WO2019188568A1 - 情報処理装置、情報処理方法およびプログラム - Google Patents

情報処理装置、情報処理方法およびプログラム Download PDF

Info

Publication number
WO2019188568A1
WO2019188568A1 PCT/JP2019/011380 JP2019011380W WO2019188568A1 WO 2019188568 A1 WO2019188568 A1 WO 2019188568A1 JP 2019011380 W JP2019011380 W JP 2019011380W WO 2019188568 A1 WO2019188568 A1 WO 2019188568A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
limit
information processing
movement form
control unit
Prior art date
Application number
PCT/JP2019/011380
Other languages
English (en)
French (fr)
Inventor
仁 大久保
雅人 君島
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2019188568A1 publication Critical patent/WO2019188568A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Definitions

  • the present technology relates to an information processing apparatus, an information processing method, and a program, and more particularly, to an information processing apparatus that performs positioning using GNSS (Global Navigation Satellite System / Global Positioning Satellite System).
  • GNSS Global Navigation Satellite System / Global Positioning Satellite System
  • positioning technology by GNSS is known (for example, refer to Patent Document 1).
  • positioning is performed based on radio wave information acquired from a plurality of satellites constituting the GNSS.
  • the GNSS reception environment affects the positioning rate and positioning accuracy. For example, when the user is on a train or bus, the C / N of the radio wave from the satellite deteriorates due to the influence of the vehicle body, so positioning is almost impossible with the C / N limit applied. The positioning rate decreases. Also, for example, when the user is walking in an urban building, the positioning calculation does not converge without the C / N limit being applied due to multipath in which radio waves from the satellite are reflected on the building. In many cases, it cannot be obtained or a large position jump occurs, and the positioning accuracy is lowered.
  • the C / N limit is a positioning parameter used for positioning, and when performing a positioning calculation with a GNSS receiver, only radio waves from a plurality of satellites that have good reception C / N are used. It is a limit for.
  • the positioning parameter includes an elevation angle limit.
  • the elevation angle limit is a limit for using only radio waves from a satellite at a higher elevation angle among radio waves from a plurality of satellites when performing positioning calculation with a GNSS receiver.
  • the purpose of this technology is to improve the positioning rate and positioning accuracy when positioning is performed based on radio wave information acquired from a plurality of satellites constituting the GNSS.
  • the concept of this technology is A positioning unit for positioning based on radio wave information acquired from a plurality of satellites constituting the GNSS; A recognition unit for recognizing the movement form of the user based on the sensor information; The information processing apparatus includes a parameter control unit that controls a positioning parameter used for the positioning based on the recognized movement form.
  • positioning is performed by the positioning unit based on radio wave information acquired from a plurality of satellites constituting the GNSS.
  • the recognition unit recognizes the movement form of the user based on the sensor information. For example, the movement form of the user is walking, getting on, or the like.
  • the parameter control part controls the positioning parameter utilized for positioning based on the recognized movement form.
  • the positioning parameter controlled by the parameter control unit may be a C / N limit.
  • the parameter control unit controls the C / N limit to the first value, and when the movement form recognized by the recognition unit is riding. May control the C / N limit to a second value lower than the first value.
  • the positioning rate and positioning accuracy can be improved.
  • a weak radio wave with a poor C / N can be used, and the positioning rate can be improved while avoiding a non-positioning state.
  • a positioning calculation is performed by excluding weak radio waves with poor C / N, such as multipath in which radio waves from satellites are reflected on the buildings. And positioning accuracy can be improved.
  • the positioning parameter controlled by the parameter control unit may be an elevation angle limit.
  • the parameter control unit controls the elevation angle limit to the first value when the movement mode recognized by the recognition unit is walking, and the elevation angle when the movement mode recognized by the recognition unit is riding.
  • the limit may be controlled to a second value lower than the first value.
  • the positioning rate and positioning accuracy can be improved.
  • weak radio waves from a satellite with a small elevation angle can be used, and the positioning rate can be improved while avoiding the non-positioning state.
  • the positioning is performed by excluding weak radio waves with poor C / N, such as multipath in which radio waves from a satellite with a small elevation angle are reflected to the building. Calculations can be performed, and positioning accuracy can be improved.
  • the positioning parameter used for positioning is controlled based on the movement form of the user. Therefore, it is possible to improve the positioning rate and positioning accuracy when positioning is performed based on radio wave information acquired from a plurality of satellites constituting the GNSS.
  • a display control unit that controls to display an icon indicating a recognized movement form on a map may be further provided. By displaying the icon in this way, the user can easily confirm under which movement form the positioning is being performed.
  • an icon may be displayed at a positioning position on a map, and a display control unit that controls the form of the icon so as to change according to the accuracy of positioning may be further provided.
  • a display control unit that controls the form of the icon so as to change according to the accuracy of positioning may be further provided.
  • the parameter control unit may further control the positioning parameter based on the environment information acquired from the map information.
  • the environment information acquired from the map information.
  • the parameter control unit may further control the positioning parameter based on the environment information acquired from the map information.
  • the present technology it is possible to improve the positioning rate and positioning accuracy when positioning is performed based on radio wave information acquired from a plurality of satellites constituting the GNSS.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 It is a block diagram which shows the structural example of the information processing apparatus as embodiment. It is a figure which shows roughly the map including Shinjuku-ku Osaki Station to Shinjuku-ku Shinjuku Station. It is a figure which shows an example of the positioning result in the case where it does not multiply with the case where C / N limit is applied in the boarding route shown in FIG. It is a figure which shows roughly the map containing the high-rise building street of the Shinjuku west exit. It is a figure which shows an example of the positioning result in the case where it does not multiply with the case where C / N limit is applied in the walking route shown in FIG. It is a flowchart which shows an example of the process sequence of an action recognition part.
  • FIG. 1 shows a configuration example of an information processing apparatus 100 as an embodiment.
  • the information processing apparatus 100 is configured to be included in a mobile terminal such as a smartphone or a tablet possessed by the user.
  • the information processing apparatus 100 includes a control unit 101, an operation input unit 102, an antenna 103, a reception unit 104, a demodulation unit 105, a positioning calculation unit 106, an autonomous positioning unit 107, a position correction unit 108, A display processing unit 109, a display unit 110, an action recognition unit 111, and a map information storage unit 112 are included.
  • the control unit 101 controls each unit of the information processing apparatus 100.
  • the control unit 101 includes a CPU, a ROM in which programs to be executed by the CPU, fixed data, and the like are written, and a RAM that functions as a work area of the CPU.
  • the operation input unit 102 is connected to the control unit 101 and constitutes a user interface for the user to perform various settings and inputs.
  • the antenna 103 and the receiving unit 104 receive radio waves transmitted toward the ground from a plurality of satellites (navigation satellites) constituting a GNSS (Global Navigation Satellite System / Global Positioning Satellite System).
  • the demodulator 105 demodulates the radio wave received by the receiver 104 and acquires a navigation message for each satellite.
  • the positioning calculation unit 106 acquires the three-dimensional position and time of the positioning position based on the position information and time information included in the navigation message from the plurality of satellites acquired by the demodulation unit 105, for example, by software processing.
  • the control unit 101 controls the positioning parameters used for positioning, in this embodiment, the C / N limit and the elevation angle limit, based on the movement form of the user recognized by the action recognition unit 111.
  • the C / N limit is a limit for using only radio waves from a plurality of satellites having good reception C / N when performing positioning calculation.
  • the elevation angle limit is a limit for using only radio waves from a satellite at a higher elevation angle among radio waves from a plurality of satellites when performing positioning calculation with a GNSS receiver. Details of the control of the C / N limit and the elevation angle limit in the positioning calculation unit 106 will be described later.
  • the autonomous positioning unit 107 includes an acceleration sensor, an angular velocity sensor, a magnetic azimuth sensor, and the like, and estimates a current position from a position measured in the past based on a velocity and an azimuth measured based on the sensor outputs.
  • the position correction unit 108 corrects the position acquired by the positioning calculation unit 106 based on the position estimated by the autonomous positioning unit 107, and outputs corrected position information.
  • the action recognition unit 111 includes various sensors such as an acceleration sensor, an angular velocity sensor, and a magnetic direction sensor, and a user's movement based on a rule base or a machine learning result according to a speed and a direction measured based on the output thereof. Recognize the form. Note that the action recognition unit 111 can also recognize the movement form of the user by using the speed and direction measured by the autonomous positioning unit 107 as described above. In that case, the action recognition unit 111 may not include a sensor such as an acceleration sensor, an angular velocity sensor, or a magnetic direction sensor.
  • the behavior recognizing unit 111 recognizes whether the user's movement form is riding or walking. For example, the behavior recognition unit 111 can recognize that the movement form of the user is walking when the movement speed is slow and the speed change and the direction change are large. In addition, for example, the behavior recognition unit 111 can recognize that the movement form of the user is boarding when the movement speed is fast and the speed change and the direction change are small.
  • the map information storage unit 112 stores map information.
  • the display processing unit 109 generates a display signal based on the position information output from the position correction unit 108 and the map information read from the map information storage unit 112 corresponding to the position information.
  • the display unit 110 displays a map showing the current position based on the display signal. Thereby, in the information processing apparatus 100, the current position of the user can be displayed on the map, and a navigation function is realized.
  • an icon indicating the movement form of the user recognized by the action recognition unit 111 is displayed on the map displayed on the display unit 110 under the control of the control unit 101.
  • the icon is displayed at a positioning position on the map displayed on the display unit 110.
  • the icon form (color, pattern, shape, etc.) is displayed. It is made to change according to positioning accuracy. Thereby, the user can recognize the degree of certainty of his / her position on the map. Details of the icon display will be described later.
  • control unit 101 controls the C / N limit and the elevation angle limit as positioning parameters used for positioning.
  • C / N limit control will be described.
  • the control unit 101 controls the C / N limit to the first value, and the movement form of the user recognized by the action recognition unit 111 is
  • the C / N limit is controlled to a second value lower than the first value.
  • the positioning rate and positioning accuracy can be improved.
  • the C / N limit is set low, so that weak radio waves with poor C / N can be used, and the positioning rate is improved by avoiding the non-positioning state. To do.
  • the C / N limit is set high. Therefore, when the user is walking in a city building, a multi-wave that reflects radio waves from the satellite on the building is reflected. Positioning calculations can be performed by excluding weak radio waves with poor C / N such as paths, and positioning accuracy is improved.
  • Figure 2 schematically shows a map including Shinagawa City's Osaki Station to Shinjuku City's Shinjuku Station.
  • the route shown in bold lines on the map is from Shinagawa City's Osaki Station to Shinjuku City's Shinjuku Station.
  • the user's boarding route A is shown.
  • FIG. 3A shows an example of a positioning result in the positioning calculation unit 106 when the C / N limit is set to 35 dBHz (the elevation angle limit is 15 degrees) in the boarding route A.
  • FIG. 3B shows an example of a positioning result in the positioning calculation unit 106 when the C / N limit is not set (the elevation angle limit is 15 degrees) in the boarding route A.
  • the position indicated by a black circle indicates that positioning has been performed.
  • FIG. 4 schematically shows a map including a skyscraper street in the Shinjuku West Exit, and a route indicated by a thick line on the map indicates a user's walking route B.
  • the broken line part has shown the underground tunnel area.
  • FIG. 5A shows an example of a positioning result in the positioning calculation unit 106 when the C / N limit is set to 35 dBHz (the elevation angle limit is 15 degrees) in the walking route B.
  • FIG. 5B shows an example of a positioning result in the positioning calculation unit 106 when the walking route B has no C / N limit (the elevation angle limit is 15 degrees).
  • the position indicated by a black circle indicates that positioning has been performed.
  • the flowchart in FIG. 6 shows an example of the processing procedure of the action recognition unit 111.
  • the action recognition unit 111 starts processing in step ST1, and then inputs output values of various sensors (acceleration, angular velocity, magnetic orientation, etc.) in step ST2. And the action recognition part 111 estimates a user's movement form from the output value of each sensor, the change degree in the time passage, etc. in step ST3, and outputs the information.
  • the action recognition unit 111 repeatedly executes the processing of step ST2 and step ST3 at a predetermined time, for example, a time interval of 5 seconds or 10 seconds, or a time interval of more than that.
  • step ST11 the control unit 101 starts processing, and in step ST12, the C / N limit is set to 35 dBHz as an initial setting.
  • control part 101 confirms the result of the action recognition part 111 in step ST13. And the control part 101 judges whether there exists an effective movement form recognition result in step ST14. When there is an effective movement form recognition result and the recognition result is boarding, the control unit 101 determines that there is no C / N limit in step ST15.
  • control unit 101 sets the C / N limit to 35 dBHz in step ST16. Further, when there is no valid movement form recognition result, the control unit 101 determines that the movement form is invalid, and in step ST17, sets the C / N limit to be the same as the previous time.
  • the control unit 101 waits for a predetermined time, for example, 1 second after the processes of step ST15, step ST16, and step ST17, returns to the process of step ST13, and repeatedly executes the same process as described above.
  • the C / N limit is set to 35 dBHz in step ST12 and step ST16, but the value is not limited to this value.
  • the C / N limit is not set in step ST15, but the present invention is not limited to this, and the C / N limit may be set at a lower value than in the case of walking.
  • the control unit 101 controls the elevation angle limit to the first value, and the movement form of the user recognized by the action recognition unit 111 is boarding.
  • the elevation angle limit is controlled to a second value lower than the first value.
  • the positioning rate and positioning accuracy can be improved.
  • weak radio waves from a satellite with a small elevation angle can be used, and the positioning rate is improved while avoiding the non-positioning state.
  • the positioning is performed by excluding weak radio waves with poor C / N, such as multipath in which radio waves from a satellite with a small elevation angle are reflected to the building. Calculation can be performed, and positioning accuracy is improved.
  • FIG. 8A shows an example of a positioning result in the positioning calculation unit 106 when the elevation angle limit is set to 45 degrees (no C / N limit) in the boarding route A (see FIG. 2).
  • FIG. 8B shows an example of a positioning result in the positioning calculation unit 106 when the elevation limit is set to 15 degrees (no C / N limit) in the boarding route A.
  • the position indicated by a black circle indicates that positioning has been performed.
  • FIG. 9A shows an example of a positioning result in the positioning calculation unit 106 when the elevation angle limit is 45 degrees (C / N limit is 35 dBHz) in the walking route B (see FIG. 4).
  • FIG. 9B shows an example of a positioning result in the positioning calculation unit 106 when the elevation limit is set to 15 degrees (C / N limit is 35 dBHz) in the walking route B.
  • the position indicated by a black circle indicates that positioning has been performed.
  • the position calculation is performed because the positioning calculation is performed excluding the multipath radio waves reflected from the satellite by the low elevation angle satellite. Although there are some, positioning is done with a certain degree of accuracy.
  • the positioning calculation is performed using the multipath in which the radio wave from the low elevation satellite reflects to the building. There are many jumps and the positioning accuracy is poor. From these facts, it is understood that when the user's movement mode is walking, the positioning accuracy can be improved by setting the elevation angle limit to a certain level.
  • the flowchart of FIG. 10 shows an example of an elevation limit control procedure using the recognition result of the action recognition unit 111 in the control unit 101.
  • the control unit 101 starts processing in step ST21, and sets the elevation angle limit to 45 degrees as an initial setting in step ST22.
  • control part 101 confirms the result of the action recognition part 111 in step ST23. And the control part 101 judges whether there exists an effective movement form recognition result in step ST24. When there is an effective movement form recognition result and the recognition result is boarding, the control unit 101 sets the elevation angle limit to 15 degrees in step ST25.
  • control unit 101 sets the elevation angle limit to 45 degrees in step ST26. Further, when there is no effective movement form recognition result, the control unit 101 determines that the movement is invalid, and sets the elevation angle limit to the same as the previous time in step ST27.
  • the control unit 101 waits for a predetermined time, for example, 1 second after the processes of step ST25, step ST26, and step ST27, returns to the process of step ST23, and repeatedly executes the same process as described above.
  • the elevation angle limit is set to 45 degrees in step ST22 and step ST26, but the value is not limited to this value.
  • the elevation angle limit is set to 15 degrees in step ST25.
  • the elevation angle limit is not limited to this value, and the elevation angle limit may be set to a value lower than that in the case of walking.
  • FIGS. 11A and 11B show examples of icons superimposed on the map of the display unit 110 when the action recognition unit 111 recognizes that the user's movement form is walking.
  • FIG. 11 (a) shows an example in which an icon 121 indicating the direction in which the vehicle is in a walking state and in which direction it is heading is displayed at a positioning position on the map.
  • the icon 121 has a human shape, but is not limited to this shape. In short, it is only necessary to indicate that the user is in a walking state and in which direction. Moreover, the icon which shows that it exists in a walk state and which direction it faces may each exist separately.
  • the form (color, pattern, shape, etc.) of the icon 121 is changed according to the positioning accuracy of the current positioning position. For example, when the radio wave exceeding the C / N limit (for example, 35 dBHz) is received from the satellite and the positioning calculation is performed with high accuracy, the color of the icon 121 is red. In addition, when the radio wave exceeding the C / N limit (for example, 35 dBHz) cannot be received from the satellite and the autonomous positioning function is used, the color of the icon 121 is orange. Further, when the radio wave exceeding the C / N limit (for example, 35 dBHz) cannot be received from the satellite and the accuracy limit of the autonomous positioning function is reached, the color of the icon 121 is yellow. Further, in a state where the positioning is completely unpositioned, the color of the icon 121 is gray.
  • the C / N limit for example, 35 dBHz
  • FIG. 11B displays an icon 122 indicating that the vehicle is in a walking state at a fixed position on the map, in this example, an upper right position, and indicates in which direction the positioning position is on the map.
  • an icon 123 is displayed.
  • the icon 122 has a human shape.
  • the shape is not limited to this, and it is only necessary to indicate that the icon 122 is in a walking state. Character display such as “walking” may be used.
  • the icon 123 has a triangular shape.
  • the shape is not limited to this shape. In short, it is only necessary to indicate which direction the icon 123 is directed.
  • either or both of the icons 122 and 123 are in the form (color, color) according to the positioning accuracy of the current positioning position, as described in the example of FIG. Pattern, shape, etc.).
  • 12 (a) and 12 (b) show examples of icons superimposed on the map of the display unit 110 when the action recognition unit 111 recognizes that the user's movement form is boarding.
  • FIG. 12 (a) shows an example in which an icon 124 indicating the direction in which the vehicle is in the boarding position at the positioning position on the map and which direction it is heading is displayed.
  • the icon 124 is in the shape of a train.
  • the present invention is not limited to this shape. In short, it is only necessary to indicate that the user is in the boarding state and in which direction it is heading.
  • the icon which shows that it is in a boarding state and to which direction it may go may each exist.
  • the form (color, pattern, shape, etc.) of the icon 124 is changed according to the positioning accuracy of the current positioning position. For example, in a state where a positioning calculation is performed by receiving radio waves from a satellite, the color of the icon 124 is red. In addition, the icon 124 is gray when the radio wave from the satellite cannot be received or is very weak and non-positioning.
  • FIG. 12B displays an icon 125 indicating that the vehicle is in a boarding state at a fixed position on the map, in this example, an upper right position, and indicates in which direction the positioning position is on the map.
  • This is an example of displaying an icon 126.
  • the icon 125 is in the form of a train, but is not limited to this shape. In short, it is only necessary to indicate that the vehicle is in the boarding state. Character display such as “ride” may be used.
  • the icon 126 has a triangular shape. However, the shape is not limited to this shape. In short, it is only necessary to indicate which direction the icon 126 is directed.
  • either or both of the icons 125 and 126 are in the form (color, color, etc.) according to the positioning accuracy of the current positioning position, as described in the example of FIG. Pattern, shape, etc.).
  • the positioning parameters (C / N limit and elevation angle limit) used for positioning are controlled based on the movement form of the user (see FIGS. 7 and 10). Therefore, it is possible to improve the positioning rate and positioning accuracy when positioning is performed based on radio wave information acquired from a plurality of satellites constituting the GNSS.
  • an icon indicating the recognized movement form (walking, getting on) is displayed on the map (see FIGS. 11 and 12). Therefore, the user can easily confirm under what kind of moving form the positioning is performed.
  • an icon is displayed at the positioning position on the map, and the form of this icon changes according to the positioning accuracy. Therefore, the user can easily know his / her position on the map and can recognize the degree of certainty of the position.
  • the flowchart of FIG. 13 shows an example of a C / N limit control procedure in the control unit 101.
  • the control unit 101 starts processing, and in step ST32, applies a C / N limit as an initial setting.
  • step ST33 the control unit 101 determines whether or not a situation where the reception C / N is good continues.
  • the control unit 101 sets a C / N limit in step ST34.
  • the control unit 101 proceeds to the process of step ST35.
  • step ST35 the control unit 101 determines whether or not the situation where the reception C / N is not good continues. When determining that the operation is continued, the control unit 101 sets the C / N limit to be absent in step ST36. On the other hand, when determining that it is not continued, the control unit 101 proceeds to the process of step ST37.
  • step ST37 the control unit 101 determines whether or not a situation where reception C / N is not good is assumed.
  • the user may enter an environment that shields radio waves from satellites such as in a building, under a viaduct, or in a tunnel.
  • the determination of the environment can be determined based on, for example, map information stored in the storage unit 112, but can also be determined based on outputs of various sensors. For example, it can also be determined by performing image analysis from an image sensor.
  • control unit 101 sets no C / N limit in step ST36.
  • control unit 101 sets a C / N limit in step ST38.
  • the control unit 101 returns to the process of step ST33 after waiting for a predetermined time, for example, 1 second after the processes of step ST34, step ST36, and step ST38, and repeatedly executes the same process as described above.
  • the positioning rate and the positioning accuracy can be increased.
  • the C / N limit is applied. Therefore, the positioning calculation can be performed by excluding the weak radio wave with the poor C / N, and the positioning accuracy is improved. Can do.
  • this technique can also take the following structures.
  • a positioning unit that performs positioning based on radio wave information acquired from a plurality of satellites constituting the GNSS;
  • a recognition unit for recognizing the movement form of the user based on the sensor information;
  • An information processing apparatus comprising: a parameter control unit that controls a positioning parameter used for the positioning based on the recognized movement form.
  • the positioning parameter controlled by the parameter control unit is a C / N limit.
  • the parameter control unit controls the C / N limit to a first value when the movement form recognized by the recognition unit is walking, and the movement form recognized by the recognition unit is The information processing apparatus according to (2), wherein when the vehicle is on board, the C / N limit is controlled to a second value lower than the first value.
  • the parameter control unit controls the elevation angle limit to a first value when the movement form recognized by the recognition unit is walking, and the movement form recognized by the recognition unit is a ride. When there is, the information processing device according to (4), wherein the elevation angle limit is controlled to a second value lower than the first value.
  • the information processing apparatus further including a display control unit configured to control to display an icon indicating the recognized movement form on a map.
  • the display control unit may further include a display control unit configured to display an icon at a positioning position on the map and control the icon form to change according to positioning accuracy.
  • Information processing device (8) The information processing apparatus according to any one of (1) to (7), wherein the parameter control unit further controls the positioning parameter based on environmental information acquired from map information.
  • DESCRIPTION OF SYMBOLS 100 Information processing apparatus 101 ... Control part 102 ... Operation input part 103 ... Antenna 104 ... Reception part 105 ... Demodulation part 106 ... Positioning calculation part 107 ... Autonomous positioning Unit 108: Position correction unit 109 ... Display processing unit 110 ... Display unit 111 ... Action recognition unit 112 ... Storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

GNSSを構成する複数の衛星から取得した電波情報に基づいて測位する場合の測位率や測位精度の向上を図る。 GNSSを構成する複数の衛星から取得された電波情報に基づいて測位する。センサ情報に基づいてユーザの移動形態を認識する。認識された移動形態に基づいて測位に利用する測位パラメータ(C/Nリミット、仰角リミット)を制御する。例えば、測位位置が表示される地図上に、認識されたユーザの移動形態を示すアイコンを表示する。

Description

情報処理装置、情報処理方法およびプログラム
 本技術は、情報処理装置、情報処理方法およびプログラムに関し、詳しくは、GNSS(Global Navigation Satellite System / 全球測位衛星システム)による測位を行う情報処理装置等に関する。
 従来、GNSSによる測位技術が知られている(例えば、特許文献1参照)。この測位技術においては、周知のように、GNSSを構成する複数の衛星から取得した電波情報に基づいて測位を行うものである。
特開2003-227724号公報
 GNSSを構成する複数の衛星から取得した電波情報に基づいて測位する場合、GNSS受信環境が測位率や測位精度に影響を与える。例えば、ユーザが電車やバス等に乗っている状態においては、車体の影響を受けて衛星からの電波のC/Nが劣化することから、C/Nリミットを掛けた状態ではほとんど測位できなくなり、測位率が低下する。また、例えば、ユーザが都市部のビル街を歩いている状態においては、衛星からの電波がビルに反射するマルチパスにより、C/Nリミットを掛けない状態では、測位演算が収束せず結果が得られないか、あるいは大きな位置飛びを生じることが多くなり、測位精度が低下する。
 ここで、C/Nリミットは、測位に利用する測位パラメータを構成しており、GNSS受信機で測位演算を行う際、複数の衛星からの電波のうち受信C/Nが良いものだけを使用するためのリミットである。なお、測位パラメータには、C/Nリミットの他に、仰角リミットなども存在する。仰角リミットは、GNSS受信機で測位演算を行う際、複数の衛星からの電波のうちそれより大きな仰角にある衛星からの電波だけを使用するためのリミットである。
 本技術の目的は、GNSSを構成する複数の衛星から取得した電波情報に基づいて測位する場合における測位率や測位精度の向上を図ることにある。
 本技術の概念は、
 GNSSを構成する複数の衛星から取得された電波情報に基づいて測位する測位部と、
 センサ情報に基づいてユーザの移動形態を認識する認識部と、
 上記認識された移動形態に基づいて上記測位に利用する測位パラメータを制御するパラメータ制御部を備える
 情報処理装置にある。
 本技術において、測位部により、GNSSを構成する複数の衛星から取得された電波情報に基づいて測位がされる。また、認識部により、センサ情報に基づいてユーザの移動形態が認識される。例えば、ユーザの移動形態は、歩行、乗車等である。そして、パラメータ制御部により、認識された移動形態に基づいて測位に利用する測位パラメータが制御される。
 例えば、パラメータ制御部が制御する測位パラメータは、C/Nリミットである、ようにされてもよい。この場合、例えば、パラメータ制御部は、認識部で認識された移動形態が歩行であるときはC/Nリミットを第1の値に制御し、認識部で認識された移動形態が乗車であるときはC/Nリミットを第1の値より低い第2の値に制御する、ようにされてもよい。
 このように、C/Nリミットが制御されることで、測位率や測位精度の向上が可能となる。例えば、ユーザが電車やバス等に乗っている状態においては、C/Nのよくない微弱な電波も利用できるようになり、非測位状態を避けて、測位率を向上させることが可能となる。また、例えば、ユーザが都市部のビル街を歩いている状態においては、衛星からの電波がビルに反射するマルチパスのようにC/Nのよくない微弱な電波を除外して測位演算を行うことができ、測位精度を高めることが可能となる。
 また、例えば、パラメータ制御部が制御する測位パラメータは、仰角リミットである、ようにされてもよい。この場合、例えば、パラメータ制御部は、認識部で認識された移動形態が歩行であるときは仰角リミットを第1の値に制御し、認識部で認識された移動形態が乗車であるときは仰角リミットを第1の値より低い第2の値に制御する、ようにされてもよい。
 このように、仰角リミットが制御されることで、測位率や測位精度の向上が可能となる。例えば、ユーザが電車やバス等に乗っている状態においては、仰角の小さな衛星からの微弱電波も利用できるようになり、非測位状態を避けて、測位率を向上させることが可能となる。また、例えば、ユーザが都市部のビル街を歩いている状態においては、仰角の小さな衛星からの電波がビルに反射するマルチパスのようにC/Nのよくない微弱な電波を除外して測位演算を行うことができ、測位精度を高めることが可能となる。
 このように本技術においては、ユーザの移動形態に基づいて測位に利用する測位パラメータを制御するものである。そのため、GNSSを構成する複数の衛星から取得した電波情報に基づいて測位する場合の測位率や測位精度の向上を図ることが可能となる。
 なお、本技術において、例えば、地図上に、認識された移動形態を示すアイコンを表示するように制御する表示制御部をさらに備える、ようにされてもよい。このようにアイコンが表示されることで、ユーザは、いかなる移動形態の認識の下で測位が行われているかを容易に確認することが可能となる。
 また、本技術において、例えば、地図上の測位位置にアイコンを表示し、このアイコンの形態を測位の精度に応じて変化するように制御する表示制御部をさらに備える、ようにされてもよい。このようにアイコンが表示されることで、ユーザは、地図上で自身の位置を容易に知ることができ、しかもその位置の確かさの程度を認識することが可能となる。
 また、本技術において、例えば、パラメータ制御部は、地図情報から取得される環境情報に基づいて測位パラメータをさらに制御する、ようにされてもよい。これにより、例えば、ユーザが歩行している場合であっても、トンネル内、高速道路の高架下、建物内にいる場合、あるいはこれからトンネル内、高速道路の高架下、建物内に入ると予想される場合には、C/Nリミットを下げるように制御することで、C/Nのよくない微弱な電波も利用できるようになり、非測位状態を避けて、測位率を向上させることが可能となる。
 本技術によれば、GNSSを構成する複数の衛星から取得した電波情報に基づいて測位する場合における測位率や測位精度の向上を図ることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
実施の形態としての情報処理装置の構成例を示すブロック図である。 品川区の大崎駅から新宿区の新宿駅までを含む地図を概略的に示す図である。 図2に示す乗車経路においてC/Nリミットを掛けた場合と掛けない場合における測位結果の一例を示す図である。 新宿西口の高層ビル街を含む地図を概略的に示す図である。 図3に示す徒歩経路においてC/Nリミットを掛けた場合と掛けない場合における測位結果の一例を示す図である。 行動認識部の処理手順の一例を示すフローチャートである。 制御部における行動認識部の認識結果を利用したC/Nリミットの制御手順の一例を示すフローチャートである。 図2に示す乗車経路において仰角リミットを高くした場合と低くした場合における測位結果の一例を示す図である。 図3に示す徒歩経路において仰角リミットを高くした場合と低くした場合における測位結果の一例を示す図である。 制御部における行動認識部の認識結果を利用した仰角リミットの制御手順の一例を示すフローチャートである。 行動認識部でユーザの移動形態が歩行であると認識された場合において、表示部の地図上に重畳表示されるアイコンの一例を示す図である。 行動認識部でユーザの移動形態が乗車であると認識された場合において、表示部の地図上に重畳表示されるアイコンの一例を示す図である。 制御部におけるC/Nリミットの制御手順の一例を示すフローチャートである。
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
 <1.実施の形態>
 [情報処理装置]
 図1は、実施の形態としての情報処理装置100の構成例を示している。この情報処理装置100は、例えば、ユーザが所持するスマートフォン、タブレットなどの携帯端末に含めて構成されている。
 この情報処理装置100は、制御部101と、操作入力部102と、アンテナ103と、受信部104と、復調部105と、測位演算部106と、自律測位部107と、位置補正部108と、表示処理部109と、表示部110と、行動認識部111と、地図情報記憶部112を有している。
 制御部101は、情報処理装置100の各部を制御する。この制御部101は、図示は省略しているが、CPU、CPUが実行すべきプログラムや固定データ等が書き込まれたROM,およびCPUのワークエリア等として機能するRAMを備えている。操作入力部102は、制御部101に接続されており、ユーザが各種の設定や入力を行うためのユーザインタフェースを構成している。
 アンテナ103および受信部104は、GNSS(Global Navigation Satellite System / 全球測位衛星システム)を構成する複数の衛星(航法衛星)から地上に向けて送信される電波を受信する。復調部105は、受信部104で受信された電波を復調して衛星毎の航法メッセージを取得する。
 測位演算部106は、例えば、ソフトウェア処理により、復調部105で取得された複数の衛星からの航法メッセージに含まれる位置情報と時刻情報に基づいて、測位位置の3次元位置と時刻を取得する。この場合、制御部101は、行動認識部111で認識されたユーザの移動形態に基づいて、測位に利用する測位パラメータ、この実施の形態では、C/Nリミットおよび仰角リミットを制御する。
 ここで、C/Nリミットは、測位演算を行う際、複数の衛星からの電波のうち受信C/Nが良いものだけを使用するためのリミットである。また、仰角リミットは、GNSS受信機で測位演算を行う際、複数の衛星からの電波のうちそれより大きな仰角にある衛星からの電波だけを使用するためのリミットである。測位演算部106におけるC/Nリミットおよび仰角リミットの制御の詳細については後述する。
 自律測位部107は、加速度センサ、角速度センサ、磁気方位センサ等を有し、それらのセンサ出力に基づいて測定された速度および方位によって、過去に測定された位置から現在の位置を推定する。位置補正部108は、測位演算部106で取得された位置を、自律測位部107で推定された位置に基づいて補正し、補正後の位置情報を出力する。
 行動認識部111は、加速度センサ、角速度センサ、磁気方位センサ等の各種センサを有し、それらの出力に基づいて測定された速度および方位によって、ルールベースあるいは機械学習結果に基づいて、ユーザの移動形態を認識する。なお、行動認識部111は、上述したように自律測位部107で測定された速度および方位を利用して、ユーザの移動形態を認識することも可能である。その場合、行動認識部111は、加速度センサ、角速度センサ、磁気方位センサ等のセンサを備えなくてもよくなる。
 行動認識部111は、ユーザの移動形態が乗車であるか歩行であるかを認識する。例えば、行動認識部111は、移動速度が遅く、速度変化および方位変化が大きい場合には、ユーザの移動形態は歩行であると認識できる。また、例えば、行動認識部111は、移動速度が速く、速度変化および方位変化が小さい場合には、ユーザの移動形態は乗車であると認識できる。
 地図情報記憶部112は、地図情報を記憶している。表示処理部109は、位置補正部108から出力された位置情報と、その位置情報に対応して地図情報記憶部112から読み出された地図情報に基づいて表示信号を生成する。表示部110は、表示信号に基づいて、現在位置が示された地図を表示する。これにより、情報処理装置100では、ユーザの現在位置が地図上に表示でき、ナビゲーション機能が実現される。
 この実施の形態において、表示部110に表示される地図上に、制御部101の制御のもと、行動認識部111で認識されたユーザの移動形態を示すアイコンが表示される。このようにアイコンが表示されることで、ユーザは、いかなる移動形態の認識の下で測位が行われているかを容易に確認できる。さらに、この実施の形態において、表示部110に表示される地図上の測位位置にアイコンが表示されるが、制御部101の制御のもと、そのアイコンの形態(色、模様、形など)が測位精度に応じて変化するようにされる。これにより、ユーザは、地図上で自身の位置の確かさの程度を認識できる。アイコン表示の詳細については後述する。
 「C/Nリミットおよび仰角リミットの制御」
 上述したように、制御部101は、測位に利用する測位パラメータとしてのC/Nリミットおよび仰角リミットを制御する。
 最初に、C/Nリミットの制御について説明する。制御部101は、行動認識部111で認識されたユーザの移動形態が歩行であるときは、C/Nリミットを第1の値に制御し、行動認識部111で認識されたユーザの移動形態が乗車であるときは、C/Nリミットを第1の値より低い第2の値に制御する。
 このようにC/Nリミットが制御されることで、測位率や測位精度の向上が図られる。例えば、ユーザの移動形態が乗車であるとき、C/Nリミットは低く設定されるので、C/Nのよくない微弱な電波も利用できるようになり、非測位状態を避けて、測位率が向上する。また、例えば、ユーザの移動形態が歩行であるとき、C/Nリミットは高く設定されるので、ユーザが都市部のビル街を歩いている状態においては、衛星からの電波がビルに反射するマルチパスのようにC/Nのよくない微弱な電波を除外して測位演算を行うことができ、測位精度が向上する。
 図2は、品川区の大崎駅から新宿区の新宿駅までを含む地図を概略的に示したものであり、地図上に太線で示す経路は、品川区の大崎駅から新宿区の新宿駅までのユーザの乗車経路Aを示している。
 図3(a)は、乗車経路Aにおいて、C/Nリミットを35dBHz(仰角リミットは15度)とした場合における測位演算部106における測位結果の一例を示している。また、図3(b)は、乗車経路Aにおいて、C/Nリミット無し(仰角リミットは15度)とした場合における測位演算部106における測位結果の一例を示している。図示の例において、黒丸で示す位置では測位がなされたことを示している。
 図3(a)のC/Nリミットを35dBHzとした場合においては、大崎駅から新宿駅までの乗車期間ではほとんど測位がなされていない。なお、大崎駅付近で測位がなされているが、これは電車の載る前のものである。また、新宿駅付近で測位がなされているが、これは電車を降りた後のものである。
 これに対して、図3(b)のC/Nリミット無しとした場合においては、大崎駅から新宿駅までの乗車期間においてもある程度は測位がなされている。なお、この場合、C/Nのよくない微弱な電波も利用していることから、測位の演算結果が実際の位置とはずれたものとなる、いわゆる位置飛びが発生している。これらのことから、ユーザの移動形態が乗車であるとき、C/Nリミットを低く設定することで、測位率を高め得ることが理解される。
 図4は、新宿西口の高層ビル街を含む地図を概略的に示したものであり、地図上に太線で示す経路は、ユーザの歩行経路Bを示している。なお、破線部は、地下トンネル区間を示している。
 図5(a)は、歩行経路Bにおいて、C/Nリミットを35dBHz(仰角リミットは15度)とした場合における測位演算部106における測位結果の一例を示している。また、図5(b)は、歩行経路Bにおいて、C/Nリミット無し(仰角リミットは15度)とした場合における測位演算部106における測位結果の一例を示している。図示の例において、黒丸で示す位置では測位がなされたことを示している。
 図5(a)のC/Nリミットを35dBHzとした場合においては、衛星からの電波がビルに反射するマルチパスのようにC/Nのよくない微弱な電波を除外して測位演算を行っていることから、所々で位置飛びの発生もあるが、ある程度精度よく測位がなされている。
 これに対して、図5(b)のC/Nリミット無しとした場合においては、衛星からの電波がビルに反射するマルチパスのようにC/Nのよくない微弱な電波をも利用するので測位演算が収束せず、測位できないことが多くなる。これらのことから、ユーザの移動形態が歩行であるとき、C/Nリミットをある程度高く設定することで、測位率、測位精度を高め得ることが理解される。
 図6のフローチャートは、行動認識部111の処理手順の一例を示している。行動認識部111は、ステップST1において、処理を開始し、その後に、ステップST2において、各種センサ(加速度、角速度、磁気方位など)の出力値を入力する。そして、行動認識部111は、ステップST3において、各センサの出力値、その時間経過における変化度合などからユーザの移動形態を推定し、その情報を出力する。
 以下、行動認識部111は、ステップST2およびステップST3の処理を、所定時間、例えば5秒とか10秒の時間間隔、あるいはそれ以上の時間間隔をもって繰り返し実行する。
 図7のフローチャートは、制御部101における行動認識部111の認識結果を利用したC/Nリミットの制御手順の一例を示している。制御部101は、ステップST11において、処理を開始し、ステップST12において、初期設定として、C/Nリミットを35dBHzとする。
 次に、制御部101は、ステップST13において、行動認識部111の結果を確認する。そして、制御部101は、ステップST14において、有効な移動形態認識結果があるか判断する。有効な移動形態認識結果があり、その認識結果が乗車であるとき、制御部101は、ステップST15において、C/Nリミット無しとする。
 また、有効な移動形態認識結果があり、その認識結果が歩行であるとき、制御部101は、ステップST16において、C/Nリミットを35dBHzにする。さらに、有効な移動形態認識結果がないとき、制御部101は、無効と判断し、ステップST17において、C/Nリミットを前回と同じくする。
 制御部101は、ステップST15、ステップST16、ステップST17の処理の後、所定時間、例えば1秒だけ待機した後に、ステップST13の処理に戻り、上述したと同様の処理を繰り返し実行する。なお、図7のフローチャートにおいて、ステップST12およびステップST16でC/Nリミットを35dBHzにするが、この値に限定されるものではない。また、図7のフローチャートにおいて、ステップST15でC/Nリミット無しとしているが、これに限定されるものではなく、歩行の場合より低い値でC/Nリミットをかけるようにすればよい。
 次に、仰角リミットの制御について説明する。制御部101は、行動認識部111で認識されたユーザの移動形態が歩行であるときは、仰角リミットを第1の値に制御し、行動認識部111で認識されたユーザの移動形態が乗車であるときは、仰角リミットを第1の値より低い第2の値に制御する。
 このように仰角リミットが制御されることで、測位率や測位精度の向上が図られる。例えば、ユーザが電車やバス等に乗っている状態においては、仰角の小さな衛星からの微弱電波も利用できるようになり、非測位状態を避けて、測位率が向上する。また、例えば、ユーザが都市部のビル街を歩いている状態においては、仰角の小さな衛星からの電波がビルに反射するマルチパスのようにC/Nのよくない微弱な電波を除外して測位演算を行うことができ、測位精度が向上する。
 図8(a)は、乗車経路A(図2参照)において、仰角リミットを45度(C/Nリミット無し)とした場合における測位演算部106における測位結果の一例を示している。また、図8(b)は、乗車経路Aにおいて、仰角リミットを15度(C/Nリミット無し)とした場合における測位演算部106における測位結果の一例を示している。図示の例において、黒丸で示す位置では測位がなされたことを示している。
 図8(a)の仰角リミットを45度とした場合においては、大崎駅から新宿駅までの乗車期間の前半側ではほとんど測位がなされていない。なお、大崎駅付近で測位がなされているが、これは電車の載る前のものである。また、新宿駅付近で測位がなされているが、これは電車を降りた後のものである。
 これに対して、図8(b)の仰角リミットを15度とした場合においては、大崎駅から新宿駅までの乗車期間の前半側においてもある程度は測位がなされている。なお、この場合、C/Nのよくない微弱な電波も利用していることから、測位の演算結果が実際の位置とはずれたものとなる、いわゆる位置飛びが発生している。これらのことから、ユーザの移動形態が乗車であるとき、仰角リミットを低く設定することで、測位率を高め得ることが理解される。
 図9(a)は、歩行経路B(図4参照)において、仰角リミットを45度(C/Nリミットは35dBHz)とした場合における測位演算部106における測位結果の一例を示している。また、図9(b)は、歩行経路Bにおいて、仰角リミットを15度(C/Nリミットは35dBHz)とした場合における測位演算部106における測位結果の一例を示している。図示の例において、黒丸で示す位置では測位がなされたことを示している。
 図9(a)の仰角リミットを45度とした場合においては、低仰角の衛星からの電波がビルに反射するマルチパスの電波を除外して測位演算を行っていることから、位置飛びの発生が多少はあるが、ある程度精度よく測位がなされている。
 これに対して、図9(b)の仰角リミットを15度とした場合においては、低仰角の衛星からの電波がビルに反射するマルチパスも利用して測位演算を行っていることから、位置飛びの発生が多く、測位精度が悪くなっている。これらのことから、ユーザの移動形態が歩行であるとき、仰角リミットをある程度高く設定することで、測位精度を高め得ることが理解される。
 図10のフローチャートは、制御部101における行動認識部111の認識結果を利用した仰角リミットの制御手順の一例を示している。制御部101は、ステップST21において、処理を開始し、ステップST22において、初期設定として、仰角リミットを45度とする。
 次に、制御部101は、ステップST23において、行動認識部111の結果を確認する。そして、制御部101は、ステップST24において、有効な移動形態認識結果があるか判断する。有効な移動形態認識結果があり、その認識結果が乗車であるとき、制御部101は、ステップST25において、仰角リミットを15度とする。
 また、有効な移動形態認識結果があり、その認識結果が歩行であるとき、制御部101は、ステップST26において、仰角リミットを45度にする。さらに、有効な移動形態認識結果がないとき、制御部101は、無効と判断し、ステップST27において、仰角リミットを前回と同じくする。
 制御部101は、ステップST25、ステップST26、ステップST27の処理の後、所定時間、例えば1秒だけ待機した後に、ステップST23の処理に戻り、上述したと同様の処理を繰り返し実行する。なお、図10のフローチャートにおいて、ステップST22およびステップST26で仰角リミットを45度にするが、この値に限定されるものではない。また、図10のフローチャートにおいて、ステップST25で仰角リミットを15度にしているが、この値に限定されるものではなく、歩行の場合より低い値で仰角リミットをかけるようにすればよい。
 「アイコン表示」
 アイコン表示の詳細について説明する。図11(a),(b)は、行動認識部111でユーザの移動形態が歩行であると認識された場合において、表示部110の地図上に重畳表示されるアイコンの一例を示している。
 図11(a)においては、地図上の測位位置に歩行状態にあると共にどの方向に向かっているかを示すアイコン121を表示する例である。図示の例では、アイコン121は人間の形をしているが、この形に限定されるものではなく、要は、歩行状態にあることと、どの方向に向かっているかが示されればよい。また、歩行状態にあることと、どの方向に向かっているかを示すアイコンがそれぞれ別個に存在していてもよい。
 また、変化の図示は省略するが、アイコン121は、現在の測位位置の測位精度に応じてその形態(色、模様、形など)が変化させられる。例えば、衛星からC/Nリミット(例えば、35dBHz)を越える電波を受信して測位演算が高精度でなされている状態ではアイコン121の色は赤色とされる。また、衛星からC/Nリミット(例えば、35dBHz)を越える電波を受信できず、自律測位機能が使用されている状態ではアイコン121の色はオレンジ色とされる。また、衛星からC/Nリミット(例えば、35dBHz)を越える電波を受信できず、さらに自律測位機能の精度限界に達した状態では、アイコン121の色は黄色とされる。さらに、完全に非測位となった状態では、アイコン121の色はグレーとされる。
 また、図11(b)は、地図上の固定位置、この例では右上の位置に歩行状態にあることを示すアイコン122を表示すると共に、地図上の測位位置にどの方向に向かっているかを示すアイコン123を表示する例である。図示の例では、アイコン122は人間の形をしているが、この形に限定されるものではなく、要は、歩行状態にあることが示されればよい。「歩行」などの文字表示であってもよい。また、図示の例では、アイコン123は三角形状をしているが、この形に限定されるものではなく、要は、どの方向に向かっているかが示されればよい。
 また、変化の図示は省略するが、アイコン122,123のいずれかあるいは双方は、図11(a)の例で説明したと同様に、現在の測位位置の測位精度に応じてその形態(色、模様、形など)が変化させられる。
 図12(a),(b)は、行動認識部111でユーザの移動形態が乗車であると認識された場合において、表示部110の地図上に重畳表示されるアイコンの一例を示している。
 図12(a)においては、地図上の測位位置に乗車状態にあると共にどの方向に向かっているかを示すアイコン124を表示する例である。図示の例では、アイコン124は電車の形をしているが、この形に限定されるものではなく、要は、乗車状態にあることと、どの方向に向かっているかが示されればよい。また、乗車状態にあることと、どの方向に向かっているかを示すアイコンがそれぞれ存在していてもよい。
 また、変化の図示は省略するが、アイコン124は、現在の測位位置の測位精度に応じてその形態(色、模様、形など)が変化させられる。例えば、衛星からの電波を受信して測位演算がなされている状態ではアイコン124の色は赤色とされる。また、衛星からの電波を受信できないか非常に弱く非測位となった状態ではアイコン124の色はグレーとされる。
 また、図12(b)は、地図上の固定位置、この例では右上の位置に乗車状態にあることを示すアイコン125を表示すると共に、地図上の測位位置にどの方向に向かっているかを示すアイコン126を表示する例である。図示の例では、アイコン125は電車の形をしているが、この形に限定されるものではなく、要は、乗車状態にあることが示されればよい。「乗車」などの文字表示であってもよい。また、図示の例では、アイコン126は三角形状をしているが、この形に限定されるものではなく、要は、どの方向に向かっているかが示されればよい。
 また、変化の図示は省略するが、アイコン125,126のいずれかあるいは双方は、図12(a)の例で説明したと同様に、現在の測位位置の測位精度に応じてその形態(色、模様、形など)が変化させられる。
 以上説明したように、図1に示す情報処理装置100においては、ユーザの移動形態に基づいて測位に利用する測位パラメータ(C/Nリミット、仰角リミット)が制御される(図7、図10参照)。そのため、GNSSを構成する複数の衛星から取得した電波情報に基づいて測位する場合の測位率や測位精度の向上を図ることができる。
 また、図1に示す情報処理装置100においては、地図上に、認識された移動形態(歩行、乗車)を示すアイコンが表示されるものである(図11、図12参照)。そのため、ユーザは、いかなる移動形態の認識の下で測位が行われているかを容易に確認できる。
 また、図1に示す情報処理装置100においては、地図上の測位位置にアイコンが表示され、このアイコンの形態が測位精度に応じて変化するようにされる。そのため、ユーザは、地図上で自身の位置を容易に知ることができ、しかもその位置の確かさの程度を認識することができる。
 <2.変形例>
 なお、上述実施の形態においては、ユーザの移動形態に応じてC/Nリミットを制御する例を示した。しかし、GNSSを構成する衛星からの電波のC/Nに応じてC/Nリミットを制御すること、また地図情報から得られる環境情報(周囲状況の情報)に応じてC/Nリミットを制御することも考えられる。
 図13のフローチャートは、制御部101におけるC/Nリミットの制御手順の一例を示している。制御部101は、ステップST31において、処理を開始し、ステップST32において、初期設定として、C/Nリミットを掛ける。
 次に、制御部101は、ステップST33において、受信C/Nが良い状況が継続しているか否かを判断する。継続していると判断するとき、制御部101は、ステップST34において、C/Nリミットを掛ける。一方、継続していないと判断するとき、制御部101は、ステップST35の処理に移る。
 ステップST35において、制御部101は、受信C/Nが良くない状況が継続しているか否かを判断する。継続していると判断するとき、制御部101は、ステップST36において、C/Nリミット無しにする。一方、継続していないと判断するとき、制御部101は、ステップST37の処理に移る。
 ステップST37において、制御部101は、受信C/Nが良くない状況が想定されるか否かを判断する。受信C/Nが良くない状況としては、例えば、建物内、高架橋の下、トンネル内等の衛星からの電波を遮蔽する環境にユーザが入ることが考えられる。この環境の判断は、例えば、記憶部112に記憶されている地図情報に基づいて判断し得るが、各種センサの出力に基づいて判断することも可能である。例えば、イメージセンサからの画像解析を行うことでも判断可能である。
 受信C/Nが良くない状況が想定されると判断するとき、制御部101は、ステップST36において、C/Nリミット無しにする。一方、受信C/Nが良くない状況が想定されないと判断するとき、制御部101は、ステップST38において、C/Nリミットを掛ける。
 制御部101は、ステップST34、ステップST36、ステップST38の処理の後、所定時間、例えば1秒だけ待機した後に、ステップST33の処理に戻り、上述したと同様の処理を繰り返し実行する。
 このようにC/Nリミットの制御が行われることで、測位率および測位精度を高めることが可能となる。ユーザが電車やバス等に乗っている状態、あるいはユーザが建物内、高架橋の下、トンネル内等にいる状態で、衛星からの電波のC/Nが良くない状況では、C/Nリミット無しとされるので、C/Nのよくない微弱な電波も利用できるようになり、非測位状態を避けて、測位率を向上させることができる。一方、衛星からの電波のC/Nが良い状況では、C/Nリミットが掛けられるので、C/Nのよくない微弱な電波を除外して測位演算を行うことができ、測位精度を高めることができる。
 また、本技術は、以下のような構成を取ることもできる。
 (1)GNSSを構成する複数の衛星から取得された電波情報に基づいて測位する測位部と、
 センサ情報に基づいてユーザの移動形態を認識する認識部と、
 上記認識された移動形態に基づいて上記測位に利用する測位パラメータを制御するパラメータ制御部を備える
 情報処理装置。
 (2)上記パラメータ制御部が制御する上記測位パラメータは、C/Nリミットである
 前記(1)に記載の情報処理装置。
 (3)上記パラメータ制御部は、上記認識部で認識された上記移動形態が歩行であるときは上記C/Nリミットを第1の値に制御し、上記認識部で認識された上記移動形態が乗車であるときは上記C/Nリミットを上記第1の値より低い第2の値に制御する
 前記(2)に記載の情報処理装置。
 (4)上記パラメータ制御部が制御する上記測位パラメータは、仰角リミットである
 前記(1)から(3)のいずれかに記載の情報処理装置。
 (5)上記パラメータ制御部は、上記認識部で認識された上記移動形態が歩行であるときは上記仰角リミットを第1の値に制御し、上記認識部で認識された上記移動形態が乗車であるときは上記仰角リミットを上記第1の値より低い第2の値に制御する
 前記(4)に記載の情報処理装置。
 (6)地図上に上記認識された移動形態を示すアイコンを表示するように制御する表示制御部をさらに備える
 前記(1)から(5)のいずれかに記載の情報処理装置。
 (7)地図上の測位位置にアイコンを表示し、該アイコンの形態を測位の精度に応じて変化するように制御する表示制御部をさらに備える
 前記(1)から(6)のいずれかに記載の情報処理装置。
 (8)上記パラメータ制御部は、地図情報から取得される環境情報に基づいて上記測位パラメータをさらに制御する
 前記(1)から(7)のいずれかに記載の情報処理装置。
 (9)GNSSを構成する複数の衛星から取得された電波情報に基づいて測位するステップと、
 センサ情報に基づいてユーザの移動形態を認識するステップと、
 上記認識された移動形態に基づいて上記測位に利用する測位パラメータを制御するステップを有する
 情報処理方法。
 (10)コンピュータを、
 GNSSを構成する複数の衛星から取得された電波情報に基づいて測位する測位手段と、
 センサ情報に基づいてユーザの移動形態を認識する認識手段と、
 上記認識された移動形態に基づいて上記測位に利用する測位パラメータを制御するパラメータ制御手段として機能させる
 プログラム。
 100・・・情報処理装置
 101・・・制御部
 102・・・操作入力部
 103・・・アンテナ
 104・・・受信部
 105・・・復調部
 106・・・測位演算部
 107・・・自律測位部
 108・・・位置補正部
 109・・・表示処理部
 110・・・表示部
 111・・・行動認識部
 112・・・記憶部

Claims (10)

  1.  GNSSを構成する複数の衛星から取得された電波情報に基づいて測位する測位部と、
     センサ情報に基づいてユーザの移動形態を認識する認識部と、
     上記認識された移動形態に基づいて上記測位に利用する測位パラメータを制御するパラメータ制御部を備える
     情報処理装置。
  2.  上記パラメータ制御部が制御する上記測位パラメータは、C/Nリミットである
     請求項1に記載の情報処理装置。
  3.  上記パラメータ制御部は、上記認識部で認識された上記移動形態が歩行であるときは上記C/Nリミットを第1の値に制御し、上記認識部で認識された上記移動形態が乗車であるときは上記C/Nリミットを上記第1の値より低い第2の値に制御する
     請求項2に記載の情報処理装置。
  4.  上記パラメータ制御部が制御する上記測位パラメータは、仰角リミットである
     請求項1に記載の情報処理装置。
  5.  上記パラメータ制御部は、上記認識部で認識された上記移動形態が歩行であるときは上記仰角リミットを第1の値に制御し、上記認識部で認識された上記移動形態が乗車であるときは上記仰角リミットを上記第1の値より低い第2の値に制御する
     請求項4に記載の情報処理装置。
  6.  地図上に、上記認識された移動形態を示すアイコンを表示するように制御する表示制御部をさらに備える
     請求項1に記載の情報処理装置。
  7.  地図上の測位位置にアイコンを表示し、該アイコンの形態を測位の精度に応じて変化するように制御する
     請求項1に記載の情報処理装置。
  8.  上記パラメータ制御部は、地図情報から取得される環境情報に基づいて上記測位パラメータをさらに制御する
     請求項1に記載の情報処理装置。
  9.  GNSSを構成する複数の衛星から取得された電波情報に基づいて測位するステップと、
     センサ情報に基づいてユーザの移動形態を認識するステップと、
     上記認識された移動形態に基づいて上記測位に利用する測位パラメータを制御するステップを有する
     情報処理方法。
  10.  コンピュータを、
     GNSSを構成する複数の衛星から取得された電波情報に基づいて測位する測位手段と、
     センサ情報に基づいてユーザの移動形態を認識する認識手段と、
     上記認識された移動形態に基づいて上記測位に利用する測位パラメータを制御するパラメータ制御手段として機能させる
     プログラム。
PCT/JP2019/011380 2018-03-28 2019-03-19 情報処理装置、情報処理方法およびプログラム WO2019188568A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018063362A JP2019174306A (ja) 2018-03-28 2018-03-28 情報処理装置、情報処理方法およびプログラム
JP2018-063362 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188568A1 true WO2019188568A1 (ja) 2019-10-03

Family

ID=68061562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011380 WO2019188568A1 (ja) 2018-03-28 2019-03-19 情報処理装置、情報処理方法およびプログラム

Country Status (2)

Country Link
JP (1) JP2019174306A (ja)
WO (1) WO2019188568A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264076A (ja) * 2000-03-21 2001-09-26 Clarion Co Ltd カーナビゲーション装置
JP2007304009A (ja) * 2006-05-12 2007-11-22 Yafoo Japan Corp 位置情報から移動手段を求める方法およびシステム
JP2008051573A (ja) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd ナビゲーション装置及び、その方法、並びにそのプログラム
JP2015152542A (ja) * 2014-02-19 2015-08-24 古野電気株式会社 測位信号受信装置、情報機器端末、測位信号受信方法、および測位信号受信プログラム
JP2017173137A (ja) * 2016-03-24 2017-09-28 日本電気株式会社 衛星測位システム、測位端末、測位方法、及びプログラム
JP2018017505A (ja) * 2016-07-25 2018-02-01 レイ・フロンティア株式会社 プログラム及び携帯端末

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264076A (ja) * 2000-03-21 2001-09-26 Clarion Co Ltd カーナビゲーション装置
JP2007304009A (ja) * 2006-05-12 2007-11-22 Yafoo Japan Corp 位置情報から移動手段を求める方法およびシステム
JP2008051573A (ja) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd ナビゲーション装置及び、その方法、並びにそのプログラム
JP2015152542A (ja) * 2014-02-19 2015-08-24 古野電気株式会社 測位信号受信装置、情報機器端末、測位信号受信方法、および測位信号受信プログラム
JP2017173137A (ja) * 2016-03-24 2017-09-28 日本電気株式会社 衛星測位システム、測位端末、測位方法、及びプログラム
JP2018017505A (ja) * 2016-07-25 2018-02-01 レイ・フロンティア株式会社 プログラム及び携帯端末

Also Published As

Publication number Publication date
JP2019174306A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
JP3483672B2 (ja) ナビゲーション装置
US8134496B2 (en) Position calculating method and position calculating device
US10641612B2 (en) Method and apparatus for correcting current position in navigation system via human-machine interface
CN110597252B (zh) 自动驾驶汽车融合定位控制方法、装置、设备及存储介质
JP4702800B2 (ja) Gps測位による位置算出装置
US20050159884A1 (en) Navigation apparatus
JP4903649B2 (ja) 地図表示装置および地図表示方法
JP2007263881A (ja) 位置設定装置、位置設定方法、位置設定プログラムおよび記録媒体
WO2019188568A1 (ja) 情報処理装置、情報処理方法およびプログラム
JP2014006077A (ja) ナビゲーション装置、ナビゲーションシステム、ナビゲーション方法およびナビゲーションプログラム
KR20040006780A (ko) 자동차 네비게이션용 차선 안내 방법
JP2016223898A (ja) 位置算出装置、位置算出システム及び位置算出方法
JP2011169631A (ja) 情報処理装置で実行される地図データを処理するためのコンピュータプログラム、方法及び地図表示装置
JP2940315B2 (ja) 車両ナビゲーションシステム、その基地局及びその車両
JPH07248230A (ja) 航法装置
JP2008051577A (ja) ナビゲーション装置、方法及びプログラム
JP4779852B2 (ja) 携帯型ナビゲーション装置及びナビゲーションプログラム
JP2006125876A (ja) 移動体の位置算出装置および算出方法
JP2001091270A (ja) 電子方位計付携帯型ナビゲーション装置、及び目的地方向検出方法
JP4300355B2 (ja) カーナビゲーションシステムと自車位置判定方法
JP2008275419A (ja) 自車両位置判定システム及び方法
JPS634399A (ja) Gps位置計測装置
JPH0390815A (ja) 移動体用ナビゲーション装置
JP4459017B2 (ja) 移動体の位置算出装置および算出方法
JP2744664B2 (ja) 車両用ナビゲーション装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778153

Country of ref document: EP

Kind code of ref document: A1