WO2019184371A1 - 显示基板及其检测方法、显示装置 - Google Patents

显示基板及其检测方法、显示装置 Download PDF

Info

Publication number
WO2019184371A1
WO2019184371A1 PCT/CN2018/114586 CN2018114586W WO2019184371A1 WO 2019184371 A1 WO2019184371 A1 WO 2019184371A1 CN 2018114586 W CN2018114586 W CN 2018114586W WO 2019184371 A1 WO2019184371 A1 WO 2019184371A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
switching
display
display substrate
switching transistor
Prior art date
Application number
PCT/CN2018/114586
Other languages
English (en)
French (fr)
Inventor
张陶然
莫再隆
周炟
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/338,332 priority Critical patent/US11361690B2/en
Priority to EP18857435.4A priority patent/EP3779942A4/en
Publication of WO2019184371A1 publication Critical patent/WO2019184371A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0272Details of drivers for data electrodes, the drivers communicating data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements

Definitions

  • the present disclosure belongs to the field of display technologies, and in particular, to a display substrate, a detecting method thereof, and a display device.
  • PCD crack detection wire
  • Panel Crack Detect a crack detection wire
  • a plurality of metal traces are arranged around the circumference of the display panel and then connected to the display area.
  • the PCD breaks, the resistance of the PCD increases, causing insufficient data voltage writing on the data line connected thereto.
  • the data voltage is insufficiently written, which may result in The display panel presents a number of bright lines, whereby the film layer can be detected to be broken.
  • the present disclosure provides a display substrate including a display area and a non-display area surrounding the display area, the display substrate including a data line extending from the display area to the non-display area, in the non-display area Providing at least one switching transistor, wherein the first poles of each of the switching transistors are respectively connected to one data line, and the second pole of each of the switching transistors is connected to the data voltage supply circuit, and the non-display area is further connected to the non-display area
  • One switching transistor is provided with at least one crack detecting wire in one-to-one correspondence, one end of the crack detecting wire is connected to the control electrode of the corresponding switching transistor, and the other end is connected to the switching voltage supply circuit.
  • the switching voltage supply circuit in the case of performing display failure detection, is configured to output a first switching voltage, and the data voltage supply circuit is configured to output a first data voltage to cause the switching transistor to operate In the linear zone.
  • the switching voltage supply circuit in the case of performing crack detection, is configured to output a second switching voltage, and the data voltage supply circuit is configured to output a second data voltage to cause the switching transistor to operate Saturated area.
  • a pixel driving circuit is disposed in the display area, and the pixel driving circuit includes a driving transistor, wherein the driving transistor is configured to be connected to the second electrode thereof in the case of performing crack detection.
  • the supply voltage is such that the drive transistor operates in a saturation region.
  • the crack detection lead is disposed around the display area.
  • the crack detection wire surrounds the display area for 2 or 3 turns.
  • the display substrate further includes a gate line, and the crack detecting wire is disposed in the same layer as the gate line, and has the same material.
  • the material of the crack detecting wire comprises molybdenum.
  • the switching transistor comprises a P-type transistor.
  • the display substrate comprises an LCD array substrate or an OLED array substrate.
  • the present disclosure also provides a method for detecting the above display substrate, comprising:
  • Displaying a bad detection phase controlling a switching voltage supply circuit to output a first switching voltage to a control electrode of the switching transistor; and controlling a data voltage supply circuit to output a first data voltage to a second electrode of the switching transistor to operate the switching transistor in a linear region , detecting whether there is a defect in the display of the display substrate;
  • a crack detecting phase controlling a switching voltage supply circuit to output a second switching voltage to a control electrode of the switching transistor; and controlling a data voltage supply circuit to output a second data voltage to a second electrode of the switching transistor to operate the switching transistor in a saturation region
  • the crack is detected by detecting whether there is a crack in the wire.
  • a pixel driving circuit is disposed in the display area, and the pixel driving circuit includes a driving transistor, wherein the crack detecting stage further includes:
  • a first supply voltage is applied to the second electrode of the drive transistor to operate the drive transistor in a saturation region.
  • the present disclosure also provides a display device including the above display substrate.
  • FIG. 1 is a schematic structural view of a display substrate according to an embodiment of the present disclosure
  • FIG. 2 is a circuit diagram of a display substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an Id-Vg curve of a P-type transistor
  • FIG. 5 is a graph showing the effect of crack detection wire resistance change on current of a light emitting device in a crack detecting phase, according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a display substrate including a display area Q1 and a non-display area Q2 surrounding the display area Q1.
  • the display substrate further includes: a data line Data extending from the display area Q1 to the non-display area Q2; a switching transistor and a crack detecting line PCD disposed in the non-display area Q2; wherein one end of the crack detecting wire PCD is The control transistor of the switching transistor is connected, and the other end is connected to the switching voltage supply circuit; the first pole of the switching transistor is connected to the data line Data, and the second pole is connected to the data voltage supply circuit.
  • the switching voltage supply circuit is configured to output a first switching voltage; the data voltage supply circuit is configured to output a first data voltage to operate the switching transistor in a linear region; and in the crack detection phase, the switching voltage supply circuit The second switching voltage is configured to output; the data voltage supply circuit is configured to output a second data voltage to operate the switching transistor in the saturation region.
  • the description will be made by taking a transistor in the display substrate as a P-type transistor as an example, and the first drain of the transistor and the second source of the gate are the gates.
  • the linear region of the switch tube in this embodiment is located near Ion of the Id-Vg characteristic curve of the switch tube; the saturation region of the switch tube is located near the subthreshold value of the Id-Vg characteristic curve of the switch tube.
  • the switching voltage supply circuit when the display substrate is subjected to display failure detection, the switching voltage supply circuit outputs the first switching voltage to the control electrode of the switching transistor through the crack detecting wire PCD, and the data voltage supply circuit outputs the first data voltage to the switch.
  • the drain of the transistor is such that the switching transistor is in a linear region during operation at this stage. Therefore, the change of the gate voltage of the switching transistor does not affect the change of the source and drain current of the switching transistor; that is, even if the crack detecting wire PCD breaks during the display failure detection phase, the resistance changes from 1 ⁇ to 1 M ⁇ , resulting in a switch.
  • the control electrode voltage of the transistor changes, and does not affect the current output from the drain of the switching transistor to the data line Data, that is, it does not affect the display failure detection of the display substrate. It can be seen that the control switching transistor is in the linear region, which is equivalent to shielding the crack detecting wire PCD.
  • the switching voltage supply circuit outputs a second switching voltage to the control electrode of the switching transistor through the crack detecting wire PCD, and the data voltage supply circuit outputs the second data voltage to the switching transistor.
  • the drain is such that the switching transistor is in a saturation region during the operation of the phase.
  • the source and drain currents of the switching transistor are greatly changed; thus, as long as the crack detecting wire
  • the PCD breaks, its resistance changes, so that the voltage applied to the gate of the switching transistor changes, resulting in a large change in the source-drain current of the switching transistor, that is, the switching transistor operating in the saturation region is equivalent.
  • the amplifying circuit of the crack detecting wire PCD further makes the crack detection more accurate.
  • the display driving area Q1 of the display substrate of the embodiment is provided with a pixel driving circuit
  • the pixel driving circuit may be a 2T1C pixel driving circuit, that is, including two transistors and one storage capacitor Cst; or may be a 7T1C pixel driving circuit, that is, including seven Transistor and a storage capacitor Cst.
  • FIG. 3 A specific circuit structure for realizing crack detection and display failure detection in the display substrate of the present disclosure will be described below with reference to FIG. 3, in which the connection relationship and operation principle of the related 7T1C pixel driving circuit and the switching transistor M and the crack detecting wire PCD are mainly described.
  • each of the transistors and the switching transistor M in the pixel driving circuit of the 7T1C employs a P-type transistor.
  • the third transistor T3 is a driving transistor
  • the fourth transistor T4 is a scanning transistor.
  • the first pole of the first transistor T1 is connected to the signal input terminal Vinit
  • the second pole is connected to the first pole of the second transistor T2 and the control pole of the third transistor T3, and the control pole is connected to the reset signal end Reset
  • the second transistor T2 The first pole is connected to the source of the first transistor T1 and the gate of the third transistor T3, the second pole is connected to the first pole of the third transistor T3 and the source of the sixth transistor T6, and the control pole is connected to the gate line Gate;
  • the first pole of the three transistor T3 is connected to the source of the second transistor T2 and the source of the sixth transistor T6, and the second pole is connected to the first pole of the fifth transistor T5 and the first pole of the fourth transistor T4, and the control pole is connected and stored.
  • the control electrode is connected to the light-emitting control line EM; the first electrode of the sixth transistor T6 is connected to the first electrode of the seventh transistor T7 and the first electrode of the light-emitting device OLED, and the second electrode is connected to the source of the second transistor T2 and the third transistor
  • the first pole of T3 is connected to the light-emitting control line EM; the first pole of the seventh transistor T7 is connected to the first pole of the sixth transistor T
  • the pole is connected to the reset signal end Reset; the second pole of the light emitting device OLED is connected to the second power voltage terminal; the first pole of the switching transistor M is connected to the data line Data, the second pole is connected to the data voltage supply circuit, and the control pole is connected to the crack detecting wire PCD. At one end, the other end of the crack detecting wire PCD is connected to a switching voltage supply circuit.
  • the scan transistor (fourth transistor) T4 is used to control whether the pixel drive circuit is gated, and the drive transistor (third transistor) T3 is configured to supply a drive current to the light emitting device after the switch transistor M is turned on.
  • the source of the driving transistor T3 is connected to the first power supply voltage terminal through the fifth transistor.
  • the driving transistor in the crack detecting phase, the driving transistor is operated by the first power supply voltage from the first power supply voltage terminal.
  • the drive transistor and the switching transistor M are in the subthreshold swing (SS) interval during the crack detection phase, and the small gate-source voltage variation has a significant influence on the source-drain current, and since the data line Data is The switching transistor M is connected to the crack detecting wire PCD, so that the rate of the second data voltage written on the data line Data is significantly lowered.
  • the power supply voltage applied to the gate of the driving transistor is adjusted to increase The gate-source voltage of the large driving transistor can quickly and accurately determine whether the crack detecting wire PCD is abnormal by detecting the resistance change of the crack detecting wire PCD.
  • the switching transistor M uses a P-type transistor; in the display failure detection phase, the green pixel display is normal as an example, and the data voltage supply circuit outputs a first data voltage of 7 V, which is output to the switch through the ET signal line. The drain of the transistor M is finally input to the data line Data. At this time, the gate-source voltage of the switching transistor M is -7V to -13V, and the switching transistor M operates in the linear region. In this case, the gate of the switching transistor M The fluctuation of the pole voltage has no significant influence on the output of the source and drain current.
  • the simulation results are shown in Fig. 4. As can be seen from FIG.
  • the second switching voltage written to the gate of the switching transistor M is adjusted to about 2.5V, and the second data voltage written by the second electrode is adjusted to about 4V.
  • SS PMOS subthreshold swing
  • the first power supply voltage Vdd received by the source of the driving transistor is adjusted to 0.1V, the Vgs of the driving transistor is increased, and the driving transistor is also operated in the SS section, and the crack can be quickly and accurately analyzed by the resistance change of the crack detecting wire PCD.
  • the crack detecting wire PCD is disposed in the non-display area Q2, and the crack detecting wire PCD is disposed around the non-display area Q2.
  • Such a setting does not affect the aperture ratio of the display substrate display area Q1, and also affects the signal transmission in the display area Q1.
  • the length of the crack detecting wire PCD may be 2-3 turns around the display area.
  • the length of the crack detecting wire PCD may be specifically set according to the size of the display substrate.
  • the crack detecting wire PCD is disposed in the same layer as the gate line Gate in the display substrate, and has the same material. It should be noted that the same layer setting may be a layer structure located at the same horizontal plane, or may be a layer structure including a step difference. In this way, the crack detecting wire PCD can be formed while forming the gate line Gate in the display substrate, so that the process steps are not increased and the cost is not increased.
  • the material of the crack detecting wire PCD may be a material having good electrical conductivity such as molybdenum.
  • the display substrate in this embodiment may be an LCD array substrate in a liquid crystal panel, or may be an OLED array substrate in an OLED display device.
  • the display substrate is an OLED array substrate as an example.
  • An embodiment of the present disclosure further provides a method for detecting a display substrate, which may be the aforementioned display substrate.
  • the detection method of the display substrate comprises two stages, which are a display failure detection stage and a crack detection stage. Specific detection methods include displaying a bad detection phase and a crack detection phase.
  • control switch voltage supply circuit outputs a first switching voltage to the control electrode of the switching transistor; the control data voltage supply circuit outputs a first data voltage to the second electrode of the switching transistor to operate the switching transistor in a linear manner.
  • the area is detected by whether or not the display of the display substrate is defective.
  • control switch voltage supply circuit outputs a second switching voltage to the control electrode of the switching transistor; the control data voltage supply circuit outputs a second data voltage to the second electrode of the switching transistor to operate the switching transistor in the saturation region.
  • the switching voltage supply circuit When performing display failure detection on the display substrate of the embodiment, since the switching voltage supply circuit outputs the first switching voltage to the gate electrode of the switching transistor through the crack detecting wire PCD, the data voltage supply circuit outputs the first data voltage to the switch through the data line Data.
  • the drain of the transistor causes the switching transistor to operate in the linear region at this stage. Therefore, the change of the gate voltage of the switching transistor does not affect the change of the source and drain current of the switching transistor; that is, even cracks during the display failure detection phase
  • the detection wire PCD is broken, and its resistance changes from 1 ⁇ to 1 M ⁇ , which causes the control electrode voltage of the switching transistor to change, and does not affect the current of the switching transistor's drain output to the data line Data, that is, does not affect the display substrate.
  • the control switching transistor is in the linear region, which is equivalent to shielding the crack detecting wire PCD.
  • the switching voltage supply circuit outputs a second switching voltage to the control electrode of the switching transistor through the crack detecting wire PCD, and the data voltage supply circuit outputs the second data voltage through the data line Data to Switching the drain of the transistor so that the switching transistor operates in the saturation region at this stage.
  • the source-drain current of the switching transistor changes greatly; thus, as long as the crack is detected
  • the wire PCD breaks, its resistance changes, so that the voltage applied to the gate of the switching transistor changes, resulting in a large change in the source-drain current of the switching transistor, that is, the switching transistor operating in the saturation region. It is equivalent to the amplification circuit of the crack detection wire PCD, which makes the crack detection more accurate.
  • the display substrate in this embodiment further includes a pixel driving circuit.
  • the pixel driving circuit may be 2T1C or 7T1C. Of course, it may be a pixel driving circuit of other structures.
  • the crack detecting stage further comprises: operating the driving transistor in a saturation region by applying a first power supply voltage, so that the driving transistor and the switching transistor operate in a subthreshold swing (SS) during the crack detecting phase.
  • SS subthreshold swing
  • the power supply voltage applied to the gate of the driving transistor is adjusted to increase the gate-source voltage of the driving transistor, and the crack detecting wire PCD can be quickly and accurately determined by the resistance change of the crack detecting wire PCD. Is there an exception?
  • the data voltage supply circuit outputs a first data voltage of 7V, which is output to the drain of the switching transistor through the ET signal line, and is input to the data line Data.
  • the gate-source voltage of the switching transistor is -7V to -13V, and the switching transistor operates.
  • the fluctuation of the gate voltage of the switching transistor has no significant influence on the output of the source and drain current.
  • the simulation result is shown in Fig. 4. When the resistance of the crack detecting wire PCD is 1 ⁇ and 1 M ⁇ , the output illuminates.
  • the current output of the OLED of the device is almost the same.
  • the display panel does not have a typical PCD-X-Line defect caused by the crack of the crack detection wire PCD, so that the normal display failure detection is not affected.
  • the effect of shielding the amplifier circuit is achieved.
  • the second switching voltage written to the gate of the switching transistor is adjusted to about 2.5V, and the second data voltage written by the second electrode is adjusted to about 4V.
  • the second data voltage writing efficiency is greatly reduced, it will be in the pixel circuit.
  • the first power supply voltage Vdd received by the second pole of the driving transistor is adjusted to 0.1V to increase the Vgs voltage of the driving transistor, so that the driving transistor also operates in the SS interval, and the resistance change of the wire PCD through the crack detection line can be quickly and accurately It is judged whether the crack detection wire PCD is abnormal.
  • the resistance of the crack detection wire PCD changes from 1 ⁇ to 1 M ⁇
  • the current output from the OLED of the light-emitting device changes significantly.
  • the output current of the OLED of the light-emitting device changes more. It is obvious.
  • the operating range of the driving transistor can be adjusted by adjusting the Vdd size, thereby adjusting the sensitivity of the resistance value change of the crack detecting wire PCD, and it can be effectively judged whether the crack detecting wire PCD is broken.
  • One embodiment of the present disclosure provides a display device that can include the display substrate in the foregoing embodiments.
  • the detection of the display device of the present embodiment is more accurate.
  • the display device may be a liquid crystal display device or an electroluminescence display device, such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc., having any display function.
  • a liquid crystal display device or an electroluminescence display device, such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc., having any display function.
  • Product or part such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc.
  • the switching voltage supply circuit When performing display failure detection on the display substrate of the present disclosure, the switching voltage supply circuit outputs the first switching voltage to the control electrode of the switching transistor through the crack detecting wire, and the data voltage supply circuit outputs the first data voltage to the first of the switching transistor through the data line a pole so that the switching transistor operates in a linear region at this stage, and therefore, the change of the gate voltage of the switching transistor does not affect the change of the source and drain current of the switching transistor; accordingly, cracking is performed on the display substrate of the present disclosure.
  • the switching voltage supply circuit outputs a second switching voltage to the control electrode of the switching transistor through the crack detecting wire, and the data voltage supply circuit outputs the second data voltage to the first electrode of the switching transistor through the data line, so that the switching transistor is at this stage
  • the working state is in a saturated region. Therefore, as long as the voltage of the control electrode changes slightly, the source-drain current of the switching transistor changes greatly. Thus, as long as the crack detecting wire breaks, the resistance changes. Make loading on the switch The voltage of the gate of the transistor changes, resulting in a large change in the source-drain current of the switching transistor, that is, the switching transistor operating in the saturation region is equivalent to the amplifying circuit of the crack detecting wire, thereby making the crack detection more accurate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种显示基板及其检测方法、显示装置,属于显示技术领域。显示基板包括显示区(Q1)和环绕显示区(Q1)的非显示区(Q2),显示基板包括从显示区(Q1)延伸至非显示区(Q2)的数据线(Data),在非显示区(Q2)设置有至少一个开关晶体管(M),各开关晶体管(M)的第一极分别与一条数据线(Data)连接,各开关晶体管(M)的第二极与数据电压供给电路连接,在非显示区(Q2)还与至少一个开关晶体管(M)一一对应地设置有至少一条裂纹检测导线(PCD),裂纹检测导线(PCD)的一端连接至与其对应的开关晶体管(M)的控制极,另一端与开关电压供给电路连接。

Description

显示基板及其检测方法、显示装置
相关申请的交叉引用
本申请要求于2018年3月27日递交的中国专利申请第201810258058.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开属于显示技术领域,具体涉及显示基板及其检测方法、显示装置。
背景技术
当前在OLED柔性产品中,大都采用了一种裂纹检测导线(PCD;Panel Crack Detect)的设计,在这样设计中,将金属走线围绕着显示面板四周排布数圈后连接至显示区的若干条数据线,当PCD出现断裂时,PCD的电阻增大,造成与之相连的数据线上的数据电压写入不足,例如对于传统的7T1C像素驱动电路来说,数据电压写入不足,会导致显示面板呈现数条亮线,依此可以检测出膜层出现断裂。
发明内容
本公开提供了一种显示基板,包括显示区和环绕所述显示区的非显示区,所述显示基板包括从所述显示区延伸至所述非显示区的数据线,在所述非显示区设置有至少一个开关晶体管,各所述开关晶体管的第一极分别与一条数据线连接,各所述开关晶体管的第二极与数据电压供给电路连接,在所述非显示区还与所述至少一个开关晶体管一一对应地设置有至少一条裂纹检测导线,所述裂纹检测导线的一端连接至与其对应的开关晶体管的控制极,另一端与开关电压供给电路连接.
在一些实施方式中,在进行显示不良检测的情况下,所述开 关电压供给电路配置为输出第一开关电压,所述数据电压供给电路配置为输出第一数据电压,以使所述开关晶体管工作在线性区。
在一些实施方式中,在进行裂纹检测的情况下,所述开关电压供给电路配置为输出第二开关电压,所述数据电压供给电路配置为输出第二数据电压,以使所述开关晶体管工作在饱和区。
在一些实施方式中,所述显示区中设置有像素驱动电路,所述像素驱动电路包括驱动晶体管,其中,在进行裂纹检测的情况下,所述驱动晶体管被配置为其第二极连接第一电源电压,以使所述驱动晶体管工作在饱和区。
在一些实施方式中,所述裂纹检测导线环绕所述显示区设置。
在一些实施方式中,所述裂纹检测导线环绕所述显示区2圈或3圈。
在一些实施方式中,所述显示基板还包括栅线,所述裂纹检测导线与所述栅线同层设置,且材料相同。
在一些实施方式中,所述裂纹检测导线的材料包括钼。
在一些实施方式中,所述开关晶体管包括P型晶体管。
在一些实施方式中,所述显示基板包括LCD阵列基板或者OLED阵列基板。
本公开还提供了一种上述显示基板的检测方法,包括:
显示不良检测阶段:控制开关电压供给电路输出第一开关电压给开关晶体管的控制极;控制数据电压供给电路输出第一数据电压给开关晶体管的第二极,以使所述开关晶体管工作在线性区,以对显示基板的显示是否存在不良进行检测;
裂纹检测阶段:控制开关电压供给电路输出第二开关电压给开关晶体管的控制极;控制数据电压供给电路输出第二数据电压给开关晶体管的第二极,以使所述开关晶体管工作在饱和区,以对裂纹检测导线是否存在裂纹进行检测。
在一些实施方式中,所述显示区中设置有像素驱动电路,所述像素驱动电路包括驱动晶体管,其中,裂纹检测阶段还包括:
将第一电源电压施加至所述驱动晶体管的第二极,以使所述 驱动晶体管工作在饱和区。
本公开还提供了一种显示装置,其包括上述的显示基板。
附图说明
图1为本公开的一个实施例的显示基板的结构示意图;
图2为本公开的一个实施例的显示基板的电路示意图;
图3为P型晶体管的Id-Vg曲线示意图;
图4为根据本公开的一个实施例的在显示不良检测阶段中裂纹检测导线电阻变化对发光器件的电流的影响;
图5为根据本公开的一个实施例的在裂纹检测阶段中裂纹检测导线电阻变化对发光器件的电流的影响。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
随着产品分辨率(PPI)的不断提高以及全面屏的普及,显示面板中布置检测开关的位置越来越狭窄,目前多使用单边开关对显示面板进行显示不良检测(Cell Test)。对于PCD来说,已经无多余开关可以用来对其进行开关控制,导致显示产品在Cell Test中,无法将PCD关断。由于PCD本身的电阻,导致连接PCD的数据电压信号存在明显压降,写入数据电压不足,在不同电路中呈现亮线或者暗线,导致Cell Test过程中受到竖条PCD-X-Line干扰,影响产品正常不良检测,容易出现过检和误判,影响产品品质和良率。
如图1所述,本公开的一个实施例提供一种显示基板,其包括显示区Q1和环绕显示区Q1的非显示区Q2。该显示基板还包括:从所述显示区Q1延伸至所述非显示区Q2的数据线Data;设置在非显示区Q2中的开关晶体管和裂纹检测导线PCD;其中,裂纹检测导线PCD的一端与开关晶体管的控制极连接,另一端与开关电压供给电路连接;开关晶体管的第一极连接数据线Data, 第二极连接数据电压供给电路。在显示不良检测阶段,开关电压供给电路配置为输出第一开关电压;数据电压供给电路配置为输出第一数据电压,以使所述开关晶体管工作在线性区;在裂纹检测阶段,开关电压供给电路配置为输出第二开关电压;数据电压供给电路配置为输出第二数据电压,以使开关晶体管工作在饱和区。
在本实施例中,将以显示基板中的晶体管均为P型晶体管为例进行说明,并且晶体管的第一极为漏极,第二极为源极,控制极为栅极。本实施例中的开关管的线性区位于开关管的Id-Vg特性曲线的Ion附近;开关管的饱和区位于开关管的Id-Vg特性曲线的亚阈值附近。
在本实施例中,当对显示基板进行显示不良检测时,开关电压供给电路通过裂纹检测导线PCD将第一开关电压输出至开关晶体管的控制极,数据电压供给电路将第一数据电压输出至开关晶体管的漏极,以使开关晶体管在该阶段的工作状态处于线性区。因此,开关晶体管的控制极电压发生变化也不会影响开关晶体管的源漏电流的变化;也就是说,在显示不良检测阶段即使裂纹检测导线PCD发生断裂,其电阻由1Ω变化到1MΩ,导致开关晶体管的控制极电压发生变化,也不会影响开关晶体管的漏极输出至数据线Data上的电流,即不会影响对显示基板的显示不良检测。由此可以看出的是,控制开关晶体管处于线性区,相当于对裂纹检测导线PCD进行了屏蔽。相应的,在本实施例的显示基板进行裂纹检测时,开关电压供给电路通过裂纹检测导线PCD输出第二开关电压至开关晶体管的控制极,数据电压供给电路将第二数据电压输出至开关晶体管的漏极,以使开关晶体管在该阶段的工作状态处于饱和区,因此,只要控制极的电压发生微小变化则会导致开关晶体管的源漏电流发生较大的变化;这样一来,只要裂纹检测导线PCD发生断裂,其电阻就会发生改变,从而使得加载在开关晶体管的栅极的电压就会发生变化,导致开关晶体管的源漏电流发生较大的变化,也即工作在饱和区的开关晶体管相当于裂 纹检测导线PCD的放大电路,进而使得裂纹检测更加准确。
本实施例的显示基板的显示区Q1中设置有像素驱动电路,像素驱动电路可以是2T1C像素驱动电路,即包括两个晶体管、一个存储电容Cst;也可以是7T1C像素驱动电路,即包括七个晶体管和一个存储电容Cst。下面结合图3描述本公开的显示基板中实现裂纹检测和显示不良检测的具体电路结构,其中主要描述了相关的7T1C的像素驱动电路和开关晶体管M以及裂纹检测导线PCD的连接关系和工作原理。
如图3所示,7T1C的像素驱动电路中的各个晶体管和开关晶体管M均采用P型晶体管。其中,第三晶体管T3为驱动晶体管,第四晶体管T4为扫描晶体管。
具体的,第一晶体管T1的第一极连接信号输入端Vinit,第二极连接第二晶体管T2的第一极和第三晶体管T3的控制极,控制极连接复位信号端Reset;第二晶体管T2的第一极连接第一晶体管T1的源极和第三晶体管T3的控制极,第二极连接第三晶体管T3的第一极和第六晶体管T6的源极,控制极连接栅线Gate;第三晶体管T3的第一极连接第二晶体管T2的源极和第六晶体管T6的源极,第二极连接第五晶体管T5的第一极和第四晶体管T4的第一极,控制极连接存储电容Cst的第一端和第二晶体管T2的第一极;第四晶体管T4的第一极连接第五晶体管T5的第一极和第三晶体管T3的源极,第二极连接至数据线Data,进而与开关晶体管M的第一极连接,控制极连接栅线Gate;第五晶体管T5的第一极连接第三晶体管T3的源极和第四晶体管T4的第一极,第二极连接第一电源电压端和存储电容Cst的第二端,控制极连接发光控制线EM;第六晶体管T6的第一极连接第七晶体管T7的第一极和发光器件OLED的第一极,第二极连接第二晶体管T2的源极和第三晶体管T3的第一极,控制极连接发光控制线EM;第七晶体管T7的第一极连接第六晶体管T6的第一极和发光器件OLED的第一极,第二极连接信号输入端Vinit,控制极连接复位信号端Reset;发光器件OLED的第二极连接第二电源电压端;开 关晶体管M的第一极连接数据线Data,第二极连接数据电压供给电路,控制极连接裂纹检测导线PCD的一端,裂纹检测导线PCD的另一端连接开关电压供给电路。
在本实施例中,扫描晶体管(第四晶体管)T4用于控制像素驱动电路是否被选通,驱动晶体管(第三晶体管)T3配置为在开关晶体管M导通后,为发光器件提供驱动电流。如上所述,驱动晶体管T3的源极通过第五晶体管与第一电源电压端相连接,在本实施例中,在裂纹检测阶段,由来自第一电源电压端的第一电源电压使驱动晶体管工作在饱和区,这样一来,在裂纹检测阶段驱动晶体管和开关晶体管M均处于亚阈值摆幅(SS)区间,微小的栅源电压变化都会对源漏电流有显著的影响,而由于数据线Data是通过开关晶体管M与裂纹检测导线PCD连接的,因此使得数据线Data上所写入的第二数据电压的速率明显降低,此时对驱动晶体管的栅极上所加载的电源电压进行调节,以增大驱动晶体管的栅源电压,通过检测裂纹检测导线PCD的电阻变化,就能够快速准确的判断出裂纹检测导线PCD是否出现异常。
具体的,假若开关晶体管M采用P型晶体管;在显示不良检测阶段,以对绿色子像素显示是否正常为例进行说明,数据电压供给电路输出7V的第一数据电压,通过ET信号线输出给开关晶体管M的漏极,并且最终输入至数据线Data上,此时开关晶体管M的栅源电压为-7V~-13V,开关晶体管M工作在线性区,在这种情况下,开关晶体管M的栅极电压的波动对源漏电流的输出无明显影响,模拟仿真结果如图4所示。从图4可以看出,当裂纹检测导线PCD的电阻为1Ω时和1MΩ时,输出至发光器件OLED的电流几乎相同,在进行显示不良检测阶段,显示面板不会出现由于裂纹检测导线PCD断裂造成显示面板显示的典型横纹不良,从而不会影响正常的显示不良的检测,达到了对放大电路屏蔽的效果。附图中的数字1代表PCD的电阻为1Ω时的电流变化曲线,数字2代表PCD的电阻为1MΩ时的电流变化曲线,图5与此相同。
在裂纹检测阶段,将开关晶体管M的栅极写入的第二开关电压调整为2.5V左右,第二极写入的第二数据电压调整为4V左右时,此时,开关晶体管M的栅源电压则为1.5V。由于Vgs=1.5V,开关晶体管M工作在正常的PMOS亚阈值摆幅(SS)区间,微小的Vgs变化对电流的影响就很明显,同时由于第二数据电压写入效率大幅下降,将像素电路中的驱动晶体管的源极接收的第一电源电压Vdd调节至0.1V,增大驱动晶体管的Vgs,使驱动晶体管也工作于SS区间,通过裂纹检测导线PCD的电阻变化,能够快速准确分析出裂纹检测导线PCD走线是否出现异常。如模拟结果图5所示,当裂纹检测导线PCD的电阻从1Ω变化为1MΩ时,发光器件OLED输出的电流出现明显变化,随着裂纹检测导线PCD电阻变化加剧,发光器件OLED输出电流变化更为明显。可以通过调节Vdd大小,调节驱动晶体管的工作区间,调整对裂纹检测导线PCD的电阻值变化敏感度,可以有效区分裂纹检测导线PCD是否出现断裂。
在本实施例中将裂纹检测导线PCD设置在非显示区Q2,且该裂纹检测导线PCD环绕非显示区Q2设置。如此设置不会影响显示基板显示区Q1的开口率,同时也会影响显示区Q1中的信号传输。
在一些实施方式中,裂纹检测导线PCD的长度可以围绕显示区2-3圈,当然也可以根据显示基板的尺寸具体设置裂纹检测导线PCD的长度。其中,裂纹检测导线PCD与显示基板中的栅线Gate同层设置、且材料相同。需要说明的是,同层设置可以是位于同一水平面的层结构,也可以是包含段差的层结构。这样一来,可以在显示基板中形成栅线Gate的同时形成裂纹检测导线PCD,故不会增加工艺步骤,也不会造成成本的增加。具体的,裂纹检测导线PCD的材料可以为钼等具有良好导电性质的材料。
应该理解,本公开中结合附图以一个开关晶体管、一条裂纹检测导线PCD、一条数据线、一个开关电压供给电路和一个数据电压供给电路为例进行了说明,但是这仅是示例性的,而不是限 制性的。本领域技术人员可以根据实际应用,设置多个开关晶体管、多条数据线和裂纹检测导线PCD,其中多个开关晶体管与该多条裂纹检测导线PCD一一对应地连接,此时,可以利用一个开关电压供给电路和一个数据电压供给电路分别连接至该多个开关晶体管。另外,还可以根据实际应用,设置多个开关电压供给电路和多个数据电压供给电路,它们各自以一一对应的方式与各开关晶体管连接。
本实施例中的显示基板可以为液晶面板中的LCD阵列基板,也可以是OLED显示装置中的OLED阵列基板。在本实施中以显示基板为OLED阵列基板为例进行了说明。
本公开的一个实施例还提供了一种显示基板的检测方法,该显示基板可以为前述的显示基板。该显示基板的检测方法包括两个阶段,分别为显示不良检测阶段和裂纹检测阶段。具体检测方法包括显示不良检测阶段和裂纹检测阶段。
在显示不良检测阶段,控制开关电压供给电路输出第一开关电压给开关晶体管的控制极;控制数据电压供给电路输出第一数据电压给开关晶体管的第二极,以使所述开关晶体管工作在线性区,以对显示基板的显示是否存在不良进行检测。
在裂纹检测阶段,控制开关电压供给电路输出第二开关电压给开关晶体管的控制极;控制数据电压供给电路输出第二数据电压给开关晶体管的第二极,以使所述开关晶体管工作在饱和区,以对裂纹检测导线PCD是否存在裂纹进行检测。
在对本实施例的显示基板进行显示不良检测时,由于开关电压供给电路通过裂纹检测导线PCD输出第一开关电压至开关晶体管的控制极,数据电压供给电路通过数据线Data输出第一数据电压至开关晶体管的漏极,使得开关晶体管在该阶段工作在线性区,因此,开关晶体管的控制极电压发生变化也不会影响开关晶体管的源漏电流的变化;也就是说,在显示不良检测阶段即使裂纹检测导线PCD发生断裂,其电阻由1Ω到1MΩ的变化,导致开关晶体管的控制极电压发生变化,也不会影响开关晶体管的漏极输出 至数据线Data上的电流,即不会影响对显示基板的显示不良检测,由此可以看出的是,控制开关晶体管处于线性区,相当于对裂纹检测导线PCD进行了屏蔽。相应的,在本实施例的显示基板进行裂纹检测时,开关电压供给电路通过裂纹检测导线PCD输出第二开关电压至开关晶体管的控制极,数据电压供给电路通过数据线Data输出第二数据电压至开关晶体管的漏极,以使开关晶体管在该阶段工作在饱和区,因此,只要控制极的电压发生微小变化就会导致开关晶体管的源漏电流发生较大的变化;这样一来,只要裂纹检测导线PCD发生断裂,其电阻就会发生改变,从而使得加载在开关晶体管的栅极的电压就会发生变化,导致开关晶体管的源漏电流发生较大的变化,也即工作在饱和区的开关晶体管相当于裂纹检测导线PCD的放大电路,进而使得裂纹检测更加准确。
在本实施例中的显示基板还包括像素驱动电路,该像素驱动电路可以是2T1C,也可以是7T1C,当然也可以是其他结构的像素驱动电路。在一些实施方式中,在裂纹检测阶段还包括:通过施加第一电源电压使驱动晶体管工作在饱和区,这样一来,在裂纹检测阶段驱动晶体管和开关晶体管均工作在亚阈值摆幅(SS)区间,则微小的栅源电压变化对电流的影响也会很明显,而由于数据线Data是通过开关晶体管与裂纹检测导线PCD连接的,因此使得数据线Data上所写入的第二数据电压的速率明显降低,此时对驱动晶体管栅极上所加载的电源电压进行调节,增大驱动晶体管的栅源电压,则通过裂纹检测导线PCD的电阻变化,就能够快速准确的判断出裂纹检测导线PCD是否存在异常。
具体的,假若开关晶体管采用P型晶体管;在显示不良检测阶段,以对绿色子像素显示是否正常进行检测为例进行说明。数据电压供给电路输出7V的第一数据电压,通过ET信号线输出给开关晶体管的漏极,并输入至数据线Data上,此时开关晶体管的栅源电压为-7V~-13V,开关晶体管工作在线性区,此时,开关晶体管的栅极电压的波动对源漏电流的输出无明显影响,模拟仿真结果如图4所示,当裂纹检测导线PCD的电阻为1Ω时和1MΩ时, 输出发光器件OLED输出的电流几乎相同,在进行显示不良检测阶段,显示面板不会出现由于裂纹检测导线PCD断裂造成显示面板显示的典型PCD-X-Line不良,从而不会影响正常的显示不良的检测,达到了对放大电路屏蔽的效果。
在裂纹检测阶段,将开关晶体管的栅极写入的第二开关电压调整为2.5V左右,第二极写入的第二数据电压调整为4V左右时,此时,开关晶体管的栅源电压则为1.5V。由于Vgs=1.5V,开关晶体管工作在正常PMOS亚阈值摆幅(SS)区间,微小的Vgs变化对电流影响也会很明显,同时由于第二数据电压写入效率大幅下降,将像素电路中的驱动晶体管的第二极接收的第一电源电压Vdd调节至0.1V,以增大驱动晶体管的Vgs电压,使得驱动晶体管也工作在SS区间,则通过裂纹检测导线PCD的电阻变化,就可以快速准确判断出裂纹检测导线PCD走线是否出现异常。如模拟结果如图5所示,当裂纹检测导线PCD的电阻从1Ω变化为1MΩ时,发光器件OLED输出的电流出现明显变化,随着裂纹检测导线PCD电阻变化加剧,发光器件OLED输出电流变化更为明显。可以通过调节Vdd大小以调节驱动晶体管的工作区间,从而调整对裂纹检测导线PCD的电阻值变化敏感度,可以有效判断裂纹检测导线PCD是否出现断裂。
本公开的一个实施例提供了一种显示装置,其可以包括前述实施例中的显示基板。
因此,本实施例的显示装置的检测更加准确。
其中,显示装置可以为液晶显示装置或者电致发光显示装置,例如液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开具有如下有益效果:
在对本公开的显示基板进行显示不良检测时,开关电压供给 电路通过裂纹检测导线输出第一开关电压至开关晶体管的控制极,数据电压供给电路通过数据线输出第一数据电压至开关晶体管的第一极,以使开关晶体管在该阶段的工作状态处于线性区,因此,开关晶体管的控制极电压发生变化也不会影响开关晶体管的源漏电流的变化;相应的,在对本公开的显示基板进行裂纹检测时,开关电压供给电路通过裂纹检测导线输出第二开关电压至开关晶体管的控制极,数据电压供给电路通过数据线输出第二数据电压至开关晶体管的第一极,以使开关晶体管在该阶段的工作状态处于饱和区,因此,只要控制极的电压发生微小变化则会导致开关晶体管的源漏电流发生较大的变化;这样以来,只要裂纹检测导线发生断裂,其电阻就会发生改变,从而使得加载在开关晶体管的栅极的电压就会发生变化,导致开关晶体管的源漏电流发生较大的变化,也即工作在饱和区的开关晶体管相当于裂纹检测导线的放大电路,进而使得裂纹检测更加准确。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (13)

  1. 一种显示基板,包括显示区和环绕所述显示区的非显示区,所述显示基板包括从所述显示区延伸至所述非显示区的数据线,在所述非显示区设置有至少一个开关晶体管,各所述开关晶体管的第一极分别与一条数据线连接,各所述开关晶体管的第二极与数据电压供给电路连接,在所述非显示区还与所述至少一个开关晶体管一一对应地设置有至少一条裂纹检测导线,所述裂纹检测导线的一端连接至与其对应的开关晶体管的控制极,另一端与开关电压供给电路连接。
  2. 根据权利要求1所述的显示基板,其中,在进行显示不良检测的情况下,所述开关电压供给电路配置为输出第一开关电压,所述数据电压供给电路配置为输出第一数据电压,以使所述开关晶体管工作在线性区。
  3. 根据权利要求1所述的显示基板,其中,在进行裂纹检测的情况下,所述开关电压供给电路配置为输出第二开关电压,所述数据电压供给电路配置为输出第二数据电压,以使所述开关晶体管工作在饱和区。
  4. 根据权利要求3所述的显示基板,其中,所述显示区中设置有像素驱动电路,所述像素驱动电路包括驱动晶体管,其中,在进行裂纹检测的情况下,所述驱动晶体管被配置为其第二极连接第一电源电压,以使所述驱动晶体管工作在饱和区。
  5. 根据权利要求1所述的显示基板,其中,所述裂纹检测导线环绕所述显示区设置。
  6. 根据权利要求5所述的显示基板,其中,所述裂纹检测导 线环绕所述显示区2圈或3圈。
  7. 根据权利要求1所述的显示基板,其中,所述显示基板还包括栅线,所述裂纹检测导线与所述栅线同层设置,且材料相同。
  8. 根据权利要求1所述的显示基板,其中,所述裂纹检测导线的材料包括钼。
  9. 根据权利要求1至3中任一项所述的显示基板,其中,所述开关晶体管包括P型晶体管。
  10. 根据权利要求1所述的显示基板,其中,所述显示基板包括LCD阵列基板或者OLED阵列基板。
  11. 一种如权利要求1-10中任一项所述的显示基板的检测方法,其中,包括:
    显示不良检测阶段:控制开关电压供给电路输出第一开关电压给开关晶体管的控制极;控制数据电压供给电路输出第一数据电压给开关晶体管的第二极,以使所述开关晶体管工作在线性区,以对显示基板的显示是否存在不良进行检测;
    裂纹检测阶段:控制开关电压供给电路输出第二开关电压给开关晶体管的控制极;控制数据电压供给电路输出第二数据电压给开关晶体管的第二极,以使所述开关晶体管工作在饱和区,以对裂纹检测导线是否存在裂纹进行检测。
  12. 根据权利要求11所述的显示基板的检测方法,其中,所述显示区中设置有像素驱动电路,所述像素驱动电路包括驱动晶体管,其中,裂纹检测阶段还包括:
    将第一电源电压施加至所述驱动晶体管的第二极,以使所述驱动晶体管工作在饱和区。
  13. 一种显示装置,其中,包括权利要求1-10中任一项所述的显示基板。
PCT/CN2018/114586 2018-03-27 2018-11-08 显示基板及其检测方法、显示装置 WO2019184371A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/338,332 US11361690B2 (en) 2018-03-27 2018-11-08 Display substrate and method for detecting the same, and display device
EP18857435.4A EP3779942A4 (en) 2018-03-27 2018-11-08 DISPLAY SUBSTRATE AND ITS DETECTION METHOD AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810258058.4 2018-03-27
CN201810258058.4A CN110211517B (zh) 2018-03-27 2018-03-27 显示基板及其检测方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019184371A1 true WO2019184371A1 (zh) 2019-10-03

Family

ID=67779066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114586 WO2019184371A1 (zh) 2018-03-27 2018-11-08 显示基板及其检测方法、显示装置

Country Status (4)

Country Link
US (1) US11361690B2 (zh)
EP (1) EP3779942A4 (zh)
CN (1) CN110211517B (zh)
WO (1) WO2019184371A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223408A (zh) * 2020-02-11 2020-06-02 京东方科技集团股份有限公司 显示面板、边缘破损检测方法、制备方法、及显示装置
CN113473826A (zh) * 2021-06-09 2021-10-01 荣耀终端有限公司 玻璃基板、显示面板、显示器及电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354296B (zh) * 2020-04-16 2023-01-24 京东方科技集团股份有限公司 显示面板、显示装置
CN111696459B (zh) * 2020-05-26 2023-10-20 京东方科技集团股份有限公司 检测模组、裂纹检测方法、显示面板和显示装置
CN112289837A (zh) * 2020-10-27 2021-01-29 昆山国显光电有限公司 显示基板及其检测方法和显示装置
CN112419949B (zh) * 2020-12-15 2022-04-05 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
JP2023054494A (ja) * 2021-10-04 2023-04-14 上海天馬微電子有限公司 液晶表示装置及び線欠陥検出方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407481A (zh) * 2014-12-09 2015-03-11 京东方科技集团股份有限公司 阵列基板、信号线不良的检测方法、显示面板及显示装置
CN104535620A (zh) * 2015-01-16 2015-04-22 友达光电(厦门)有限公司 显示面板及其裂纹检测方法
US20160322451A1 (en) * 2015-04-29 2016-11-03 Samsung Display Co., Ltd. Display device
CN106257571A (zh) * 2015-06-16 2016-12-28 三星显示有限公司 显示设备
CN107680481A (zh) * 2016-08-01 2018-02-09 三星显示有限公司 显示装置
CN107767801A (zh) * 2016-08-22 2018-03-06 三星显示有限公司 显示设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365673B1 (ko) * 2006-11-24 2014-02-21 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 박막 트랜지스터 기판 및이의 제조방법
KR20140015887A (ko) * 2012-07-26 2014-02-07 삼성디스플레이 주식회사 표시 장치의 안전 구동 시스템 및 표시 장치의 안전 구동 방법
JP6138480B2 (ja) * 2012-12-20 2017-05-31 株式会社ジャパンディスプレイ 表示装置
US9983452B2 (en) * 2014-07-15 2018-05-29 Huawei Technologies Co., Ltd. Method for detecting substrate crack, substrate, and detection circuit
CN204116461U (zh) * 2014-07-31 2015-01-21 上海天马微电子有限公司 一种显示面板
KR102246365B1 (ko) * 2014-08-06 2021-04-30 삼성디스플레이 주식회사 표시장치와 그의 제조방법
KR102409454B1 (ko) * 2015-02-02 2022-06-15 삼성디스플레이 주식회사 표시 패널
CN105976744B (zh) * 2016-06-24 2023-03-31 山东影响力智能科技有限公司 一种屏模组、电子设备及屏模组的微裂纹检测方法
KR102351323B1 (ko) * 2017-03-28 2022-01-17 삼성전자주식회사 디스플레이의 균열을 감지하기 위한 회로 및 이를 포함하는 전자 장치
US10605855B2 (en) * 2017-08-29 2020-03-31 Taiwan Semiconductor Manufacturing Co., Ltd. Method, test line and system for detecting semiconductor wafer defects
CN112289837A (zh) * 2020-10-27 2021-01-29 昆山国显光电有限公司 显示基板及其检测方法和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407481A (zh) * 2014-12-09 2015-03-11 京东方科技集团股份有限公司 阵列基板、信号线不良的检测方法、显示面板及显示装置
CN104535620A (zh) * 2015-01-16 2015-04-22 友达光电(厦门)有限公司 显示面板及其裂纹检测方法
US20160322451A1 (en) * 2015-04-29 2016-11-03 Samsung Display Co., Ltd. Display device
CN106257571A (zh) * 2015-06-16 2016-12-28 三星显示有限公司 显示设备
CN107680481A (zh) * 2016-08-01 2018-02-09 三星显示有限公司 显示装置
CN107767801A (zh) * 2016-08-22 2018-03-06 三星显示有限公司 显示设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779942A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223408A (zh) * 2020-02-11 2020-06-02 京东方科技集团股份有限公司 显示面板、边缘破损检测方法、制备方法、及显示装置
CN113473826A (zh) * 2021-06-09 2021-10-01 荣耀终端有限公司 玻璃基板、显示面板、显示器及电子设备
CN113473826B (zh) * 2021-06-09 2022-07-05 荣耀终端有限公司 玻璃基板、显示面板、显示器及电子设备

Also Published As

Publication number Publication date
US20210366325A1 (en) 2021-11-25
EP3779942A1 (en) 2021-02-17
CN110211517B (zh) 2021-03-16
US11361690B2 (en) 2022-06-14
CN110211517A (zh) 2019-09-06
EP3779942A4 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2019184371A1 (zh) 显示基板及其检测方法、显示装置
AU2019261689B2 (en) Display panel and crack detecting method thereof, display apparatus
CN108492768B (zh) 一种面板裂纹检测结构及检测方法
US11367391B2 (en) Display panel, display device and detection method
WO2017118212A1 (zh) 显示面板测试方法及测试装置
CN107424549B (zh) 阈值电压漂移的检测方法和装置
KR100873534B1 (ko) Tft 어레이 기판, tft 어레이 검사 방법 및 표시장치
WO2018188298A1 (zh) 指纹识别检测电路、触摸屏及显示装置
US20100214273A1 (en) Display device and method for controlling the same
JP6248310B2 (ja) 表示パネルの製造方法
US10439610B2 (en) Force touch detection circuit, method and display panel
US20170061868A1 (en) Pixel driving circuit, driving method thereof and display device using the same
US9361820B2 (en) Apparatus and method for inspecting short circuit defects
WO2017161623A1 (zh) Amoled显示面板线缺陷的修复结构及修复方法
CN110827730B (zh) 一种检测ltpsamoled显示基板像素区晶体管特性的电路与方法
US11264442B2 (en) Flat panel display including plurality of pads
WO2016090724A1 (zh) 阵列基板及显示装置
CN113466252A (zh) 显示面板、显示面板的检测方法和显示装置
CN111292660A (zh) Oled驱动背板、其检测方法及显示装置
WO2019029532A1 (zh) 显示面板的检测方法及装置、检测设备及存储介质
CN114830330A (zh) 显示基板及其裂纹检测方法、显示装置
CN114283720B (zh) 显示面板及其不良像素的测试方法、显示装置
US11295643B2 (en) Detection method and detection device for display substrate
KR102395215B1 (ko) 유기전계발광표시장치 및 이의 구동방법
JP2012078379A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857435

Country of ref document: EP

Effective date: 20201027