WO2019186756A1 - 駆動装置、駆動方法、駆動プログラムおよび電動車両 - Google Patents

駆動装置、駆動方法、駆動プログラムおよび電動車両 Download PDF

Info

Publication number
WO2019186756A1
WO2019186756A1 PCT/JP2018/012744 JP2018012744W WO2019186756A1 WO 2019186756 A1 WO2019186756 A1 WO 2019186756A1 JP 2018012744 W JP2018012744 W JP 2018012744W WO 2019186756 A1 WO2019186756 A1 WO 2019186756A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interval
motor
signal interval
change amount
Prior art date
Application number
PCT/JP2018/012744
Other languages
English (en)
French (fr)
Inventor
一由希 目黒
雄大 井ノ口
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to CN201880091321.3A priority Critical patent/CN111954977B/zh
Priority to JP2020510289A priority patent/JP6953621B2/ja
Priority to PCT/JP2018/012744 priority patent/WO2019186756A1/ja
Priority to TW108110694A priority patent/TWI689427B/zh
Publication of WO2019186756A1 publication Critical patent/WO2019186756A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive device, a drive method, a drive program, and an electric vehicle.
  • An electric vehicle such as a two-wheel EV includes a motor for driving wheels and a driving device having a control unit for controlling the motor.
  • a required torque can be obtained from a low rotation range to a high rotation range even when the gear is fixed. For this reason, the electric vehicle which does not provide a clutch is examined.
  • the motor directly receives an external force from a wheel that has been cut off by the clutch in the conventional electric vehicle.
  • Patent Document 1 describes a control device used for a vehicle that travels by transmitting power output from a motor to drive wheels via a transmission.
  • the control device includes a control unit having a plurality of filters that extract signals indicating vibration or noise of the drive motor.
  • the control unit weights the signals extracted by the filters based on changes in the vehicle state, and corrects the torque command value based on the weighted signals.
  • Rotational position sensor for detecting the rotational position of the rotor is provided in the stator of the motor of the electric vehicle.
  • the control unit of the driving device receives a rising edge signal or a falling edge signal (hereinafter, also collectively referred to as “sensor signal”) for each predetermined electrical angle from the rotational position sensor. Based on the sensor signal, the control unit grasps the rotation speed of the motor and controls the motor.
  • the electric vehicle may receive high-frequency noise that changes faster than the acceleration / deceleration of the electric vehicle due to disturbance according to the road surface condition or the like.
  • high-frequency noise greatly affects motor control. That is, when receiving high frequency noise, the timing of receiving a sensor signal fluctuates due to the influence. As a result, the accuracy of the time interval between the sensor signals (hereinafter also referred to as “signal interval”) is lowered, and the motor may not be properly controlled.
  • an object of the present invention is to provide a drive device, a drive method, a drive program, and an electric vehicle that can appropriately drive a load without reducing the control speed of the motor.
  • the drive device is A signal receiver that receives signals that arrive at intervals according to the rotational speed of the motor that drives the load; A first signal interval between the reception time of the first signal most recently received by the signal reception unit and the reception time of the second signal received before the first signal; Signal interval change amount calculation for calculating a signal interval change amount which is a difference between the second signal interval between the reception time of the first signal and the reception time of the third signal received before the second signal And A signal interval correction unit for correcting the first signal interval based on the signal interval change amount; A rotational speed calculator that calculates an instantaneous rotational speed of the motor based on the corrected first signal interval; A motor control unit for controlling the motor based on the calculated instantaneous rotational speed; It is characterized by providing.
  • the signal interval correction unit obtains a weighting factor according to the signal interval change amount, multiplies the weighting factor by the signal interval change amount, and uses the signal interval change amount multiplied by the weighting factor as the second signal interval.
  • the first signal interval may be corrected.
  • the weighting factor may be reduced as the absolute value of the signal interval change amount increases.
  • the amount of decrease in the weighting factor may be reduced as the absolute value of the signal interval change amount increases.
  • the value of the weighting factor when the signal interval change amount is zero may be 1.
  • the weighting factor may be 1 when the absolute value of the signal interval change amount is within a predetermined range, and may decrease as the absolute value increases outside the predetermined range.
  • the rotation speed calculation unit is a signal in which the second signal is received immediately before the first signal and the third signal is received immediately before the second signal.
  • n is the instantaneous rotation speed [rpm]
  • ⁇ Ta is the corrected first signal interval [mSec]
  • Np is the signal receiving unit while the motor makes one rotation at an electrical angle. The number of signals received.
  • the signal interval change amount calculation unit is configured to count a first time counted every monitoring time interval between the first signal and the second signal when the signal reception unit receives the first signal. Calculating the difference between the count number and the second count number counted for each monitoring time interval between the second signal and the third signal as the signal interval change amount;
  • the signal interval correction unit obtains a weighting factor according to the count number difference, multiplies the count factor difference by the weighting factor, and adds the count number difference multiplied by the weighting factor to the second count number.
  • the first count number may be corrected.
  • the monitoring time interval may be shorter than the time interval of the signal received by the signal receiving unit when the rotation speed of the motor is maximum.
  • the signal interval change amount calculation unit may reset the first count number after calculating the count number difference.
  • the signal received by the signal receiving unit may be a rising edge signal or a falling edge signal of a pulse signal output from a rotational position sensor provided in the motor.
  • the electric vehicle according to the present invention is It is the said drive device, Comprising:
  • the said load is a drive device which is a wheel of an electric vehicle, It is characterized by the above-mentioned.
  • the wheel and the motor may be mechanically connected without a clutch.
  • the driving method includes: A step of receiving a signal arriving at an interval according to a rotation speed of a motor driving a load; A signal interval change amount calculation unit is configured to perform a first operation between a reception time of the first signal most recently received by the signal reception unit and a reception time of a second signal received before the first signal.
  • a signal interval correction unit correcting the first signal interval based on the signal interval change amount; and A rotation speed calculating unit calculating an instantaneous rotation speed of the motor based on the corrected first signal interval; A motor control unit controlling the motor based on the calculated instantaneous rotation speed; It is characterized by providing.
  • the drive program according to the present invention is: A step of receiving a signal arriving at an interval according to a rotation speed of a motor driving a load; A signal interval change amount calculation unit is configured to perform a first operation between a reception time of the first signal most recently received by the signal reception unit and a reception time of a second signal received before the first signal.
  • a signal interval correction unit correcting the first signal interval based on the signal interval change amount; and A rotation speed calculating unit calculating an instantaneous rotation speed of the motor based on the corrected first signal interval; A motor control unit controlling the motor based on the calculated instantaneous rotation speed; Is executed by a computer.
  • the signal interval correction unit corrects the first signal interval based on the signal interval change amount that is the difference between the first signal interval and the second signal interval, and the rotation speed calculation unit is corrected.
  • the instantaneous rotation speed of the motor is calculated based on the first signal interval, and the motor control unit controls the motor based on the calculated instantaneous rotation speed.
  • FIG. 1 is a diagram showing a schematic configuration of an electric vehicle 100 according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a schematic configuration of a power conversion unit 30 and a motor 3.
  • 3 is a diagram showing a magnet provided on a rotor 3r of a motor 3 and an angle sensor 4.
  • FIG. It is a figure which shows the relationship between a rotor angle and the output of an angle sensor. It is a timing chart for demonstrating the PWM control which concerns on embodiment.
  • 2 is a functional block diagram of a control unit 10 of the electric vehicle control device 1.
  • FIG. It is a figure for demonstrating the relationship between a sensor signal, and a count number. It is a graph for calculating
  • an electric vehicle control device that drives and controls an electric vehicle will be described as an embodiment of the drive device according to the present invention.
  • the drive device according to the present invention may drive a load other than the wheels of the electric vehicle.
  • the electric vehicle 100 is a vehicle that travels by driving a motor using electric power supplied from a battery.
  • the electric vehicle 100 is an electric motorcycle such as an electric motorcycle. More specifically, as shown in FIG. 1, the electric motorcycle 100 in which the motor 3 and the wheels 8 are mechanically directly connected without using a clutch. It is.
  • the electric vehicle according to the present invention may be a vehicle in which the motor 3 and the wheels 8 are connected via a clutch. Moreover, it is not limited to a two-wheeled vehicle, For example, a three-wheeled or four-wheeled electric vehicle may be sufficient.
  • the electric vehicle 100 includes an electric vehicle control device 1, a battery 2, a motor 3, an angle sensor (rotational position sensor) 4, an accelerator position sensor 5, an assist switch 6, a meter ( Display portion) 7, wheels 8, and charger 9.
  • the electric vehicle control device 1 is a device that controls the electric vehicle 100, and includes a control unit 10, a storage unit 20, and a power conversion unit (driver) 30.
  • the electric vehicle control apparatus 1 may be configured as an ECU (Electronic Control Unit) that controls the entire electric vehicle 100.
  • the control unit 10 inputs information from various devices connected to the electric vehicle control device 1. Specifically, the control unit 10 receives various signals output from the battery 2, the angle sensor (rotational position sensor) 4, the accelerator position sensor 5, the assist switch 6, and the charger 9. The control unit 10 outputs a signal to be displayed on the meter 7. In addition, the control unit 10 controls the motor 3 through the power conversion unit 30. Details of the control unit 10 will be described later.
  • the storage unit 20 stores information (such as various maps described later) used by the control unit 10 and a program for operating the control unit 10.
  • the storage unit 20 is, for example, a nonvolatile semiconductor memory, but is not limited to this. Note that the storage unit 20 may be incorporated as a part of the control unit 10.
  • the power converter 30 converts the DC power output from the battery 2 into AC power and supplies it to the motor 3.
  • the power conversion unit 30 includes an inverter configured by a three-phase full bridge circuit as shown in FIG.
  • Semiconductor switches Q1, Q3, and Q5 are high-side switches, and semiconductor switches Q2, Q4, and Q6 are low-side switches.
  • the control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control unit 10.
  • the semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs.
  • a smoothing capacitor C is provided between the power supply terminal 30a and the power supply terminal 30b.
  • the input terminal 3 a is a U-phase input terminal of the motor 3
  • the input terminal 3 b is a V-phase input terminal of the motor 3
  • the input terminal 3 c is a W-phase input terminal of the motor 3.
  • the semiconductor switch Q ⁇ b> 1 is connected between a power supply terminal 30 a to which the positive electrode of the battery 2 is connected and an input terminal 3 a of the motor 3.
  • the semiconductor switch Q3 is connected between the power supply terminal 30a and the input terminal 3b of the motor 3.
  • the semiconductor switch Q5 is connected between the power supply terminal 30a and the input terminal 3c of the motor 3.
  • the semiconductor switch Q2 is connected between the input terminal 3a of the motor 3 and the power supply terminal 30b to which the negative electrode of the battery 2 is connected.
  • the semiconductor switch Q4 is connected between the input terminal 3b of the motor 3 and the power supply terminal 30b.
  • the semiconductor switch Q6 is connected between the input terminal 3c of the motor 3 and the power supply terminal 30b.
  • the battery 2 supplies power to the motor 3 that rotates the wheels 8 of the electric vehicle 100.
  • the battery 2 supplies DC power to the power conversion unit 30.
  • the battery 2 is, for example, a lithium ion battery, but may be another type of battery. Note that the number of the batteries 2 is not limited to one and may be plural. That is, the electric vehicle 100 may be provided with a plurality of batteries 2 connected in parallel or in series with each other. Further, the battery 2 may include a lead battery for supplying an operating voltage to the control unit 10.
  • the battery 2 includes a battery management unit (BMU).
  • the battery management unit transmits battery information regarding the voltage of the battery 2 and the state of the battery 2 (charge rate, etc.) to the control unit 10.
  • the motor 3 is a motor that drives a load such as the wheels 8 by AC power supplied from the power conversion unit 30.
  • the motor 3 is mechanically connected to the wheel 8 and rotates the wheel 8 in a desired direction.
  • the motor 3 is a three-phase AC motor having a U phase, a V phase, and a W phase. As described above, the motor 3 is mechanically directly connected to the wheel 8 without using a clutch.
  • a three-phase brushless motor is used as the three-phase AC motor, but the type of the motor 3 is not limited to this.
  • the angle sensor 4 is a sensor that detects the rotational position of the rotor 3r of the motor 3. As shown in FIG. 3, N-pole and S-pole magnets (sensor magnets) are alternately attached to the circumferential surface of the rotor 3r.
  • the angle sensor 4 is constituted by a Hall element, for example, and detects a change in the magnetic field accompanying the rotation of the motor 3.
  • the number of the magnets shown in FIG. 3 is an example, and is not limited to this. Further, the magnet may be provided inside a flywheel (not shown).
  • the angle sensor 4 includes a U-phase angle sensor 4 u associated with the U-phase of the motor 3, a V-phase angle sensor 4 v associated with the V-phase of the motor 3, and the W of the motor 3. And a W-phase angle sensor 4w associated with the phase.
  • the angle sensors 4u, 4v, 4w for each phase are provided in the motor 3.
  • the U-phase angle sensor 4u and the V-phase angle sensor 4v are arranged so as to form an angle of 30 ° with respect to the rotor 3r.
  • the V-phase angle sensor 4v and the W-phase angle sensor 4w are arranged to form an angle of 30 ° with respect to the rotor 3r of the motor 3.
  • the U-phase angle sensor 4u, the V-phase angle sensor 4v, and the W-phase angle sensor 4w output a pulse signal having a phase corresponding to the rotational position of the rotor 3r.
  • the width of this pulse signal (or the time interval of the sensor signal) becomes narrower as the rotational speed of the motor 3 (ie, the wheel 8) is higher.
  • a number (motor stage number) indicating a motor stage is assigned to each predetermined rotational position.
  • the motor stage indicates the rotational position of the rotor 3r.
  • motor stage numbers 1, 2, 3, 4, 5, and 6 are assigned for each electrical angle of 60 °.
  • the output stage is also called an energization stage, and is obtained by adding a time based on the output angle to the motor stage detected by the angle sensor 4.
  • the output angle changes according to the rotational speed of the motor 3 and the target torque as will be described later.
  • the control unit 10 performs on / off control of the semiconductor switches Q1 to Q6 of the power conversion unit 30 using the PWM signal. Thereby, the DC power supplied from the battery 2 is converted into AC power.
  • the U-phase low-side switch (semiconductor switch Q2) is PWM-controlled at the output stages 6, 1, 2, and 3.
  • the V-phase low-side switch (semiconductor switch Q4) is PWM-controlled at the output stages 2, 3, 4, and 5, and the W-phase low-side switch (semiconductor switch Q6) is PWM-controlled at the output stages 4, 5, 6, and 1. .
  • the stage on which PWM control is performed is determined by the energization method or the like, and is not limited to this example.
  • the on / off control of the low-side switch instead of the high-side switch can prevent the current generated by the regenerative operation of the motor 3 from flowing into the battery 2.
  • the high-side switch may be controlled on and off.
  • the semiconductor switch Q1 which is a U-phase high-side switch, is turned on at predetermined time intervals in the output stages 1 and 2.
  • heat generation of the power conversion unit 30 can be suppressed by turning on the high-side switch.
  • the corresponding low-side switch ie, in the same arm is controlled to be off.
  • the accelerator position sensor 5 detects an operation amount (hereinafter referred to as “accelerator operation amount”) with respect to the accelerator of the electric vehicle 100 and transmits it to the control unit 10 as an electric signal.
  • the accelerator operation amount corresponds to the throttle opening of the engine vehicle.
  • the accelerator operation amount increases when the user wants to accelerate, and the accelerator operation amount decreases when the user wants to decelerate.
  • the meter (display unit) 7 is a display (for example, a liquid crystal panel) provided in the electric vehicle 100 and displays various information.
  • the meter 7 is provided, for example, on a handle (not shown) of the electric vehicle 100.
  • the meter 7 displays information such as the traveling speed of the electric vehicle 100, the remaining amount of the battery 2, the current time, the total traveling distance, and the remaining traveling distance.
  • the remaining travel distance indicates how far the electric vehicle 100 can travel.
  • the charger 9 has a power plug (not shown) and a converter circuit (not shown) for converting an AC power supplied via the power plug into a DC power.
  • the battery 2 is charged by the DC power converted by the converter circuit.
  • the charger 9 is connected to the electric vehicle control device 1 through a communication network (CAN or the like) in the electric vehicle 100 so as to be communicable.
  • control unit 10 of the electric vehicle control device 1 will be described in detail.
  • control unit 10 includes a signal reception unit 11, a signal interval change amount calculation unit 12, a signal interval correction unit 13, a rotation speed calculation unit 14, and a motor control unit 15. Yes.
  • the processing in each unit of the control unit 10 can be realized by software (program).
  • the signal receiving unit 11 receives signals that arrive at intervals corresponding to the rotation speed of the motor 3. A plurality of signals are output from the angle sensor 4 while the motor 3 rotates once. More specifically, the signal receiving unit 11 receives sensor signals (that is, rising edge signals or falling edge signals of pulse signals) output from the U-phase angle sensor 4u, the V-phase angle sensor 4v, and the W-phase angle sensor 4w. To do. In the present embodiment, the signal receiving unit 11 receives a sensor signal every time the rotor 3r of the motor 3 rotates 60 degrees in electrical angle. As the rotational speed of the motor 3 increases, the time interval at which the sensor signal arrives decreases.
  • the signal receiving unit 11 checks whether or not a sensor signal is received from the angle sensor 4 at every monitoring time interval ⁇ tm.
  • the monitor time interval ⁇ tm is a control time interval of the motor 3, for example.
  • the sensor signal may be received by an interrupt process from the angle sensor 4.
  • the monitoring time interval ⁇ tm is shorter than the time interval of the sensor signal received by the signal receiving unit 11 when the electric vehicle 100 travels at the maximum speed, for example, 50 microseconds. More generally speaking, the monitoring time interval ⁇ tm is shorter than the time interval of the sensor signal received by the signal receiving unit 11 when the rotation speed of the motor 3 is maximum.
  • the signal interval change amount calculation unit 12 calculates a signal interval change amount that is a change amount of the signal interval (also referred to as inter-sensor time). As shown in FIG. 7, the signal interval change amount is a difference ( ⁇ T2 ⁇ T1) between the first signal interval ⁇ T1 and the second signal interval ⁇ T2.
  • the first signal interval ⁇ T1 is a time interval between the reception time of the sensor signal S1 (first signal) and the reception time of the sensor signal S2 (second signal).
  • the sensor signal S ⁇ b> 1 is a sensor signal received most recently by the signal receiving unit 11. “Nearest” means closest to the current time.
  • the sensor signal S2 is a sensor signal received immediately before the sensor signal S1.
  • the second signal interval ⁇ T2 is a time interval between the reception time of the sensor signal S2 and the reception time of the sensor signal S3 (third signal).
  • the sensor signal S3 is a sensor signal received immediately before the sensor signal S2.
  • the signal interval is not limited to the time interval between consecutive signals, and may be a time interval between two signals every other one or every two or more.
  • the signal interval change amount calculation unit 12 calculates the difference value of the count number as the signal interval change amount. That is, when the signal receiving unit 11 does not receive the sensor signal, the signal receiving unit 11 or the signal interval change amount calculating unit 12 increases the count number. This count number indicates the time that has elapsed since the most recent sensor signal was received. The initial value of the count number is zero.
  • the signal interval change amount calculation unit 12 calculates the count number difference, and then resets the first count number N1 (that is, returns to the initial value).
  • the signal interval correction unit 13 corrects the first signal interval ⁇ T1 based on the signal interval change amount calculated by the signal interval change amount calculation unit 12. As will be described later, first signal interval ⁇ T1 is corrected so as to suppress the influence of high-frequency noise that changes faster than acceleration or deceleration of electric powered vehicle 100.
  • the signal interval correction unit 13 obtains a weighting coefficient C corresponding to the signal interval change amount.
  • the weighting coefficient C is obtained by referring to a graph showing the relationship between the signal interval change amount and the weighting coefficient C.
  • the weighting factor C is obtained by referring to a graph showing the relationship between the count number difference ⁇ N and the weighting factor C as shown in FIG.
  • This graph is stored in the storage unit 20 in the form of a table or a mathematical expression in advance.
  • the signal interval correction unit 13 multiplies the signal interval change amount by the weighting factor C. That is, C ⁇ ( ⁇ T1- ⁇ T2) is calculated. In the case of this embodiment, C ⁇ ⁇ N is calculated. Then, the signal interval change amount multiplied by the weight coefficient C is added to the second signal interval ⁇ T2. Thereby, the corrected first signal interval ⁇ Ta is obtained. That is, the corrected first signal interval ⁇ Ta is obtained by Expression (1).
  • ⁇ Ta C ⁇ ( ⁇ T1 ⁇ T2) + ⁇ T2 (1)
  • the rotation speed calculation unit 14 calculates the instantaneous rotation speed of the motor 3 based on the first signal interval ⁇ Ta corrected by the signal interval correction unit 13. Specifically, the rotation speed calculation unit 14 calculates the instantaneous rotation speed of the motor 3 using Equation (3).
  • n 60000 / ( ⁇ Ta ⁇ Np) (3)
  • n is the instantaneous rotation speed [rpm] of the motor 3
  • ⁇ Ta is the corrected first signal interval [mSec]
  • Np is the signal receiving unit 11 while the motor 3 makes one rotation at an electrical angle. Is the number of sensor signals received.
  • the rotation speed calculation unit 14 calculates the instantaneous rotation speed of the motor 3 using Expression (4).
  • n 60000 / (Na ⁇ tm ⁇ Np) (4)
  • n is the instantaneous rotation speed [rpm] of the motor 3
  • Na is the corrected count number
  • ⁇ tm is the monitoring time interval [mSec]
  • Np is a period during which the motor 3 makes one rotation at an electrical angle.
  • the motor control unit 15 controls the motor 3 based on the instantaneous rotation speed calculated by the rotation speed calculation unit 14.
  • the motor control unit 15 transmits a control signal to the semiconductor switches Q1 to Q6 of the power conversion unit 30. More specifically, the motor control unit 15 generates a PWM signal having a duty ratio calculated based on the target torque and the instantaneous rotational speed of the motor 3, and is calculated based on the target torque and the instantaneous rotational speed of the motor 3. It outputs to the power conversion unit 30 at the output angle. Thereby, the motor 3 is controlled to generate the target torque.
  • the generation of the PWM signal is performed every monitoring time interval or every time a sensor signal is received.
  • the motor control unit 15 obtains the target torque by searching the torque map M1 using the accelerator operation amount received from the accelerator position sensor 5 and the instantaneous rotation speed calculated by the rotation speed calculation unit 14.
  • the torque map M1 is a map showing the relationship among the accelerator operation amount, the rotational speed of the motor 3, and the target torque of the motor 3, as shown in FIG.
  • the motor control unit 15 acquires the duty ratio by searching the duty ratio map M2 using the target torque acquired from the torque map M1 and the instantaneous rotation speed calculated by the rotation speed calculation unit 14.
  • the duty ratio map M2 is a map showing the relationship among the target torque of the motor 3, the rotational speed of the motor 3, and the duty ratio of the PWM signal, as shown in FIG. 10B.
  • the motor control unit 15 acquires the output angle by searching the output angle map M3 using the target torque acquired from the torque map M1 and the instantaneous rotation speed calculated by the rotation speed calculation unit 14.
  • the output angle map M3 is a map showing the relationship among the target torque of the motor 3, the rotational speed of the motor 3, and the output angle of the PWM signal, as shown in FIG. 10C.
  • the duty ratio map M2 and the output angle map M3 correspond to each energization method. Used. That is, when the 120 ° energization method is used, the duty ratio and the output angle are obtained using the duty ratio map and the output angle map for the 120 ° energization method, and when the 180 ° energization method is used, the 180 ° energization method is used. The duty ratio and the output angle are acquired using the duty ratio map and the output angle map.
  • the PWM signal having the duty ratio acquired as described above is output to the power conversion unit 30 at the output angle acquired as described above, and the semiconductor switches Q1 to Q6 are on / off controlled. Thereby, the motor 3 is controlled to generate a desired torque.
  • the signal interval correction unit 13 corrects the first signal interval ⁇ T1 based on the signal interval change amount ( ⁇ T1- ⁇ T2), and calculates the rotational speed.
  • the unit 14 calculates the instantaneous rotation speed of the motor 3 based on the corrected first signal interval ⁇ Ta.
  • the motor control unit 15 controls the motor 3 based on the calculated instantaneous rotation speed. Thereby, wheel 8 of electric vehicle 100 can be driven appropriately.
  • the first signal interval ⁇ T1 is corrected based on the signal interval change amount ( ⁇ T1 ⁇ T2) and the weighting factor C that decreases as the absolute value of the signal interval change amount increases.
  • the instantaneous rotational speed of the motor 3 is calculated based on the signal interval ⁇ Ta of 1.
  • the influence of high frequency noise can be suppressed without obtaining the average value of the signal interval, so that the control speed of the motor 3 is not reduced.
  • the load can be appropriately driven without reducing the control speed of the motor 3.
  • FIG. 11 shows a graph of the weighting factor C according to the first modification.
  • the weighting coefficient C is 1 in the range where the count number difference ⁇ N is ⁇ or more and + ⁇ or less, and the weighting coefficient becomes smaller as it falls out of the range. That is, the weighting coefficient C is 1 when the absolute value of the signal interval change amount is within a predetermined range (0 ⁇ ⁇ ), and becomes smaller as the absolute value of the signal interval change amount increases when the absolute value of the signal interval change amount is outside the predetermined range. Become. By using such a weight coefficient C, when the signal interval change amount is relatively small, the instantaneous rotation speed of the motor 3 is calculated using the first signal interval ⁇ T1 as it is. As a result, the change in the signal interval not caused by the high frequency noise can be reflected in the control of the motor 3 as it is.
  • FIG. 12 shows a graph of the weighting factor C according to the second modification.
  • the amount of decrease in the weighting factor C decreases as the absolute value of the signal interval change amount increases.
  • the curve of the weighting factor C has a downwardly convex shape.
  • FIG. 13 shows a graph of the weighting factor C according to the third modification.
  • This modification is a combination of the first modification and the second modification. That is, the weighting factor C is 1 when the count number difference ⁇ N is in the range of ⁇ to + ⁇ , and decreases as the weighting factor C decreases from the range.
  • the weighting factor C it is possible to reflect the change in the signal interval not caused by the high frequency noise as it is in the control of the motor 3, and to sufficiently change the signal interval even when a sudden external force is applied to the load. Can be suppressed.
  • the signal receiving unit 11 determines whether or not the monitor time interval ⁇ tm has elapsed (step S11). When the monitoring time interval ⁇ tm has elapsed (S11: Yes), it is determined whether a sensor signal has been received from the angle sensor 4 (step S12). When the sensor signal is not received (S12: No), the count number is increased by 1 (step S13), and the process returns to step S11.
  • the signal interval change amount calculation unit 12 calculates the count number difference ⁇ N between the current count number N1 and the previous count number N2 (step S14).
  • the current count number N1 is a count number counted between the sensor signal S1 and the sensor signal S2
  • the previous count number N2 is counted between the sensor signal S2 and the sensor signal S3. It is a count number.
  • the signal interval change amount calculation unit 12 After calculating the count number difference ⁇ N, the signal interval change amount calculation unit 12 resets the count number N1 to an initial value (step S15).
  • the count number N1 may be reset at any timing of steps S16 to S19.
  • the signal interval correction unit 13 obtains a weighting coefficient C corresponding to the count number difference ⁇ N calculated in step S14 (step S16). Then, the signal interval correction unit 13 corrects the current count number N1 (step S17). Specifically, the corrected first count number N1 (that is, the count number Na) is calculated using the above-described equation (2).
  • the rotation speed calculation unit 14 calculates the instantaneous rotation speed of the motor 3 based on the count number Na calculated in step S17 (step S18). Specifically, the instantaneous rotational speed of the motor 3 is calculated using the above-described equation (4). Then, the motor control unit 15 controls the motor 3 based on the instantaneous rotation speed calculated in step S18 (step S19). Specifically, as described with reference to FIGS. 9 and 10, a PWM signal for obtaining a predetermined torque is generated and output to the power conversion unit 30.
  • the signal interval change amount may be calculated using the reception time of the sensor signal.
  • the duty ratio is acquired from the duty ratio map M2 using the latest accelerator operation amount and the instantaneous rotation speed calculated last time, and the power conversion unit 30
  • the PWM signal to be transmitted may be updated.
  • At least a part of the electric vehicle control device 1 (control unit 10) described in the above-described embodiment may be configured by hardware or software.
  • a program for realizing at least a part of the functions of the control unit 10 may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer.
  • the recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
  • a program that realizes at least a part of functions of the control unit 10 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
  • a communication line including wireless communication
  • the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

実施形態に係る電動車両制御装置1は、モータ3の回転速度に応じた間隔で到来する信号を受信する信号受信部11と、第1の信号間隔ΔT1および第2の信号間隔ΔT2との差である信号間隔変化量を算出する信号間隔変化量算出部12と、信号間隔変化量に基づいて第1の信号間隔ΔT1を補正する信号間隔補正部13と、補正された第1の信号間隔ΔTaに基づいてモータ3の瞬時回転速度を算出する回転速度算出部14と、算出された瞬時回転速度に基づいてモータ3を制御するモータ制御部15と、を備える。

Description

駆動装置、駆動方法、駆動プログラムおよび電動車両
 本発明は、駆動装置、駆動方法、駆動プログラムおよび電動車両に関する。
 二輪EV等の電動車両は、車輪を駆動するためのモータと、モータを制御する制御部を有する駆動装置とを備えている。電動車両では、ギヤ固定の場合でも低回転域から高回転域にわたって所要のトルクを得ることが可能である。このため、クラッチを設けない電動車両が検討されている。このようなクラッチレスの電動車両の場合、モータは、従来の電動車両ではクラッチにより遮断されていた車輪からの外力を直接受けることになる。
 なお、特許文献1には、モータから出力された動力を、変速機を介して駆動輪に伝達することで走行する車両に用いられる制御装置が記載されている。この制御装置は、駆動モータの振動又は騒音を示す信号を抽出する複数のフィルタを有する制御部を備えている。制御部は、車両状態の変化に基づいて各フィルタによって抽出された信号間で重み付けを行い、重み付けがなされた信号に基づきトルク指令値を補正する。
特開2016-132443号公報
 電動車両のモータのステータには、ロータの回転位置を検出するための回転位置センサが設けられる。駆動装置の制御部は、回転位置センサから、所定の電気角ごとに立ち上がりエッジ信号または立ち下がりエッジ信号(以下、まとめて「センサ信号」ともいう。)を受信する。このセンサ信号に基づいて制御部はモータの回転速度を把握し、モータの制御を行う。
 電動車両は、路面状態等に応じた外乱によって、電動車両の加減速よりも早く変化する高周波ノイズを受けることがある。特にクラッチレスの電動車両では路面から受ける外力がモータに直接伝わるため、高周波ノイズがモータ制御に大きな影響を与える。すなわち、高周波ノイズを受けると、その影響でセンサ信号を受信するタイミングが揺らいでしまう。この結果、センサ信号間の時間間隔(以下、「信号間隔」ともいう。)の精度が低下し、モータを適切に制御できなくなるおそれがある。
 このような事態に対し、高周波ノイズの影響を避けるために、複数の信号間隔の値を平均化してモータ制御に用いることが考えられる。しかしながら、モータの制御速度が低下してしまうという問題がある。
 そこで、本発明は、モータの制御速度を低下させることなく、負荷を適切に駆動することが可能な駆動装置、駆動方法、駆動プログラムおよび電動車両を提供することを目的とする。
 本発明に係る駆動装置は、
 負荷を駆動するモータの回転速度に応じた間隔で到来する信号を受信する信号受信部と、
 前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の第1の信号間隔と、前記第2の信号の受信時刻と当該第2の信号の前に受信された第3の信号の受信時刻との間の第2の信号間隔との差である信号間隔変化量を算出する信号間隔変化量算出部と、
 前記信号間隔変化量に基づいて前記第1の信号間隔を補正する信号間隔補正部と、
 前記補正された第1の信号間隔に基づいて前記モータの瞬時回転速度を算出する回転速度算出部と、
 前記算出された瞬時回転速度に基づいて前記モータを制御するモータ制御部と、
 を備えることを特徴とする。
 また、前記駆動装置において、
 前記信号間隔補正部は、前記信号間隔変化量に応じた重み係数を求め、当該重み係数を前記信号間隔変化量に乗じ、前記重み係数が乗じられた信号間隔変化量を前記第2の信号間隔に加えることにより、前記第1の信号間隔を補正してもよい。
 また、前記駆動装置において、
 前記重み係数は、前記信号間隔変化量の絶対値が大きくなるにつれて小さくなるようにしてもよい。
 また、前記駆動装置において、
 前記信号間隔変化量の絶対値が大きくなるにつれて前記重み係数の減少量は小さくなるようにしてもよい。
 また、前記駆動装置において、
 前記信号間隔変化量がゼロの場合の前記重み係数の値は1であるようにしてもよい。
 また、前記駆動装置において、
 前記重み係数は、前記信号間隔変化量の絶対値が所定の範囲内の場合では1であり、前記所定の範囲外では前記絶対値が大きくなるにつれて小さくなるようにしてもよい。
 また、前記駆動装置において、
 前記回転速度算出部は、前記第2の信号が前記第1の信号の一つ前に受信された信号であり且つ前記第3の信号が前記第2の信号の一つ前に受信された信号である場合、下式により前記瞬時回転速度を算出してもよい。
       n = 60000/(ΔTa×Np)
 ここで、nは前記瞬時回転速度[rpm]であり、ΔTaは前記補正された第1の信号間隔[mSec]であり、Npは前記モータが電気角で一回転する間に前記信号受信部が受信する前記信号の数である。
 また、前記駆動装置において、
 前記信号間隔変化量算出部は、前記信号受信部が前記第1の信号を受信した場合に、前記第1の信号と前記第2の信号との間モニタ時間間隔ごとにカウントされた第1のカウント数と、前記第2の信号と前記第3の信号との間前記モニタ時間間隔ごとにカウントされた第2のカウント数との間のカウント数差を、前記信号間隔変化量として算出し、
 前記信号間隔補正部は、前記カウント数差に応じた重み係数を求め、当該重み係数を前記カウント数差に乗じ、前記重み係数が乗じられたカウント数差を前記第2のカウント数に加えることにより前記第1のカウント数を補正するようにしてもよい。
 また、前記駆動装置において、
 前記モニタ時間間隔は、前記モータの回転速度が最大のときに前記信号受信部が受信する前記信号の時間間隔よりも短いようにしてもよい。
 また、前記駆動装置において、
 前記信号間隔変化量算出部は、前記カウント数差を算出した後、前記第1のカウント数をリセットするようにしてもよい。
 また、前記駆動装置において、
 前記信号受信部が受信する前記信号は、前記モータに設けられた回転位置センサから出力されたパルス信号の立ち上がりエッジ信号または立ち下がりエッジ信号であるようにしてもよい。
 本発明に係る電動車両は、
 前記駆動装置であって、前記負荷が電動車両の車輪である、駆動装置を備えることを特徴とする。
 また、前記電動車両において、
 前記車輪と前記モータがクラッチを介さずに機械的に接続されているようにしてもよい。
 本発明に係る駆動方法は、
 信号受信部が、負荷を駆動するモータの回転速度に応じた間隔で到来する信号を受信するステップと、
 信号間隔変化量算出部が、前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の第1の信号間隔と、前記第2の信号の受信時刻と当該第2の信号の前に受信された第3の信号の受信時刻との間の第2の信号間隔との差である信号間隔変化量を算出するステップと、
 信号間隔補正部が、前記信号間隔変化量に基づいて前記第1の信号間隔を補正するステップと、
 回転速度算出部が、前記補正された第1の信号間隔に基づいて前記モータの瞬時回転速度を算出するステップと、
 モータ制御部が、前記算出された瞬時回転速度に基づいて前記モータを制御するステップと、
 を備えることを特徴とする。
 本発明に係る駆動プログラムは、
 信号受信部が、負荷を駆動するモータの回転速度に応じた間隔で到来する信号を受信するステップと、
 信号間隔変化量算出部が、前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の第1の信号間隔と、前記第2の信号の受信時刻と当該第2の信号の前に受信された第3の信号の受信時刻との間の第2の信号間隔との差である信号間隔変化量を算出するステップと、
 信号間隔補正部が、前記信号間隔変化量に基づいて前記第1の信号間隔を補正するステップと、
 回転速度算出部が、前記補正された第1の信号間隔に基づいて前記モータの瞬時回転速度を算出するステップと、
 モータ制御部が、前記算出された瞬時回転速度に基づいて前記モータを制御するステップと、
 をコンピュータに実行させることを特徴とする。
 本発明では、信号間隔補正部が、第1の信号間隔と第2の信号間隔との差である信号間隔変化量に基づいて第1の信号間隔を補正し、回転速度算出部が、補正された第1の信号間隔に基づいてモータの瞬時回転速度を算出し、モータ制御部が、算出された瞬時回転速度に基づいてモータを制御する。これにより、本発明によれば、モータの制御速度を低下させることなく、負荷を適切に駆動することができる。
本発明の実施形態に係る電動車両100の概略的構成を示す図である。 電力変換部30およびモータ3の概略的構成を示す図である。 モータ3のロータ3rに設けられた磁石と、アングルセンサ4を示す図である。 ロータアングルと、アングルセンサの出力との関係を示す図である。 実施形態に係るPWM制御を説明するためのタイミングチャートである。 電動車両制御装置1の制御部10の機能ブロック図である。 センサ信号とカウント数の関係等を説明するための図である。 実施形態に係る重み係数を求めるためのグラフである。 PWM信号のデューティ比や出力角度の算出処理を説明するための図である。 (a)はトルクマップの構成を示し、(b)はデューティ比マップの構成を示し、(c)は出力角度マップの構成を示す図である。 第1の変形例に係る重み係数を求めるためのグラフである。 第2の変形例に係る重み係数を求めるためのグラフである。 第3の変形例に係る重み係数を求めるためのグラフである。 実施形態に係る電動車両制御方法の一例を説明するためのフローチャートである。
 以下、図面を参照しつつ本発明の実施形態について説明する。以下の実施形態では、本発明に係る駆動装置の一実施形態として、電動車両を駆動制御する電動車両制御装置について説明する。なお、本発明に係る駆動装置は、電動車両の車輪以外の負荷を駆動するものであってもよい。
 まず、図1を参照して、実施形態に係る電動車両100について説明する。
 電動車両100は、バッテリから供給される電力を用いてモータを駆動することで走行する車両である。本実施形態では、電動車両100は、電動バイク等の電動二輪車であり、より詳しくは、図1に示すように、モータ3と車輪8がクラッチを介さずに機械的に直接接続された電動二輪車である。なお、本発明に係る電動車両は、モータ3と車輪8がクラッチを介して接続された車両であってもよい。また、二輪車に限定されるものではなく、例えば三輪または四輪の電動車両であってもよい。
 電動車両100は、図1に示すように、電動車両制御装置1と、バッテリ2と、モータ3と、アングルセンサ(回転位置センサ)4と、アクセルポジションセンサ5と、アシストスイッチ6と、メータ(表示部)7と、車輪8と、充電器9と、を備えている。
 以下、電動車両100の各構成要素について詳しく説明する。
 電動車両制御装置1は、電動車両100を制御する装置であり、制御部10と、記憶部20と、電力変換部(ドライバ)30とを有している。なお、電動車両制御装置1は、電動車両100全体を統御するECU(Electronic Control Unit)として構成されてもよい。
 次に、電動車両制御装置1の各構成要素について詳しく説明する。
 制御部10は、電動車両制御装置1に接続された各種装置から情報を入力する。具体的には、制御部10は、バッテリ2、アングルセンサ(回転位置センサ)4、アクセルポジションセンサ5、アシストスイッチ6、充電器9から出力される各種信号を受信する。制御部10は、メータ7に表示する信号を出力する。また、制御部10は、電力変換部30を介してモータ3を制御する。制御部10の詳細については後述する。
 記憶部20は、制御部10が用いる情報(後述の各種マップなど)や、制御部10が動作するためのプログラムを記憶する。この記憶部20は、例えば不揮発性の半導体メモリであるが、これに限定されない。なお、記憶部20は制御部10の一部として組み込まれていてもよい。
 電力変換部30は、バッテリ2から出力される直流電力を交流電力に変換してモータ3に供給する。本実施形態では、電力変換部30は、図2に示すように、3相のフルブリッジ回路で構成されたインバータを有する。半導体スイッチQ1,Q3,Q5はハイサイドスイッチであり、半導体スイッチQ2,Q4,Q6はローサイドスイッチである。半導体スイッチQ1~Q6の制御端子は、制御部10に電気的に接続されている。半導体スイッチQ1~Q6は、例えばMOSFETまたはIGBT等である。
 図2に示すように、電源端子30aと電源端子30bとの間には平滑コンデンサCが設けられている。
 入力端子3aはモータ3のU相の入力端子であり、入力端子3bはモータ3のV相の入力端子であり、入力端子3cはモータ3のW相の入力端子である。
 半導体スイッチQ1は、図2に示すように、バッテリ2の正極が接続された電源端子30aと、モータ3の入力端子3aとの間に接続されている。同様に、半導体スイッチQ3は、電源端子30aと、モータ3の入力端子3bとの間に接続されている。半導体スイッチQ5は、電源端子30aと、モータ3の入力端子3cとの間に接続されている。
 半導体スイッチQ2は、モータ3の入力端子3aと、バッテリ2の負極が接続された電源端子30bとの間に接続されている。同様に、半導体スイッチQ4は、モータ3の入力端子3bと、電源端子30bとの間に接続されている。半導体スイッチQ6は、モータ3の入力端子3cと、電源端子30bとの間に接続されている。
 バッテリ2は、電動車両100の車輪8を回転させるモータ3に電力を供給する。このバッテリ2は電力変換部30に直流電力を供給する。バッテリ2は、例えばリチウムイオン電池であるが、他の種類のバッテリであってもよい。なお、バッテリ2の数は一つに限らず、複数であってもよい。すなわち、電動車両100には、互いに並列または直列に接続された複数のバッテリ2が設けられてもよい。また、バッテリ2には、制御部10に動作電圧を供給するための鉛電池が含まれてもよい。
 バッテリ2は、バッテリ管理ユニット(BMU)を含む。バッテリ管理ユニットは、バッテリ2の電圧やバッテリ2の状態(充電率等)に関するバッテリ情報を制御部10に送信する。 
 モータ3は、電力変換部30から供給される交流電力により、車輪8等の負荷を駆動するモータである。本実施形態では、モータ3は、車輪8に機械的に接続されており、所望の方向に車輪8を回転させる。モータ3は、U相、V相およびW相を有する三相交流モータである。前述のように、モータ3は、クラッチを介さずに車輪8に機械的に直接接続されている。なお、本実施形態では三相交流モータとして三相ブラシレスモータを使用するが、モータ3の種類はこれに限定されない。
 アングルセンサ4は、モータ3のロータ3rの回転位置を検出するセンサである。図3に示すように、ロータ3rの周面には、N極とS極の磁石(センサマグネット)が交互に取り付けられている。アングルセンサ4は、例えばホール素子により構成されており、モータ3の回転に伴う磁場の変化を検出する。なお、図3に示す磁石の数は一例であってこれに限られない。また、磁石はフライホイール(図示せず)の内側に設けられてもよい。
 図3に示すように、アングルセンサ4は、モータ3のU相に対応付けられたU相アングルセンサ4uと、モータ3のV相に対応付けられたV相アングルセンサ4vと、モータ3のW相に対応付けられたW相アングルセンサ4wとを有している。各相のアングルセンサ4u,4v,4wは、モータ3に設けられている。本実施形態では、U相アングルセンサ4uとV相アングルセンサ4vとはロータ3rに対して30°の角度をなすように配置されている。同様に、V相アングルセンサ4vとW相アングルセンサ4wとはモータ3のロータ3rに対して30°の角度をなすように配置されている。
 図4に示すように、U相アングルセンサ4u、V相アングルセンサ4vおよびW相アングルセンサ4wは、ロータ3rの回転位置に応じた位相のパルス信号を出力する。このパルス信号の幅(あるいは、センサ信号の時間間隔)は、モータ3(すなわち、車輪8)の回転速度が高いほど狭くなる。
 図4に示すように、所定の回転位置ごとに、モータステージを示す番号(モータステージ番号)が割り振られている。モータステージはロータ3rの回転位置を示しており、本実施形態では、電気角60°ごとにモータステージ番号1,2,3,4,5,6が割り振られている。
 出力ステージは、通電ステージとも呼ばれ、アングルセンサ4により検出されたモータステージに、出力角度に基づく時間を加えたものである。出力角度は、後述のようにモータ3の回転速度や目標トルクに応じて変化する。
 制御部10は、PWM信号を用いて、電力変換部30の半導体スイッチQ1~Q6をオンオフ制御する。これにより、バッテリ2から供給される直流電力が交流電力に変換される。本実施形態では、図5に示すように、U相ローサイドスイッチ(半導体スイッチQ2)は、出力ステージ6,1,2,3においてPWM制御される。V相ローサイドスイッチ(半導体スイッチQ4)は、出力ステージ2,3,4,5においてPWM制御され、W相ローサイドスイッチ(半導体スイッチQ6)は、出力ステージ4,5,6,1においてPWM制御される。なお、PWM制御が行われるステージは、通電方式等により決まるもので、この例に限られない。
 上記のようにハイサイドスイッチではなく、ローサイドスイッチをオンオフ制御することにより、モータ3の回生動作により発生した電流がバッテリ2に流入することが回避できる。なお、バッテリ2への回生電流の流入が許容される場合には、ハイサイドスイッチをオンオフ制御してもよい。
 図5に示すように、ハイサイドスイッチもオンになるタイミングがある。例えば、U相ハイサイドスイッチである半導体スイッチQ1は出力ステージ1,2において所定の時間間隔でオン制御される。このようにハイサイドスイッチをオン制御することによって電力変換部30の発熱を抑制することができる。なお、電流ショートを防止するため、ハイサイドスイッチがオンに制御されるとき、対応する(すなわち、同じアームの)ローサイドスイッチはオフに制御される。
 アクセルポジションセンサ5は、電動車両100のアクセルに対する操作量(以下、「アクセル操作量」という。)を検知し、電気信号として制御部10に送信する。アクセル操作量は、エンジン車のスロットル開度に相当する。ユーザが加速したい場合にアクセル操作量は大きくなり、ユーザが減速したい場合にアクセル操作量は小さくなる。
 アシストスイッチ6は、ユーザが電動車両100のアシストを要求する際に操作されるスイッチである。アシストスイッチ6は、ユーザにより操作されると、アシスト要求信号を制御部10に送信する。そして、制御部10は、モータ3を制御して、アシストトルクを発生させる。
 メータ(表示部)7は、電動車両100に設けられたディスプレイ(例えば液晶パネル)であり、各種情報を表示する。メータ7は、例えば、電動車両100のハンドル(図示せず)に設けられる。メータ7には、電動車両100の走行速度、バッテリ2の残量、現在時刻、総走行距離、および残走行距離などの情報が表示される。残走行距離は、電動車両100があとどれくらいの距離を走行できるのかを示す。
 充電器9は、電源プラグ(図示せず)と、この電源プラグを介して供給される交流電源を直流電源に変換するコンバータ回路(図示せず)とを有する。コンバータ回路で変換された直流電力によりバッテリ2は充電される。充電器9は、例えば、電動車両100内の通信ネットワーク(CAN等)を介して電動車両制御装置1に通信可能に接続されている。
 次に、電動車両制御装置1の制御部10について詳しく説明する。
 図6に示すように、制御部10は、信号受信部11と、信号間隔変化量算出部12と、信号間隔補正部13と、回転速度算出部14と、モータ制御部15とを有している。なお、制御部10の各部における処理は、ソフトウェア(プログラム)により実現することが可能である。
 信号受信部11は、モータ3の回転速度に応じた間隔で到来する信号を受信する。信号は、モータ3が一回転する間にアングルセンサ4から複数出力される。より詳しくは、信号受信部11は、U相アングルセンサ4u、V相アングルセンサ4vおよびW相アングルセンサ4wから出力されたセンサ信号(すなわち、パルス信号の立ち上がりエッジ信号または立ち下がりエッジ信号)を受信する。本実施形態では、信号受信部11は、モータ3のロータ3rが電気角で60°回転するごとにセンサ信号を受信する。モータ3の回転速度が高くなるにつれて、センサ信号が到来する時間間隔は短くなる。
 図7に示すように、信号受信部11は、アングルセンサ4からセンサ信号を受信したか否かをモニタ時間間隔Δtmごとに確認する。モニタ時間間隔Δtmは、例えばモータ3の制御時間間隔である。なお、センサ信号の受信は、アングルセンサ4からの割り込み処理により行われてもよい。
 モニタ時間間隔Δtmは、電動車両100が最高速度で走行したときに信号受信部11が受信するセンサ信号の時間間隔よりも短く、例えば50マイクロ秒である。より一般的に言えば、モニタ時間間隔Δtmは、モータ3の回転速度が最大のときに信号受信部11が受信するセンサ信号の時間間隔よりも短い。
 信号間隔変化量算出部12は、信号間隔(センサ間時間とも呼ばれる。)の変化量である信号間隔変化量を算出する。この信号間隔変化量は、図7に示すように、第1の信号間隔ΔT1と第2の信号間隔ΔT2との差(ΔT2-ΔT1)である。ここで、第1の信号間隔ΔT1は、センサ信号S1(第1の信号)の受信時刻とセンサ信号S2(第2の信号)の受信時刻との間の時間間隔である。センサ信号S1は、信号受信部11により直近に受信されたセンサ信号である。「直近に」とは、現在時刻から最も近いことを意味する。センサ信号S2は、センサ信号S1の一つ前に受信されたセンサ信号である。第2の信号間隔ΔT2は、センサ信号S2の受信時刻とセンサ信号S3(第3の信号)の受信時刻との間の時間間隔である。センサ信号S3は、センサ信号S2の一つ前に受信されたセンサ信号である。なお、信号間隔は、連続する信号間の時間間隔に限られず、一つおき又は二つおき以上の2つの信号間の時間間隔であってもよい。
 本実施形態では、信号間隔変化量算出部12は、信号間隔変化量として、カウント数の差分値を算出する。すなわち、信号受信部11がセンサ信号を受信していない場合に、信号受信部11または信号間隔変化量算出部12がカウント数を増やす。このカウント数は、直近のセンサ信号を受信してから経過した時間を示す。カウント数の初期値は0である。一方、信号受信部11がセンサ信号を受信した場合、信号間隔変化量算出部12は、センサ信号S1とセンサ信号S2との間モニタ時間間隔Δtmごとにカウントされた第1のカウント数N1と、センサ信号S2とセンサ信号S3との間モニタ時間間隔Δtmごとにカウントされた第2のカウント数N2との間のカウント数差ΔN(=N1-N2)を、信号間隔変化量として算出する。
 信号間隔変化量算出部12は、カウント数差を算出した後、第1のカウント数N1をリセットする(すなわち、初期値に戻す)。
 信号間隔補正部13は、信号間隔変化量算出部12により算出された信号間隔変化量に基づいて第1の信号間隔ΔT1を補正する。第1の信号間隔ΔT1は、後述するように、電動車両100の加速または減速よりも早く変化する高周波ノイズの影響が抑制されるように補正される。
 本実施形態に係る第1の信号間隔ΔT1の補正について詳しく説明する。
 まず、信号間隔補正部13は、信号間隔変化量に応じた重み係数Cを求める。この重み係数Cは、信号間隔変化量と重み係数Cとの関係を示すグラフを参照することにより求められる。本実施形態では、重み係数Cは、図8に示すように、カウント数差ΔNと重み係数Cとの関係を示すグラフを参照することにより求められる。このグラフは、記憶部20に予め、テーブルまたは数式の形で記憶されている。テーブル形式の場合、線形補間等により重み係数Cを求める。図8に示すように、重み係数Cは、信号間隔変化量(カウント数差ΔN)の絶対値が大きくなるにつれて小さくなるように設定されている。また、信号間隔変化量がゼロの場合(ΔN=0の場合)、重み係数Cは1である。
 上記のようにして重み係数Cを求めた後、信号間隔補正部13は、重み係数Cを信号間隔変化量に乗じる。すなわち、C×(ΔT1-ΔT2)を計算する。本実施形態の場合で言えば、C×ΔNを計算する。そして、重み係数Cが乗じられた信号間隔変化量を第2の信号間隔ΔT2に加える。これにより、補正された第1の信号間隔ΔTaが得られる。すなわち、補正された第1の信号間隔ΔTaは、式(1)により得られる。 
       ΔTa = C×(ΔT1-ΔT2)+ΔT2 ・・・(1)
 信号間隔としてカウント数を用いる場合、補正された第1のカウント数N1であるカウント数Naは、式(2)により得られる。 
       Na = CΔN+N2       ・・・(2)
 回転速度算出部14は、信号間隔補正部13により補正された第1の信号間隔ΔTaに基づいてモータ3の瞬時回転速度を算出する。具体的には、回転速度算出部14は、式(3)によりモータ3の瞬時回転速度を算出する。
       n = 60000/(ΔTa×Np)    ・・・(3)
 ここで、nはモータ3の瞬時回転速度[rpm]であり、ΔTaは補正された第1の信号間隔[mSec]であり、Npはモータ3が電気角で一回転する間に信号受信部11が受信するセンサ信号の数である。
 カウント数を用いる場合、回転速度算出部14は、式(4)によりモータ3の瞬時回転速度を算出する。 
       n = 60000/(NaΔtm×Np)  ・・・(4)
 ここで、nはモータ3の瞬時回転速度[rpm]であり、Naは補正されたカウント数であり、Δtmはモニタ時間間隔[mSec]であり、Npはモータ3が電気角で一回転する間に信号受信部11が受信するセンサ信号の数である。
 モータ制御部15は、回転速度算出部14により算出された瞬時回転速度に基づいてモータ3を制御する。モータ制御部15は、電力変換部30の半導体スイッチQ1~Q6に制御信号を送信する。より詳しくは、モータ制御部15は、モータ3の目標トルクおよび瞬時回転速度に基づいて算出されたデューティ比を有するPWM信号を生成し、モータ3の目標トルクおよび瞬時回転速度に基づいて算出された出力角度で電力変換部30に出力する。これにより、モータ3は目標トルクを発生するように制御される。なお、PWM信号の生成は、モニタ時間間隔ごとに、またはセンサ信号を受信するたびに行われる。
 図9および図10を参照して、デューティ比および出力角度の算出について詳しく説明する。モータ制御部15は、アクセルポジションセンサ5から受信したアクセル操作量と、回転速度算出部14により算出された瞬時回転速度を用いてトルクマップM1を検索することにより、目標トルクを取得する。ここで、トルクマップM1は、図10(a)に示すように、アクセル操作量と、モータ3の回転速度と、モータ3の目標トルクとの間の関係を示すマップである。
 次に、モータ制御部15は、トルクマップM1から取得された目標トルクと、回転速度算出部14により算出された瞬時回転速度を用いてデューティ比マップM2を検索することにより、デューティ比を取得する。ここで、デューティ比マップM2は、図10(b)に示すように、モータ3の目標トルクと、モータ3の回転速度と、PWM信号のデューティ比との間の関係を示すマップである。
 さらに、モータ制御部15は、トルクマップM1から取得された目標トルクと、回転速度算出部14により算出された瞬時回転速度を用いて出力角度マップM3を検索することにより、出力角度を取得する。ここで、出力角度マップM3は、図10(c)に示すように、モータ3の目標トルクと、モータ3の回転速度と、PWM信号の出力角度との間の関係を示すマップである。
 なお、制御部10が複数の通電方式(例えば、120°通電方式と180°通電方式)を用いて電力変換部30を制御する場合、デューティ比マップM2と出力角度マップM3は各通電方式に対応したものが用いられる。すなわち、120°通電方式を用いる場合は、120°通電方式用のデューティ比マップと出力角度マップを用いてデューティ比と出力角度が取得され、180°通電方式を用いる場合は、180°通電方式用のデューティ比マップと出力角度マップを用いてデューティ比と出力角度が取得される。
 上記のようにして取得されたデューティ比を有するPWM信号が、上記のようにして取得された出力角度で電力変換部30に出力され、半導体スイッチQ1~Q6がオンオフ制御される。これにより、モータ3は所望のトルクを発生するように制御される。
 以上説明したように、本実施形態に係る電動車両制御装置1では、信号間隔補正部13が、信号間隔変化量(ΔT1-ΔT2)に基づいて第1の信号間隔ΔT1を補正し、回転速度算出部14が、補正された第1の信号間隔ΔTaに基づいてモータ3の瞬時回転速度を算出する。そして、モータ制御部15が、算出された瞬時回転速度に基づいてモータ3を制御する。これにより、電動車両100の車輪8を適切に駆動することができる。
 本実施形態では、信号間隔変化量(ΔT1-ΔT2)と、信号間隔変化量の絶対値が大きくなるにつれて小さくなる重み係数Cとに基づいて第1の信号間隔ΔT1を補正し、補正された第1の信号間隔ΔTaに基づいてモータ3の瞬時回転速度を算出する。これにより、モータ制御に用いる瞬時回転速度の、高周波ノイズに対する感度を鈍らせることができる。よって、高周波ノイズによって第1の信号間隔ΔT1が大きく変動する場合であっても、第1の信号間隔は適正な値に補正されるため、適切なモータ制御を行い、負荷である車輪8を駆動することができる。
 また、本実施形態によれば、上記のように、信号間隔の平均値を求めることなく高周波ノイズの影響を抑制することができるので、モータ3の制御速度を低下させることはない。
 よって、本実施形態によれば、モータ3の制御速度を低下させることなく、負荷を適切に駆動することができる。
 なお、重み係数Cを求めるグラフは図8に示したものに限られない。以下いくつかの変形例について説明する。
 図11は、第1の変形例に係る重み係数Cのグラフを示している。本変形例では、カウント数差ΔNが-α以上+α以下の範囲で重み係数Cは1であり、当該範囲から外れるにつれて重み係数は小さくなる。すなわち、重み係数Cは、信号間隔変化量の絶対値が所定の範囲内(0±α)の場合では1であり、所定の範囲外の場合では信号間隔変化量の絶対値が大きくなるにつれて小さくなる。このような重み係数Cを用いることで、信号間隔変化量が比較的小さい場合は、第1の信号間隔ΔT1をそのまま用いてモータ3の瞬時回転速度が算出される。その結果、高周波ノイズに起因しない信号間隔の変化をそのままモータ3の制御に反映させることができる。
 図12は、第2の変形例に係る重み係数Cのグラフを示している。本変形例では、信号間隔変化量の絶対値が大きくなるにつれて重み係数Cの減少量は小さくなる。換言すれば、重み係数Cの曲線は下に凸の形状を有している。このような重み係数Cを用いることで、急激な外力が負荷に加わった場合でも信号間隔変化量を十分に抑制することができる。
 図13は、第3の変形例に係る重み係数Cのグラフを示している。本変形例は、第1の変形例と第2の変形例を組合せたものである。すなわち、重み係数Cは、カウント数差ΔNが-α以上+α以下の範囲で1であり、当該範囲から外れるにつれて重み係数Cの減少量が小さくなるように小さくなる。このような重み係数Cを用いることで、高周波ノイズに起因しない信号間隔の変化をそのままモータ3の制御に反映させることができるとともに、急激な外力が負荷に加わった場合でも信号間隔変化量を十分に抑制することができる。
<電動車両制御方法>
 次に、図14のフローチャートを参照して、本実施形態に係る電動車両制御方法の一例について説明する。なお、カウント数は事前に初期化されているものとする。
 信号受信部11は、モニタ時間間隔Δtmが経過したかどうかを判定する(ステップS11)。モニタ時間間隔Δtmが経過した場合(S11:Yes)、アングルセンサ4からセンサ信号を受信したかどうかを判定する(ステップS12)。センサ信号を受信してない場合(S12:No)、カウント数を1つ増やして(ステップS13)、ステップS11に戻る。
 一方、センサ信号を受信している場合(S12:Yes)、信号間隔変化量算出部12は、今回のカウント数N1と前回のカウント数N2との間のカウント数差ΔNを算出する(ステップS14)。ここで、今回のカウント数N1は、センサ信号S1とセンサ信号S2との間にカウントされたカウント数であり、前回のカウント数N2は、センサ信号S2とセンサ信号S3との間にカウントされたカウント数である。
 カウント数差ΔNを算出した後、信号間隔変化量算出部12は、カウント数N1を初期値にリセットする(ステップS15)。なお、カウント数N1のリセットはステップS16~S19のいずれのタイミングで行ってもよい。
 次に、信号間隔補正部13は、ステップS14で算出されたカウント数差ΔNに応じた重み係数Cを求める(ステップS16)。そして、信号間隔補正部13は、今回のカウント数N1を補正する(ステップS17)。具体的には、前述の式(2)を用いて、補正された第1のカウント数N1(すなわち、カウント数Na)を算出する。
 次に、回転速度算出部14は、ステップS17で算出されたカウント数Naに基づいてモータ3の瞬時回転速度を算出する(ステップS18)。具体的には、前述の式(4)を用いてモータ3の瞬時回転速度を算出する。そして、モータ制御部15は、ステップS18で算出された瞬時回転速度に基づいてモータ3を制御する(ステップS19)。具体的には、図9および図10を参照して説明したように、所定のトルクを得るためのPWM信号を生成し、電力変換部30に出力する。
 なお、上記の処理フローではカウント数を用いたが、センサ信号の受信時刻を用いて信号間隔変化量を算出してもよい。また、センサ信号を受信していない場合(S12:No)に、直近のアクセル操作量と、前回算出された瞬時回転速度とを用いてデューティ比マップM2からデューティ比を取得し、電力変換部30に送信するPWM信号を更新してもよい。
 上述した実施形態で説明した電動車両制御装置1(制御部10)の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、制御部10の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。
 また、制御部10の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。異なる実施形態にわたる構成要素を適宜組み合わせてもよい。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。
1 電動車両制御装置
2 バッテリ
3 モータ
3r ロータ
4 アングルセンサ
4u U相アングルセンサ
4v V相アングルセンサ
4w W相アングルセンサ
5 アクセルポジションセンサ
6 アシストスイッチ
7 メータ
8 車輪
9 充電器
10 制御部
11 信号受信部
12 信号間隔変化量算出部
13 信号間隔補正部
14 回転速度算出部
15 モータ制御部
20 記憶部
30 電力変換部
100 電動車両
M1 トルクマップ
M2 デューティ比マップ
M3 出力角度マップ
Q1,Q2,Q3,Q4,Q5,Q6 半導体スイッチ
S1,S2,S3 センサ信号

Claims (15)

  1.  負荷を駆動するモータの回転速度に応じた間隔で到来する信号を受信する信号受信部と、
     前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の第1の信号間隔と、前記第2の信号の受信時刻と当該第2の信号の前に受信された第3の信号の受信時刻との間の第2の信号間隔との差である信号間隔変化量を算出する信号間隔変化量算出部と、
     前記信号間隔変化量に基づいて前記第1の信号間隔を補正する信号間隔補正部と、
     前記補正された第1の信号間隔に基づいて前記モータの瞬時回転速度を算出する回転速度算出部と、
     前記算出された瞬時回転速度に基づいて前記モータを制御するモータ制御部と、
     を備えることを特徴とする駆動装置。
  2.  前記信号間隔補正部は、前記信号間隔変化量に応じた重み係数を求め、当該重み係数を前記信号間隔変化量に乗じ、前記重み係数が乗じられた信号間隔変化量を前記第2の信号間隔に加えることにより、前記第1の信号間隔を補正することを特徴とする請求項1に記載の駆動装置。
  3.  前記重み係数は、前記信号間隔変化量の絶対値が大きくなるにつれて小さくなることを特徴とする請求項2に記載の駆動装置。
  4.  前記信号間隔変化量の絶対値が大きくなるにつれて前記重み係数の減少量は小さくなることを特徴とする請求項3に記載の駆動装置。
  5.  前記信号間隔変化量がゼロの場合の前記重み係数の値は1であることを特徴とする請求項3に記載の駆動装置。
  6.  前記重み係数は、前記信号間隔変化量の絶対値が所定の範囲内の場合では1であり、前記所定の範囲外では前記絶対値が大きくなるにつれて小さくなることを特徴とする請求項2に記載の駆動装置。
  7.  前記回転速度算出部は、前記第2の信号が前記第1の信号の一つ前に受信された信号であり且つ前記第3の信号が前記第2の信号の一つ前に受信された信号である場合、下式により前記瞬時回転速度を算出することを特徴とする請求項1に記載の駆動装置。
           n = 60000/(ΔTa×Np)
     ここで、nは前記瞬時回転速度[rpm]であり、ΔTaは前記補正された第1の信号間隔[mSec]であり、Npは前記モータが電気角で一回転する間に前記信号受信部が受信する前記信号の数である。
  8.  前記信号間隔変化量算出部は、前記信号受信部が前記第1の信号を受信した場合に、前記第1の信号と前記第2の信号との間モニタ時間間隔ごとにカウントされた第1のカウント数と、前記第2の信号と前記第3の信号との間前記モニタ時間間隔ごとにカウントされた第2のカウント数との間のカウント数差を、前記信号間隔変化量として算出し、
     前記信号間隔補正部は、前記カウント数差に応じた重み係数を求め、当該重み係数を前記カウント数差に乗じ、前記重み係数が乗じられたカウント数差を前記第2のカウント数に加えることにより前記第1のカウント数を補正することを特徴とする請求項1に記載の駆動装置。
  9.  前記モニタ時間間隔は、前記モータの回転速度が最大のときに前記信号受信部が受信する前記信号の時間間隔よりも短いことを特徴とする請求項8に記載の駆動装置。
  10.  前記信号間隔変化量算出部は、前記カウント数差を算出した後、前記第1のカウント数をリセットすることを特徴とする請求項8に記載の駆動装置。
  11.  前記信号受信部が受信する前記信号は、前記モータに設けられた回転位置センサから出力されたパルス信号の立ち上がりエッジ信号または立ち下がりエッジ信号であることを特徴とする請求項1に記載の駆動装置。
  12.  請求項1に記載の駆動装置であって、前記負荷が電動車両の車輪である、駆動装置を備えることを特徴とする電動車両。
  13.  前記車輪と前記モータがクラッチを介さずに機械的に接続されていることを特徴とする請求項12に記載の電動車両。
  14.  信号受信部が、負荷を駆動するモータの回転速度に応じた間隔で到来する信号を受信するステップと、
     信号間隔変化量算出部が、前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の第1の信号間隔と、前記第2の信号の受信時刻と当該第2の信号の前に受信された第3の信号の受信時刻との間の第2の信号間隔との差である信号間隔変化量を算出するステップと、
     信号間隔補正部が、前記信号間隔変化量に基づいて前記第1の信号間隔を補正するステップと、
     回転速度算出部が、前記補正された第1の信号間隔に基づいて前記モータの瞬時回転速度を算出するステップと、
     モータ制御部が、前記算出された瞬時回転速度に基づいて前記モータを制御するステップと、
     を備えることを特徴とする駆動方法。
  15.  信号受信部が、負荷を駆動するモータの回転速度に応じた間隔で到来する信号を受信するステップと、
     信号間隔変化量算出部が、前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の第1の信号間隔と、前記第2の信号の受信時刻と当該第2の信号の前に受信された第3の信号の受信時刻との間の第2の信号間隔との差である信号間隔変化量を算出するステップと、
     信号間隔補正部が、前記信号間隔変化量に基づいて前記第1の信号間隔を補正するステップと、
     回転速度算出部が、前記補正された第1の信号間隔に基づいて前記モータの瞬時回転速度を算出するステップと、
     モータ制御部が、前記算出された瞬時回転速度に基づいて前記モータを制御するステップと、
     をコンピュータに実行させることを特徴とする駆動プログラム。
PCT/JP2018/012744 2018-03-28 2018-03-28 駆動装置、駆動方法、駆動プログラムおよび電動車両 WO2019186756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880091321.3A CN111954977B (zh) 2018-03-28 2018-03-28 驱动装置、驱动方法、计算机可读介质以及电动车辆
JP2020510289A JP6953621B2 (ja) 2018-03-28 2018-03-28 駆動装置、駆動方法、駆動プログラムおよび電動車両
PCT/JP2018/012744 WO2019186756A1 (ja) 2018-03-28 2018-03-28 駆動装置、駆動方法、駆動プログラムおよび電動車両
TW108110694A TWI689427B (zh) 2018-03-28 2019-03-27 驅動裝置、驅動方法、驅動程式以及電動車輛

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012744 WO2019186756A1 (ja) 2018-03-28 2018-03-28 駆動装置、駆動方法、駆動プログラムおよび電動車両

Publications (1)

Publication Number Publication Date
WO2019186756A1 true WO2019186756A1 (ja) 2019-10-03

Family

ID=68059572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012744 WO2019186756A1 (ja) 2018-03-28 2018-03-28 駆動装置、駆動方法、駆動プログラムおよび電動車両

Country Status (4)

Country Link
JP (1) JP6953621B2 (ja)
CN (1) CN111954977B (ja)
TW (1) TWI689427B (ja)
WO (1) WO2019186756A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423584A (en) * 1977-07-25 1979-02-22 Hitachi Ltd Pulse count type speed detector
JPS63163281A (ja) * 1986-12-26 1988-07-06 Koyo Denshi Kogyo Kk デジタル回転計
JPH09243668A (ja) * 1996-03-12 1997-09-19 Toshiba Corp パルス信号の瞬時値測定方法およびその測定装置
JP2003348876A (ja) * 2002-05-22 2003-12-05 Toshiba Corp インバータ装置,半導体集積回路装置及び乗算装置
JP2007330037A (ja) * 2006-06-07 2007-12-20 Sharp Corp 制御装置および制御方法
US20160320205A1 (en) * 2015-04-29 2016-11-03 Freescale Semiconductor, Inc. Counter based circuit for measuring movement of an object

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI259648B (en) * 2003-12-02 2006-08-01 Ind Tech Res Inst Method to control the DC brushless motor of electromotive car
US7150263B2 (en) * 2003-12-26 2006-12-19 Yamaha Hatsudoki Kabushiki Kaisha Engine speed control apparatus; engine system, vehicle and engine generator each having the engine speed control apparatus; and engine speed control method
CN100418298C (zh) * 2005-03-23 2008-09-10 比亚迪股份有限公司 一种永磁同步电机转子位置传感方法和位置传感装置
JP5195738B2 (ja) * 2009-12-24 2013-05-15 トヨタ自動車株式会社 回転センサの異常判定装置
TWI454394B (zh) * 2012-03-29 2014-10-01 Univ Kun Shan 電動車之模糊化控制加速方法
TWI565603B (zh) * 2015-03-26 2017-01-11 鴻海精密工業股份有限公司 電動自行車及其扭矩傳感器
EP3282574A4 (en) * 2015-04-10 2018-10-24 MITSUBA Corporation Motor drive apparatus and method of controlling motor drive apparatus
JP6012892B1 (ja) * 2016-01-20 2016-10-25 三菱電機株式会社 内燃機関の制御装置及びその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423584A (en) * 1977-07-25 1979-02-22 Hitachi Ltd Pulse count type speed detector
JPS63163281A (ja) * 1986-12-26 1988-07-06 Koyo Denshi Kogyo Kk デジタル回転計
JPH09243668A (ja) * 1996-03-12 1997-09-19 Toshiba Corp パルス信号の瞬時値測定方法およびその測定装置
JP2003348876A (ja) * 2002-05-22 2003-12-05 Toshiba Corp インバータ装置,半導体集積回路装置及び乗算装置
JP2007330037A (ja) * 2006-06-07 2007-12-20 Sharp Corp 制御装置および制御方法
US20160320205A1 (en) * 2015-04-29 2016-11-03 Freescale Semiconductor, Inc. Counter based circuit for measuring movement of an object

Also Published As

Publication number Publication date
JP6953621B2 (ja) 2021-10-27
TWI689427B (zh) 2020-04-01
CN111954977A (zh) 2020-11-17
TW201945220A (zh) 2019-12-01
JPWO2019186756A1 (ja) 2021-02-25
CN111954977B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
JP2009038934A (ja) 電動機の制御装置
WO2019186756A1 (ja) 駆動装置、駆動方法、駆動プログラムおよび電動車両
TW201945638A (zh) 驅動裝置、電動車輛以及驅動裝置的控制方法
JP6972305B2 (ja) 駆動装置、駆動方法、駆動プログラムおよび電動車両
JP6953622B2 (ja) 駆動装置、駆動方法、駆動プログラムおよび電動車両
CN111225818B (zh) 电动车辆、电动车辆控制装置以及电动车辆控制方法
JP6862562B2 (ja) 電動車両制御装置、電動車両制御方法、電動車両制御プログラムおよび電動車両
CN111051119B (zh) 电动车辆控制装置、控制方法、存储介质及电动车辆
JP6950409B2 (ja) 駆動装置
JP7127115B2 (ja) 駆動装置、電動車両および駆動装置の制御方法
JP2022037281A (ja) 制御装置及び制御方法
WO2019186760A1 (ja) 駆動装置、電動車両および駆動装置の制御方法
JP2001103783A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911844

Country of ref document: EP

Kind code of ref document: A1