WO2019188286A1 - 試料分離方法 - Google Patents

試料分離方法 Download PDF

Info

Publication number
WO2019188286A1
WO2019188286A1 PCT/JP2019/010261 JP2019010261W WO2019188286A1 WO 2019188286 A1 WO2019188286 A1 WO 2019188286A1 JP 2019010261 W JP2019010261 W JP 2019010261W WO 2019188286 A1 WO2019188286 A1 WO 2019188286A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sheet
solution
development
liquid
Prior art date
Application number
PCT/JP2019/010261
Other languages
English (en)
French (fr)
Inventor
俊裕 坂本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019188286A1 publication Critical patent/WO2019188286A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/91Application of the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/94Development

Definitions

  • the present disclosure relates to a sample separation method for separating a plurality of types of substances contained in a sample.
  • Patent Document 1 discloses mass spectrometry (hereinafter, MS: Mass) of a plurality of types of substances separated on a thin layer chromatography (hereinafter, TLC: Thin-Layer Chromatography) plate from the TLC plate.
  • MS mass spectrometry
  • TLC Thin-Layer Chromatography
  • Patent Document 1 it is necessary to dry the TLC plate after primary separation of a plurality of types of materials on the TLC plate and before transferring these materials from the TLC plate to the MS plate. As a result, the time required for the separation becomes longer, so that a plurality of types of substances contained in the sample cannot be quickly separated.
  • the present disclosure provides a sample separation method that can quickly and accurately separate a plurality of types of substances contained in a sample.
  • a sample separation is performed in which a sample containing a plurality of types of substances is developed using a porous development sheet in the development direction of the development sheet to separate the plurality of kinds of substances.
  • FIG. 1 is a schematic top view showing an example of the separation device according to the first embodiment.
  • FIG. 2 is a diagram schematically showing a supply device together with a schematic cross section of the separation device of FIG.
  • FIG. 3 is a schematic top view showing another example of the separation device according to the first embodiment.
  • FIG. 4 is a diagram schematically showing a supply device together with a schematic cross section of the separation device of FIG.
  • FIG. 5 is a schematic diagram illustrating the principle of the sample separation method according to the present disclosure.
  • FIG. 6 is a flowchart showing an example of the sample separation method according to the first embodiment.
  • FIG. 7A is a diagram schematically illustrating an example of a sample separation method according to Embodiment 1.
  • FIG. 7A is a diagram schematically illustrating an example of a sample separation method according to Embodiment 1.
  • FIG. 7A is a diagram schematically illustrating an example of a sample separation method according to Embodiment 1.
  • FIG. 7A is a diagram schematic
  • FIG. 7B is a diagram schematically illustrating another example of the sample separation method according to Embodiment 1.
  • FIG. 8 is a schematic top view showing an example of the separation device according to the second embodiment.
  • FIG. 9 is a diagram schematically showing a supply device together with a schematic cross section of the separation device of FIG.
  • FIG. 10 is a schematic top view illustrating another example of the separation device according to the second embodiment.
  • FIG. 11 is a diagram schematically showing a supply device together with a schematic cross section of the separation device of FIG.
  • FIG. 12 is a flowchart showing an example of the third step of the sample separation method according to the second embodiment.
  • FIG. 13A is a diagram schematically illustrating an example of a sample separation method according to Embodiment 2.
  • FIG. 13A is a diagram schematically illustrating an example of a sample separation method according to Embodiment 2.
  • FIG. 13A is a diagram schematically illustrating an example of a sample separation method according to Embodiment 2.
  • FIG. 13B is a diagram schematically illustrating another example of the sample separation method according to Embodiment 2.
  • FIG. 14 is a schematic top view of a developing container used in Examples and Comparative Examples.
  • FIG. 15 is a schematic sectional view taken along line XV-XV in FIG.
  • FIG. 16 is a schematic top view of the separation device used in Examples and Comparative Examples.
  • FIG. 17 is a schematic diagram for explaining sample separation methods performed in Examples and Comparative Examples.
  • FIG. 18 is a diagram showing the results of Example 1 and Comparative Example 1.
  • FIG. 19 is a graph showing the results of Example 2 and Comparative Example 2.
  • a sample separation is performed in which a sample containing a plurality of types of substances is developed using a porous development sheet in the development direction of the development sheet to separate the plurality of kinds of substances.
  • a drying step a step of drying a solution containing a sample (hereinafter, a drying step) before supplying a liquid (that is, a developing solvent) to the developing sheet as in the prior art.
  • a liquid that is, a developing solvent
  • a plurality of types of substances contained in can be quickly separated.
  • the sample separation method according to the present disclosure since the solution containing the sample is supplied onto the liquid in a state where the liquid has already moved to the porous spreading sheet, the movement of the liquid is hindered by the solution. It's hard to be done.
  • the development sheet in the second step, is horizontally disposed on a placement portion of a development container, and one end of the development sheet in the development direction is disposed in the development direction. You may make it contact the said liquid stored by the recessed part of the container.
  • the sample separation method by disposing the development sheet horizontally on the placement portion of the development container, the vaporized liquid, that is, compared to the case where the development sheet is placed upright on the wall surface of the development container, that is, The time until the vaporized developing solvent covers the entire developing sheet and equilibrates can be shortened. Therefore, a plurality of types of substances in the sample can be quickly separated.
  • the concave portion may be disposed so as to surround the placement portion.
  • the time until the vaporized liquid, that is, the vaporized developing solvent covers the entire developing sheet and equilibrates is further increased by arranging the concave portion so as to surround the mounting portion. Can be shortened. Thereby, a plurality of types of substances in the sample can be separated more rapidly.
  • the solution in the first step, is supported on an elongated carrier, and in the third step, the longitudinal direction of the carrier and the development sheet
  • the solution may be supplied onto the liquid moving in the developing direction by arranging the carrier on the developing surface of the developing sheet so that the developing direction intersects.
  • the solution can be supplied to the development sheet without variation by supporting the solution on the carrier and arranging the carrier on the development surface of the development sheet.
  • the sample includes a first sample and a second sample
  • the solution is a solution including the first sample and a solution including the second sample
  • the solution containing the first sample and the solution containing the second sample may be arranged at different positions in a first direction intersecting the development direction.
  • sample separation method for example, primary samples (first sample and second sample) separated using a carrier can be supplied to the spread sheet without variation.
  • the solution in the third step, is placed on the liquid that moves in the developing direction by pressing the carrier in a direction perpendicular to the developing sheet. May be supplied.
  • the solution held on the carrier is discharged, so that the solution can be efficiently supplied to the spreading sheet.
  • the carrier in the third step, may be separated from the development sheet after pressing the carrier in a direction perpendicular to the development sheet.
  • the tailing can be reduced according to the sample separation method according to the present disclosure.
  • the first sample and the second sample may be obtained by electrophoresis.
  • the primary sample (the first sample and the second sample) separated by the electrophoresis method is subjected to secondary separation using a development sheet, whereby a plurality of types included in the sample are included. Can be separated by different physical parameters. Thereby, the amount of information obtained is increased, and a plurality of types of substances can be separated with higher accuracy.
  • the sample separation method is a method of separating a plurality of types of substances by developing a sample containing a plurality of types of substances in the development direction of the development sheet using a porous development sheet. .
  • a solution containing a sample can be supplied onto a developing solvent (hereinafter referred to as liquid) that moves to a developing sheet without going through a drying step, so that a plurality of types of substances can be quickly separated. Details of the separation method will be described later.
  • the separation may include only fractionating a plurality of types of substances according to their characteristics, or may include identifying the substances as individual substances or groups of similar substances.
  • the porous spread sheet may be a film or sheet made of a porous material, or a sheet in which a thin film layer of a porous material is formed on a substrate such as glass, resin, or metal.
  • the porous material include silica gel particles, chemically modified silica gel particles, alumina particles, diatomaceous earth, silicon pillars, cellulose, cellulose acetate, polyacrylamide, agarose, and dextran.
  • the porous shape means a state in which the pores are not unevenly distributed only in part and are evenly distributed to some extent in at least one direction.
  • the development sheet being porous means that the holes are evenly distributed in a direction perpendicular to the thickness direction of the development sheet.
  • Examples of the plurality of types of substances include polymers such as proteins, nucleic acids, and polysaccharides, peptides, nucleotides, nucleosides, lipids, amino acids, vitamins, and ions.
  • the plural types of substances may be, for example, biological substances, that is, biological substances.
  • Each biological substance has a function exhibited in the living body.
  • keratin and collagen have a function of forming a structure of a living body and maintaining strength
  • an enzyme has a function of serving as a catalyst for a biological reaction
  • an antibody has a function of protecting the living body. Then, by separating and detecting a biological material from a biological sample such as blood, mucous membrane, skin, etc., a state in which such a function is exerted in the living body or a state of the living body as a result (these states are hereinafter referred to as a living body). Can also be understood.
  • the sample separation method according to the present embodiment can be used as a method for separating a plurality of types of substances from a solution, for example, in order to facilitate detection of biological substances for such purposes.
  • FIG. 1 is a top view showing a separation device 100a which is an example of a separation device used in the sample separation method according to the present embodiment.
  • the illustration of the lid 6a (see FIG. 2) and the sample supply device 30a (see FIG. 2) is omitted.
  • FIG. 2 is a diagram showing a schematic view of the sample supply device 30a together with a schematic cross-sectional view of the separation device 100a of FIG. 1 viewed from the Z-axis side.
  • the separation device 100a includes a porous development sheet 10 and a development container 50a.
  • “Development” means, for example, that a substance moves as the solvent (hereinafter, liquid 9) moves.
  • the separation device 100a is used for disposing the development sheet 10 in the development container 50a and separating a plurality of types of substances contained in the sample.
  • the developing container 50 a brings the liquid 9 into contact with the end portion 10 b of the developing sheet 10 and supplies the liquid 9 to the end portion 10 b of the developing sheet 10.
  • the liquid 9 supplied to the end portion 10b moves from the end portion 10b toward the end portion facing the end portion 10b, that is, in the developing direction.
  • solution 20 a solution containing a sample
  • each of a plurality of types of substances in the solution 20 develops as the liquid 9 moves. Move in the direction.
  • a plurality of kinds of substances can be separated.
  • the unfolding sheet 10 is a sheet used for separating a plurality of types of substances contained in a sample, and is formed by fixing a porous material in a thin layer on a substrate.
  • the base material is, for example, a glass plate or an aluminum plate.
  • a porous material such as silica gel is fixed in a thin layer on one main surface of the substrate.
  • the surface of the spread sheet 10 on which the porous material is fixed in a thin layer shape is referred to as a spread surface 10a.
  • the unfolding sheet 10 is a sheet that separates a plurality of types of substances based on differences in physical quantities such as molecular weight, polarity, and charge amount, and can be appropriately selected according to the properties of the target substance.
  • the developing container 50a is a container in which the developing sheet 10 is disposed and used for performing an operation of separating a plurality of types of substances contained in the sample.
  • the developing container 50a has a bottom part on the negative side (hereinafter referred to as the lower side) in the Y-axis direction, and includes a container part 5a and a lid part 6a.
  • the container portion 5a includes a recess 1a for storing the liquid 9, a placement portion 2a for arranging the developing sheet 10, a supply strip 3 for supplying the liquid to one end of the developing sheet 10, and a positive strip in the X-axis direction. And an extruding part 4 for extruding horizontally to the side.
  • the concave portion 1a stores a developing solvent supplied to the developing sheet 10, that is, the liquid 9.
  • the recess 1a may have a groove 11a at the bottom.
  • the groove 11 a is formed corresponding to the shape of the supply strip 3. Since the concave portion 1a has the groove portion 11 corresponding to the supply strip 3, when the supply strip 3 is pushed out to the plus side in the X-axis direction by the pushing portion 4, the lowest point of the supply strip 3 moves, and the spread sheet It is suppressed that it contacts diagonally with respect to 10 edge part 10b. Therefore, the supply strip 3 can be contacted along the end portion 10 b of the development sheet 10. Thereby, the liquid 9 can be stably supplied to the end portion 10 b of the spread sheet 10.
  • the mounting portion 2a is a convex portion on which the development sheet 10 is disposed, and keeps the development sheet 10 horizontal.
  • the upper surface of the mounting portion 2a may be any shape as long as the spread sheet 10 can be stably mounted, and may be a flat surface as shown in FIGS. 1 and 2, for example. Further, the upper surface of the placement portion 2a may be a surface having a plurality of groove portions, and may have a series of convex portions in a portion overlapping the end portion of the spread sheet 10.
  • the supply strip 3 is a plate-like member that supplies the liquid 9 stored in the recess 1 a to one end of the development sheet 10.
  • the supply strip 3 is tilted toward the mounting portion 2 a by pressing the surface (hereinafter referred to as a pressing side surface) opposite to the surface (hereinafter referred to as a contact side surface) in contact with the spreading sheet 10 by the pushing portion 4.
  • the liquid 9 is drawn into the gap between the contact side surface of the supply strip 3 and the mounting portion 2a due to capillary action, and moves in the gap toward the plus side (hereinafter referred to as the upper side) in the Y-axis direction.
  • 10 end portions 10b are examples of the liquid 9 stored in the recess 1 a to one end of the development sheet 10.
  • the lid 6a is not particularly limited as long as the developing container 50a maintains a predetermined airtightness and can supply the sample to a desired position of the developing sheet 10.
  • the space 12a is filled with the vaporized liquid 9 in the developing container 50a, and an equilibrium state between the vaporization and liquefaction of the liquid 9 is maintained.
  • it is sufficient that the above-described state is maintained at least around the spread sheet 10 disposed on the placement portion 2a.
  • the lid 6a includes, for example, an opening 7a and a slide 8a that covers the opening 7a.
  • the opening 7a is provided at a position overlapping the placement portion 2a in plan view.
  • the position of the opening 7a in the lid 6a may be determined as appropriate according to the design as long as a solution containing a sample (hereinafter, solution 20) can be supplied to the development surface 10a of the development sheet 10.
  • solution 20 a solution containing a sample
  • the opening 7a is one end of the development sheet 10, that is, the development sheet in plan view.
  • the solution 20 can be supplied onto the liquid 9 moving in the developing direction of the developing sheet 10.
  • the shape and size of the opening 7a need only be able to supply the solution 20 to the development surface 10a as in the arrangement position, and further, the development container 50a maintains a predetermined airtightness during the separation operation. If you can.
  • the opening 7 a may have any shape and size that is the minimum area through which the sample supply device 30 a can pass.
  • FIG. 3 is a schematic top view showing a separation device 100b which is another example of the separation device in the present embodiment.
  • a separation device 100b which is another example of the separation device in the present embodiment.
  • illustration of the lid 6 b (see FIG. 4) and the sample supply device 30 a (see FIG. 4) is omitted.
  • FIG. 4 is a diagram showing a schematic diagram of the sample supply device 30a together with a schematic cross-sectional view of the separation device 100b of FIG. 3 viewed from the Z-axis side.
  • the separation device 100 b includes a porous development sheet 10 and a development container 50 b.
  • the concave portion 1b is disposed so as to surround the placement portion 2b.
  • FIG. 5 is a schematic diagram illustrating the principle of the sample separation method according to the present disclosure.
  • FIG. 5A is a diagram illustrating a phenomenon that occurs when the liquid 9 is supplied to the development sheet 10 after the solution 20 is supplied to the development sheet 10 without passing through the drying step.
  • FIG. 5B is a diagram illustrating a phenomenon that occurs when the solution 20 is supplied to the development sheet 10 after the supply of the liquid 9 to the development sheet 10 is started.
  • TLC thin layer chromatography
  • the solvent in the sample solution and the developing solvent have a property of being mixed with each other.
  • the developing solvent may be an amphiphilic organic solvent, an aqueous solution, or a mixed solution thereof.
  • the developing solvent may be a polar solvent or a nonpolar solvent.
  • the developing solvent may be a solvent other than water and an aqueous solution.
  • the amphiphilic solvent is a solvent having both a polar group and a hydrophobic group in one molecule.
  • it means an organic solvent having a Snyder polarity index of 3 or more.
  • a solution containing a plurality of types of substances 201, 202, 203, etc. (hereinafter 201 to 203) in the porous material layer 102 formed on the substrate 101 of the spread sheet 10.
  • the liquid 9 is supplied to the developing sheet 10 and moved.
  • the liquid 9 further moves and moves in the right direction of the paper (hereinafter, the developing direction) and the liquid 9 (the layer of the liquid 9) hits the solution 20 (the layer of the solution 20)
  • the liquid 9 causes the solution 20 to move in the developing direction. Try to move while pushing.
  • a part of the liquid 9 is pushed back to the solution 20, a part moves while pushing the solution 20, and a part moves slowly while mixing with the solution 20.
  • the moving speed of the liquid 9 is not uniform, the moving speed of the solution 20 is not uniform. Therefore, the mobility of the individual substances 201 to 203 in the solution 20 varies, and the substances 201 to 203 cannot be accurately separated from the solution 20.
  • the sample solution is supplied to the TLC plate while the developing solvent is supplied and moved to the TLC plate.
  • the developing solvent and the sample solution do not collide in the porous material layer of the TLC plate, so that the movement of the developing solvent is not hindered by the sample solution. .
  • This phenomenon will be specifically described with reference to FIG.
  • the liquid 9 moves to the porous material layer 102 of the spread sheet 10 and moves toward the right side of the paper surface.
  • a solution 20 containing 203 or the like is supplied.
  • the solution 20 moves the surface layer portion in the developing direction as the moving liquid 9 moves. Since the area of the solution 20 in contact with the liquid 9 is small, there is almost no influence of the solution 20 on the liquid 9. Therefore, each of the plurality of types of substances 201 to 203 in the solution 20 moves in the developing direction while repeating adsorption and desorption with respect to the porous material of the developing sheet 10 and the liquid 9 due to the difference in individual physical property values.
  • the sample separation method according to the present disclosure it is possible to quickly and accurately separate a plurality of types of substances in a sample.
  • FIG. 6 is a flowchart showing an example of the sample separation method according to the present embodiment.
  • the sample separation method according to the present embodiment is a sample separation method for separating a plurality of types of substances by developing a sample containing a plurality of types of materials in the development direction of the development sheet using the porous development sheet 10. It is.
  • a first step S10 for preparing a solution 20 containing a sample and a developing sheet 10, and supplying the liquid 9 to the developing sheet 10 The second step S20 that moves in the developing direction, the third step S30 that supplies the solution 20 on the liquid 9 that moves in the developing direction, and the sample that is developed in the developing direction of the developing sheet 10 are included in the sample. And a fourth step S40 for separating a plurality of types of substances.
  • the sample separation method does not require a drying step of drying the solution containing the sample before supplying the liquid (that is, the developing solvent) to the developing sheet as in the prior art, a plurality of types of substances contained in the sample are not contained. It can be separated quickly.
  • the liquid 9 is moved because the solution 9 containing the sample is supplied onto the moving liquid 9 in a state where the liquid 9 has already moved to the porous spreading sheet 10. Hard to be disturbed by the solution 20.
  • a plurality of types of substances contained in the sample repeatedly adsorb and desorb between the developing sheet 10 and the liquid 9 due to the difference in polarity between the developing sheet 10 and the liquid 9 that moves to the developing sheet 10 and moves in the developing direction.
  • the liquid 9 moves in the moving direction.
  • FIG. 7A is a diagram schematically illustrating an example of a sample separation method according to the present embodiment.
  • the separation device 100a will be described as an example.
  • the illustration of the lid 6a is omitted as in FIG.
  • a solution 20 containing a sample and a development sheet 10 are prepared.
  • the sample may be the same sample or a plurality of types of samples.
  • the liquid 9 is put into the concave portion 1a of the container portion 5a of the developing container 50a, and the developing sheet 10 is horizontally arranged on the placing portion 2a as shown in FIG. 7A (a).
  • the container 5a is covered with a lid 6a (see FIG. 2).
  • the expansion sheet 10 horizontally on the mounting portion 2a in the expansion container 50a, the vaporized liquid 9, that is, vaporization, can be achieved as compared with the case where the expansion sheet is disposed standing on the wall surface in the expansion container.
  • the time required for the developed solvent to cover the entire developed sheet 10 and equilibrate can be shortened. Therefore, a plurality of types of substances in the sample can be quickly separated.
  • the extrusion strip 4 presses the supply strip 3 to the plus side in the X-axis direction, and the contact surface of the supply strip 3 and the end portion 10b of the spread sheet are brought together. Make contact. Thereby, the liquid 9 stored in the recess 1a is supplied to one end (end portion 10b) of the developing sheet 10 by capillary action, and moves from the end portion 10b of the developing sheet 10 in the developing direction.
  • the solution 20 is supplied onto the liquid 9 moving in the developing direction in the developing sheet 10.
  • the slide 9 a of the lid 6 a is slid to expose the opening 7 a
  • the sample supply device 30 a is inserted into the opening 7 a
  • the liquid 9 moving in the developing sheet 10 is moved.
  • the solution 20 is supplied.
  • step S40 as shown to (c) of FIG. 7A, the sample is expand
  • the sample may include a plurality of types of samples, for example, a first sample and a second sample.
  • the first sample and the second sample may be, for example, a primary sample obtained by primary separation of a sample or a sample obtained from a different specimen.
  • Each of these samples contains a plurality of types of substances.
  • the primary separation for example, separation methods such as thin layer chromatography, ion exchange chromatography, gel filtration, affinity chromatography, HPLC (high performance liquid chromatography), mass spectrometry, fluorescence emission method, electrophoresis method, immunoassay method and the like can be performed. .
  • the primary separation method may be appropriately selected according to the type of substance to be separated.
  • the first sample and the second sample may be obtained by electrophoresis.
  • the primary samples (first sample and second sample) obtained by the primary separation by electrophoresis using the developing sheet 10 so-called secondary separation
  • a plurality of types of substances contained in a sample can be separated by parameters having different physical quantities. Thereby, the amount of information obtained is increased, and a plurality of types of substances can be separated with higher accuracy.
  • FIG. 7B is a diagram schematically illustrating another example of the sample separation method according to the present embodiment.
  • illustration of the cover part 6a of the separation device 100a is omitted.
  • (a) of FIG. 7B is the same as the content demonstrated in FIG. 7A, Therefore It abbreviate
  • the solution includes a solution 20a including the first sample, a solution 20b including the second sample, and a third sample.
  • a solution 20c containing an example in which these plural types of samples are primary samples obtained by primary separation will be described.
  • preparing the solution 20 containing the sample in the first step S10 means that the sample is primarily separated to obtain the solution 20a containing the first sample, the solution 20b containing the second sample, and the solution 20c containing the third sample. Refers to that.
  • the solution 20a, the solution 20b, and the solution 20c (hereinafter referred to as the solution 20a to the solution 20c) are arranged at different positions in the first direction that intersects the development direction. Then, the solution 20a to the solution 20c are supplied onto the liquid 9 moving in the developing direction in the developing sheet 10.
  • the sample is developed in the developing direction of the developing sheet 10 to separate a plurality of types of substances contained in the sample. Specifically, a plurality of types of substances 201 and 202 included in the solution 20a are separated, a plurality of types of substances 203 and 204 included in the solution 20b are separated, and a plurality of types of substances 205 and 206 included in the solution 20c are separated. 207 is separated.
  • the sample separation method according to the present embodiment it is possible to quickly and accurately separate a plurality of types of substances contained in a sample.
  • Embodiment 2 Outline of sample separation method
  • a sample solution containing a plurality of types of substances is supported on a carrier, and the longitudinal direction of the carrier and the development direction of the development sheet cross on the development surface of the development sheet. By arranging, the solution is supplied onto the liquid moving in the developing direction.
  • the sample separation method according to the present embodiment is different from the first embodiment in this point. Details of the separation method will be described later.
  • FIG. 8 is a schematic top view showing a separation device 100c which is an example of the separation device in the present embodiment.
  • illustration of the lid 6c (see FIG. 9) and the sample supply device 30b (see FIG. 9) is omitted.
  • FIG. 9 is a diagram showing a schematic view of the sample supply device 30b together with a schematic cross-sectional view of the separation device 100c of FIG. 8 viewed from the Z-axis side.
  • FIG. 9 also shows the carrier 40 held at the tip of the sample supply device 30b for easy understanding.
  • the separation device 100c includes a porous development sheet 10 and a development container 50c.
  • the deployment container 50c includes a lid 6c and a container 5a.
  • the lid 6c includes an opening 7c having a size and shape that allows the sample supply device 30b to pass therethrough.
  • the sample supply device 30b holds the carrier 40 carrying the solution 20 at the tip, and presses the carrier 40 in a direction perpendicular to the development sheet 10 (Y-axis direction), whereby the development surface of the development sheet 10 is supported. Place on 10a. Thereby, a predetermined amount of the solution 20 can be supplied to the spreading sheet 10 without variation. Furthermore, the sample supply device 30b may press the carrier 40 in a direction perpendicular to the development sheet 10. Thereby, since the solution 20 carried on the carrier 40 is discharged, the solution 20 can be efficiently supplied to the spreading sheet 10.
  • sample supply device 30b may have a load portion 31. Since the sample supply device 30b has the load portion 31, it can press the carrier 40 uniformly in a direction perpendicular to the development sheet 10 with a predetermined pressure.
  • the carrier 40 carries the solution 20.
  • the carrier 40 adsorbs and holds the substance in the solution 20 on the surface or inside thereof.
  • the substance in the solution 20 is held by the carrier 40.
  • adsorption refers to a phenomenon that occurs between a substance or molecule contained in a liquid phase and the surface of the solid phase at the interface between the solid phase and the liquid phase.
  • Adsorption refers to, for example, physical adsorption by van der Waals force and relatively weak adsorption that can be reversibly adsorbed and desorbed by controlling temperature, pH, pressure, and the like.
  • the carrier 40 may be porous. Since the support 40 is porous, the surface area of the support 40 is increased. Thereby, the support
  • the carrier 40 may be a film or sheet made of a porous material, or a sheet in which a thin film layer of a porous material is formed on a substrate such as glass, resin, or metal.
  • the porous material is the same as the porous material of the spread sheet 10, and examples thereof include silica gel particles, chemically modified silica gel particles, alumina particles, diatomaceous earth, silicon pillars, cellulose, cellulose acetate, polyacrylamide, agarose, and dextran. It is done.
  • the carrier 40 When the carrier 40 is a film or sheet made of a porous material, the carrier 40 includes, for example, cellulose, cellulose acetate, polyacrylamide, agarose, or dextran.
  • the carrier 40 may be a carrier that primarily separates a plurality of types of substances in the sample contained in the solution 20.
  • the carrier 40 since the carrier 40 can be arranged on the spread sheet 10 after the primary separation without drying, the operation is simple.
  • the amount of information obtained is increased, and the sample can be separated more accurately.
  • the carrier 40 is disposed on the development surface 10a of the development sheet 10 so that the longitudinal direction of the carrier 40 and the development direction of the development sheet (plus direction of the X axis) intersect. At this time, the carrier 40 is disposed in an area of the development surface 10a of the development sheet 10 where the liquid 9 is moving. As a result, the solution 20 is supplied onto the liquid 9 that moves in the developing direction in the developing sheet 10.
  • the solution including the first sample and the solution including the second sample are arranged at different positions in the longitudinal direction of the carrier 40.
  • the carrier 40 is arranged on the development sheet 10 so that the longitudinal direction of the carrier 40 and the development direction intersect, these solutions are arranged at different positions in the first direction intersecting the development direction, Supplied on the liquid 9 moving in the developing direction.
  • FIG. 10 is a schematic top view showing a separation device 100d which is another example of the separation device in the present embodiment. 10, similarly to FIG. 8, illustration of the lid 6d (see FIG. 11) and the sample supply device 30b (see FIG. 11) is omitted.
  • FIG. 11 is a diagram showing a schematic view of the sample supply device 30b together with a schematic cross-sectional view of the separation device 100d of FIG. 10 viewed from the Z-axis side.
  • tip of the sample supply device 30b is also illustrated similarly to FIG.
  • the separation device 100 d includes a porous developing sheet 10 and a developing container 50 d.
  • the concave portion 1b is disposed so as to surround the placement portion 2b. Since the separation device 100d has the above-described configuration, in the sample separation method according to the present embodiment, it is possible to further shorten the time until the vaporized liquid 9 covers the entire developing sheet 10 and equilibrates. Thereby, a plurality of types of substances in the sample can be separated more rapidly.
  • sample separation method First, the difference between the sample separation method according to the present embodiment and the first embodiment will be described.
  • the sample separation method according to the present embodiment is different from the sample separation method according to Embodiment 1 in that a sample solution 20 containing a plurality of types of substances is supported on a long carrier 40. As a result, the solution 20 can be supplied to the spreading sheet 10 without variation.
  • FIG. 12 is a flowchart showing an example of the third step of the sample separation method according to the present embodiment.
  • the carrier 40 is arranged on the development surface 10a of the development sheet 10 so that the longitudinal direction of the carrier 40 and the development direction of the development sheet 10 intersect. (Step S301). Subsequently, the solution 20 is supplied onto the liquid 9 moving in the developing direction by pressing the carrier 40 in a direction perpendicular to the developing sheet 10 (step S302). Subsequently, the carrier 40 is separated from the spread sheet 10 (step S303).
  • the solution 20 can be efficiently supplied to the spreading sheet 10 without variation.
  • step S302 which presses the support
  • carrier 40 was shown in the flow shown in FIG. 12, it is not restricted to this.
  • the solution 20 can be supplied from the carrier 40 to the spreading sheet 10 by placing the carrier 40 on the spreading surface 10a for a predetermined time.
  • FIG. 13A is a diagram schematically illustrating an example of a sample separation method according to the present embodiment.
  • the separation device 100c will be described as an example.
  • the lid 6c (see FIG. 9) is not shown, as in FIG.
  • the sample separation method according to this embodiment supplies the liquid 9 to the development sheet 10 in the first step S10 in which the solution 20 containing the sample and the development sheet 10 are prepared.
  • a solution 20 containing a sample and a development sheet 10 are prepared.
  • the sample may be the same sample or a plurality of types of samples.
  • the liquid 9 is put into the recess 1a of the container part 5a of the developing container 50c, and the developing sheet 10 is horizontally arranged on the placing part 2a as shown in FIG. 13A (a).
  • the container 5a is covered with a lid 6c (see FIG. 9).
  • 2nd step S20 as shown to (a) of FIG. 13A, the extrusion strip 4 presses the supply strip 3 to the plus side of the X-axis direction, and the contact surface of the supply strip 3 and the edge part 10b of an expansion
  • the solution 20 is supplied onto the liquid 9 that moves in the developing sheet 10 in the developing direction.
  • the carrier 40 carrying the solution 20 is arranged on the development surface 10a of the development sheet 10 so that the longitudinal direction of the carrier 40 and the development direction of the development sheet 10 intersect (step S301 in FIG. 12).
  • the carrier 40 is a film or sheet made of a porous material
  • the carrier 40 is pressed onto the liquid 9 moving in the developing direction by pressing the carrier 40 in a direction perpendicular to the developing sheet 10. 20 is supplied (step S302 in FIG. 12). As shown in FIG.
  • the slide portion 8c of the lid portion 6c is slid to expose the opening 7c, the sample supply device 30b holding the carrier 40 at the tip is inserted into the opening 7c, and the liquid 9 moves.
  • the carrier 40 is disposed on the area of the spread sheet 10 that is present. Further, when the carrier 40 is pressed in a direction perpendicular to the developing sheet 10, the carrier 40 is pressed with a desired pressure by the load portion 31, and the solution 20 is supplied to the developing sheet 10. After supplying the solution 20 for a predetermined time, the carrier 40 is separated from the development sheet 10 (step S303).
  • the solution 20 held on the carrier 40 is discharged by pressing, the solution 20 can be efficiently supplied to the spreading sheet 10. Further, by separating the carrier 40 from the spreading sheet at a predetermined time, the solution 20 is not slowly discharged, and tailing can be reduced.
  • step S302 is not necessarily executed. That is, the carrier 40 may not be pressed in a direction perpendicular to the spreading sheet 10.
  • the spread sheet 10 carrier 40 is a sheet in which a thin film layer (porous material layer) of a porous material is formed on a substrate such as glass, the porous material layer of the carrier 40 and the spread surface of the spread sheet 10
  • the solution 20 is supplied onto the liquid 9 that moves in the developing direction by placing it in contact with 10a.
  • the sample is developed in the developing direction of the developing sheet 10, thereby separating the plural types of substances 201 and 202 contained in the sample.
  • the sample may include a plurality of types of samples, for example, a first sample and a second sample.
  • the first sample and the second sample may be, for example, a primary sample obtained by primary separation of a sample or a sample obtained from a different specimen.
  • Each of these samples contains a plurality of types of substances. Since the primary separation has been described in Embodiment 1, the description thereof is omitted here.
  • the sample solution is a solution including the first sample and a solution including the second sample, respectively.
  • “preparing the solution 20 containing a sample” in the first step S10 means that the sample is primarily separated to obtain a solution containing the first sample and a solution containing the second sample.
  • the carrier 40 is a primary separation carrier
  • the sample is subjected to primary separation to obtain a carrier in which the first sample and the second sample are separated at different positions in the longitudinal direction of the carrier 40.
  • the carrier 40 is not a primary separation carrier, the solutions of the first sample and the second sample obtained by the primary separation are arranged at different positions in the longitudinal direction of the carrier 40, respectively.
  • the first sample and the second sample may be obtained by electrophoresis.
  • the primary samples (first sample and second sample) obtained by the primary separation by electrophoresis using the developing sheet 10 so-called secondary separation
  • a plurality of types of substances contained in a sample can be separated by parameters having different physical quantities. Thereby, the amount of information obtained is increased, and a plurality of types of substances can be separated with higher accuracy.
  • FIG. 13B is a diagram schematically illustrating another example of the sample separation method according to the present embodiment.
  • illustration of the cover part 6c of the separation device 100c is omitted.
  • (a) in FIG. 13B is the same as the content described in FIG.
  • the solution includes a solution 20a including the first sample, a solution 20b including the second sample, and a third sample.
  • an example in which these plural types of samples are primary samples obtained by primary separation will be described.
  • the solution 20a, the solution 20b, and the solution 20c (hereinafter referred to as the solution 20a to the solution 20c) are arranged at different positions in the first direction that intersects the development direction. Then, the solution 20 is supplied onto the liquid 9 moving in the developing direction in the developing sheet 10.
  • the carrier 40 carrying the solution 20a to the solution 20c is arranged on the development surface 10a of the development sheet 10 so that the longitudinal direction of the carrier 40 and the development direction of the development sheet 10 intersect (FIG. 12). Step S301).
  • the carrier 40 is a film or sheet made of a porous material
  • the carrier 40 is pressed onto the liquid 9 moving in the developing direction by pressing the carrier 40 in a direction perpendicular to the developing sheet 10.
  • 20a to 20c are supplied (step S302 in FIG. 12).
  • the slide portion 8c of the lid portion 6c is slid to expose the opening 7c
  • the sample supply device 30b holding the carrier 40 at the tip is inserted into the opening 7c, and the liquid 9 moves.
  • the carrier 40 is disposed on the area of the spread sheet 10 that is present.
  • the carrier 40 when the carrier 40 is pressed in a direction perpendicular to the developing sheet 10, the carrier 40 is pressed with a desired pressure by the load portion 31, and the solutions 20 a to 20 c are supplied to the developing sheet 10. After supplying the solution 20a to the solution 20c for a predetermined time, the carrier 40 is separated from the developing sheet 10 (step S303).
  • the solution 20a to the solution 20c held on the carrier 40 are discharged by pressing, the solution 20a to the solution 20c can be efficiently supplied to the spreading sheet 10. Further, by separating the carrier 40 from the spreading sheet at a predetermined time, the solution 20 is not slowly discharged, and tailing can be reduced.
  • the spread sheet 10 carrier 40 is a sheet in which a thin film layer (porous material layer) of a porous material is formed on a substrate such as glass
  • the porous material layer of the carrier 40 and the spread surface of the spread sheet 10 are supplied onto the liquid 9 that moves in the developing direction by arranging it in contact with 10a.
  • the sample is developed in the developing direction of the developing sheet 10 to separate a plurality of types of substances contained in the sample. Specifically, a plurality of types of substances 201 and 202 included in the solution 20a are separated, a plurality of types of substances 203 and 204 included in the solution 20b are separated, and a plurality of types of substances 205 and 206 included in the solution 20c are separated. And 207 are separated.
  • the sample separation method according to the present embodiment it is possible to quickly and accurately separate a plurality of kinds of substances contained in a sample.
  • FIG. 14 is a schematic top view of the developing container 50e used in the examples and comparative examples.
  • FIG. 15 is a schematic sectional view taken along line XV-XV in FIG. In FIG. 14, the lid 6e is omitted.
  • the developing container 50e includes a lid 6e and a container 5e.
  • the deployment container is made of polycarbonate.
  • the container portion 5e includes a placement portion 2e for arranging the spread sheet, and a recess 1e that surrounds the four sides of the placement portion 2e and stores the liquid 9e.
  • a groove 11e is formed corresponding to the supply strip 3e.
  • the mounting portion 2e has a width in the Z-axis direction of 30 mm and a width in the X-axis direction of 20 mm.
  • the recess 1e has a width of 5 mm and a depth of 7 mm.
  • the thickness of the wall part of the container part 5e is 1 mm.
  • the liquid 9e stored in the recess 1e is 2 mL, and the height from the bottom surface of the recess 1e to the liquid level is 3.3 mm.
  • FIG. 16 is a schematic top view of the separation device 100e used in Examples and Comparative Examples.
  • FIG. 17 is a schematic diagram for explaining sample separation methods performed in Examples and Comparative Examples. In FIG. 16, the cover 6e is omitted.
  • the separation device 100e includes a development container 50e and a development sheet 10e.
  • the development sheet 10e has a vertical width of 30 mm and a horizontal width of 20 mm when the length in the development direction is a vertical width, and is arranged horizontally on the placement portion 2e.
  • the development sheet 10e is a TLC sheet in which chemically modified silica gel is formed on a glass substrate in a thin film shape having a thickness of 100 ⁇ m to 200 ⁇ m.
  • the long carrier 40e is a cellulose acetate film having a vertical width of 20 mm and a horizontal width of 2 mm, where the length in the longitudinal direction is the vertical width. As shown in FIG. 17, the carrier 40e is disposed at a position 5 mm from the end 10b of the spread sheet 10e. The carrier 40e is held at the tip of the sample supply device 30e.
  • Example 1 The liquid 9e was injected into the concave portion 1e of the separation device 100e, the container portion 5e was covered with the lid portion 6e, and the vaporized liquid 9e was filled in the space 12e.
  • As the liquid 9e isopropyl alcohol: water (60:40 (volume ratio)) was used.
  • the unfolded sheet 10e was heated immediately before use at 100 ° C. to 200 ° C. for about 1 hour and allowed to cool with a desiccator. After the vaporized liquid 9e filled the space 12e, the development sheet 10e was placed on the placement portion 2e. The vaporized liquid 9e adhered to the development surface 10a of the development sheet 10e and was allowed to stand until it was equilibrated.
  • sample solution a solution containing the sample (hereinafter referred to as sample solution) was prepared.
  • the sample solution was a cresol red aqueous solution.
  • the sample solution was immersed in the entire carrier 40e.
  • the liquid 9 was supplied to the end portion 10b of the development sheet 10e, and the liquid 9 was moved to the development sheet 10e.
  • the carrier 40e carrying the liquid is pressed against the developing sheet 10e. More specifically, the carrier 40e was held at the tip of the sample supply device 30e, inserted from the opening 7e, and the carrier 40e was pressed in a direction perpendicular to the development sheet 10e. 120 g of pressure was applied to the entire carrier 40e by the load portion 31e. This pressed state was maintained for 3 minutes. Thereafter, the sample supply device 30e was pulled up from the opening 7e, and the carrier 40e was separated from the development sheet 10e.
  • FIG. (A) of FIG. 18 is a photograph of the TLC plate after separation of the sample.
  • the dark gray band is cresol red.
  • a dark gray band was detected in almost a straight line. Therefore, it was found that the sample (cresol red) supplied from the carrier 40e to the developing sheet 10e moved at a uniform speed in the developing direction.
  • FIG. 18B is a photograph of the TLC plate after the separation of the sample is completed.
  • the dark gray band portion was cresol red, and the band was detected to wave. Therefore, it was found that the sample (cresol red) supplied from the carrier 40e to the spreading sheet 10e could not move at a uniform speed in the spreading direction, and the mobility varied.
  • Example 1 and Comparative Example 1 it can be confirmed that according to the sample separation method according to the present disclosure, the sample solution can be supplied to the spreading sheet as a solution, so that it can be quickly separated. It was. Further, by supplying the sample solution onto the liquid moving in the developing direction of the developing sheet 10, the solvent of the sample solution does not affect the mobility of the liquid (developing solvent), and the sample (here, cresol red) is removed. It was confirmed that the separation was possible with high accuracy.
  • Example 2 The same operation as in Example 1 was performed except that the liquid 9e was isopropyl alcohol: acetic acid: water (40: 5: 55 (volume ratio)) and the sample solution was an aqueous protein solution.
  • the mobility is a standard value where the maximum amount of movement in Example 2 is 1
  • the intensity is a standard value where the maximum light intensity in fluorescence observation is 1.
  • Example 2 The same operation as in Example 2 was performed except that the pressed state was maintained until the supply of the liquid 9 was stopped.
  • Example 2 the strength was maximum when the mobility was around 0.85, and the strength was 0.6 when the mobility was around 0.7. When the mobility was around 0.6, the strength was 0.3, and when the mobility was around 0.3, the strength was 0.1.
  • the liquid 9 has been described as being supplied to the spread sheet 10 by capillary action, but is not limited thereto.
  • the liquid feeding method for supplying the liquid 9 to the developing sheet 10 includes quantitative liquid feeding by extrusion or suction, liquid feeding by a pressure difference between a pressurized gas and a decompressed gas, liquid feeding by absorption through an absorber, and a pump.
  • intermittent liquid feeding by electromagnetic waves, liquid feeding by electromagnetic waves, vibrations, or ultrasonic waves may be used, or a plurality of these liquid feeding methods may be combined.
  • liquid 9 in the spread sheet 10 may move through a gap between a plurality of porous materials in the porous material layer 102 by capillary action, and gives stress from the outside as in the liquid feeding method described above. May be forcibly moved.
  • sample separation method it is possible to quickly and accurately separate a plurality of types of substances contained in a sample. Moreover, since the process which dries a sample solution is not required and it can implement simply, it can utilize as a test kit of a biological condition, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

試料分離方法は、多孔質状の展開シートを用いて複数種類の物質を含む試料を、展開シートの展開方向に展開させて複数種類の物質を分離する試料分離方法であって、試料を含む溶液と展開シートとを準備する第1ステップ(S10)と、展開シートに液体を供給して液体を展開方向に移動させる第2ステップ(S20)と、展開方向に移動する液体上に、溶液を供給する第3ステップ(S30)と、試料を、展開シートの展開方向に展開させることで、試料に含まれる複数種類の物質を分離する第4ステップ(S40)と、を含む。

Description

試料分離方法
 本開示は、試料に含まれる複数種類の物質を分離する試料分離方法に関する。
 複数種類の物質が含まれる試料から網羅的に種々の物質を分離する技術として、例えば、質量分析器及び二次元ゲル電気泳動などを用いることが知られている。このような技術は、大型の装置を必要とし、場所を選ばず簡便に行うことができない。
 このような問題を解決するため、特許文献1は、薄層クロマトグラフィ(以下、TLC:Thin-Layer Chromatography)プレート上で分離された複数種類の物質を該TLCプレートから質量分析(以下、MS:Mass Spectrometry)プレートに転写させて質量分析に供するためのMSプレートを開示している。
国際公開第2008/156080号
 特許文献1に記載の従来技術では、TLCプレートで複数種類の物質を一次分離した後、これらの物質を該TLCプレートからMSプレートに転写する前に、該TLCプレートを乾燥させる必要がある。その分、分離に要する時間が長くなるため、試料に含まれる複数種類の物質を迅速に分離することができない。
 また、該TLCプレートを乾燥させずに一次分離で得られた複数種類の物質をMSプレートに転写すると、該TLCプレートに含まれる展開溶媒とMSプレートでの分離に用いる溶媒とが異なるため、MSプレートでの分離にばらつきが生じる。そのため、試料に含まれる複数種類の物質を精度良く分離することができない。
 そこで、本開示は、試料に含まれる複数種類の物質を、迅速に、かつ、精度良く分離できる試料分離方法を提供する。
 本開示の一態様に係る試料分離方法は、多孔質状の展開シートを用いて複数種類の物質を含む試料を、前記展開シートの展開方向に展開させて前記複数種類の物質を分離する試料分離方法であって、前記試料を含む溶液と前記展開シートとを準備する第1ステップと、前記展開シートに液体を供給して前記液体を前記展開方向に移動させる第2ステップと、前記展開方向に移動する前記液体上に、前記溶液を供給する第3ステップと、前記試料を、前記展開シートの前記展開方向に展開させることで、前記試料に含まれる前記複数種類の物質を分離する第4ステップと、を含む。
 本開示によれば、試料に含まれる複数種類の物質を、迅速に、かつ、精度良く分離できる試料分離方法を提供することができる。
図1は、実施の形態1における分離デバイスの一例を示す概略上面図である。 図2は、図1の分離デバイスの概略断面とともに供給デバイスを模式的に示す図である。 図3は、実施の形態1における分離デバイスの他の一例を示す概略上面図である。 図4は、図3の分離デバイスの概略断面とともに供給デバイスを模式的に示す図である。 図5は、本開示に係る試料分離方法の原理を説明する模式図である。 図6は、実施の形態1に係る試料分離方法の一例を示すフローチャートである。 図7Aは、実施の形態1に係る試料分離方法の一例を模式的に説明する図である。 図7Bは、実施の形態1に係る試料分離方法の他の一例を模式的に説明する図である。 図8は、実施の形態2における分離デバイスの一例を示す概略上面図である。 図9は、図8の分離デバイスの概略断面とともに供給デバイスを模式的に示す図である。 図10は、実施の形態2における分離デバイスの他の一例を示す概略上面図である。 図11は、図10の分離デバイスの概略断面とともに供給デバイスを模式的に示す図である。 図12は、実施の形態2に係る試料分離方法の第3ステップの一例を示すフローチャートである。 図13Aは、実施の形態2に係る試料分離方法の一例を模式的に説明する図である。 図13Bは、実施の形態2に係る試料分離方法の他の一例を模式的に説明する図である。 図14は、実施例及び比較例にて使用した展開容器の概略上面図である。 図15は、図14のXV-XV線における概略断面図である。 図16は、実施例及び比較例にて使用した分離デバイスの概略上面図である。 図17は、実施例及び比較例にて実施した試料分離方法を説明する模式図である。 図18は、実施例1及び比較例1の結果を示す図である。 図19は、実施例2及び比較例2の結果を示すグラフである。
 本開示の一態様の概要は、以下のとおりである。
 本開示の一態様に係る試料分離方法は、多孔質状の展開シートを用いて複数種類の物質を含む試料を、前記展開シートの展開方向に展開させて前記複数種類の物質を分離する試料分離方法であって、前記試料を含む溶液と前記展開シートとを準備する第1ステップと、前記展開シートに液体を供給して前記液体を前記展開方向に移動させる第2ステップと、前記展開方向に移動する前記液体上に、前記溶液を供給する第3ステップと、前記試料を、前記展開シートの前記展開方向に展開させることで、前記試料に含まれる前記複数種類の物質を分離する第4ステップと、を含む。
 本開示に係る試料分離方法では、従来技術のように展開シートに液体(つまり、展開溶媒)を供給する前に試料を含む溶液を乾燥させる工程(以下、乾燥工程)が不要であるため、試料に含まれる複数種類の物質を迅速に分離することができる。また、本開示に係る試料分離方法によれば、多孔質状の展開シートに液体が既に移動している状態で、当該液体上に試料を含む溶液を供給するため、液体の移動が溶液によって妨げられにくい。試料に含まれる複数種類の物質は、展開シートに移動して展開方向に移動する液体と展開シートとの極性の違いにより、展開シートと液体との間で吸脱着を繰り返しながら、液体が移動する方向に向かって移動する。そのため、試料中の複数種類の物質のそれぞれが展開シート中を移動する移動量にばらつきが生じにくくなる。これにより、本開示に係る試料分析方法では、分離の再現性が高くなり、試料中の複数種類の物質を精度よく分離することができる。
 例えば、本開示の一態様に係る試料分離方法は、前記第2ステップでは、前記展開シートを、展開容器の載置部に水平に配置し、前記展開シートの前記展開方向における一端を、前記展開容器の凹部に貯留された前記液体に接触させてもよい。
 本開示に係る試料分離方法によれば、展開シートを展開容器の載置部に水平に配置することにより、展開シートを展開容器の壁面に立てて配置する場合よりも、気化した液体、つまり、気化した展開溶媒が展開シート全体を覆い平衡化するまでの時間を短くすることができる。そのため、試料中の複数種類の物質を迅速に分離することができる。
 例えば、本開示の一態様に係る試料分離方法は、前記凹部は、前記載置部を囲むように配置されていてもよい。
 本開示に係る試料分離方法によれば、凹部が載置部を囲むように配置されることにより、気化した液体、つまり、気化した展開溶媒が展開シート全体を覆い平衡化するまでの時間をさらに短くすることができる。これにより、試料中の複数種類の物質をより迅速に分離することができる。
 例えば、本開示の一態様に係る試料分離方法は、前記第1ステップでは、前記溶液は、長尺状の担体に担持され、前記第3ステップでは、前記担体の長手方向と前記展開シートの前記展開方向とが交差するように前記担体を前記展開シートの展開面上に配置することにより、前記展開方向に移動する前記液体上に前記溶液を供給してもよい。
 本開示に係る試料分離方法によれば、溶液を担体に担持させて、担体を展開シートの展開面上に配置することにより、溶液を展開シートにばらつきなく供給することができる。
 例えば、本開示の一態様に係る試料分離方法は、前記試料は、第1試料及び第2試料を含み、前記溶液は、前記第1試料を含む溶液及び前記第2試料を含む溶液であり、前記第3ステップでは、前記第1試料を含む溶液及び前記第2試料を含む溶液は、前記展開方向と交差する第1の方向において異なる位置に配置されてもよい。
 本開示に係る試料分離方法によれば、例えば、担体を用いて分離された1次試料(第1試料及び第2試料)をばらつきなく展開シートに供給することができる。
 例えば、本開示の一態様に係る試料分離方法は、前記第3ステップでは、前記展開シートに対して垂直な方向に前記担体を押圧することにより、前記展開方向に移動する前記液体上に前記溶液を供給してもよい。
 本開示に係る試料分離方法によれば、担体を押圧することにより、担体に保持された溶液が排出されるため、展開シートに溶液を効率よく供給することができる。
 例えば、本開示の一態様に係る試料分離方法は、前記第3ステップでは、前記展開シートに対して垂直な方向に前記担体を押圧した後に、前記展開シートから前記担体を離してもよい。
 本開示に係る試料分離方法によれば、テーリングを低減することができる。
 例えば、本開示の一態様に係る試料分離方法は、前記第1試料及び前記第2試料は、電気泳動法により得られてもよい。
 本開示に係る試料分離方法によれば、電気泳動法により分離された1次試料(第1試料及び第2試料)を、展開シートを用いて2次分離することにより、試料に含まれる複数種類いの物質を、物理量の異なるパラメータで分離することができる。これにより、得られる情報量がより多くなり、より高精度に複数種類の物質を分離することができる。
 以下、本開示の実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化することがある。
 (実施の形態1)
 [試料分離方法の概要]
 本実施の形態に係る試料分離方法は、多孔質状の展開シートを用いて、複数種類の物質を含む試料を、展開シートの展開方向に展開させて当該複数種類の物質を分離する方法である。当該分離方法では、試料を含む溶液を、乾燥工程を経ることなく、展開シートに移動する展開溶媒(以下、液体)上に供給できるため、複数種類の物質を迅速に分離することができる。当該分離方法の詳細については後述する。なお、分離とは、複数種類の物質をその特性により分画するだけであってもよいし、個々の物質又は類似物質のグループとして物質を同定することを含んでもよい。
 多孔質状の展開シートは、多孔質材料で構成された膜又はシートであってもよく、ガラス、樹脂又は金属などの基材上に多孔質材料の薄膜層を形成したシートであってもよい。多孔質材料は、例えば、シリカゲル粒子、化学修飾シリカゲル粒子、アルミナ粒子、珪藻土、シリコンピラー、セルロース、酢酸セルロース、ポリアクリルアミド、アガロース、及びデキストランなどが挙げられる。ここで、多孔質状とは、孔が一部のみに偏在せず、少なくとも一方向において、ある程度均等に分布している状態をいう。例えば、展開シートが多孔質状であるとは、展開シートにおける厚さ方向に対して垂直な方向に、孔が均等に分布していることをいう。
 複数種類の物質は、例えば、タンパク質、核酸、多糖類などの高分子、ペプチド、ヌクレオチド、ヌクレオシド、脂質、アミノ酸、ビタミン、イオンなどが挙げられる。
 複数種類の物質は、例えば、生体由来の物質、つまり、生体物質であってもよい。各生体物質は、生体内で発揮される機能を有する。タンパク質を例に挙げると、ケラチン及びコラーゲンは、生体の構造を作り強度を保つ機能、酵素は、生体反応の触媒になる機能、抗体は、生体を防御する機能を有する。そして、血液、粘膜、皮膚などの生体試料から生体物質を分離し、検出することにより、このような機能の生体内での発揮状態又はその結果としての生体の状態(これらの状態を以下では生体状態ともいう。)を把握することができる。
 本実施の形態に係る試料分離方法は、例えばこのような目的での生体物質の検出を容易にするために溶液から複数種類の物質を分離する方法として利用することができる。
 [分離デバイスの構成]
 まず、本実施の形態に係る試料分離方法に用いる分離デバイスの構成について説明する。図1は、本実施の形態に係る試料分離方法に用いる分離デバイスの一例である分離デバイス100aを示す上面図である。なお、図1では、蓋部6a(図2参照)及び試料供給デバイス30a(図2参照)の図示を省略する。
 図2は、図1の分離デバイス100aのZ軸側方から見た概略断面図とともに試料供給デバイス30aの模式図を示した図である。
 図1及び図2に示すように、分離デバイス100aは、多孔質状の展開シート10と、展開容器50aとを備える。「展開」とは、例えば、物質が溶媒(以下、液体9)の移動に伴って移動することをいう。
 分離デバイス100aは、展開容器50a内に展開シート10を配置し、試料に含まれる複数種類の物質を分離するために使用される。展開容器50aは、展開シート10の端部10bに液体9を接触させ、液体9を展開シート10の端部10bに供給する。端部10bに供給された液体9は、端部10bから端部10bと対向する端部に向かって、つまり、展開方向に移動する。展開シート10中を展開方向に移動する液体9上に、試料を含む溶液(以下、溶液20)が供給されると、液体9の移動に伴い、溶液20中の複数種類の物質のそれぞれが展開方向に移動する。各物質の移動度の違いにより、複数種類の物質を分離することができる。
 展開シート10は、試料に含まれる複数種類の物質を分離するために用いられるシートであり、基材上に多孔質材料を薄層状に固定して形成される。当該基材は、例えば、ガラス板又はアルミニウム板などである。また、当該基板の一方の主面上には、シリカゲルなどの多孔質材料が薄層状に固定されている。以下、展開シート10の、多孔質材料が薄層状に固定された面を展開面10aと呼ぶ。
 展開シート10は、例えば、複数種類の物質を、分子量、極性、荷電量など物理量の違いにより分離するシートであり、目的の物質の性質に応じて、適宜選択することができる。
 展開容器50aは、内部に展開シート10が配置され、試料に含まれる複数種類の物質を分離する操作を実行するために用いられる容器である。展開容器50aは、Y軸方向のマイナス側(以下、下側とする。)に底部を有し、容器部5aと、蓋部6aとを備える。
 容器部5aは、液体9を貯留する凹部1aと、展開シート10を配置する載置部2aと、展開シート10の一端に液体を供給する供給ストリップ3と、供給ストリップ3をX軸方向のプラス側に水平に押し出す押出部4とを備える。
 凹部1aは、展開シート10に供給される展開溶媒、つまり、液体9を貯留する。凹部1aは、例えば、図2に示すように、底部に溝部11aを有してもよい。溝部11aは供給ストリップ3の形状に対応して形成される。凹部1aが供給ストリップ3に対応した溝部11を有することにより、供給ストリップ3が押出部4によりX軸方向のプラス側に押し出される際に、供給ストリップ3の最下点が動いてしまい、展開シート10の端部10bに対して斜めに接触することが抑制される。そのため、供給ストリップ3を展開シート10の端部10bに沿って接触させることができる。これにより、展開シート10の端部10bに安定的に液体9を供給することができる。
 載置部2aは、その上面に展開シート10が配置される凸部であり、展開シート10を水平に保つ。載置部2aの上面は、展開シート10を安定的に載置できる形状であればよく、例えば、図1及び図2に示すような平坦な面であってもよい。また、載置部2aの上面は、複数の溝部を有する面であってもよく、展開シート10の端部と重なる部分に一連なりの凸部を有してもよい。
 供給ストリップ3は、凹部1aに貯留された液体9を展開シート10の一端に供給する板状の部材である。供給ストリップ3は、展開シート10と接する面(以下、接触側面)と反対側の面(以下、押圧側面)を押出部4で押圧されることにより、載置部2a側に傾倒する。このとき、液体9は、毛細管現象により、供給ストリップ3の接触側面と載置部2aとの隙間に引き込まれてY軸方向のプラス側(以下、上側)に向かって隙間を移動し、展開シート10の端部10bに供給される。
 蓋部6aは、展開容器50aが所定の気密性を保ち、かつ、試料を展開シート10の所望の位置に供給することができる態様であれば特に限定されない。展開容器50aが所定の気密性を保つことにより、展開容器50aにおいて、空間12aが気化した液体9で満たされ、液体9の気化と液化との平衡状態が保たれる。本実施の形態では、少なくとも、載置部2aに配置された展開シート10の周囲において、上記の状態が保たれればよい。
 図2に示すように、蓋部6aは、例えば、開口部7aと、開口部7aを覆うスライド部8aとを備える。開口部7aは、平面視において載置部2aと重なる位置に設けられる。蓋部6aにおける開口部7aの位置は、展開シート10の展開面10aに試料を含む溶液(以下、溶液20)を供給することができればよく、設計に応じて適宜決定されてもよい。分離デバイス100aでは、例えば、図2に示すように、試料供給デバイス30aを用いて展開面10aに溶液20を供給する場合、開口部7aは、平面視において展開シート10の一端、つまり、展開シート10が供給ストリップ3と接触する端部10bよりもX軸方向のプラス側(以下、展開方向とする)に配置される。これにより、展開シート10の展開方向に移動する液体9上に溶液20を供給することができる。
 なお、開口部7aの形状及び大きさについても配置位置と同様に、展開面10aに溶液20を供給することができればよく、さらに、分離操作の間、展開容器50aが所定の気密性を保つことができればよい。例えば、図2では、開口部7aは、試料供給デバイス30aが通過できる最小面積となる形状及び大きさであればよい。
 続いて、本実施の形態における分離デバイスの他の一例について説明する。図3は、本実施の形態における分離デバイスの他の一例である分離デバイス100bを示す概略上面図である。なお、図3においても、図1と同様に、蓋部6b(図4参照)及び試料供給デバイス30a(図4参照)の図示を省略する。
 図4は、図3の分離デバイス100bのZ軸側方から見た概略断面図とともに試料供給デバイス30aの模式図を示した図である。
 ここでは、分離デバイス100aと異なる点について説明する。図3及び図4に示すように、分離デバイス100bは、多孔質状の展開シート10と、展開容器50bとを備える。分離デバイス100bでは、凹部1bは、載置部2bを囲むように配置されている。分離デバイス100bが上記構成を有することにより、本実施の形態に係る試料分離方法では、気化した液体9が展開シート10全体を覆い平衡化するまでの時間をさらに短くすることができる。これにより、試料中の複数種類の物質をより迅速に分離することができる。
 なお、囲むように配置されるとは、載置部の四方全体を囲むように配置されることに限定されず、載置部の一端、つまり、液体9を展開シート10に供給する側の端部を含む形態であればよい。このとき、凹部は、載置部の二方以上を囲むように配置されてもよい。
 [試料分離方法の原理]
 まず、本開示に係る試料分離方法の原理について説明する。図5は、本開示に係る試料分離方法の原理を説明する模式図である。図5の(a)は、展開シート10に溶液20を供給した後に、乾燥工程を経ずに、展開シート10に液体9を供給した場合に生じる現象を示す図である。図5の(b)は、展開シート10に液体9の供給を開始した後に、展開シート10に溶液20を供給した場合に生じる現象を示す図である。
 ここでは、試料分離方法として、薄層クロマトグラフィ(TLC)を例に挙げ、説明する。通常、TLCでは、試料溶液(ここでは、溶液20)をTLCプレート(ここでは、展開シート10)に供給した後、試料溶液に含まれる溶媒を蒸発させる乾燥工程が必要である。当該乾燥工程を経ずに、展開溶媒(ここでは、液体9)をTLCプレートに供給すると、試料溶液中の溶媒と展開溶媒とが異なるため、試料溶液によって展開溶媒の移動が妨げられる。図5の(a)を用いて、この現象を具体的に説明する。
 なお、試料溶液中の溶媒と展開溶媒とは互いに混合可能な性質を有している。互いに混合可能な性質を有する組み合わせは、例えば、試料溶液が水溶液の場合、展開溶媒は両親媒性の有機溶媒、水溶液、又はこれらの混合溶液であってもよい。また、試料溶液が両親媒性の有機溶媒である場合、展開溶媒は極性溶媒でも非極性溶媒でもよい。また、試料溶液が水に対して難溶性の有機溶媒である場合、展開溶媒は水及び水溶液以外の溶媒であればよい。
 なお、両親媒性の溶媒とは、1つの分子中に極性基及び疎水基の両方を有する溶媒であり、例えば、スナイダー極性指数(Snyder polarity index)が3以上の有機溶媒をいう。
 図5の(a)に示すように、展開シート10の基板101上に形成された多孔質材料層102に、複数種類の物質201、202、及び203など(以下、201~203)を含む溶液20を供給した後、展開シート10に液体9を供給して移動させる。液体9がさらに移動して紙面の右方向(以下、展開方向)に移動し、液体9(液体9の層)が溶液20(溶液20の層)にぶつかると、液体9は溶液20を展開方向に押し出しながら移動しようとする。このとき、液体9の一部は、溶液20に押し返され、一部は溶液20を押しながら移動し、一部は溶液20と混合しながらゆっくりと移動する。このように、液体9の移動速度が一様でないため、溶液20の移動速度も一様でなくなる。そのため、溶液20中の個々の物質201~203の移動度にばらつきが生じ、溶液20からこれらの物質201~203を正確に分離することができない。
 一方、本開示に係る試料分離方法では、TLCプレートに展開溶媒を供給して移動させながら、TLCプレートに試料溶液を供給する。これにより、展開溶媒と試料溶液の溶媒とが異なっても、TLCプレートの多孔質材料層内で展開溶媒と試料溶液とが衝突することがないため、試料溶液によって展開溶媒の移動が妨げられない。図5の(b)を用いて、この現象を具体的に説明する。
 図5の(b)に示すように、展開シート10の多孔質材料層102に液体9が移動して紙面の右側に向かって移動している状態で、液体9上に複数種類の物質201~203などを含む溶液20を供給する。このとき、溶液20は、移動する液体9の移動に伴って、表層部分を展開方向に移動する。液体9に接する溶液20の面積が小さいため、溶液20の液体9に及ぼす影響は殆どない。そのため、溶液20中の複数種類の物質201~203のそれぞれは個々の物性値の違いにより展開シート10の多孔質材料と液体9とに対して吸脱着を繰り返しながら展開方向に移動する。上記原理により、本開示に係る試料分離方法によれば、試料中の複数種類の物質を、迅速に、かつ、精度良く分離することができる。
 [試料分離方法]
 次に、本実施の形態に係る試料分離方法について詳細に説明する。図6は、本実施の形態に係る試料分離方法の一例を示すフローチャートである。
 本実施の形態に係る試料分離方法は、多孔質状の展開シート10を用いて複数種類の物質を含む試料を、当該展開シートの展開方向に展開させて複数種類の物質を分離する試料分離方法である。
 図6に示すように、本実施の形態に係る試料分離方法は、試料を含む溶液20と展開シート10とを準備する第1ステップS10と、展開シート10に液体9を供給して液体9を展開方向に移動させる第2ステップS20と、展開方向に移動する液体9上に、溶液20を供給する第3ステップS30と、試料を展開シート10の展開方向に展開させることで、試料に含まれる複数種類の物質を分離する第4ステップS40と、を含む。
 当該試料分離方法では、従来技術のように展開シートに液体(つまり、展開溶媒)を供給する前に試料を含む溶液を乾燥させる乾燥工程が不要であるため、試料に含まれる複数種類の物質を迅速に分離することができる。また、当該試料分離方法によれば、多孔質状の展開シート10に液体9が既に移動している状態で、移動する液体9上に試料を含む溶液20を供給するため、液体9の移動が溶液20によって妨げられにくい。試料に含まれる複数種類の物質は、展開シート10に移動して展開方向に移動する液体9と展開シート10との極性の違いにより、展開シート10と液体9との間で吸脱着を繰り返しながら、液体9が移動する方向に向かって移動する。そのため、試料中の複数種類の物質のそれぞれが展開シート10中を移動する移動量にばらつきが生じにくくなる。これにより、当該試料分析方法では、分離の再現性が高くなり、試料中の複数種類の物質を精度よく分離することができる。
 以下、第1ステップS10~第4ステップS40のそれぞれについて、図7Aを用いて詳細に説明する。図7Aは、本実施の形態に係る試料分離方法の一例を模式的に説明する図である。なお、図7Aでは、分離デバイス100aを例に挙げて説明する。また、図7Aでは、図1と同様、蓋部6a(図2参照)の図示を省略する。
 第1ステップS10では、試料を含む溶液20と展開シート10とを準備する。このとき、試料は同一の試料であってもよく、複数種類の試料であってもよい。ここでは、試料が同一の試料である例について説明する。複数種類の試料の場合については、後述する。続いて、展開容器50aの容器部5aの凹部1aに液体9を入れ、図7Aの(a)に示すように、展開シート10を載置部2aに水平に配置する。このとき、展開シート10の展開面10a(図2参照)がY軸方向のプラス側(以下、上側)になるように配置する。続いて、容器部5aを蓋部6a(図2参照)で覆う。
 このように、展開シート10を展開容器50a内の載置部2aに水平に配置することにより、展開シートを展開容器内の壁面に立てて配置する場合よりも、気化した液体9、つまり、気化した展開溶媒が展開シート10全体を覆い平衡化するまでの時間を短くすることができる。そのため、試料中の複数種類の物質を迅速に分離することができる。
 第2ステップS20では、図7Aの(a)に示すように、押出部4で供給ストリップ3をX軸方向のプラス側に押圧し、供給ストリップ3の接触面と展開シートの端部10bとを接触させる。これにより、凹部1aに貯留された液体9は、毛細管現象により展開シート10の一端(端部10b)に供給され、展開シート10の端部10bから展開方向に移動する。
 第3ステップS30では、図7Aの(b)に示すように、展開シート10中を展開方向に移動する液体9上に、溶液20を供給する。例えば、図2に示すように、蓋部6aのスライド部8aをスライドさせて開口部7aを露出させ、試料供給デバイス30aを開口部7aに挿入し、展開シート10中を移動している液体9上に、溶液20を供給する。
 第4ステップS40では、図7Aの(c)に示すように、試料を展開シート10の展開方向に展開させることで、試料に含まれる複数種類の物質201及び202を分離する。
 なお、上記試料分離方法のフローの説明では、試料は、同一の試料を用いる場合を例に説明したが、試料は、複数種類の試料、例えば、第1試料及び第2試料を含んでもよい。第1試料及び第2試料は、例えば、試料を1次分離して得られた1次試料であってもよく、異なる検体から得られた試料であってもよい。これらの試料は、それぞれ複数種類の物質を含む。
 1次分離は、例えば、薄層クロマトグラフィ、イオン交換クロマトグラフィ、ゲルろ過、アフィニティクロマトグラフィ、HPLC(高速液体クロマトグラフィ)、質量分析法、蛍光発光法、電気泳動法、イムノアッセイ法などの分離方法が実施され得る。1次分離の方法は、分離する物質の種類に応じて適宜選択してもよい。
 例えば、第1試料及び第2試料は、電気泳動法により得られてもよい。このように、電気泳動法により1次分離して得られた1次試料(第1試料及び第2試料)を、さらに、展開シート10を用いて分離(いわゆる、2次分離)することにより、試料に含まれる複数種類の物質を物理量の異なるパラメータで分離することができる。これにより、得られる情報量がより多くなり、より高精度に複数種類の物質を分離することができる。
 以下、試料が複数種類の試料である場合の、第1ステップS10~第4ステップS40のそれぞれについて説明する。図7Bは、本実施の形態に係る試料分離方法の他の一例を模式的に説明する図である。なお、図7Aと同様、分離デバイス100aの蓋部6aの図示を省略する。また、図7Bの(a)については、図7Aで説明した内容と同じであるため、説明を省略する。
 試料が第1試料、第2試料及び第3試料を含む場合、図7Bの(b)に示すように、溶液は、第1試料を含む溶液20a、第2試料を含む溶液20b及び第3試料を含む溶液20cである。ここでは、これらの複数種類の試料が1次分離して得られた1次試料である例について説明する。この場合、第1ステップS10において試料を含む溶液20を準備するとは、試料を1次分離して第1試料を含む溶液20a、第2試料を含む溶液20b及び第3試料を含む溶液20cを得ることを指す。
 第3ステップS30では、図7Bの(b)に示すように、溶液20a、溶液20b及び溶液20c(以下、溶液20a~溶液20c)を、展開方向と交差する第1の方向において異なる位置に配置して、展開シート10中を展開方向に移動する液体9上に、溶液20a~溶液20cを供給する。
 第4ステップS40では、図7Bの(c)に示すように、試料を展開シート10の展開方向に展開させることで、試料に含まれる複数種類の物質を分離する。具体的には、溶液20aに含まれる複数種類の物質201及び202を分離し、溶液20bに含まれる複数種類の物質203及び204を分離し、溶液20cに含まれる複数種類の物質205、206及び207を分離する。
 以上により、本実施の形態に係る試料分離方法によれば、試料に含まれる複数種類の物質を、迅速に、かつ、精度良く分離することができる。
 (実施の形態2)
 [試料分離方法の概要]
 本実施の形態に係る試料分離方法は、複数種類の物質を含む試料の溶液を、担体に担持させ、担体の長手方向と展開シートの展開方向とが交差するように展開シートの展開面上に配置することにより、展開方向に移動する液体上に溶液を供給する。本実施の形態に係る試料分離方法は、この点において、実施の形態1と異なる。当該分離方法の詳細については後述する。
 [分離デバイスの構成]
 本実施の形態に係る試料分離方法に用いる分離デバイスの構成について説明する。図8は、本実施の形態における分離デバイスの一例である分離デバイス100cを示す概略上面図である。なお、図8では、蓋部6c(図9参照)及び試料供給デバイス30b(図9参照)の図示を省略する。
 図9は、図8の分離デバイス100cのZ軸側方から見た概略断面図とともに試料供給デバイス30bの模式図を示した図である。なお、図9では、理解の容易のために、試料供給デバイス30bの先端に保持された担体40も図示する。
 ここでは、実施の形態1における分離デバイス100a及び100bと異なる点について説明する。
 図8及び図9に示すように、分離デバイス100cは、多孔質状の展開シート10と、展開容器50cとを備える。展開容器50cは、蓋部6cと容器部5aとを備える。蓋部6cは、試料供給デバイス30bが通過できる程度の大きさ及び形状を有する開口部7cを備える。
 試料供給デバイス30bは、その先端に、溶液20を担持した担体40を保持し、展開シート10に対して垂直な方向(Y軸方向)に押圧することにより、担体40を展開シート10の展開面10a上に配置する。これにより、展開シート10に所定量の溶液20をばらつきなく供給できる。さらに、試料供給デバイス30bは、展開シート10に対して垂直な方向に担体40を押圧してもよい。これにより、担体40に担持された溶液20が排出されるため、展開シート10に溶液20を効率よく供給することができる。
 また、試料供給デバイス30bは、荷重部31を有してもよい。試料供給デバイス30bは、荷重部31を有することにより、展開シート10に対して垂直な方向に、所定の圧力で均一に、担体40を押圧することができる。
 上述のように、担体40は、溶液20を担持する。例えば、担体40は、その表面又は内部に溶液20中の物質を吸着し保持する。これにより、溶液20中の物質は、担体40で保持される。ここで、吸着とは、固相と液相との界面において、液相に含まれる物質又は分子と固相表面との間に生じる現象をいう。吸着は、例えば、ファンデルワールス力による物理的な吸着をいい、温度、pH、圧力などの制御により可逆的に吸脱着が可能な比較的弱い吸着をいう。
 なお、担体40は、多孔質状であってもよい。担体40が多孔質状であることにより、担体40の表面積が大きくなる。これにより、担体40は、より多くの物質を吸着して保持することができる。
 担体40は、多孔質材料で構成された膜又はシートであってもよく、ガラス、樹脂又は金属などの基材上に多孔質材料の薄膜層を形成したシートであってもよい。多孔質材料は、展開シート10の多孔質材料と同様であり、例えば、シリカゲル粒子、化学修飾シリカゲル粒子、アルミナ粒子、珪藻土、シリコンピラー、セルロース、酢酸セルロース、ポリアクリルアミド、アガロース、及びデキストランなどが挙げられる。
 担体40が多孔質材料で構成された膜又はシートである場合は、担体40は、例えば、セルロース、酢酸セルロース、ポリアクリルアミド、アガロース、又はデキストランを含む。
 また、担体40は、溶液20に含まれる試料中の複数種類の物質を1次分離する担体であってもよい。この場合、1次分離後に担体40を乾燥させずに展開シート10上に配置できるため、操作が簡便である。また、試料中の複数種類の物質を1次分離した後に、さらに展開シート10で分離するため、得られる情報量が多くなり、より精度良く試料を分離することができる。
 担体40は、担体40の長手方向と展開シートの展開方向(X軸のプラス方向)とが交差するように、展開シート10の展開面10a上に配置される。このとき、担体40は、展開シート10の展開面10aのうち、液体9が移動している領域に配置される。これにより、溶液20は、展開シート10中を展開方向に移動する液体9上に供給される。
 また、試料が第1試料及び第2試料を含む場合、第1試料を含む溶液及び第2試料を含む溶液は、担体40の長手方向において異なる位置に配置される。このとき、担体40が担体40の長手方向と展開方向とが交差するように展開シート10上に配置されると、これらの溶液は展開方向と交差する第1の方向において異なる位置に配置され、展開方向に移動する液体9上に供給される。
 続いて、本実施の形態における分離デバイスの他の一例について説明する。図10は、本実施の形態における分離デバイスの他の一例である分離デバイス100dを示す概略上面図である。なお、図10においても、図8と同様に、蓋部6d(図11参照)及び試料供給デバイス30b(図11参照)の図示を省略する。
 図11は、図10の分離デバイス100dのZ軸側方から見た概略断面図とともに試料供給デバイス30bの模式図を示した図である。なお、図11では、図9と同様に、試料供給デバイス30bの先端に保持された担体40も図示する。
 ここでは、分離デバイス100cと異なる点について説明する。図10及び図11に示すように、分離デバイス100dは、多孔質状の展開シート10と、展開容器50dとを備える。分離デバイス100dでは、凹部1bは、載置部2bを囲むように配置されている。分離デバイス100dが上記構成を有することにより、本実施の形態に係る試料分離方法では、気化した液体9が展開シート10全体を覆い平衡化するまでの時間をさらに短くすることができる。これにより、試料中の複数種類の物質をより迅速に分離することができる。
 なお、囲むように配置されるとは、載置部の四方全体を囲むように配置されることに限定されず、載置部の一端、つまり、液体9を展開シート10に供給する側の端部を含む形態であればよい。このとき、凹部は、載置部の二方以上を囲むように配置されてもよい。
 [試料分離方法]
 まず、本実施の形態に係る試料分離方法について実施の形態1と異なる点について説明する。
 本実施の形態に係る試料分離方法は、複数種類の物質を含む試料の溶液20を、長尺状の担体40に担持させる点で、実施の形態1に係る試料分離方法と異なる。これにより、溶液20を展開シート10にばらつきなく供給することができる。
 また、本実施の形態では、第3ステップにおいて溶液20を展開シート10に供給する手法が実施の形態1と異なる。図12は、本実施の形態に係る試料分離方法の第3ステップの一例を示すフローチャートである。
 図12に示すように、本実施の形態では、第3ステップにおいて、担体40の長手方向と展開シート10の展開方向とが交差するように担体40を展開シート10の展開面10a上に配置する(ステップS301)。続いて、展開シート10に対して垂直な方向に担体40を押圧することにより、展開方向に移動する液体9上に溶液20を供給する(ステップS302)。続いて、展開シート10から担体40を離す(ステップS303)。
 これにより、展開シート10に溶液20をばらつきなく、かつ、効率よく供給することができる。
 なお、図12に示すフローでは、担体40を押圧するステップS302を含む例を示したが、これに限られない。例えば、ステップS302を含まない場合、所定の時間、担体40を展開面10a上に配置することで、溶液20を担体40から展開シート10に供給することができる。
 続いて、本実施の形態に係る試料分離方法の一連のフローについて説明する。図13Aは、本実施の形態に係る試料分離方法の一例を模式的に説明する図である。なお、図13Aでは、分離デバイス100cを例に挙げて説明する。また、図13Aでは、図8と同様、蓋部6c(図9参照)の図示を省略する。
 本実施の形態に係る試料分離方法の基本的なステップは、図6に示す実施の形態1と同様である。つまり、図6で説明したように、本実施の形態に係る試料分離方法は、試料を含む溶液20と展開シート10とを準備する第1ステップS10と、展開シート10に液体9を供給して液体9を展開方向に移動させる第2ステップS20と、展開方向に移動する液体9上に、溶液20を供給する第3ステップS30と、試料を展開シート10の展開方向に展開させることで、試料に含まれる複数種類の物質を分離する第4ステップS40と、を含む。
 第1ステップS10では、試料を含む溶液20と展開シート10とを準備する。このとき、試料は同一の試料であってもよく、複数種類の試料であってもよい。ここでは、試料は同一の試料である例について説明する。複数種類の試料の場合については、後述する。続いて、展開容器50cの容器部5aの凹部1aに液体9を入れ、図13Aの(a)に示すように、展開シート10を載置部2aに水平に配置する。このとき、展開シート10の展開面10a(図9参照)がY軸方向のプラス側(以下、上側)になるように配置する。続いて、容器部5aを蓋部6c(図9参照)で覆う。
 第2ステップS20では、図13Aの(a)に示すように、押出部4で供給ストリップ3をX軸方向のプラス側に押圧し、供給ストリップ3の接触面と展開シートの端部10bとを接触させる。これにより、凹部1aに貯留された液体9は、毛細管現象により展開シート10の一端(端部10b)に供給され、展開シート10の端部10bから展開方向に移動する。
 第3ステップS30では、図13Aの(b)に示すように、展開シート10中を展開方向に移動する液体9上に、溶液20を供給する。本実施の形態では、担体40の長手方向と展開シート10の展開方向とが交差するように、溶液20を担持した担体40を展開シート10の展開面10aに配置する(図12のステップS301)。例えば、担体40が多孔質材料から構成される膜又はシートである場合、担体40を展開シート10に対して垂直な方向に担体40を押圧することにより、展開方向に移動する液体9上に溶液20を供給する(図12のステップS302)。図9に示すように、蓋部6cのスライド部8cをスライドさせて開口部7cを露出させ、先端に担体40を保持した試料供給デバイス30bを開口部7cに挿入し、液体9が移動している展開シート10の領域上に、担体40を配置する。さらに、担体40を展開シート10に対して垂直な方向に押圧する場合、荷重部31により所望の圧力で担体40を押圧し、展開シート10に溶液20を供給する。所定の時間、溶液20を供給した後、展開シート10から担体40を離す(ステップS303)。
 これにより、担体40に保持された溶液20が押圧により排出されるため、溶液20を展開シート10に効率よく供給することができる。また、所定の時間で担体40を展開シートから離すことにより、溶液20が緩慢に排出されることがなく、テーリングを低減することができる。
 なお、第3ステップS30では、ステップS302は必ずしも実行されなくてもよい。つまり、担体40を展開シート10に対して垂直な方向に押圧しなくてもよい。例えば、展開シート10担体40がガラスなどの基材上に多孔質材料の薄膜層(多孔質材料層)が形成されたシートである場合、担体40の多孔質材料層と展開シート10の展開面10aとを当接させて配置することにより、展開方向に移動する液体9上に溶液20を供給する。
 第4ステップS40では、図13Aの(c)に示すように、試料を展開シート10の展開方向に展開させることで、試料に含まれる複数種類の物質201及び202を分離する。
 なお、上記試料分離方法の一連のフローの説明では、試料は、同一の試料を用いる場合を例に説明したが、試料は、複数種類の試料、例えば、第1試料及び第2試料を含んでもよい。第1試料及び第2試料は、例えば、試料を1次分離して得られた1次試料であってもよく、異なる検体から得られた試料であってもよい。これらの試料は、それぞれ複数種類の物質を含む。なお、1次分離については、実施の形態1にて上述したため、ここでの説明を省略する。
 試料が第1試料及び第2試料を含む場合、試料の溶液は、それぞれ第1試料を含む溶液及び第2試料を含む溶液である。ここでは、これらの複数種類の試料が1次分離して得られた1次試料である例について説明する。この場合、第1ステップS10において「試料を含む溶液20を準備する」とは、試料を1次分離して第1試料を含む溶液及び第2試料を含む溶液を得ることをいう。例えば、担体40が1次分離の担体である場合は、試料を1次分離に供して第1試料及び第2試料が担体40の長手方向において異なる位置に分離された担体を得ることをいう。また、例えば、担体40が1次分離の担体でない場合は、1次分離で得られた第1試料及び第2試料の溶液をそれぞれ担体40の長手方向において異なる位置に配置させることをいう。
 例えば、第1試料及び第2試料は、電気泳動法により得られてもよい。このように、電気泳動法により1次分離して得られた1次試料(第1試料及び第2試料)を、さらに、展開シート10を用いて分離(いわゆる、2次分離)することにより、試料に含まれる複数種類の物質を物理量の異なるパラメータで分離することができる。これにより、得られる情報量がより多くなり、より高精度に複数種類の物質を分離することができる。
 以下、試料が複数種類の試料である場合の、第1ステップS10~第4ステップS40のそれぞれについて説明する。図13Bは、本実施の形態に係る試料分離方法の他の一例を模式的に説明する図である。なお、図13Aと同様、分離デバイス100cの蓋部6cの図示を省略する。また、図13Bの(a)については、図13Aで説明した内容と同じであるため、説明を省略する。
 試料が第1試料、第2試料及び第3試料を含む場合、図13Bの(b)に示すように、溶液は、第1試料を含む溶液20a、第2試料を含む溶液20b及び第3試料を含む溶液20cである。ここでは、これらの複数種類の試料が1次分離して得られた1次試料である例について説明する。
 第3ステップS30では、図13Bの(b)に示すように、溶液20a、溶液20b及び溶液20c(以下、溶液20a~溶液20c)を、展開方向と交差する第1の方向において異なる位置に配置して、展開シート10中を展開方向に移動する液体9上に、溶液20を供給する。本実施の形態では、担体40の長手方向と展開シート10の展開方向とが交差するように、溶液20a~溶液20cを担持した担体40を展開シート10の展開面10aに配置する(図12のステップS301)。例えば、担体40が多孔質材料から構成される膜又はシートである場合、担体40を展開シート10に対して垂直な方向に担体40を押圧することにより、展開方向に移動する液体9上に溶液20a~溶液20cを供給する(図12のステップS302)。図9に示すように、蓋部6cのスライド部8cをスライドさせて開口部7cを露出させ、先端に担体40を保持した試料供給デバイス30bを開口部7cに挿入し、液体9が移動している展開シート10の領域上に、担体40を配置する。さらに、担体40を展開シート10に対して垂直な方向に押圧する場合、荷重部31により所望の圧力で担体40を押圧し、展開シート10に溶液20a~溶液20cを供給する。所定の時間、溶液20a~溶液20cを供給した後、展開シート10から担体40を離す(ステップS303)。
 これにより、担体40に保持された溶液20a~溶液20cが押圧により排出されるため、溶液20a~溶液20cを展開シート10に効率よく供給することができる。また、所定の時間で担体40を展開シートから離すことにより、溶液20が緩慢に排出されることがなく、テーリングを低減することができる。
 なお、展開シート10担体40がガラスなどの基材上に多孔質材料の薄膜層(多孔質材料層)が形成されたシートである場合、担体40の多孔質材料層と展開シート10の展開面10aとを当接させて配置することにより、展開方向に移動する液体9上に溶液20a~溶液20cを供給する。
 第4ステップS40では、図7Bの(c)に示すように、試料を展開シート10の展開方向に展開させることで、試料に含まれる複数種類の物質を分離する。具体的には、溶液20aに含まれる複数種類の物質201、202を分離し、溶液20bに含まれる複数種類の物質203、204を分離し、溶液20cに含まれる複数種類の物質205、206、及び、207を分離する。
 以上により、本実施の形態に係る試料分離方法によれば、試料に含まれる複数種類の物質を迅速に、かつ、精度良く分離することができる。
 以下、実施例にて本開示の試料分離方法を具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。
 実施例1~2及び比較例1~2では、以下の分離デバイスを用いた。
 [分離デバイス]
 図14は、実施例及び比較例にて使用した展開容器50eの概略上面図である。図15は、図14のXV-XV線における概略断面図である。なお、図14では、蓋部6eを省略する。
 図14及び図15に示すように、展開容器50eは、蓋部6eと容器部5eとを備える。展開容器は、ポリカーボネート製である。容器部5eは、展開シートを配置する載置部2eと、載置部2eの四方を囲み、液体9eが貯留される凹部1eと、を備える。凹部1eには、供給ストリップ3eに対応して溝部11eが形成されている。載置部2eは、Z軸方向の幅が30mm、X軸方向の幅が20mmである。凹部1eは、幅が5mm、深さが7mmである。容器部5eの壁部の厚みは、1mmである。
 凹部1eに貯留された液体9eは、2mLであり、凹部1eの底面から液面までの高さは3.3mmである。
 図16は、実施例及び比較例にて使用した分離デバイス100eの概略上面図である。図17は、実施例及び比較例にて実施した試料分離方法を説明する模式図である。なお、図16では、蓋部6eを省略する。
 図16及び図17に示すように、分離デバイス100eは、展開容器50eと展開シート10eとを備える。展開シート10eは、展開方向の長さを縦幅とすると、縦幅が30mm、横幅が20mmであり、載置部2eに水平に配置される。展開シート10eは、ガラス基板上に化学修飾シリカゲルが厚さ100μm~200μmの薄膜状に形成されたTLCシートである。長尺状の担体40eは、長手方向の長さを縦幅とすると、縦幅が20mm、横幅が2mmの酢酸セルロース膜である。図17に示すように、担体40eは、展開シート10eの端部10bから5mmの位置に配置される。担体40eは、試料供給デバイス30eの先端に保持される。
 (実施例1)
 分離デバイス100eの凹部1eに、液体9eを注入し、容器部5eを蓋部6eで覆い、空間12eに気化した液体9eを充満させた。液体9eは、イソプロピルアルコール:水(60:40(体積比))を用いた。展開シート10eは、使用する直前に、100℃~200℃で1時間程度加熱し、デシケータで放冷したものを使用した。気化した液体9eが空間12eに充満した後、展開シート10eを載置部2eに配置した。気化した液体9eが展開シート10eの展開面10aに付着し、平衡化するまで放置した。
 続いて、試料を含む溶液(以下、試料溶液)を準備した。試料溶液は、クレゾールレッド水溶液であった。試料溶液を担体40eの全体に浸み込ませた。
 続いて、展開シート10eの端部10bに液体9を供給し、液体9を展開シート10eに移動させた。
 続いて、平面視において、液体9が移動している領域が開口部7eと重なる位置を超えて展開方向に延伸するときに、液体を担持した担体40eを展開シート10eに押圧した。より具体的には、試料供給デバイス30eの先端に担体40eを保持させ、開口部7eから挿入し、担体40eを展開シート10eに対して垂直な方向に押圧した。荷重部31eにより、120gの圧力を担体40e全体に加えた。この押圧状態を3分間維持した。その後、試料供給デバイス30eを開口部7eから引き上げ、担体40eを展開シート10eから離した。
 展開シート10eの所定の位置まで液体9が移動したところで、液体9の供給を終了した。
 結果を図18の(a)に示す。図18の(a)は、試料の分離が終了したTLCプレートの写真である。濃いグレーの帯部分がクレゾールレッドである。濃いグレーの帯がほぼ一直線に検出された。したがって、担体40eから展開シート10eに供給された試料(クレゾールレッド)が展開方向に向かって均一な速度で移動したことが分かった。
 (比較例1)
 液体9を展開シート10eに供給する前に、試料溶液を担持した担体40eを展開シート10eに3分間押圧する点以外は、実施例1と同様に行った。
 結果を図18の(b)に示す。図18の(b)は、試料の分離が終了したTLCプレートの写真である。濃いグレーの帯部分がクレゾールレッドであり、帯が波打つように検出された。したがって、担体40eから展開シート10eに供給された試料(クレゾールレッド)が展開方向に向かって均一な速度で移動できず、移動度にばらつきが出たことが分かった。
 (結果と考察)
 比較例1の結果から、液体9eが展開シート10eに供給されて移動する前に、展開シート10eに試料溶液を供給すると、図5の(a)で説明したように、試料溶液の溶媒(ここでは、水)と液体9eとがぶつかり、液体9eの移動度にばらつきが出ることが確認できた。TLCでは、液体9eと展開シート10eの多孔質材料(ここでは、化学修飾シリカゲル)との間を試料が吸脱着を繰り返しながら移動する。そのため、液体9の移動度にばらつきが生じると、試料の移動度にもばらつきが生じる。したがって、試料溶液を展開シート10eに供給した後に、試料溶液を乾燥させずに液体9eを供給すると、試料を正確に分離できないことが確認できた。
 一方、実施例1の結果から、液体9eを展開シート10eに供給して、展開シート10eの、液体9eが移動している領域に試料溶液を供給すると、試料の移動度が均一になり、試料を精度良く分離できることが確認できた。図5の(b)で説明したように、展開方向に移動する液体9上に試料溶液が供給されるため、比較例1のように試料溶液の溶媒と液体9とが広い面積でぶつかることなく、液体9の移動度に影響を与えなかったと考えられる。
 したがって、実施例1及び比較例1の結果から、本開示に係る試料分離方法によれば、試料溶液を溶液のまま展開シートに供給することができるため、迅速に分離することができることを確認できた。また、展開シート10の展開方向に移動する液体上に試料溶液を供給することにより、試料溶液の溶媒が液体(展開溶媒)の移動度に影響を与えず、試料(ここでは、クレゾールレッド)を精度良く分離することができることを確認できた。
 (実施例2)
 液体9eがイソプロピルアルコール:酢酸:水(40:5:55(体積比))であり、試料溶液がタンパク質水溶液である点以外は、実施例1と同様に行った。
 結果を図19に示す。なお、図19では、移動度は、実施例2の移動量の最大を1とした規格値であり、強度は、蛍光観測における光強度の最大を1とした規格値である。
 (比較例2)
 液体9の供給を停止するまで、押圧状態を維持する点以外は、実施例2と同様に行った。
 結果を図19に示す。
 (結果と考察)
 実施例2及び比較例2の結果から、担体40eを展開シート10eに押圧する時間が長くなると、担体40eから展開シート10eに試料溶液が緩慢に供給され続けるため、テーリングが大きくなり、試料を精度良く分離できないことが分かった。
 実施例2では、移動度が0.85近傍で強度が最大であり、移動度が0.7近傍では強度が0.6であった。移動度が0.6近傍では、強度が0.3であり、移動度が0.3近傍では、強度が0.1であった。
 比較例2では、移動度が0.82近傍で強度が最大であり、移動度が0.82近傍から移動度が0.4近傍に至るまで強度が緩慢に減少し、移動度が0.4近傍で強度が0.3であった。
 したがって、比較例2のように分離終了時まで担体40eに荷重をかけたままであると、テーリングが大きいことが分かった。一方、実施例2のように所定の時間で担体40eの押圧を止め、担体40eを展開シート10eから離すと、テーリングが小さいことが分かった。
 (まとめ)
 以上の結果から、本開示に係る試料分離方法によれば、迅速、かつ、精度良く試料に含まれる物質を分離することができることが確認できた。
 以上、本開示に係る試料分離方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 なお、上記実施の形態及び実施例では、液体9は、毛細管現象により展開シート10に供給される例を説明したが、これに限られない。例えば、液体9を展開シート10に供給する送液方法は、押出又は吸引による定量的な送液、加圧気体及び減圧気体による圧力差による送液、吸収体を介した吸収による送液、ポンプなどによる間欠的な送液、電磁波、振動又は超音波による送液であってもよく、これらの複数の送液方法を組み合わせてもよい。
 また、展開シート10中の液体9は、多孔質材料層102中の複数の多孔質材料の隙間を毛細管現象により移動してもよく、上述した送液方法のように、外部から応力を与えることにより強制的に移動させてもよい。
 本開示に係る試料分離方法によれば、試料に含まれる複数種類の物質を迅速に、かつ、精度良く分離することができる。また、試料溶液を乾燥させる工程を必要とせず、簡便に実施することができるため、例えば、生体状態の検査キットとして利用可能である。
 1a、1b、1e 凹部
 2a、2b、2e 載置部
 3、3e 供給ストリップ
 4、4e 押出部
 5a、5b、5e 容器部
 6a、6b、6c、6d、6e 蓋部
 7a、7b、7c、7d、7e 開口部
 8a、8b、8c、8d、8e スライド部
 9、9e 液体
 10、10e 展開シート
 10a 展開面
 10b 端部
 11、11a、11b、11e 溝部
 12a、12b、12e 空間
 20、20a、20b、20c 溶液
 30a、30b、30e 試料供給デバイス
 31、31e 荷重部
 40、40e 担体
 50a、50b、50c、50d、50e 展開容器
 100a、100b、100c、100d、100e 分離デバイス
 101 基板
 102 多孔質材料層
 201、202、203、204、205、206、207 物質

Claims (8)

  1.  多孔質状の展開シートを用いて複数種類の物質を含む試料を、前記展開シートの展開方向に展開させて前記複数種類の物質を分離する試料分離方法であって、
     前記試料を含む溶液と前記展開シートとを準備する第1ステップと、
     前記展開シートに液体を供給して前記液体を前記展開方向に移動させる第2ステップと、
     前記展開方向に移動する前記液体上に、前記溶液を供給する第3ステップと、
     前記試料を、前記展開シートの前記展開方向に展開させることで、前記試料に含まれる前記複数種類の物質を分離する第4ステップと、
     を含む、
     試料分離方法。
  2.  前記第2ステップでは、
     前記展開シートを、展開容器の載置部に水平に配置し、
     前記展開シートの前記展開方向における一端を、前記展開容器の凹部に貯留された前記液体に接触させる、
     請求項1に記載の試料分離方法。
  3.  前記凹部は、前記載置部を囲むように配置されている、
     請求項2に記載の試料分離方法。
  4.  前記第1ステップでは、前記溶液は、長尺状の担体に担持され、
     前記第3ステップでは、前記担体の長手方向と前記展開シートの前記展開方向とが交差するように前記担体を前記展開シートの展開面上に配置することにより、前記展開方向に移動する前記液体上に前記溶液を供給する、
     請求項1から請求項3のいずれか一項に記載の試料分離方法。
  5.  前記試料は、第1試料及び第2試料を含み、
     前記溶液は、前記第1試料を含む溶液及び前記第2試料を含む溶液であり、
     前記第3ステップでは、前記第1試料を含む溶液及び前記第2試料を含む溶液は、前記展開方向と交差する第1の方向において異なる位置に配置される、
     請求項1から請求項4のいずれか一項に記載の試料分離方法。
  6.  前記第3ステップでは、前記展開シートに対して垂直な方向に前記担体を押圧することにより、前記展開方向に移動する前記液体上に前記溶液を供給する、
     請求項4に記載の試料分離方法。
  7.  前記第3ステップでは、前記展開シートに対して垂直な方向に前記担体を押圧した後に、前記展開シートから前記担体を離す、
     請求項6に記載の試料分離方法。
  8.  前記第1試料及び前記第2試料は、電気泳動法により得られる、
     請求項5に記載の試料分離方法。
PCT/JP2019/010261 2018-03-29 2019-03-13 試料分離方法 WO2019188286A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018063548 2018-03-29
JP2018-063548 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019188286A1 true WO2019188286A1 (ja) 2019-10-03

Family

ID=68058787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010261 WO2019188286A1 (ja) 2018-03-29 2019-03-13 試料分離方法

Country Status (1)

Country Link
WO (1) WO2019188286A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198836A (ja) * 1987-02-13 1988-08-17 Jeol Ltd 分光計におけるatr装置
JPH045566A (ja) * 1990-04-20 1992-01-09 Shimadzu Corp 薄層クロマトプレートの水平展開方法及び転写方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198836A (ja) * 1987-02-13 1988-08-17 Jeol Ltd 分光計におけるatr装置
JPH045566A (ja) * 1990-04-20 1992-01-09 Shimadzu Corp 薄層クロマトプレートの水平展開方法及び転写方法

Similar Documents

Publication Publication Date Title
US7259019B2 (en) Multiple sampling device and method for investigating biological systems
Ren et al. Analysis of biological samples using paper spray mass spectrometry: an investigation of impacts by the substrates, solvents and elution methods
Kokubu et al. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis
US7744762B2 (en) Microfluidic devices and methods facilitating high-throughput, on-chip detection and separation techniques
US20200360918A1 (en) Multipin solid phase microextraction device
JP4750016B2 (ja) 質量分析用試料調製プレート
JP2007529001A (ja) 複合試料処理及び試料保持装置を使用する試料分析のための装置及び方法
JP2007529755A (ja) 電気浸透駆動平面クロマトグラフィーに基づく分離プラットフォーム
Singleton Recent advances in bioanalytical sample preparation for LC–MS analysis
Kataoka SPME techniques for biomedical analysis
Ekström et al. Miniaturized solid-phase extraction and sample preparation for MALDI MS using a microfabricated integrated selective enrichment target
WO2012170301A1 (en) Cassettes, systems, and methods for ion generation using wetted porous materials
US9927331B2 (en) Sample carrier for dried biological samples
Nesbitt et al. Recent applications of capillary electrophoresis–mass spectrometry (CE–MS): CE performing functions beyond separation
US9976999B2 (en) Method and device for carrying out thin-layer chromatography
JP4687920B2 (ja) バイオ分析用の蓋シール付きマイクロチップの自動サンプル処理方法、及び自動サンプル処理装置
JP4632064B2 (ja) 分析用の蓋付きマイクロチップ、該蓋付きマイクロチップのサンプル処理方法、該蓋付きマイクロチップの自動サンプル処理方法、該処理方法に基づく、自動サンプル処理装置、ならびに、該自動サンプル処理方法を応用する物質の分析装置
US20160089669A1 (en) Apparatus for Multiplex Extraction of Biological Samples and In-Transit Preparation of the Same
Chen et al. Nanomaterial-assisted thread-based isotachophoresis with on-thread solute trapping
Pantůčková et al. A simple sample pretreatment device with supported liquid membrane for direct injection of untreated body fluids and in‐line coupling to a commercial CE instrument
WO2019188286A1 (ja) 試料分離方法
EP1946094B1 (en) Force-promoted sample recovery in gel electrophoresis
US20070187244A1 (en) Composite Membrane To Capture Analyte Transfers From Gels
JP2005513472A (ja) 分析機及び分析方法
JP4760570B2 (ja) マイクロチップおよびその使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP