WO2019188920A1 - 液晶組成物および液晶表示素子 - Google Patents
液晶組成物および液晶表示素子 Download PDFInfo
- Publication number
- WO2019188920A1 WO2019188920A1 PCT/JP2019/012392 JP2019012392W WO2019188920A1 WO 2019188920 A1 WO2019188920 A1 WO 2019188920A1 JP 2019012392 W JP2019012392 W JP 2019012392W WO 2019188920 A1 WO2019188920 A1 WO 2019188920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diyl
- hydrogen
- carbons
- fluorine
- liquid crystal
- Prior art date
Links
- 0 COc(cc(**)cc1)c1-c1ccc(*c2ccccc2)cc1 Chemical compound COc(cc(**)cc1)c1-c1ccc(*c2ccccc2)cc1 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/02—Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
- C09K19/0208—Twisted Nematic (T.N.); Super Twisted Nematic (S.T.N.); Optical Mode Interference (O.M.I.)
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/12—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/14—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/14—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
- C09K19/16—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/14—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
- C09K19/18—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon triple bonds, e.g. tolans
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/20—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/32—Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/38—Polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/42—Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/56—Aligning agents
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/12—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
- C09K2019/121—Compounds containing phenylene-1,4-diyl (-Ph-)
- C09K2019/122—Ph-Ph
Definitions
- the present invention relates to a liquid crystal composition, a liquid crystal display element containing the composition, and the like.
- the present invention relates to a liquid crystal composition having a negative dielectric anisotropy and a liquid crystal display element containing the composition and having a mode such as IPS, VA, FFS, and FPA.
- the present invention also relates to a polymer-supported alignment type liquid crystal display element.
- the classification based on the operation mode of the liquid crystal molecules is as follows: PC (phase change), TN (twisted nematic), STN (super twisted nematic), ECB (electrically controlled birefringence), OCB (optically compensated bend), IPS. (In-plane switching), VA (vertical alignment), FFS (fringe field switching), FPA (field-induced photo-reactive alignment) mode.
- the classification based on the element drive system is PM (passive matrix) and AM (active matrix). PM is classified into static and multiplex, and AM is classified into TFT (thin film insulator), MIM (metal insulator metal), and the like. TFTs are classified into amorphous silicon and polycrystalline silicon. The latter is classified into a high temperature type and a low temperature type according to the manufacturing process.
- the classification based on the light source includes a reflection type using natural light, a transmission type using backlight, and a semi-transmission type using both natural light and backlight.
- the liquid crystal display element contains a liquid crystal composition having a nematic phase.
- This composition has suitable properties. By improving the characteristics of the composition, an AM device having good characteristics can be obtained. The relationships in these properties are summarized in Table 1 below. The characteristics of the composition will be further described based on a commercially available AM device.
- the temperature range of the nematic phase is related to the temperature range in which the device can be used.
- a preferred upper limit temperature of the nematic phase is about 70 ° C. or more, and a preferred lower limit temperature of the nematic phase is about ⁇ 10 ° C. or less.
- the viscosity of the composition is related to the response time of the device. A short response time is preferred for displaying moving images on the device.
- the elastic constant of the composition is related to the contrast of the device. In order to increase the contrast ratio in the device, a large elastic constant in the composition is more preferable.
- the optical anisotropy of the composition is related to the contrast ratio of the device. Depending on the mode of the device, a large optical anisotropy or a small optical anisotropy, ie an appropriate optical anisotropy is required.
- the product ( ⁇ n ⁇ d) of the optical anisotropy ( ⁇ n) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio.
- the appropriate value for the product depends on the type of operating mode. This value is in the range of about 0.30 ⁇ m to about 0.40 ⁇ m for the VA mode element and in the range of about 0.20 ⁇ m to about 0.30 ⁇ m for the IPS mode or FFS mode element.
- a composition having a large optical anisotropy is preferable for a device having a small cell gap.
- a large dielectric anisotropy in the composition contributes to a low threshold voltage, a small power consumption and a large contrast ratio in the device. Therefore, a large dielectric anisotropy is preferable.
- a large specific resistance in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device. Therefore, a composition having a large specific resistance in the initial stage is preferable.
- a composition having a large specific resistance after being used for a long time is preferred.
- the stability of the composition against ultraviolet rays and heat is related to the lifetime of the device. When this stability is high, the lifetime of the device is long. Such characteristics are preferable for an AM device used for a liquid crystal monitor, a liquid crystal television, and the like.
- a polymer-supported alignment (PSA) type liquid crystal display element In a general-purpose liquid crystal display element, vertical alignment of liquid crystal molecules is achieved by a specific polyimide alignment film.
- PSA polymer-supported alignment
- a polymer is combined with an alignment film.
- a composition to which a small amount of a polymerizable compound is added is injected into the device.
- the composition is irradiated with ultraviolet rays while applying a voltage between the substrates of the device.
- the polymerizable compound polymerizes to form a polymer network in the composition.
- the alignment of liquid crystal molecules can be controlled by the polymer, the response time of the device is shortened, and image burn-in is improved.
- Such an effect of the polymer can be expected for a device having modes such as TN, ECB, OCB, IPS, VA, FFS, and FPA.
- a liquid crystal composition containing a polymer and a polar compound is used.
- a composition to which a small amount of a polymerizable compound and a small amount of a polar compound are added is injected into the device.
- the polar compound is adsorbed and arranged on the substrate surface of the device.
- the liquid crystal molecules are aligned according to this arrangement.
- the composition is irradiated with ultraviolet rays while applying a voltage between the substrates of the device.
- the polymerizable compound is polymerized to stabilize the alignment of the liquid crystal molecules.
- the orientation of liquid crystal molecules can be controlled by the polymer and the polar compound, the response time of the device is shortened, and image burn-in is improved. Furthermore, in the element having no alignment film, the step of forming the alignment film is unnecessary. Since there is no alignment film, the electrical resistance of the device does not decrease due to the interaction between the alignment film and the composition. Such an effect by the combination of the polymer and the polar compound can be expected for a device having a mode such as TN, ECB, OCB, IPS, VA, FFS, and FPA.
- a mode such as TN, ECB, OCB, IPS, VA, FFS, and FPA.
- a composition having a positive dielectric anisotropy is used for an AM device having a TN mode.
- a composition having a negative dielectric anisotropy is used in an AM device having a VA mode.
- an AM device having an IPS mode an FFS mode, or an FPA mode
- a composition having a positive or negative dielectric anisotropy is used in an AM device having an IPS mode.
- an FFS mode or an FPA mode
- a composition having a positive or negative dielectric anisotropy is used in an AM device having an IPS mode, an FFS mode, or an FPA mode.
- a composition having positive or negative dielectric anisotropy is used in a polymer-supported orientation type device.
- a composition having positive or negative dielectric anisotropy is used in a device having no alignment film.
- the object of the present invention is to provide a high upper limit temperature of the nematic phase, a lower lower limit temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large negative dielectric anisotropy, a large specific resistance, a high stability against ultraviolet rays, a heat It is to provide a liquid crystal composition satisfying at least one of characteristics such as high stability against the above and a large elastic constant. Another challenge is to provide a liquid crystal composition that has an appropriate balance between at least two of these properties. Another object is to provide a liquid crystal display device containing such a composition.
- Another object is to provide an AM device having characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, and a long lifetime.
- a conventional polymerizable compound cannot provide a liquid crystal composition satisfying high stability against ultraviolet rays.
- the present invention relates to a liquid crystal composition containing at least one compound selected from the polymerizable compounds represented by formula (1) as a first additive and having a nematic phase, and a liquid crystal display device containing the composition.
- Ring A 1 and Ring A 3 are cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2 -Yl, or pyridin-2-yl, and in these rings, at least one hydrogen is fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or at least one hydrogen is fluorine.
- ring A 2 is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1, 2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1, -Diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5- Diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl
- Sp 1 , Sp 2 , and Sp 3 may be a single bond or alkylene of 1 to 10 carbon atoms, in the alkylene, at least one of -CH 2 -, -O -, - COO -, - OCO-, or -OCOO- may be replaced by less
- A is 0, 1, or 2
- b, c, and d are 0, 1, 2, 3, or 4, and the sum of b, c, and d is 1
- the advantages of the present invention are that the upper limit temperature of the nematic phase, the lower limit temperature of the nematic phase, the small viscosity, the appropriate optical anisotropy, the negative dielectric constant anisotropy, the large specific resistance, the high stability to ultraviolet rays, the heat It is to provide a liquid crystal composition satisfying at least one of characteristics such as high stability against the above and a large elastic constant. Another advantage is to provide a liquid crystal composition having an appropriate balance between at least two of these properties. Another advantage is to provide a liquid crystal display device containing such a composition. Another advantage is to provide an AM device having characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, and a long lifetime.
- liquid crystal composition and “liquid crystal display element” may be abbreviated as “composition” and “element”, respectively.
- “Liquid crystal display element” is a general term for liquid crystal display panels and liquid crystal display modules.
- “Liquid crystal compound” is a compound having a liquid crystal phase such as a nematic phase and a smectic phase and does not have a liquid crystal phase, but for the purpose of adjusting characteristics such as the temperature range, viscosity, and dielectric anisotropy of the nematic phase. This is a general term for compounds mixed in the composition.
- This compound has, for example, a six-membered ring such as 1,4-cyclohexylene or 1,4-phenylene, and its molecule (liquid crystal molecule) is rod-like.
- the “polymerizable compound” is a compound added for the purpose of forming a polymer in the composition. Liquid crystal compounds having alkenyl are not classified as polymerizable compounds in that sense.
- the liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives such as optically active compounds and polymerizable compounds are added to this liquid crystal composition as necessary.
- the ratio of the liquid crystal compound is represented by a mass percentage (% by mass) based on the mass of the liquid crystal composition not containing the additive even when the additive is added.
- the ratio of the additive is expressed as a mass percentage (% by mass) based on the mass of the liquid crystal composition not containing the additive. That is, the ratio of the liquid crystal compound and the additive is calculated based on the total mass of the liquid crystal compound. Mass parts per million (ppm) may be used.
- the ratio of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the mass of the polymerizable compound.
- the upper limit temperature of the nematic phase may be abbreviated as “the upper limit temperature”.
- “Lower limit temperature of nematic phase” may be abbreviated as “lower limit temperature”.
- the expression “increasing dielectric anisotropy” means that when the composition has a positive dielectric anisotropy, the value increases positively, and the composition having a negative dielectric anisotropy When it is a thing, it means that the value increases negatively.
- “High voltage holding ratio” means that the device has a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature in the initial stage, and a large voltage not only at room temperature but also at a temperature close to the upper limit temperature after long-term use. It means having a retention rate.
- the characteristics of the composition and the device may be examined by a aging test.
- the symbols ⁇ and ⁇ surrounded by hexagons correspond to the rings ⁇ and ⁇ , respectively, and represent a ring such as a six-membered ring or a condensed ring.
- the subscript 'x' is 2, there are two rings ⁇ .
- the two groups represented by the two rings ⁇ may be the same or different.
- This rule applies to any two rings ⁇ when the subscript 'x' is greater than 2.
- This rule also applies to other symbols such as the linking group Z.
- a diagonal line across one side of ring ⁇ indicates that any hydrogen on ring ⁇ may be replaced with a substituent (—Sp—P).
- the subscript “y” indicates the number of substituted substituents.
- Ra and Rb are alkyl, alkoxy, or alkenyl
- Ra and Rb are independently selected from the group of alkyl, alkoxy, and alkenyl. To do. That is, the group represented by Ra and the group represented by Rb may be the same or different.
- At least one compound selected from the compounds represented by formula (1z) may be abbreviated as “compound (1z)”.
- “Compound (1z)” means one compound represented by the formula (1z), a mixture of two compounds, or a mixture of three or more compounds. The same applies to compounds represented by other formulas.
- the expression “at least one compound selected from compounds represented by formula (1z) and formula (2z)” means at least one compound selected from the group of compound (1z) and compound (2z) .
- the expression “at least one 'A'” means that the number of 'A' is arbitrary.
- the expression “at least one 'A' may be replaced by 'B'” means that when the number of 'A' is one, the position of 'A' is arbitrary and the number of 'A' is 2 Even when there are more than two, their positions can be selected without restriction.
- the expression “at least one —CH 2 — may be replaced by —O—” may be used. In this case, —CH 2 —CH 2 —CH 2 — may be converted to —O—CH 2 —O— by replacing non-adjacent —CH 2 — with —O—. However, adjacent —CH 2 — is not replaced by —O—. This is because —O—O—CH 2 — (peroxide) is formed by this replacement.
- the alkyl of the liquid crystal compound is linear or branched and does not include cyclic alkyl. Linear alkyl is preferred over branched alkyl. The same applies to terminal groups such as alkoxy and alkenyl. As the configuration of 1,4-cyclohexylene, trans is preferable to cis for increasing the maximum temperature. Since 2-fluoro-1,4-phenylene is asymmetrical, there are leftward (L) and rightward (R). The same applies to a divalent group such as tetrahydropyran-2,5-diyl. The same applies to a linking group such as carbonyloxy (—COO— or —OCO—).
- the present invention includes the following items.
- Item 1 A liquid crystal composition containing at least one compound selected from the polymerizable compounds represented by formula (1) as a first additive and having a nematic phase.
- Ring A 1 and Ring A 3 are cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2 -Yl, or pyridin-2-yl, and in these rings, at least one hydrogen is fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or at least one hydrogen is fluorine.
- ring A 2 is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1, 2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1, -Diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5- Diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl
- Sp 1 , Sp 2 , and Sp 3 may be a single bond or alkylene of 1 to 10 carbon atoms, in the alkylene, at least one of -CH 2 -, -O -, - COO -, - OCO-, or -OCOO- may be replaced by less
- A is 0, 1, or 2
- b, c, and d are 0, 1, 2, 3, or 4, and the sum of b, c, and d is 1
- P 1 , P 2 and P 3 are groups selected from a polymerizable group represented by the formula (P-1) to the formula (P-6), and P 1 , P 2 , and Item 2.
- M 1 is alkyl having 1 to 5 carbons
- M 2 , M 3 , and M 4 are hydrogen, fluorine, 1 to 5 carbons Alkyl, or alkyl having 1 to 5 carbon atoms in which at least one hydrogen is replaced by fluorine or chlorine
- n is an integer of 1 to 5.
- Item 3. The liquid crystal composition according to item 1 or 2, containing at least one compound selected from compounds represented by formulas (1-1) to (1-30) as a first additive.
- R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons Or an alkyl having 1 to 12 carbon atoms in which at least one hydrogen is replaced by fluorine or chlorine;
- P 5 , P 6 , and P 7 are represented by the formula (P-1) to the formula (P-4 And at least one of P 5 , P 6 and P 7 is a polymerizable group represented by formula (P-1);
- M 1 is alkyl having 1 to 5 carbons
- M 2 , M 3 , and M 4 are hydrogen, fluorine, alkyl having 1 to 5 carbons, or at least one hydrogen is replaced by fluorine or chlorine
- N is an integer from 1 to 5
- Sp 1 , Sp 2 , and Sp 3 are
- Item 4. The liquid crystal composition according to any one of items 1 to 3, wherein the ratio of the first additive is in the range of 0.03% by mass to 10% by mass.
- Item 5. The liquid crystal composition according to any one of items 1 to 4, comprising at least one compound selected from compounds represented by formula (2) as a first component.
- R 1 and R 2 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or at least 1 to 12 carbon atoms in which one hydrogen is replaced by fluorine or chlorine;
- Ring D and Ring F are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5- Diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced with fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2 in which at least one hydrogen is replaced with fluorine or chlorine, 6-diyl, chroman-2,6-diyl, or chroma in which at least one hydrogen is replaced
- Item 6. The liquid crystal composition according to any one of items 1 to 5, comprising at least one compound selected from the group of compounds represented by formulas (2-1) to (2-35) as a first component: object.
- R 1 and R 2 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, carbon number 2 to 12 alkenyloxy, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
- Item 7. The liquid crystal composition according to item 5 or 6, wherein the ratio of the first component is in the range of 10% by mass to 90% by mass.
- Item 8. The liquid crystal composition according to any one of items 1 to 7, comprising at least one compound selected from compounds represented by formula (3) as the second component.
- R 3 and R 4 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, carbon in which at least one hydrogen is replaced with fluorine or chlorine
- ring G and ring I are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4-phenylene
- Z 5 is a single bond, ethylene, or carbonyloxy
- g is 1, 2, or 3 is there.
- Item 9. The liquid crystal composition according to any one of items 1 to 8, comprising at least one compound selected from compounds represented by formulas (3-1) to (3-13) as a second component.
- R 3 and R 4 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, at least one hydrogen Is alkyl having 1 to 12 carbon atoms replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbon atoms in which at least one hydrogen is replaced by fluorine or chlorine.
- Item 10 The liquid crystal composition according to item 8 or 9, wherein the ratio of the second component is in the range of 10% by mass to 90% by mass.
- Item 11 The liquid crystal composition according to any one of items 1 to 10, comprising at least one compound selected from polymerizable compounds represented by formula (4) as the second additive.
- ring I and ring K are cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidin-2-yl
- at least one hydrogen is fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or at least one hydrogen is fluorine or chlorine.
- Item 12. The liquid crystal composition according to any one of items 1 to 11, comprising at least one compound selected from compounds represented by formulas (4-1) to (4-29) as a second additive: .
- P 12 , P 13 , and P 14 are polymerizable groups selected from groups represented by formulas (P-7) to (P-9) A group;
- M 5 , M 6 , and M 7 are hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
- Sp 5 , Sp 6 , and Sp 7 are a single bond or alkylene having 1 to 10 carbon atoms, and in the alkylene, at least one —CH 2 — is —O—, —COO—, —OCO—, or —OCOO— may be replaced, and at least one —CH 2 —CH 2 — may be replaced with —CH ⁇ CH— or —C ⁇ C—, in
- Item 13 The liquid crystal composition according to item 11 or 12, wherein the ratio of the second additive is in the range of 0.03% by mass to 10% by mass.
- Item 14 A liquid crystal display device comprising the liquid crystal composition according to any one of items 1 to 13.
- Item 15 The liquid crystal display element according to item 14, wherein the operation mode of the liquid crystal display element is an IPS mode, a VA mode, an FFS mode, or an FPA mode, and the driving method of the liquid crystal display element is an active matrix method.
- Item 16 A polymer-supported alignment type liquid crystal display device comprising the liquid crystal composition according to any one of items 1 to 13, or a polymerizable compound in the liquid crystal composition is polymerized.
- Item 17. Use of a liquid crystal composition according to any one of items 1 to 13 in a liquid crystal display device.
- Item 18. Use of the liquid crystal composition according to any one of items 1 to 13 in a polymer supported alignment type liquid crystal display element.
- the present invention includes the following items.
- A As a third additive, at least one of additives such as an optically active compound, an antioxidant, an ultraviolet absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, a polymerization inhibitor, and a polar compound
- the above composition further comprising:
- D A polymer-supported orientation (PSA) type AM device comprising the above-described composition, wherein the polymerizable compound in the composition is polymerized.
- (E) A device containing the above composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, or FPA.
- (F) A transmissive device containing the above composition.
- (G) Use of the above composition as a composition having a nematic phase.
- (H) Use of an optically active composition obtained by adding an optically active compound to the above composition.
- composition of the present invention will be described in the following order. First, the composition of the composition will be described. Second, the main characteristics of the component compounds and the main effects of the compounds on the composition and the device will be described. Third, combinations of component compounds in the composition, desirable ratios, and the basis thereof will be described. Fourth, a preferred form of the component compound will be described. Fifth, preferred component compounds are shown. Sixth, additives that may be added to the composition will be described. Seventh, a method for synthesizing the component compounds will be described. Finally, the use of the composition will be described.
- This composition contains a plurality of liquid crystal compounds.
- the composition may contain additives. Additives include optically active compounds, antioxidants, ultraviolet absorbers, quenchers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds, and the like.
- This composition is classified into a composition A and a composition B from the viewpoint of a liquid crystal compound.
- the composition A may further contain other liquid crystal compounds, additives and the like in addition to the liquid crystal compound selected from the compound (2) and the compound (3).
- the “other liquid crystal compound” is a liquid crystal compound different from the compound (2) and the compound (3). Such compounds are mixed into the composition for the purpose of further adjusting the properties.
- Composition B consists essentially of a liquid crystalline compound selected from compound (2) and compound (3). “Substantially” means that the composition B may contain an additive but does not contain any other liquid crystal compound. Composition B has fewer components than composition A. From the viewpoint of reducing the cost, the composition B is preferable to the composition A. The composition A is preferable to the composition B from the viewpoint that the characteristics can be further adjusted by mixing other liquid crystal compounds.
- the main characteristics of the component compounds and the main effects of the compounds on the composition and the device will be explained.
- the main characteristics of the component compounds are summarized in Table 2 based on the effects of the present invention.
- L means large or high
- M means moderate
- S means small or low.
- L, M, and S are classifications based on a qualitative comparison among the component compounds, and the symbol 0 (zero) means smaller than S (small).
- Compound (1) and Compound (4) give a polymer by polymerization, and this polymer shortens the response time of the device and improves image burn-in.
- Compound (2) increases the dielectric anisotropy and decreases the minimum temperature.
- Compound (3) decreases the viscosity or increases the maximum temperature.
- a polymerizable compound such as compound (1) is added to the composition for the purpose of adapting to a polymer-supported orientation type device.
- a desirable ratio of the polymerizable compound is approximately 0.03% by mass or more for shortening the response time, and approximately 10% by mass or less for preventing display defects of the device.
- a more desirable ratio is in the range of approximately 0.1% by mass to approximately 0.8% by mass.
- a particularly desirable ratio is in the range of approximately 0.3% by mass to approximately 0.5% by mass.
- a desirable ratio of the compound (2) is approximately 10% by mass or more for increasing the dielectric anisotropy, and approximately 90% by mass or less for decreasing the minimum temperature.
- a more desirable ratio is in the range of approximately 20% by mass to approximately 80% by mass.
- a particularly desirable ratio is in the range of approximately 30% by mass to approximately 70% by mass.
- a desirable ratio of compound (3) is approximately 10% by mass or more for increasing the maximum temperature or decreasing the viscosity, and approximately 90% by mass or less for increasing the dielectric anisotropy.
- a more desirable ratio is in the range of approximately 20% by mass to approximately 80% by mass.
- a particularly desirable ratio is in the range of approximately 30% by mass to approximately 70% by mass.
- a polymerizable compound such as compound (4) is added to the composition for the purpose of adapting to a polymer-supported orientation type device.
- a desirable ratio of the polymerizable compound is approximately 0.03% by mass or more for shortening the response time, and approximately 10% by mass or less for preventing display defects of the device.
- a more desirable ratio is in the range of approximately 0.1% by mass to approximately 0.8% by mass.
- a particularly desirable ratio is in the range of approximately 0.3% by mass to approximately 0.5% by mass.
- R 1 and R 2 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, carbon number 2 to 12 alkenyloxy, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
- Desirable R 1 or R 2 is alkyl having 1 to 12 carbons for increasing the stability, and alkoxy having 1 to 12 carbons for increasing the dielectric anisotropy.
- R 3 and R 4 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine Or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
- Desirable R 3 or R 4 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability.
- Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is methyl, ethyl, propyl, butyl or pentyl for decreasing the viscosity.
- Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
- Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity.
- the preferred configuration of —CH ⁇ CH— in these alkenyls depends on the position of the double bond.
- Trans is preferable in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity.
- Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl, and 2-hexenyl.
- Preferred alkenyloxy is vinyloxy, allyloxy, 3-butenyloxy, 3-pentenyloxy, or 4-pentenyloxy. More preferable alkenyloxy is allyloxy or 3-butenyloxy for decreasing the viscosity.
- alkyl in which at least one hydrogen is replaced by fluorine or chlorine are fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl. Or 8-fluorooctyl. Further preferred examples are 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl or 5-fluoropentyl for increasing the dielectric anisotropy.
- alkenyl in which at least one hydrogen is replaced by fluorine or chlorine are 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro -4-pentenyl, or 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
- Ring D and ring F are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1 in which at least one hydrogen is replaced by fluorine or chlorine , 4-phenylene, naphthalene-2,6-diyl, naphthalene-2,6-diyl, chroman-2,6-diyl, in which at least one hydrogen is replaced by fluorine or chlorine, or at least one hydrogen is fluorine or chlorine
- Preferred ring D or ring F is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for increasing the optical anisotropy.
- Ring E is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4, 5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7-diyl (FLF4), 4,6- Difluorodibenzofuran-3,7-diyl (DBFF2), 4,6-difluorodibenzothiophene-3,7-diyl (DBTF2), or 1,1,6,7-tetrafluoroindane-2,5-diyl (InF4) It is. Desirable ring E is 2,3-difluoro-1,4-phenylene for increasing the dielectric anisotropy.
- Ring G and ring I are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4-phenylene. Desirable ring G or ring I is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for increasing the optical anisotropy.
- Z 3 and Z 4 are a single bond, ethylene, methyleneoxy, or carbonyloxy. Desirable Z 3 or Z 4 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the dielectric anisotropy.
- Z 5 is a single bond, ethylene, or carbonyloxy. Desirable Z 5 is a single bond for decreasing the viscosity.
- a divalent group such as methyleneoxy is asymmetrical.
- methyleneoxy —CH 2 O— is preferred to —OCH 2 —.
- carbonyloxy —COO— is preferred to —OCO—.
- E is 0, 1, 2, or 3; f is 0 or 1; and the sum of e and f is 3 or less.
- Preferred e is 1 for decreasing the viscosity, and 2 for increasing the maximum temperature.
- Desirable f is 0 for decreasing the viscosity, and 1 for decreasing the minimum temperature.
- g is 1, 2 or 3.
- Preferred g is 1 for decreasing the viscosity, and 2 for increasing the maximum temperature.
- ring A 1 and ring A 3 are cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3 -Dioxane-2-yl, pyrimidin-2-yl or pyridin-2-yl, in which at least one hydrogen is fluorine, chlorine, alkyl having 1 to 12 carbons, 1 to 12 carbons Or at least one hydrogen may be replaced by alkyl having 1 to 12 carbons replaced by fluorine or chlorine.
- Preferred ring A 1 and ring A 3 are phenyl.
- Ring A 2 is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, Naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene- 2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, in these rings At least one hydrogen is fluorine, chlorine,
- Ring I and Ring K are cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidin-2-yl, or pyridine-2-
- at least one hydrogen is fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or carbons in which at least one hydrogen is replaced by fluorine or chlorine. It may be substituted with 1 to 12 alkyls.
- Preferred ring I or ring K is phenyl.
- Ring J is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene -1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2 , 7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, At least one hydrogen is fluorine, chlorine,
- P 1, P 2, and P 3 is a polymerizable group, at least one of P 1, P 2, and P 3 is a polymerizable group represented by the formula (P-1).
- Preferred P 1 , P 2 or P 3 is a group selected from a polymerizable group represented by formula (P-1) to formula (P-6).
- the wavy lines in the formulas (P-1) to (P-6) indicate the binding sites.
- M 1 is alkyl having 1 to 5 carbons. Preferred M 1 is methyl for increasing the reactivity.
- M 2 , M 3 , and M 4 are hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
- Preferred M 2 , M 3 , or M 4 is hydrogen or methyl for increasing the reactivity. More preferred M 2 is hydrogen or methyl, and more preferred M 3 or M 4 is hydrogen.
- n is an integer of 1 to 5. Preferred n is 1.
- P 9 , P 10 , and P 11 are groups selected from polymerizable groups represented by formulas (P-7) to (P-11).
- the wavy line from the formula (P-7) to the formula (P-11) indicates a binding site.
- M 5 , M 6 , and M 7 are hydrogen, fluorine, alkyl having 1 to 5 carbons, or at least one hydrogen is replaced by fluorine or chlorine And alkyl having 1 to 5 carbon atoms.
- Preferred M 5 , M 6 or M 7 is hydrogen or methyl for increasing the reactivity. More preferred M 5 is hydrogen or methyl, and more preferred M 6 or M 7 is hydrogen.
- Z 1 , Z 2 , Z 6 , and Z 7 are a single bond or alkylene having 1 to 10 carbon atoms, and in the alkylene, at least one —CH 2 — is —O—, —CO—, —COO. —, Or —OCO—, may be substituted, and at least one —CH 2 —CH 2 — represents —CH ⁇ CH—, —C (CH 3 ) ⁇ CH—, —CH ⁇ C (CH 3 ) — Or —C (CH 3 ) ⁇ C (CH 3 ) —, in which at least one hydrogen may be replaced with fluorine or chlorine.
- Preferred Z 1 , Z 2 , Z 6 , or Z 7 is a single bond, —CH 2 —CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—. Further preferred Z 1 , Z 2 , Z 6 or Z 7 is a single bond.
- Sp 1 , Sp 2 , Sp 3 , Sp 5 , Sp 6 , and Sp 7 are a single bond or alkylene having 1 to 10 carbon atoms, and in the alkylene, at least one —CH 2 — is —O—, —COO—, —OCO—, or —OCOO— may be substituted, and at least one —CH 2 —CH 2 — may be substituted with —CH ⁇ CH— or —C ⁇ C— In this group, at least one hydrogen may be replaced by fluorine or chlorine.
- Preferred Sp 1 , Sp 2 , Sp 3 , Sp 5 , Sp 6 , or Sp 7 is a single bond, —CH 2 —CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, —OCO—.
- Further preferred Sp 1 , Sp 2 , Sp 3 , Sp 5 , Sp 6 , or Sp 7 is a single bond.
- A is 0, 1, or 2.
- Preferred a is 1 or 2.
- b, c, and d are 0, 1, 2, 3, or 4.
- Preferred b, c, or d is 0, 1 or 2.
- h is 0, 1, or 2.
- Preferred h is 0 or 1.
- i, j, and k are 0, 1, 2, 3, or 4, and the sum of i, j, and k is 1 or greater.
- Preferred i, j, or k is 1 or 2.
- Desirable compounds (1) are the compounds (1-1) to (1-29) according to item 3.
- at least one of the first additives is compound (1-1), compound (1-2), compound (1-24), compound (1-25), compound (1-26), compound (1-27) or compound (1-29) is preferred.
- At least two of the first additives are compound (1-1) and compound (1-2), compound (1-1) and compound (1-18), compound (1-2) and compound (1-24).
- Desirable compound (2) is the compound (2-1) to the compound (2-35) according to item 6.
- at least one of the first components is compound (2-1), compound (2-3), compound (2-6), compound (2-8), compound (2-10), compound ( 2-13), compound (2-14), or compound (2-18) is preferable.
- At least two of the first components are compound (2-1) and compound (2-8), compound (2-1) and compound (2-14), compound (2-3) and compound (2-8), Compound (2-3) and Compound (2-10), Compound (2-3) and Compound (2-14), Compound (2-6) and Compound (2-8), Compound (2-6) and Compound A combination of (2-10), compound (2-6) and compound (2-18), or compound (2-10) and compound (2-14) is preferred.
- Desirable compound (3) is the compound (3-1) to the compound (3-13) according to item 9.
- at least one of the second components is the compound (3-1), the compound (3-3), the compound (3-5), the compound (3-6), the compound (3-7), or the compound (3-9) is preferred.
- At least two of the second components are the compound (3-1) and the compound (3-3), the compound (3-1) and the compound (3-5), or the compound (3-1) and the compound (3-6). It is preferable that it is the combination of these.
- Desirable compound (4) is the compound (4-1) to the compound (4-29) according to item 12.
- at least one of the second additives is compound (4-1), compound (4-2), compound (4-24), compound (4-25), compound (4-26), or The compound (4-27) is preferable.
- At least two of the second additives are compound (4-1) and compound (4-2), compound (4-1) and compound (4-18), compound (4-2) and compound (4-24).
- additives that may be added to the composition will be described.
- Such additives are optically active compounds, antioxidants, ultraviolet absorbers, quenchers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like.
- An optically active compound is added to the composition for the purpose of inducing a helical structure of liquid crystal molecules to give a twist angle.
- Examples of such compounds are compound (5-1) to compound (5-5).
- a desirable ratio of the optically active compound is approximately 5% by mass or less.
- a more desirable ratio is in the range of approximately 0.01% by mass to approximately 2% by mass.
- an antioxidant is composed. Added to the product. Desirable examples of the antioxidant include the compound (6-1) to the compound (6-3).
- compound (6-2) Since compound (6-2) has low volatility, it is effective to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature after using the device for a long time.
- a desirable ratio of the antioxidant is approximately 50 ppm or more for achieving its effect, and is approximately 600 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature.
- a more desirable ratio is in the range of approximately 100 ppm to approximately 300 ppm.
- Preferred examples of the ultraviolet absorber include benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Also preferred are light stabilizers such as sterically hindered amines. Desirable examples of the light stabilizer include the compound (7-1) to the compound (7-16). A desirable ratio in these absorbents and stabilizers is approximately 50 ppm or more for obtaining the effect thereof, and approximately 10,000 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
- the quencher is a compound that receives light energy absorbed by the liquid crystalline compound and converts it into thermal energy, thereby preventing decomposition of the liquid crystalline compound.
- Desirable examples of the quencher include the compound (8-1) to the compound (8-7).
- a desirable ratio of these quenchers is about 50 ppm or more for achieving the effect thereof, and about 20000 ppm or less for decreasing the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
- a dichroic dye such as an azo dye or an anthraquinone dye is added to the composition in order to adapt it to a GH (guest host) mode element.
- a preferred ratio of the dye is in the range of approximately 0.01% by mass to approximately 10% by mass.
- an antifoaming agent such as dimethyl silicone oil or methylphenyl silicone oil is added to the composition.
- a desirable ratio of the antifoaming agent is approximately 1 ppm or more for obtaining the effect thereof, and approximately 1000 ppm or less for preventing a display defect.
- a more desirable ratio is in the range of approximately 1 ppm to approximately 500 ppm.
- a polymerizable compound is used to adapt to a polymer support alignment (PSA) type device.
- PSA polymer support alignment
- Compound (1) and compound (4) are suitable for this purpose.
- a polymerizable compound different from these compounds may be added to the composition together with the compound (1) and the compound (4).
- Preferable examples of other polymerizable compounds are compounds such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Further preferred examples are acrylate and methacrylate.
- the reactivity of the polymerizable compound and the pretilt angle of the liquid crystal molecules can be adjusted.
- a short response time of the element can be achieved. Since the alignment of the liquid crystal molecules is stabilized, a large contrast ratio and a long lifetime can be achieved.
- Polymerizable compounds such as compound (1) and compound (4) are polymerized by ultraviolet irradiation.
- the polymerization may be performed in the presence of a suitable polymerization initiator such as a photopolymerization initiator.
- a suitable polymerization initiator such as a photopolymerization initiator.
- Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature.
- Irgacure 651 registered trademark; BASF
- Irgacure 184 registered trademark; BASF
- Darocur 1173 registered trademark; BASF
- a desirable ratio of the photopolymerization initiator is in the range of approximately 0.1% by mass to approximately 5% by mass based on the mass of the polymerizable compound.
- a more desirable ratio is in the range of approximately 1% by mass to approximately 3% by mass.
- a polymerization inhibitor When storing a polymerizable compound such as compound (1) or compound (4), a polymerization inhibitor may be added to prevent polymerization.
- the polymerizable compound is usually added to the composition without removing the polymerization inhibitor.
- the polymerization inhibitor include hydroquinone derivatives such as hydroquinone and methylhydroquinone, 4-t-butylcatechol, 4-methoxyphenol, phenothiazine and the like.
- the polar compound is an organic compound having polarity.
- a compound having an ionic bond is not included.
- Atoms such as oxygen, sulfur, and nitrogen are more electronegative and tend to have partial negative charges.
- Carbon and hydrogen tend to be neutral or have a partial positive charge.
- Polarity arises from the fact that partial charges are not evenly distributed among different types of atoms in a compound.
- the polar compound has at least one of partial structures such as —OH, —COOH, —SH, —NH 2 ,>NH,> N—.
- compositions are prepared from the compound thus obtained by known methods. For example, the component compounds are mixed and dissolved in each other by heating.
- compositions have a minimum temperature of about ⁇ 10 ° C. or lower, a maximum temperature of about 70 ° C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20.
- a composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the ratio of the component compounds or by mixing other liquid crystal compounds.
- a composition having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared by trial and error.
- a device containing this composition has a large voltage holding ratio.
- This composition is suitable for an AM device.
- This composition is particularly suitable for a transmissive AM device.
- This composition can be used as a composition having a nematic phase or can be used as an optically active composition by adding an optically active compound.
- This composition can be used for an AM device. Further, it can be used for PM elements.
- This composition can be used for an AM device and a PM device having modes such as PC, TN, STN, ECB, OCB, IPS, FFS, VA, and FPA.
- Use for an AM device having a TN, OCB, IPS mode or FFS mode is particularly preferable.
- the alignment of liquid crystal molecules may be parallel to or perpendicular to the glass substrate.
- These elements may be reflective, transmissive, or transflective. Use in a transmissive element is preferred. It can also be used for an amorphous silicon-TFT device or a polycrystalline silicon-TFT device.
- NCAP non-curvilinear-aligned-phase
- PD polymer-dispersed
- An example of a method for producing a polymer-supported orientation type element is as follows. An element having two substrates called an array substrate and a color filter substrate is assembled. This substrate has an alignment film. At least one of the substrates has an electrode layer. A liquid crystal compound is prepared by mixing a liquid crystal compound. A polymerizable compound is added to the composition. You may add an additive further as needed. This composition is injected into the device. The device is irradiated with light with a voltage applied. Ultraviolet light is preferred. The polymerizable compound is polymerized by light irradiation. By this polymerization, a composition containing a polymer is generated. The polymer-supported orientation type element is manufactured by such a procedure.
- the present invention will be described in more detail with reference to examples. The invention is not limited by these examples.
- the present invention includes a mixture of the composition of Example 1 and the composition of Example 2.
- the invention also includes a mixture of at least two of the example compositions.
- the synthesized compound was identified by a method such as NMR analysis. The characteristics of the compound, composition and device were measured by the methods described below.
- NMR analysis DRX-500 manufactured by Bruker BioSpin Corporation was used for measurement.
- the sample was dissolved in a deuterated solvent such as CDCl 3, and the measurement was performed at room temperature, 500 MHz, and 16 times of integration.
- Tetramethylsilane was used as an internal standard.
- CFCl 3 was used as an internal standard and the number of integrations was 24.
- s is a singlet
- d is a doublet
- t is a triplet
- q is a quartet
- quint is a quintet
- sex is a sextet
- m is a multiplet
- br is broad.
- GC-14B gas chromatograph manufactured by Shimadzu Corporation was used for measurement.
- the carrier gas is helium (2 mL / min).
- the sample vaporization chamber was set at 280 ° C, and the detector (FID) was set at 300 ° C.
- capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m; stationary liquid phase is dimethylpolysiloxane; nonpolar) manufactured by Agilent Technologies Inc. was used.
- the column was held at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./min.
- a sample was prepared in an acetone solution (0.1% by mass), and 1 ⁇ L thereof was injected into the sample vaporization chamber.
- the recorder is a C-R5A Chromatopac manufactured by Shimadzu Corporation, or an equivalent product.
- the obtained gas chromatogram showed the peak retention time and peak area corresponding to the component compounds.
- capillary column As a solvent for diluting the sample, chloroform, hexane or the like may be used.
- the following capillary column may be used.
- HP-1 from Agilent Technologies Inc. (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), BP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by SGE International Pty.
- a capillary column CBP1-M50-025 length 50 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m
- Shimadzu Corporation may be used.
- the ratio of the liquid crystal compound contained in the composition may be calculated by the following method.
- a mixture of liquid crystal compounds is detected by a gas chromatograph (FID).
- the area ratio of peaks in the gas chromatogram corresponds to the ratio (mass ratio) of liquid crystal compounds.
- the correction coefficient of each liquid crystal compound may be regarded as 1. Therefore, the ratio (% by mass) of the liquid crystal compound can be calculated from the peak area ratio.
- Measurement sample When measuring the characteristics of the composition and the device, the composition was used as it was as a sample.
- a sample for measurement was prepared by mixing this compound (15% by mass) with the mother liquid crystal (85% by mass). The characteristic value of the compound was calculated from the value obtained by the measurement by extrapolation.
- (Extrapolated value) ⁇ (Measured value of sample) ⁇ 0.85 ⁇ (Measured value of mother liquid crystal) ⁇ / 0.15.
- the ratio of the compound and the mother liquid crystal is 10% by mass: 90% by mass, 5% by mass: 95% by mass, and 1% by mass: 99% by mass in this order. changed.
- the maximum temperature, optical anisotropy, viscosity, and dielectric anisotropy values for the compound were determined.
- the following mother liquid crystals were used.
- the ratio of the component compound is indicated by mass%.
- Measurement method The characteristics were measured by the following method. Many of these methods have been modified by the methods described in the JEITA standard (JEITA ED-2521B) established by the Japan Electronics and Information Technology Industries Association (hereinafter referred to as JEITA). Was the way. No thin film transistor (TFT) was attached to the TN device used for the measurement.
- JEITA Japan Electronics and Information Technology Industries Association
- nematic phase (NI; ° C.): A sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
- the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
- T C Minimum temperature of nematic phase
- a sample having a nematic phase is placed in a glass bottle and placed in a freezer at 0 ° C., ⁇ 10 ° C., ⁇ 20 ° C., ⁇ 30 ° C., and ⁇ 40 ° C. for 10 days. After storage, the liquid crystal phase was observed. For example, when the sample remained in a nematic phase at ⁇ 20 ° C. and changed to a crystalline or smectic phase at ⁇ 30 ° C., the TC was described as ⁇ 20 ° C.
- the lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
- Viscosity Bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s: An E-type viscometer manufactured by Tokyo Keiki Co., Ltd. was used for the measurement.
- Viscosity (Rotational Viscosity; ⁇ 1; Measured at 25 ° C .; mPa ⁇ s): A rotational viscosity measurement system LCM-2 type manufactured by Toyo Technica Co., Ltd. was used for the measurement. A sample was injected into a VA device having a distance between two glass substrates (cell gap) of 10 ⁇ m. A rectangular wave (55 V, 1 ms) was applied to this element. The peak current (peak current) and peak time (peak time) of the transient current (transient current) generated by this application were measured. Using these measured values and dielectric anisotropy, a value of rotational viscosity was obtained. The dielectric anisotropy was measured by the method described in measurement (6).
- the dielectric constants ( ⁇ and ⁇ ) were measured as follows. 1) Measurement of dielectric constant ( ⁇ ): An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated with a spinner and then heated at 150 ° C. for 1 hour. A sample was put in a VA element in which the distance between two glass substrates (cell gap) was 4 ⁇ m, and the element was sealed with an adhesive that was cured with ultraviolet rays.
- Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant ( ⁇ ) in the major axis direction of the liquid crystal molecules was measured.
- 2) Measurement of dielectric constant ( ⁇ ) A polyimide solution was applied to a well-cleaned glass substrate. After baking this glass substrate, the obtained alignment film was rubbed. A sample was injected into a TN device in which the distance between two glass substrates (cell gap) was 9 ⁇ m and the twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant ( ⁇ ) in the minor axis direction of the liquid crystal molecules was measured.
- Threshold voltage (Vth; measured at 25 ° C .; V): An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for the measurement.
- the light source was a halogen lamp.
- a sample is placed in a normally black mode VA element in which the distance between two glass substrates (cell gap) is 4 ⁇ m and the rubbing direction is anti-parallel, and an adhesive that cures the element with ultraviolet rays is used. And sealed.
- the voltage (60 Hz, rectangular wave) applied to this element was increased stepwise from 0V to 20V by 0.02V.
- the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
- a voltage-transmittance curve was created in which the transmittance was 100% when the light amount reached the maximum and the transmittance was 0% when the light amount was the minimum.
- the threshold voltage was expressed as a voltage when the transmittance reached 10%.
- VHR-1 Voltage holding ratio
- the TN device used for the measurement had a polyimide alignment film, and the distance between two glass substrates (cell gap) was 5 ⁇ m. . This element was sealed with an adhesive that was cured with ultraviolet rays after the sample was placed.
- the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
- the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
- Area B was the area when it was not attenuated.
- the voltage holding ratio was expressed as a percentage of area A with respect to area B.
- VHR-2 Voltage holding ratio (VHR-2; measured at 80 ° C .;%): The voltage holding ratio was measured in the same procedure as above except that it was measured at 80 ° C. instead of 25 ° C. The obtained value was expressed as VHR-2.
- VHR-3 Voltage holding ratio
- the TN device used for the measurement had a polyimide alignment film, and the cell gap was 5 ⁇ m. A sample was injected into this device and irradiated with light for 30 minutes.
- the light source was an ultra high pressure mercury lamp USH-500D (manufactured by USHIO), and the distance between the element and the light source was 20 cm.
- USH-500D ultra high pressure mercury lamp manufactured by USHIO
- a voltage decaying for 166.7 milliseconds was measured.
- a composition having a large VHR-3 has a large stability to ultraviolet light.
- VHR-3 is preferably 90% or more, and more preferably 95% or more.
- VHR-4 Voltage holding ratio
- the TN device injected with the sample was heated in a constant temperature bath at 80 ° C. for 500 hours, and then the voltage holding ratio was measured to determine the stability against heat. Evaluated. In the measurement of VHR-4, a voltage decaying for 16.7 milliseconds was measured. A composition having a large VHR-4 has a large stability to heat.
- Elastic constant (K11: splay elastic constant, K33: bend elastic constant; measured at 25 ° C .; pN):
- an EC-1 type elastic constant measuring instrument manufactured by Toyo Corporation was used. Using. A sample was put in a vertical alignment cell in which the distance between two glass substrates (cell gap) was 20 ⁇ m. A 20 to 0 volt charge was applied to the cell, and the capacitance and applied voltage were measured. Fitting the measured values of capacitance (C) and applied voltage (V) using “Liquid Crystal Device Handbook” (Nikkan Kogyo Shimbun), formulas (2.98) and (2.101) on page 75 The value of the elastic constant was obtained from the formula (2.100).
- Step 1 Under a nitrogen atmosphere, compound (T-1) synthesized by a known method (3 g, 14.69 mmol) and dichloromethane (300 ml) were placed in a reactor and cooled to 0 ° C.
- Compound (T-2) (5.63 g, 48.48 mmol), 1- (3-dimethylaminopropyl) carbodiimide (9.29 g, 48.48 mmol) synthesized by a known method, and triethylamine (9.01 ml) 64.64 mmol), and the temperature was raised to room temperature.
- the reaction mixture was poured into water, and the aqueous layer was extracted with ethyl acetate.
- the compounds in Examples were represented by symbols based on the definitions in Table 3 below.
- Table 3 the configuration regarding 1,4-cyclohexylene is trans.
- the number in parentheses after the symbol corresponds to the compound number.
- the symbol ( ⁇ ) means other liquid crystal compounds.
- the ratio (percentage) of the liquid crystal compound is a mass percentage (% by mass) based on the mass of the liquid crystal composition.
- Example 1 The polymerizable compound (1-2-1) was added to the composition of Composition Example 1 at a ratio of 0.3% by mass.
- Example 1 contains 0.3% by mass of the polymerizable compound (1-2-1).
- the VHR-3 of this composition was 90.8%.
- Comparative Example 1 a polymerizable compound A having a similar structure was used instead of the polymerizable compound (1-2-1).
- the VHR-3 of the composition was 81.0%.
- the composition of Example 1 had a larger VHR-3 compared to the composition of Comparative Example 1. Therefore, it is concluded that the liquid crystal composition of the present invention has excellent characteristics.
- Example 2 to 27 The following polymerizable compounds (1-1-1) to (1-26-2) were added to the compositions of Composition Examples 2 to 27.
- Table 4 shows combinations of composition examples and polymerizable compounds.
- the liquid crystal composition of the present invention has a high maximum temperature, a low minimum temperature, a small viscosity, a suitable optical anisotropy, a large negative dielectric anisotropy, a large specific resistance, a high stability against ultraviolet rays, and a high stability against heat.
- a characteristic such as a large elastic constant, at least one characteristic is satisfied or has an appropriate balance with respect to at least two characteristics.
- a liquid crystal display element containing this composition has characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, and a long lifetime, and thus can be used for a liquid crystal monitor, a liquid crystal television, and the like. .
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
従来の重合性化合物では、紫外線に対する高い安定性を充足する液晶組成物を提供できなかった。
式(1)において、環A1および環A3は、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環A2は、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;P1、P2およびP3は、重合性基であり、P1、P2およびP3の少なくとも1つは式(P-1)で表される重合性基であり;
Z1およびZ2は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-、-C(CH3)=CH-、-CH=C(CH3)-、または-C(CH3)=C(CH3)-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;Sp1、Sp2、およびSp3は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;aは、0、1、または2であり;b、c、およびdは、0、1、2、3、または4であり、そしてb、c、およびdの和は、1以上であり;
式(P-1)において、M1は、炭素数1から5のアルキルであり;nは、1から5の整数である。
上記の化合物(1z)を例にして説明する。式(1z)において、六角形で囲んだαおよびβの記号はそれぞれ環αおよび環βに対応し、六員環、縮合環のような環を表す。添え字‘x’が2のとき、2つの環αが存在する。2つの環αが表す2つの基は、同一であってもよく、または異なってもよい。このルールは、添え字‘x’が2より大きいとき、任意の2つの環αに適用される。このルールは、結合基Zのような、他の記号にも適用される。環βの一辺を横切る斜線は、環β上の任意の水素が置換基(-Sp-P)で置き換えられてもよいことを表す。添え字‘y’は置き換えられた置換基の数を示す。添え字‘y’が0のとき、そのような置き換えはない。添え字‘y’が2以上のとき、環β上には複数の置換基(-Sp-P)が存在する。この場合にも、「同一であってもよく、または異なってもよい」のルールが適用される。なお、このルールは、Raの記号を複数の化合物に用いた場合にも適用される。
テトラヒドロピラン-2,5-ジイルのような二価基においても同様である。カルボニルオキシのような結合基(-COO-または-OCO-)も同様である。
項1. 第一添加物として式(1)で表される重合性化合物から選択された少なくとも1つの化合物を含有し、そしてネマチック相を有する液晶組成物。
式(1)において、環A1および環A3は、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環A2は、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;P1、P2およびP3は、重合性基であり、P1、P2およびP3の少なくとも1つは式(P-1)で表される重合性基であり;
Z1およびZ2は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-、-C(CH3)=CH-、-CH=C(CH3)-、または-C(CH3)=C(CH3)-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;Sp1、Sp2、およびSp3は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;aは、0、1、または2であり;b、c、およびdは、0、1、2、3、または4であり、そしてb、c、およびdの和は、1以上であり;
式(P-1)において、M1は、炭素数1から5のアルキルであり;nは、1から5の整数である。
式(P-1)から式(P-6)において、M1は、炭素数1から5のアルキルであり;M2、M3、およびM4は、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から5のアルキルであり;nは、1から5の整数である。
式(1-1)から式(1-30)において、R1は、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルであり;P5、P6、およびP7は、式(P-1)から式(P-4)で表される重合性基から選択された基であり、P5、P6、およびP7の少なくとも1つは式(P-1)で表される重合性基であり;
ここでM1は、炭素数1から5のアルキルであり;M2、M3、およびM4は、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から5のアルキルであり;nは、1から5の整数であり;Sp1、Sp2、およびSp3は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。
式(2)において、R1およびR2は、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルであり;環Dおよび環Fは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであり;環Eは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;Z3およびZ4は、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり;eは、0、1、2、または3であり、fは、0または1であり;そしてeとfとの和は3以下である。
式(2-1)から式(2-35)において、R1およびR2は、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルである。
式(3)において、R3およびR4は、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルであり;環Gおよび環Iは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Z5は、単結合、エチレン、またはカルボニルオキシであり;gは、1、2、または3である。
式(3-1)から式(3-13)において、R3およびR4は、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
式(4)において、環Iおよび環Kは、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環Jは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;Z6およびZ7は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-、-C(CH3)=CH-、-CH=C(CH3)-、または-C(CH3)=C(CH3)-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;P9、P10、およびP11は、式(P-7)から式(P-11)で表される重合性基から選択された基であり;
Sp5、Sp6、およびSp7は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;hは、0、1、または2であり;i、j、およびkは、0、1、2、3、または4であり、そしてi、j、およびkの和は、1以上であり;
式(P-7)から式(P-11)において、M5、M6、およびM7は、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から5のアルキルである。
式(4-1)から式(4-29)において、P12、P13、およびP14は、式(P-7)から式(P-9)で表される基から選択された重合性基であり;
ここで、M5、M6、およびM7は、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から5のアルキルであり;Sp5、Sp6、およびSp7は、単結合、または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。
(a)液晶性化合物
式(2)および式(3)において、R1およびR2は、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルである。好ましいR1またはR2は、安定性を上げるために炭素数1から12のアルキルであり、誘電率異方性を上げるために炭素数1から12のアルコキシである。R3およびR4は、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。好ましいR3またはR4は、粘度を下げるために、炭素数2から12のアルケニルであり、安定性を上げるために炭素数1から12のアルキルである。
式(1)および式(4)において、環A1および環A3は、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよい。好ましい環A1および環A3は、フェニルである。環A2は、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよい。好ましい環A2は、1,4-フェニレンまたは2-フルオロ-1,4-フェニレンである。
式(P-1)から式(P-6)の波線は、結合する部位を示す。
化合物(1)や化合物(4)の種類を変えることによって、または化合物(1)や化合物(4)に、化合物(1)や化合物(4)とは異なる重合性化合物を適切な比で組み合わせることによって、重合性化合物の反応性や液晶分子のプレチルト角を調整することができる。プレチルト角を最適化することによって、素子の短い応答時間を達成することができる。液晶分子の配向が安定化されるので、大きなコントラスト比や長い寿命を達成することができる。
1)誘電率(ε∥)の測定:よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板の間隔(セルギャップ)が4μmであるVA素子に試料を入れ、この素子を紫外線で硬化する接着剤で密閉した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。
2)誘電率(ε⊥)の測定:よく洗浄したガラス基板にポリイミド溶液を塗布した。このガラス基板を焼成した後、得られた配向膜にラビング処理をした。2枚のガラス基板の間隔(セルギャップ)が9μmであり、ツイスト角が80度であるTN素子に試料を注入した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。
2枚のガラス基板の間隔(セルギャップ)が3.2μmであり、ノーマリーブラックモード(normally black mode)のPSA素子に試料を入れた。この素子に、15Vの電圧を印加しながら76mW/cm2の紫外線を照射し、プレチルト角を0.9±0.2°とした。紫外線の照射には、アイグラフィック株式会社製のメタルハライドランプ(US4-X0401FKTN)を用いた。次に、電圧を印加せずに3.8mW/cm2の紫外線を60分間照射した。紫外線の照射には、アイグラフィック株式会社製のブラックライト(F40T10)を用いた。この素子に矩形波(30Hz、7.5V、1秒)を印加した。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%であるとみなした。応答時間は透過率90%から10%に変化するのに要した時間(立ち下がり時間;fall time;ミリ秒)で表した。
窒素雰囲気下、公知の方法で合成した化合物(T-1)(3g、14.69mmol)およびジクロロメタン(300ml)を反応器に入れて、0℃に冷却した。そこへ公知の方法で合成した化合物(T-2)(5.63g、48.48mmol)、1-(3-ジメチルアミノプロピル)カルボジイミド(9.29g、48.48mmol)、およびトリエチルアミン(9.01ml、64.64mmol)を加え、室温まで昇温した。反応混合物を水へ注ぎ込み、水層を酢酸エチルで抽出した。合わせた有機層を水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/酢酸エチル=19/1、容積比)と再結晶により精製し、化合物(1-2-1)(4.13g、収率70%)を得た。
転移温度:C 105.3 I.
2-H1OB(2F,3F)-O2 (2-3) 7%
3-H1OB(2F,3F)-O2 (2-3) 7%
3-HHB(2F,3F)-O2 (2-8) 4%
2-HBB(2F,3F)-O2 (2-14) 4%
3-HBB(2F,3F)-O2 (2-14) 8%
4-HBB(2F,3F)-O2 (2-14) 4%
5-HBB(2F,3F)-O2 (2-14) 9%
3-dhBB(2F,3F)-O2 (2-16) 4%
2-HH-3 (3-1) 18%
3-HH-4 (3-1) 3%
3-HH-5 (3-1) 3%
2-HH-5 (3-1) 2%
3-HB-O2 (3-2) 17%
3-HBB-2 (3-6) 10%
NI=78.4℃;Tc<-20℃;Δn=0.105;Δε=-2.7;Vth=2.43V;η=16.2mPa・s.
実施例1の組成物は、重合性化合物(1-2-1)を0.3質量%の割合で含有する。この組成物のVHR-3は90.8%であった。比較例1では、重合性化合物(1-2-1)の代わりに類似した構造を有する重合性化合物Aを用いた。その結果、組成物のVHR-3は、81.0%であった。このように、実施例1の組成物は、比較例1の組成物と比較して大きなVHR-3を有した。したがって、本発明の液晶組成物は優れた特性を有すると結論される。
3-HB(2F,3F)-O2 (2-1) 10%
5-HB(2F,3F)-O2 (2-1) 7%
2-BB(2F,3F)-O2 (2-6) 7%
3-BB(2F,3F)-O2 (2-6) 7%
2-HHB(2F,3F)-O2 (2-8) 5%
3-HHB(2F,3F)-O2 (2-8) 10%
2-HBB(2F,3F)-O2 (2-14) 8%
3-HBB(2F,3F)-O2 (2-14) 10%
3-B(2F,3F)B(2F,3F)-O2 (2) 3%
2-HH-3 (3-1) 14%
3-HB-O1 (3-2) 5%
3-HHB-1 (3-5) 3%
3-HHB-O1 (3-5) 3%
3-HHB-3 (3-5) 4%
2-BB(F)B-3 (3-8) 4%
NI=73.2℃;Tc<-20℃;Δn=0.113;Δε=-4.0;Vth=2.18V;η=22.6mPa・s.
3-HB(2F,3F)-O4 (2-1) 6%
3-H2B(2F,3F)-O2 (2-2) 8%
3-H1OB(2F,3F)-O2 (2-3) 4%
3-BB(2F,3F)-O2 (2-6) 7%
2-HHB(2F,3F)-O2 (2-8) 7%
3-HHB(2F,3F)-O2 (2-8) 7%
3-HH2B(2F,3F)-O2 (2-9) 7%
5-HH2B(2F,3F)-O2 (2-9) 4%
2-HBB(2F,3F)-O2 (2-14) 5%
3-HBB(2F,3F)-O2 (2-14) 5%
4-HBB(2F,3F)-O2 (2-14) 6%
2-HH-3 (3-1) 12%
1-BB-5 (3-3) 12%
3-HHB-1 (3-5) 4%
3-HHB-O1 (3-5) 3%
3-HBB-2 (3-6) 3%
NI=82.8℃;Tc<-30℃;Δn=0.118;Δε=-4.4;Vth=2.13V;η=22.5mPa・s.
3-HB(2F,3F)-O2 (2-1) 7%
5-HB(2F,3F)-O2 (2-1) 7%
3-BB(2F,3F)-O2 (2-6) 8%
3-HHB(2F,3F)-O2 (2-8) 5%
5-HHB(2F,3F)-O2 (2-8) 4%
3-HH1OB(2F,3F)-O2 (2-10) 4%
2-HBB(2F,3F)-O2 (2-14) 3%
3-HBB(2F,3F)-O2 (2-14) 8%
4-HBB(2F,3F)-O2 (2-14) 5%
5-HBB(2F,3F)-O2 (2-14) 8%
2-BB(2F,3F)B-3 (2-19) 5%
3-HH-V (3-1) 27%
3-HH-V1 (3-1) 6%
V-HHB-1 (3-5) 3%
NI=78.1℃;Tc<-30℃;Δn=0.107;Δε=-3.2;Vth=2.02V;η=15.9mPa・s.
3-HB(2F,3F)-O2 (2-1) 10%
5-HB(2F,3F)-O2 (2-1) 10%
3-H2B(2F,3F)-O2 (2-2) 8%
5-H2B(2F,3F)-O2 (2-2) 8%
3-HDhB(2F,3F)-O2 (2-13) 5%
2-HBB(2F,3F)-O2 (2-14) 6%
3-HBB(2F,3F)-O2 (2-14) 8%
4-HBB(2F,3F)-O2 (2-14) 7%
5-HBB(2F,3F)-O2 (2-14) 7%
3-HH-4 (3-1) 14%
V-HHB-1 (3-5) 10%
3-HBB-2 (3-6) 7%
NI=88.5℃;Tc<-30℃;Δn=0.108;Δε=-3.8;Vth=2.25V;η=24.6mPa・s.
3-HB(2F,3F)-O2 (2-1) 7%
3-HB(2F,3F)-O4 (2-1) 8%
3-H2B(2F,3F)-O2 (2-2) 8%
3-BB(2F,3F)-O2 (2-6) 10%
2-HHB(2F,3F)-O2 (2-8) 4%
3-HHB(2F,3F)-O2 (2-8) 7%
3-HHB(2F,3F)-1 (2-8) 6%
3-HDhB(2F,3F)-O2 (2-13) 5%
2-HBB(2F,3F)-O2 (2-14) 6%
3-HBB(2F,3F)-O2 (2-14) 6%
4-HBB(2F,3F)-O2 (2-14) 5%
5-HBB(2F,3F)-O2 (2-14) 4%
3-H1OCro(7F,8F)-5 (2-26) 3%
3-HEB(2F,3F)B(2F,3F)-O2
(2) 3%
3-HH-O1 (3-1) 5%
1-BB-5 (3-3) 4%
V-HHB-1 (3-5) 4%
5-HB(F)BH-3 (3-12) 5%
NI=81.1℃;Tc<-30℃;Δn=0.119;Δε=-4.5;Vth=1.69V;η=31.4mPa・s.
3-HB(2F,3F)-O4 (2-1) 15%
3-chB(2F,3F)-O2 (2-5) 7%
2-HchB(2F,3F)-O2 (2-12) 8%
3-HBB(2F,3F)-O2 (2-14) 8%
4-HBB(2F,3F)-O2 (2-14) 5%
5-HBB(2F,3F)-O2 (2-14) 7%
3-dhBB(2F,3F)-O2 (2-16) 5%
5-HH-V (3-1) 18%
7-HB-1 (3-2) 5%
V-HHB-1 (3-5) 7%
V2-HHB-1 (3-5) 7%
3-HBB(F)B-3 (3-13) 8%
NI=98.8℃;Tc<-30℃;Δn=0.111;Δε=-3.2;Vth=2.47V;η=23.9mPa・s.
3-H2B(2F,3F)-O2 (2-2) 18%
5-H2B(2F,3F)-O2 (2-2) 17%
3-HHB(2F,3Cl)-O2 (2-11) 5%
3-HDhB(2F,3F)-O2 (2-13) 5%
3-HBB(2F,3Cl)-O2 (2-15) 8%
5-HBB(2F,3Cl)-O2 (2-15) 7%
3-HH-V (3-1) 11%
3-HH-VFF (3-1) 7%
F3-HH-V (3-1) 10%
3-HHEH-3 (3-4) 4%
3-HB(F)HH-2 (3-10) 4%
3-HHEBH-3 (3-11) 4%
NI=77.5℃;Tc<-30℃;Δn=0.084;Δε=-2.6;Vth=2.43V;η=22.8mPa・s.
3-HB(2F,3F)-O2 (2-1) 8%
3-H2B(2F,3F)-O2 (2-2) 10%
3-BB(2F,3F)-O2 (2-6) 10%
2O-BB(2F,3F)-O2 (2-6) 3%
2-HHB(2F,3F)-O2 (2-8) 4%
3-HHB(2F,3F)-O2 (2-8) 7%
2-HHB(2F,3F)-1 (2-8) 5%
3-HDhB(2F,3F)-O2 (2-13) 6%
2-HBB(2F,3F)-O2 (2-14) 4%
3-HBB(2F,3F)-O2 (2-14) 7%
3-dhBB(2F,3F)-O2 (2-16) 4%
2-BB(2F,3F)B-3 (2-19) 6%
2-BB(2F,3F)B-4 (2-19) 6%
3-HH1OCro(7F,8F)-5 (2-27) 4%
3-HH-V (3-1) 11%
1-BB-5 (3-3) 5%
NI=70.6℃;Tc<-20℃;Δn=0.129;Δε=-4.3;Vth=1.69V;η=27.0mPa・s.
3-HB(2F,3F)-O4 (2-1) 14%
3-H1OB(2F,3F)-O2 (2-3) 3%
3-BB(2F,3F)-O2 (2-6) 10%
2-HHB(2F,3F)-O2 (2-8) 7%
3-HHB(2F,3F)-O2 (2-8) 7%
3-HH1OB(2F,3F)-O2 (2-10) 6%
2-HBB(2F,3F)-O2 (2-14) 4%
3-HBB(2F,3F)-O2 (2-14) 6%
4-HBB(2F,3F)-O2 (2-14) 4%
3-HH-V (3-1) 14%
1-BB-3 (3-3) 3%
3-HHB-1 (3-5) 4%
3-HHB-O1 (3-5) 4%
V-HBB-2 (3-6) 4%
1-BB(F)B-2V (3-8) 6%
1O1-HBBH-5 (-) 4%
NI=93.0℃;Tc<-30℃;Δn=0.123;Δε=-4.0;Vth=2.27V;η=29.6mPa・s.
3-HB(2F,3F)-O4 (2-1) 6%
3-H2B(2F,3F)-O2 (2-2) 8%
3-H1OB(2F,3F)-O2 (2-3) 5%
3-BB(2F,3F)-O2 (2-6) 10%
2-HHB(2F,3F)-O2 (2-8) 7%
3-HHB(2F,3F)-O2 (2-8) 7%
5-HHB(2F,3F)-O2 (2-8) 7%
2-HBB(2F,3F)-O2 (2-14) 4%
3-HBB(2F,3F)-O2 (2-14) 7%
5-HBB(2F,3F)-O2 (2-14) 6%
3-HH-V (3-1) 11%
1-BB-3 (3-3) 6%
3-HHB-1 (3-5) 4%
3-HHB-O1 (3-5) 4%
3-HBB-2 (3-6) 4%
3-B(F)BB-2 (3-7) 4%
NI=87.6℃;Tc<-30℃;Δn=0.126;Δε=-4.5;Vth=2.21V;η=25.3mPa・s.
3-HB(2F,3F)-O4 (2-1) 6%
3-H2B(2F,3F)-O2 (2-2) 8%
3-H1OB(2F,3F)-O2 (2-3) 4%
3-BB(2F,3F)-O2 (2-6) 7%
2-HHB(2F,3F)-O2 (2-8) 6%
3-HHB(2F,3F)-O2 (2-8) 10%
5-HHB(2F,3F)-O2 (2-8) 8%
2-HBB(2F,3F)-O2 (2-14) 5%
3-HBB(2F,3F)-O2 (2-14) 7%
5-HBB(2F,3F)-O2 (2-14) 5%
2-HH-3 (3-1) 12%
1-BB-3 (3-3) 6%
3-HHB-1 (3-5) 3%
3-HHB-O1 (3-5) 4%
3-HBB-2 (3-6) 6%
3-B(F)BB-2 (3-7) 3%
NI=93.0℃;Tc<-20℃;Δn=0.124;Δε=-4.5;Vth=2.22V;η=25.0mPa・s.
3-HB(2F,3F)-O2 (2-1) 7%
5-HB(2F,3F)-O2 (2-1) 7%
3-BB(2F,3F)-O2 (2-6) 8%
3-HHB(2F,3F)-O2 (2-8) 4%
5-HHB(2F,3F)-O2 (2-8) 5%
3-HH1OB(2F,3F)-O2 (2-10) 5%
2-HBB(2F,3F)-O2 (2-14) 3%
3-HBB(2F,3F)-O2 (2-14) 8%
4-HBB(2F,3F)-O2 (2-14) 5%
5-HBB(2F,3F)-O2 (2-14) 8%
2-BB(2F,3F)B-3 (2-19) 4%
3-HH-V (3-1) 33%
V-HHB-1 (3-5) 3%
NI=76.4℃;Tc<-30℃;Δn=0.104;Δε=-3.2;Vth=2.06V;η=15.6mPa・s.
2-H1OB(2F,3F)-O2 (2-3) 6%
3-H1OB(2F,3F)-O2 (2-3) 4%
3-BB(2F,3F)-O2 (2-6) 3%
2-HH1OB(2F,3F)-O2 (2-10) 14%
2-HBB(2F,3F)-O2 (2-14) 7%
3-HBB(2F,3F)-O2 (2-14) 11%
5-HBB(2F,3F)-O2 (2-14) 9%
2-HH-3 (3-1) 5%
3-HH-VFF (3-1) 30%
1-BB-3 (3-3) 5%
3-HHB-1 (3-5) 3%
3-HBB-2 (3-6) 3%
NI=78.3℃;Tc<-20℃;Δn=0.103;Δε=-3.2;Vth=2.17V;η=17.7mPa・s.
3-HB(2F,3F)-O2 (2-1) 5%
5-HB(2F,3F)-O2 (2-1) 7%
3-BB(2F,3F)-O2 (2-6) 8%
3-HHB(2F,3F)-O2 (2-8) 5%
5-HHB(2F,3F)-O2 (2-8) 4%
3-HH1OB(2F,3F)-O2 (2-10) 5%
2-HBB(2F,3F)-O2 (2-14) 3%
3-HBB(2F,3F)-O2 (2-14) 9%
4-HBB(2F,3F)-O2 (2-14) 4%
5-HBB(2F,3F)-O2 (2-14) 8%
2-BB(2F,3F)B-3 (2-19) 4%
3-HH-V (3-1) 27%
3-HH-V1 (3-1) 6%
V-HHB-1 (3-5) 5%
NI=81.2℃;Tc<-20℃;Δn=0.107;Δε=-3.2;Vth=2.11V;η=15.5mPa・s.
3-H2B(2F,3F)-O2 (2-2) 7%
3-HHB(2F,3F)-O2 (2-8) 8%
3-HH1OB(2F,3F)-O2 (2-10) 5%
2-HchB(2F,3F)-O2 (2-12) 8%
3-HDhB(2F,3F)-O2 (2-13) 3%
5-HDhB(2F,3F)-O2 (2-13) 4%
2-BB(2F,3F)B-3 (2-19) 7%
2-BB(2F,3F)B-4 (2-19) 7%
4-HH-V (3-1) 15%
3-HH-V1 (3-1) 6%
1-HH-2V1 (3-1) 6%
3-HH-2V1 (3-1) 4%
V2-BB-1 (3-3) 5%
1V2-BB-1 (3-3) 5%
3-HHB-1 (3-5) 6%
3-HB(F)BH-3 (3-12) 4%
NI=88.7℃;Tc<-30℃;Δn=0.115;Δε=-1.9;Vth=2.82V;η=17.3mPa・s.
V2-H2B(2F,3F)-O2 (2-2) 8%
V2-H1OB(2F,3F)-O4 (2-3) 4%
3-BB(2F,3F)-O2 (2-6) 7%
2-HHB(2F,3F)-O2 (2-8) 7%
3-HHB(2F,3F)-O2 (2-8) 7%
3-HH2B(2F,3F)-O2 (2-9) 7%
5-HH2B(2F,3F)-O2 (2-9) 4%
V-HH2B(2F,3F)-O2 (2-9) 6%
V2-HBB(2F,3F)-O2 (2-14) 5%
V-HBB(2F,3F)-O2 (2-14) 5%
V-HBB(2F,3F)-O4 (2-14) 6%
2-HH-3 (3-1) 12%
1-BB-5 (3-3) 12%
3-HHB-1 (3-5) 4%
3-HHB-O1 (3-5) 3%
3-HBB-2 (3-6) 3%
NI=89.9℃;Tc<-20℃;Δn=0.122;Δε=-4.2;Vth=2.16V;η=23.4mPa・s.
3-HB(2F,3F)-O2 (2-1) 3%
V-HB(2F,3F)-O2 (2-1) 3%
V2-HB(2F,3F)-O2 (2-1) 5%
5-H2B(2F,3F)-O2 (2-2) 5%
V2-BB(2F,3F)-O2 (2-6) 3%
1V2-BB(2F,3F)-O2 (2-6) 3%
3-HHB(2F,3F)-O2 (2-8) 6%
V-HHB(2F,3F)-O2 (2-8) 6%
V-HHB(2F,3F)-O4 (2-8) 5%
V2-HHB(2F,3F)-O2 (2-8) 4%
V-HHB(2F,3Cl)-O2 (2-11) 3%
V2-HBB(2F,3F)-O2 (2-14) 5%
V-HBB(2F,3F)-O2 (2-14) 4%
V-HBB(2F,3F)-O4 (2-14) 5%
V2-BB(2F,3F)B-1 (2-19) 4%
3-HH-V (3-1) 27%
3-HH-V1 (3-1) 6%
V-HHB-1 (3-5) 3%
NI=77.1℃;Tc<-20℃;Δn=0.101;Δε=-3.0;Vth=2.04V;η=13.9mPa・s.
V-HB(2F,3F)-O2 (2-1) 10%
V2-HB(2F,3F)-O2 (2-1) 10%
2-H1OB(2F,3F)-O2 (2-3) 3%
3-H1OB(2F,3F)-O2 (2-3) 3%
2O-BB(2F,3F)-O2 (2-6) 3%
V2-BB(2F,3F)-O2 (2-6) 8%
V2-HHB(2F,3F)-O2 (2-8) 5%
V-HHB(2F,3Cl)-O2 (2-11) 7%
2-HBB(2F,3F)-O2 (2-14) 3%
3-HBB(2F,3F)-O2 (2-14) 3%
V-HBB(2F,3F)-O2 (2-14) 6%
V-HBB(2F,3F)-O4 (2-14) 8%
3-HH-4 (3-1) 14%
V-HHB-1 (3-5) 10%
3-HBB-2 (3-6) 7%
NI=75.9℃;Tc<-20℃;Δn=0.114;Δε=-3.9;Vth=2.20V;η=24.7mPa・s.
3-HB(2F,3F)-O2 (2-1) 12%
3-BB(2F,3F)-O2 (2-6) 10%
5-BB(2F,3F)-O2 (2-6) 4%
3-HDhB(2F,3F)-O2 (2-13) 12%
3-dhBB(2F,3F)-O2 (2-16) 8%
2-HH-3 (3-1) 20%
3-HH-4 (3-1) 6%
3-HB-O2 (3-2) 3%
3-HHB-O1 (3-5) 3%
3-HHB-3 (3-5) 6%
3-HHB-1 (3-5) 6%
3-HBB-2 (3-6) 10%
NI=75.9℃;Δn=0.101;Δε=-2.7.
2-H1OB(2F,3F)-O2 (2-3) 7%
3-H1OB(2F,3F)-O2 (2-3) 7%
3-HHB(2F,3F)-O2 (2-8) 4%
2-HBB(2F,3F)-O2 (2-14) 4%
3-HBB(2F,3F)-O2 (2-14) 8%
4-HBB(2F,3F)-O2 (2-14) 4%
5-HBB(2F,3F)-O2 (2-14) 9%
3-dhBB(2F,3F)-O2 (2-16) 4%
2-HH-3 (3-1) 18%
3-HH-4 (3-1) 3%
3-HH-5 (3-1) 3%
2-HH-5 (3-1) 2%
3-HB-O2 (3-2) 17%
3-HBB-2 (3-6) 10%
NI=78.4℃;Tc<-30℃;Δn=0.105;Δε=-2.7;Vth=2.43V;η=16.2mPa・s.
2-H1OB(2F,3F)-O2 (2-3) 10%
3-H1OB(2F,3F)-O2 (2-3) 10%
2-HHB(2F,3F)-O2 (2-8) 3%
3-HHB(2F,3F)-O2 (2-8) 9%
5-HHB(2F,3F)-O2 (2-8) 3%
2-HBB(2F,3F)-O2 (2-14) 3%
3-HBB(2F,3F)-O2 (2-14) 8%
4-HBB(2F,3F)-O2 (2-14) 4%
2-HH-3 (3-1) 22%
3-HH-4 (3-1) 4%
3-HB-O2 (3-2) 10%
3-HBB-2 (3-6) 14%
NI=76.0℃;Tc<-20℃;Δn=0.097;Δε=-3.0;Vth=2.20V.
3-H1OB(2F,3F)-O2 (2-3) 10.5%
3-HHB(2F,3F)-O2 (2-8) 6%
V-HHB(2F,3F)-O2 (2-8) 12%
3-HBB(2F,3F)-O2 (2-14) 10%
V-HBB(2F,3F)-O2 (2-14) 8%
V-HBB(2F,3F)-O4 (2-14) 7%
2-HH-3 (3-1) 21%
3-HH-4 (3-1) 5%
3-HH-5 (3-1) 6%
1-BB-3 (3-3) 4%
1-BB-5 (3-3) 10.5%
NI=75.3℃;Δn=0.109;Δε=-3.1;Vth=2.29V.
3-H1OB(2F,3F)-O2 (2-3) 8%
3-HHB(2F,3F)-O2 (2-8) 8%
3-HH1OB(2F,3F)-O2 (2-10) 26%
2-HH-3 (3-1) 25%
1-BB-2 (3-3) 15%
1-BB-3 (3-3) 4%
3-HHB-1 (3-5) 6%
3-HBB-2 (3-6) 8%
NI=73.5℃;Tc<-20℃;Δn=0.100;Δε=-2.6.
3-DhB(2F,3F)-O2 (2-4) 7%
2-HHB(2F,3F)-O2 (2-8) 3%
3-HHB(2F,3F)-O2 (2-8) 9%
5-HHB(2F,3F)-O2 (2-8) 9%
3-HDhB(2F.3F)-O2 (2-13) 10%
2-HBB(2F,3F)-O2 (2-14) 3%
3-HBB(2F,3F)-O2 (2-14) 8%
5-HFLF4-3 (2-28) 3%
2-HH-3 (3-1) 22%
3-HH-4 (3-1) 4%
3-HH-5 (3-1) 4%
1-BB-3 (3-3) 4%
1-BB-5 (3-3) 12%
3-HHB-1 (3-5) 2%
NI=74.8℃;Tc<-20℃;Δn=0.099;Δε=-3.2.
2-H1OB(2F,3F)-O2 (2-3) 7%
3-H1OB(2F,3F)-O2 (2-3) 7%
3-HHB(2F,3F)-O2 (2-8) 4%
2-HBB(2F,3F)-O2 (2-14) 4%
3-HBB(2F,3F)-O2 (2-14) 8%
4-HBB(2F,3F)-O2 (2-14) 4%
3-DhBB(2F,3F)-O2 (2-16) 4%
3-HB(2F)B(2F,3F)-O2 (2-18) 9%
2-HH-3 (3-1) 18%
V-HH-V (3-1) 8%
3-HB-O2 (3-2) 17%
3-HBB-2 (3-6) 10%
NI=71.1℃;Tc<-20℃;Δn=0.105;Δε=-2.7.
2O-B(2F)B(2F,3F)-O2 (2-7) 5%
2O-B(2F)B(2F,3F)-O4 (2-7) 7%
2-HHB(2F,3F)-O2 (2-8) 2%
3-HHB(2F,3F)-O2 (2-8) 7%
V-HBB(2F,3F)-O2 (2-14) 8%
3-HBB(2F,3F)-O2 (2-14) 9%
4-HBB(2F,3F)-O2 (2-14) 4%
3-HB(2F)B(2F,3F)-O2 (2-18) 9%
3-HH-V (3-1) 19%
2-HH-3 (3-1) 20%
3-HH-4 (3-1) 2%
1-BB-2 (3-3) 2%
1-BB-3 (3-3) 4%
3-HHB-1 (3-5) 2%
NI=74.5℃;Tc<-20℃;Δn=0.109;Δε=-3.1;Vth=2.37V.
Claims (18)
- 第一添加物として式(1)で表される重合性化合物から選択された少なくとも1つの化合物を含有し、そしてネマチック相を有する液晶組成物。
式(1)において、環A1および環A3は、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環A2は、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;P1、P2およびP3は、重合性基であり、P1、P2およびP3の少なくとも1つは式(P-1)で表される重合性基であり;
Z1およびZ2は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-、-C(CH3)=CH-、-CH=C(CH3)-、または-C(CH3)=C(CH3)-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;Sp1、Sp2、およびSp3は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;aは、0、1、または2であり;b、c、およびdは、0、1、2、3、または4であり、そしてb、c、およびdの和は、1以上であり;
式(P-1)において、M1は、炭素数1から5のアルキルであり;nは、1から5の整数である。 - 第一添加物として式(1-1)から式(1-30)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1または2に記載の液晶組成物。
式(1-1)から式(1-30)において、R1は、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルであり、P5、P6、およびP7は、式(P-1)から式(P-4)で表される重合性基から選択された基であり;P5、P6、およびP7の少なくとも1つは式(P-1)で表される重合性基であり;
ここでM1は、炭素数1から5のアルキルであり;M2、M3、およびM4は、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から5のアルキルであり;nは、1から5の整数であり;Sp1、Sp2、およびSp3は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。
- 第一添加物の割合が0.03質量%から10質量%の範囲である、請求項1から3のいずれか1項に記載の液晶組成物。
- 第一成分として式(2)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から4のいずれか1項に記載の液晶組成物。
式(2)において、R1およびR2は、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルであり;環Dおよび環Fは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであり;環Eは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;Z3およびZ4は、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり;eは、0、1、2、または3であり、fは、0または1であり;そしてeとfとの和は3以下である。 - 第一成分の割合が10質量%から90質量%の範囲である、請求項5または6に記載の液晶組成物。
- 第二成分として式(3)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から7のいずれか1項に記載の液晶組成物。
式(3)において、R3およびR4は、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルであり;環Gおよび環Iは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Z5は、単結合、エチレン、またはカルボニルオキシであり;gは、1、2、または3である。 - 第二成分の割合が10質量%から90質量%の範囲である、請求項8または9に記載の液晶組成物。
- 第二添加物として式(4)で表される重合性化合物から選択された少なくとも1つの化合物を含有する、請求項1から10のいずれか1項に記載の液晶組成物。
式(4)において、環Iおよび環Kは、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環Jは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルで置き換えられてもよく;Z6およびZ7は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-、-C(CH3)=CH-、-CH=C(CH3)-、または-C(CH3)=C(CH3)-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;P9、P10、およびP11は、式(P-7)から式(P-11)で表される重合性基から選択された基であり;
Sp5、Sp6、およびSp7は、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;hは、0、1、または2であり;i、j、およびkは、0、1、2、3、または4であり、そしてi、j、およびkの和は、1以上であり;
式(P-7)から式(P-11)において、M5、M6、およびM7は、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から5のアルキルである。 - 第二添加物として式(4-1)から式(4-29)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から11のいずれか1項に記載の液晶組成物。
式(4-1)から式(4-29)において、P12、P13、およびP14は、式(P-7)から式(P-9)で表される基から選択された重合性基であり;
ここで、M5、M6、およびM7は、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から5のアルキルであり;Sp5、Sp6、およびSp7は、単結合、または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH2-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。 - 第二添加物の割合が0.03質量%から10質量%の範囲である、請求項11または12に記載の液晶組成物。
- 請求項1から13のいずれか1項に記載の液晶組成物を含有する液晶表示素子。
- 液晶表示素子の動作モードが、IPSモード、VAモード、FFSモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、請求項14に記載の液晶表示素子。
- 請求項1から13のいずれか1項に記載の液晶組成物を含有している、またはこの液晶組成物中の重合性化合物が重合している、高分子支持配向型の液晶表示素子。
- 請求項1から13のいずれか1項に記載の液晶組成物の、液晶表示素子における使用。
- 請求項1から13のいずれか1項に記載の液晶組成物の、高分子支持配向型の液晶表示素子における使用。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020510043A JPWO2019188920A1 (ja) | 2018-03-30 | 2019-03-25 | 液晶組成物および液晶表示素子 |
CN201980012981.2A CN111712557A (zh) | 2018-03-30 | 2019-03-25 | 液晶组合物及液晶显示元件 |
KR1020207029890A KR20200136941A (ko) | 2018-03-30 | 2019-03-25 | 액정 조성물 및 액정 표시 소자 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018067292 | 2018-03-30 | ||
JP2018-067292 | 2018-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188920A1 true WO2019188920A1 (ja) | 2019-10-03 |
Family
ID=68060582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012392 WO2019188920A1 (ja) | 2018-03-30 | 2019-03-25 | 液晶組成物および液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2019188920A1 (ja) |
KR (1) | KR20200136941A (ja) |
CN (1) | CN111712557A (ja) |
TW (1) | TWI795543B (ja) |
WO (1) | WO2019188920A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129490A1 (ja) * | 2015-02-09 | 2016-08-18 | Jnc株式会社 | 重合性極性化合物、液晶組成物および液晶表示素子 |
WO2017209161A1 (ja) * | 2016-06-03 | 2017-12-07 | Jnc株式会社 | 重合性極性化合物、液晶組成物、および液晶表示素子 |
WO2018025974A1 (ja) * | 2016-08-03 | 2018-02-08 | Jnc株式会社 | 液晶表示素子、表示装置 |
WO2018047850A1 (ja) * | 2016-09-09 | 2018-03-15 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
JP2019073675A (ja) * | 2017-10-12 | 2019-05-16 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4175826B2 (ja) | 2002-04-16 | 2008-11-05 | シャープ株式会社 | 液晶表示装置 |
EP1378557B1 (de) | 2002-07-06 | 2007-02-21 | MERCK PATENT GmbH | Flüssigkristallines Medium |
WO2012010831A2 (en) | 2010-07-19 | 2012-01-26 | Instafibre Ltd | Underlay |
KR20150004954A (ko) | 2013-07-03 | 2015-01-14 | 주식회사 비즈모델라인 | 에스디메모리와 서버 사이의 종단간 인증을 이용한 일회용코드 제공 방법 |
-
2019
- 2019-03-25 KR KR1020207029890A patent/KR20200136941A/ko unknown
- 2019-03-25 WO PCT/JP2019/012392 patent/WO2019188920A1/ja active Application Filing
- 2019-03-25 JP JP2020510043A patent/JPWO2019188920A1/ja active Pending
- 2019-03-25 CN CN201980012981.2A patent/CN111712557A/zh not_active Withdrawn
- 2019-03-26 TW TW108110360A patent/TWI795543B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129490A1 (ja) * | 2015-02-09 | 2016-08-18 | Jnc株式会社 | 重合性極性化合物、液晶組成物および液晶表示素子 |
WO2017209161A1 (ja) * | 2016-06-03 | 2017-12-07 | Jnc株式会社 | 重合性極性化合物、液晶組成物、および液晶表示素子 |
WO2018025974A1 (ja) * | 2016-08-03 | 2018-02-08 | Jnc株式会社 | 液晶表示素子、表示装置 |
WO2018047850A1 (ja) * | 2016-09-09 | 2018-03-15 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
JP2019073675A (ja) * | 2017-10-12 | 2019-05-16 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
Also Published As
Publication number | Publication date |
---|---|
KR20200136941A (ko) | 2020-12-08 |
TWI795543B (zh) | 2023-03-11 |
TW201942342A (zh) | 2019-11-01 |
JPWO2019188920A1 (ja) | 2021-04-22 |
CN111712557A (zh) | 2020-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019147859A (ja) | 液晶組成物および液晶表示素子 | |
WO2017010281A1 (ja) | 液晶組成物および液晶表示素子 | |
JP6070973B1 (ja) | 液晶組成物および液晶表示素子 | |
JP6493219B2 (ja) | 液晶組成物および液晶表示素子 | |
JP2015199900A (ja) | 液晶組成物および液晶表示素子 | |
WO2017141671A1 (ja) | 液晶組成物および液晶表示素子 | |
JP2020176256A (ja) | 液晶組成物および液晶表示素子 | |
WO2016136315A1 (ja) | 液晶組成物および液晶表示素子 | |
WO2015155910A1 (ja) | 液晶組成物および液晶表示素子 | |
WO2017014326A2 (ja) | ピペリジン誘導体、液晶組成物、および液晶表示素子 | |
JPWO2018123180A1 (ja) | 液晶組成物および液晶表示素子 | |
WO2015133194A1 (ja) | 液晶表示素子および液晶組成物 | |
WO2016136344A1 (ja) | 液晶組成物および液晶表示素子 | |
JP2018123296A (ja) | 液晶組成物および液晶表示素子 | |
WO2018020838A1 (ja) | 液晶組成物および液晶表示素子 | |
WO2018221270A1 (ja) | 液晶組成物および液晶表示素子 | |
JP2018095835A (ja) | 液晶組成物および液晶表示素子 | |
JP2018158976A (ja) | 液晶組成物および液晶表示素子 | |
JP2018141033A (ja) | 液晶組成物および液晶表示素子 | |
JP2018076437A (ja) | 液晶組成物および液晶表示素子 | |
JP2017145384A (ja) | 液晶組成物および液晶表示素子 | |
JP6627733B2 (ja) | 液晶組成物および液晶表示素子 | |
JP2019189667A (ja) | 液晶組成物および液晶表示素子 | |
JP2019094368A (ja) | 液晶組成物および液晶表示素子 | |
JP6564495B1 (ja) | 液晶組成物および液晶表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19777003 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020510043 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207029890 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19777003 Country of ref document: EP Kind code of ref document: A1 |