly polarizing plate>
The OC layer and the λ/4 layer were bonded together via the acrylic pressure-sensitive adhesive layer. The base film used for forming the λ/4 layer was peeled off. Thus, a circularly polarizing plate having a layer structure of protective film/orientation film/polarizer/protective layer (OC layer)/adhesive layer/λ/4 layers was produced.
[積層体の作製]
前面板のハードコート層が形成されていない面と、円偏光板の保護フィルム面とが対向するように、前面板と円偏光板とを、アクリル系粘着剤層で積層した。積層体は、「前面板/粘着剤層/円偏光板」の層構成を有する。
[Preparation of laminate]
The front plate and the circularly polarizing plate were laminated with an acrylic pressure-sensitive adhesive layer such that the surface of the front plate on which the hard coat layer was not formed faced the protective film surface of the circularly polarizing plate. The laminate has a layer structure of "front plate/adhesive layer/circularly polarizing plate".
[押し込み引っかき試験]
積層体を、粘着剤層を介して、有機ELパネルの代用品に貼り合わせて、サンプルを作製した。有機ELパネルの代用品は、「シクロオレフィンポリマー(COP)フィルム(厚み25μm)/アクリル系粘着剤層(厚み50μm)/COPフィルム(厚み25μm)/アクリル系粘着剤層(厚み50μm)/ガラス板」の層構成を有する。なお、積層体は、前面板がサンプルの表面を構成するように有機ELパネルの代用品に貼り合わせた。
[Indentation scratch test]
A sample was prepared by bonding the laminate to a substitute for an organic EL panel via an adhesive layer. A substitute for the organic EL panel is "cycloolefin polymer (COP) film (thickness 25 μm) / acrylic adhesive layer (thickness 50 μm) / COP film (thickness 25 μm) / acrylic adhesive layer (thickness 50 μm) / glass plate ” layer structure. The laminate was attached to a substitute for the organic EL panel so that the front plate constituted the surface of the sample.
テスト用ペンとして、以下のペンを準備した。
ペン:先端は、ポリアセタールで構成されている。ポリアセタールの引張弾性率は3GPa程度である。
The following pens were prepared as test pens.
Pen: The tip is composed of polyacetal. Polyacetal has a tensile modulus of about 3 GPa.
前面板の表面に、テスト用ペンが90度の角度で接するように固定した。テスト用ペンに200gf又は500gfの荷重をかけた。テスト用ペンを500mm/分の速度で30mmの直線上を一往復させた。その後、サンプルを23℃50%相対湿度の環境で2時間放置した。 A test pen was fixed to the surface of the front plate so as to contact it at an angle of 90 degrees. A load of 200 gf or 500 gf was applied to the test pen. The test pen was reciprocated once in a straight line of 30 mm at a speed of 500 mm/min. After that, the sample was allowed to stand in an environment of 23° C. and 50% relative humidity for 2 hours.
引っかき痕の凹みを、2次元測定機(DEKTAK T-Standard 6M;Veeco社製造)を用いて測定した。引っかき痕の凹みは、サンプルの前面板表面でテスト用ペンを一往復させた直線上における深さ(周囲からの凹み)の最大値とする。表1に、引っかき痕の凹みの測定値を示す。 The recesses of the scratch marks were measured using a two-dimensional measuring machine (DEKTAK T-Standard 6M; manufactured by Veeco). The dent of the scratch mark is the maximum depth (dent from the surroundings) on a straight line where the test pen is reciprocated on the front plate surface of the sample. Table 1 shows the measured values of the scratch mark indentations.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
10、20、30 偏光板
40 積層体
11、21、31、41 偏光子
12、22、24、32、42 保護フィルム
13、23、25、33、43 接着剤層
34、44、46 粘着剤層
35、45 位相差フィルム
47 前面板
10, 20, 30 polarizing plate 40 laminate 11, 21, 31, 41 polarizer 12, 22, 24, 32, 42 protective film 13, 23, 25, 33, 43 adhesive layer 34, 44, 46 adhesive layer 35, 45 retardation film 47 front panel

Claims (9)

  1. 保護フィルム、及び偏光子を備え、
    前記偏光子と、前記保護フィルムとは、隣接しており、
    前記保護フィルムは、100mm/分の速度で引張試験を行ったときの降伏歪みが4.0%以上である偏光板。
    Equipped with a protective film and a polarizer,
    The polarizer and the protective film are adjacent to each other,
    A polarizing plate in which the protective film has a yield strain of 4.0% or more when a tensile test is performed at a speed of 100 mm/min.
  2. 前記保護フィルムは、ポリイミド系樹脂、ポリアミド系樹脂、及びポリアミドイミド系樹脂からなる群から選ばれる少なくとも1種を含む、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the protective film contains at least one selected from the group consisting of polyimide-based resins, polyamide-based resins, and polyamideimide-based resins.
  3. 前記保護フィルムは、厚み方向の位相差値Rthが200nm以上である、請求項1又は2に記載の偏光板。 3. The polarizing plate according to claim 1, wherein the protective film has a thickness direction retardation value Rth of 200 nm or more.
  4. 前記保護フィルムは、面配向係数ΔPの絶対値が0.003以上である、請求項1~3のいずれかに記載の偏光板。 4. The polarizing plate according to claim 1, wherein the protective film has an absolute value of plane orientation coefficient ΔP of 0.003 or more.
  5. 前記保護フィルムは、厚みが5μm以上60μm以下である、請求項1~4のいずれかに記載の偏光板。 5. The polarizing plate according to claim 1, wherein the protective film has a thickness of 5 μm or more and 60 μm or less.
  6. 前面板、粘着剤層、及び、請求項1~5のいずれかに記載の偏光板を備え、
    前記前面板と、前記保護フィルムとは、粘着剤層により積層されている積層体。
    A front plate, an adhesive layer, and a polarizing plate according to any one of claims 1 to 5,
    A laminate in which the front plate and the protective film are laminated by an adhesive layer.
  7. 前記前面板は、ポリイミド系樹脂、ポリアミド系樹脂、及びポリアミドイミド系樹脂からなる群から選ばれる少なくとも1種を含む、請求項6に記載の積層体。 The laminate according to claim 6, wherein the front plate contains at least one selected from the group consisting of polyimide resin, polyamide resin, and polyamideimide resin.
  8. 前記前面板は、前記偏光板側とは反対側の面にハードコート層を有する、請求項6又は7に記載の積層体。 8. The laminate according to claim 6, wherein the front plate has a hard coat layer on the surface opposite to the polarizing plate.
  9. 請求項6~8のいずれかに記載の積層体を備える表示装置。 A display device comprising the laminate according to any one of claims 6 to 8.
PCT/JP2022/017098 2021-04-15 2022-04-05 Polarizing plate, laminate, and display device WO2022220177A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237029533A KR20230169078A (en) 2021-04-15 2022-04-05 Polarizers, laminates, and display devices
CN202280028080.4A CN117120897A (en) 2021-04-15 2022-04-05 Polarizing plate, laminate, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-068853 2021-04-15
JP2021068853A JP2022163804A (en) 2021-04-15 2021-04-15 Polarizing plate, laminate, and display device

Publications (1)

Publication Number Publication Date
WO2022220177A1 true WO2022220177A1 (en) 2022-10-20

Family

ID=83639666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017098 WO2022220177A1 (en) 2021-04-15 2022-04-05 Polarizing plate, laminate, and display device

Country Status (4)

Country Link
JP (1) JP2022163804A (en)
KR (1) KR20230169078A (en)
CN (1) CN117120897A (en)
WO (1) WO2022220177A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159285A1 (en) * 2017-03-02 2018-09-07 東洋紡株式会社 Polyester film as surface protective film for foldable display and application thereof
WO2020138046A1 (en) * 2018-12-28 2020-07-02 住友化学株式会社 Optical film
JP2021002070A (en) * 2013-05-14 2021-01-07 東洋紡株式会社 Liquid crystal display device, polarizing plate, and polarizer protection film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080258B2 (en) 2005-02-03 2012-11-21 富士フイルム株式会社 Liquid crystal display
KR101862252B1 (en) 2015-08-03 2018-05-29 주식회사 엘지화학 Flexible plastic film
JP7268967B2 (en) 2018-06-22 2023-05-08 日東電工株式会社 Adhesive layer for flexible image display device, laminate for flexible image display device, and flexible image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002070A (en) * 2013-05-14 2021-01-07 東洋紡株式会社 Liquid crystal display device, polarizing plate, and polarizer protection film
WO2018159285A1 (en) * 2017-03-02 2018-09-07 東洋紡株式会社 Polyester film as surface protective film for foldable display and application thereof
WO2020138046A1 (en) * 2018-12-28 2020-07-02 住友化学株式会社 Optical film

Also Published As

Publication number Publication date
KR20230169078A (en) 2023-12-15
CN117120897A (en) 2023-11-24
JP2022163804A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
CN112041707B (en) Optical film, optical laminate, and flexible image display device
JP2018119144A (en) Polyimide-based film and laminate
JP6896787B2 (en) Optical film, optical laminate and flexible image display device
JP6738946B1 (en) Optical film
JP6722325B2 (en) Optical film
JP2019202551A (en) Optical laminate
JP2020037675A (en) Optical film
JP2020055953A (en) Optical film, flexible display device and method for manufacturing optical film
WO2020230663A1 (en) Varnish, optical film, and method for manufacturing optical film
CN114599708A (en) Polyamide-imide resin
WO2022220177A1 (en) Polarizing plate, laminate, and display device
WO2020138046A1 (en) Optical film
KR20200033749A (en) Composition
JP6611895B2 (en) Optical film
WO2021085283A1 (en) Polyamideimide resin
JP2022163714A (en) Optical laminate and flexible display device
WO2021085284A1 (en) Optical film and flexible display device
JP2022163622A (en) Optical laminate and flexible display device
WO2021075395A1 (en) Optical film
JP2022163711A (en) optical film
JP2021075701A (en) Optical film and flexible display device
CN116731513A (en) Optical film, laminate, and method for producing same
CN114555676A (en) Polyimide resin
JP2020055994A (en) Optical film, flexible display device and method for manufacturing optical film
JP2020109157A (en) Polyamide resin, optical film and flexible display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788102

Country of ref document: EP

Kind code of ref document: A1