WO2019189326A1 - 土嚢及びその製造方法 - Google Patents

土嚢及びその製造方法 Download PDF

Info

Publication number
WO2019189326A1
WO2019189326A1 PCT/JP2019/013116 JP2019013116W WO2019189326A1 WO 2019189326 A1 WO2019189326 A1 WO 2019189326A1 JP 2019013116 W JP2019013116 W JP 2019013116W WO 2019189326 A1 WO2019189326 A1 WO 2019189326A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
monomer
polymer
resin particles
sandbag
Prior art date
Application number
PCT/JP2019/013116
Other languages
English (en)
French (fr)
Inventor
朋依 山本
利彦 神吉
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2020509174A priority Critical patent/JP7315532B2/ja
Priority to CN201980021563.XA priority patent/CN111902581B/zh
Priority to US17/041,970 priority patent/US20210138434A1/en
Priority to EP19775711.5A priority patent/EP3779048A4/en
Publication of WO2019189326A1 publication Critical patent/WO2019189326A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • E02B3/106Temporary dykes
    • E02B3/108Temporary dykes with a filling, e.g. filled by water or sand
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
    • E02B3/122Flexible prefabricated covering elements, e.g. mats, strips
    • E02B3/126Flexible prefabricated covering elements, e.g. mats, strips mainly consisting of bituminous material or synthetic resins
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
    • E02B3/122Flexible prefabricated covering elements, e.g. mats, strips
    • E02B3/127Flexible prefabricated covering elements, e.g. mats, strips bags filled at the side
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/04Polymer mixtures characterised by other features containing interpenetrating networks

Abstract

吸水性樹脂粒子を用いているにも拘わらず、潰れにくい土嚢を提供する。 透水性を有する袋と、前記袋に収容された吸水性樹脂粒子と、を有し、 前記吸水性樹脂粒子の純水吸水倍率が、1000倍以上であり、かつ、前記吸水性樹脂粒子の、純水で膨潤させた状態における圧縮破断応力が、0.1N以上である、土嚢。

Description

土嚢及びその製造方法
 本発明は、土嚢及びその製造方法に関し、より詳しくは、吸水性樹脂粒子が収容された土嚢及びその製造方法に関する。
 河川の氾濫や高潮などの水災害時に、土砂や水等の流入を防止する応急的な止水対策として、土嚢が用いられている。一般に、土嚢は、土砂を袋に詰めて使用するものである。
 近年、地球温暖化等の異常気象による、河川の氾濫や高潮などの水災害の増加に伴い、持ち運び性や保管スペース等を考慮した、利便性に優れた土嚢が必要とされている。このような背景から、土砂が詰められた従来の土嚢に代わり、吸水性樹脂を透水性の袋に詰め、使用時に吸水性樹脂に水を吸水させて用いる土嚢が提案されている(例えば、特許文献1を参照)。
 吸水性樹脂としては、アクリル酸部分中和物重合体が、一般的に用いられている(例えば特許文献2参照)。アクリル酸部分中和物重合体は、その原料であるアクリル酸の工業的な入手が容易であるため、安価に製造できる。また、アクリル酸部分中和物重合体は、優れた吸水性能を有するとともに、腐敗や劣化がおこりにくい等の利点を有する。
特開昭61-169509号公報 特開平3-227301号公報
 吸水性樹脂粒子が土嚢の形成材料として使用される場合、袋の中の吸水性樹脂粒子が水を吸水することによって膨らみ、土嚢として適した大きさとなる。ところが、従来の吸水性樹脂粒子は、吸水することで膨らむと共に、非常に柔らかくなる。このため、従来の吸水性樹脂粒子を用いた土嚢を積み上げて使用すると、下に積まれた土嚢の袋中において、吸水性樹脂粒子は吸水した水を放出しながら潰れ易く、土嚢に適した大きさを保持し難くなるという問題がある。
 本発明は、吸水性樹脂粒子を用いているにも拘わらず、吸水しても潰れにくい土嚢を提供することを主な目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した。その結果、前記吸水性樹脂粒子の純水吸水倍率が、1000倍以上であり、かつ、前記吸水性樹脂粒子の、純水で膨潤させた状態における圧縮破断応力が、0.1N以上である吸水性樹脂粒子は、吸水した後も潰れにくいことを見出した。本発明は、このような知見に基づき、完成した発明である。
 すなわち、本発明は、下記の構成を備える発明を提供する。
項1. 透水性を有する袋と、前記袋に収容された吸水性樹脂粒子と、を有し、
 前記吸水性樹脂粒子の純水吸水倍率が、1000倍以上であり、かつ、前記吸水性樹脂粒子の、純水で膨潤させた状態における圧縮破断応力が、0.1N以上である、土嚢。
項2. 前記吸水性樹脂粒子が、第1のポリマー粒子に第2のポリマーが浸透した構造を有する、項1に記載の土嚢。
項3. 前記第1のポリマー粒子が、単量体A及びその塩のうち少なくとも一方を含む第1の単量体成分の重合体を含み、
 前記第2のポリマーが、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分の重合体を含み、
 前記単量体Aの酸解離指数が、前記単量体Bの酸解離指数よりも小さい、項1又は2に記載の土嚢。
項4. 前記単量体Bの酸解離指数と前記単量体Aの酸解離指数の差(ΔpKa)が、1.5以上である、項3に記載の土嚢。
項5. 前記単量体Aが、不飽和スルホン酸系単量体であり、
 前記単量体Bが、水溶性エチレン性不飽和単量体である、項4に記載の土嚢。
項6. 前記吸水性樹脂粒子は、顆粒状、略球状、または略球状の粒子が凝集した形状である、項1~5のいずれかに記載の土嚢。
項7. 前記吸水性樹脂粒子の中位粒子径が、200~400μmである、項1~6のいずれかに記載の土嚢。
項8. 第1のポリマー粒子を用意する工程と、
 前記第1のポリマー粒子に、第2のポリマーを形成する、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分を浸透させる工程と、
 前記第1のポリマー粒子中に浸透した前記第2の単量体成分を重合させて、前記第1のポリマー粒子に前記第2のポリマーが浸透した構造を有する吸水性樹脂粒子を得る工程と、
 前記吸水性樹脂粒子を、透水性を有する袋に収容する工程と、
を備える、土嚢の製造方法。
 本発明によれば、吸水性樹脂粒子を用いているにも拘わらず、吸水しても潰れにくい土嚢を提供することができる。さらに、本発明によれば、当該土嚢の好適な製造方法を提供することもできる。
 本発明の土嚢は、透水性を有する袋と、当該袋に収容された吸水性樹脂粒子とを有する土嚢であって、吸水性樹脂粒子の純水吸水倍率が、1000倍以上であり、かつ、吸水性樹脂粒子の、純水で膨潤させた状態における圧縮破断応力が、0.1N以上であることを特徴としている。本発明の土嚢は、吸水性樹脂粒子がこのような特定の物性を備えていることより、吸水性樹脂粒子を利用した土嚢であるにも拘わらず、吸水しても潰れにくいという特性を発揮する。具体的には、前記の吸水性樹脂粒子は、高い純水吸水倍率と膨潤時における高い圧縮破断応力とを兼ね備えるため、これを利用した本発明の土嚢は、積み上げて使用した場合にも、下に積まれた土嚢の袋中において、吸水性樹脂粒子が吸水した水を放出しながら潰れることが効果的に抑制され、土嚢に適した大きさを保持し得る。
 本発明の土嚢は、例えば以下の工程を備える製造方法によって、好適に製造することができる。すなわち、第1のポリマー粒子を用意する工程と、第1のポリマー粒子に、第2のポリマーを形成する、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分を浸透させる工程と、第1のポリマー粒子中に浸透した第2の単量体成分を重合させて、第1のポリマー粒子に第2のポリマーが浸透した構造を有する吸水性樹脂粒子を得る工程と、当該吸水性樹脂粒子を、透水性を有する袋に収容する工程とを備える土嚢の製造方法によって、本発明の土嚢が好適に製造される。
 以下、本発明の土嚢及びその製造方法について、詳述する。
 なお、本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値又は実施例から一義的に導き出せる値に置き換えてもよい。また、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。
 本発明の土嚢は、透水性を有する袋と、当該袋に収容された吸水性樹脂粒子とを有する。本発明の土嚢は、土嚢として使用する際には、吸水性樹脂粒子が水を吸収しておらず、用時(例えば止水などの目的で土嚢を用いる際など)に、透水性を有する袋の外部から内側に浸入した水を、吸水性樹脂粒子が吸収することによって膨らみ、土嚢として適した大きさとなる。
 (透水性を有する袋)
 透水性を有する袋は、外部から内部に水が浸透可能である。透水性を有する袋は、例えば、土砂などを収容する一般的な土嚢用の袋と同様、ポリエチレンやポリプロピレンなどの合成樹脂繊維、麻などの天然繊維の織物または不織布を袋状にしたものである。これらの袋は適度な透水性を有しており、かつ、収容された吸水性樹脂粒子が外部に流出しない程度の目の細かい隙間を有している。
 (吸水性樹脂粒子)
 吸水性樹脂粒子は、第1のポリマー粒子に第2のポリマーが浸透した構造を有していることが好ましい。第1のポリマー粒子に第2のポリマーが浸透した構造とは、第1のポリマー粒子の表面から内側にかけて第2のポリマーが存在していることを意味しており、例えば後述のような吸水性樹脂粒子の製造方法によって形成される構造である。
 吸水性樹脂粒子において、第2のポリマーは、第1のポリマー粒子の表面とその近傍部分のみに存在していてもよいし、表面から中心部分にまで到達していてもよい。第2のポリマーは、第1のポリマー粒子の表面の少なくとも一部を覆っており、表面の全体を覆っていてもよいし、表面の一部を覆っていてもよい。また、第2のポリマーが複数の第1のポリマー粒子を連結していてもよい。
 前記の物性を備える本発明の吸水性樹脂粒子は、例えば、第1のポリマー粒子に、第2のポリマーを形成する、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分を浸透させ、第1のポリマー粒子中に浸透した第2の単量体成分を重合させることによって製造することができる。この方法の詳細については、後述の通りである。
 吸水性に優れ、かつ、潰れにくい土嚢とする観点から、吸水性樹脂粒子の純水吸水倍率の下限値は、1000倍であり、好ましくは1050倍であり、より好ましくは1100倍である。また、純水吸水倍率の上限値は、例えば、1500倍であり、好ましくは1400倍であり、より好ましくは1300倍であり、よりさらに好ましくは1200倍である。
 なお、吸水性樹脂粒子の純水吸水倍率は、実施例に記載の方法により測定される値である。
 また、吸水性に優れ、かつ、潰れにくい土嚢とする観点から、吸水性樹脂粒子の、純水で膨潤させた状態(限界まで吸水し、これ以上吸水できない状態)における、圧縮破断応力の下限値は、0.1Nであり、好ましくは0.13Nであり、より好ましくは0.15Nである。また、止水の際、積み重ねた土嚢の隙間から水が漏れ出すことを防ぐため、土嚢はある程度の柔軟性を有することが好ましい。このような観点から、圧縮破断応力の上限値は、例えば、3.0Nであり、好ましくは2.0Nであり、さらに好ましくは1.0Nである。
 なお、吸水性樹脂粒子の圧縮破断応力は、実施例に記載の方法により測定される値である。
 吸水性に優れ、かつ、潰れにくい土嚢とする観点から、吸水性樹脂粒子の中位粒子径の下限値は、好ましくは200μmであり、より好ましくは230μmであり、よりさらに好ましくは260μmであり、特に好ましくは300μmである。中位粒子径の上限値は、好ましくは850μmであり、より好ましくは700μmであり、よりさらに好ましくは500μmであり、特に好ましくは400μmである。
 なお、吸水性樹脂粒子の中位粒子径は、JIS標準篩を用いて測定することができ、具体的には、実施例に記載の方法により測定される値である。
 吸水性樹脂粒子の形状は、例えば、顆粒状、略球状、略球状の粒子が凝集した形状、不定形破砕状、不定形破砕状の粒子が凝集した形状、板状等である。吸水性樹脂粒子が逆相懸濁重合法や噴霧液滴重合法を利用して製造される場合、顆粒状や、球状や楕円球状等の略球状の粒子形状や、略球状の粒子が凝集した形状を有する吸水性樹脂粒子が得られる。また、吸水性樹脂粒子が水溶液重合法を利用して製造される場合、不定形破砕状や、不定形破砕状の粒子が凝集した形状を有する吸水性樹脂粒子が得られる。吸水性に優れ、かつ、潰れにくい土嚢とする観点からは、吸水性樹脂粒子の形状は、顆粒状、略球状、または略球状の粒子が凝集した形状が好ましい。
 吸水性に優れ、かつ、潰れにくい土嚢とする観点から、吸水性樹脂粒子において、第1のポリマー粒子は、単量体A及びその塩のうち少なくとも一方を含む第1の単量体成分の重合体であり、第2のポリマーが、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分の重合体であり、単量体Aの酸解離指数(pKa)が、単量体Bの酸解離指数よりも小さいことが好ましい。さらに、同様の観点から、単量体Bの酸解離指数と単量体Aの酸解離指数との差(ΔpKa=単量体Bの酸解離指数-単量体Aの酸解離指数)は、好ましくは1.5以上であり、より好ましくは2.0以上であり、さらに好ましくは2.5以上である。また、ΔpKaは、例えば、4.0以下であり、好ましくは3.5以下であり、より好ましくは3.0以下である。
 単量体Bの酸解離指数と単量体Aの酸解離指数との差(ΔpKa)が上記範囲内であれば、第1のポリマー粒子の浸透圧が高くなり、且つ、第2の単量体成分に含まれる単量体B及び/又はその塩がイオン化し難くなることにより、第1のポリマー粒子に第2の単量体成分が良好に浸透すると考えられる。
 単量体Aの酸解離指数は、好ましくは0.5~2.5であり、より好ましくは1.0~2.0であり、さらに好ましくは1.0~1.5である。また、単量体Bの酸解離指数は、好ましくは2.0~6.0であり、より好ましくは3.5~5.0であり、さらに好ましくは4.0~4.5である。
 なお、単量体A及びBの酸解離指数(pKa)は、実施例に記載の方法により測定される値である。
 単量体Aは、好ましくは不飽和スルホン酸系単量体が挙げられる。また、単量体Bとしては、好ましくは水溶性エチレン性不飽和単量体が挙げられる。不飽和スルホン酸系単量体、水溶性エチレン性不飽和単量体、及びこれらの塩の具体例については、後述の吸水性樹脂粒子の製造方法において例示する。
 (吸水性樹脂粒子の製造方法)
 吸水性樹脂粒子の製造方法においては、まず、第1のポリマー粒子を用意する。次に、第1のポリマー粒子に、第2のポリマーを形成する、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分を浸透させる。さらに、第1のポリマー粒子中に浸透した第2の単量体成分を重合させて、第1のポリマー粒子に第2のポリマーが浸透した構造を有する吸水性樹脂粒子を得る。以下、これらの工程について詳述する。
 第1のポリマー粒子は、単量体A及びその塩のうち少なくとも一方を含む第1の単量体成分を重合することによって得られる。第1の単量体成分が単量体A及び/又はその塩のみを含む場合、第1のポリマー粒子は、単量体A及び/又はその塩のみが重合した構造を有する。他方、第1の単量体成分が単量体A及びその塩以外の単量体(以下、単量体Xと称する)を含む場合、第1のポリマー粒子は単量体A及び/又はその塩に単量体Xがさらに共重合した構造を有する。単量体A及びその塩としては、第1のポリマー粒子を構成した後に、第2のポリマーを形成する第2の単量体成分が浸透して重合可能なものであれば特に制限されない。
 第1のポリマー粒子は、好ましくは前記の酸解離指数を有する単量体Aを用いた重合体であり、より好ましくは単量体Aとして不飽和スルホン酸系単量体を用いた重合体であり、さらに好ましくは単量体Aとして前記の酸解離指数を有する不飽和スルホン酸単量体を用いた重合体である。
 第1のポリマー粒子は、例えば、第1の単量体成分を炭化水素分散媒中で、内部架橋剤及びラジカル重合開始剤の存在下、逆相懸濁重合させることにより、好適に製造することができる。
  <第1の単量体成分の重合工程>
 [第1の単量体成分]
 第1のポリマー粒子を形成する第1の単量体成分は、単量体Aのみを含んでいてもよいし、単量体Aの塩のみを含んでいてもよいし、単量体A及びその塩のみを含んでいてもよいし、単量体A及び/又はその塩に加えて単量体Xを含んでいてもよい。
 単量体Aは、前記の酸解離指数を充足するものが好ましく、不飽和スルホン酸系単量体などの強電解質の不飽和単量体が好ましい。不飽和スルホン酸系単量体の具体例としては、ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸、スルホエチル(メタ)アクリレート、スルホプロピル(メタ)アクリレート、2-ヒドロキシスルホプロピル(メタ)アクリレート、スルホエチルマレイミド、メタクリル酸3-スルホプロピルなどが挙げられ、好ましくは、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸が用いられる。なお、本明細書においては、「アクリ」及び「メタクリ」を合わせて「(メタ)アクリ」と表記する。単量体Aは、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。
 なお、単量体Aを2種以上組み合わせて用いる場合、一部の単量体Aが上述した範囲の酸解離指数を有することが好ましく、全部の単量体Aが上述した範囲の酸解離指数を有することがより好ましい。
 また、単量体Aを2種以上組み合わせて用いる場合、単量体Bとの酸解離指数の差(ΔpKa)を求める際に基準となる単量体Aは、2種以上の単量体Aのうち最も酸解離指数の大きなものである。
 単量体Xは、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。例えば、単量体Aとして、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸などの不飽和スルホン酸系単量体を用いた場合、後述の単量体B(例えば、水溶性エチレン性不飽和単量体として、(メタ)アクリル酸及び/又は(メタ)アクリルアミド)を単量体Xとして共重合してもよい。なお、第1の単量体成分において、単量体A及び/又はその塩が占める割合(単量体A及びその塩を含む場合は、両者の合計量の占める割合)は、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。単量体A及び/又はその塩が占める割合の上限値は、100モル%である。なお、単量体A及び/又はその塩が占める割合が100モル%である場合、第1の単量体成分には単量体Xが含まれていない。
 単量体Aの塩は、例えば、単量体Aが2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、この酸基をアルカリ性中和剤によって中和することで得られる。このようなアルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。また、これらのアルカリ性中和剤は、中和操作を簡便にするために水溶液の状態にして用いてもよい。なお、前述したアルカリ性中和剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 アルカリ性中和剤による単量体Aの中和度としては、単量体Aが有する全ての酸基に対する中和度として、10~100モル%であることが好ましく、30~100モル%であることがより好ましく、40~100モル%であることがさらに好ましく、50~100モル%であることがよりさらに好ましい。
 第1の単量体成分は、水溶液の状態で炭化水素分散媒中に分散されて、逆相懸濁重合に供されるのが好ましい。第1の単量体成分は、水溶液とすることにより、炭化水素分散媒中での分散効率を上昇させることができる。この水溶液における第1の単量体成分の濃度としては、20質量%~飽和濃度の範囲であることが好ましい。また、第1の単量体成分の濃度としては、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、45質量%以下であることがよりさらに好ましい。一方、第1の単量体成分の濃度としては25質量%以上であることがより好ましく、28質量%以上であることがさらに好ましく、30質量%以上であることがよりさらに好ましい。
 [炭化水素分散媒]
 炭化水素分散媒は、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の炭素数6~8の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒の中でも、特に、工業的に入手が容易であり、品質が安定しており且つ安価である点で、n-ヘキサン、n-ヘプタン、シクロヘキサンが好適に用いられる。これらの炭化水素分散媒は、単独で用いてもよく、2種類以上を組み合わせた混合物を用いてもよい。なお、炭化水素分散媒の混合物の例としては、エクソールヘプタン(エクソンモービル社製:ヘプタン及びその異性体の炭化水素75~85質量%含有)等の市販品が挙げられる。
 炭化水素分散媒の使用量は、第1段目の重合に供される第1の単量体成分100質量部に対して、100~1500質量部であることが好ましく、200~1400質量部であることがより好ましい。なお、後述するが、逆相懸濁重合は、1段(単段)もしくは2段以上の多段で行われ、前述した第1段目の重合とは、単段重合又は多段重合における1段目の重合反応を意味する(以下も同様)。
 [分散安定剤]
 逆相懸濁重合においては、第1の単量体成分の炭化水素分散媒中での分散安定性を向上させるために、分散安定剤を用いてもよい。
  (界面活性剤)
 分散安定剤は、界面活性剤を用いることができる。界面活性剤としては、例えば、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等を用いることができる。これらの界面活性剤の中でも、特に、単量体の分散安定性の面から、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステルを用いることが好ましい。これらの界面活性剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 界面活性剤の使用量は、第1段目の重合に供される第1の単量体成分100質量部に対して、0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。
  (高分子系分散剤)
 また、分散安定剤は、前述した界面活性剤と共に、高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。これらの高分子系分散剤の中でも、特に、単量体の分散安定性の面から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体を用いることが好ましい。これらの高分子系分散剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 高分子系分散剤の使用量は、第1段目の第1の単量体成分100質量部に対して、0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。
 [内部架橋剤]
 内部架橋剤は、例えば、(ポリ)エチレングリコール〔「(ポリ)」とは「ポリ」の接頭語がある場合とない場合を意味する。以下同様〕、(ポリ)プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、(ポリ)グリセリン等のポリオール類のジまたはトリ(メタ)アクリル酸エステル類;前記のポリオールとマレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N-メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ(メタ)アクリル酸エステル類又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’-トリアリルイソシアネート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジル化合物、トリグリシジル化合物等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物等が挙げられる。これらの内部架橋剤の中でも、ポリグリシジル化合物を用いることが好ましく、ジグリシジルエーテル化合物を用いることがより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルを用いることが好ましい。これらの内部架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 内部架橋剤の使用量は、第1の単量体成分1モルに対して、下限値が0.00001モルであることが好ましく、0.00005モルであることがより好ましく、0.0001モルであることがよりさらに好ましく、0.0005モルであることが特に好ましい。また、その上限値は、第1の単量体成分1モルに対して、0.01モルであることが好ましく、0.005モルであることがさらに好ましく、0.003モルであることがよりさらに好ましく、0.002モルであることが特に好ましい。
 [ラジカル重合開始剤]
 第1のポリマー粒子の製造において、第1の単量体成分は、ラジカル重合開始剤を用いることで重合する。ラジカル重合開始剤としては、例えば、アゾ系化合物及び過酸化物を列挙することができる。また、アゾ系化合物と過酸化物を併用することもできる。ラジカル重合開始剤の形態は、粉体であってもよいし、水溶液であってもよい。
  (アゾ系化合物)
 アゾ系化合物は、例えば、1-{(1-シアノ-1-メチルエチル)アゾ}ホルムアミド、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[N-(2-ヒドロキシエチル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)二塩酸塩、4,4’-アゾビス-4-シアノバレイン酸、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等のアゾ化合物が挙げられる。これらの中でも、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物が好ましい。これらアゾ系化合物は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
  (過酸化物)
 過酸化物は、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物類が挙げられる。これらの過酸化物の中でも、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素を用いることが好ましく、さらに、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウムを用いることがより好ましい。これらの過酸化物は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 ラジカル重合開始剤の使用量は、第1の単量体成分1モルに対して0.00005モル以上であることが好ましく、0.0001モル以上であることがより好ましい。また、ラジカル重合開始剤の使用量は、第1の単量体成分1モルに対して、0.005モル以下であることが好ましく、0.002モル以下であることがより好ましい。
 アゾ系化合物と過酸化物を併用する場合、アゾ系化合物及び過酸化物の使用量割合としては、アゾ系化合物がアゾ系化合物及び過酸化物の使用量全量のうち40質量%以上である割合とすることが好ましく、50質量%以上である割合とすることがより好ましく、60質量%以上である割合とすることがさらに好ましく、70質量%以上である割合とすることがよりさらに好ましい。一方、アゾ系化合物がアゾ系化合物及び過酸化物の使用量全量のうち95質量%以下である割合とすることが好ましく、90質量%以下である割合とすることがより好ましく、85質量%以下である割合とすることがより好ましく、80質量%以下である割合とすることがよりさらに好ましい。また、質量比範囲(アゾ系化合物:過酸化物)は、8:12~19:1であることが好ましい。
 [その他の成分]
 第1のポリマー粒子の製造では、所望により添加剤を、第1の単量体成分に添加して逆相懸濁重合を行うようにしてもよい。添加剤としては、例えば、連鎖移動剤、増粘剤等が挙げられる。
  (連鎖移動剤)
 例えば、吸水性樹脂粒子の吸水性能を制御するために、連鎖移動剤の存在下に第1の単量体成分の重合を行うようにしてもよい。
 連鎖移動剤は、例えば、エタンチオール、プロパンチオール、ドデカンチオール等のチオール類;チオグリコール酸、チオリンゴ酸、ジメチルジチオカルバミン酸、ジエチルジチオカルバミン酸又はそれらの塩等のチオール酸類;イソプロパノール等の第2級アルコール類;亜リン酸、亜リン酸二ナトリウム、亜リン酸二カリウム、亜リン酸二アンモニウム等の亜リン酸の正塩、亜リン酸水素ナトリウム、亜リン酸水素カリウム、亜リン酸水素アンモニウム等の亜リン酸の酸性塩等の亜リン酸化合物;リン酸、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム等のリン酸の正塩、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸二水素アンモニウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二アンモニウム等のリン酸の酸性塩等のリン酸化合物;次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸アンモニウム等の次亜リン酸塩等の次亜リン酸化合物;ピロリン酸、トリポリリン酸、ポリリン酸及びそれらの塩;リン酸トリメチル、ニトリロトリメチレントリホスホン酸等が挙げられる。これらの連鎖移動剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、連鎖移動剤としては、その水和物を用いてもよい。
 連鎖移動剤の使用量は、第1の単量体成分1モルに対して、0.00001~0.0005モルであることが好ましく、0.000025~0.00012モルであることがより好ましい。
  (増粘剤)
 また、第1の単量体成分を含む水溶液に対して増粘剤を添加して逆相懸濁重合を行うようにしてもよい。このように増粘剤を添加して水溶液粘度を調整することによって、逆相懸濁重合において得られる中位粒子径を制御することも可能である。
 増粘剤は、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、ポリアクリル酸(部分)中和物、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等を用いることができる。なお、重合時の攪拌速度が同じであれば、第1の単量体成分の水溶液の粘度が高いほど得られる粒子の中位粒子径は大きくなる傾向にある。
 [逆相懸濁重合]
 逆相懸濁重合を行うにあたっては、例えば、分散安定剤の存在下に、第1の単量体成分を含む水溶液を、炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、分散安定剤(界面活性剤や高分子系分散剤)の添加時期は、第1の単量体成分の水溶液を炭化水素分散媒に分散させる前後どちらであってもよい。
 その中でも、得られる第1のポリマー粒子に残存する炭化水素分散媒量を低減しやすいという観点から、高分子系分散剤を分散させた炭化水素分散媒に、第1の単量体成分の水溶液を分散させた後に、さらに界面活性剤を添加してから重合を行うことが好ましい。
 第1のポリマー粒子の製造方法においては、このような逆相懸濁重合を、1段もしくは2段以上の多段で行うことが可能である。また、生産性を高める観点から2~3段で行ってもよい。
 2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物に第1の単量体成分を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、第1の単量体成分の他に、必要に応じて添加される前述の内部架橋剤、アゾ化合物、過酸化物などを、2段目以降の各段における逆相懸濁重合の際に添加する第1の単量体成分の量を基準として、前述した第1の単量体成分に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、第1のポリマー粒子の製造においては、2段目以降の重合においても、アゾ系化合物及び過酸化物の少なくとも一方の存在下に重合を行うことが好ましい。
 第1の単量体成分の重合反応の反応温度は、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行わせる観点から、20~110℃であることが好ましく、40~90℃であることがより好ましい。また、反応時間としては、0.1~4時間であることが好ましい。
 以上のようにして、第1のポリマー粒子を好適に製造することができる。第1のポリマー粒子の中位粒子径は、第2のポリマーを浸透させた後に得られる吸水性樹脂粒子の中位粒子径が上述した範囲となるように適宜調整すればよく、例えば50~450μmとすることが好ましい。
  <第2の単量体成分の浸透工程>
 次に、第1のポリマー粒子に、第2のポリマーを形成する、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分を浸透させる。第2の単量体成分は、単量体Bのみを含んでいてもよいし、単量体Bの塩のみを含んでいてもよいし、単量体B及びその塩のみを含んでいてもよいし、単量体B及び/又はその塩に加えて単量体B及びその塩以外の単量体(以下、単量体Yと称する)を含んでいてもよい。
 単量体Bとしては、前記の酸解離指数を充足するものが好ましく、水溶性エチレン性不飽和単量体が好ましい。水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体の中でも、工業的に入手が容易であること等の観点から、(メタ)アクリル酸、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好ましく、(メタ)アクリル酸がより好ましい。単量体Bは、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。
 なお、単量体Bを2種以上組み合わせて用いる場合、一部の単量体Bが上述した範囲の酸解離指数を有することが好ましく、全部の単量体Bが上述した範囲の酸解離指数を有することがより好ましい。
 また、単量体Bを2種以上組み合わせて用いる場合、単量体Aとの酸解離指数の差(ΔpKa)を求める際に基準となる単量体Bは、2種以上の単量体Bのうち最も酸解離指数の小さなものである。
 単量体Yは、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。例えば、単量体Bとして、(メタ)アクリル酸などの水溶性エチレン性不飽和単量体を用いた場合、上述の単量体A(例えば、不飽和スルホン酸系単量体として、アリルスルホン酸及び/又はメタリルスルホン酸)を単量体Yとして用いてもよい。なお、第2の単量体成分において、単量体B及び/又はその塩が占める割合(単量体B及びその塩を含む場合は、両者の合計量の占める割合)は、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。単量体B及び/又はその塩が占める割合の上限値は、100モル%である。なお、単量体B及び/又はその塩が占める割合が100モル%である場合、第2の単量体成分には単量体Yが含まれていない。
 単量体Bの塩は、例えば、単量体Bが(メタ)アクリル酸等のように酸基を有する場合、この酸基をアルカリ性中和剤によって中和することで得られる。このようなアルカリ性中和剤としては、上述した単量体Aの中和に用いた中和剤と同様のものが挙げられる。
 アルカリ性中和剤による単量体Bの中和度としては、単量体Bが有する全ての酸基に対する中和度として、10~100モル%であることが好ましく、30~90モル%であることがより好ましく、40~85モル%であることがさらに好ましく、50~80モル%であることがよりさらに好ましい。
 第1のポリマー粒子に第2の単量体成分を浸透させる方法としては、例えば、第1のポリマー粒子と第2の単量体成分を混合すればよい。このとき、第1のポリマー粒子の内部にまで十分に第2の単量体成分を浸透させるために、第1のポリマー粒子は、乾燥させておくことが好ましい。第1のポリマー粒子の乾燥は、後述の吸水性樹脂粒子の乾燥工程と同様にして行うことができる。
 また、第1のポリマー粒子の内部にまで十分に第2の単量体成分を浸透させるために、第2の単量体成分は、水溶液の状態で、第1のポリマー粒子に浸透させることが好ましい。より具体的には、第2の単量体成分の水溶液中に、第1のポリマー粒子を浸漬することによって、第2の単量体成分を第1のポリマー粒子に好適に浸透させることができる。浸漬時間としては、例えば、0.3~48時間が挙げられる。
 第2の単量体成分の水溶液における第2の単量体成分の濃度としては、20質量%~飽和濃度の範囲であることが好ましい。また、第2の単量体成分の濃度としては、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、45質量%以下であることがよりさらに好ましい。一方、第2の単量体成分の濃度としては25質量%以上であることがより好ましく、28質量%以上であることがさらに好ましく、30質量%以上であることがよりさらに好ましい。
 また、第1のポリマー粒子に浸透させた第2の単量体成分を好適に重合させる観点から、内部架橋剤、アゾ系化合物、過酸化物などのうち少なくとも1種の成分をさらに分散させた水分散体の状態で、第1のポリマー粒子に第2の単量体成分を浸透させてもよい。これらの成分としては、前記の第1の単量体成分の重合工程で例示したものと同じものが例示される。また、これらの成分の使用量としては、前記の第1の単量体成分についての例示と同様とすることができる。
  <第2の単量体成分の重合工程>
 次に、第1のポリマー粒子中に浸透した第2の単量体成分を重合させて、第1のポリマー粒子に第2のポリマーが浸透した構造を有する吸水性樹脂粒子を得る。
 第2の単量体成分の重合は、前記の第1の単量体成分の重合と同様、逆相懸濁重合の条件で行うことができる。すなわち、例えば、分散安定剤の存在下に、第2の単量体成分が浸透した第1のポリマー粒子を、炭化水素分散媒に分散させる。このとき、第2の単量体成分の重合反応を開始する前であれば、分散安定剤(界面活性剤や高分子系分散剤)の添加時期は、第2の単量体成分が浸透した第1のポリマー粒子を、炭化水素分散媒に分散させる前後どちらであってもよい。なお、炭化水素分散媒及び分散安定剤は、前記の第1の単量体成分の重合工程で例示したものと同じものが用いられ、これらの使用量としては、前記の第1の単量体成分についての例示と同様とすることができる。
 また、得られる吸水性樹脂粒子に残存する炭化水素分散媒の量を低減しやすいという観点から、高分子系分散剤を分散させた炭化水素分散媒に、第2の単量体成分が浸透した第1のポリマー粒子を分散させた後に、さらに界面活性剤を添加してから重合を行うことが好ましい。
 第2の単量体成分の重合反応の反応温度としては、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行わせる観点から、20~110℃であることが好ましく、40~90℃であることがより好ましい。また、反応時間としては、0.5~4時間であることが好ましい。
  <後架橋工程>
 吸水性樹脂粒子の製造方法においては、前記の方法によって得られた、第1のポリマー粒子に第2のポリマーが浸透した構造を有する吸水性樹脂粒子の含水ゲル状物に対して、後架橋剤で後架橋する(後架橋反応)こともできる。この後架橋反応は、第2の単量体成分の重合後以降に後架橋剤の存在下に行うことが好ましい。このように、重合後以降に、吸水性樹脂粒子の含水ゲル状物に対して後架橋反応を施すことによって、吸水性樹脂粒子の表面近傍の架橋密度を高めて、荷重下における吸水性や圧縮破断応力をより高めた吸水性樹脂粒子を得ることができる。
 後架橋剤は、反応性官能基を2個以上有する化合物を挙げることができる。例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの後架橋剤の中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。これらの後架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 後架橋剤の使用量は、重合に使用した第2の単量体成分1モルに対して、0.00001~0.01モルであることが好ましく、0.00005~0.005モルであることがより好ましく、0.0001~0.002モルであることがさらに好ましい。
 後架橋剤の添加方法は、後架橋剤をそのまま添加しても、水溶液として添加してもよいが、必要に応じて、溶媒として親水性有機溶媒を用いた溶液として添加してもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等が挙げられる。これら親水性有機溶媒は、単独で用いてもよく、2種類以上を組み合わせて、又は水との混合溶媒として用いてもよい。
 後架橋剤の添加時期は、第2の単量体成分の重合反応がほぼすべて終了した後であればよい。後架橋剤は、第1の単量体成分及び第2の単量体成分の合計100質量部に対して、1~400質量部の範囲の水分存在下に添加することが好ましく、5~200質量部の範囲の水分存在下に添加することがより好ましく、10~100質量部の範囲の水分存在下に添加することがさらに好ましく、20~70質量部の範囲の水分存在下に添加することがよりさらに好ましい。なお、水分の量は、重合反応系に含まれる水分と後架橋剤を添加する際に必要に応じて用いられる水分との合計量を意味する。
 後架橋反応における反応温度は、50~250℃であることが好ましく、60~180℃であることがより好ましく、60~140℃であることがさらに好ましく、70~120℃であることがよりさらに好ましい。また、後架橋反応の反応時間としては、1~300分間であることが好ましく、5~200分間であることがより好ましい。
  <乾燥工程>
 吸水性樹脂粒子の製造方法は、第2の単量体成分の重合を行った後、乾燥工程を含んでいてもよい。乾燥工程は、例えば、第2の単量体成分の重合を行った後、系に熱等のエネルギーを外部から加えることで、水、炭化水素分散媒等を蒸留により系(反応が行われる容器をいう)から除去する工程である。重合後の含水ゲルから脱水を行う場合、炭化水素分散媒中に含水ゲルが分散している系を加熱することで、水と炭化水素分散媒を共沸蒸留により系外に一旦留去する。このとき、留去した炭化水素分散媒のみを系内へ返送すると、連続的な共沸蒸留が可能である。その場合、乾燥中の系内の温度が、炭化水素分散媒との共沸温度以下に維持されるため、樹脂が劣化しにくい。引き続き、水及び炭化水素分散媒を留去することにより、吸水性樹脂粒子が得られる。この重合後における乾燥工程の処理条件を制御して脱水量を調整することにより、得られる吸水性樹脂粒子の諸性能を制御することが可能である。
 乾燥工程は、常圧下で行ってもよく、減圧下で行ってもよい。また、乾燥効率を高める観点から、窒素等の気流下で行ってもよい。乾燥工程を常圧下で行う場合においては、乾燥温度としては、70~250℃であることが好ましく、80~180℃であることがより好ましく、80~140℃であることがさらに好ましく、90~130℃であることがよりさらに好ましい。また、乾燥工程を減圧下で行う場合においては、乾燥温度としては、40~160℃であることが好ましく、50~120℃であることがより好ましい。
 なお、後架橋剤による後架橋工程を行った場合には、その後架橋工程後に、前述した乾燥工程を行うようにすることが好ましい。
 吸水性樹脂粒子は、目的に応じた添加剤を含んでいてもよい。このような添加剤としては、無機粉末、界面活性剤、酸化剤、還元剤、金属キレート剤、ラジカル連鎖禁止剤、酸化防止剤、抗菌剤、消臭剤等が挙げられる。また、吸水性樹脂粒子には、第1のポリマー粒子及び第2のポリマーの重合に際して使用した各種成分(例えば、炭化水素分散媒、分散安定剤、内部架橋剤、アゾ系化合物、過酸化物、連鎖移動剤、増粘剤など)やその反応物が含まれ得る。
 本発明の土嚢は、以上のようにして得られた吸水性樹脂粒子を、透水性を有する袋に収容することによって、製造することができる。
 本発明の土嚢は、吸水性樹脂粒子の吸水能を妨げない範囲で土、砂利、砂、泥などと混合し、透水性の袋の中に詰めることによって土嚢としてもよい。
 本発明の土嚢において、透水性の袋に詰める本発明の吸水性樹脂粒子の割合としては、特に制限されないが、例えば50質量%以上、好ましくは、60~100質量%、70~100質量%とすることができる。
 以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。純水吸水倍率、圧縮破断応力、及び単量体のpKaは、それぞれ以下の方法によって測定した。
<純水吸水倍率の測定方法>
 作製した吸水性樹脂粒子を目開き500μmのJIS標準篩を通過し、目開き250μmのJIS標準篩の上に残る粒子に分級した。500mL容のビーカーに、純水500gをはかりとり、マグネチックスターラーバー(8mmφ×30mmのリングなし)で攪拌回転数600rpmにて攪拌しながら、250μmから500μmに分級した吸水性樹脂粒子0.25±0.0002gを、ままこが発生しないように分散させた。攪拌した状態で30分間放置し、吸水性樹脂粒子を十分に膨潤させた。その後、あらかじめ目開き75μmのJIS標準篩の質量Wa(g)を測定しておき、これを用いて、前記ビーカーの内容物をろ過し、篩を水平に対して約30度の傾斜角となるように傾けた状態で、30分間放置することにより余剰の水分をろ別した。吸水ゲルの入った篩の質量Wb(g)を測定し、以下の式により、純水吸水倍率を求めた。
 純水吸水倍率(g/g)=[Wb-Wa](g)/吸水性樹脂粒子の質量(g)
<圧縮破断応力の測定方法>
 作製した吸水性樹脂粒子を目開き500μmのJIS標準篩を通過し、目開き250μmのJIS標準篩の上に残る粒子を分級した。500mL容のビーカーに、純水500gをはかりとり、マグネチックスターラーバー(8mmφ×30mmのリングなし)で攪拌回転数600rpmにて攪拌しながら、250μmから500μmに分級した吸水性樹脂粒子0.25±0.0002gを、ままこが発生しないように分散させた。攪拌した状態で30分間放置し、吸水性樹脂粒子を十分に膨潤させた。その後、目開き75μmのJIS標準篩を用いて、前記ビーカーの内容物をろ過し、篩を水平に対して約30度の傾斜角となるように傾けた状態で、30分間放置することにより膨潤ゲルと余剰の水分をろ別した。小型圧縮・引張試験機(島津製作所製「Eztest/CE」)を用いて、以下の操作および条件に基づいて、ろ別した膨潤ゲルの1粒の破断に必要となる荷重の測定を行った。ろ別した膨潤ゲル1粒を測定台の中央に置き、膨潤ゲルの上方から圧子を下記条件に示す一定の速度(変位速度)で降下させ、圧子の移動距離に対する荷重のグラフを表示させながら、荷重の変動を記録した。荷重は、圧子が膨潤ゲルと接触すると膨潤ゲルの反発力で増加する。一方、膨潤ゲルが破断すると反発力が低下するため荷重が減少する。このことから、圧子の降下に伴う荷重の増加が止まり、その後減少するまで圧子を移動させた。荷重の減少が起こる直前の最大の荷重を測定し、膨潤ゲルの降伏荷重とみなした。この降伏荷重が膨潤ゲルの破断に必要な荷重と判断した。この測定を計3粒の膨潤ゲルにおいて実施し、その平均値を圧縮破断応力(N)とした。なお、圧縮破断応力の値は、架橋重合体の強度を示す指標の一つであり、圧縮破断応力が高いほど、膨潤ゲルが壊されにくい傾向がある。
 荷重測定の際に使用したロードセルの条件は下記の通りである。
ロードセルの定量上限値:2(N)
ロードセルの定量下限値:0.04(N)
変位速度:0.5(mm/min)
測定条件として設定したロードセルの負荷限界(上限):1.5(N)
圧子:15(mmφ)
<単量体のpKaの測定方法>
 pKaの測定対象である単量体20.4gに対し、イオン交換水29.6gを100mLのガラスビーカーに量り取り、マグネチックスターラーバー(8mmφ×30mmのリングなし)で攪拌しながら5分間混ぜて40.8質量%の水溶液を作製した。この水溶液2.4gと生理食塩水50.0gを100mLのガラスビーカーに量り取り、マグネチックスターラーバー(8mmφ×30mmのリングなし)で攪拌し、測定用水溶液を作製した。測定用水溶液は測定直前まで17℃に調節した。酸解離指数の測定は、平沼産業株式会社の自動滴定装置(COM-1600)を用いて行った。測定用水溶液を攪拌しながら、10秒ごとに0.1Mの水酸化ナトリウムを0.025mLずつ滴下し、滴下毎に測定用水溶液のpHの測定を行った。測定用水溶液の濃度と水酸化ナトリウムの滴下量および測定したpHからHenderson-Hasselbalch式を用いて単量体の酸解離指数pKaを求めた。
(実施例1)
 還流冷却器、窒素ガス導入管、並びに、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段有する攪拌翼を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散剤として、n-ヘプタン293gをとり、高分子分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.74gを添加し、攪拌しつつ加温溶解した後、58℃まで冷却した。
 一方、500mL容の三角フラスコに単量体Aとして予め上述の方法により酸解離指数(pKa)を測定した2-アクリルアミド-メチルプロパンスルホン酸82.69g(0.389モル、pKa1.4)を入れ、イオン交換水68.59gを添加し、水溶液を作製した。この水溶液を外部より冷却しつつ30質量%の水酸化ナトリウム水溶液51.60gを滴下して単量体Aの97モル%中和を行った後、増粘剤として、ヒドロキシルエチルセルロース0.08g(住友精化株式会社、HEC AW-15F)、アゾ系化合物として5質量%の2,2’アゾビス(2-アジミノプロパン)二塩酸塩水溶液2.19g、内部架橋剤として、1質量%のN,N’-メチレンビスアクリルアミド水溶液7.75gとイオン交換水27.39gを加えて溶解し、単量体A及びそのナトリウム塩を第1の単量体成分として含む水溶液を調製した。
 そして、上述のように調製した第1の単量体成分を含む水溶液をセパラブルフラスコに添加して、系内に0.2L/分の窒素を通気しつつ10分間攪拌数300rpmで攪拌した。別途、n-ヘプタン6.62gに界面活性剤として、HLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.74gを加熱溶解した界面活性剤溶液7.36gを調製した。界面活性剤溶液を第1の単量体成分を含む素溶液に添加して、攪拌数400rpmで20分間攪拌しながら系内を窒素で十分に置換した後、70℃の水浴に浸漬して昇温し、第1段目の重合を26分間行った。
 第1段目の重合後、系内にn-ヘプタン110gを添加し、攪拌数を1000rpmに変更した後、125℃の油浴で反応液を昇温し、n-ヘプタンと水の共沸蒸留により、n-ヘプタンを還流しながら、130gの水を系外へ抜き出した。その後、n-ヘプタンを蒸発させて乾燥することによって、架橋重合体の乾燥品(第1のポリマー粒子)を得た。
 JIS標準篩を上から、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き106μmの篩、目開き75μmの篩、目開き45μmの篩、及び受け皿の順に組み合わせた。組み合わせた最上の篩に、第1のポリマー粒子10gを入れ、目開きの大きな篩から順に手で第1のポリマー粒子をこすりつけ、一部凝集している第1のポリマー粒子をばらばらにほぐした。
 (株)セイシン企業製のROBOT SIFTER RPS 205を用いて、音波強度40W/m2、周波数80Hz、パルス間隔1秒、分級時間2分の条件の下、ROBOT SIFTER用のJIS標準篩を上から、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き106μmの篩、目開き75μmの篩、目開き45μmの篩、を組み合わせ、ほぐした第1のポリマー粒子を装置の充填容器に入れ、分級した。分級後、各篩上に残った第1のポリマー粒子の質量を全量に対する質量百分率として算出し、粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った第1のポリマーの質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。この結果、得られた第1のポリマー粒子の中位粒子径は154μmであった。
 単量体Bとして予め上述の方法により酸解離指数(pKa)を測定したアクリル酸(pKa4.1)を用意し、これをイオン交換水に溶解させて80質量%のアクリル酸水溶液384.6g(アクリル酸を4.27モル含む)を調製した。この水溶液を2Lの丸口幅広ポリ容器に入れ、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液427.6g(3.21モル)を滴下して75モル%の中和を行った。この容器にアゾ系化合物として5質量%の2,2’アゾビス(2-アジミノプロパン)二塩酸塩6.42g、内部架橋剤として、1質量%のN,N’-メチレンビスアクリルアミド水溶液6.17gとイオン交換水164.78gを加えて溶解し、単量体B及びそのナトリウム塩を第2の単量体成分として含む水溶液を調製した。第2の単量体成分を含む水溶液に、第1のポリマー粒子15gを浸漬させて、冷蔵庫で14時間かけて十分に膨潤させた。目開き38μmの篩を用いて、膨潤した第1のポリマー粒子と余分な第2の単量体成分を含む水溶液を分離した。膨潤した第1のポリマー粒子は第2の単量体成分を含む水溶液を429.29g吸収していた。
 還流冷却器、窒素ガス導入管、並びに、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段有する攪拌翼を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散剤として、n-ヘプタン293gをとり、高分子分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.74gを添加し、攪拌数300rpmで攪拌しつつ加温溶解した後、60℃まで冷却した。
 60℃まで冷却した後、n-ヘプタン6.62gに界面活性剤として、HLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社。リョートーシュガーエステルS-370)0.74gを加熱溶解した界面活性剤溶液7.36gをさらに添加して、10分間攪拌した。
 攪拌後、系内に膨潤した第1のポリマー粒子366.4gを添加し、30分間攪拌数1000rpmで攪拌しながら系内を0.2L/minの窒素で十分に置換した。その後、フラスコを80℃の水浴に浸漬して昇温し、第2段目の重合を67分間行って、第1のポリマー粒子に浸透した第2の単量体成分を重合させて、第1のポリマー粒子に第2のポリマーが浸透した構造を有する吸水性樹脂粒子を得た。
 第2段目の重合後、系内にn-ヘプタンを110g添加した後、125℃の油浴で反応液を昇温し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら176.6gの水を系外へ抜き出した。水の抜き出し後、後架橋剤として、エチレングリコールジグリシジルエーテルの2質量%の水溶液3.65gを系内に添加し、80℃から83℃で2時間保持した。その後、n-ヘプタンを蒸留させて、乾燥することによって、後架橋を施した複合架橋重合体の乾燥品を取得した。この乾燥品を目開き850μmのJIS標準篩を通過させ、第1のポリマー粒子に第2のポリマーが浸透した構造を有する目的の吸水性樹脂粒子147.71gを得た。
 JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩、及び受け皿の順に組み合わせた。組み合わせた最上の篩に、吸水性樹脂粒子50gを入れ、ロータップ式振とう器を用いて10分間振とうさせて分級した。分級後、各篩上に残った吸水性樹脂粒子の質量を全量に対する質量百分率として算出し、粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った吸水性樹脂粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。この結果、この吸水性樹脂粒子の中位粒子径は370μmであった。
 続いて、作製した吸水性樹脂粒子の純水吸水倍率及び圧縮破断応力を、上述の方法により測定した。その結果を表1に示す。
(比較例1)
 還流冷却器、滴下ロート、窒素ガス導入管、及び、翼径50mmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径110mmで2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン300gをとり、ショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.74g、無水マレイン酸変性エチレン-プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.74gを添加し、攪拌しつつ加温溶解した後、55℃まで冷却した。
 一方、500mL容の三角フラスコに80質量%のアクリル酸水溶液92g(1.02モル)をとり、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液102.2gを滴下して75モル%の中和を行った。そこへ、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、アゾ化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.055g(0.204ミリモル)、過硫酸塩として過硫酸カリウム0.009g(0.034ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.005g(0.026ミリモル)及びイオン交換水48.0gを加えて溶解し、第1段目の重合に供されるモノマー水溶液を調製した。
 該モノマー水溶液を、前記セパラブルフラスコに添加して、系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合反応を10分間行うことで第1段目の反応混合物を得た。
 一方、別の500mL容の三角フラスコに80質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液143.1gを滴下して75モル%の中和を行った。そこへ、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.077g(0.285ミリモル)、過酸化物として過硫酸カリウム0.013g(0.048ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.012g(0.069ミリモル)及びイオン交換水12.5gを加えて溶解し、第2段目の重合に供されるモノマー水溶液を調製した。
 第1段目の反応混合物を25℃に冷却した後、第2段目のモノマー水溶液の全量を、第1段目の反応混合物に添加して、系内を窒素で置換しながら25℃で30分間保持した。その後、再度、フラスコを70℃の水浴に浸漬して昇温し、第2段目の重合反応を5分間行うことで第2段目の反応混合物を得た。
 125℃の油浴で第2段目の反応混合物を昇温し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら255gの水を系外へ抜き出した後、キレート剤としてジエチレントリアミン五酢酸・五ナトリウム塩の4.5%水溶液5.89g(0.53ミリモル)を添加し、さらにn-ヘプタンを還流しながら41gの水を系外へ抜き出した。水を抜き出した後、後架橋剤として、エチレングリコールジグリシジルエーテルの2質量%の水溶液4.48gを系内に添加し、80℃から83℃で2時間保持した。その後、n-ヘプタンを蒸留させて、乾燥することによって、後架橋を施した複合架橋重合体の乾燥品(吸水性樹脂粒子)を取得した。得られた吸水性樹脂粒子を目開き850μmの篩に通過させ、球状粒子が凝集した2次粒子の形態の吸水性樹脂粒子236.6gを得た。
 続いて、作製した吸水性樹脂粒子の純水吸水倍率及び圧縮破断応力を、上述の方法により測定した。その結果を表1に示す。
(比較例2)
 単量体成分としてアクリル酸およびその塩のみを用いたポリマーである、住友精化株式会社製の高吸水性ポリマー(商品名アクアキープSA60II(中位粒子径:242μm)を比較例2の吸水性樹脂粒子として用意した。
 用意した吸水性樹脂粒子の純水吸水倍率及び圧縮破断応力を、上述の方法により測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1の吸水性樹脂粒子は、純水吸水倍率及び純水で膨潤させた状態における圧縮破断応力が十分に高く、土嚢に用いても潰れにくい。他方、比較例1及び2の吸水性樹脂は、純水で膨潤させた際における圧縮破断応力が低く、土嚢に用いると潰れ易い。

                                                                               

Claims (8)

  1.  透水性を有する袋と、前記袋に収容された吸水性樹脂粒子と、を有し、
     前記吸水性樹脂粒子の純水吸水倍率が、1000倍以上であり、かつ、前記吸水性樹脂粒子の、純水で膨潤させた状態における圧縮破断応力が、0.1N以上である、土嚢。
  2.  前記吸水性樹脂粒子が、第1のポリマー粒子に第2のポリマーが浸透した構造を有する、請求項1に記載の土嚢。
  3.  前記第1のポリマー粒子が、単量体A及びその塩のうち少なくとも一方を含む第1の単量体成分の重合体を含み、
     前記第2のポリマーが、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分の重合体を含み、
     前記単量体Aの酸解離指数が、前記単量体Bの酸解離指数よりも小さい、請求項1又は2に記載の土嚢。
  4.  前記単量体Bの酸解離指数と前記単量体Aの酸解離指数の差(ΔpKa)が、1.5以上である、請求項3に記載の土嚢。
  5.  前記単量体Aが、不飽和スルホン酸系単量体であり、
     前記単量体Bが、水溶性エチレン性不飽和単量体である、請求項4に記載の土嚢。
  6.  前記吸水性樹脂粒子は、顆粒状、略球状、または略球状の粒子が凝集した形状である、請求項1~5のいずれかに記載の土嚢。
  7.  前記吸水性樹脂粒子の中位粒子径が、200~400μmである、請求項1~6のいずれかに記載の土嚢。
  8.  第1のポリマー粒子を用意する工程と、
     前記第1のポリマー粒子に、第2のポリマーを形成する、単量体B及びその塩のうち少なくとも一方を含む第2の単量体成分を浸透させる工程と、
     前記第1のポリマー粒子中に浸透した前記第2の単量体成分を重合させて、前記第1のポリマー粒子に前記第2のポリマーが浸透した構造を有する吸水性樹脂粒子を得る工程と、
     前記吸水性樹脂粒子を、透水性を有する袋に収容する工程と、
    を備える、土嚢の製造方法。
PCT/JP2019/013116 2018-03-27 2019-03-27 土嚢及びその製造方法 WO2019189326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020509174A JP7315532B2 (ja) 2018-03-27 2019-03-27 土嚢及びその製造方法
CN201980021563.XA CN111902581B (zh) 2018-03-27 2019-03-27 沙袋及其制造方法
US17/041,970 US20210138434A1 (en) 2018-03-27 2019-03-27 Sandbag and method for producing same
EP19775711.5A EP3779048A4 (en) 2018-03-27 2019-03-27 SAND BAG AND METHOD OF PRODUCTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018059402 2018-03-27
JP2018-059402 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019189326A1 true WO2019189326A1 (ja) 2019-10-03

Family

ID=68060100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013116 WO2019189326A1 (ja) 2018-03-27 2019-03-27 土嚢及びその製造方法

Country Status (5)

Country Link
US (1) US20210138434A1 (ja)
EP (1) EP3779048A4 (ja)
JP (1) JP7315532B2 (ja)
CN (1) CN111902581B (ja)
WO (1) WO2019189326A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189679A1 (ja) * 2022-03-29 2023-10-05 住友精化株式会社 吸水性樹脂粒子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202103738WA (en) 2018-08-14 2021-05-28 Yangtze Memory Technologies Co Ltd Stacked connections in 3d memory and methods of making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169509A (ja) 1985-01-22 1986-07-31 Nippon Kokan Kk <Nkk> 土のう及びその使用方法
JPS62230813A (ja) * 1986-02-04 1987-10-09 アライド・コロイド・リミテツド 水溶性または水膨潤性ポリマ−の製法
JPH03227301A (ja) 1990-01-31 1991-10-08 Sumitomo Seika Chem Co Ltd 吸水性樹脂の製造方法
JPH09136974A (ja) * 1986-11-20 1997-05-27 Allied Colloids Ltd 吸水性非水溶性ポリマー物品
JP2012205979A (ja) * 2011-03-29 2012-10-25 Sanyo Chem Ind Ltd 高分子凝集剤
JP2015214876A (ja) * 2014-04-25 2015-12-03 ニッケ商事株式会社 土嚢袋キット及びその使用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018690B2 (ja) * 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
JPS6397768A (ja) * 1986-10-11 1988-04-28 三菱油化株式会社 コンクリ−ト製構築物の取毀し方法
US6222091B1 (en) * 1997-11-19 2001-04-24 Basf Aktiengesellschaft Multicomponent superabsorbent gel particles
BR0315632A (pt) * 2002-10-25 2005-08-23 Stockhausen Chem Fab Gmbh Processo de mistura em duas etapas para produzir um polìmero absorvente, polìmero e compósito obtidos e seus usos
JP2004257151A (ja) 2003-02-27 2004-09-16 Sanyo Chem Ind Ltd 土のう代替品及び回収再利用方法
CN100484974C (zh) * 2006-04-29 2009-05-06 北京化工大学 超吸水树脂及其制备方法
CN101451056B (zh) * 2007-11-29 2012-09-12 三洋化成工业株式会社 园艺用保水剂
AU2010323629A1 (en) * 2009-11-27 2012-07-19 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article
US8951637B2 (en) * 2010-10-18 2015-02-10 Sumitomo Seika Chemicals Co., Ltd. Method for producing water-absorbent resin particles and water-absorbent resin particles
EP2673011B2 (de) * 2011-02-07 2019-01-16 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
JP2016028131A (ja) 2014-07-11 2016-02-25 住友精化株式会社 吸水性樹脂及び吸水性樹脂の製造方法
WO2016052537A1 (ja) * 2014-09-29 2016-04-07 株式会社日本触媒 吸水性樹脂粉末及び吸水性樹脂粉末の弾性率の測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169509A (ja) 1985-01-22 1986-07-31 Nippon Kokan Kk <Nkk> 土のう及びその使用方法
JPS62230813A (ja) * 1986-02-04 1987-10-09 アライド・コロイド・リミテツド 水溶性または水膨潤性ポリマ−の製法
JPH09136974A (ja) * 1986-11-20 1997-05-27 Allied Colloids Ltd 吸水性非水溶性ポリマー物品
JPH03227301A (ja) 1990-01-31 1991-10-08 Sumitomo Seika Chem Co Ltd 吸水性樹脂の製造方法
JP2012205979A (ja) * 2011-03-29 2012-10-25 Sanyo Chem Ind Ltd 高分子凝集剤
JP2015214876A (ja) * 2014-04-25 2015-12-03 ニッケ商事株式会社 土嚢袋キット及びその使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779048A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189679A1 (ja) * 2022-03-29 2023-10-05 住友精化株式会社 吸水性樹脂粒子

Also Published As

Publication number Publication date
JP7315532B2 (ja) 2023-07-26
US20210138434A1 (en) 2021-05-13
JPWO2019189326A1 (ja) 2021-03-25
EP3779048A4 (en) 2022-01-12
CN111902581A (zh) 2020-11-06
CN111902581B (zh) 2023-02-03
EP3779048A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US11136420B2 (en) Water-absorbent resin and method of producing water-absorbent resin
US9873755B2 (en) Method of manufacturing water-absorbent resin, water-absorbent resin, water-absorbing agent and absorbent article
JP5219804B2 (ja) 吸水性樹脂粒子の製造方法、およびそれにより得られる吸水性樹脂粒子
JP5719078B1 (ja) 吸水性樹脂の製造方法
JP6993878B2 (ja) 吸水性樹脂および吸水剤
WO2021117781A1 (ja) 吸水性樹脂粒子及び吸水性樹脂粒子を製造する方法
US8940845B2 (en) Method for producing water-absorbing resin
WO2004083284A1 (ja) 吸水性樹脂粒子の製造方法
US9982069B2 (en) Water-absorbent resin and absorbent article
JP5855012B2 (ja) 吸水性樹脂の製造方法
JP2016028131A (ja) 吸水性樹脂及び吸水性樹脂の製造方法
EP3777802A1 (en) Absorbent article
WO2019189326A1 (ja) 土嚢及びその製造方法
WO2018159803A1 (ja) 吸水性樹脂及び土嚢
JPWO2005012369A1 (ja) 吸水性樹脂の製造方法
JPWO2019074099A1 (ja) 吸水性樹脂及び吸収性物品
CN111885997B (zh) 吸水性磨砂剂、其制造方法、以及化妆品
WO2020203722A1 (ja) 吸水性樹脂及び止水材
WO2023189679A1 (ja) 吸水性樹脂粒子
CN114080405A (zh) 吸水性树脂颗粒的制造方法及单体水溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509174

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019775711

Country of ref document: EP

Effective date: 20201027