WO2019186887A1 - 内燃機関の動弁機構 - Google Patents

内燃機関の動弁機構 Download PDF

Info

Publication number
WO2019186887A1
WO2019186887A1 PCT/JP2018/013223 JP2018013223W WO2019186887A1 WO 2019186887 A1 WO2019186887 A1 WO 2019186887A1 JP 2018013223 W JP2018013223 W JP 2018013223W WO 2019186887 A1 WO2019186887 A1 WO 2019186887A1
Authority
WO
WIPO (PCT)
Prior art keywords
rocker arm
shaft
valve
cam
shaft portion
Prior art date
Application number
PCT/JP2018/013223
Other languages
English (en)
French (fr)
Inventor
大野 直人
俵 秀幸
石田 周一
黒川 雅也
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2018/013223 priority Critical patent/WO2019186887A1/ja
Priority to BR112020019621-5A priority patent/BR112020019621B1/pt
Priority to JP2020508699A priority patent/JP6890208B2/ja
Priority to CN201880091682.8A priority patent/CN111902614B/zh
Publication of WO2019186887A1 publication Critical patent/WO2019186887A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically

Definitions

  • the present invention relates to a valve mechanism for an internal combustion engine.
  • Patent Document 1 discloses a valve operating mechanism for an internal combustion engine in which a rocker arm shaft is an eccentric shaft, and the eccentric shaft is rotated from the outside of the cylinder head to facilitate tappet clearance adjustment. Yes.
  • an object of the present invention is to enable automatic adjustment of tappet clearance while enabling adjustment of tappet clearance using an eccentric shaft as a rocker arm shaft in a valve mechanism of an internal combustion engine.
  • One aspect of the present invention includes a camshaft (41) rotatably supported by the engine body (42), a rocker arm shaft (51, 52) rotatably supported by the engine body (42), An engine valve (27, 28) supported by the engine body (42) so as to be opened and closed, and a rocker arm shaft (51, 52) supported by the engine body (42) through a rocker arm shaft (51, 52).
  • a rocker arm (47, 48) having a first engagement portion (47d, 48d) engaged with the engine valve (27, 28) and a second engagement portion (47e, 48e) engaged with the engine valve (27).
  • the rocker arm shaft (51, 52) includes a support shaft portion (51d, 52d) supported by the engine body (42) and the valve mechanism (40) of the internal combustion engine (10).
  • Rocker arm (47, 48) An eccentric shaft portion (51c, 52c) having a second axis (C51, C52) offset from the first axis (C41, C42) of the support shaft portion (51d, 52d),
  • the rocker arm shaft (51, 52) further includes a biasing member (53, 54) that applies a biasing force in the circumferential direction, and the rocker arm shaft (51, 52) is attached to the biasing member (53, 54).
  • the rocker arm shaft forms an eccentric shaft, and a biasing force in the circumferential direction (rotating direction) is applied to the rocker arm shaft by the biasing member. Then, the rocker arm shaft rotates around the support shaft portion, and the rotational direction position (offset position) of the rocker arm support portion is changed. As a result, the rocker arm can be moved closer to and away from the camshaft and the engine valve, and the tappet clearance can be increased or decreased. If the urging direction of the urging member is a direction that closes the tappet clearance, the tappet clearance can be automatically adjusted (clearance filling) while the tappet clearance can be adjusted using the eccentric shaft for the rocker arm shaft.
  • rocker arm shaft (51, 52) applies a rotational driving force against the urging force of the urging member (53, 54) to the rocker arm shaft (51, 52).
  • Possible return member (63, 64) and camshaft (41) are provided, and the return member (63, 64) can be operated to apply a rotational driving force to the rocker arm shaft (51, 52).
  • Return cams (61, 62) According to this configuration, after the tappet clearance is reduced by the biasing member at the time of cold start of the internal combustion engine, when the temperature of the internal combustion engine rises and each component thermally expands, the rocker arm interferes even when the engine valve is closed. There is a fear.
  • the rocker arm shaft is rotated against the biasing force of the biasing member using the return member provided on the rocker arm shaft and the return cam provided on the camshaft.
  • the rocker arm shaft returns to the initial state before rotating by the action of the biasing member, and the tappet clearance is packed by the biasing force of the biasing member. Return to the previous set value. In this way, it is possible to prevent only the operation in the direction of closing the tappet clearance by the urging member, and to maintain the tappet clearance at an appropriate value.
  • the return cams (61, 62) are such that the rocker arms (47, 48) are in contact with the base circular portions (45a, 46a) of the cams (45, 46) of the cam shaft (41).
  • return cam crests (61b, 62b) that can actuate the return members (63, 64) to apply a rotational driving force to the rocker arm shafts (51, 52).
  • the rocker arm shaft since the rocker arm shaft is rotated while the rocker arm is not pressing the engine valve, the rocker arm shaft can be rotated without being affected by the reaction force of the valve spring. For this reason, the rocker arm shaft can be easily rotated, the operability of the return mechanism can be improved, and the structure can be simplified.
  • valve springs (27e, 28e) for urging the engine valves (27, 28) in a closed state, and the rocker arms (47, 48) of the valve springs (27e, 28e).
  • a rotational force acting on the rocker arm shaft (51, 52) by the urging force of the valve spring (27e, 28e) is (T1).
  • the rotational force acting on the rocker arm shaft (51, 52) by the urging force of the urging member (53, 54) is (T1 ′)
  • the rocker arm shaft (51, 52) is the engine body.
  • the rocker arms (47, 48) are supported by the eccentric shaft portions (51c, 52c) via rolling bearings (47f, 48f). According to this configuration, the rocker arm swings smoothly with respect to the rocker arm shaft, the friction torque acting on the rocker arm shaft can be suppressed, and the accompanying rocker arm shaft can be easily prevented.
  • the support shaft portion (51d, 52d) is provided on one end side in the axial direction of the rocker arm shaft (51, 52) and supported on one side of the engine body (42).
  • the first shaft portion (51a, 52a) and the rocker arm shaft (51, 52) are provided on the other axial end side and supported on the other side of the engine body (42), and the first shaft A second shaft portion (51b, 52b) having a different outer diameter with respect to the portion (51a, 52a),
  • the eccentric shaft portion (51c, 52c) is provided between the first shaft portion (51a, 52a) and the second shaft portion (51b, 52b).
  • the tappet clearance in the valve mechanism of the internal combustion engine, can be automatically adjusted while the tappet clearance can be adjusted using the eccentric shaft as the rocker arm shaft.
  • FIG. 3 is an arrow view corresponding to FIG. 2 including a partial cross section of the valve mechanism of the engine. It is a left view of the said valve mechanism. It is a left view of the return mechanism of the said valve mechanism. It is effect
  • action explanatory drawing which shows the force which acts on the rocker arm shaft of the said valve mechanism. It is a graph which shows the lift timing of the cam of the said valve mechanism.
  • the engine (internal combustion engine) 10 of this embodiment includes a cylinder portion 15 that stands on a crankcase (not shown).
  • the cylinder part 15 has a cylinder body 16, a cylinder head 17, and a head cover 18 stacked in order from the crankcase side.
  • the engine 10 is an air-cooled single cylinder engine and is used as a prime mover of a small vehicle such as a motorcycle.
  • the engine 10 is mounted on the vehicle with the rotation center axis of a crankshaft (not shown) aligned in the vehicle left-right direction.
  • the front / rear / right / left directions used in the description of the present embodiment are the same as those in the vehicle unless otherwise specified.
  • arrows FR indicating the front of the vehicle
  • an arrow LH indicating the left side of the vehicle
  • an arrow UP indicating the upper side of the vehicle are shown at appropriate positions in the drawing used to describe the present embodiment.
  • a line C2 in the figure indicates an axis (cylinder axis) along the rising direction of the cylinder portion 15.
  • a cylindrical cylinder sleeve 15a is integrally inserted.
  • a piston 21 is fitted into the cylinder sleeve 15a so as to be able to reciprocate.
  • the piston 21 is connected to a crankshaft (not shown) via a connecting rod 22.
  • a combustion chamber 23 is formed between the upper surface of the piston 21 and the surface of the cylinder head 17 facing the piston 21.
  • the upper part of the cylinder head 17 is formed in a concave shape that opens to the head cover 18 side.
  • the cylinder head 17 and the head cover 18 form a valve operating chamber 24 that houses the valve operating mechanism 40.
  • the cylinder head 17 is formed with an intake port 25 and an exhaust port 26 each having one end opened to the combustion chamber 23 and the other end opened to the outer surface of the cylinder head 17.
  • An annular intake valve seat 25b is fixed to an opening (combustion chamber side opening) 25a on the combustion chamber 23 side of the intake port 25, and an intake valve 27 is arranged to be openable and closable.
  • An annular exhaust valve seat 26b is fixed to an opening (combustion chamber side opening) 26a on the combustion chamber 23 side of the exhaust port 26, and an exhaust valve 28 is arranged to be openable and closable.
  • the intake valve 27 includes a disk-shaped valve head 27a aligned with the intake valve seat 25b, and a rod-shaped valve stem 27b extending in the normal direction from the center of the upper surface facing the intake port 25 of the valve head 27a. I have.
  • the valve stem 27b is inserted in a valve guide 27c press-fitted into the cylinder head 17 so as to be able to reciprocate. The distal end side of the valve stem 27b passes through the valve guide 27c and reaches the valve operating chamber 24.
  • a first retainer 27d that supports the upper end of the valve spring 27e is attached to the tip (upper end) of the valve stem 27b.
  • a second retainer 27 f that supports the lower end of the valve spring 27 e is attached around the valve guide 27 c on the valve chamber 24 side of the cylinder head 17.
  • the valve spring 27e is a compression coil spring that winds around the valve stem 27b, and is contracted between the first retainer 27d and the second retainer 27f. Due to the resilient force of the valve spring 27e, the intake valve 27 is biased upward and closes the combustion chamber side opening 25a of the intake port 25. The intake valve 27 strokes downward (combustion chamber 23 side) against the urging force of the valve spring 27e, thereby opening the combustion chamber side opening 25a of the intake port 25.
  • the exhaust valve 28 includes a disc-shaped valve head 28a aligned with the exhaust valve seat 26b, and a rod-shaped valve stem 28b extending in the normal direction from the center of the upper surface facing the exhaust port 26 of the valve head 28a. I have.
  • the valve stem 28b is inserted into a valve guide 28c press-fitted into the cylinder head 17 so as to be able to reciprocate.
  • the distal end side of the valve stem 28b passes through the valve guide 28c and reaches the valve operating chamber 24.
  • a first retainer 28d that supports the upper end of the valve spring 28e is attached to the tip (upper end) of the valve stem 28b.
  • a second retainer 28 f that supports the lower end of the valve spring 28 e is attached around the valve guide 28 c on the valve operating chamber 24 side of the cylinder head 17.
  • the valve spring 28e is a compression coil spring that winds around the valve stem 28b, and is contracted between the first retainer 28d and the second retainer 28f. Due to the resilient force of the valve spring 28e, the exhaust valve 28 is urged upward to close the combustion chamber side opening 26a of the exhaust port 26. The exhaust valve 28 strokes downward (combustion chamber 23 side) against the biasing force of the valve spring 28e, thereby opening the combustion chamber side opening 26a of the exhaust port 26.
  • valve stem 27b of the intake valve 27 and the valve stem 28b of the exhaust valve 28 are disposed to be inclined with respect to the cylinder axis C2.
  • the valve stem 27b of the intake valve 27 and the valve stem 28b of the exhaust valve 28 are arranged so as to form a V shape when viewed in the left-right direction (viewed in the axial direction of the crankshaft).
  • a camshaft 41 of the valve operating mechanism 40 is disposed between the valve stem 27b of the intake valve 27 and the valve stem 28b of the exhaust valve 28.
  • the camshaft 41 is arranged with a rotation center axis (cam axis) C3 along the left-right direction.
  • An arrow F in FIG. 1 indicates the rotation direction of the camshaft 41 when the engine 10 is operating.
  • the camshaft 41 is supported by a cam holder 42 fixed to the cylinder head 17 so as to be rotatable about the cam axis C3.
  • the camshaft 41 can be driven to rotate in cooperation with the crankshaft via, for example, a chain transmission mechanism 43.
  • reference numeral 43 a is a cam driven sprocket attached to the left end of the camshaft 41
  • reference numeral 43 b is an endless cam chain wound around the cam driven sprocket 43 a
  • reference numeral 44 is formed on the left side of the cylinder portion 15 for transmission.
  • the cam chain chambers that house the mechanism 43 are shown.
  • the intake valve 27 and the exhaust valve 28 are driven to open and close by a valve mechanism 40 including a camshaft 41.
  • the valve mechanism 40 includes a camshaft 41 having an intake cam 45 and an exhaust cam 46, an intake rocker arm 47 extending between the intake cam 45 and the stem tip of the intake valve 27, and a stem of the exhaust cam 46 and the exhaust valve 28.
  • An exhaust rocker arm 48 extending between the front end, an intake rocker arm shaft 51 that extends parallel to the camshaft 41 and swingably supports the intake rocker arm 47, and an exhaust rocker arm 48 that extends parallel to the camshaft 41.
  • an exhaust rocker arm shaft 52 that supports the rocker in a swingable manner.
  • the intermediate portion of the cam shaft 41 in the axial direction faces the open portion on the inner side in the left-right direction of the cam holder 42.
  • an exhaust cam 45 and an exhaust cam 46 are arranged side by side in the axial direction of the cam shaft 41 in order from the right side, for example.
  • the intake cam 45 includes an arc-shaped base circle 45a centered on the cam axis C3, and a cam peak 45b that increases the radial dimension with respect to the base circle 45a. .
  • the intake cam 45 forms a smooth elliptical shape in an axial view and forms an endless continuous cam surface.
  • the exhaust cam 46 includes an arc-shaped base circle 46a centered on the cam axis C3, and a cam crest 46b that increases the radial dimension with respect to the base circle 46a.
  • the exhaust cam 46 forms an endless continuous cam surface in a smooth oval shape when viewed in the axial direction.
  • the intake rocker arm 47 includes a cylindrical base portion 47 a that passes through the intake rocker arm shaft 51, an input arm portion 47 b that extends from the base portion 47 a toward the upper side of the intake cam 45, and a base portion 47 a toward the stem tip of the intake valve 27. And an output arm portion 47c extending in an integrated manner.
  • a cam roller 47d that is in rolling contact with the outer peripheral surface (cam surface) of the intake cam 45 is rotatably supported at the distal end portion of the input arm portion 47b.
  • a tappet bolt 47e that abuts against the stem tip of the intake valve 27 is fixedly supported at the tip of the output arm 47c.
  • the exhaust rocker arm 48 includes a cylindrical base portion 48 a that passes through the exhaust rocker arm shaft 52, an input arm portion 48 b that extends from the base portion 48 a toward the upper side of the exhaust cam 46, and a base portion 48 a that faces the stem tip of the exhaust valve 28. And an output arm portion 48c extending in an integrated manner.
  • a cam roller 48d that is in rolling contact with the outer peripheral surface (cam surface) of the exhaust cam 46 is rotatably supported at the distal end portion of the input arm portion 48b.
  • a tappet bolt 48e that is in contact with the stem tip of the exhaust valve 28 is fixedly supported at the tip of the output arm 48c.
  • the intake rocker arm shaft 51 includes a thick shaft portion 51a supported by a left bearing portion 42a on the left side (cam chain 43b side) of the cam holder 42, and a right side of the cam holder 42 (opposite side of the cam chain 43b).
  • the eccentric shaft portion 51c supports the base portion 47a of the intake rocker arm 47 via, for example, a needle bearing 47f.
  • the thick shaft portion 51a and the thin shaft portion 51b may be collectively referred to as a support shaft portion 51d.
  • the thick shaft portion 51a and the thin shaft portion 51b have a cylindrical shape that is coaxial with each other.
  • the eccentric shaft portion 51c is shifted in parallel to the thick shaft portion 51a and the thin shaft portion 51b by a distance E on one side in the radial direction. That is, the central axis C51 of the eccentric shaft portion 51c is offset by the distance E from the central axis C41 (the central axis of the entire intake rocker arm shaft 51) of the thick shaft portion 51a and the thin shaft portion 51b.
  • the intake rocker arm shaft 51 is rotated about the axis C41, and the rotational direction position of the eccentric shaft portion 51c (the central position of the rotation support of the intake rocker arm 47 by the eccentric shaft portion 51c) is changed.
  • the rocker arm 47 can be moved closer to and away from the intake valve 27 to adjust the tappet clearance (valve clearance) cl1.
  • the eccentric shaft portion 51c is within the outer diameter of the thick shaft portion 51a as viewed in the axial direction.
  • the thin shaft portion 51b is within the outer diameter of the eccentric shaft portion 51c as viewed in the axial direction. That is, the intake rocker arm shaft 51 has the maximum diameter of the outer diameter of the thick shaft portion 51a.
  • the eccentric shaft portion 51c and the thin shaft portion 51b do not protrude beyond the outer diameter of the thickest thick shaft portion 51a in the intake rocker arm shaft 51. For this reason, when the intake rocker arm shaft 51 is assembled to the cam holder 42, the intake rocker arm shaft 51 can be inserted from the left bearing portion 42a corresponding to the thick shaft portion 51a toward the right bearing portion 42b.
  • the yield of the material at the time of manufacturing the intake rocker arm shaft 51 is improved. Further, since the thin shaft portion 51b is within the outer diameter of the eccentric shaft portion 51c, the base portion 47a of the intake rocker arm 47 can be fitted from the thin shaft portion 51b side.
  • the exhaust rocker arm shaft 52 is connected to a thick shaft portion 52a supported by the left bearing portion 42c on the left side (cam chain 43b side) of the cam holder 42 and a right bearing portion 42d on the right side (opposite side of the cam chain 43b) of the cam holder 42.
  • a thin shaft portion 52b to be supported, and an eccentric shaft portion 52c provided between the thick shaft portion 52a and the thin shaft portion 52b and supported through the base portion 48a of the exhaust rocker arm 48 are provided.
  • the eccentric shaft portion 52c supports the base portion 48a of the exhaust rocker arm 48 via, for example, a needle bearing 48f.
  • the thick shaft portion 52a and the thin shaft portion 52b may be collectively referred to as a support shaft portion 52d.
  • the thick shaft portion 52a and the thin shaft portion 52b have a cylindrical shape that is coaxial with each other.
  • the eccentric shaft portion 52c is displaced in parallel to the thick shaft portion 52a and the thin shaft portion 52b by a distance E ′ on one side in the radial direction. That is, the central axis C52 of the eccentric shaft portion 52c is offset by a distance E ′ from the central axis C42 (the central axis of the exhaust rocker arm shaft 52 as a whole) C42 of the thick shaft portion 52a and the thin shaft portion 52b.
  • the exhaust rocker arm shaft 52 is rotated about the axis C42, and the rotational direction position of the eccentric shaft portion 52c (the central position of the rotation support of the exhaust rocker arm 48 by the eccentric shaft portion 52c) is changed.
  • the rocker arm 48 can be moved closer to and away from the exhaust valve 28 to adjust the tappet clearance (valve clearance) cl2.
  • the eccentric shaft portion 52c is within the outer diameter of the thick shaft portion 52a when viewed in the axial direction.
  • the thin shaft portion 52b is within the outer diameter of the eccentric shaft portion 52c as viewed in the axial direction. That is, the exhaust rocker arm shaft 52 has the outer diameter of the thick shaft portion 52a as the maximum diameter.
  • the eccentric shaft portion 52c and the thin shaft portion 52b do not protrude beyond the outer diameter of the thickest thick shaft portion 52a in the exhaust rocker arm shaft 52. Therefore, when the exhaust rocker arm shaft 52 is assembled to the cam holder 42, the exhaust rocker arm shaft 52 can be inserted from the left bearing portion 42c corresponding to the thick shaft portion 52a toward the right bearing portion 42d.
  • the yield of the material at the time of manufacturing the exhaust rocker arm shaft 52 is improved. Further, since the thin shaft portion 52b fits within the outer diameter of the eccentric shaft portion 52c, the base portion 48a of the exhaust rocker arm 48 can be fitted from the thin shaft portion 52b side.
  • the state where the axes C41 and C51 are aligned on a plane orthogonal to the cylinder axis C2, for example, is defined as the initial state of the intake rocker arm shaft 51.
  • the eccentric shaft portion 51c (rocker arm support shaft) and the support shaft portion 51d (rocker arm shaft rotation shaft) are at the same height in the direction of the cylinder axis C2.
  • a defined tappet clearance cl1 is set between the tappet bolt 47e of the intake rocker arm 47 and the stem tip of the intake valve 27.
  • the intake rocker arm shaft 51 rotates (forward rotation) from the initial state, and the eccentric shaft portion 51c is displaced downward (on the cylinder body 16 side), thereby closing the tappet clearance cl1 (set to “0”). Is possible. Further, the tappet clearance cl1 can be widened by rotating (reversing) the intake rocker arm shaft 51 from the initial state and displacing the eccentric shaft portion 51c upward (on the side opposite to the cylinder body 16).
  • the state where the axes C42 and C52 are aligned on a plane orthogonal to the cylinder axis C2, for example, is defined as the initial state of the exhaust rocker arm shaft 52.
  • the eccentric shaft portion 52c (rocker arm support shaft) and the support shaft portion 52d (rocker arm shaft rotation shaft) are at the same height in the direction of the cylinder axis C2.
  • a defined tappet clearance cl2 is set between the tappet bolt 48e of the exhaust rocker arm 48 and the stem tip of the exhaust valve 28.
  • the exhaust rocker arm shaft 52 rotates (normally rotates) from the initial state, and the eccentric shaft portion 52c is displaced downward (on the cylinder body 16 side), thereby filling the tappet clearance cl2 (set to “0”). Is possible. Further, the tappet clearance cl2 can be widened by rotating (reversing) the exhaust rocker arm shaft 52 from the initial state and displacing the eccentric shaft portion 52c upward (on the opposite side to the cylinder body 16).
  • an intake torsion spring 53 is attached to an end portion (right end portion) of the intake rocker arm shaft 51 opposite to, for example, the cam chain 43b.
  • the intake torsion spring 53 is a torsion coil spring that winds around the intake rocker arm shaft 51. One end of the coil is engaged with the cylinder head 17, and the other coil end is engaged with the intake rocker arm shaft 51. It has stopped.
  • the intake torsion spring 53 applies a rotational biasing force to the intake rocker arm shaft 51 in one direction (for example, counterclockwise in FIG. 4) around the axis C41.
  • the intake rocker arm shaft 51 is biased by the biasing force of the intake torsion spring 53 so as to displace the eccentric shaft portion 51c downward (on the cylinder body 16 side) from the initial state.
  • An exhaust torsion spring 54 is attached to, for example, the end (right end) of the exhaust rocker arm shaft 52 opposite to the cam chain 43b.
  • the exhaust torsion spring 54 is a torsion coil spring that winds around the exhaust rocker arm shaft 52. One end of the coil is locked to the cylinder head 17, and the other coil end is locked to the exhaust rocker arm shaft 52. is doing.
  • the exhaust torsion spring 54 applies a rotational biasing force to the exhaust rocker arm shaft 52 in one direction (for example, clockwise direction in FIG. 4) around the axis C42.
  • the exhaust rocker arm shaft 52 is biased by the biasing force of the exhaust torsion spring 54 so as to displace the eccentric shaft portion 52c downward (on the cylinder body 16 side) from the initial state.
  • an intake rocker arm shaft 51 and an exhaust rocker arm shaft 52 are respectively attached to an end portion of the cam shaft 41 on the cam chain 43 b side, for example, and a torsion spring 53. , 54 is configured to rotate in a direction against the urging force.
  • the return mechanism 60 includes an intake return cam 61 and an exhaust return cam 62 provided at the end of the camshaft 41, and an intake return arm 63 provided at each end of the intake rocker arm shaft 51 and the exhaust rocker arm shaft 52. And an exhaust return arm 64.
  • the intake return arm 63 has a proximal end fixed to the end of the intake rocker arm shaft 51.
  • a return cam roller 63 d that is in rolling contact with the outer peripheral surface (cam surface) of the intake return cam 61 is supported at the tip of the intake return arm 63.
  • the intake return arm 63 shown in FIG. 5 is in a state when the intake rocker arm shaft 51 is in the initial state. This state is the initial state of the intake return arm 63.
  • the exhaust return arm 64 has a base end fixed to the end of the exhaust rocker arm shaft 52.
  • a return cam roller 64 d that is in rolling contact with the outer peripheral surface (cam surface) of the exhaust return cam 62 is supported at the tip of the exhaust return arm 64.
  • the exhaust return arm 64 shown in FIG. 5 is in a state when the exhaust rocker arm shaft 52 is in the initial state. This state is the initial state of the exhaust return arm 64.
  • the intake return cam 61 includes an arc-shaped return base circle 61a centered on the cam axis C3 and a return cam crest that increases the radial dimension relative to the return base circle 61a. 61b.
  • the return cam crest 61b is arranged in a range H1 that avoids the cam crest 45b of the intake cam 45 when viewed in the axial direction (a range that does not overlap in the rotation direction). In other words, the intake cam 45 and the intake return cam 61 are out of phase with each other.
  • the return cam crest 61b has a height for rolling the return cam roller 63d when the intake return arm 63 is in the initial state.
  • the intake rocker arm shaft 51 rotates (reverses) from the initial state, displaces the eccentric shaft portion 51c upward (on the side opposite to the cylinder body 16), and temporarily widens the tappet clearance cl1.
  • the return cam roller 63d is separated from the return base circle portion 61a in the radial direction.
  • the exhaust return cam 62 includes an arc-shaped return base circle portion 62a centered on the cam axis C3 and a return cam crest portion 62b whose radial dimension is increased with respect to the return base circle portion 62a.
  • the return cam crest 62b is disposed in a range that avoids the cam crest 46b of the exhaust cam 46 as viewed in the axial direction (a range that does not overlap in the rotation direction). In other words, the exhaust cam 46 and the exhaust return cam 62 are offset from each other in lift timing.
  • the return cam crest 62b has a height for rolling the return cam roller 64d when the exhaust return arm 64 is in the initial state.
  • the exhaust rocker arm shaft 52 rotates (forward) from the initial state, displaces the eccentric shaft portion 52c upward (on the opposite side to the cylinder body 16), and temporarily widens the tappet clearance cl2.
  • the return cam roller 64d is separated from the return base circle 62a in the radial direction.
  • the return cam crest 62b passes through the engagement position with the intake return arm 63, and the application of the rotational driving force to the intake rocker arm shaft 51 is eliminated. Then, the intake rocker arm shaft 51 is rotated forward by the urging force of the intake torsion spring 53, and the tappet clearance cl1 is reduced.
  • the cam roller 48d of the exhaust rocker arm 48 descends from the cam crest 46b of the exhaust cam 46 and rolls into contact with the base circle 46a.
  • the return cam crest 62b of the exhaust return cam 62 rolls the return cam roller 64d of the exhaust return arm 64 in a range H2 that avoids the cam crest 46b of the exhaust cam 46 in the rotation direction of the camshaft 41.
  • the exhaust rocker arm shaft 52 is given a rotational driving force in a direction opposite to the biasing force of the exhaust torsion spring 54, and the exhaust rocker arm shaft 52 reverses from the initial state to temporarily widen the tappet clearance cl2.
  • Each rocker arm shaft 51, 52 receives the spring force from each valve spring 27 e, 28 e when each valve 27, 28 is opened, thereby displacing the eccentric shaft portions 51 c, 52 c to the opposite side of the cylinder body 16. It is conceivable to rotate like this. However, each rocker resists the friction between each rocker arm shaft 51, 52 and cam holder 42, etc. and the biasing force of each torsion spring 53, 54 due to the spring force perpendicular to each rocker arm shaft 51, 52. It is difficult to rotate the arm shafts 51 and 52.
  • the spring reaction force (valve spring load) of the valve spring 27e when the valve 27 is pressed and opened by the tip of the tappet bolt 47e (corresponding to a force point) is F1
  • the rotation center (fulcrum) of the cam roller 47d is equivalent to L2 and the distance from the rotation center of the cam roller 47d to the tip of the tappet bolt 47e is L1, the eccentricity due to the valve spring load F1.
  • a force (eccentric shaft pushing force) F2 for pushing up the core shaft portion 51c is obtained by the following formula 1.
  • F2 F1 * L1 / L2 Formula 1
  • T1 F2 * E Equation 2 (E is the eccentric distance of the eccentric shaft portion 51c)
  • the friction torque (friction torque) T2 around the diameter D3 of the eccentric shaft portion 51c due to the valve spring load F1 is obtained by the following equation 3.
  • T2 F2 * ⁇ * D3 / 2 Formula 3 ( ⁇ is the friction coefficient of the outer periphery of the eccentric shaft portion 51c)
  • the friction torque T2 also has a reverse rotation.
  • Formula 5 (It is assumed that the valve spring load F1 is applied to the thick shaft portion 51a and the thin shaft portion 51b by half.)
  • the residual torque Ta obtained by subtracting various friction torques including the support shaft friction torque Tf from the total torque T3 due to the valve spring load F1 is obtained by the following equation (6).
  • ⁇ To F1 * L1 / L2 (E + ⁇ (2D3-D1-D2) / 4)
  • T2 the friction addition torque by the friction addition mechanism for the rocker arm shaft 51
  • each value is set so as to satisfy the following expression 10. (T1 ′ + Tf + To) ⁇ T1> 0 Expression 10
  • rocker arm shafts 51 and 52 rotate along with the swinging of the rocker arms 47 and 48 and rotate in the direction of unintentionally expanding the tappet clearances cl1 and cl2 against the urging force of the torsion springs 53 and 54. Can be prevented.
  • the valve mechanism 40 of the engine 10 in the above embodiment includes the camshaft 41 that is rotatably supported by the engine body (cam holder 42), and the rocker arm shaft that is rotatably supported by the engine body. 51, 52, intake / exhaust valves 27, 28 supported by the engine body so as to be openable and closable, and supported by the engine body through rocker arm shafts 51, 52 so as to be swingable and engaged with the camshaft 41.
  • the rocker arm shafts 51 and 52 support the support shaft portions 51d and 52d supported by the engine body and the rocker arms 47 and 48, respectively. And eccentric shaft portions 51c, 52c having second axes C51, C52 offset from the first axes C41, C42 of the support shaft portions 51d, 52d, and the rocker arm shafts 51, 52 in the circumferential direction.
  • the rocker arm shafts 51 and 52 receive the biasing force of the torsion springs 53 and 54, and the first axis C41 of the shaft portions 51d and 52d.
  • the rocker arm shafts 51 and 52 form an eccentric shaft, and a biasing force in the circumferential direction (rotation direction) is applied to the rocker arm shafts 51 and 52 by the torsion springs 53 and 54. Then, the rocker arm shafts 51 and 52 rotate around the support shaft portions 51d and 52d, and the rotational direction positions (offset positions) of the eccentric shaft portions 51c and 52c are changed.
  • the rocker arms 47 and 48 are moved closer to and away from the camshaft 41 and the intake and exhaust valves 27 and 28, and the tappet clearances cl1 and cl2 can be increased or decreased. If the urging directions of the torsion springs 53 and 54 are directions to close the tappet clearances cl1 and cl2, the tappet clearances cl1 and cl2 can be adjusted using the eccentric shafts on the rocker arm shafts 51 and 52, and the tappet clearances are adjusted. Automatic adjustment (clearance filling) of cl1 and cl2 can be performed.
  • a rotational driving force that is provided on the rocker arm shafts 51 and 52 and resists the biasing force of the torsion springs 53 and 54 can be applied to the rocker arm shafts 51 and 52.
  • Return arms 63, 64, and return cams 61, 62 provided on the camshaft 41 and capable of operating the return arms 63, 64 to apply a rotational driving force to the rocker arm shafts 51, 52. Yes.
  • the intake / exhaust valve 27 , 28 may interfere with the rocker arms 47, 48.
  • the rocker arm shafts 51, 52 are attached to the torsion springs 53, 54 using the return arms 63, 64 provided on the rocker arm shafts 51, 52 and the return cams 61, 62 provided on the camshaft 41. Rotate against power. As a result, every time the camshaft 41 rotates (every cycle of the engine 10), the rocker arm shafts 51 and 52 return to the initial state before rotating by the action of the torsion springs 53 and 54, and the tappet clearance cl1, It returns to the predetermined set value before cl2 is packed by the urging force of the torsion springs 53 and 54. Thus, it is possible to prevent the torsion springs 53 and 54 from repeating only the operation in the direction of closing the tappet clearances cl1 and cl2, and to maintain the tappet clearances cl1 and cl2 at appropriate values.
  • the return cams 61 and 62 are arranged so that the rocker arms 47 and 48 are in contact with the base circular portions 45 a and 46 a of the intake and exhaust cams 45 and 46 of the camshaft 41.
  • Return cam crests 61b and 62b are provided that can operate the return arms 63 and 64 to apply a rotational driving force to the rocker arm shafts 51 and 52.
  • the return cam crest portions 61b and 62b 63 and 64 are operated to apply a rotational driving force to the rocker arm shafts 51 and 52. That is, since the rocker arm shafts 51 and 52 are rotated in a state where the rocker arms 47 and 48 are not pressing the intake and exhaust valves 27 and 28, the rocker arm shafts 51 and 52 are affected by the reaction force of the valve springs 27e and 28e. It can be rotated without receiving. For this reason, the rocker arm shafts 51 and 52 can be easily rotated, the operability of the return mechanism 60 can be improved, and the structure can be simplified.
  • the valve mechanism 40 of the engine 10 includes valve springs 27e and 28e that urge the intake and exhaust valves 27 and 28 in a closed state, and the rocker arms 47 and 48 resist the urging force of the valve springs 27e and 28e.
  • the intake / exhaust valves 27 and 28 are pressed, the rotational force acting on the rocker arm shafts 51 and 52 via the eccentric shaft portions 51c and 52c is biased by the biasing force of the valve springs 27e and 28e.
  • the rotational force acting on the rocker arm shafts 51 and 52 by the biasing force of the core shaft push-up torque T1 and the torsion springs 53 and 54 is the spring biasing torque T1 ′
  • the rocker arm shafts 51 and 52 are
  • the friction torque received from the main body is the support shaft friction torque Tf
  • the rocker arm shafts 51 and 52 are Assuming that the friction torque received from the motors 47 and 48 is the friction addition torque To, the (T1), (T1 ′), (Tf), and (To) are set so as to satisfy the relationship represented by the following expression. .
  • the rocker arms 47 and 48 are supported by the eccentric shaft portions 51c and 52c via rolling bearings (needle bearings 47f and 48f). According to this configuration, the rocker arms 47 and 48 swing smoothly with respect to the rocker arm shafts 51 and 52, the friction torque acting on the rocker arm shafts 51 and 52 is suppressed, and the rocker arm shafts 51 and 52 are rotated together. Can be easily prevented.
  • the support shaft portions 51 d and 52 d are provided on one end side in the axial direction of the rocker arm shafts 51 and 52 and are supported on one side of the cam holder 42. , 52a and the rocker arm shafts 51, 52 on the other end side in the axial direction, supported on the other side of the cam holder 42, and a thin shaft having a different outer diameter from the thick shaft portions 51a, 52a. Portions 51b and 52b, and the eccentric shaft portions 51c and 52c are provided between the thick shaft portions 51a and 52a and the thin shaft portions 51b and 52b.
  • the present invention is not limited to the above-described embodiment.
  • the present invention relates to application to an internal combustion engine of a small vehicle such as a motorcycle (saddle-ride type vehicle).
  • a small vehicle such as a motorcycle (saddle-ride type vehicle).
  • the present invention can be applied to various transport equipment such as passenger cars other than saddle-ride type vehicles. You may apply to an internal combustion engine provided with two or more at least one of the intake and exhaust valves. You may apply to an internal combustion engine provided with two or more camshafts.
  • the rocker arm may be configured so that the slipper surface instead of the cam roller is in sliding contact with the cam surface.
  • the rocker arm may be configured to press the valve with a pressing portion instead of the tappet bolt.
  • the rocker arm may have a sliding bearing such as a metal bush instead of a rolling bearing such as a needle bearing.
  • each return cam instead of configuring each return cam with intake and exhaust, a single return cam is configured at a position where timing does not overlap with the exhaust cam and intake cam, and one return cam is shared by two return arms. May be used.
  • the configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the gist of the present invention, such as replacing the component of the embodiment with a known component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

ロッカーアームシャフト(51,52)は、機関本体(42)に支持される支持軸部(51d,52d)と、ロッカーアーム(47,48)を支持するとともに、支持軸部(51d,52d)の第一軸線(C41,C42)からオフセットした第二軸線(C51,C52)を有する偏芯軸部(51c,52c)と、を備え、ロッカーアームシャフト(51,52)に周方向の付勢力を加える付勢部材(53,54)をさらに備え、ロッカーアームシャフト(51,52)は、付勢部材(53,54)の付勢力を受けて支持軸部(51d,52d)の第一軸線(C41,C42)回りに回転し、偏芯軸部(51c,52c)によるロッカーアーム(47,48)の回転支持の中心位置を変化させる。

Description

内燃機関の動弁機構
 本発明は、内燃機関の動弁機構に関する。
 例えば、特許文献1には、ロッカーアームシャフトを偏芯軸とし、この偏芯軸をシリンダヘッドの外部から回転させることで、タペットクリアランス調整を容易にした、内燃機関の動弁機構が開示されている。
特開2003-160085号公報
 内燃機関の動弁機構において、部品の摩耗等によりタペットクリアランスが狂うと、内燃機関の運転に支障が生じる。このため、例えば定期整備によってタペットクリアランスを調整する必要があるが、煩雑である。このため、上記従来の技術のように、ロッカーアームシャフトに偏芯軸を用いてタペットクリアランス調整を容易にしたものにおいても、タペットクリアランスを自動で調整可能な構成が望まれている。
 そこで本発明は、内燃機関の動弁機構において、ロッカーアームシャフトに偏芯軸を用いてタペットクリアランスを調整可能としながら、タペットクリアランスの自動調整を可能とすることを目的とする。
 本発明の一態様は、機関本体(42)に回転可能に支持されるカムシャフト(41)と、前記機関本体(42)に回転可能に支持されるロッカーアームシャフト(51,52)と、前記機関本体(42)に開閉動可能に支持される機関弁(27,28)と、前記機関本体(42)にロッカーアームシャフト(51,52)を介して揺動可能に支持され、カムシャフト(41)に係合する第一係合部(47d,48d)と機関弁(27,28)に係合する第二係合部(47e,48e)とを有するロッカーアーム(47,48)と、を備える内燃機関(10)の動弁機構(40)であって、前記ロッカーアームシャフト(51,52)は、前記機関本体(42)に支持される支持軸部(51d,52d)と、前記ロッカーアーム(47,48)を支持するとともに、前記支持軸部(51d,52d)の第一軸線(C41,C42)からオフセットした第二軸線(C51,C52)を有する偏芯軸部(51c,52c)と、を備え、前記ロッカーアームシャフト(51,52)に周方向の付勢力を加える付勢部材(53,54)をさらに備え、前記ロッカーアームシャフト(51,52)は、前記付勢部材(53,54)の付勢力を受けて前記支持軸部(51d,52d)の第一軸線(C41,C42)回りに回転し、前記偏芯軸部(51c,52c)による前記ロッカーアーム(47,48)の回転支持の中心位置を変化させる。
 この構成によれば、ロッカーアームシャフトが偏芯軸をなし、このロッカーアームシャフトに付勢部材によって周方向(回転方向)の付勢力を付与する。すると、ロッカーアームシャフトが支持軸部を中心に回転し、ロッカーアーム支持部の回転方向位置(オフセット位置)を変化させる。これにより、ロッカーアームをカムシャフトおよび機関弁に接近離反させ、タペットクリアランスを増減させることが可能となる。付勢部材の付勢方向がタペットクリアランスを詰める方向であれば、ロッカーアームシャフトに偏芯軸を用いてタペットクリアランスを調整可能としながら、タペットクリアランスの自動調整(クリアランス詰め)を行うことができる。
 本発明の一態様は、前記ロッカーアームシャフト(51,52)に設けられ、前記ロッカーアームシャフト(51,52)に前記付勢部材(53,54)の付勢力に抗する回転駆動力を付与可能な戻し部材(63,64)と、前記カムシャフト(41)に設けられ、前記戻し部材(63,64)を作動させて前記ロッカーアームシャフト(51,52)に回転駆動力を付与可能な戻しカム(61,62)と、を備えている。
 この構成によれば、内燃機関の冷間始動時に付勢部材によってタペットクリアランスを詰めた後、内燃機関の温度が上昇して各部品が熱膨張すると、機関弁の閉時でもロッカーアームが干渉する虞がある。このため、ロッカーアームシャフトに設けた戻し部材とカムシャフトに設けた戻しカムとを用いて、ロッカーアームシャフトを付勢部材の付勢力に抗して回転させる。これにより、カムシャフトの回転の都度(内燃機関の一サイクルの都度)、ロッカーアームシャフトが付勢部材の作用で回転する前の初期状態に戻り、タペットクリアランスが付勢部材の付勢力で詰められる前の規定の設定値に戻る。このように、付勢部材によってタペットクリアランスを詰める方向への動作のみが繰り返されることを防ぎ、タペットクリアランスを適切な値に維持することができる。
 本発明の一態様は、前記戻しカム(61,62)は、前記ロッカーアーム(47,48)が前記カムシャフト(41)のカム(45,46)のベース円部(45a,46a)に接している際に、前記戻し部材(63,64)を作動させて前記ロッカーアームシャフト(51,52)に回転駆動力を付与可能な戻しカム山部(61b,62b)を備えている。
 この構成によれば、ロッカーアームがカムシャフトのカムのベース円部に接している際(ゼロリフト時)に、戻しカム山部が戻し部材を作動させてロッカーアームシャフトに回転駆動力を付与させる。すなわち、ロッカーアームが機関弁を押圧していない状態でロッカーアームシャフトを回転させるので、ロッカーアームシャフトがバルブスプリングの反力の影響を受けずに回転可能となる。このため、ロッカーアームシャフトが容易に回転可能となり、戻し機構の作動性を向上させるとともに構造の簡素化を図ることができる。
 本発明の一態様は、前記機関弁(27,28)を閉状態に付勢するバルブスプリング(27e,28e)を備え、前記ロッカーアーム(47,48)が前記バルブスプリング(27e,28e)の付勢力に抗して前記機関弁(27,28)を押圧した際、前記バルブスプリング(27e,28e)の付勢力により前記ロッカーアームシャフト(51,52)に作用する回転方向の力を(T1)、前記付勢部材(53,54)の付勢力により前記ロッカーアームシャフト(51,52)に作用する回転方向の力を(T1’)、前記ロッカーアームシャフト(51,52)が前記機関本体(42)から受ける摩擦トルクを(Tf)、前記ロッカーアームシャフト(51,52)が前記ロッカーアーム(47,48)から受ける摩擦トルクを(To)、とすると、前記(T1),(T1’),(Tf),(To)は、下記式に示される関係を満たすように設定されている。
(T1’+Tf+To)-T1>0
 この構成によれば、偏芯軸部でロッカーアームを支持するロッカーアームシャフトは、内燃機関が高回転域に入った場合等、バルブスプリングからの反力により偏芯軸部を介して回転方向の力を受ける。このとき、ロッカーアームシャフトがロッカーアームに連れ回り、付勢部材の付勢力に抗して回転する(意図せずタペットクリアランスを広げる方向に回転する)可能性がある。しかし、上記式で示される関係を満たすように各値を設定することで、ロッカーアームシャフトの前記連れ回りを防ぐことができる。すなわち、バルブスプリングの付勢力によりロッカーアームシャフトに作用する回転方向の力(T1)が、ロッカーアームシャフトに作用する摩擦トルク(Tf,To)、並びに付勢部材の付勢トルク(T1’)の合計値よりも小さくなるよう設定することで、ロッカーアームシャフトがロッカーアームの揺動時に連れ回ることを防ぐことができる。
 本発明の一態様は、前記ロッカーアーム(47,48)は、前記偏芯軸部(51c,52c)に転がり軸受け(47f,48f)を介して支持されている。
 この構成によれば、ロッカーアームシャフトに対するロッカーアームの揺動が滑らかになり、ロッカーアームシャフトに作用するフリクショントルクを抑え、ロッカーアームシャフトの連れ回りを容易に防ぐことができる。
 本発明の一態様は、前記支持軸部(51d,52d)は、前記ロッカーアームシャフト(51,52)の軸方向の一端側に設けられ、前記機関本体(42)の一側に支持される第一軸部(51a,52a)と、前記ロッカーアームシャフト(51,52)の軸方向の他端側に設けられ、前記機関本体(42)の他側に支持されるとともに、前記第一軸部(51a,52a)に対して外径が異なる第二軸部(51b,52b)と、を備え、
前記偏芯軸部(51c,52c)は、前記第一軸部(51a,52a)および第二軸部(51b,52b)の間に設けられている。
 この構成によれば、軸方向の両側で軸の太さを変えることで、ロッカーアームシャフトの誤組防止を図るとともに、太さや軸心位置が変化する軸部間の段差を利用して軸方向のずれを防止することができる。
 本発明によれば、内燃機関の動弁機構において、ロッカーアームシャフトに偏芯軸を用いてタペットクリアランスを調整可能としながら、タペットクリアランスの自動調整を可能とすることができる。
本発明の実施形態におけるエンジンのシリンダ部の一部断面を含む左側面図である。 図1のII矢視図(シリンダ軸線に沿う上面図)である。 上記エンジンの動弁機構の一部断面を含む図2に相当する矢視図である。 上記動弁機構の左側面図である。 上記動弁機構の戻し機構の左側面図である。 上記動弁機構のロッカーアームシャフトに作用する力を示す作用説明図である。 上記動弁機構のカムのリフトタイミングを示すグラフである。
 以下、本発明の実施形態について図面を参照して説明する。
 図1に示すように、本実施形態のエンジン(内燃機関)10は、不図示のクランクケース上に起立するシリンダ部15を備えている。シリンダ部15は、クランクケース側から順に、シリンダ本体16、シリンダヘッド17およびヘッドカバー18を積層している。例えば、エンジン10は、空冷単気筒エンジンであり、自動二輪車等の小型車両の原動機に用いられる。例えば、エンジン10は、不図示のクランクシャフトの回転中心軸線を、車両左右方向に沿わせて車載されている。
 本実施形態の説明に用いる前後左右等の向きは、特に記載が無ければ上記車両における向きと同一とする。また、本実施形態の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UPが示されている。図中線C2はシリンダ部15の起立方向に沿う軸線(シリンダ軸線)を示している。
 シリンダ本体16内には、円筒状のシリンダスリーブ15aが一体的にインサートされている。シリンダスリーブ15a内には、ピストン21が往復動可能に嵌挿されている。ピストン21は、コネクティングロッド22を介して不図示のクランクシャフトに連結されている。ピストン21の上面とシリンダヘッド17におけるピストン21との対向面との間には、燃焼室23が形成されている。シリンダヘッド17の上部は、ヘッドカバー18側に開放する凹状に形成されている。シリンダヘッド17とヘッドカバー18とにより、動弁機構40を収容する動弁室24が形成されている。
 シリンダヘッド17には、一端が燃焼室23に開口するとともに他端がシリンダヘッド17の外面に開口する吸気ポート25および排気ポート26がそれぞれ形成されている。吸気ポート25の燃焼室23側の開口(燃焼室側開口)25aには、環状の吸気バルブシート25bが固設されるとともに、吸気バルブ27が開閉可能に配置されている。排気ポート26の燃焼室23側の開口(燃焼室側開口)26aには、環状の排気バルブシート26bが固設されるとともに、排気バルブ28が開閉可能に配置されている。
 吸気バルブ27は、吸気バルブシート25bに整合する円板状のバルブヘッド27aと、バルブヘッド27aの吸気ポート25内に臨む上面の中央から法線方向に延出する棒状のバルブステム27bと、を備えている。バルブステム27bは、シリンダヘッド17に圧入されたバルブガイド27cに往復動可能に挿通されている。バルブステム27bの先端側は、バルブガイド27cを貫通して動弁室24内に至っている。
 バルブステム27bの先端部(上端部)には、バルブスプリング27eの上端を支持する第一リテーナ27dが取り付けられている。シリンダヘッド17の動弁室24側におけるバルブガイド27cの周囲には、バルブスプリング27eの下端を支持する第二リテーナ27fが取り付けられている。バルブスプリング27eは、バルブステム27bの周囲を巻回する圧縮コイルスプリングであり、第一リテーナ27dおよび第二リテーナ27fの間に縮設されている。バルブスプリング27eの弾発力により、吸気バルブ27が上方に付勢され、吸気ポート25の燃焼室側開口25aを閉塞する。吸気バルブ27は、バルブスプリング27eの付勢力に抗して下方(燃焼室23側)にストロークすることで、吸気ポート25の燃焼室側開口25aを開放する。
 排気バルブ28は、排気バルブシート26bに整合する円板状のバルブヘッド28aと、バルブヘッド28aの排気ポート26内に臨む上面の中央から法線方向に延出する棒状のバルブステム28bと、を備えている。バルブステム28bは、シリンダヘッド17に圧入されたバルブガイド28cに往復動可能に挿通されている。バルブステム28bの先端側は、バルブガイド28cを貫通して動弁室24内に至っている。
 バルブステム28bの先端部(上端部)には、バルブスプリング28eの上端を支持する第一リテーナ28dが取り付けられている。シリンダヘッド17の動弁室24側におけるバルブガイド28cの周囲には、バルブスプリング28eの下端を支持する第二リテーナ28fが取り付けられている。バルブスプリング28eは、バルブステム28bの周囲を巻回する圧縮コイルスプリングであり、第一リテーナ28dおよび第二リテーナ28fの間に縮設されている。バルブスプリング28eの弾発力により、排気バルブ28が上方に付勢され、排気ポート26の燃焼室側開口26aを閉塞する。排気バルブ28は、バルブスプリング28eの付勢力に抗して下方(燃焼室23側)にストロークすることで、排気ポート26の燃焼室側開口26aを開放する。
 吸気バルブ27のバルブステム27bおよび排気バルブ28のバルブステム28bは、シリンダ軸線C2に対して傾斜して配置されている。吸気バルブ27のバルブステム27bおよび排気バルブ28のバルブステム28bは、左右方向視(クランクシャフトの軸方向視)でV字状をなすように配置されている。吸気バルブ27のバルブステム27bおよび排気バルブ28のバルブステム28bの間には、動弁機構40のカムシャフト41が配置されている。カムシャフト41は、回転中心軸線(カム軸線)C3を左右方向に沿わせて配置されている。図1中矢印Fはエンジン10運転時のカムシャフト41の回転方向を示している。
 図2を併せて参照し、カムシャフト41は、シリンダヘッド17に固定されたカムホルダ42に、カム軸線C3を中心に回転可能に支持されている。カムシャフト41は、例えばチェーン式の伝動機構43を介して、クランクシャフトと連係して回転駆動可能である。図2中符号43aはカムシャフト41の左端部に取り付けられたカムドリブンスプロケット、符号43bはカムドリブンスプロケット43aに巻き掛けられる無端状のカムチェーン、符号44はシリンダ部15の左側に形成されて伝動機構43を収容するカムチェーン室、をそれぞれ示している。
 吸気バルブ27および排気バルブ28は、カムシャフト41を含む動弁機構40によって開閉駆動される。
 動弁機構40は、吸気カム45および排気カム46を有するカムシャフト41と、吸気カム45と吸気バルブ27のステム先端との間に渡る吸気ロッカーアーム47と、排気カム46と排気バルブ28のステム先端との間に渡る排気ロッカーアーム48と、カムシャフト41と平行に延びて吸気ロッカーアーム47を揺動可能に支持する吸気ロッカーアームシャフト51と、カムシャフト41と平行に延びて排気ロッカーアーム48を揺動可能に支持する排気ロッカーアームシャフト52と、を備えている。
 カムシャフト41の軸方向の中間部は、カムホルダ42の左右方向内側の開放部内に臨んでいる。カムシャフト41の軸方向の中間部には、例えば右側から順に排気カム45および排気カム46が並んで設けられている。
 図4を参照し、吸気カム45は、カム軸線C3を中心とする円弧状のベース円部45aと、ベース円部45aに対して径方向寸法を増大させるカム山部45bと、を備えている。吸気カム45は、軸方向視で滑らかな楕円状をなして無端状に連続するカム面を形成している。
 排気カム46は、カム軸線C3を中心とする円弧状のベース円部46aと、ベース円部46aに対して径方向寸法を増大させるカム山部46bと、を備えている。排気カム46は、軸方向視で滑らかな楕円状をなして無端状に連続するカム面を形成している。
 吸気ロッカーアーム47は、吸気ロッカーアームシャフト51を挿通する円筒状の基部47aと、基部47aから吸気カム45の上方に向けて延びる入力アーム部47bと、基部47aから吸気バルブ27のステム先端に向けて延びる出力アーム部47cと、を一体形成している。入力アーム部47bの先端部には、吸気カム45の外周面(カム面)に転接するカムローラ47dが回転可能に支持されている。出力アーム部47cの先端部には、吸気バルブ27のステム先端に当接するタペットボルト47eが固定的に支持されている。
 排気ロッカーアーム48は、排気ロッカーアームシャフト52を挿通する円筒状の基部48aと、基部48aから排気カム46の上方に向けて延びる入力アーム部48bと、基部48aから排気バルブ28のステム先端に向けて延びる出力アーム部48cと、を一体形成している。入力アーム部48bの先端部には、排気カム46の外周面(カム面)に転接するカムローラ48dが回転可能に支持されている。出力アーム部48cの先端部には、排気バルブ28のステム先端に当接するタペットボルト48eが固定的に支持されている。
 図3を参照し、吸気ロッカーアームシャフト51は、カムホルダ42の左側(カムチェーン43b側)の左軸受け部42aに支持される太軸部51aと、カムホルダ42の右側(カムチェーン43bと反対側)の右軸受け部42bに支持される細軸部51bと、太軸部51aおよび細軸部51bの間に設けられて吸気ロッカーアーム47の基部47aを貫通して支持する偏芯軸部51cと、を備えている。偏芯軸部51cは、例えばニードルベアリング47fを介して、吸気ロッカーアーム47の基部47aを支持している。太軸部51aおよび細軸部51bを支持軸部51dと総称することがある。
 太軸部51aおよび細軸部51bは、互いに同軸の円柱状をなしている。偏芯軸部51cは、太軸部51aおよび細軸部51bに対して、径方向一側に距離Eだけ平行にずれている。つまり、偏芯軸部51cの中心軸線C51は、太軸部51aおよび細軸部51bの中心軸線(吸気ロッカーアームシャフト51全体の中心軸線)C41に対して、距離Eだけオフセットしている。
 これにより、吸気ロッカーアームシャフト51を軸線C41回りに回転させ、偏芯軸部51cの回転方向位置(偏芯軸部51cによる吸気ロッカーアーム47の回転支持の中心位置)を変化させることで、吸気ロッカーアーム47を吸気バルブ27に対して接近離反させ、タペットクリアランス(バルブクリアランス)cl1を調整可能である。
 偏芯軸部51cは、軸方向視で太軸部51aの外径内に収まっている。細軸部51bは、軸方向視で偏芯軸部51cの外径内に収まっている。つまり、吸気ロッカーアームシャフト51は、太軸部51aの外径を最大径としている。これにより、吸気ロッカーアームシャフト51の内の最も太い太軸部51aの外径を越えて、偏芯軸部51cおよび細軸部51bがはみ出すことがない。このため、吸気ロッカーアームシャフト51をカムホルダ42に組み付ける際、太軸部51aに対応する左軸受け部42aから右軸受け部42bに向けて吸気ロッカーアームシャフト51を挿通可能となる。また、吸気ロッカーアームシャフト51を製造する際の材料の歩留まりを向上させる。また、細軸部51bが偏芯軸部51cの外径内に収まることで、細軸部51b側から吸気ロッカーアーム47の基部47aを嵌装可能となる。
 排気ロッカーアームシャフト52は、カムホルダ42の左側(カムチェーン43b側)の左軸受け部42cに支持される太軸部52aと、カムホルダ42の右側(カムチェーン43bと反対側)の右軸受け部42dに支持される細軸部52bと、太軸部52aおよび細軸部52bの間に設けられて排気ロッカーアーム48の基部48aを貫通して支持する偏芯軸部52cと、を備えている。偏芯軸部52cは、例えばニードルベアリング48fを介して、排気ロッカーアーム48の基部48aを支持している。太軸部52aおよび細軸部52bを支持軸部52dと総称することがある。
 太軸部52aおよび細軸部52bは、互いに同軸の円柱状をなしている。偏芯軸部52cは、太軸部52aおよび細軸部52bに対して、径方向一側に距離E’だけ平行にずれている。つまり、偏芯軸部52cの中心軸線C52は、太軸部52aおよび細軸部52bの中心軸線(排気ロッカーアームシャフト52全体の中心軸線)C42に対して、距離E’だけオフセットしている。
 これにより、排気ロッカーアームシャフト52を軸線C42回りに回転させ、偏芯軸部52cの回転方向位置(偏芯軸部52cによる排気ロッカーアーム48の回転支持の中心位置)を変化させることで、排気ロッカーアーム48を排気バルブ28に対して接近離反させ、タペットクリアランス(バルブクリアランス)cl2を調整可能である。
 偏芯軸部52cは、軸方向視で太軸部52aの外径内に収まっている。細軸部52bは、軸方向視で偏芯軸部52cの外径内に収まっている。つまり、排気ロッカーアームシャフト52は、太軸部52aの外径を最大径としている。これにより、排気ロッカーアームシャフト52の内の最も太い太軸部52aの外径を越えて、偏芯軸部52cおよび細軸部52bがはみ出すことがない。このため、排気ロッカーアームシャフト52をカムホルダ42に組み付ける際、太軸部52aに対応する左軸受け部42cから右軸受け部42dに向けて排気ロッカーアームシャフト52を挿通可能となる。また、排気ロッカーアームシャフト52を製造する際の材料の歩留まりを向上させる。また、細軸部52bが偏芯軸部52cの外径内に収まることで、細軸部52b側から排気ロッカーアーム48の基部48aを嵌装可能となる。
 図4を参照し、吸気ロッカーアームシャフト51の軸方向視で、軸線C41,C51が例えばシリンダ軸線C2と直交する平面上に並ぶ状態を、吸気ロッカーアームシャフト51の初期状態とする。吸気ロッカーアームシャフト51の初期状態において、偏芯軸部51c(ロッカーアーム支持軸)と支持軸部51d(ロッカーアームシャフト回転軸)とは、シリンダ軸線C2方向で同一高さにある。このとき、吸気ロッカーアーム47のタペットボルト47eと吸気バルブ27のステム先端との間には、規定のタペットクリアランスcl1が設定されている。そして、吸気ロッカーアームシャフト51が初期状態から回転(正転)し、偏芯軸部51cを下方(シリンダ本体16側)に変位させることで、タペットクリアランスcl1を詰める(「0」にする)ことが可能である。また、吸気ロッカーアームシャフト51が初期状態から回転(逆転)し、偏芯軸部51cを上方(シリンダ本体16と反対側)に変位させることで、タペットクリアランスcl1を広げることが可能である。
 また、排気ロッカーアームシャフト52の軸方向視で、軸線C42,C52が例えばシリンダ軸線C2と直交する平面上に並ぶ状態を、排気ロッカーアームシャフト52の初期状態とする。排気ロッカーアームシャフト52の初期状態において、偏芯軸部52c(ロッカーアーム支持軸)と支持軸部52d(ロッカーアームシャフト回転軸)とは、シリンダ軸線C2方向で同一高さにある。このとき、排気ロッカーアーム48のタペットボルト48eと排気バルブ28のステム先端との間には、規定のタペットクリアランスcl2が設定されている。そして、排気ロッカーアームシャフト52が初期状態から回転(正転)し、偏芯軸部52cを下方(シリンダ本体16側)に変位させることで、タペットクリアランスcl2を詰める(「0」にする)ことが可能である。また、排気ロッカーアームシャフト52が初期状態から回転(逆転)し、偏芯軸部52cを上方(シリンダ本体16と反対側)に変位させることで、タペットクリアランスcl2を広げることが可能である。
 図2、図3を併せて参照し、吸気ロッカーアームシャフト51の例えばカムチェーン43bと反対側の端部(右端部)には、吸気捩じりバネ53が装着されている。吸気捩じりバネ53は、吸気ロッカーアームシャフト51の周囲を巻回するトーションコイルスプリングであり、コイル端の一方をシリンダヘッド17に係止し、コイル端の他方を吸気ロッカーアームシャフト51に係止している。吸気捩じりバネ53は、吸気ロッカーアームシャフト51に対し、軸線C41回りで一方向(例えば図4中左回り方向)への回転付勢力を付与している。吸気ロッカーアームシャフト51は、吸気捩じりバネ53の付勢力により、前記初期状態よりも偏芯軸部51cを下方(シリンダ本体16側)に変位させるように付勢されている。
 排気ロッカーアームシャフト52の例えばカムチェーン43bと反対側の端部(右端部)には、排気捩じりバネ54が装着されている。排気捩じりバネ54は、排気ロッカーアームシャフト52の周囲を巻回するトーションコイルバネであり、コイル端の一方をシリンダヘッド17に係止し、コイル端の他方を排気ロッカーアームシャフト52に係止している。排気捩じりバネ54は、排気ロッカーアームシャフト52に対し、軸線C42回りで一方向(例えば図4中右回り方向)への回転付勢力を付与している。排気ロッカーアームシャフト52は、排気捩じりバネ54の付勢力により、前記初期状態よりも偏芯軸部52cを下方(シリンダ本体16側)に変位させるように付勢されている。
 図2、図3、図5を参照し、カムシャフト41の例えばカムチェーン43b側の端部には、吸気ロッカーアームシャフト51および排気ロッカーアームシャフト52を、各々に装着された捩じりバネ53,54の付勢力に抗する方向に回転させる戻し機構60が構成されている。戻し機構60は、カムシャフト41の端部に設けられた吸気戻しカム61および排気戻しカム62と、吸気ロッカーアームシャフト51および排気ロッカーアームシャフト52の各々の端部に設けられた吸気戻しアーム63および排気戻しアーム64と、を備えている。
 吸気戻しアーム63は、吸気ロッカーアームシャフト51の端部に基端部を固定している。吸気戻しアーム63の先端部には、吸気戻しカム61の外周面(カム面)に転接する戻しカムローラ63dが支持されている。図5に示す吸気戻しアーム63は、吸気ロッカーアームシャフト51が初期状態にあるときの状態である。この状態を吸気戻しアーム63の初期状態とする。
 排気戻しアーム64は、排気ロッカーアームシャフト52の端部に基端部を固定している。排気戻しアーム64の先端部には、排気戻しカム62の外周面(カム面)に転接する戻しカムローラ64dが支持されている。図5に示す排気戻しアーム64は、排気ロッカーアームシャフト52が初期状態にあるときの状態である。この状態を排気戻しアーム64の初期状態とする。
 図5、図7を参照し、吸気戻しカム61は、カム軸線C3を中心とする円弧状の戻しベース円部61aと、戻しベース円部61aに対して径方向寸法を増大させる戻しカム山部61bと、を備えている。戻しカム山部61bは、軸方向視で吸気カム45のカム山部45bを避けた範囲(回転方向で重ならない範囲)H1に配置されている。つまり、吸気カム45と吸気戻しカム61とは、互いにリフトするタイミングがずれている。戻しカム山部61bは、吸気戻しアーム63が初期状態にあるとき、戻しカムローラ63dを転接させる高さを有している。これにより、吸気ロッカーアームシャフト51が初期状態から回転(逆転)し、偏芯軸部51cを上方(シリンダ本体16と反対側)に変位させ、タペットクリアランスcl1を一時的に広げる。吸気戻しアーム63が初期状態にあるとき、戻しカムローラ63dは戻しベース円部61aからは径方向で離間する。
 排気戻しカム62は、カム軸線C3を中心とする円弧状の戻しベース円部62aと、戻しベース円部62aに対して径方向寸法を増大させた戻しカム山部62bと、を備えている。戻しカム山部62bは、軸方向視で排気カム46のカム山部46bを避けた範囲(回転方向で重ならない範囲)に配置されている。つまり、排気カム46と排気戻しカム62とは、互いにリフトするタイミングがずれている。戻しカム山部62bは、排気戻しアーム64が初期状態にあるとき、戻しカムローラ64dを転接させる高さを有している。これにより、排気ロッカーアームシャフト52が初期状態から回転(正転)し、偏芯軸部52cを上方(シリンダ本体16と反対側)に変位させ、タペットクリアランスcl2を一時的に広げる。排気戻しアーム64が初期状態にあるとき、戻しカムローラ64dは戻しベース円部62aからは径方向で離間する。
 係る構成において、エンジン10の吸気工程が終わると、吸気ロッカーアーム47のカムローラ47dが吸気カム45のカム山部45bから下りてベース円部45aに転接する。このとき、カムシャフト41の回転方向における吸気カム45のカム山部45bを避けた範囲H1で、吸気戻しカム61の戻しカム山部62bが吸気戻しアーム63の戻しカムローラ63dを転接させる。すると、吸気ロッカーアームシャフト51に吸気捩じりバネ53の付勢力と逆方向の回転駆動力が付与され、吸気ロッカーアームシャフト51が初期状態から逆転してタペットクリアランスcl1を一時的に広げる。
 その後、次の吸気工程が始まる前に、戻しカム山部62bが吸気戻しアーム63との係合位置を通り過ぎ、吸気ロッカーアームシャフト51への回転駆動力の付与を無くす。すると、吸気ロッカーアームシャフト51が吸気捩じりバネ53の付勢力によって正転し、タペットクリアランスcl1を詰める。
 また、エンジン10の排気工程が終わると、排気ロッカーアーム48のカムローラ48dが排気カム46のカム山部46bから下りてベース円部46aに転接する。このとき、カムシャフト41の回転方向における排気カム46のカム山部46bを避けた範囲H2で、排気戻しカム62の戻しカム山部62bが排気戻しアーム64の戻しカムローラ64dを転接させる。すると、排気ロッカーアームシャフト52が排気捩じりバネ54の付勢力と逆方向の回転駆動力が付与され、排気ロッカーアームシャフト52が初期状態から逆転してタペットクリアランスcl2を一時的に広げる。
 その後、次の排気工程が始まる前に、戻しカム山部62bが排気戻しアーム64との係合位置を通り過ぎ、排気ロッカーアームシャフト52への回転駆動力の付与を無くす。すると、排気ロッカーアームシャフト52が排気捩じりバネ54の付勢力によって正転し、タペットクリアランスcl2を詰める。
 このように、エンジン10では、カムシャフト41が一回転する毎に(すなわち一サイクル毎に)、吸気バルブ27および排気バルブ28の各々のタペットクリアランスcl1,cl2を広げる動作と詰める動作とを繰り返す。このため、タペットクリアランスcl1,cl2を詰める方向への動作のみが繰り返される場合に比べて、タペットクリアランスcl1,cl2を適切な値に維持することが可能となる。
 つまり、例えばエンジン10の冷間時に、各ロッカーアームシャフト51,52が回転してタペットクリアランスcl1,cl2を「0」にしてしまうと、エンジン10の暖気後に各ロッカーアーム47,48と各バルブ27,28とが干渉してしまう虞がある。すなわち、各タペットクリアランスcl1,cl2を詰める側への一方向の動作のみでは、タペットクリアランスcl1,cl2を広げることが難しく、各部品の熱膨張やバルブシートの摩耗等に対応することができない。このため、バルブ閉時に各ロッカーアーム47,48が吸排気カム45,46のベース円部45a,46a上に接しているときにも、各ロッカーアーム47,48と各バルブ27,28とが干渉する虞があり、エンジン10の運転上好ましくない。
 各ロッカーアームシャフト51,52は、各バルブ27,28を開いた際に各バルブスプリング27e,28eからバネ力を受けることで、偏芯軸部51c,52cをシリンダ本体16と反対側に変位させるよう回転することが考えられる。しかし、各ロッカーアームシャフト51,52と直交する方向のバネ力によって、各ロッカーアームシャフト51,52とカムホルダ42等とのフリクションや各捩じりバネ53,54の付勢力に抗して各ロッカーアームシャフト51,52を回転させることは難しい。
 以下、各ロッカーアームシャフト51,52に作用する力について検討した内容を説明する。各ロッカーアームシャフト51,52に作用する力は互いに同様であり、以下の説明では吸気ロッカーアームシャフト51を例に説明する。
 図6を参照し、まず、タペットボルト47eの先端(力点に相当)でバルブ27を押圧し開いた際のバルブスプリング27eのバネ反力(バルブスプリング荷重)をF1、カムローラ47dの回転中心(支点に相当)から偏芯軸部51cの軸心C51(作用点に相当)までの距離をL2、カムローラ47dの回転中心からタペットボルト47eの先端までの距離をL1とすると、バルブスプリング荷重F1による偏芯軸部51cを押し上げようとする力(偏芯軸押し上げ力)F2は、下記式1で求められる。
F2=F1*L1/L2・・・式1
 また、偏芯軸押し上げ力F2によるロッカーアームシャフト51を回転させようとする力(偏芯軸押し上げトルク)T1は、下記式2で求められる。
T1=F2*E・・・式2
(Eは偏芯軸部51cの偏芯距離)
 また、バルブスプリング荷重F1による偏芯軸部51cの直径D3回りのフリクショントルク(摩擦トルク)T2は、下記式3で求められる。
T2=F2*μ*D3/2・・・式3
(μは偏芯軸部51c外周の摩擦係数)
 なお、フリクショントルクT2は逆回転も有る。
 また、バルブスプリング荷重F1によるトルクの総和T3は、下記式4で求められる。
T3=T1+T2=F2(E+μ*D3/2)・・・式4
 また、バルブスプリング荷重F1による太軸部51aの直径D1回りのフリクショントルク、および細軸部51bの直径D2回りのフリクショントルクの合計(支持軸摩擦トルク)Tfは、下記式5で求められる。
Tf=((D1+D2)/2)*(F2/2)*μ=F2*μ*(D1+D2)/4・・・式5
(太軸部51aおよび細軸部51bにはバルブスプリング荷重F1が1/2ずつ加わるものとする)
 また、バルブスプリング荷重F1によるトルクの総和T3から支持軸部フリクショントルクTfを含む種々フリクショントルクを引いた残存トルクTaは、下記式6で求められる。
Ta=T3-Tf-To=F2(E+μ(2D3-D1-D2)/4)-To=F1*L1/L2(E+μ(2D3-D1-D2)/4)-To・・・式6
(Toはロッカーアームシャフト51に対するフリクション付加機構によるフリクション付加トルク)
 Toは、ロッカーアーム支持部(偏芯軸部51c,52c)に受ける摩擦トルク(偏芯軸摩擦トルク)T2などを含む。
 つまり、バルブスプリング荷重F1によるトルクからロッカーアームシャフト51の三軸部51a,51b,51cの抵抗を引いた分が残存トルクTaとなる。
 次に、捩じりバネ53のトルクによる偏芯軸部51cを押し下げる方向に回転させようとする力(ロッカーアーム押し付けトルク)F2’は、下記式7で求められる。
F2’=T1’/E・・・式7
(T1’は捩じりバネ53によるバネ付勢トルク)
 また、ロッカーアーム押し付けトルクF2’による摩擦トルクTf’は、下記式8で求められる。
Tf’=(D1+D2)/2*F2’/2*μ=T1’((D1+D2)/(4E)*μ)・・・式8
 また、T1’-Tf’の残存トルクTrは、下記式9で求められる。
Tr=T1’-Tf’-To=T1’(1-μ(D1+D2)/(4E))-To・・・式9
 つまり、捩じりバネ53によるトルクからロッカーアームシャフト51の三軸部51a,51b,51cの抵抗を引いた分が残存トルクTrとなる。
 このTrが正の場合のみ(Tr>0)、ロッカーアームシャフト51が回転し、Trが負の場合は動かない。つまり、Trが負の場合、捩じりバネ53のトルクでロッカーアームシャフト51が回転できないため、ロッカーアーム47をバルブ27押し付けられない。
 そして、捩じりバネ53による残存トルクTrが、バルブスプリング荷重F1による残存トルクTaに押し勝てば(Tr-Ta>0)、捩じりバネ53のトルクでロッカーアームシャフト51が回転し、ロッカーアーム47をバルブ27に押し付けることが可能である。
 さらに、本実施形態では、下記式10を満たすように各値が設定されている。
(T1’+Tf+To)-T1>0・・・式10
 これにより、バルブスプリング27e,28eからの反力により、ロッカーアームシャフト51,52が偏芯軸押し上げトルクT1を受けても、このトルクT1が捩じりバネ53,54の付勢トルクT1’、支持軸摩擦トルクTf、およびフリクション付加トルクToの合計値を越えなくなる。このため、ロッカーアームシャフト51,52がロッカーアーム47,48の揺動に連れ回り、捩じりバネ53,54の付勢力に抗して意図せずタペットクリアランスcl1,cl2を広げる方向に回転してしまうことを防ぐことができる。
 以上説明したように、上記実施形態におけるエンジン10の動弁機構40は、機関本体(カムホルダ42)に回転可能に支持されるカムシャフト41と、前記機関本体に回転可能に支持されるロッカーアームシャフト51,52と、前記機関本体に開閉動可能に支持される吸排気バルブ27,28と、前記機関本体にロッカーアームシャフト51,52を介して揺動可能に支持され、カムシャフト41に係合する第一係合部(カムローラ47d,48d)と吸排気バルブ27,28に係合する第二係合部(タペットボルト47e,48e)とを有する給排気ロッカーアーム47,48と、を備え、前記ロッカーアームシャフト51,52は、前記機関本体に支持される支持軸部51d,52dと、前記ロッカーアーム47,48を支持するとともに、前記支持軸部51d,52dの第一軸線C41,C42からオフセットした第二軸線C51,C52を有する偏芯軸部51c,52cと、を備え、前記ロッカーアームシャフト51,52に周方向の付勢力を加える捩じりバネ53,54をさらに備え、前記ロッカーアームシャフト51,52は、前記捩じりバネ53,54の付勢力を受けて前記軸部51d,52dの第一軸線C41,C42回りに回転し、前記偏芯軸部51c,52cによる前記ロッカーアーム47,48の回転支持の中心位置を変化させる。
 この構成によれば、ロッカーアームシャフト51,52が偏芯軸をなし、このロッカーアームシャフト51,52に捩じりバネ53,54によって周方向(回転方向)の付勢力を付与する。すると、ロッカーアームシャフト51,52が支持軸部51d,52dを中心に回転し、偏芯軸部51c,52cの回転方向位置(オフセット位置)を変化させる。これにより、ロッカーアーム47,48をカムシャフト41および吸排気バルブ27,28に接近離反させ、タペットクリアランスcl1,cl2を増減させることが可能となる。捩じりバネ53,54の付勢方向がタペットクリアランスcl1,cl2を詰める方向であれば、ロッカーアームシャフト51,52に偏芯軸を用いてタペットクリアランスcl1,cl2を調整可能としながら、タペットクリアランスcl1,cl2の自動調整(クリアランス詰め)を行うことができる。
 上記エンジン10の動弁機構40において、前記ロッカーアームシャフト51,52に設けられ、前記ロッカーアームシャフト51,52に前記捩じりバネ53,54の付勢力に抗する回転駆動力を付与可能な戻しアーム63,64と、前記カムシャフト41に設けられ、前記戻しアーム63,64を作動させて前記ロッカーアームシャフト51,52に回転駆動力を付与可能な戻しカム61,62と、を備えている。
 この構成によれば、エンジン10の冷間始動時に捩じりバネ53,54によってタペットクリアランスcl1,cl2を詰めた後、エンジン10の温度が上昇して各部品が熱膨張すると、吸排気バルブ27,28の閉時でもロッカーアーム47,48が干渉する虞がある。このため、ロッカーアームシャフト51,52に設けた戻しアーム63,64とカムシャフト41に設けた戻しカム61,62とを用いて、ロッカーアームシャフト51,52を捩じりバネ53,54の付勢力に抗して回転させる。これにより、カムシャフト41の回転の都度(エンジン10の一サイクルの都度)、ロッカーアームシャフト51,52が捩じりバネ53,54の作用で回転する前の初期状態に戻り、タペットクリアランスcl1,cl2が捩じりバネ53,54の付勢力で詰められる前の規定の設定値に戻る。このように、捩じりバネ53,54によってタペットクリアランスcl1,cl2を詰める方向への動作のみが繰り返されることを防ぎ、タペットクリアランスcl1,cl2を適切な値に維持することができる。
 上記エンジン10の動弁機構40において、前記戻しカム61,62は、前記ロッカーアーム47,48が前記カムシャフト41の吸排気カム45,46のベース円部45a,46aに接している際に、前記戻しアーム63,64を作動させて前記ロッカーアームシャフト51,52に回転駆動力を付与可能な戻しカム山部61b,62bを備えている。
 この構成によれば、ロッカーアーム47,48がカムシャフト41の吸排気カム45,46のベース円部45a,46aに接している際(ゼロリフト時)に、戻しカム山部61b,62bが戻しアーム63,64を作動させてロッカーアームシャフト51,52に回転駆動力を付与させる。すなわち、ロッカーアーム47,48が吸排気バルブ27,28を押圧していない状態でロッカーアームシャフト51,52を回転させるので、ロッカーアームシャフト51,52がバルブスプリング27e,28eの反力の影響を受けずに回転可能となる。このため、ロッカーアームシャフト51,52が容易に回転可能となり、戻し機構60の作動性を向上させるとともに構造の簡素化を図ることができる。
 上記エンジン10の動弁機構40は、吸排気バルブ27,28を閉状態に付勢するバルブスプリング27e,28eを備え、前記ロッカーアーム47,48が前記バルブスプリング27e,28eの付勢力に抗して前記吸排気バルブ27,28を押圧した際、前記バルブスプリング27e,28eの付勢力により前記偏芯軸部51c,52cを介して前記ロッカーアームシャフト51,52に作用する回転方向の力を偏芯軸押し上げトルクT1、前記捩じりバネ53,54の付勢力により前記ロッカーアームシャフト51,52に作用する回転方向の力をバネ付勢トルクT1’、前記ロッカーアームシャフト51,52が前記機関本体から受ける摩擦トルクを支持軸摩擦トルクTf、前記ロッカーアームシャフト51,52が前記ロッカーアーム47,48から受ける摩擦トルクをフリクション付加トルクTo、とすると、前記(T1),(T1’),(Tf),(To)は、下記式に示される関係を満たすように設定されている。
(T1’+Tf+To)-T1>0
 この構成によれば、偏芯軸部51c,52cでロッカーアーム47,48を支持するロッカーアームシャフト51,52は、エンジン10が高回転域に入った場合等、バルブスプリング27e,28eからの反力により偏芯軸部51c,52cを介して回転方向の力を受ける。このとき、ロッカーアームシャフト51,52がロッカーアーム47,48に連れ回り、捩じりバネ53,54の付勢力に抗して回転する(意図せずタペットクリアランスcl1,cl2を広げる方向に回転する)可能性がある。しかし、上記式で示される関係を満たすように各値を設定することで、ロッカーアームシャフト51,52の前記連れ回りを防ぐことができる。すなわち、バルブスプリング27e,28eの付勢力によりロッカーアームシャフト51,52に作用する回転方向の力T1が、ロッカーアームシャフト51,52に作用する摩擦トルクTf,To、並びに捩じりバネ53,54の付勢トルクT1’の合計値よりも小さくなるよう設定することで、ロッカーアームシャフト51,52がロッカーアーム47,48の揺動時に連れ回ることを防ぐことができる。
 上記エンジン10の動弁機構40において、前記ロッカーアーム47,48は、前記偏芯軸部51c,52cに転がり軸受け(ニードルベアリング47f,48f)を介して支持されている。
 この構成によれば、ロッカーアームシャフト51,52に対するロッカーアーム47,48の揺動が滑らかになり、ロッカーアームシャフト51,52に作用するフリクショントルクを抑え、ロッカーアームシャフト51,52の連れ回りを容易に防ぐことができる。
 上記エンジン10の動弁機構40において、前記支持軸部51d,52dは、前記ロッカーアームシャフト51,52の軸方向の一端側に設けられ、前記カムホルダ42の一側に支持される太軸部51a,52aと、前記ロッカーアームシャフト51,52の軸方向の他端側に設けられ、前記カムホルダ42の他側に支持されるとともに、前記太軸部51a,52aに対して外径が異なる細軸部51b,52bと、を備え、前記偏芯軸部51c,52cは、前記太軸部51a,52aおよび細軸部51b,52bの間に設けられている。
 この構成によれば、軸方向の両側で支持軸部51d,52dの太さを変えることで、ロッカーアームシャフト51,52の誤組防止を図るとともに、太さや軸心位置が変化する軸部間の段差を利用して軸方向のずれを防止することができる。
 なお、本発明は上記実施形態に限られるものではなく、例えば、自動二輪車等の小型車両(鞍乗り型車両)の内燃機関への適用に関し、前記鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪の車両も含まれる。また、鞍乗り型車両以外の乗用車等、種々の輸送機器への適用も可能である。
 吸排気バルブの少なくとも一方を複数備える内燃機関に適用してもよい。カムシャフトを複数備える内燃機関に適用してもよい。力点および作用点の間に支点があるシーソー式のロッカーアームを備える内燃機関に限らず、支点が一端側、力点および作用点が他端側にあるスイングアーム式のロッカーアームを備える内燃機関に適用してもよい。
 ロッカーアームがカムローラに代わるスリッパ面をカム面に摺接させる構成でもよい。ロッカーアームがタペットボルトに代わる押圧部でバルブを押圧する構成でもよい。ロッカーアームがニードルベアリング等の転がり軸受けに代わりメタルブッシュ等の滑り軸受けを備える構成でもよい。
 例えば、戻しカムを吸気、排気で各々構成するのではなく、単一の戻しカムを排気カム、吸気カムとタイミングが重複しない位置に構成し、一つの戻しカムを二つの戻しアームで共用して使用しても良い。
 そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 10 エンジン(内燃機関)
 27 吸気バルブ(機関弁)
 28 排気バルブ(機関弁)
 27e,28e バルブスプリング
 41 カムシャフト
 42 カムホルダ(機関本体)
 45 吸気カム
 46 排気カム
 45a,46a ベース円部
 45b、46b カム山部
 47 吸気ロッカーアーム
 48 排気ロッカーアーム
 47d,48d カムローラ
 47e,48e タペットボルト
 47f,48f ニードルベアリング(転がり軸受け)
 51 吸気ロッカーアームシャフト
 52 排気ロッカーアームシャフト
 51a,52a 太軸部(第一軸部)
 51b,52b 細軸部(第二軸部)
 51c,52c 偏芯軸部
 51d,52d 支持軸部
 53,54 捩じりバネ(付勢部材)
 61,62 戻しカム
 63,64 戻しアーム(戻し部材)
 C41,C42 第一軸線
 C51,C52 第二軸線
 T1 偏芯軸押し上げトルク
 T1’ バネ付勢トルク
 Tf 支持軸摩擦トルク
 To フリクション付加トルク

Claims (6)

  1.  機関本体(42)に回転可能に支持されるカムシャフト(41)と、
     前記機関本体(42)に回転可能に支持されるロッカーアームシャフト(51,52)と、
     前記機関本体(42)に開閉動可能に支持される機関弁(27,28)と、
     前記機関本体(42)にロッカーアームシャフト(51,52)を介して揺動可能に支持され、カムシャフト(41)に係合する第一係合部(47d,48d)と機関弁(27,28)に係合する第二係合部(47e,48e)とを有するロッカーアーム(47,48)と、
    を備える内燃機関(10)の動弁機構(40)であって、
     前記ロッカーアームシャフト(51,52)は、前記機関本体(42)に支持される支持軸部(51d,52d)と、前記ロッカーアーム(47,48)を支持するとともに、前記支持軸部(51d,52d)の第一軸線(C41,C42)からオフセットした第二軸線(C51,C52)を有する偏芯軸部(51c,52c)と、を備え、
     前記ロッカーアームシャフト(51,52)に周方向の付勢力を加える付勢部材(53,54)をさらに備え、
     前記ロッカーアームシャフト(51,52)は、前記付勢部材(53,54)の付勢力を受けて前記支持軸部(51d,52d)の第一軸線(C41,C42)回りに回転し、前記偏芯軸部(51c,52c)による前記ロッカーアーム(47,48)の回転支持の中心位置を変化させる、内燃機関の動弁機構。
  2.  前記ロッカーアームシャフト(51,52)に設けられ、前記ロッカーアームシャフト(51,52)に前記付勢部材(53,54)の付勢力に抗する回転駆動力を付与可能な戻し部材(63,64)と、
     前記カムシャフト(41)に設けられ、前記戻し部材(63,64)を作動させて前記ロッカーアームシャフト(51,52)に回転駆動力を付与可能な戻しカム(61,62)と、を備えている、請求項1に記載の内燃機関の動弁機構。
  3.  前記戻しカム(61,62)は、前記ロッカーアーム(47,48)が前記カムシャフト(41)のカム(45,46)のベース円部(45a,46a)に接している際に、前記戻し部材(63,64)を作動させて前記ロッカーアームシャフト(51,52)に回転駆動力を付与可能な戻しカム山部(61b,62b)を備えている、請求項2に記載の内燃機関の動弁機構。
  4.  前記機関弁(27,28)を閉状態に付勢するバルブスプリング(27e,28e)を備え、
     前記ロッカーアーム(47,48)が前記バルブスプリング(27e,28e)の付勢力に抗して前記機関弁(27,28)を押圧した際、前記バルブスプリング(27e,28e)の付勢力により前記ロッカーアームシャフト(51,52)に作用する回転方向の力を(T1)、
     前記付勢部材(53,54)の付勢力により前記ロッカーアームシャフト(51,52)に作用する回転方向の力を(T1’)、
     前記ロッカーアームシャフト(51,52)が前記機関本体(42)から受ける摩擦トルクを(Tf)、
     前記ロッカーアームシャフト(51,52)が前記ロッカーアーム(47,48)から受ける摩擦トルクを(To)、とすると、
    前記(T1),(T1’),(Tf),(To)は、下記式に示される関係を満たすように設定されている、請求項1から3の何れか一項に記載の内燃機関の動弁機構。
     
    (T1’+Tf+To)-T1>0
     
  5.  前記ロッカーアーム(47,48)は、前記偏芯軸部(51c,52c)に転がり軸受け(47f,48f)を介して支持されている、請求項1から4の何れか一項に記載の内燃機関の動弁機構。
  6.  前記支持軸部(51d,52d)は、 前記ロッカーアームシャフト(51,52)の軸方向の一端側に設けられ、前記機関本体(42)の一側に支持される第一軸部(51a,52a)と、前記ロッカーアームシャフト(51,52)の軸方向の他端側に設けられ、前記機関本体(42)の他側に支持されるとともに、前記第一軸部(51a,52a)に対して外径が異なる第二軸部(51b,52b)と、を備え、
     前記偏芯軸部(51c,52c)は、前記第一軸部(51a,52a)および第二軸部(51b,52b)の間に設けられている、請求項1から5の何れか一項に記載の内燃機関の動弁機構。
PCT/JP2018/013223 2018-03-29 2018-03-29 内燃機関の動弁機構 WO2019186887A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/013223 WO2019186887A1 (ja) 2018-03-29 2018-03-29 内燃機関の動弁機構
BR112020019621-5A BR112020019621B1 (pt) 2018-03-29 Mecanismo de trem da válvula de motor de combustão interna
JP2020508699A JP6890208B2 (ja) 2018-03-29 2018-03-29 内燃機関の動弁機構
CN201880091682.8A CN111902614B (zh) 2018-03-29 2018-03-29 内燃机的气门传动机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013223 WO2019186887A1 (ja) 2018-03-29 2018-03-29 内燃機関の動弁機構

Publications (1)

Publication Number Publication Date
WO2019186887A1 true WO2019186887A1 (ja) 2019-10-03

Family

ID=68059686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013223 WO2019186887A1 (ja) 2018-03-29 2018-03-29 内燃機関の動弁機構

Country Status (3)

Country Link
JP (1) JP6890208B2 (ja)
CN (1) CN111902614B (ja)
WO (1) WO2019186887A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199354A1 (ja) * 2020-03-31 2021-10-07 本田技研工業株式会社 内燃機関の動弁機構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772667A (en) * 1950-01-13 1956-12-04 Daimler Benz Ag Valve-control
JPS59150911U (ja) * 1983-03-29 1984-10-09 スズキ株式会社 エンジンのロツカ−ア−ムバルブクリアランス自動調節装置
JPS60195314A (ja) * 1984-03-16 1985-10-03 Honda Motor Co Ltd 内燃機関の頭上カムシヤフト式動弁装置
JPH0188005U (ja) * 1987-12-04 1989-06-09
JPH0228505U (ja) * 1988-08-16 1990-02-23

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331901B1 (de) * 1988-02-05 1993-11-18 Dieter Voigt Ventilantrieb für ein Hubventil
JP4254582B2 (ja) * 2004-03-12 2009-04-15 日産自動車株式会社 内燃機関のバルブリフト量調整機構および調整方法
JP4381188B2 (ja) * 2004-03-19 2009-12-09 三菱ふそうトラック・バス株式会社 内燃機関の可変動弁装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772667A (en) * 1950-01-13 1956-12-04 Daimler Benz Ag Valve-control
JPS59150911U (ja) * 1983-03-29 1984-10-09 スズキ株式会社 エンジンのロツカ−ア−ムバルブクリアランス自動調節装置
JPS60195314A (ja) * 1984-03-16 1985-10-03 Honda Motor Co Ltd 内燃機関の頭上カムシヤフト式動弁装置
JPH0188005U (ja) * 1987-12-04 1989-06-09
JPH0228505U (ja) * 1988-08-16 1990-02-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199354A1 (ja) * 2020-03-31 2021-10-07 本田技研工業株式会社 内燃機関の動弁機構

Also Published As

Publication number Publication date
CN111902614B (zh) 2021-12-21
CN111902614A (zh) 2020-11-06
JP6890208B2 (ja) 2021-06-18
BR112020019621A2 (pt) 2021-01-05
JPWO2019186887A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
US7726271B2 (en) Engine with decompression device
US7007652B2 (en) Variable duration valve timing camshaft
US8820284B2 (en) Variable valve gear for internal combustion engine
US7913658B2 (en) Valve actuating mechanism for an internal combustion engine, and cylinder head incorporating same
JP4134587B2 (ja) 動弁装置およびこれを備えた内燃機関
CN105422205B (zh) 引擎的气门机构
US10364709B2 (en) Variable valve mechanism, engine, and automatic two-wheeled vehicle
WO2019186887A1 (ja) 内燃機関の動弁機構
US10280846B2 (en) Valve opening and closing timing control device
AU2004242531B2 (en) Valve operating system for internal combustion engine
WO2021199354A1 (ja) 内燃機関の動弁機構
US7938089B2 (en) Valve actuating mechanism for an internal combustion engine, and cylinder head incorporating same
JP6887001B2 (ja) デコンプ装置を備えたエンジン
JP6058158B2 (ja) 単気筒sohcエンジン及び単気筒sohcエンジン用ロッカーアーム
JP2011058474A (ja) 4サイクルエンジン
BR112020019621B1 (pt) Mecanismo de trem da válvula de motor de combustão interna
JP2006291913A (ja) 内燃機関の可変動弁装置
US10309267B2 (en) Variable valve mechanism, engine, and automatic two-wheeled vehicle
JP2016133081A (ja) Sohc単気筒エンジンの可変動弁構造
JP2015068320A (ja) スロットルボディ
JP2013087676A (ja) エンジンの動弁装置
JP2018035694A (ja) エンジンの頭上弁作動機構
JP2006207407A (ja) 内燃機関の動弁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913100

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020508699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019621

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020019621

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200925

122 Ep: pct application non-entry in european phase

Ref document number: 18913100

Country of ref document: EP

Kind code of ref document: A1