WO2019184854A1 - 光学膜材结构、其形成方法和显示装置 - Google Patents

光学膜材结构、其形成方法和显示装置 Download PDF

Info

Publication number
WO2019184854A1
WO2019184854A1 PCT/CN2019/079474 CN2019079474W WO2019184854A1 WO 2019184854 A1 WO2019184854 A1 WO 2019184854A1 CN 2019079474 W CN2019079474 W CN 2019079474W WO 2019184854 A1 WO2019184854 A1 WO 2019184854A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
microlens array
array layer
optical film
film structure
Prior art date
Application number
PCT/CN2019/079474
Other languages
English (en)
French (fr)
Inventor
陈寅伟
冯绪清
罗振兴
肖亮
王光泉
孙海威
高斐
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/614,088 priority Critical patent/US11143797B2/en
Publication of WO2019184854A1 publication Critical patent/WO2019184854A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an optical film structure, a method of forming an optical film structure, and a display device having the same.
  • virtual/augmented reality display devices usually have a large display viewing angle in pursuit of immersion, so when the display screen is enlarged by a lens, the pixel points thereof are magnified several times, which makes it easy for the human eye to see the display details of the listed pixels. As a result, the resolution of the picture is degraded, that is, the display screen currently used generally only meets the requirements of the human eye for the picture clarity when directly viewing.
  • a display device includes a display screen, and an optical film structure disposed on a light exiting side of the display screen, the display screen including a plurality of sub-pixels, the optical film structure including: a substrate layer having opposite first and second faces; a microlens array layer disposed on at least one of the first surface and the second surface, the microlens array layer comprising sequentially arranged a plurality of microlenses, the microlenses having a size smaller than a size of the sub-pixels, and edges of the adjacent microlenses overlapping each other.
  • the microlens array layer is disposed on the first surface; the optical film structure further includes a microlens array layer disposed away from the substrate layer An atomizing layer on at least one of the one side and the second side; the atomizing layer comprising a plurality of uneven microstructures.
  • the microlens array layer is disposed on the first surface; the optical film structure further includes a microlens array layer disposed away from the substrate layer An atomizing layer on one side; the atomizing layer includes a plurality of uneven microstructures; the second surface is connected to the display screen.
  • the display screen includes a polarizer; the second surface is directly adsorbed on the polarizer.
  • the display screen includes a polarizer; the second face is bonded to the polarizer.
  • the microlens array layers are respectively disposed on the first surface and the second surface;
  • the optical film structure further includes a microlens array layer An atomization layer on a side away from the substrate layer;
  • the atomization layer includes a plurality of uneven microstructures;
  • the display device further includes the microlens array layer disposed on the second surface a bonding layer with the display screen.
  • the focal length f of the microlens satisfies:
  • l is the side length of the microlens
  • t is the distance between the side of the microlens array layer adjacent to the display screen and the sub-pixel of the display screen
  • the PPI is the display screen The number of subpixels that an inch has.
  • the display screen includes an upper substrate, a lower substrate, a liquid crystal layer, a sub-pixel layer, and a polarizer; the upper substrate and the lower substrate are oppositely disposed, and the liquid crystal layer is disposed Between the upper substrate and the lower substrate; the sub-pixel layer is disposed on a side of the upper substrate adjacent to the lower substrate; the polarizer is disposed on the upper substrate away from the lower substrate One side; the microlens array layer is disposed on the first surface; the second surface is directly adsorbed on the polarizer; t is a thickness of the substrate layer, a thickness of the polarizer, and The sum of the thicknesses of the upper substrates.
  • the optical film structure further includes an atomization layer disposed on a side of the microlens array layer away from the substrate layer; An uneven microstructure.
  • the height values and/or the side length values of the respective microlenses are randomly distributed.
  • an arrangement angle of the microlenses of the optical film structure and an arrangement direction of the sub-pixels of the display screen are at an angle.
  • the included angle is 18.4 degrees, 33.7 degrees, or 45 degrees.
  • the display device further includes: an adhesive layer disposed between the optical film structure and the display screen for bonding the optical film structure On the light exit side of the display screen.
  • an optical film structure comprising:
  • microlens array layer disposed on at least one of the first surface and the second surface, the microlens array layer includes a plurality of microlenses arranged in sequence, and adjacent edges of the microlenses are mutually overlapping.
  • the microlens array layer is disposed on the first surface; the optical film structure further includes a microlens array layer disposed away from the substrate layer An atomizing layer on at least one of the one side and the second side; the atomizing layer comprising a plurality of uneven microstructures.
  • the microlens array layers are respectively disposed on the first surface and the second surface; the optical film structure further includes a microlens array layer An atomized layer on a side away from the substrate layer; the atomized layer includes a plurality of uneven microstructures.
  • a method of forming an optical film structure comprising:
  • microlens array layer Forming a microlens array layer on at least one of the first surface and the second surface, the microlens array layer comprising a plurality of microlenses arranged in sequence, adjacent edges of the microlenses overlapping.
  • forming a microlens array layer on at least one of the first side and the second side includes:
  • the preliminary microlens array layer is irradiated with ultraviolet light to cure it.
  • forming a microlens array layer on at least one of the first side and the second side includes:
  • the preliminary microlens array layer is inverted to be embossed on at least one of the first side and the second side.
  • FIG. 1 is a schematic structural view of an embodiment of an optical film structure of the present disclosure
  • FIG. 2 is a schematic structural view of another embodiment of the optical film structure of the present disclosure.
  • FIG. 3 is a schematic structural view of still another embodiment of the optical film structure of the present disclosure.
  • FIG. 4 is a schematic structural view of a first microlens array layer or a second microlens array layer shown in FIG. 1, FIG. 2 or FIG.
  • Figure 5 is a schematic structural view of a microlens shown in Figure 4.
  • Figure 6 is a schematic structural view of another embodiment of a microlens
  • FIG. 7 is a schematic structural view of still another embodiment of a microlens
  • Figure 8 is a schematic structural view of a display device of the present disclosure.
  • FIG. 9 is a schematic diagram showing a distribution structure of a sub-pixel and a black matrix
  • Figure 10 is a schematic view showing the display effect of the display device after mounting the optical film structure of the present disclosure
  • Figure 11 is a flow chart showing a method of forming an optical film structure
  • Fig. 12 is a schematic structural view of a display device of the present disclosure.
  • Virtual/augmented reality display devices typically have a large viewing angle.
  • the display screen is enlarged by the lens, its pixel points are magnified several times, which makes it easy for the human eye to see the display details of the listed pixels, which leads to a decrease in the sharpness of the picture.
  • the main reason for the above problems is that the black matrix designed on the display screen to shield the irregular driving traces is wider. After the VR imaging lens is enlarged, the width of the black matrix reaches the limit of human visual recognition, so that the human eye can feel The spatial matrix effect formed by the black matrix reduces the display quality. This phenomenon is called the screen window effect (as shown in Figure 9).
  • the embodiment of the present disclosure first provides an optical film structure which can be used for a virtual/augmented reality display, and can of course also be used for a general display screen, such as a computer display screen. TV display and more.
  • the optical film structure may include a substrate layer 1 and a first microlens array layer 2 (micro on the first side of the substrate layer)
  • the lens array layer is referred to as a first microlens array layer 2) as well as a first atomization layer 3 and the like.
  • the substrate layer 1 has a first surface and a second surface opposite to each other; the first microlens array layer 2 is disposed on the first surface, and the first microlens array layer 2 includes a plurality of microlenses 21 arranged in sequence.
  • the side length of the microlens 21 is smaller than the side length of the sub-pixel, and the edges of the adjacent microlenses overlap each other; the first atomization layer 3 is disposed away from the base of the first microlens array layer 2
  • the first atomization layer comprises a plurality of uneven microstructures, and the first atomization layer 3 is capable of scattering light transmitted through the optical film structure.
  • the substrate layer 1 may be made of a polyethylene terephthalate (PET) plastic.
  • PET plastics have good optical properties and weather resistance, and amorphous PET plastics have good optical transparency.
  • PET plastics have excellent wear resistance, dimensional stability and electrical insulation.
  • the first microlens array layer 2 may include a plurality of microlenses 21 arranged in sequence, and the plurality of microlenses 21 are arrayed in a two-dimensional space, that is, a plurality of microlenses 21 are formed in one plane. The edges of the adjacent microlenses 21 overlap each other, that is, the plurality of microlenses 21 are closely arranged without gaps.
  • Each of the microlenses 21 corresponds to a convex lens, and the main parameters of the microlens 21 include a side length l, an arch height h, a radius of curvature r, and the like.
  • the first microlens array layer 2 can be formed by ultraviolet light curing.
  • the specific process is to apply ultraviolet (UV) curing glue on the first surface of the substrate layer 1 to pull the substrate layer 1 to the roller position, and the roller surface is disposed to have a convex-concave shape matching the first microlens array layer 2.
  • the ultraviolet light (UV) curing adhesive is pressed by a roller to form a microlens 21 structure, that is, the first microlens array layer 2 is formed, and then the first microlens array layer 2 is irradiated with ultraviolet light to be cured.
  • the first microlens array layer 2 may also be formed on the first side of the substrate layer 1 by reverse embossing, that is, by laser processing a template to form the first
  • the microlens array layer mold forms a first microlens array layer 2 in the first microlens array layer mold, and then the first microlens array layer 2 is flipped over to be printed on the first side of the substrate layer 1.
  • the laser processing cost is low, the production process is less demanded, and production is convenient.
  • the processing of the first microlens array layer mold can be processed by ultra high precision tools.
  • the side length values and/or height values of the respective microlenses 21 of the first microlens array layer 2 are not uniform and have a certain randomness. A difference in laser energy results in a difference in the size of each microlens 21.
  • the first microlens array layer 2 formed by ultraviolet light curing can have randomness in the side length value and/or height value of each microlens 21 by setting the sizes of the respective rollers differently.
  • the cross-sectional shape of the microlens 21 on the cross section parallel to the first surface is one or more of a rectangle, a triangle, and a hexagon.
  • the cross-sectional shape of the microlens 21 parallel to the first surface is square, and the square or rectangular microlens 21 can significantly reduce the image quality.
  • the effect is to reduce the abnormal defects of the process; the square or rectangular microlenses 21 are relatively easily arranged to form a straight line, that is, the edges between the plurality of microlenses 21 are easily formed into a straight line, so that the arrangement direction of the microlenses 21 and the sub-pixels are easily made.
  • the arrangement direction forms a set angle to eliminate the occurrence of abnormal lines and reduce the influence on the image quality.
  • the cross-sectional shape of the microlens 21 in a cross section parallel to the first surface is a triangle.
  • FIG. 7 a schematic structural view of still another embodiment of a microlens; the cross-sectional shape of the microlens 21 on a cross section parallel to the first surface is a hexagon, but the disclosure is not limited thereto, and the microlens is in the same
  • the cross-sectional shape on one side of the parallel cross section may be other polygons as long as the microlenses can be closely arranged closely (except for the edge portions).
  • the cross-sectional shape of the microlens on the cross section parallel to the first surface is a triangle, a hexagon or another polygon
  • the edges of the adjacent microlenses 21 overlap each other, that is, between the plurality of microlenses 21 It is closely arranged and has no gaps.
  • the fixed-parameter microlens 21 can be applied to a screen size of a certain PPI value range.
  • the focal length f of the microlens 21 satisfies:
  • l is the side length of the microlens 21
  • t is the distance between the side of the first microlens array layer 2 near the display screen and the sub-pixel of the display screen
  • PPI is Pixels
  • the Per Inch abbreviation is the number of sub-pixels per inch of the display.
  • the side length of the microlens 21 is the side length of the microlens 21, and the side length may be an equivalent side length or a true side length.
  • the area of the surface of the microlens that is bonded to the substrate layer may be calculated first, and then the outer contour of the side of the microlens that is bonded to the substrate layer is equivalent to a square. The value obtained by opening the area value is the equivalent side length.
  • the measured side length of the outer contour of the side of the microlens that is bonded to the substrate layer is the true side length.
  • the size of the microlens 21 is smaller than the size of the sub-pixel, specifically, the area of the side of the microlens that is bonded to the substrate layer is smaller than the area of the sub-pixel.
  • the area of the side of the microlens that is bonded to the substrate layer may be between one-ninth and one-fold of the area of the sub-pixel, for example, one or one-ninth of the four molecules.
  • the size can also be the equivalent side length or the true side length.
  • the calculation of the equivalent side length of the microlens 21 has been described in detail above, and the calculation of the equivalent side length of the sub-pixel is also the same as the calculation method of the equivalent side length of the microlens 21, and will not be described herein.
  • the above size may be a true side length.
  • the above-mentioned area value can be converted into an equivalent side length or a true side length value, that is, the equivalent side length or the true side length of the outer contour of the side of the microlens that is bonded to the substrate layer can be long on the side of the sub-pixel. Between one third and one double, for example, it can be one-half or one-third.
  • the sub-pixel is the smallest pixel, specifically: one red pixel, one green pixel, and one blue pixel together form one pixel unit, and the sub-pixel is one red pixel and one green pixel in the pixel unit. Or a blue pixel.
  • the PPI has a value of about 300 to 800; and the side length l of the microlens 21 has a value of about 20 ⁇ m to 40 ⁇ m.
  • the surface is substantially parallel to the first surface, but since it is one side of the first microlens array layer 2, The surface is uneven; and a first atomization layer 3 (the atomization layer disposed on the first microlens array layer 2 is referred to as a first atomization layer 3) may also be provided.
  • the first atomization layer 3 includes a plurality of uneven microstructures, that is, the first atomization layer 3 is a rough and rough structure formed on the first microlens array layer 2, and the first atomization layer 3 can serve The effect on light scattering.
  • the first atomization layer 3 is formed by directly processing the surface of the first microlens array layer 2 to form a rough and rough roughness structure, and the process of performing the reverse mold reprinting on the first microlens array layer 2 can be performed.
  • the first atomization layer 3 of the uneven micro-rough structure is formed on the first microlens array layer 2.
  • the example embodiment is different from the example embodiment shown in FIG. 1 in that a second surface is disposed on the second surface of the substrate layer 1.
  • the atomization layer 4 (the atomization layer disposed on the second surface is referred to as the second atomization layer 4) is not provided with the first atomization layer 3 on the side of the first microlens array layer 2 remote from the substrate layer 1.
  • the structures of the substrate layer 1 and the first microlens array layer 2 are the same as those of the exemplary embodiment shown in FIG. 1, and are not described herein again.
  • first atomization layer 3 can be disposed on the side of the first microlens array layer 2 away from the substrate layer 1, and the second surface of the substrate layer 1 can also be disposed.
  • the example embodiment is different from the example embodiment shown in FIG. 1 in that a second surface is disposed on the second surface of the substrate layer 1.
  • the microlens array layer 5 (the microlens array layer disposed on the second side of the substrate layer is referred to as the second microlens array layer 5), and the specific structure of the second microlens array layer 5 and the first microlens array layer 2
  • the specific structure is the same, that is, the second microlens array layer 5 includes a plurality of microlenses arranged in sequence, the size of the microlens is smaller than the size of the sub-pixels, and the edges of the adjacent microlenses overlap each other; the forming method may be the same, here No longer.
  • the double-layer microlens array structure can avoid the abnormal phenomenon of the screen image caused by the difference between each microlens 21, and improve the screen color effect caused by the single-layer microlens array structure, because the two-layer microlens array structure has the same Realizing the refraction of light increases the randomness of the direction of light, thus reducing the occurrence of colorful phenomena.
  • a combination of layers of microlens array layers may also be employed to achieve a desired screen window improvement effect.
  • the optical film structure of the embodiment of the present disclosure is applicable to a display device, and is a schematic structural view of the display device provided by the embodiment of the present disclosure shown in FIG.
  • the display device may include a display screen and the above optical film structure, and the optical film structure is disposed on the light exiting side of the display screen.
  • the specific structure of the optical film structure has been described in detail above and will not be described herein.
  • a set angle (which may also be referred to as a first angle) between the arrangement direction of the microlenses 21 of the optical film structure and the arrangement direction of the sub-pixels of the display screen. Setting the angle can eliminate the possible occurrence of moiré, color lines and the like in the superposition of two layers of film.
  • the set angle may be approximately 18.4 degrees, and the set angle may also be approximately 33.7 degrees or 45 degrees or the like.
  • the display screen may include an upper substrate 6, a lower substrate 7, a liquid crystal layer 8, a sub-pixel layer 9, and a polarizer 10, and the like.
  • the upper substrate 6 and the lower substrate 7 may be oppositely disposed, and the liquid crystal layer 8 may be disposed between the upper substrate 6 and the lower substrate 7; the sub-pixel layer 9 may be disposed adjacent to the lower substrate 7 of the upper substrate 6.
  • One side of the polarizing plate 10 is disposed on a side of the upper substrate 6 away from the lower substrate 7.
  • the display screen may be a liquid crystal display, or may be a display screen having a sub-pixel structure such as an organic light emitting diode display screen or a micro light emitting diode display screen.
  • t in the above formula is the sum of the thicknesses of the substrate layer 1, the polarizer 10, and the upper substrate 6. If an OLED screen or other display screen is employed, t refers to the distance between the side of the microlens array layer adjacent to the display screen to the three primary color pixel layers.
  • the second surface of the base material layer 1 may be directly adsorbed on the light-emitting surface of the polarizer 10, or may be bonded to the light output of the polarizer 10.
  • the second microlens array layer 5 is provided on the second surface of the substrate layer 1, since the second microlens array layer 5 is uneven, the second microlens array layer 5 cannot be directly adsorbed on the screen.
  • the surface needs to be provided with an adhesive layer 12 (as shown in FIG. 12), and the adhesive layer is disposed between the optical film structure and the display screen.
  • the adhesive layer is provided between the optical film structure and the polarizer 10, and the adhesive layer can be used to bond the optical film structure to the light exiting side of the polarizer 10.
  • the adhesive layer may be disposed between the optical film structure and the upper substrate 6, or in the case where other structures are disposed on the polarizer, the adhesive layer may be disposed on the optical Between the membrane structure and the other structure.
  • the embodiment of the present disclosure further provides a method for forming an optical film structure corresponding to the optical film structure described above, and the method for forming the optical film structure can be Includes the following steps:
  • step S10 a substrate layer is formed, and the substrate layer has opposite first and second faces.
  • Step S20 forming a microlens array layer on at least one of the first surface and the second surface, the microlens array layer comprising a plurality of microlenses arranged in sequence, adjacent to the microlenses The edges overlap each other.
  • forming a microlens array layer on at least one of the first side and the second side comprising: at least one of the first side and the second side
  • the ultraviolet curable adhesive is coated thereon; the ultraviolet curable adhesive is pressed by a roller to form a preliminary microlens array layer; and the preliminary microlens array layer is irradiated with ultraviolet light to be cured.
  • forming a microlens array layer on at least one of the first side and the second side comprises: processing a template with a laser to form a microlens array layer mold; A preliminary microlens array layer is formed in the microlens array layer mold; the preliminary microlens array layer is then inverted to be embossed on at least one of the first side and the second side.
  • the black matrix has a length in the widest direction of about 1/4 to 1/3 of the pixel width. Therefore, when the screen resolution is not high enough, the amplification of the sub-pixel through the VR imaging lens will form a significant spatial grid effect, affecting the image quality, which is called the screen window effect.
  • Fig. 10 a schematic view showing the display effect of the display device after the optical film structure of the present disclosure is mounted. Since the size of the single microlens 21 is smaller than the size of the sub-pixel, the pixel display effect changes significantly after passing through the microlens 21, and the original arrangement of the black matrix is changed, thereby eliminating the screen window effect and improving the image quality.
  • a display device includes an optical film structure including a microlens array layer disposed on at least one of a first side and a second side of a substrate layer, the microlens array layer including sequentially arranged
  • the plurality of microlenses the size of the microlens is smaller than the size of the sub-pixels; the edges of the adjacent microlenses overlap each other.
  • the side length of the microlens is smaller than the side length of the sub-pixel. Therefore, the light of the same sub-pixel and the black matrix must be refracted by different microlenses, and the display effect of the sub-pixel and the black matrix after the microlens is Significant changes occur, the original arrangement of the black matrix is changed.
  • the microlens array layer can change the horizontal arrangement of the wider black matrix on the original display screen, eliminating the regular distribution of the black matrix, thereby improving the effect of the screen window effect on the display. influences.
  • the edges of adjacent microlenses overlap each other, and the microlens array layer can change the display effect of each sub-pixel on the display screen and the black matrix.
  • the resolution requirement for the display screen can be reduced while ensuring that the user experience does not decrease, thereby reducing the cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

显示装置、光学膜材结构及其形成方法。显示装置包括显示屏,以及设在显示屏出光侧的光学膜材结构。光学膜材结构包括基材层(1)及第一微透镜阵列层(2),基材层(1)具有相对设置的第一面和第二面;第一透镜阵列层(2)设于第一面和第二面中的至少一个面上。第一微透镜阵列层(2)包括依次排列的多个微透镜(21),微透镜(21)的尺寸小于子像素的尺寸,相邻的微透镜(21)的棱边相互重叠。这种结构减少了显示设备的纱窗效应。

Description

光学膜材结构、其形成方法和显示装置
相关申请的交叉引用
本申请主张在2018年3月27日在中国提交的中国专利申请号No.201810259457.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种光学膜材结构、光学膜材结构的形成方法和具有该光学膜材结构的显示装置。
背景技术
目前,虚拟/增强现实显示设备为了追求沉浸感,通常具有较大的显示视角,因此当显示屏幕经过透镜放大后其像素点会被放大数倍,导致人眼很容易看清单个像素的显示细节,导致画面清晰度的下降,即目前所用的显示屏普遍只能满足直接观看时人眼对画面清晰度的要求。
发明内容
本公开的额外方面和优点将部分地在下面的描述中阐述,并且部分地将从描述中变得显然,或者可以通过本公开的实践而习得。
根据本公开的一个方面,提供一种显示装置,包括显示屏,以及设于所述显示屏的出光侧的光学膜材结构,所述显示屏包括多个子像素,所述光学膜材结构包括:基材层,具有相对设置的第一面和第二面;微透镜阵列层,设于所述第一面和所述第二面中的至少一面上,所述微透镜阵列层包括依次排列的多个微透镜,所述微透镜的尺寸小于子像素的尺寸,相邻的所述微透镜的棱边相互重叠。
在本公开的一种示例性实施例中,所述微透镜阵列层设于所述第一面;所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面和所述第二面中的至少一面上的雾化层;所述雾化层包括多个凹凸不平的微结构。
在本公开的一种示例性实施例中,所述微透镜阵列层设于所述第一面; 所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面上的雾化层;所述雾化层包括多个凹凸不平的微结构;所述第二面与所述显示屏连接。
在本公开的一种示例性实施例中,所述显示屏包括偏光片;所述第二面直接吸附在所述偏光片上。
在本公开的一种示例性实施例中,所述显示屏包括偏光片;所述第二面粘接在所述偏光片上。
在本公开的一种示例性实施例中,所述微透镜阵列层分别设于所述第一面和所述第二面上;所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面上的雾化层;所述雾化层包括多个凹凸不平的微结构;所述显示装置还包括设置在所述第二面上的所述微透镜阵列层与所述显示屏之间的粘结层。
在本公开的一种示例性实施例中,所述微透镜的焦距f满足:
Figure PCTCN2019079474-appb-000001
其中,
Figure PCTCN2019079474-appb-000002
式中,l是所述微透镜的边长,t是所述微透镜阵列层的靠近所述显示屏的一侧与所述显示屏的子像素之间的距离,PPI是所述显示屏每英寸所具有的子像素数目。
在本公开的一种示例性实施例中,所述显示屏包括上基板、下基板、液晶层、子像素层以及偏光片;所述上基板和所述下基板相对设置,所述液晶层设于所述上基板与所述下基板之间;所述子像素层设于所述上基板的靠近所述下基板的一侧;所述偏光片设于所述上基板的远离所述下基板的一侧;所述微透镜阵列层设于所述第一面;所述第二面直接吸附在所述偏光片上;t是所述基材层的厚度、所述偏光片的厚度和所述上基板的厚度之和。
在本公开的一种示例性实施例中,所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面上的雾化层;所述雾化层包括多个凹凸不平的微结构。
在本公开的一种示例性实施例中,各个所述微透镜的高度值和/或边长值为随机分布。
在本公开的一种示例性实施例中,所述光学膜材结构的微透镜的排列方向与所述显示屏的子像素的排列方向之间有夹角。
在本公开的一种示例性实施例中,所述夹角为18.4度、33.7度或45度。
在本公开的一种示例性实施例中,所述显示装置还包括:粘接层,设于所述光学膜材结构与所述显示屏之间,用于将所述光学膜材结构粘接在所述显示屏的出光侧。
根据本公开的一个方面,提供一种光学膜材结构,包括:
基材层,具有相对设置的第一面和第二面;
微透镜阵列层,设于所述第一面和所述第二面中的至少一面上,所述微透镜阵列层包括依次排列的多个微透镜,相邻的所述微透镜的棱边相互重叠。
在本公开的一种示例性实施例中,所述微透镜阵列层设于所述第一面;所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面和所述第二面中的至少一面上的雾化层;所述雾化层包括多个凹凸不平的微结构。
在本公开的一种示例性实施例中,所述微透镜阵列层分别设于所述第一面和所述第二面上;所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面上的雾化层;所述雾化层包括多个凹凸不平的微结构。
根据本公开的一个方面,提供一种光学膜材结构的形成方法,包括:
形成基材层,所述基材层具有相对设置的第一面和第二面;
在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,所述微透镜阵列层包括依次排列的多个微透镜,相邻的所述微透镜的棱边相互重叠。
在本公开的一种示例性实施例中,在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,包括:
在所述第一面和所述第二面中的至少一面之上涂布紫外光固化胶;
用滚轮挤压所述紫外光固化胶形成初步的微透镜阵列层,所述滚轮表面设置为与所述微透镜阵列层相匹配的凸凹形状;
用紫外光照射所述初步的微透镜阵列层使其固化。
在本公开的一种示例性实施例中,在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,包括:
用激光加工一模板使其形成微透镜阵列层模具;
在所述微透镜阵列层模具内形成初步的微透镜阵列层;
将所述初步的微透镜阵列层倒模使其翻印在所述第一面和所述第二面中的至少一面之上。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1是本公开光学膜材结构一实施方式的结构示意图;
图2是本公开光学膜材结构另一实施方式的结构示意图;
图3是本公开光学膜材结构又一实施方式的结构示意图;
图4是图1、图2或图3中所示的第一微透镜阵列层或第二微透镜阵列层的结构示意图;
图5是图4中所示的一个微透镜的结构示意图;
图6是一个微透镜的另一实施方式的结构示意图;
图7是一个微透镜的又一实施方式的结构示意图;
图8是本公开显示装置的结构示意图;
图9是子像素及黑矩阵的分布结构示意图;
图10是安装本公开光学膜材结构后的显示装置的显示效果示意图;
图11是光学膜材结构的形成方法流程示意图;
图12是本公开显示装置的结构示意图。
图中主要元件附图标记说明如下:
1、基材层;2、第一微透镜阵列层;21、微透镜;3、第一雾化层;4、第二雾化层;5、第二微透镜阵列层;6、上基板;7、下基板;8、液晶层;9、子像素层;10、偏光片;
l、边长;h、拱高;r、曲率半径。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这 些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虚拟/增强现实显示设备通常具有较大的显示视角。然而,当显示屏幕经过透镜放大后其像素点会被放大数倍,导致人眼很容易看清单个像素的显示细节,进而导致画面清晰度的下降。造成上述问题的主要原因是在显示屏上为了遮蔽不规则的驱动走线而设计的黑矩阵较宽,经过VR成像透镜放大后黑矩阵的宽度达到人眼视觉分辨极限,从而人眼可以感受到黑矩阵所形成的空间矩阵效果,降低显示画质,这类现象被称为纱窗效应(如图9所示)。
为了消除上述纱窗效应,本公开实施例首先提供了一种光学膜材结构,该光学膜材结构可以用于虚拟/增强现实显示屏,当然也可以用于普通的显示屏,例如电脑显示屏、电视显示屏等等。参照图1所示的本公开光学膜材结构一实施方式的结构示意图,该光学膜材结构可以包括基材层1、第一微透镜阵列层2(设于基材层的第一面的微透镜阵列层称为第一微透镜阵列层2)以及第一雾化层3等等。基材层1具有相对设计的第一面和第二面;第一微透镜阵列层2设于所述第一面,所述第一微透镜阵列层2包括依次排列的多个微透镜21,所述微透镜21的边长小于子像素的边长,相邻的所述微透镜的棱边相互重叠;第一雾化层3设于所述第一微透镜阵列层2的远离所述基材层1的一面,第一雾化层包括多个凹凸不平的微结构,所述第一雾化层3能够将透过光学膜材结构的光线散射。
在本示例实施方式中,基材层1可以采用聚对苯二甲酸类(Polyethylene terephthalate,简称PET)塑料制成。PET塑料具有很好的光学性能和耐候性,非晶态的PET塑料具有良好的光学透明性。另外PET塑料具有优良的耐磨耗摩擦性和尺寸稳定性及电绝缘性。
参照图4所示的第一微透镜阵列层2的结构示意图。第一微透镜阵列层2可以包括依次排列的多个微透镜21,多个微透镜21是在二维空间内进行阵列排布,即多个微透镜21形成在一个平面内。相邻的微透镜21的棱边相互重叠,即多个微透镜21之间是紧密排列,没有缝隙的。每个微透镜21相当于一个凸透镜,微透镜21的主要参数包括边长l、拱高h以及曲率半径r等等。
第一微透镜阵列层2可以通过紫外光固化形成。具体过程为在基材层1的第一面涂布紫外光(UV)固化胶,将基材层1拉出至滚轮位置,滚轮表面设置为与第一微透镜阵列层2相匹配的凸凹形状,通过滚轮挤压紫外光(UV)固化胶使其形成微透镜21结构,即形成第一微透镜阵列层2,然后通过紫外光照射第一微透镜阵列层2使其固化。当然,在本公开的其它示例实施方式中,第一微透镜阵列层2还可以通过倒模翻印方式成形在基材层1的第一面之上,即通过激光加工一模板使其形成第一微透镜阵列层模具,在第一微透镜阵列层模具内形成第一微透镜阵列层2,然后将第一微透镜阵列层2倒模使其翻印在基材层1的第一面之上。激光加工成本较低,对制作工艺流程要求较低,便于生产。另外,第一微透镜阵列层模具的加工可以通过超高精密刀具加工而成。
第一微透镜阵列层2的各个微透镜21的边长值和/或高度值并不一致,具有一定的随机性。激光能量存在差异会导致每个微透镜21的尺寸存在差别。当然,通过紫外光固化形成的第一微透镜阵列层2,可以通过将各个滚轮的尺寸设置不同,而使各个微透镜21的边长值和/或高度值具有随机性。
微透镜21在与第一面平行的截面上的截面形状为矩形、三角形、六边形中的一种或多种。参照图5所示的一个微透镜21的结构示意图,在本示例实施方式中,微透镜21的与第一面平行的截面形状为方形,方形或矩形的微透镜21可以明显减轻对画质的影响,减少工艺制程的异常缺陷;方形或矩形的微透镜21较为容易排列形成直线,即多个微透镜21之间的棱边容易形成直线,从而容易使微透镜21的排列方向与子像素的排列方向形成设定角度,以消除异常纹路的出现,减少对画质的影响。参照图6所示的一个微透镜的另一实施方式的结构示意图;微透镜21在与第一面平行的截面上的截面形状为三角形。参照图7所示的一个微透镜的又一实施方式的结构示意图;微透镜21在与第一面平行的截面上的截面形状为六边形,但本公开不限于此,微透镜在与第一面平行的截面上的截面形状还可以是其他多边形,只要微透镜能够无缝地紧密排列(除边缘部分)即可。容易理解,微透镜在与第一面平行的截面上的截面形状为三角形、六边形或其他多边形的情况下,相邻的微透镜21的棱边相互重叠,即多个微透镜21之间是紧密排列,没有缝隙的。
为达到最佳的消除纱窗效应和保持画面成像质量的效果,需要根据屏幕尺寸和分辨率参数,对应合适的微透镜21结构参数。换言之,固定参数的微透镜21可以适用一定PPI数值范围的屏幕尺寸。微透镜21的焦距f满足:
Figure PCTCN2019079474-appb-000003
其中,
Figure PCTCN2019079474-appb-000004
式中,l是所述微透镜21的边长,t是所述第一微透镜阵列层2的靠近所述显示屏的一侧与所述显示屏的子像素之间的距离,PPI是Pixels Per Inch缩写,是所述显示屏每英寸所拥有的子像素数目。屏幕的PPI当达到一定数值时,人眼就分辨不出颗粒感了。
l是所述微透镜21的边长,该边长可以为等效边长也可以是真实边长。在微透镜为多边形、不规则形状等的情况下,可以先计算微透镜的与基材层贴合的一面的面积,然后将微透镜与基材层贴合的一面的外轮廓等效正方形,将面积值开方得到的值即为等效边长。在微透镜为正多边形的情况下,微透镜与基材层贴合的一面的外轮廓的测量边长即为真实边长。
微透镜21的尺寸小于子像素的尺寸,具体而言是指微透镜的与基材层贴合的一面的面积小于子像素的面积。微透镜的与基材层贴合的一面的面积可以在子像素的面积的九分之一至一倍之间,例如,可以为四分子一或九分之一。
另外,尺寸也可以为等效边长或真实边长。微透镜21的等效边长的计算上述已经进行了详细说明,子像素的等效边长的计算也和微透镜21的等效边长的计算方法一样,此处不再赘述。在子像素和微透镜均为边数相同的正多边形的情况下,上述尺寸可以为真实边长。可以将上述面积值转换成等效边长或真实边长值,那么就是微透镜的与基材层贴合的一面的外轮廓的等效边长或真实边长可以在子像素的边长的三分之一至一倍之间,例如,可以为二分之一或三分之一。
在本示例实施方式中,子像素为最小像素,具体为:一个红色像素、一个绿色像素以及一个蓝色像素共同形成一个像素单元,子像素即为该像素单元中的一个红色像素、一个绿色像素或一个蓝色像素。所述PPI的取值大约为300至800;所述微透镜21的边长l的取值大约为20μm至40μm。
在本示例实施方式中,在第一微透镜阵列层2的远离所述基材层1的一面(该面基本与第一面平行,但是由于是第一微透镜阵列层2上的一面,因此,该面是凸凹不平的)还可以设有第一雾化层3(设置在第一微透镜阵列层2上的雾化层称为第一雾化层3)。第一雾化层3包括多个凹凸不平的微结构,即第一雾化层3为在第一微透镜阵列层2上形成的凹凸不平的微小粗糙结构,第一雾化层3可起到对光线散射的作用。第一雾化层3的形成过程为:可以直接对第一微透镜阵列层2模具表面处理形成凹凸不平的微小粗糙结构,在对第一微透镜阵列层2进行倒模翻印的过程即可在第一微透镜阵列层2上形成凹凸不平的微小粗糙结构的第一雾化层3。当然,可以在滚轮上设置凹凸不平的微小粗糙结构,通过滚轮碾压形成的第一微透镜阵列层2上即可形成凹凸不平的微小粗糙结构的第一雾化层3。
参照图2所示的本公开光学膜材结构另一实施方式的结构示意图,该示例实施方式与图1所示的示例实施方式的不同在于:在基材层1的第二面设置有第二雾化层4(设置在第二面的雾化层称为第二雾化层4),在第一微透镜阵列层2的远离基材层1的一面没有设置第一雾化层3。基材层1以及第一微透镜阵列层2的结构与图1所示的示例实施方式相同,此处不再赘述。另外,本领域技术人员可以理解的是,可以在第一微透镜阵列层2的远离基材层1的一面设置第一雾化层3的同时,在基材层1的第二面也设置第二雾化层4。
参照图3所示的本公开光学膜材结构又一实施方式的结构示意图,该示例实施方式与图1所示的示例实施方式的不同在于:在基材层1的第二面设置有第二微透镜阵列层5(设于基材层的第二面的微透镜阵列层称为第二微透镜阵列层5),第二微透镜阵列层5的具体结构与第一微透镜阵列层2的具体结构相同,即第二微透镜阵列层5包括依次排列的多个微透镜,微透镜的尺寸小于子像素的尺寸,相邻的微透镜的棱边相互重叠;形成方法也可以相同,此处不再赘述。采用双层微透镜阵列结构可以避免每个微透镜21之间的差别造成的屏幕画面异常点现象,改善采用单层微透镜阵列结构所造成的屏幕炫彩效果,由于两层微透镜阵列结构共同实现对光线的折射增加了光线方向的随机性,故减少了炫彩现象的发生。当然,在本公开的其他示例实施方式中,还可以采用多层微透镜阵列层组合来实现理想的纱窗改善效果。
本公开实施例的光学膜材结构适用于显示装置,参照图8所示的本公开实施例提供的显示装置的结构示意图。该显示装置可以包括显示屏以及上述光学膜材结构,光学膜材结构设于显示屏的出光侧。光学膜材结构的具体结构上述已经进行了详细说明,此处不再赘述。
光学膜材结构的微透镜21的排列方向与所述显示屏的子像素的排列方向之间有设定夹角(也可以称为第一夹角)。设定夹角可以消除两层膜材叠加可能出现的摩尔纹、彩纹等现象。在本示例实施方式中,设定夹角可以大约为18.4度,设定夹角还可以大约为33.7度或45度等等。
在本示例实施方式中,显示屏可以包括上基板6、下基板7、液晶层8、子像素层9以及偏光片10等等。上基板6和下基板7可以相对设置,液晶层8可以设于所述上基板6与所述下基板7之间;子像素层9可以设于所述上基板6的靠近所述下基板7的一侧;偏光片10设于所述上基板6的远离所述下基板7的一侧。显示屏可以为液晶显示屏,还可以是有机发光二极管显示屏、微发光二极管显示屏等具有子像素结构的显示屏幕。上述公式中的t是基材层1、偏光片10和上基板6三者的厚度之和。如果采用OLED屏幕或者其他显示屏幕的话,t是指微透镜阵列层的靠近所述显示屏的一侧到三基色像素层之间的距离。
在基材层1上仅设置有第一微透镜阵列层2的情况下,基材层1的第二面可以直接吸附在偏光片10的出光面上,也可以粘接在偏光片10的出光面上。但是在基材层1的第二面设置有第二微透镜阵列层5的情况下,由于第二微透镜阵列层5是凸凹不平的,因此,第二微透镜阵列层5不能直接吸附在屏幕表面,而需要设置粘接层12(如图12所示),粘接层设于光学膜材结构与显示屏之间。在本示例实施方式中,粘接层设于光学膜材结构与偏光片10之间,粘接层可以用于将光学膜材结构粘接在所述偏光片10的出光侧。当然,在显示屏没有设置偏光片的情况下,粘接层可以设于光学膜材结构与上基板6之间,或在偏光片上还设置有其他结构的情况下,粘接层可以设于光学膜材结构与该其他结构之间。
参照图11所示的光学膜材结构的形成方法流程示意图;本公开实施例还提供了一种对应于上述光学膜材结构的光学膜材结构的形成方法,该光学膜材结构的形成方法可以包括以下步骤:
步骤S10,形成基材层,基材层具有相对设置的第一面和第二面。
步骤S20,在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,所述微透镜阵列层包括依次排列的多个微透镜,相邻的所述微透镜的棱边相互重叠。
在本示例实施方式中,在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,包括:在所述第一面和所述第二面中的至少一面之上涂布紫外光固化胶;用滚轮挤压所述紫外光固化胶形成初步的微透镜阵列层;用紫外光照射所述初步的微透镜阵列层使其固化。
在本示例实施方式中,在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,包括:用激光加工一模板使其形成微透镜阵列层模具;在所述微透镜阵列层模具内形成初步的微透镜阵列层;然后将所述初步的微透镜阵列层倒模使其翻印在所述第一面和所述第二面中的至少一面之上。
在上述光学膜材结构的描述中,对其形成方法已经进行了详细描述,此处不再赘述。
参照图9所示的子像素及黑矩阵的分布结构示意图;通常黑矩阵最宽的方向上约占像素宽度的1/4到1/3的长度。因此当屏幕分辨率不够高时,子像素经过VR成像透镜的放大会形成明显的空间网格效果,影响成像画质,称为纱窗效应。参照图10所示的安装本公开光学膜材结构后的显示装置的显示效果示意图。由于单个微透镜21的尺寸小于子像素的大小,故经过微透镜21后像素显示效果会发生明显变化,黑矩阵的原始排列方式被改变,从而消除了纱窗效应,改善画质。
本公开实施例的显示装置,包括光学膜材结构,光学膜材结构包括设于基材层的第一面和第二面中的至少一面上的微透镜阵列层,微透镜阵列层包括依次排列的多个微透镜,微透镜的尺寸小于子像素的尺寸;相邻的微透镜的棱边相互重叠。一方面,微透镜的边长尺寸小于子像素的边长尺寸,因此,同一个子像素以及黑矩阵的光线必将经过不同的微透镜进行折射,经过微透镜后子像素以及黑矩阵的显示效果会发生明显变化,黑矩阵的原始排列方式被改变,因此,微透镜阵列层能够改变原始显示屏上较宽的黑矩阵横纵排列,消除黑矩阵的规律性分布,从而改善纱窗效应对显示效果的影响。另一方面,相邻的微透镜的棱边相互重叠,微透镜阵列层使显示屏上的每一个子像素以 及黑矩阵的显示效果均能改变。再一方面,采用该光学膜材结构,可以在保证用户体验不下降的情况下,降低对显示屏的分辨率要求,从而降低成本。
上述所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中,如有可能,各实施例中所讨论的特征是可互换的。在上面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组件、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的各方面。
本说明书中使用“约”“大约”的用语通常表示在一给定值或范围的20%之内,较佳是10%之内,且更佳是5%之内。在此给定的数量为大约的数量,意即在没有特定说明的情况下,仍可隐含“约”“大约”“大致”“大概”的含义。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
本说明书中,用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包含”、“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书所述的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。

Claims (19)

  1. 一种显示装置,包括显示屏,以及设于所述显示屏的出光侧的光学膜材结构,所述显示屏包括多个子像素;其中,所述光学膜材结构包括:
    基材层,具有相对设置的第一面和第二面;
    微透镜阵列层,设于所述第一面和所述第二面中的至少一面上,所述微透镜阵列层包括依次排列的多个微透镜,所述微透镜的尺寸小于子像素的尺寸,相邻的所述微透镜的棱边相互重叠。
  2. 根据权利要求1所述的显示装置,其中,所述微透镜阵列层设于所述第一面;所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面和所述第二面中的至少一面上的雾化层;所述雾化层包括多个凹凸不平的微结构。
  3. 根据权利要求1所述的显示装置,其中,所述微透镜阵列层设于所述第一面;所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面上的雾化层;所述雾化层包括多个凹凸不平的微结构;所述第二面与所述显示屏连接。
  4. 根据权利要求3所述的显示装置,其中,所述显示屏包括偏光片;所述第二面直接吸附在所述偏光片上。
  5. 根据权利要求3所述的显示装置,其中,所述显示屏包括偏光片;所述第二面粘接在所述偏光片上。
  6. 根据权利要求1所述的显示装置,其中,所述微透镜阵列层分别设于所述第一面和所述第二面上;
    所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面上的雾化层;所述雾化层包括多个凹凸不平的微结构;
    所述显示装置还包括设置在所述第二面上的所述微透镜阵列层与所述显示屏之间的粘结层。
  7. 根据权利要求1所述的显示装置,其中,所述微透镜的焦距f满足:
    Figure PCTCN2019079474-appb-100001
    其中,
    Figure PCTCN2019079474-appb-100002
    式中,l是所述微透镜的边长,t是所述微透镜阵列层的靠近所述显示屏的一侧与所述显示屏的子像素之间的距离,PPI是所述显示屏每英寸所具有的子像素数目。
  8. 根据权利要求7所述的显示装置,其中,所述显示屏包括上基板、下基板、液晶层、子像素层以及偏光片;所述上基板和所述下基板相对设置,所述液晶层设于所述上基板与所述下基板之间;所述子像素层设于所述上基板的靠近所述下基板的一侧;所述偏光片设于所述上基板的远离所述下基板的一侧;
    所述微透镜阵列层设于所述第一面;所述第二面直接吸附在所述偏光片上;t是所述基材层的厚度、所述偏光片的厚度和所述上基板的厚度之和。
  9. 根据权利要求8所述的显示装置,其中,所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面上的雾化层;所述雾化层包括多个凹凸不平的微结构。
  10. 根据权利要求1所述的显示装置,其中,各个所述微透镜的高度值和/或边长值为随机分布。
  11. 根据权利要求1所述的显示装置,其中,所述光学膜材结构的微透镜的排列方向与所述显示屏的子像素的排列方向之间有夹角。
  12. 根据权利要求11所述的显示装置,其中,所述夹角为18.4度、33.7度或45度。
  13. 根据权利要求1所述的显示装置,其中,所述显示装置还包括:
    粘接层,设于所述光学膜材结构与所述显示屏之间,用于将所述光学膜材结构粘接在所述显示屏的出光侧。
  14. 一种光学膜材结构,包括:
    基材层,具有相对设置的第一面和第二面;
    微透镜阵列层,设于所述第一面和所述第二面中的至少一面上,所述微透镜阵列层包括依次排列的多个微透镜,相邻的所述微透镜的棱边相互重叠。
  15. 根据权利要求14所述的光学膜材结构,其中,所述微透镜阵列层设于所述第一面;所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面和所述第二面中的至少一面上的雾化层;所述雾化层包括多个凹凸不平的微结构。
  16. 根据权利要求14所述的光学膜材结构,其中,所述微透镜阵列层分别设于所述第一面和所述第二面上;所述光学膜材结构还包括设于所述微透镜阵列层的远离所述基材层的一面上的雾化层;所述雾化层包括多个凹凸不平的微结构。
  17. 一种光学膜材结构的形成方法,包括:
    形成基材层,所述基材层具有相对设置的第一面和第二面;
    在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,所述微透镜阵列层包括依次排列的多个微透镜,相邻的所述微透镜的棱边相互重叠。
  18. 根据权利要求17所述的光学膜材结构的形成方法,其中,在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,包括:
    在所述第一面和所述第二面中的至少一面之上涂布紫外光固化胶;
    用滚轮挤压所述紫外光固化胶形成初步的微透镜阵列层,所述滚轮表面具有与所述微透镜阵列层相匹配的凸凹形状;
    用紫外光照射所述初步的微透镜阵列层使其固化形成微透镜阵列层。
  19. 根据权利要求17所述的光学膜材结构的形成方法,其中,在所述第一面和所述第二面中的至少一面之上形成微透镜阵列层,包括:
    用激光加工一模板使其形成微透镜阵列层模具;
    在所述微透镜阵列层模具内形成初步的微透镜阵列层;
    将所述初步的微透镜阵列层倒模使其翻印在所述第一面和所述第二面中的至少一面之上。
PCT/CN2019/079474 2018-03-27 2019-03-25 光学膜材结构、其形成方法和显示装置 WO2019184854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/614,088 US11143797B2 (en) 2018-03-27 2019-03-25 Optical film structure, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810259457.2A CN108445558B (zh) 2018-03-27 2018-03-27 光学膜材结构、其形成方法和显示装置
CN201810259457.2 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019184854A1 true WO2019184854A1 (zh) 2019-10-03

Family

ID=63196995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079474 WO2019184854A1 (zh) 2018-03-27 2019-03-25 光学膜材结构、其形成方法和显示装置

Country Status (3)

Country Link
US (1) US11143797B2 (zh)
CN (1) CN108445558B (zh)
WO (1) WO2019184854A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445558B (zh) 2018-03-27 2021-01-26 京东方科技集团股份有限公司 光学膜材结构、其形成方法和显示装置
CN111463197A (zh) * 2020-04-13 2020-07-28 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制作方法、显示屏以及电子装置
CN112034643B (zh) * 2020-08-06 2023-11-03 华南师范大学 液晶微透镜阵列薄膜及其制备方法和显示装置
CN112698432B (zh) * 2020-12-31 2022-08-19 维沃移动通信有限公司 光学膜片、光学模组及电子设备
CN113570976A (zh) * 2021-07-16 2021-10-29 彼博股份有限公司 一种曲面集成成像显示装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249818A (zh) * 1997-11-05 2000-04-05 皇家菲利浦电子有限公司 透镜片
CN1444057A (zh) * 2002-03-11 2003-09-24 伊斯曼柯达公司 用于可见光漫射的表面形成的复合聚合物透镜
US20170102583A1 (en) * 2013-06-27 2017-04-13 Seiko Epson Corporation Manufacturing method of electro-optic device substrate, electro-optic device substrate, electro-optic device, and electronic device
CN107454380A (zh) * 2016-04-29 2017-12-08 乐金显示有限公司 用于个人沉浸式装置的显示器
CN108445558A (zh) * 2018-03-27 2018-08-24 京东方科技集团股份有限公司 光学膜材结构、其形成方法和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214414A (ja) * 2001-01-22 2002-07-31 Omron Corp マイクロ凹凸パターンを有する樹脂薄膜を備えた光学素子、該光学素子の製造方法及び装置
CN101520522B (zh) * 2009-04-17 2011-04-06 苏州大学 一体化增亮扩散片
KR101936810B1 (ko) 2012-06-08 2019-01-09 삼성전자주식회사 액정 표시 장치
JP2015129894A (ja) * 2014-01-09 2015-07-16 セイコーエプソン株式会社 マイクロレンズアレイ、マイクロレンズアレイの製造方法、電気光学装置、及び電子機器
CN105667042B (zh) * 2016-03-03 2018-03-13 上海交通大学 一种具有减反性能的表面蒸镀铝防窥膜及其制作工艺
CN106707610A (zh) * 2017-03-28 2017-05-24 青岛海信电器股份有限公司 量子点彩色滤光片及制备方法、液晶面板、液晶显示设备
JP2019061199A (ja) * 2017-09-28 2019-04-18 セイコーエプソン株式会社 虚像表示装置
CN107632331A (zh) * 2017-10-30 2018-01-26 武汉华星光电技术有限公司 微透镜阵列薄膜及显示模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249818A (zh) * 1997-11-05 2000-04-05 皇家菲利浦电子有限公司 透镜片
CN1444057A (zh) * 2002-03-11 2003-09-24 伊斯曼柯达公司 用于可见光漫射的表面形成的复合聚合物透镜
US20170102583A1 (en) * 2013-06-27 2017-04-13 Seiko Epson Corporation Manufacturing method of electro-optic device substrate, electro-optic device substrate, electro-optic device, and electronic device
CN107454380A (zh) * 2016-04-29 2017-12-08 乐金显示有限公司 用于个人沉浸式装置的显示器
CN108445558A (zh) * 2018-03-27 2018-08-24 京东方科技集团股份有限公司 光学膜材结构、其形成方法和显示装置

Also Published As

Publication number Publication date
CN108445558A (zh) 2018-08-24
US20200264344A1 (en) 2020-08-20
CN108445558B (zh) 2021-01-26
US11143797B2 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2019184854A1 (zh) 光学膜材结构、其形成方法和显示装置
US10509146B2 (en) Substrate and fabrication method thereof, display panel and display device
US9684210B2 (en) Curved liquid crystal display panel and manufacturing method thereof
WO2017071404A1 (zh) 一种光学结构及其制作方法以及显示基板和显示器件
US8817202B2 (en) Lens sheet and display panel
US20210223604A1 (en) Optical film and fabrication method thereof and display apparatus
WO2018153069A1 (zh) 光学膜材和彩膜基板及其制作方法、显示装置
WO2018045832A1 (zh) 虚拟曲面显示面板、显示装置及显示方法
WO2015081732A1 (zh) 彩膜基板及其制作方法、显示装置
WO2013088471A1 (ja) スクリーン及びスクリーンの製造方法
WO2017215397A1 (zh) 虚拟曲面显示面板及显示装置
TWI790561B (zh) 擴散片、背光單元、液晶顯示裝置及資訊機器
US20170363905A1 (en) Display device, adhesive-layer-including light-diffusion member, and method of manufacturing the light-diffusion member
TWI649586B (zh) 光重導向膜及其製造方法
TWI484261B (zh) 背光單元用之多層片及其製造方法
US20230048591A1 (en) Display panel, method for manufacturing the same, and display apparatus
JP5834524B2 (ja) 光学部材、面光源装置、及び画像表示装置
US11950481B2 (en) Display panel and display device with grooves on surfaces of color resist units
JP2013011667A (ja) 光学シート、面光源装置、及び画像表示装置
US20110038139A1 (en) Optical film with reduced distortion, method of manufacturing the same, and display apparatus having the same
US20120146482A1 (en) Flat display and method of fabricating the same
TWI767021B (zh) 微細凹凸積層體及其製造方法以及相機模組搭載裝置
WO2016082495A1 (zh) 制作彩色滤光片的方法及彩色滤光片、显示装置
KR20110001925A (ko) 휘도강화 확산필름
TWM505616U (zh) 3d顯示層及3d顯示結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19778280

Country of ref document: EP

Kind code of ref document: A1