WO2019187697A1 - 煙感知システム、煙感知方法、及びプログラム - Google Patents

煙感知システム、煙感知方法、及びプログラム Download PDF

Info

Publication number
WO2019187697A1
WO2019187697A1 PCT/JP2019/004609 JP2019004609W WO2019187697A1 WO 2019187697 A1 WO2019187697 A1 WO 2019187697A1 JP 2019004609 W JP2019004609 W JP 2019004609W WO 2019187697 A1 WO2019187697 A1 WO 2019187697A1
Authority
WO
WIPO (PCT)
Prior art keywords
smoke
unit
temperature
value
period
Prior art date
Application number
PCT/JP2019/004609
Other languages
English (en)
French (fr)
Inventor
拓矢 梅村
橋本 裕介
阪本 浩司
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP19777616.4A priority Critical patent/EP3779910A4/en
Publication of WO2019187697A1 publication Critical patent/WO2019187697A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • G08B29/26Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds

Definitions

  • the present disclosure relates generally to a smoke sensing system, a smoke sensing method, and a program, and more specifically, smoke sensing smoke by receiving light output from a light emitting element scattered by smoke flowing into the sensing space with a light receiving element.
  • the present invention relates to a sensing system, a smoke sensing method, and a program.
  • a smoke detector that detects smoke by irradiating the smoke that has entered the sensing space (smoke sensing area) with light from the light emitting element (light emitting element) and receiving the scattered light from the smoke with the light receiving element.
  • Known for example, Patent Document 1.
  • the smoke detector described in Patent Document 1 enables inflow of smoke from a smoke inflow path formed by a gap between labyrinth walls into a sensing area in a sensing space surrounded by a plurality of labyrinth walls.
  • the labyrinth wall has an external light blocking action so that external light does not enter through the smoke inflow path so that the smoke sensing function is not unstable due to light from the outside.
  • the smoke detector that houses the light emitting element and the light receiving element is substantially circular. Further, in Patent Document 1, the rear part of the light emitting element and the light receiving element (that is, the end part opposite to the sensing space) is protruded to form a wide sensing space.
  • the present disclosure has been made in view of the above reasons, and an object of the present disclosure is to provide a smoke detection system, a smoke detection method, and a program capable of suppressing steam from being mistakenly detected as smoke.
  • the smoke detection system detects smoke.
  • the smoke detection system includes an estimation unit.
  • the estimation unit estimates the state of the gas based on a change temperature that is a temporal change in the temperature of the gas.
  • the smoke detection method detects smoke.
  • the smoke sensing method includes an estimation step.
  • the estimation step the state of the gas is estimated based on a change temperature that is a temporal change in the temperature of the gas.
  • a program according to an aspect of the present disclosure causes a computer system to execute the smoke detection method.
  • FIG. 1 is a block diagram of an automatic fire alarm system including a smoke sensing system according to an embodiment of the present disclosure.
  • FIG. 2A is an external perspective view of a smoke detector according to an embodiment of the present disclosure as seen from obliquely below.
  • FIG. 2B is an external perspective view of the smoke detector as seen from obliquely above.
  • FIG. 3 is an exploded perspective view of the smoke detector as seen from obliquely below.
  • FIG. 4 is an exploded perspective view of the above smoke detector as viewed obliquely from above.
  • FIG. 5 is an exploded perspective view of a sensing block in the smoke detector.
  • FIG. 6 is a diagram for explaining the operation of the smoke detection system.
  • Embodiments and modifications described below are merely examples of the present disclosure, and the present disclosure is not limited to the embodiments and the modifications. Even if it is except this embodiment and a modification, if it is a range which does not deviate from the technical idea of this indication, various changes are possible according to a design etc.
  • the smoke detection system 200 is a system that detects smoke generated by a fire or the like, and is used in the automatic fire notification system 100.
  • the smoke detection system 200 is provided in the smoke detector 1.
  • the smoke detector 1 is a disaster prevention device that issues a notification when smoke is detected. That is, when smoke is generated in the event of a disaster such as a fire, the smoke detector 1 detects the smoke and, for example, issues a warning by outputting an alarm sound or interlocking with other devices by a communication function.
  • the “disaster prevention device” as used in the present disclosure is a device that is installed in a facility for the purpose of, for example, preventing disasters such as fire, preventing the spread of damage caused by disasters, or recovering from disasters.
  • the smoke detector 1 includes a housing 2 and accommodates various components in the housing 2.
  • the smoke detector 1 is installed and used in a facility.
  • the smoke detector 1 is installed in a facility in a state of being attached to a ceiling, a wall, or the like, for example, in a room, hallway or stairs of the facility.
  • facilities include non-residential facilities such as hotels, office buildings, schools, welfare facilities, commercial facilities, theme parks, hospitals, and factories. Not only this example but the smoke detector 1 may be used for facilities, such as an apartment house or a detached house.
  • the smoke detector 1 includes a wall structure 3, a light emitting unit 4, a light receiving unit 5, and a temperature detecting unit 60 (see FIG. 5).
  • the light emitting unit 4 includes a light emitting element 40.
  • the light receiving unit 5 includes a light receiving element 50.
  • the temperature detection unit 60 includes a temperature detection element 600.
  • the wall structure 3 surrounds the sensing space Sp1 when viewed from one direction orthogonal to one plane.
  • the light emitting unit 4 outputs light toward the sensing space Sp1.
  • the light receiving unit 5 is arranged at a position where direct light from the light emitting unit 4 does not enter and scattered light from smoke or the like in the sensing space Sp1 enters.
  • the light receiving unit 5 does not receive the light output from the light emitting unit 4 in a state where no smoke or the like exists in the sensing space Sp1, and the light receiving unit 5 emits light in a state where the smoke exists in the sensing space Sp1.
  • Light (scattered light) output from the unit 4 and scattered by smoke or the like is received. Therefore, the smoke detector 1 can detect the smoke present in the sensing space Sp ⁇ b> 1 according to the light receiving state at the light receiving unit 5.
  • the temperature detector 60 detects the temperature of the gas in the sensing space Sp1.
  • the smoke detection system 200 (smoke detector 1) is installed on the ceiling of each room in a hotel where a bathroom (for example, a unit bath) is provided in each room will be described as an example.
  • a bathroom for example, a unit bath
  • the smoke detection system 200 of this embodiment includes an estimation unit 235 (see FIG. 1).
  • the estimation unit 235 estimates a gas state based on a change temperature that is a temporal change in the gas temperature.
  • the smoke detector 1 will be described as being attached to the ceiling of a facility.
  • a direction perpendicular (orthogonal) to the horizontal plane is referred to as “up and down direction”
  • a lower direction in the up and down direction is referred to as “down direction”.
  • the arrow indicating the “vertical direction” in the drawing is merely shown for the sake of explanation, and is not accompanied by an entity. However, these directions are not intended to limit the use direction (mounting direction) of the smoke detector 1.
  • the “downward” defined here may be the front (horizontal direction) in the actual installation state of the smoke detector 1.
  • the smoke detector 1 includes a housing 2, a detection block 10 (see FIG. 3), and a circuit block 20 (see FIG. 3).
  • the smoke detector 1 further includes a sound output unit 61 (see FIG. 3) and a battery 62.
  • the sound output unit 61 and the battery 62 are not necessarily included in the components of the smoke detector 1, and the sound output unit 61 and the battery 62 may not be included in the components of the smoke detector 1.
  • the housing 2 has a disk shape that is circular in plan view.
  • the housing 2 is a molded product made of synthetic resin.
  • the housing 2 has a first cover 21 and a second cover 22.
  • the first cover 21 is combined with the second cover 22 so as to cover the lower surface of the second cover 22.
  • the second cover 22 is fixed to a construction surface (a ceiling surface in the present embodiment).
  • the second cover 22 is not directly fixed to the construction surface, but is indirectly fixed to the construction surface by being fixed to the mounting base fixed to the construction surface.
  • both the first cover 21 and the second cover 22 are formed in a disc shape, and the outer peripheral shape in plan view is the same. Therefore, the first cover 21 and the second cover 22 are combined to form one disk-shaped housing 2.
  • the first cover 21 is coupled to the second cover 22 by a plurality of (three) screws 63. In a state where the first cover 21 and the second cover 22 are coupled to each other, the sensing block 10, the circuit block 20, and the sound output unit 61 are accommodated between the first cover 21 and the second cover 22.
  • the first cover 21 has a circular first main plate 211 and a first peripheral wall 212 protruding upward from the outer peripheral portion of the upper surface of the first main plate 211.
  • the first cover 21 has a circuit region 213 (see FIG. 4) for arranging the circuit block 20 and a first acoustic region 214 (see FIG. 4) for arranging the sound output unit 61 on the upper surface of the first main plate 211. 4).
  • the first cover 21 further has a push button 215 arranged in the circuit area 213.
  • the push button 215 is configured to be movable with respect to the first main plate 211 by a hinge structure, and can be pushed into the inside of the housing 2, that is, upward. When the push button 215 is pushed, a switch included in the circuit block 20 arranged in the circuit area 213 is operated.
  • a groove 216 (see FIG. 2A) extending along the outer peripheral edge is formed on the lower surface of the first main plate 211.
  • the groove 216 is substantially concentric with the outer peripheral edge of the lower surface of the first main plate 211 and is formed over the entire circumference. That is, the groove 216 has an annular shape that is slightly smaller than the outer peripheral edge of the lower surface of the first main plate 211.
  • a sound hole 217 (see FIG. 2A) that penetrates the first main plate 211 in the thickness direction of the first main plate 211 is formed in a portion of the bottom surface of the groove 216 corresponding to the first acoustic region 214. .
  • the second cover 22 has a circular second main plate 221 and a second peripheral wall 222 protruding upward from the outer peripheral portion of the upper surface of the second main plate 221.
  • the second cover 22 further includes an accommodation area 223 (see FIG. 3) for arranging the sensing block 10 and a second acoustic area 224 for arranging the sound output unit 61 on the lower surface of the second main plate 221.
  • the second cover 22 further has a battery region 225 (see FIG. 4) for housing the battery 62 on the upper surface of the second main plate 221.
  • the second cover 22 further includes a plurality of spacers 226 that protrude downward from the lower surface of the second main plate 221.
  • the plurality of spacers 226 ensure a predetermined gap between the first cover 21 and the second cover 22 by bringing the respective leading end portions (lower end portions) into contact with the upper surface of the first main plate 211.
  • the internal space of the housing 2 is defined between the upper end surface of the first peripheral wall 212 and the lower surface of the second main plate 221.
  • a gap is formed as an opening 23 connected to the outside of the housing 2. Thereby, gas such as smoke can flow into the internal space of the housing 2, that is, the space between the first cover 21 and the second cover 22 through the opening 23.
  • the shape of the housing 2 is not limited to a disk shape, and may be, for example, a polygon (a quadrangle, a hexagon, an octagon, or the like).
  • the sensing case 7 has a disk shape that is circular in plan view.
  • the sensing case 7 is a molded product made of synthetic resin.
  • the sensing case 7 has a first case 71 and a second case 72.
  • the second case 72 is combined with the first case 71 so as to cover the upper surface of the first case 71.
  • the first case 71 is fixed to the printed wiring board 201 (see FIG. 3).
  • the sensing case 7 has at least light shielding properties.
  • a sensing space Sp1 is formed inside the sensing case 7.
  • the first case 71 includes a circular bottom plate 73 and a wall structure 3 protruding upward from the outer peripheral portion of the upper surface 731 of the bottom plate 73.
  • the wall structure 3 has a function of taking gas into the sensing space Sp1 from the outside of the sensing space Sp1, while suppressing light from entering the sensing space Sp1 from the outside of the sensing space Sp1.
  • the wall structure 3 is formed in an annular shape so as to surround the sensing space Sp1 in the plan view.
  • the wall structure 3 is an aggregate of a plurality of small pieces 30 arranged along the outer peripheral edge of the upper surface 731 of the bottom plate 73.
  • the wall structure 3 allows gas to pass through between the plurality of small pieces 30.
  • a plurality of small pieces 30 are arranged along the outer peripheral edge of the upper surface 731 at intervals.
  • the light receiving unit 5 (light receiving element 50) is disposed at a position where direct light from the light emitting unit 4 (light emitting element 40) is not incident and scattered light from smoke or the like in the sensing space Sp1 is incident.
  • the temperature detection element 600 is, for example, a thermistor, and an element whose electrical characteristics (resistance value) vary according to temperature.
  • the temperature detection unit 60 (temperature detection element 600) detects the temperature of the sensing space Sp1.
  • the second case 72 has a circular upper plate 721 and a peripheral wall 722 that protrudes downward from the outer peripheral portion of the lower surface of the upper plate 721.
  • the inner diameter of the peripheral wall 722 is larger than the outer diameter of the wall structure 3. Further, the protruding amount of the peripheral wall 722 from the lower surface of the upper plate 721 is substantially the same as the protruding amount of the wall structure 3 from the upper surface 731 of the bottom plate 73.
  • the peripheral wall 722 is formed with a plurality of window holes 723 that penetrate the peripheral wall 722 in the thickness direction of the peripheral wall 722.
  • the plurality of window holes 723 are arranged along the circumferential direction of the lower surface of the upper plate 721. Accordingly, the wall structure 3 is exposed to the outside of the sensing case 7 through the plurality of window holes 723 in a state where the first case 71 and the second case 72 are coupled to each other.
  • an insect net may be attached to the peripheral wall 722 so as to cover the plurality of window holes 723. The insect net reduces the entry of foreign matters such as insects from the plurality of window holes 723 into the sensing space Sp1 in the sensing case 7.
  • the circuit block 20 includes a printed wiring board 201 and a plurality of electronic components 202 including switches.
  • the plurality of electronic components 202 are mounted on the printed wiring board 201.
  • the light emitting unit 4, the light receiving unit 5, and the temperature detecting unit 60 of the sensing block 10 are electrically connected to the conductor unit of the printed wiring board 201. Further, the sound output unit 61 and the battery 62 are further electrically connected to the conductor portion of the printed wiring board 201.
  • the printed wiring board 201 is disposed below the sensing block 10, that is, between the sensing block 10 and the first main board 211.
  • the sensing block 10 is mounted on one surface (upper surface) of the printed wiring board 201 in the thickness direction.
  • the circuit block 20 includes a control unit 203 (see FIG. 1) which is a part of the plurality of electronic components 202.
  • the control unit 203 is a circuit that controls the light emitting unit 4, the light receiving unit 5, the sound output unit 61, and the like.
  • the control unit 203 has a function as the smoke detection system 200.
  • the control unit 203 determines the presence or absence of smoke in the sensing space Sp1 based on the amount of light received by the light receiving unit 5 (the magnitude of the output signal).
  • the amount of light received by the light receiving unit 5 varies depending on, for example, the concentration of gas particles in the sensing space Sp1.
  • the control unit 203 determines that smoke is present in the sensing space Sp1 when the particle concentration is equal to or higher than a certain level.
  • control unit 203 When detecting the presence of smoke, the control unit 203 outputs an electric signal for driving the sound output unit 61 to the sound output unit 61.
  • a detailed description of the control unit 203 (smoke detection system 200) will be given in the section “(2.2) Configuration of Smoke Detection System”.
  • the sound output unit 61 receives the electric signal from the circuit block 20 and outputs sound (sound wave).
  • the sound output unit 61 is realized by a speaker or a buzzer that converts an electrical signal into sound.
  • the sound output unit 61 has a disk shape that is circular in plan view.
  • the battery 62 is accommodated in the battery region 225 above the second cover 22.
  • the battery 62 may be either a primary battery or a secondary battery.
  • the smoke detector 1 according to the present embodiment configured as described above is included in, for example, a component of the automatic fire alarm system 100 (see FIG. 1).
  • the automatic fire alarm system 100 includes a smoke detector 1 and a receiver 300.
  • the smoke detector 1 When detecting the occurrence of a fire (smoke), the smoke detector 1 transmits a notification signal (fire signal) for notifying the receiver 300 of the occurrence of the fire.
  • the communication means between the smoke detector 1 and the receiver 300 may be wired communication or wireless communication.
  • the receiver 300 transmits a notification signal for notifying the occurrence of a fire to the management device.
  • the automatic fire notification system 100 may include a transmitter or the like.
  • the transmitter has a push button that is pushed when a person discovers a fire. When the push button is pressed, the transmitter transmits a notification signal (fire signal) to the receiver 300.
  • the smoke detection system 200 includes a control unit 203.
  • a component of the smoke sensing system 200 may include a temperature detector 60 that detects the temperature of the gas in the sensing space Sp1.
  • the components of the smoke sensing system 200 may include the light receiving unit 4 and the light emitting unit 5 as a concentration detecting unit that detects the concentration of particles contained in the gas in the sensing space Sp1.
  • the control unit 203 is constituted by, for example, a microcomputer having a processor and a memory. That is, the control unit 203 is realized by a computer system having a processor and a memory. Then, when the processor executes an appropriate program, the control unit 203 causes the temperature calculation unit 231, the concentration calculation unit 232, the smoke detection unit 233, the concentration counter 234, the estimation unit 235, the temperature counter 236, and the sensitivity change unit 237. Function as.
  • the program may be recorded in advance in a memory, or may be provided by being recorded through a telecommunication line such as the Internet or a non-transitory recording medium such as a memory card.
  • the temperature calculation unit 231 is configured to calculate the change temperature [° C.] by performing signal processing on the output of the temperature detection unit 60.
  • the change temperature is a temporal change in the temperature of the gas in the sensing space Sp1.
  • the temperature calculation unit 231 calculates a change temperature for each unit period. That is, the change temperature is the difference between the temperature of the gas in the sensing space Sp1 at the start point of the unit period and the temperature of the gas in the sensing space Sp1 at the end point of the unit period.
  • the temperature calculation unit 231 calculates the temperature of the gas in the sensing space Sp1 based on the resistance value of the temperature detection unit 60 (thermistor), and calculates the change temperature for each unit period.
  • the length of the unit period is set to be longer than the time required for the temperature of the sensing space Sp1 to rise and stabilize when a gas containing water droplets (steam) flows into the sensing space Sp1. Is preferred.
  • the length of the unit period is 10 seconds as an example, but is not limited to this value and may be a different value.
  • the concentration calculation unit 232 is configured to calculate the concentration [% / m] of particles contained in the gas in the sensing space Sp1 by performing signal processing on the output of the light receiving unit 5.
  • the concentration calculation unit 232 calculates the concentration of particles contained in the gas in the sensing space Sp ⁇ b> 1 based on the magnitude of the output signal of the light receiving unit 5 corresponding to the amount of light received by the light receiving unit 5.
  • the density calculation unit 232 calculates the density at a predetermined sampling period. In the present disclosure, the light attenuation rate [%] per unit distance (1 m) is calculated as the concentration of particles, but the concentration of particles is other units such as the number of particles per unit volume and weight. May be.
  • the smoke detector 233 is configured to detect smoke based on the concentration of particles contained in the gas. Specifically, the smoke sensing unit 233 acquires the calculation result of the concentration calculation unit 232 that is the concentration of particles contained in the gas. The smoke sensing unit 233 senses smoke based on the comparison result between the concentration of the particles contained in the gas (concentration calculation value) and the concentration threshold value. More specifically, the smoke sensing unit 233 increases the value (count value) of the density counter 234 when the calculated density value is greater than or equal to the density threshold value. Further, when the calculated density value is less than the density threshold value, the smoke sensing unit 233 reduces the value (count value) of the density counter 234. It is assumed that the lower limit value of the density counter 234 is zero.
  • the count value of the density counter 234 is an integer, and the value when it is increased or decreased is “1”.
  • the smoke detection unit 233 determines that smoke is present in the detection space Sp1.
  • the smoke detection unit 233 outputs an electrical signal for driving the sound output unit 61 to the sound output unit 61.
  • the smoke detection unit 233 transmits a notification signal (fire signal) for notifying the occurrence of a fire to the receiver 300.
  • the estimation unit 235 estimates the state of the gas in the sensing space Sp1 based on the change temperature that is the calculation result of the temperature calculation unit 231 and the concentration (concentration calculation value) that is the calculation result of the concentration calculation unit 232. It is configured. Specifically, the estimation unit 235 performs a comparison between the change temperature and the temperature threshold value and a comparison between the calculated concentration value and the predetermined concentration value for each unit period. Then, the estimation unit 235 estimates whether the gas state is smoke or a state including water droplets based on the comparison result. Smoke here is a gas generated by a fire and contains particles such as soot. The state containing water droplets is a gas state containing water particles (so-called steam) in which a part of water vapor is liquefied.
  • the estimation unit 235 estimates whether the gas state is smoke or a state including water droplets based on the value (count value) of the temperature counter 236.
  • the estimation unit 235 increases the value (count value) of the temperature counter 236 when the change temperature is equal to or higher than the temperature threshold and the calculated concentration value is equal to or higher than the predetermined concentration value. That is, the temperature counter 236 increases the count value when the concentration of the particles contained in the gas is equal to or higher than the predetermined concentration value and the rising temperature of the gas is equal to or higher than the temperature threshold in the unit period.
  • the count value of the temperature counter 236 is an integer, and the value when it is increased is “1”.
  • the calculated density value to be compared with the predetermined density value may be a peak value (maximum value or minimum value) of the calculated density values in the unit period, or a representative value (average value, median value) of the calculated density values in the unit period. Etc.).
  • the highest peak value of the density calculation value in the unit period is compared with a predetermined density value.
  • the temperature threshold is 3 [° C.] as an example, but is not limited to this value and may be a different value. Further, the temperature threshold value may be changed according to the count value of the temperature counter 236.
  • the predetermined density value is a value smaller than the density threshold value.
  • the predetermined density value is 2 [% / m] as an example, but is not limited to this value and may be a different value. Further, the predetermined density value may be changed according to the count value of the temperature counter 236. In addition, the temperature counter 236 may reset the count value to “0” when the period in which the concentration of particles contained in the gas is less than the predetermined concentration has elapsed.
  • the estimation unit 235 estimates that the gas state is smoke when the count value of the temperature counter 236 changes from “1” to “2”. More specifically, when the count value of the temperature counter 236 changes from “1” to “2”, the estimation unit 235 estimates that the gas state is smoke generated by combustion accompanied by the generation of flame. In other words, the estimation unit 235 has the change temperature in the first unit period (first period) equal to or higher than the temperature threshold (first temperature threshold) and the change temperature in the second unit period (second period) is the temperature threshold. When it is equal to or greater than (second temperature threshold), it is estimated that the gas state is smoke due to combustion.
  • the second unit period is a unit period after the first unit period in time series. That is, when the concentration of particles contained in the gas is equal to or higher than the predetermined concentration value and the gas temperature continues to rise, the estimation unit 235 estimates that the gas state is smoke due to combustion.
  • the estimation unit 235 estimates that the gas state includes water droplets (steam). In other words, the estimation unit 235 has the change temperature in the first unit period (first period) equal to or higher than the temperature threshold (first temperature threshold) and the change temperature in the second unit period (second period) is the temperature threshold. When the temperature is less than (second temperature threshold), it is estimated that the gas state includes a water droplet. That is, the estimation unit 235 estimates that the gas state includes water droplets when the temperature of the gas once rises and then stabilizes in a state where the concentration of particles contained in the gas is equal to or higher than a predetermined concentration value. To do.
  • the estimation unit 235 estimates that the gas state is smoke. More specifically, when the change temperature is less than the temperature threshold value and the calculated concentration value is equal to or higher than the predetermined concentration value, the estimation unit 235 determines that the gas state is smoldering without flames (flameless combustion). Estimated to be smoke generated by That is, when the concentration of particles contained in the gas is equal to or higher than the predetermined concentration value and the temperature of the gas does not increase, the estimation unit 235 estimates that the gas state is smoke due to smoldering.
  • the second period may be a period after the first period (first unit period), and need not be continuous in time series.
  • the estimation unit 235 assumes that the count value “1” continues one or more times after the count value of the temperature counter 236 changes from “0” to “1”. In such a case, the estimation unit 235 estimates that the gas state includes water droplets (steam) once the count value “1” continues. When the count value changes from “1” to “2” after the count value “1” continues, the estimation result is updated that the gas state is smoke due to combustion.
  • the estimation unit 235 includes a unit period (first period) in which the count value changes from “0” to “1”, and a unit period (second period) in which the count value is converted from “1” to “2”.
  • first period in which the count value changes from “0” to “1”
  • second period in which the count value is converted from “1” to “2”.
  • the sensitivity changing unit 237 is configured to change the sensitivity of the smoke detecting unit 233 based on the estimation result of the estimating unit 235.
  • the sensitivity changing unit 237 reduces the sensitivity of the smoke detecting unit 233 when the estimating unit 235 estimates that the gas state includes a water droplet (steam).
  • the sensitivity changing unit 237 increases the sensitivity of the smoke sensing unit 233 by increasing the density threshold value that the smoke sensing unit 233 compares with the calculated density value from the first threshold value that is the default value to the second threshold value. Reduce. That is, the sensitivity changing unit 237 reduces the sensitivity of the smoke detecting unit 233 when the count value of the temperature counter 236 remains “1”.
  • the sensitivity changing unit 237 is configured to smoke when the change temperature in the first unit period is equal to or higher than the temperature threshold (first temperature threshold) and the change temperature in the second unit period is less than the temperature threshold (second temperature threshold). The sensitivity of the sensing unit 233 is reduced. Further, when the estimation unit 235 estimates that the gas state includes water droplets (steam) and then estimates that the gas state is smoke, the sensitivity changing unit 237 sets the concentration threshold to the first threshold value. After increasing from the first threshold to the second threshold, the first threshold is restored.
  • the sensitivity changing unit 237 does not change the sensitivity of the smoke detecting unit 233 when the estimating unit 235 estimates that the gas state is smoke due to combustion or smoldering. That is, the sensitivity changing unit 237 does not increase the concentration threshold value from the first threshold value to the second threshold value when the count value of the temperature counter 236 changes from “1” to “2” or when it remains “0”. . In addition, the sensitivity changing unit 237 estimates the concentration threshold value when the estimating unit 235 estimates that the gas state is a state including smoke and then estimates that the gas state includes water droplets (steam). After maintaining the first threshold value, it is increased to the second threshold value.
  • FIG. 6 shows a concentration calculation value, a temperature calculation value, and a count value (temperature count value) of the temperature counter 236 when the gas state includes water droplets (steam), smoke due to combustion, and smoke due to smoldering. It is a graph which shows an example of a change of.
  • the temperature calculation value is the temperature of the sensing space Sp1 calculated by the temperature calculation unit 231.
  • the graph of the calculated temperature value in FIG. 6 shows a change in the calculated temperature value based on the calculated temperature value at the time point t0 (0 ° C.).
  • X1 solid line
  • X2 broken line
  • X3 one-dot chain line
  • Y1 solid line
  • Y2 broken line
  • Y3 one-dot chain line
  • Z1 solid line is the temperature count value when the gas state includes water droplets.
  • Z2 broken line is a temperature count value when the gas state is smoke due to combustion.
  • Z3 one-dot chain line is a temperature count value in a case where the gas state is smoke due to smoke burning.
  • the values of X1 and Y1 in FIG. 6 indicate that the smoke detector 1 is installed at a position 0.5 [m] away from a gas generation source (for example, a bathroom door) containing water droplets (steam) on a horizontal plane. It is a value when there is.
  • the values of X2 and Y2 in FIG. 6 are values when the smoke detector 1 is installed at a position 2.2 [m] away from the source of smoke generated by combustion on the horizontal plane.
  • the values of X3 and Y3 in FIG. 6 are values when the smoke detector 1 is installed at a position 2.2 [m] away on the horizontal plane from the source of smoke generated by smoldering.
  • Th1 is a first threshold that is a default value of the temperature threshold
  • Th2 is a second threshold that is a temperature threshold after being changed by the sensitivity changing unit 237
  • Th3 is calculated by the estimating unit 235. This is a predetermined density value to be compared with the calculated density value.
  • T1 is a unit period
  • F1 is a temperature threshold value.
  • the concentration calculation value and the temperature calculation value increase due to this gas.
  • the change temperature exceeds the temperature threshold value F1 (first temperature threshold value)
  • the calculated concentration value is the predetermined concentration value Th3 and the first threshold value Th1 (concentration threshold value). Is over. Therefore, at time t1, the count value of the temperature counter 236 increases from “0” to “1”.
  • the change temperature is lower than the temperature threshold F1 (second temperature threshold). This is because when the gas state includes water droplets (steam), the temperature calculation value temporarily rises due to the temperature of the gas, and then the temperature stabilizes. Therefore, at time t2, the count value of the temperature counter 236 does not increase and remains “1”. Therefore, the estimation unit 235 estimates that the gas state includes a water droplet (steam).
  • the sensitivity changing unit 237 changes the sensitivity threshold value from the first threshold value Th1 to the second threshold value Th2, thereby reducing the sensitivity of the smoke sensing unit 233.
  • the smoke detection unit 233 determines that there is no smoke in the detection space Sp1.
  • the calculated concentration value and the calculated temperature value increase due to smoke and flame.
  • the change temperature exceeds the temperature threshold value F1 (first temperature threshold value)
  • the calculated concentration value is the predetermined concentration value Th3 and the first threshold value Th1 (concentration threshold value). Is over. Therefore, at time t1, the count value of the temperature counter 236 increases from “0” to “1”.
  • the change temperature exceeds the temperature threshold value F1 (second temperature threshold value). This is because the gas temperature continues to rise due to the combustion flame. Therefore, at time t2, the count value of the temperature counter 236 increases from “1” to “2”. Therefore, the estimation unit 235 estimates that the gas state is smoke due to combustion.
  • the sensitivity changing unit 237 does not change (maintain) the density threshold value with the first threshold value Th1. That is, the sensitivity changing unit 237 does not change (reduce) the sensitivity of the smoke sensing unit 233.
  • the smoke detection unit 233 determines that smoke is present in the detection space Sp1. As a result, a sound is output from the sound output unit 61, and a notification signal (fire signal) for notifying the occurrence of a fire is transmitted from the smoke detector 1 to the receiver 300.
  • the estimation unit 235 estimates that the gas state is smoke due to smoldering.
  • the sensitivity changing unit 237 does not change (maintain) the density threshold value with the first threshold value Th1. That is, the sensitivity changing unit 237 does not change (reduce) the sensitivity of the smoke sensing unit 233.
  • the smoke detection unit 233 determines that smoke is present in the detection space Sp1. As a result, a sound is output from the sound output unit 61, and a notification signal (fire signal) for notifying the occurrence of a fire is transmitted from the smoke detector 1 to the receiver 300.
  • the estimation process of the gas state based on the count value of the temperature counter 236 by the estimation part 235 mentioned above is an example.
  • the count value of the temperature counter 236 may change so as to vary depending on the gas state.
  • the count value of the temperature counter 236 changes according to the length of the unit period, the size of the temperature threshold, etc., even if the time change of the temperature is the same. Therefore, the estimation process of the gas state based on the count value of the temperature counter 236 by the estimation unit 235 is appropriately set according to the length of the unit period, the size of the temperature threshold, and the like. For example, when the count value of the temperature counter 236 remains “2”, the estimation unit 235 may estimate that the gas state includes water droplets (steam). Further, the estimation unit 235 may estimate that the gas state is smoke due to combustion when the count value of the temperature counter 236 changes from “2” to “3”.
  • the same function as the smoke detection system 200 according to the embodiment may be realized by a smoke detection method, a (computer) program, a non-temporary recording medium in which the program is recorded, or the like.
  • the smoke sensing method is a method for sensing smoke, and includes an estimation step of estimating a gas state based on a change temperature that is a temporal change in the temperature of the gas.
  • the program also causes the computer system to execute a smoke detection method.
  • the smoke detection system 200 in the present disclosure includes a computer system in the control unit 203, for example.
  • the computer system mainly includes a processor and a memory as hardware. Functions of the smoke detection unit 233, the estimation unit 235, the sensitivity change unit 237, and the like are realized by the processor executing the program recorded in the memory of the computer system.
  • the program may be recorded in advance in a memory of a computer system, may be provided through a telecommunication line, or recorded in a non-transitory recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by the computer system. May be provided.
  • a processor of a computer system includes one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • the plurality of electronic circuits may be integrated on one chip, or may be distributed on the plurality of chips.
  • the plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
  • the smoke detection system 200 is not limited to the configuration housed in one housing (the housing 2 in the present disclosure), and may be housed in a plurality of housings.
  • the function as the smoke detection system 200 may be distributed between the smoke detector 1 and the receiver 300 or may be provided in the receiver 300.
  • the function as the smoke detection system 200 may be realized by cloud (cloud computing).
  • the sensitivity changing unit 237 determines that the concentration threshold is the first threshold when the estimating unit 235 estimates that the gas state includes water droplets (steam).
  • the sensitivity of the smoke detection unit 233 is reduced by increasing the threshold value Th1 from the threshold value Th2, the present invention is not limited to this configuration.
  • the sensitivity changing unit 237 may increase the sensitivity of the smoke detecting unit 233 when the estimating unit 235 estimates that the gas state is smoke due to combustion or smoldering.
  • the default value of the density threshold value that the smoke detection unit 233 compares with the calculated density value is the second threshold value Th2 (> first threshold value Th1).
  • the sensitivity changing unit 237 increases the sensitivity of the smoke detecting unit 233 by decreasing the density threshold value from the second threshold value Th2 that is the default value to the first threshold value Th1.
  • the sensitivity changing unit 237 increases the sensitivity of the smoke detecting unit 233 when the count value of the temperature counter 236 changes from “1” to “2”.
  • first period a first unit period
  • second unit period a second unit period after the first unit period.
  • the sensitivity changing unit 237 is configured to smoke when the change temperature in the first unit period is equal to or higher than the temperature threshold (first temperature threshold) and the change temperature in the second unit period is equal to or higher than the temperature threshold (second temperature threshold).
  • the sensitivity of the sensing unit 233 is increased.
  • the sensitivity changing unit 237 increases the sensitivity of the smoke detecting unit 233 when the change temperature is less than the temperature threshold and the calculated concentration value is equal to or higher than the predetermined concentration value Th3.
  • the concentration threshold value (first threshold value Th1), so that the generation of smoke can be detected earlier, and the misreporting can be suppressed. Can do.
  • the concentration threshold value remains the second threshold value (Th2) that is the default value. Therefore, it is difficult for the calculated concentration value to exceed the concentration threshold value (second threshold value Th2), and erroneous detection of steam as smoke is suppressed.
  • the smoke detection unit 233 detects smoke based on the calculated density value, but the present invention is not limited to this configuration.
  • the smoke sensing unit 233 may be configured to sense smoke based on both the concentration calculation value and the change temperature in accordance with the estimation result of the estimation unit 235.
  • the smoke detection unit 233 detects smoke based on both the calculated concentration value and the change temperature. .
  • the smoke sensing unit 233 determines the concentration (calculated value of particles) contained in the gas and the change when the change temperature in the first unit period (first period) is equal to or higher than the temperature threshold (first temperature threshold). Senses smoke based on temperature.
  • the smoke sensing unit 233 determines the presence or absence of smoke based on the comparison result between the calculated concentration value and the concentration threshold value and the comparison result between the change temperature and the predetermined threshold value.
  • the smoke detection unit 233 increases the concentration counter 234 when the calculated concentration value is equal to or higher than the concentration threshold value and the change temperature is equal to or higher than the predetermined threshold value.
  • the smoke detection unit 233 determines that smoke is present in the detection space Sp1.
  • the concentration counter 234 does not increase, so that misdetection of steam as smoke is suppressed.
  • the estimation unit 235 estimates the gas state based on the calculated concentration value and the change temperature, but is not limited to this configuration.
  • the estimation unit 235 may estimate the gas state based only on the change temperature.
  • the estimation unit 235 compares the change temperature with the temperature threshold, and increases the count value of the temperature counter 236 if the change temperature is equal to or higher than the temperature threshold.
  • the estimation unit 235 estimates that the gas state is smoke due to combustion.
  • the estimation unit 235 estimates that the gas state includes water droplets (steam). Further, when the count value of the temperature counter 236 remains “0”, the estimation unit 235 estimates that the gas state is smoke due to smoldering.
  • the sensitivity changing unit 237 changes the sensitivity of the smoke detecting unit 233 by changing the density threshold, but the configuration is not limited to this.
  • the sensitivity changing unit 237 may change the sensitivity of the smoke sensing unit 233 by multiplying the calculated density value that the smoke sensing unit 233 compares with the density threshold by a coefficient based on the estimation result of the estimation unit 235. .
  • the smoke detection system (200) detects smoke.
  • the smoke detection system (200) includes an estimation unit (235).
  • the estimation unit (235) estimates a gas state based on a change temperature that is a temporal change in the gas temperature.
  • the smoke detection system (200) further includes a smoke detection part (233) and a sensitivity change part (237) in the first aspect.
  • the smoke sensing unit (233) senses smoke based on the concentration of particles contained in the gas.
  • the sensitivity changing unit (237) changes the sensitivity of the smoke detecting unit (233) based on the estimation result of the estimating unit (235).
  • the sensitivity of the smoke detection unit (233) can be changed according to the estimation result of the estimation unit (235), it is further suppressed that steam is mistakenly detected as smoke.
  • the smoke detection unit (233) detects smoke based on the comparison result between the concentration of particles contained in the gas and the concentration threshold value. Configured as follows.
  • the sensitivity changing unit (237) changes the sensitivity of the smoke detecting unit (233) by changing the density threshold.
  • the sensitivity of the smoke detector (233) can be easily changed.
  • the sensitivity changing unit (237) increases the sensitivity of the smoke detection unit (233). Reduce.
  • the sensitivity of the smoke detection unit (233) is reduced when the gas state includes water droplets, it is possible to suppress erroneous detection of steam as smoke.
  • the sensitivity changing unit (237) increases the sensitivity of the smoke sensing unit (233). increase.
  • the sensitivity of the smoke sensing unit (233) is increased, so that smoke can be sensed earlier, and misreporting can be suppressed.
  • the smoke sensing part (233) is configured such that when the change temperature in the first period is equal to or higher than the first temperature threshold, the particles contained in the gas The smoke is detected based on the concentration of the light and the change temperature.
  • the presence or absence of smoke is determined based on not only the concentration of particles contained in the gas but also the change temperature, so that the smoke detection accuracy is improved.
  • the estimation unit (235) is configured to detect the gas based on the change temperature and the concentration of particles contained in the gas. Estimate the state.
  • the smoke detection method is a method for detecting smoke and includes an estimation step.
  • the estimation step the state of the gas is estimated based on a change temperature that is a temporal change in the temperature of the gas.
  • the program according to the ninth aspect causes the computer system to execute the smoke detection method according to the eighth aspect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

湯気を誤って煙と感知することを抑制することができる煙感知システム、煙感知方法、及びプログラムを提供する。煙感知システム(200)は、煙を感知する。煙感知システム(200)は、推定部(235)を備える。推定部(235)は、気体の温度の時間的な変化である変化温度に基づいて、気体の状態を推定する。

Description

煙感知システム、煙感知方法、及びプログラム
 本開示は、一般に煙感知システム、煙感知方法、及びプログラムに関し、より詳細には感知空間に流入した煙で散乱された発光素子からの出力光を受光素子で受光することにより煙を感知する煙感知システム、煙感知方法、及びプログラムに関する。
 従来、感知空間(感煙領域)に入り込んだ煙に、発光素子(投光素子)から光を照射し、その煙による散乱光を受光素子で受光することにより、煙を感知する煙感知器が知られている(例えば特許文献1)。
 特許文献1に記載の煙感知器は、複数のラビリンス壁で囲まれた感知空間に、ラビリンス壁の間隙によって形成された煙流入路から感知領域への煙の流入を可能としている。また、ラビリンス壁は、外部からの光によって煙感知機能が不安定とならないように、外光が煙流入路を通って入光しないような外光遮断作用を有している。特許文献1においては、発光素子及び受光素子を収容する煙感知体は略円形状である。さらに、特許文献1では、発光素子及び受光素子の後部(つまり感知空間とは反対側の端部)を突出させることにより、感知空間を広く形成している。
 特許文献1に記載の煙感知器では、例えば湯気等の煙とは異なる粒子を含んだ気体が、感煙領域に流入した場合、湯気の水粒子による散乱光によって、湯気を誤って煙と感知するおそれがあった。
特開2010-40009号公報
 本開示は、上記事由に鑑みてなされており、その目的は、湯気を誤って煙と感知することを抑制することができる煙感知システム、煙感知方法、及びプログラムを提供することにある。
 本開示の一態様に係る煙感知システムは、煙を感知する。前記煙感知システムは、推定部を備える。前記推定部は、気体の温度の時間的な変化である変化温度に基づいて、前記気体の状態を推定する。
 本開示の一態様に係る煙感知方法は、煙を感知する。前記煙感知方法は、推定ステップを含む。前記推定ステップでは、気体の温度の時間的な変化である変化温度に基づいて、前記気体の状態を推定する。
 本開示の一態様に係るプログラムは、コンピュータシステムに、前記煙感知方法を実行させる。
図1は、本開示の一実施形態に係る煙感知システムを含む自動火災報知システムのブロック図である。 図2Aは、本開示の一実施形態に係る煙感知器の斜め下方から見た外観斜視図である。図2Bは、同上の煙感知器の斜め上方から見た外観斜視図である。 図3は、同上の煙感知器の斜め下方から見た分解斜視図である。 図4は、同上の煙感知器の斜め上方から見た分解斜視図である。 図5は、同上の煙感知器における感知ブロックの分解斜視図である。 図6は、同上の煙感知システムの動作説明図である。
 以下に説明する実施形態及び変形例は、本開示の一例に過ぎず、本開示は、実施形態及び変形例に限定されない。この実施形態及び変形例以外であっても、本開示の技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
 (実施形態)
 (1)概要
 本実施形態に係る煙感知システム200のブロック図を図1に示す。本実施形態に係る煙感知システム200は、火災等によって発生する煙を感知するシステムであって、自動火災報知システム100に用いられる。本実施形態では、煙感知システム200は、煙感知器1に設けられている。煙感知器1は、煙を感知したときに発報を行う防災機器である。つまり、火災等の災害の発生時において煙が発生すると、煙感知器1は、この煙を検知し、一例として、警報音の出力又は通信機能による他の機器との連動等によって発報を行う。本開示でいう「防災機器」は、例えば、火災等の災害の防止、災害による被害の拡大の防止、又は被災からの復旧等の目的で施設に設置される機器である。
 煙感知器1は、図2A及び図2Bに示すように、筐体2を備え、筐体2内に種々の部品を収容している。煙感知器1は、施設に設置されて使用される。煙感知器1は、例えば、施設の居室、廊下又は階段等において、天井又は壁等に取り付けられた状態で施設に設置される。施設の一例として、例えば、ホテル、オフィスビル、学校、福祉施設、商業施設、テーマパーク、病院又は工場等の非住宅の施設がある。この例に限らず、煙感知器1は、集合住宅又は戸建住宅等の施設に用いられてもよい。
 煙感知器1は、壁構造3と、発光部4と、受光部5と、温度検出部60と、を備えている(図5参照)。発光部4は、発光素子40を有している。受光部5は、受光素子50を有している。温度検出部60は、温度検出素子600を有している。壁構造3は、一平面に直交する一方向から見て感知空間Sp1を囲む。発光部4は、感知空間Sp1に向けて光を出力する。受光部5は、発光部4からの直接光が入射せず、かつ感知空間Sp1内の煙等での散乱光が入射する位置に配置される。これにより、感知空間Sp1に煙等が存在しない状態では、受光部5は、発光部4から出力された光を受光せず、感知空間Sp1に煙が存在する状態では、受光部5は、発光部4から出力され煙等で散乱された光(散乱光)を受光する。したがって、煙感知器1は、受光部5での受光状態によって、感知空間Sp1に存在する煙を感知することができる。温度検出部60は、感知空間Sp1における気体の温度を検出する。
 本実施形態では、煙感知システム200(煙感知器1)が、各部屋に浴室(例えばユニットバス等)が設けられているホテルにおける各部屋の天井に設置される場合を例に説明する。例えば、浴室のドアが開けられた際に、浴室から流入した空気が冷やされて湯気が発生する場合がある。本実施形態の煙感知システム200は、推定部235を備えている(図1参照)。推定部235は、気体の温度の時間的な変化である変化温度に基づいて、気体の状態を推定する。これにより、本実施形態に係る煙感知システム200では、気体の状態が煙であるか否か(水滴(湯気)を含む気体であるか)を推定することができるので、湯気を誤って煙と感知することが抑制される。
 (2)構成
 以下に、本実施形態に係る煙感知器1及び煙感知システム200について詳しく説明する。
 (2.1)煙感知器の構成
 まず、煙感知器1の構成について図2A~図5を参照して説明する。
 本実施形態では、一例として、煙感知器1が施設の天井に取り付けられることとして説明する。以下、煙感知器1が天井に取り付けられた状態での、水平面に対して垂直な(直交する)方向を「上下方向」とし、上下方向における下方を「下方」として説明する。図面中の「上下方向」を示す矢印は説明のために表記しているに過ぎず、実体を伴わない。ただし、これらの方向は煙感知器1の使用方向(取付方向)を限定する趣旨ではない。例えば、ここで規定した「下方」が、実際の煙感知器1の設置状態では前方(水平方向)であってもよい。
 また、以下に説明する各図面においては、煙感知器1の構成を模式的に表しており、図面における各種の寸法関係等が実物とは異なる場合がある。
 煙感知器1は、筐体2と、感知ブロック10(図3参照)と、回路ブロック20(図3参照)と、を備えている。また、本実施形態では、煙感知器1は、音出力部61(図3参照)と、電池62と、を更に備えている。音出力部61及び電池62は、煙感知器1の構成要素に含まれることは必須ではなく、煙感知器1の構成要素に音出力部61及び電池62が含まれていなくてもよい。
 筐体2は、平面視において円形状となる円盤状である。筐体2は、合成樹脂製の成形品である。筐体2は、第1カバー21と、第2カバー22と、を有している。第1カバー21は、第2カバー22の下面を覆うように、第2カバー22に対して組み合わされる。第2カバー22は、施工面(本実施形態では天井面)に固定される。ただし、厳密には、第2カバー22は施工面に直接的に固定されるわけではなく、施工面に固定されている取付ベースに固定されることによって、施工面に対して間接的に固定される。
 ここで、第1カバー21及び第2カバー22は、いずれも円盤状に形成されており、平面視における外周形状が同一である。そのため、第1カバー21と第2カバー22とが組み合わされることにより、1つの円盤状の筐体2が構成される。第1カバー21は、第2カバー22に対して複数本(3本)のねじ63にて結合される。第1カバー21と第2カバー22とが互いに結合された状態で、第1カバー21と第2カバー22との間には、感知ブロック10、回路ブロック20及び音出力部61が収容される。
 第1カバー21は、円形状の第1主板211と、第1主板211の上面の外周部から上方に突出する第1周壁212と、を有している。また、第1カバー21は、第1主板211の上面に、回路ブロック20を配置するための回路領域213(図4参照)、及び音出力部61を配置するための第1音響領域214(図4参照)を更に有している。第1カバー21は、回路領域213内に配置された押釦215を更に有している。押釦215は、ヒンジ構造により第1主板211に対して可動に構成されており、筐体2の内側、つまり上方へと押し込む操作が可能である。押釦215が押し操作されることにより、回路領域213に配置される回路ブロック20に含まれるスイッチが操作されることになる。
 また、第1主板211の下面には、外周縁に沿って延びる溝216(図2A参照)が形成されている。溝216は、第1主板211の下面の外周縁と略同心円状であって、全周に亘って形成されている。つまり、溝216は、第1主板211の下面の外周縁よりも一回り小さい円環状である。さらに、溝216の底面のうち第1音響領域214に対応する部分には、第1主板211を、第1主板211の板厚方向に貫通する音孔217(図2A参照)が形成されている。
 第2カバー22は、円形状の第2主板221と、第2主板221の上面の外周部から上方に突出する第2周壁222と、を有している。また、第2カバー22は、第2主板221の下面に、感知ブロック10を配置するための収容領域223(図3参照)、及び音出力部61を配置するための第2音響領域224を更に有している。第2カバー22は、第2主板221の上面に、電池62を収容するための電池領域225(図4参照)を更に有している。
 また、第2カバー22は、第2主板221の下面から下方に突出する複数のスペーサ226を更に有している。複数のスペーサ226は、各々の先端部(下端部)を第1主板211の上面に接触させることにより、第1カバー21と第2カバー22との間に、所定の隙間を確保する。具体的には、第1カバー21と第2カバー22とが互いに結合された状態で、第1周壁212の上端面と第2主板221の下面との間には、筐体2の内部空間を筐体2の外部とつなぐ開口部23としての隙間が形成される。これにより、開口部23を通して、筐体2の内部空間、つまり第1カバー21と第2カバー22との間の空間に、煙等の気体が流入可能となる。
 なお、筐体2(第1カバー21及び第2カバー22)の形状は、円盤状に限らず、例えば多角形(四角形、六角形、八角形等)であってもよい。
 図5に示すように、感知ブロック10は、感知ケース7と、発光部4と、受光部5と、温度検出部60と、を有している。
 感知ケース7は、平面視において円形状となる円盤状である。感知ケース7は、合成樹脂製の成形品である。感知ケース7は、第1ケース71と、第2ケース72と、を有している。第2ケース72は、第1ケース71の上面を覆うように、第1ケース71に対して組み合わされる。第1ケース71は、プリント配線板201(図3参照)に固定される。ここで、感知ケース7は、少なくとも遮光性を有している。感知ケース7の内部には、感知空間Sp1が形成される。第1ケース71は、円形状の底板73と、底板73の上面731の外周部から上方に突出する壁構造3と、を有している。壁構造3は、感知空間Sp1の外部から感知空間Sp1に光が進入することを抑制しつつも、感知空間Sp1の外部から感知空間Sp1に気体を取り込む機能を有する。壁構造3は、平面視において、感知空間Sp1を全周にわたって包囲するように円環状に形成されている。具体的には、壁構造3は、底板73の上面731の外周縁に沿って並ぶ複数の小片30の集合体である。壁構造3は、これら複数の小片30の間を通して気体を通過させる。言い換えれば、底板73の上面731の外周部には、上面731の外周縁に沿って複数の小片30が間隔を空けて並んで配置されている。
 第1ケース71は、発光素子ホルダ8と、受光素子ホルダ9と、温度検出素子ホルダ601と、を有している。発光素子ホルダ8は、発光部4(発光素子40)を保持する。受光素子ホルダ9は、受光部5(受光素子50)を保持する。温度検出素子ホルダ601は、温度検出部60(温度検出素子600)を保持する。発光素子40は、例えば、発光ダイオード(LED:Light Emitting Diode)であって、通電時に光を出力する。発光素子40は、感知空間Sp1に向けて光を出力する。受光素子50は、例えば、フォトダイオード(PD:Photodiode)であって、光を電気信号に変換する光電変換を行う素子である。受光部5(受光素子50)は、発光部4(発光素子40)からの直接光が入射せず、かつ感知空間Sp1内の煙等での散乱光が入射する位置に配置される。温度検出素子600は、例えば、サーミスタであって、温度に応じて電気特性(抵抗値)が変動する素子である。温度検出部60(温度検出素子600)は、感知空間Sp1の温度を検出する。
 第2ケース72は、円形状の上板721と、上板721の下面の外周部から下方に突出する周壁722と、を有している。周壁722の内径は壁構造3の外径より大きい。さらに、上板721の下面からの周壁722の突出量は、底板73の上面731からの壁構造3の突出量と略同一である。したがって、第1ケース71と第2ケース72とが互いに結合された状態では、周壁722の先端面(下端面)が底板73の上面731に接触し、壁構造3の先端面(上端面)が上板721の下面に接触する。この状態で、壁構造3は周壁722で囲まれた空間に収まることになる。
 周壁722には、周壁722を周壁722の板厚方向に貫通する複数の窓孔723が形成されている。複数の窓孔723は、上板721の下面の周方向に沿って並んでいる。これにより、第1ケース71と第2ケース72とが互いに結合された状態で、複数の窓孔723を通して壁構造3が感知ケース7の外部に露出する。ここで、周壁722には、複数の窓孔723を覆うように防虫ネットが取り付けられていてもよい。防虫ネットは、複数の窓孔723から感知ケース7内の感知空間Sp1への虫等の異物の進入を低減する。
 回路ブロック20は、プリント配線板201と、スイッチを含む複数の電子部品202と、を有している。複数の電子部品202は、プリント配線板201に実装される。プリント配線板201の導体部には、感知ブロック10の発光部4、受光部5、及び温度検出部60が電気的に接続される。また、プリント配線板201の導体部には、音出力部61及び電池62が更に電気的に接続される。本実施形態では、プリント配線板201は、感知ブロック10の下方、つまり感知ブロック10と第1主板211との間に配置されている。感知ブロック10はプリント配線板201の板厚方向の一面(上面)上に搭載される。
 ここで、回路ブロック20は、複数の電子部品202の一部である制御部203(図1参照)を含んでいる。制御部203は、発光部4、受光部5及び音出力部61等の制御を行う回路である。制御部203は、煙感知システム200としての機能を有する。制御部203は、受光部5の受光量(出力信号の大きさ)に基づいて、感知空間Sp1における煙の有無を判断する。受光部5での受光量は、例えば、感知空間Sp1における気体の粒子の濃度等によって変化する。制御部203は、粒子の濃度が一定以上である場合に、感知空間Sp1に煙が存在すると判断する。制御部203は、煙の存在を感知すると、音出力部61を駆動するための電気信号を音出力部61に出力する。制御部203(煙感知システム200)の詳細な説明は、「(2.2)煙感知システムの構成」の欄で説明する。
 音出力部61は、回路ブロック20からの電気信号を受けて音(音波)を出力する。音出力部61は、電気信号を音に変換するスピーカ又はブザー等により実現される。音出力部61は、平面視において円形状となる円盤状である。
 電池62は、第2カバー22の上方において、電池領域225に収容される。電池62は、一次電池と二次電池とのいずれであってもよい。
 以上説明したように構成される本実施形態に係る煙感知器1は、例えば、自動火災報知システム100の構成要素に含まれる(図1参照)。自動火災報知システム100は、煙感知器1と受信機300とを備えている。煙感知器1は、火災(による煙)の発生を検知すると、受信機300へ火災発生を通知する発報信号(火災信号)を送信する。煙感知器1と受信機300との間の通信手段は、有線通信であってもよいし無線通信であってもよい。受信機300は、例えば、煙感知器1からの発報信号を受信すると、火災の発生を通知する通知信号を管理装置に送信する。また、自動火災報知システム100が複数の煙感知器1を備えている場合、受信機300は、煙感知器1からの発報信号を受信すると、他の煙感知器1の音出力部61から音を連動して出力させる。また、自動火災報知システム100は、発信機等を備えていてもよい。発信機は、人が火災を発見した際に押される押ボタンを備えている。発信機は、押ボタンが押されると、発報信号(火災信号)を受信機300に送信する。
 (2.2)煙感知システムの構成
 本実施形態に係る煙感知システム200は、制御部203を備えている。煙感知システム200の構成要素に、感知空間Sp1における気体の温度を検出する温度検出部60が含まれていてもよい。また、煙感知システム200の構成要素に、感知空間Sp1の気体に含まれる粒子の濃度を検出する濃度検出部としての受光部4及び発光部5が含まれていてもよい。
 制御部203は、例えば、プロセッサ及びメモリを有するマイクロコンピュータで構成されている。つまり、制御部203は、プロセッサ及びメモリを有するコンピュータシステムで実現されている。そして、プロセッサが適宜のプログラムを実行することにより、制御部203が、温度算出部231、濃度算出部232、煙感知部233、濃度カウンタ234、推定部235、温度カウンタ236、及び感度変更部237として機能する。プログラムは、メモリに予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。
 温度算出部231は、温度検出部60の出力を信号処理することにより、変化温度〔℃〕を算出するように構成されている。変化温度とは、感知空間Sp1における気体の温度の時間的な変化である。本実施形態では、温度算出部231は、単位期間ごとの変化温度を算出する。つまり、変化温度は、単位期間の始点における感知空間Sp1の気体の温度と、単位期間の終点における感知空間Sp1の気体の温度と、の差である。温度算出部231は、温度検出部60(サーミスタ)の抵抗値に基づいて感知空間Sp1の気体の温度を算出し、単位期間ごとの変化温度を算出する。単位期間の長さは、感知空間Sp1に、水滴(湯気)を含む気体が流入した際に、感知空間Sp1の温度が上昇し始めて安定するまでに要する時間よりも長い時間に設定されていることが好ましい。単位期間の長さは、一例として10秒であるが、この値に限らず異なる値であってもよい。
 濃度算出部232は、受光部5の出力を信号処理することにより、感知空間Sp1内の気体に含まれる粒子の濃度〔%/m〕を算出するように構成されている。濃度算出部232は、受光部5の受光量に相当する受光部5の出力信号の大きさに基づいて、感知空間Sp1内の気体に含まれる粒子の濃度を算出する。濃度算出部232は、所定のサンプリング周期で、濃度を算出する。本開示では、単位距離(1m)あたりの光の減衰率〔%〕を粒子の濃度として算出しているが、粒子の濃度は、単位体積あたりの粒子の個数、重量等の他の単位であってもよい。
 煙感知部233は、気体に含まれる粒子の濃度に基づいて、煙を感知するように構成されている。具体的には、煙感知部233は、気体に含まれる粒子の濃度である濃度算出部232の算出結果を取得する。煙感知部233は、気体に含まれる粒子の濃度(濃度算出値)と、濃度閾値と、の比較結果に基づいて、煙を感知する。より具体的には、煙感知部233は、濃度算出値が濃度閾値以上である場合、濃度カウンタ234の値(カウント値)を増加させる。また、煙感知部233は、濃度算出値が濃度閾値未満である場合、濃度カウンタ234の値(カウント値)を低減させる。濃度カウンタ234の下限値はゼロであるとする。本実施形態では、濃度カウンタ234のカウント値は、整数であって、増加又は低減される際の値は“1”である。煙感知部233は、濃度カウンタ234のカウント値が所定値に達すると、感知空間Sp1に煙が存在すると判断する。煙感知部233は、煙の存在を感知すると、音出力部61を駆動するための電気信号を音出力部61に出力する。また、煙感知部233は、火災発生を通知する発報信号(火災信号)を受信機300に送信する。
 推定部235は、温度算出部231の算出結果である変化温度と、濃度算出部232の算出結果である濃度(濃度算出値)と、に基づいて、感知空間Sp1における気体の状態を推定するように構成されている。具体的には、推定部235は、変化温度と温度閾値との比較、及び濃度算出値と所定濃度値との比較を、単位期間ごとに行う。そして、推定部235は、比較結果に基づいて、気体の状態が煙であるか水滴を含む状態であるかを推定する。ここでいう煙とは、火災によって発生する気体であって、煤等の粒子を含んでいる。水滴を含む状態とは、水蒸気の一部が液化した水粒子(いわゆる湯気)を含んだ気体の状態である。
 推定部235は、温度カウンタ236の値(カウント値)に基づいて、気体の状態が煙であるか水滴を含む状態であるかを推定する。推定部235は、変化温度が温度閾値以上であり、かつ、濃度算出値が所定濃度値以上である場合、温度カウンタ236の値(カウント値)を増加させる。つまり、温度カウンタ236は、単位期間において、気体に含まれる粒子の濃度が所定濃度値以上であって、かつ、気体の上昇温度が温度閾値以上である場合、カウント値が増加する。本実施形態では、温度カウンタ236のカウント値は、整数であって、増加される際の値は“1”である。所定濃度値と比較される濃度算出値は、単位期間における濃度算出値のピーク値(最高値又は最低値)であってもよいし、単位期間における濃度算出値の代表値(平均値、中央値等)であってもよい。本実施形態では、一例として、単位期間における濃度算出値の最高ピーク値が、所定濃度値と比較される。温度閾値は、一例として3〔℃〕であるが、この値に限らず異なる値であってもよい。また、温度閾値は、温度カウンタ236のカウント値に応じて変更されてもよい。所定濃度値は、濃度閾値よりも小さい値である。所定濃度値は、一例として2〔%/m〕であるが、この値に限らず異なる値であってもよい。また、所定濃度値は、温度カウンタ236のカウント値に応じて変更されてもよい。また、温度カウンタ236は、気体に含まれる粒子の濃度が所定濃度未満である期間が所定期間経過した場合、カウント値が“0”にリセットされてもよい。
 推定部235は、温度カウンタ236のカウント値が“1”から“2”に変化すると、気体の状態が煙であると推定する。より詳細には、推定部235は、温度カウンタ236のカウント値が“1”から“2”に変化すると、気体の状態が、炎の発生を伴う燃焼によって発生した煙であると推定する。言い換えれば、推定部235は、第1単位期間(第1期間)における変化温度が温度閾値(第1温度閾値)以上であり、かつ、第2単位期間(第2期間)における変化温度が温度閾値(第2温度閾値)以上である場合、気体の状態が、燃焼による煙であると推定する。第2単位期間は、時系列において第1単位期間よりも後の単位期間である。つまり、推定部235は、気体に含まれる粒子の濃度が所定濃度値以上である状態で、気体の温度が上昇し続ける場合、気体の状態が、燃焼による煙であると推定する。
 また、推定部235は、温度カウンタ236のカウント値が“1”のまま変化しない場合、気体の状態が水滴(湯気)を含む状態であると推定する。言い換えれば、推定部235は、第1単位期間(第1期間)における変化温度が温度閾値(第1温度閾値)以上であり、かつ、第2単位期間(第2期間)における変化温度が温度閾値(第2温度閾値)未満である場合、気体の状態が水滴を含む状態であると推定する。つまり、推定部235は、気体に含まれる粒子の濃度が所定濃度値以上である状態で、気体の温度が一旦上昇してその後に安定した場合、気体の状態が水滴を含む状態であると推定する。
 また、推定部235は、温度カウンタ236のカウント値が“0”のまま変化しない場合、気体の状態が煙であると推定する。より詳細には、推定部235は、変化温度が温度閾値未満であり、かつ濃度算出値が所定濃度値以上である場合、気体の状態が、炎の発生を伴わない燻焼(無炎燃焼)によって発生した煙であると推定する。つまり、推定部235は、気体に含まれる粒子の濃度が所定濃度値以上である状態で、気体の温度が上昇しない場合、気体の状態が、燻焼による煙であると推定する。
 ここで、第2期間(第2単位期間)は、第1期間(第1単位期間)よりも後の期間であればよく、時系列で連続している必要はない。例えば、推定部235は、温度カウンタ236のカウント値が“0”から“1”に変化した後、カウント値が“1”が1又は複数回続いたとする。このような場合、推定部235は、カウント値“1”が連続することによって、気体の状態が水滴を含む状態(湯気)と一旦推定する。そして、カウント値“1”が続いた後、カウント値が“1”から“2”に変化すると、気体の状態が燃焼による煙であると推定結果を更新する。つまり、推定部235は、カウント値が“0”から“1”に変化した単位期間(第1期間)と、カウント値が“1”から“2”に変換した単位期間(第2期間)とが、時系列で連続していない場合であっても、気体の状態が燃焼による煙であると推定する。
 感度変更部237は、推定部235の推定結果に基づいて、煙感知部233の感度を変更するように構成されている。本実施形態では、感度変更部237は、推定部235が、気体の状態が水滴(湯気)を含む状態であると推定した場合、煙感知部233の感度を低減させる。具体的には、感度変更部237は、煙感知部233が濃度算出値と比較する濃度閾値を、デフォルト値である第1閾値から第2閾値へ増加させることにより、煙感知部233の感度を低減させる。つまり、感度変更部237は、温度カウンタ236のカウント値が“1”のまま変化しない場合、煙感知部233の感度を低減させる。言い換えれば、時系列において、第1単位期間(第1期間)と、第1単位期間よりも後の第2単位期間(第2期間)とがある。感度変更部237は、第1単位期間における変化温度が温度閾値(第1温度閾値)以上であり、かつ、第2単位期間における変化温度が温度閾値(第2温度閾値)未満である場合、煙感知部233の感度を低減させる。また、感度変更部237は、推定部235が、気体の状態が水滴(湯気)を含む状態であると一旦推定した後に、気体の状態が煙であると推定した場合、濃度閾値を第1閾値から第2閾値へ一旦増加させた後に、第1閾値に戻す。
 また、本実施形態では、感度変更部237は、推定部235が、気体の状態が燃焼又は燻焼による煙であると推定した場合、煙感知部233の感度を変更しない。つまり、感度変更部237は、温度カウンタ236のカウント値が“1”から“2”に変化した場合、又は“0”のまま変化しない場合、濃度閾値を第1閾値から第2閾値へ増加しない。また、感度変更部237は、推定部235が、気体の状態が煙である状態であると一旦推定した後に、気体の状態が水滴(湯気)を含む状態であると推定した場合、濃度閾値を第1閾値に保った後に第2閾値に増加させる。
 (3)動作例
 本実施形態の煙感知システム200の動作例を図6を用いて説明する。図6は、気体の状態が水滴(湯気)を含む状態、燃焼による煙、燻焼による煙それぞれである場合の、濃度算出値、温度算出値、及び温度カウンタ236のカウント値(温度カウント値)の変化の一例を示すグラフである。温度算出値とは、温度算出部231が算出する感知空間Sp1の温度である。図6の温度算出値のグラフは、時点t0での温度算出値を基準(0℃)とした温度算出値の変化を示している。
 図6の濃度算出値のグラフにおいて、X1(実線)は、気体の状態が水滴を含む状態である場合の濃度算出値である。X2(破線)は、気体の状態が燃焼による煙である場合の濃度算出値である。X3(一点鎖線)は、気体の状態が燻焼による煙である場合の濃度算出値である。図6の温度算出値のグラフにおいて、Y1(実線)は、気体の状態が水滴を含む状態である場合の温度算出値である。Y2(破線)は、気体の状態が燃焼による煙である場合の温度算出値である。Y3(一点鎖線)は、気体の状態が燻焼による煙である場合の温度算出値である。図6の温度カウント値のグラフにおいて、Z1(実線)は、気体の状態が水滴を含むである場合の温度カウント値である。Z2(破線)は、気体の状態が燃焼による煙である場合の温度カウント値である。Z3(一点鎖線)は、気体の状態が燻焼による煙である場合の温度カウント値である。
 また、図6のX1及びY1の値は、煙感知器1が水滴(湯気)を含む気体の発生源(例えば浴室のドア)から水平面上で0.5〔m〕離れた位置に設置されている場合の値である。図6のX2及びY2の値は、煙感知器1が燃焼による煙の発生源から水平面上で2.2〔m〕離れた位置に設置されている場合の値である。図6のX3及びY3の値は、煙感知器1が燻焼による煙の発生源から水平面上で2.2〔m〕離れた位置に設置されている場合の値である。
 また、図6において、Th1は、温度閾値のデフォルト値である第1閾値であり、Th2は、感度変更部237による変更後の温度閾値である第2閾値であり、Th3は、推定部235が濃度算出値と比較する所定濃度値である。図6において、T1は、単位期間であり、F1は、温度閾値である。
 まず、気体の状態が水滴(湯気)を含む状態である場合について説明する(図6のX1,Y1,Z1参照)。
 例えば、浴室のドアが開けられて、煙感知器1の感知空間Sp1に水滴(湯気)を含む気体が流入すると、この気体によって濃度算出値及び温度算出値が上昇する。時点t0から時点t1までの単位期間T1(第1単位期間)において、変化温度が温度閾値F1(第1温度閾値)を上回り、濃度算出値が所定濃度値Th3及び第1閾値Th1(濃度閾値)を上回っている。したがって、時点t1において、温度カウンタ236のカウント値が“0”から“1”に増加する。
 時点t1から時点t2までの単位期間T1(第2単位期間)において、変化温度が温度閾値F1(第2温度閾値)を下回っている。これは、気体の状態が水滴(湯気)を含む状態である場合、この気体の温度によって温度算出値が一時的に上昇し、その後、温度が安定するためである。したがって、時点t2において、温度カウンタ236のカウント値は、増加せず“1”のままとなる。そのため、推定部235は、気体の状態が水滴(湯気)を含む状態であると推定する。感度変更部237は、濃度閾値を第1閾値Th1から第2閾値Th2に変更(増加)することにより、煙感知部233の感度を低減させる。
 これにより、時点t2以降において、濃度算出値が濃度閾値(第2閾値Th2)を上回りにくくなり、湯気を誤って煙と検知すること(誤検知)が抑制される。図6に示す例では、時点t2以前では、濃度算出値が濃度閾値(第1閾値Th1)を上回るタイミングが存在しているが、時点t2以降では、濃度算出値が濃度閾値(第2閾値Th2)未満となっている。そのため、煙感知部233は、感知空間Sp1に煙が存在しないと判断する。
 次に、気体の状態が燃焼による煙である場合について説明する(図6のX2,Y2,Z2参照)。
 炎を伴う燃焼が発生すると、煙及び炎によって濃度算出値及び温度算出値が上昇する。時点t0から時点t1までの単位期間T1(第1単位期間)において、変化温度が温度閾値F1(第1温度閾値)を上回り、濃度算出値が所定濃度値Th3及び第1閾値Th1(濃度閾値)を上回っている。したがって、時点t1において、温度カウンタ236のカウント値が“0”から“1”に増加する。
 時点t1から時点t2までの単位期間T1(第2単位期間)においても、変化温度が温度閾値F1(第2温度閾値)を上回っている。これは、燃焼の炎によって、気体の温度が上昇し続けるためである。したがって、時点t2において、温度カウンタ236のカウント値が“1”から“2”に増加する。そのため、推定部235は、気体の状態が燃焼による煙であると推定する。感度変更部237は、濃度閾値を第1閾値Th1のまま変更しない(維持する)。つまり、感度変更部237は、煙感知部233の感度を変更(低減)しない。
 これにより、濃度算出値が濃度閾値(第1閾値Th1)を上回りやすくなり、煙の発生をより早く検知することができ、失報を抑制することができる。図6に示す例では、時点t2以降においても、濃度算出値が濃度閾値(第1閾値Th1)を上回るタイミングが存在している。そのため、煙感知部233は、感知空間Sp1に煙が存在すると判断する。その結果、音出力部61から音が出力され、煙感知器1から受信機300へ火災発生を通知する発報信号(火災信号)が送信される。
 次に、気体の状態が燻焼による煙である場合について説明する(図6のX3,Y3,Z3参照)。
 炎を伴わない燻焼が発生すると、濃度算出値が上昇するが、温度算出値は上昇しない。これは、燻焼では、煙が発生するが炎が発生しないためである。したがって、燻焼が発生しても、温度カウンタ236のカウント値が“0”のままとなる。推定部235は、濃度算出値が所定濃度値Th3を上回っているため、気体の状態が燻焼による煙であると推定する。感度変更部237は、濃度閾値を第1閾値Th1のまま変更しない(維持する)。つまり、感度変更部237は、煙感知部233の感度を変更(低減)しない。
 これにより、濃度算出値が濃度閾値(第1閾値Th1)を上回りやすくなり、煙の発生をより早く検知することができ、失報を抑制することができる。図6に示す例では、時点t2以降においても、濃度算出値が濃度閾値(第1閾値Th1)を上回るタイミングが存在している。そのため、煙感知部233は、感知空間Sp1に煙が存在すると判断する。その結果、音出力部61から音が出力され、煙感知器1から受信機300へ火災発生を通知する発報信号(火災信号)が送信される。
 なお、上述した、推定部235による、温度カウンタ236のカウント値に基づいた気体の状態の推定処理は、一例である。温度カウンタ236のカウント値は、気体の状態に応じて異なるように変化すればよい。温度カウンタ236のカウント値は、温度の時間変化が同じであっても、単位期間の長さ、温度閾値の大きさ等に応じて変化する。そのため、推定部235による、温度カウンタ236のカウント値に基づいた気体の状態の推定処理は、単位期間の長さ、温度閾値の大きさ等に応じて適宜設定される。例えば、推定部235は、温度カウンタ236のカウント値が“2”のままである場合に、気体の状態が水滴(湯気)を含む状態であると推定してもよい。また、推定部235は、温度カウンタ236のカウント値が“2”から“3”に変化した場合に、気体の状態が燃焼による煙であると推定してもよい。
 (4)変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎず、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、実施形態に係る煙感知システム200の変形例について列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 実施形態に係る煙感知システム200と同様の機能は、煙感知方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。煙感知方法は、煙を感知する方法であって、気体の温度の時間的な変化である変化温度に基づいて、気体の状態を推定する推定ステップを含む。また、プログラムは、コンピュータシステムに煙感知方法を実行させる。
 本開示における煙感知システム200は、例えば、制御部203等に、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、煙感知部233、推定部235、感度変更部237等の機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。煙感知システム200は、1つの筐体(本開示では筐体2)に収納された構成に限らず、複数の筐体に分散して収納されていてもよい。例えば、煙感知システム200としての機能は、煙感知器1と受信機300とに分散されていてもよいし、受信機300が備えていてもよい。また、煙感知システム200としての機能は、クラウド(クラウドコンピューティング)によって実現されてもよい。
 (4.1)第1変形例
 上述した実施形態では、感度変更部237は、推定部235が、気体の状態が水滴(湯気)を含む状態であると推定した場合、濃度閾値を第1閾値Th1から第2閾値Th2へ増加させることにより、煙感知部233の感度を低減させていたが、この構成に限らない。感度変更部237は、推定部235が、気体の状態が燃焼又は燻焼による煙と推定した場合、煙感知部233の感度を増加させてもよい。
 本変形例では、煙感知部233が濃度算出値と比較する濃度閾値のデフォルト値が第2閾値Th2(>第1閾値Th1)である。感度変更部237は、濃度閾値を、デフォルト値である第2閾値Th2から第1閾値Th1へ減少させることにより、煙感知部233の感度を増加させる。
 感度変更部237は、温度カウンタ236のカウント値が“1”から“2”に変化した場合、煙感知部233の感度を増加させる。言い換えれば、時系列において、第1単位期間(第1期間)と、第1単位期間よりも後の第2単位期間(第2期間)とがある。感度変更部237は、第1単位期間における変化温度が温度閾値(第1温度閾値)以上であり、かつ、第2単位期間における変化温度が温度閾値(第2温度閾値)以上である場合、煙感知部233の感度を増加させる。
 また、感度変更部237は、変化温度が温度閾値未満であり、かつ濃度算出値が所定濃度値Th3以上である場合、煙感知部233の感度を増加させる。
 これにより、燃焼又は燻焼による煙が発生した場合において、濃度算出値が濃度閾値(第1閾値Th1)を上回りやすくなり、煙の発生をより早く検知することができ、失報を抑制することができる。また、推定部235が推定した気体の状態が水滴を含む状態である場合、濃度閾値がデフォルト値の第2閾値(Th2)のままとなる。したがって、濃度算出値が濃度閾値(第2閾値Th2)を上回りにくくなり、湯気を煙と誤検知することが抑制される。
 (4.2)第2変形例
 上述した実施形態では、煙感知部233は、濃度算出値に基づいて、煙を感知していたが、この構成に限らない。煙感知部233は、推定部235の推定結果に応じて、濃度算出値と変化温度との両方に基づいて、煙を感知するように構成されていてもよい。
 本変形例では、煙感知部233は、推定部235が、気体の状態が燃焼による煙、又は湯気であると推定した場合、濃度算出値と変化温度との両方に基づいて、煙を感知する。言い換えれば、煙感知部233は、第1単位期間(第1期間)における変化温度が温度閾値(第1温度閾値)以上である場合、気体に含まれる粒子の濃度(濃度算出値)と、変化温度と、に基づいて、煙を感知する。具体的には、煙感知部233は、濃度算出値と濃度閾値との比較結果、及び変化温度と所定の閾値との比較結果に基づいて、煙の有無を判断する。例えば、煙感知部233は、濃度算出値が濃度閾値以上であり、かつ、変化温度が所定の閾値以上である場合、濃度カウンタ234を増加させる。煙感知部233は、濃度カウンタ234のカウント値が所定値に達すると、感知空間Sp1に煙が存在すると判断する。
 したがって、変化温度が所定の閾値未満である場合、濃度カウンタ234が増加しないので、湯気を煙と誤検知することが抑制される。
 (4.3)その他の変形例
 上述した実施形態では、推定部235は、濃度算出値と変化温度とに基づいて、気体の状態を推定していたが、この構成に限らない。推定部235は、変化温度のみに基づいて、気体の状態を推定してもよい。推定部235は、変化温度と温度閾値とを比較し、変化温度が温度閾値以上である場合、温度カウンタ236のカウント値を増加させる。推定部235は、温度カウンタ236のカウント値が“1”から“2”に変化した場合、気体の状態が燃焼による煙であると推定する。また、推定部235は、温度カウンタ236のカウント値が“1”のままである場合、気体の状態が水滴(湯気)を含む状態であると推定する。また、推定部235は、温度カウンタ236のカウント値が“0”のままである場合、気体の状態が燻焼による煙であると推定する。
 また、上述した実施形態では、感度変更部237は、濃度閾値を変更することにより煙感知部233の感度を変更していたが、この構成に限らない。例えば、感度変更部237は、煙感知部233が濃度閾値と比較する濃度算出値に、推定部235の推定結果に基づいた係数を掛けることにより、煙感知部233の感度を変更してもよい。
 (まとめ)
 第1態様に係る煙感知システム(200)は、煙を感知する。煙感知システム(200)は、推定部(235)を備える。推定部(235)は、気体の温度の時間的な変化である変化温度に基づいて、気体の状態を推定する。
 この態様によれば、気体の状態が煙であるか否か(水滴を含む状態であるか)を推定することができるので、湯気を誤って煙と感知することが抑制される。
 第2態様に係る煙感知システム(200)は、第1態様において、煙感知部(233)と、感度変更部(237)と、を更に備える。煙感知部(233)は、気体に含まれる粒子の濃度に基づいて、煙を感知する。感度変更部(237)は、推定部(235)の推定結果に基づいて、煙感知部(233)の感度を変更する。
 この態様によれば、推定部(235)の推定結果に応じて煙感知部(233)の感度を変更できるので、湯気を誤って煙と感知することがより抑制される。
 第3態様に係る煙感知システム(200)では、第2態様において、煙感知部(233)は、気体に含まれる粒子の濃度と、濃度閾値と、の比較結果に基づいて、煙を感知するように構成される。感度変更部(237)は、濃度閾値を変更することにより、煙感知部(233)の感度を変更する。
 この態様によれば、煙感知部(233)の感度を容易に変更することができる。
 第4態様に係る煙感知システム(200)では、第2又は第3態様において、時系列において、第1期間(第1単位期間)と、第1期間よりも後の第2期間(第2単位期間)とがある。感度変更部(237)は、第1期間における変化温度が第1温度閾値以上であり、かつ、第2期間における変化温度が第2温度閾値未満である場合、煙感知部(233)の感度を低減させる。
 この態様によれば、気体の状態が水滴を含む状態である場合に、煙感知部(233)の感度が低減されるので、湯気を誤って煙と感知することが抑制される。
 第5態様に係る煙感知システム(200)では、第2又は第3態様において、時系列において、第1期間(第1単位期間)と、第1期間よりも後の第2期間(第2単位期間)とがある。感度変更部(237)は、第1期間における変化温度が第1温度閾値以上であり、かつ、第2期間における変化温度が第2温度閾値以上である場合、煙感知部(233)の感度を増加させる。
 この態様によれば、気体の状態が煙である場合に、煙感知部(233)の感度が増加されるので、煙をより早く感知することができ、失報を抑制することができる。
 第6態様に係る煙感知システム(200)では、第4又は第5態様において、煙感知部(233)は、第1期間における変化温度が第1温度閾値以上である場合、気体に含まれる粒子の濃度と、変化温度と、に基づいて、煙を感知する。
 この態様によれば、気体に含まれる粒子の濃度だけでなく、変化温度にも基づいて、煙の有無が判断されるので、煙の感知精度が向上する。
 第7態様に係る煙感知システム(200)では、第1~第6態様のいずれかにおいて、推定部(235)は、変化温度と、気体に含まれる粒子の濃度と、に基づいて、気体の状態を推定する。
 この態様によれば、推定部(235)による気体の状態の推定精度の向上を図ることができる。
 第8態様に係る煙感知方法は、煙を感知する方法であって、推定ステップを含む。推定ステップでは、気体の温度の時間的な変化である変化温度に基づいて、気体の状態を推定する。
 この態様によれば、気体の状態が煙であるか否か(水滴を含む状態であるか)を推定することができるので、湯気を誤って煙と感知することが抑制される。
 第9態様に係るプログラムは、コンピュータシステムに、第8態様の煙感知方法を実行させる。
 この態様によれば、気体の状態が煙であるか否か(水滴を含む状態であるか)を推定することができるので、湯気を誤って煙と感知することが抑制される。
200 煙感知システム
233 煙感知部
235 推定部
237 感度変更部
 

Claims (9)

  1.  煙を感知する煙感知システムであって、
     気体の温度の時間的な変化である変化温度に基づいて、前記気体の状態を推定する推定部を備える、
     煙感知システム。
  2.  前記気体に含まれる粒子の濃度に基づいて、前記煙を感知する煙感知部と、
     前記推定部の推定結果に基づいて、前記煙感知部の感度を変更する感度変更部と、を更に備える、
     請求項1に記載の煙感知システム。
  3.  前記煙感知部は、前記気体に含まれる粒子の濃度と、濃度閾値と、の比較結果に基づいて、前記煙を感知するように構成され、
     前記感度変更部は、前記濃度閾値を変更することにより、前記煙感知部の感度を変更する、
     請求項2に記載の煙感知システム。
  4.  時系列において、第1期間と、前記第1期間よりも後の第2期間とがあり、
     前記感度変更部は、前記第1期間における前記変化温度が第1温度閾値以上であり、かつ、前記第2期間における前記変化温度が第2温度閾値未満である場合、前記煙感知部の感度を低減させる、
     請求項2又は3に記載の煙感知システム。
  5.  時系列において、第1期間と、前記第1期間よりも後の第2期間とがあり、
     前記感度変更部は、前記第1期間における前記変化温度が第1温度閾値以上であり、かつ、前記第2期間における前記変化温度が第2温度閾値以上である場合、前記煙感知部の感度を増加させる、
     請求項2又は3に記載の煙感知システム。
  6.  前記煙感知部は、前記第1期間における前記変化温度が前記第1温度閾値以上である場合、前記気体に含まれる粒子の濃度と、前記変化温度と、に基づいて、前記煙を感知する、
     請求項4又は5に記載の煙感知システム。
  7.  前記推定部は、前記変化温度と、前記気体に含まれる粒子の濃度と、に基づいて、前記気体の状態を推定する、
     請求項1~6のいずれか1項に記載の煙感知システム。
  8.  煙を感知する煙感知方法であって、
     気体の温度の時間的な変化である変化温度に基づいて、前記気体の状態を推定する推定ステップを含む、
     煙感知方法。
  9.  コンピュータシステムに、請求項8に記載の煙感知方法を実行させるためのプログラム。
     
PCT/JP2019/004609 2018-03-26 2019-02-08 煙感知システム、煙感知方法、及びプログラム WO2019187697A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19777616.4A EP3779910A4 (en) 2018-03-26 2019-02-08 SMOKE DETECTION SYSTEM, SMOKE DETECTION METHOD AND PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058729 2018-03-26
JP2018058729A JP7142235B2 (ja) 2018-03-26 2018-03-26 煙感知システム、煙感知方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2019187697A1 true WO2019187697A1 (ja) 2019-10-03

Family

ID=68058749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004609 WO2019187697A1 (ja) 2018-03-26 2019-02-08 煙感知システム、煙感知方法、及びプログラム

Country Status (4)

Country Link
EP (1) EP3779910A4 (ja)
JP (1) JP7142235B2 (ja)
TW (1) TWI725399B (ja)
WO (1) WO2019187697A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113470299A (zh) * 2021-09-02 2021-10-01 杭州中电燃帝科技有限公司 一种自主校准的烟感探测方法
WO2021237502A1 (zh) * 2020-05-27 2021-12-02 深圳市泛海三江电子股份有限公司 一种防止误报警的火灾探测器及使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112306125A (zh) * 2020-10-29 2021-02-02 江苏蓝创智能科技股份有限公司 一种油烟监测装置
CN113393635B (zh) * 2021-06-08 2022-03-04 南京品傲光电科技有限公司 一种基于感温光纤的火灾预警检测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301870A (ja) * 1993-04-13 1994-10-28 Shiyoubouchiyou Chokan 火災性状把握システム
JP2000137875A (ja) * 1998-10-30 2000-05-16 Hochiki Corp 火災感知器及び火災検出方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831537A (en) * 1997-10-27 1998-11-03 Slc Technologies, Inc. Electrical current saving combined smoke and fire detector
ATE295595T1 (de) * 1999-11-19 2005-05-15 Siemens Building Tech Ag Brandmelder
EP1630758B1 (de) * 2004-08-31 2008-01-02 Siemens Schweiz AG Streulicht-Rauchmelder
EP1732049A1 (en) 2005-06-10 2006-12-13 Siemens S.A.S. Fire or smoke detector with high false alarm rejection performance
EP2034462A4 (en) * 2006-05-12 2011-05-18 Panasonic Elec Works Co Ltd SMOKE SENSOR OF SOUND WAVE TYPE
JP2010044536A (ja) * 2008-08-11 2010-02-25 Kyushu Hitachi Maxell Ltd 煙感知器
GB201006682D0 (en) * 2010-04-21 2010-06-09 Fireangel Ltd Co-9x optical alarm
US9330550B2 (en) * 2012-07-13 2016-05-03 Walter Kidde Portable Equipment, Inc. Low nuisance fast response hazard alarm
JP6301870B2 (ja) 2015-04-10 2018-03-28 リンナイ株式会社 衣類乾燥機
CN115691032A (zh) * 2016-03-31 2023-02-03 西门子瑞士有限公司 光学烟感探测器及其方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301870A (ja) * 1993-04-13 1994-10-28 Shiyoubouchiyou Chokan 火災性状把握システム
JP2000137875A (ja) * 1998-10-30 2000-05-16 Hochiki Corp 火災感知器及び火災検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779910A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021237502A1 (zh) * 2020-05-27 2021-12-02 深圳市泛海三江电子股份有限公司 一种防止误报警的火灾探测器及使用方法
CN113470299A (zh) * 2021-09-02 2021-10-01 杭州中电燃帝科技有限公司 一种自主校准的烟感探测方法

Also Published As

Publication number Publication date
EP3779910A4 (en) 2021-05-12
TW201941169A (zh) 2019-10-16
TWI725399B (zh) 2021-04-21
EP3779910A1 (en) 2021-02-17
JP2019169111A (ja) 2019-10-03
JP7142235B2 (ja) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2019187697A1 (ja) 煙感知システム、煙感知方法、及びプログラム
US9082275B2 (en) Alarm device for alerting hazardous conditions
JP6507155B2 (ja) 状況に特有の特徴および/または予警報構成を提供するスマートホームハザード検出器
CA2679927C (en) Alarm with co and smoke sensors
EP0877995B1 (en) Method for dynamically adjusting fire detection criteria
US20130201022A1 (en) Optical smoke detector
US20130207807A1 (en) Fire detector
TW413800B (en) Electrical current saving combined smoke and fire detector
US20200175848A1 (en) Fire detection system
CA2820237A1 (en) Recreational smoking monitor system for use in occupied spaces
KR200470830Y1 (ko) 센서통합보드가 내장된 천장형 센서케이스
JP4996381B2 (ja) 火災警報器
JP7336344B2 (ja) 煙感知器および煙感知システム
JP2008102575A (ja) 火災警報器
JP2010086378A (ja) 光電式煙感知器
JP4996380B2 (ja) 火災警報器
JP2014013557A (ja) 通報装置及びプログラム
JP2010079557A (ja) 住宅用火災警報器および火災警報システム
JP2019179034A (ja) 煙感知器、及び煙濃度推定方法
JP2010238087A (ja) 光電式煙感知器
JP4803677B2 (ja) 火災警報器
JP2024120740A (ja) 煙感知器
JP5236547B2 (ja) 火災感知器
JPH08315270A (ja) 煙炎複合感知器及び煙炎複合感知システム
JP2008305302A (ja) 火災警報器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019777616

Country of ref document: EP

Effective date: 20201026