WO2019184063A1 - 半导体激光器件的谐振腔面钝化膜、制作方法及器件 - Google Patents

半导体激光器件的谐振腔面钝化膜、制作方法及器件 Download PDF

Info

Publication number
WO2019184063A1
WO2019184063A1 PCT/CN2018/087375 CN2018087375W WO2019184063A1 WO 2019184063 A1 WO2019184063 A1 WO 2019184063A1 CN 2018087375 W CN2018087375 W CN 2018087375W WO 2019184063 A1 WO2019184063 A1 WO 2019184063A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity surface
sulfide
band gap
laser device
semiconductor laser
Prior art date
Application number
PCT/CN2018/087375
Other languages
English (en)
French (fr)
Inventor
胡海
何晋国
苗春雨
Original Assignee
深圳瑞波光电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳瑞波光电子有限公司 filed Critical 深圳瑞波光电子有限公司
Publication of WO2019184063A1 publication Critical patent/WO2019184063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0281Coatings made of semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser

Definitions

  • the present application relates to the field of semiconductor surface area selective passivation technology, and in particular to a resonant cavity surface passivation film of a semiconductor laser device, a fabrication method thereof, and a semiconductor laser device.
  • Catastrophic optical mirror damage is an important factor affecting the reliability, lifetime and maximum output power of semiconductor lasers.
  • oxidation leads to an increase in the surface state density of the cavity surface, accelerating the induction of non-radiative recombination of the cavity surface region, which forms a positive feedback process, when the cavity When the surface temperature exceeds the melting point of the material, the cavity surface is melted, and the semiconductor laser device is completely ineffective.
  • the cavity surface passivation technology of semiconductor lasers is one of the effective methods to mitigate the damage of catastrophic optical mirrors, which can improve the reliability and extend the service life of semiconductor lasers.
  • the most successful passivation technique for mitigating the catastrophic phenomenon of the cavity surface is to dissociate the bar in the ultra-high vacuum and plate the silicon on the cavity surface, but this method is not easy to operate, expensive, and low in productivity, so It is necessary to dissociate the bar in the atmospheric environment and then perform the technique of cavity surface passivation.
  • the vulcanization method is a method for removing the surface oxides and surface defects of the III-V compound semiconductor, and can effectively improve the threshold of the catastrophic optical mirror damage of the semiconductor laser device.
  • wet vulcanization is simple and easy to use, and the cost is low, and the application is extensive, but the wet vulcanization has such a problem that blunt formation on the cavity surface by wet vulcanization is formed.
  • the film is easily reoxidized or easily volatilized, thereby causing the passivation of the passivation film to fail.
  • the technical problem to be solved by the present application is to provide a resonant cavity surface passivation film of a semiconductor laser device, which can make the cavity surface passivation film effective for a long time, thereby ensuring the reliability of the semiconductor laser device and prolonging the use of the semiconductor laser device. Lifetime and a new type of regioselective passivation technology.
  • a technical solution adopted by the present application is to provide a resonant cavity surface passivation film of a semiconductor laser device, the resonant cavity surface passivation film comprising: a passivation layer covering a resonance of a semiconductor laser device a cavity surface; a protective layer overlying the passivation layer, the material of the protective layer being a wide band gap semiconductor material.
  • another technical solution adopted by the present application is to provide a semiconductor laser device including a cavity surface passivation film, and the cavity surface passivation film is any one of the above Resonant cavity surface passivation film.
  • another technical solution adopted by the present application is to provide a method for fabricating a resonant cavity surface passivation film of a semiconductor laser device, the method comprising: covering a cavity surface of the semiconductor laser device with a blunt layer a thin film of a layer; a film of a protective layer overlying the passivation layer, the material of the protective layer being a wide band gap semiconductor material.
  • the resonant cavity surface passivation film of the present application includes: a passivation layer covering the resonant cavity surface of the semiconductor laser device; and a protective layer covering the passivation layer
  • the material of the protective layer is a wide band gap semiconductor material.
  • the function of the passivation layer process includes two aspects: (1) removing surface oxides and surface defects caused by contact with air on the cavity surface; (2) depositing a dense passivation layer on the cavity surface, the passivation layer The material saturates the cavity surface dangling bonds.
  • the resonant cavity surface passivation technique of the semiconductor laser device of the present application combines a method of wet vulcanization passivation and photochemical deposition of a wide band gap sulfide film, wherein photochemical deposition is a regioselective deposition, and the sulfide film formed thereof It only occurs in the cavity surface of a semiconductor laser device.
  • This cavity surface passivation technology is a new method for semiconductor laser devices to effectively resist catastrophic optical mirror damage.
  • FIG. 1 is a schematic structural view of an embodiment of a resonant cavity surface passivation film of a semiconductor laser device of the present application
  • FIG. 2 is a schematic structural view of an embodiment of a semiconductor laser device of the present application.
  • FIG. 3 is a flow chart of an embodiment of a method for fabricating a resonant cavity surface passivation film of a semiconductor laser device of the present application
  • FIG. 4 is a schematic view showing a passivation film of a specific laser chip resonant cavity surface of a semiconductor laser device of the present application
  • FIG. 5 is a schematic diagram of an apparatus for preparing a ZnS protective layer by photochemical deposition (PCD) after passivation of a resonant cavity surface in a specific embodiment of a method for fabricating a resonant cavity surface passivation film of a semiconductor laser device of the present application.
  • PCD photochemical deposition
  • the cavity surface passivation technology of semiconductor lasers is one of the effective methods to mitigate the damage of catastrophic optical mirrors, which can improve the reliability and extend the service life of semiconductor lasers.
  • the most successful passivation technique for mitigating the catastrophic phenomenon of the resonant cavity surface in the prior art is to dissociate the strip in the ultra-high vacuum and plate the silicon on the cavity surface, but this method is not easy to operate, expensive, and low in productivity, so it is required
  • the main principles of the cavity surface passivation technology after the atmosphere is dissociated from the strip include two aspects: firstly, the surface oxide and surface defects generated by the contact of the cavity surface with the air are removed, usually by wet or dry method. Secondly, a dense dielectric film is deposited on the cavity surface, and the saturated cavity surface is dangling bonds, usually by physical vapor deposition or chemical vapor deposition.
  • the vulcanization method is a method for removing the surface oxides and surface defects of the III-V compound semiconductor, and can effectively improve the threshold of the catastrophic optical mirror damage of the semiconductor laser device.
  • the vulcanization method includes wet vulcanization and dry vulcanization. Most of the reports are wet vulcanization, mainly using a sulfur-containing solution and a semiconductor reaction, while dry vulcanization is a treatment of a semiconductor using a sulfur-containing plasma.
  • the wet vulcanization of the resonant cavity surface of a semiconductor laser refers to immersing the cavity surface in a sulfur-containing compound solution, for example, an aqueous solution of ammonium sulfide ((NH 4 ) 2 S) or an organic alcohol solution, sodium sulfide (Na 2 S).
  • a sulfur-containing compound solution for example, an aqueous solution of ammonium sulfide ((NH 4 ) 2 S) or an organic alcohol solution, sodium sulfide (Na 2 S).
  • An aqueous solution or an organic alcohol solution to remove the native oxide and surface defects of the cavity surface, and then form a sulfide passivation layer on the surface of the cavity, that is, a film after the vulcanization reaction.
  • the passivation method in the vulcanization method is the sulfide and sulfur of several atomic layers to tens of atomic layers on the surface of the resonant cavity. After the cavity surface is left in the air for a period of time, the sulfur will oxidize or volatilize, so that the cavity surface The semiconductor material is reoxidized and the passivation is thus disabled. Even if the laser chip after vulcanization of the cavity surface is taken out from the solution, and quickly placed in the coating equipment after drying, the subsequent deposition of the optical film on the cavity surface is still highly probable, causing the vulcanization of the cavity surface to be invalid because of the optics.
  • the deposition of the film is usually carried out under vacuum and/or heating at a high temperature, and this environment is more likely to cause volatilization of sulfur, resulting in ineffective passivation of the wet vulcanization.
  • the passivation layer is covered with a protective layer.
  • the material of the protective layer is a wide band gap semiconductor material, which can prevent the sulfur of the resonant cavity surface from disappearing.
  • the function of the cavity surface passivation film of the semiconductor laser device of the present application mainly includes two aspects, namely, a passivation effect and stability thereof. Selecting a wide-bandgap semiconductor material as a protective layer material can prevent the absorption of the laser by the protective layer material and prevent the failure of the passivation layer material. In this way, the resonant cavity surface passivation film can be made effective for a long time, thereby ensuring the semiconductor laser. The reliability of the piece extends the life of the semiconductor laser device.
  • FIG. 1 is a schematic structural view of an embodiment of a resonant cavity surface passivation film of a semiconductor laser device of the present application.
  • the cavity surface passivation film 100 includes a passivation layer 101 and a protective layer 102 .
  • the passivation layer 101 covers the resonant cavity surface of the semiconductor laser device; the protective layer 102 covers the passivation layer 101, and the material of the protective layer 102 is a wide band gap semiconductor material.
  • the material of the passivation layer 101 may be a material used for the cavity surface passivation of the semiconductor laser device in the prior art; the process of covering the cavity surface of the semiconductor laser device with the passivation layer 101 may be It is a process for forming a cavity surface passivation layer of a semiconductor laser device in the prior art.
  • the material of the passivation layer 101 may be a sulfide film, which may be formed by a wet process or a dry process; for example, a cavity surface passivation formed after the atmosphere is dissociated from the bar Layer; and so on.
  • Wide bandgap semiconductor materials are widely used in blue, violet and ultraviolet optoelectronic devices, high frequency, high temperature, high power electronic devices and field emission devices.
  • Wide bandgap semiconductor materials include, but are not limited to, zinc oxide, sulfide, gallium nitride, silicon carbide, and the like. Specifically, the band gap energy of the wide band gap semiconductor material is greater than the photon energy of the laser light, and therefore, the absorption of the laser light by the protective layer material can be prevented.
  • the film of the wide bandgap semiconductor material of the protective layer 102 may be part of the resonant cavity surface optical film of the subsequent semiconductor laser device or all of it as a component of the cavity surface optical film of the semiconductor laser device, complete blunt
  • the film 100 can be further plated with other material films to adjust the reflectivity to achieve the characteristics of the semiconductor laser device design.
  • the SiO 2 and TiO 2 films are plated on one end of the semiconductor laser device so that the entire protective layer 102 is included.
  • the reflectance is 1%, and the other end is plated with a SiO 2 and TiO 2 multilayer film structure such that the overall reflectance of the protective layer 102 is 99%.
  • the above optical coating is such that the passivation layer 101 is not affected by the presence of the protective layer 102. Subsequent coating process effects are degraded.
  • the passivation layer 101 is immediately covered with a protective layer 102.
  • the material of the protective layer 102 is a wide band gap semiconductor material. Failure of the passivation layer 101 of the cavity face is prevented.
  • the function of the cavity surface passivation film 100 of the semiconductor laser device of the present application mainly includes two aspects, namely, a passivation effect and stability thereof.
  • Selecting to deposit a wide bandgap semiconductor material as the material of the protective layer 102 immediately can prevent oxidation or volatilization of the material of the passivation layer 101, prevent material failure of the passivation layer 101, and prevent absorption of laser photons by the material of the protective layer 102.
  • the cavity surface passivation film 100 can be made effective for a long time, thereby ensuring the reliability of the semiconductor laser device and prolonging the service life of the semiconductor laser device.
  • the passivation layer 101 is a sulfide and sulfur thin film formed by reacting a cavity surface of a semiconductor laser device with a sulfur-containing compound.
  • the sulfide film formed by the reaction of the cavity surface of the semiconductor laser device with the sulfur-containing compound may be formed by a dry process or a wet process. More reported are wet vulcanization, mainly using sulfur-containing compound solutions and semiconductor reactions, while dry vulcanization is the treatment of semiconductors using sulfur-containing plasma.
  • the wet vulcanization of the cavity surface of a semiconductor laser device refers to immersing the cavity surface in a sulfur-containing compound solution, for example, an aqueous solution of ammonium sulfide ((NH 4 ) 2 S) or an organic alcohol solution, sodium sulfide (Na 2 ) An aqueous solution or an organic alcohol solution of S) to remove the native oxide and surface defects of the cavity surface, and then form a sulfide passivation layer on the cavity surface, that is, a sulfide film after the sulfurization reaction.
  • a sulfur-containing compound solution for example, an aqueous solution of ammonium sulfide ((NH 4 ) 2 S) or an organic alcohol solution, sodium sulfide (Na 2 )
  • aqueous solution or an organic alcohol solution of S to remove the native oxide and surface defects of the cavity surface, and then form a sulfide passivation layer on the cavity surface, that is, a sulfide film
  • the sulfur-containing compound solution contains at least a sulfide solution of one of ammonium sulfide, lithium sulfide, sodium sulfide, potassium sulfide, magnesium sulfide, calcium sulfide, barium sulfide, barium sulfide, thiourea or thioacetamide.
  • the solvent is water or an organic solution, or a mixed solution of water and an organic solution.
  • the thickness of the passivation layer 101 is from several atomic layers to several tens of atomic layer thicknesses.
  • the material of the protective layer 102 is a wide band gap sulfide semiconductor material; the thickness of the protective layer 102 is 1-800 nm, for example: 1 nm, 5 nm, 10 nm, 100 nm, 200 nm, 400 nm, 600 nm, 800 nm, and the like.
  • the material of the protective layer 102 is selected as a wide band gap sulfide semiconductor material, on the one hand, the absorption of the laser photon by the material of the protective layer 102 can be prevented, the oxidation or volatilization of the material of the passivation layer 101 is prevented, and the passivation layer 101
  • Both the material and the protective layer 102 are sulfides, and the materials are matched with each other; on the other hand, the sulfide semiconductor material is used as the material of the protective layer 102, and the forming process of the material can be matched with the process of the sulfide passivation layer, that is, Both processes are completed in a sulfur-containing solution.
  • the wet process deposits a film of sulfide film including Chemical Bath Deposition (CBD), Photochemical Deposition (PCD), and the like.
  • CBD Chemical Bath Deposition
  • PCD Photochemical Deposition
  • photochemical deposition has a deposition zone selectivity (ie, depositing a sulfide film only in the area irradiated by ultraviolet rays), a simple process, low cost, no need for a vacuum device, easy handling of experimental conditions, and easy and passivation of the passivation layer.
  • deposition zone selectivity ie, depositing a sulfide film only in the area irradiated by ultraviolet rays
  • the cavity surface of the semiconductor laser device is irradiated with ultraviolet light.
  • the irradiation method using ultraviolet rays is continuous irradiation or intermittent irradiation.
  • the wavelength of the ultraviolet light is less than 300 nm.
  • Light sources of ultraviolet light include, but are not limited to, mercury lamps, xenon lamps, mercury xenon lamps, xenon arc lamps, hydrogen arc lamps, xenon arc lamps, carbon arc lamps, metal halide lamps, KrF* excimer lamps, XeI* excimer lamps, Cl2* excimer lamp, XeBr* excimer lamp, Br2* excimer lamp, ultraviolet light emitting diode, ultraviolet laser, etc.
  • the chemical solution in the photochemical deposition process contains thiosulfate ions (S 2 O 3 2- ) as a source of sulfur for the wide band gap sulfide.
  • the chemical solution contains at least one of zinc, cadmium, copper, magnesium, calcium, strontium, barium, boron, aluminum, gallium, indium or tin as a wide band gap vulcanization.
  • the source of the cation of the substance is not limited to zinc, cadmium, copper, magnesium, calcium, strontium, barium, boron, aluminum, gallium, indium or tin.
  • the pH of the solution in the photochemical deposition system the deposition temperature, the way of ultraviolet irradiation and time, the ratio of Zn to S equivalent, the metal ion complexing agent, the distance of the ultraviolet irradiation solution to the cavity surface, etc.
  • the deposition rate, oxygen content, stress state, transmittance, compactness, surface morphology, etc. of the wide band gap sulfide film can achieve high deposition rate, low oxygen content, low stress, high transmittance, high density, and uniform film coverage by using suitable solution formulations and parameters.
  • Photochemical deposition can accurately control the deposition position of the wide-band gap sulfide film by selective irradiation of ultraviolet light.
  • the cavity surface of the semiconductor laser device is selectively irradiated by ultraviolet light, so that the sulfide film is deposited only on the cavity surface. This just meets the requirements of the cavity surface passivation film and avoids deposition in the non-resonant cavity area, making the technology easy for process integration.
  • the photochemical reaction provides a sulfur atom and an electron, and the reaction is:
  • h ⁇ represents ultraviolet photons.
  • the thiosulfate ion and the hydrogen ion react to provide a sulfur atom, and the reaction is:
  • the zinc ion in the solution of PCD is derived from zinc sulfate (ZnSO 4 ), etc.
  • the sulfur atom is mainly derived from the photochemical reaction of thiosulfate (S 2 O 3 2- ) under ultraviolet irradiation, and the pH adjuster of the solution is usually sulfuric acid ( H 2 SO 4 ), etc.
  • the complexing agent is usually ethylenediaminetetraacetic acid (EDTA, C 10 H 16 N 2 O 8 ), sodium potassium tartrate (C 4 H 4 KNaO 6 ), etc., and the function of the complexing agent is reduced.
  • the concentration of Zn 2+ ions in the solution to prevent excess Zn when ZnS is formed.
  • the wide band gap sulfide semiconductor material specifically includes: Zn(S 1- ⁇ O ⁇ ), Cd(S 1- ⁇ O ⁇ ), Cu(S 1- ⁇ O ⁇ ), Cu 2 (S 1 - ⁇ O ⁇ ), Mg(S 1- ⁇ O ⁇ ), Ca(S 1- ⁇ O ⁇ ), Sr(S 1- ⁇ O ⁇ ), Ba(S 1- ⁇ O ⁇ ), B 2 (S 1- ⁇ O ⁇ ) 3 , Al 2 (S 1- ⁇ O ⁇ ) 3 , Ga 2 (S 1- ⁇ O ⁇ ) 3 , In 2 (S 1- ⁇ O ⁇ ) 3 , Sn(S 1- ⁇ At least one of O ⁇ ) 2 , that is, the wide band gap sulfide semiconductor material may be a single material as described above, or a mixture of two or more materials, wherein ⁇ represents an oxygen atom in the sulfide semiconductor material.
  • the content, and the range of ⁇ is: 0.2 ⁇ ⁇ ⁇ 0.
  • the material of the protective layer 102 is a mixture containing a wide band gap sulfide semiconductor material; for example, a mixture containing a wide band gap sulfide semiconductor material includes: Zn(S 1- ⁇ O ⁇ ) and Cd(S 1- ⁇ O ⁇ ) Mixture, a mixture of Cu(S 1- ⁇ O ⁇ ) and Cu 2 (S 1- ⁇ O ⁇ ), a mixture of Mg(S 1- ⁇ O ⁇ ) and Ca(S 1- ⁇ O ⁇ ), Sr ( a mixture of S 1- ⁇ O ⁇ ) and Ba(S 1- ⁇ O ⁇ ), a mixture of Al 2 (S 1- ⁇ O ⁇ ) 3 and Ga 2 (S 1- ⁇ O ⁇ ) 3 , Al 2 (S a mixture of 1- ⁇ O ⁇ ) 3 and Mg(S 1- ⁇ O ⁇ ), at least one of a mixture of Cu 2 (S 1- ⁇ O ⁇ ) and Sn(S 1- ⁇ O ⁇ ) 2 That is, the mixture containing the wide band
  • represents the content of oxygen atoms in a sulfide semiconductor material in the mixture
  • represents the content of oxygen atoms in another sulfide semiconductor material in the mixture
  • the ranges of ⁇ and ⁇ are: 0.2 ⁇ ⁇ ⁇ 0 and 0.2 ⁇ ⁇ 0; for example: a mixture containing a wide band gap sulfide semiconductor material is a mixture of Zn(S 1- ⁇ O ⁇ ) and Cd(S 1- ⁇ O ⁇ ); or may be Zn(S 1- ⁇ O ⁇ ) a mixture of a mixture of Al 2 (S 1- ⁇ O ⁇ ) 3 and Mg (S 1- ⁇ O ⁇ ), and the like.
  • the material of the protective layer 102 is an alloy semiconductor material of a wide band gap sulfide; for example, an alloy semiconductor material of a wide band gap sulfide includes: (Zn 1-x Cd x )(S 1- ⁇ O ⁇ ), (Zn 1- Xy Cd x Cu y )(S 1- ⁇ O ⁇ ), (Mg 1-x Ca x )(S 1- ⁇ O ⁇ ), (Zn 1-x Ca x )(S 1- ⁇ O ⁇ ), ( Ca 1-x Sr x )(S 1- ⁇ O ⁇ ), (Mg 1-xy Ca x Ba y )(S 1- ⁇ O ⁇ ), (Al 1-x Ga x ) 2 (S 1- ⁇ O At least one of ⁇ ) 3 , (Sn 1-x Cu x )(S 1- ⁇ O ⁇ ) 2 , Cu 4 Sn(S 1- ⁇ O ⁇ ) 4 , that is, an alloy of a wide band gap sulfide
  • x is the content of a metal in an alloy semiconductor material of a wide band gap sulfide (alloy semiconductor material of two metals)
  • y is an alloy semiconductor material of a wide band gap sulfide (alloy semiconductor material of three metals)
  • the content of another metal ⁇ represents the content of oxygen atoms in the sulfide semiconductor material, and the range of x and y is: 1 ⁇ x, y ⁇ 0, and the range of ⁇ is: 0.2 ⁇ ⁇ ⁇ 0.
  • the band gap width of ZnS is 3.54 eV.
  • the optical band gap of photochemically deposited ZnS film is 3.6-3.7eV, and the optical band gap is wide because the photochemically deposited film has small crystal particles.
  • the optical band gap is larger than that of bulk.
  • the width of the wide band gap does not intrinsic absorption of the emission wavelength of the semiconductor laser (for example, greater than 600 nm), and the photochemically deposited ZnS film contains a small amount of oxygen, which does not affect the laser chip.
  • the passivation effect of the cavity surface is 3.54 eV.
  • the optical band gap of photochemically deposited ZnS film is 3.6-3.7eV, and the optical band gap is wide because the photochemically deposited film has small crystal particles.
  • the optical band gap is larger than that of bulk.
  • the width of the wide band gap does not intrinsic absorption of the emission wavelength of the semiconductor laser (for example, greater than 600 nm), and the photochemically deposited ZnS film contains a
  • FIG. 2 is a schematic structural view of an embodiment of a semiconductor laser device according to the present application.
  • the semiconductor laser device 200 includes a cavity surface passivation film 100, and the cavity surface passivation film 100 is a cavity surface passivation film of any of the above. .
  • the cavity surface passivation film 100 is a cavity surface passivation film of any of the above.
  • FIG. 3 is a flow chart of an embodiment of a method for fabricating a resonant cavity surface passivation film of a semiconductor laser device according to the present application, which can fabricate a resonant cavity surface passivation film of the above semiconductor laser device, and a detailed description thereof is provided. Please refer to the above-mentioned cavity surface passivation film of the semiconductor laser device, which will not be described here.
  • the method includes: step S101 and step S102.
  • Step S101 covering a cavity surface of the semiconductor laser device with a film of a passivation layer.
  • Step S102 covering the passivation layer with a film of a protective layer, and the material of the protective layer is a wide band gap semiconductor material.
  • the passivation layer is immediately covered with a protective layer.
  • the material of the protective layer is a wide band gap semiconductor material, which can prevent the cavity surface.
  • the role of the cavity surface passivation film of the conductor laser device of the present application mainly includes two aspects, namely, a passivation effect and stability thereof. Selecting a wide bandgap semiconductor material as a protective layer material can prevent the absorption of laser photons by the protective layer material, prevent oxidation or volatilization of the passivation layer material, and prevent the passivation layer material from failing. In this way, the cavity surface can be made blunt The film is effective for a long time, thereby ensuring the reliability of the semiconductor laser device and prolonging the service life of the semiconductor laser device.
  • the step S101 may specifically include: reacting a resonant cavity surface of the semiconductor laser device with a sulfur-containing solution to form a film containing sulfur and sulfide covering the surface of the resonant cavity, and the thickness of the passivation layer is a few atomic layers to Dozens of atomic layers.
  • the wet vulcanization method is used to form a passivation layer on the resonant cavity surface of the semiconductor laser device;
  • the wet vulcanization method uses a sulfur-containing chemical solution, and the sulfur-containing chemical solution contains: ammonium sulfide, lithium sulfide, sodium sulfide, potassium sulfide a sulfide of at least one of magnesium sulfide, calcium sulfide, barium sulfide, barium sulfide, thiourea or thioacetamide;
  • the solvent of the sulfur-containing chemical solution is water or an organic solvent, or a mixture of water and an organic solvent Solution.
  • the step S102 may specifically include: a photochemical deposition method, wherein the chemical solution contains thiosulfate ions as a source of sulfur of the wide band gap sulfide; the chemical solution further comprises: zinc, cadmium, copper, magnesium, calcium, strontium, barium At least one of ions, or complex ions of boron, aluminum, gallium, indium or tin, as a source of cations.
  • the ultraviolet light has a wavelength of less than 300 nm; the ultraviolet light source comprises: a mercury lamp, a xenon lamp, a mercury xenon lamp, a xenon arc lamp, a hydrogen arc lamp, a xenon arc lamp, a carbon arc lamp, a metal halide lamp, a KrF* excimer lamp, and a XeI * at least one of an excimer lamp, a Cl2* excimer lamp, a XeBr* excimer lamp, a Br2* excimer lamp, an ultraviolet light emitting diode, and an ultraviolet laser.
  • the ultraviolet light source comprises: a mercury lamp, a xenon lamp, a mercury xenon lamp, a xenon arc lamp, a hydrogen arc lamp, a xenon arc lamp, a carbon arc lamp, a metal halide lamp, a KrF* excimer lamp, and a XeI * at least
  • the material of the protective layer is a wide band gap sulfide semiconductor material; the thickness of the protective layer is 1-800 nm.
  • FIG. 4 is a schematic diagram of a single-tube laser chip fabricated by wet vulcanization passivation of a laser chip resonant cavity surface, and then photochemically depositing a wide band gap sulfide film.
  • the resonant cavity surface in the figure is respectively covered with the sulfide film 1 and the wide band gap sulfide film 2 after the vulcanization reaction, wherein the structure along the epitaxial growth direction comprises: an active layer 3, a waveguide layer 4, an n-type cladding layer 5, The p-type cladding layer 6, the semiconductor substrate 7, the n-plane metal electrode 8, the p-plane metal electrode 9, and the p-type heavily doped semiconductor layer 10.
  • the active layer 3, the waveguide layer 4, the cladding layers 5, 6, and the semiconductor substrate 7 respectively correspond to different materials, for example, InGaP/[(Al x Ga 1-x ) 1-y In y having a wavelength of 630-680 nm] In the P/[(Al u Ga 1-u ) 1-v In v ]P/GaAs epitaxial system, the material of the active layer 3 is an InGaP quantum well, and the material of the waveguide layer 4 is [(Al x Ga 1-x ) 1-y In y ]P, the material of the cladding layers 5, 6 is [(Al u Ga 1-u ) 1-v In v ]P or AlInP, the composition of the material of the waveguide layer 4 and the cladding layers 5, 6.
  • the material of the active layer 3 is an InGaP quantum well
  • the former has a smaller band gap and a larger refractive index
  • the material of the semiconductor substrate 7 is GaAs; and, for example, [(Al x Ga 1-x ) 1-y In y ]As/[( In the Al x Ga 1-x ) 1-y In y ]As/InP system
  • the material of the active layer 3 is [(Al x Ga 1-x ) 1-y In y ]
  • the material of the waveguide layer 4 [(Al u Ga 1-u ) 1-v In v ]As
  • the material of the cladding layers 5 and 6 is InP
  • the material of the semiconductor substrate 7 is InP
  • the other is GaAsP/[(Al) having a wavelength of 750-900 nm.
  • the passivation layer can be effectively passivated by the wet vulcanization of the above-mentioned various wavelengths of the semiconductor laser cavity surface epitaxial material system, and the photochemical deposition can also deposit a wide band gap on the above-mentioned vulcanized semiconductor laser cavity surface epitaxial material system. Sulfide film.
  • a wet sulfide reaction was passivated on the cavity surface to produce a sulfide film after the vulcanization reaction, as a passivation layer, and then a PCD was used to prepare a ZnS film as a protective layer.
  • the device for preparing zinc sulfide film by PCD is shown in Fig. 5.
  • the ultraviolet light source uses a 20W XeI* excimer lamp, and the condenser lens is used to concentrate the ultraviolet light on the cavity surface of the semiconductor laser device (front cavity surface and Rear cavity surface), a baffle is arranged between the light source and the converging lens, and the baffle controls the passage of ultraviolet rays, and the baffle action and the interval time thereof are controlled by the computer.
  • the front cavity surface and the back cavity surface of the cavity surface of the deposited ZnS film were controlled to be about 3 mm from the inner surface of the side wall of the quartz vessel.
  • the steps of operating the strip coating firstly, the wafer on which the laser device is fabricated is cleaved into strips; secondly, the strip is clamped by a clamp made of polytetrafluoroethylene, and the strip is immersed in wet vulcanization to contain sulfur.
  • the passivation time is 1-30 min; after the vulcanization passivation is completed, the solution of the sulfur-containing compound in the wet vulcanization on the surface of the cavity and the jig is blown off with nitrogen, and then the bar is immersed in FIG.
  • an ultraviolet light source is turned on for ZnS plating.
  • the switch of the baffle is a cyclic process.
  • the ultraviolet light passes for 10 to 60 seconds, and the ultraviolet light is blocked for 10 to 600 seconds for 1 to 30 cycles, that is, ultraviolet radiation is applied to the cavity of the semiconductor laser device.
  • the total time on the surface is 10s-30min, and the thickness of the zinc sulfide film can reach 5-700nm.
  • Subsequent bars can be used to deposit an optical film of the desired reflectivity on the front and rear cavity surfaces, or to further cut the bars into a single chip or array, depending on the application.
  • the passivation layer is covered with a protective layer.
  • the material of the protective layer is a wide band gap semiconductor material, which can prevent the cavity surface. Failure of passivation caused by oxidation or volatilization of the passivation layer.
  • the function of the cavity surface passivation film of the semiconductor laser device of the present application mainly includes two aspects, namely, a passivation effect and stability thereof. Selecting a wide bandgap semiconductor material as a protective layer material can prevent the absorption of laser photons by the protective layer material, prevent oxidation or volatilization of the passivation layer material, and prevent the passivation layer material from failing. In this way, the cavity surface can be made blunt The film is effective for a long time, thereby ensuring the reliability of the semiconductor laser device and prolonging the service life of the semiconductor laser device.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种半导体激光器件及其谐振腔面钝化膜(100)、制作方法,该谐振腔面钝化膜(100)包括:钝化层(101),直接覆盖在半导体激光器件的谐振腔面;保护层(102),覆盖在钝化层(101)上,保护层(102)的材料为宽带隙半导体材料。通过该方法能够使谐振腔面钝化膜(100)长时间有效,提升半导体激光器件抵抗灾变性光学镜面损伤能力,提升半导体激光器件最高输出功率,进而保证半导体激光器件的可靠性,延长半导体激光器件的使用寿命。

Description

半导体激光器件的谐振腔面钝化膜、制作方法及器件 【技术领域】
本申请涉及半导体表面区域选择性钝化技术领域,特别是涉及一种半导体激光器件的谐振腔面钝化膜、制作方法及半导体激光器件。
【背景技术】
灾变性光学镜面损伤(Catastrophic optical mirror damage,COMD)是影响半导体激光器的可靠性、寿命、最大输出功率的重要因素。谐振腔面经过谐振腔内强大的光辐照后,电子和空穴在谐振腔面发生非辐射复合,温度升高,温度增大造成材料带隙减小,从而加快了谐振腔面对激光的吸收,并且加速谐振腔面的氧化及缺陷的扩散,氧化导致谐振腔面的表面态密度的增大,加速诱导谐振腔面区域的非辐射复合,这就形成了一个正反馈过程,当谐振腔面温度超过其材料熔点时,造成谐振腔面融化,使半导体激光器件完全失效。
半导体激光器的谐振腔面钝化技术是减缓灾变性光学镜面损伤的有效方法之一,可提高半导体激光器的可靠性和延长其使用寿命。现有技术中,缓解谐振腔面灾变问题最成功的钝化技术是在超高真空中解离巴条并于谐振腔面镀硅,但是这种方法操作不易、成本昂贵、生产效率低,于是需要在大气环境解离巴条,然后进行谐振腔面钝化的技术。硫化方法是一种去除III-V化合物半导体表面氧化物及表面缺陷的方法,能够有效提高半导体激光器件发生灾变光学镜面损伤的阈值。
本申请的发明人在长期的研发过程中发现,因为湿法硫化简单易行、成本低廉而应用较为广泛,但是湿法硫化存在这样的问题:通过湿法硫化而形成在谐振腔面上的钝化膜容易被重新氧化或容易挥发,从而导致钝化膜的钝化作用失效。
【发明内容】
本申请主要解决的技术问题是提供一种半导体激光器件的谐振腔面钝化膜,能够使谐振腔面钝化膜长时间有效,进而可以保证半导体激光器件的可靠性,延长半导体激光器件的使用寿命,并且是一种新型区域选择性钝化技术。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种半导体激 光器件的谐振腔面钝化膜,所述谐振腔面钝化膜包括:钝化层,覆盖在半导体激光器件的谐振腔面;保护层,覆盖在所述钝化层上,所述保护层的材料为宽带隙半导体材料。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种半导体激光器件,所述半导体激光器件包括谐振腔面钝化膜,所述谐振腔面钝化膜是如上任一项所述的谐振腔面钝化膜。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种半导体激光器件的谐振腔面钝化膜的制作方法,所述方法包括:在半导体激光器件的谐振腔面覆盖一层钝化层的薄膜;在所述钝化层上覆盖一层保护层的薄膜,所述保护层的材料为宽带隙半导体材料。
本申请的有益效果是:区别于现有技术的情况,本申请的谐振腔面钝化膜包括:钝化层,覆盖在半导体激光器件的谐振腔面;保护层,覆盖在所述钝化层上,所述保护层的材料为宽带隙半导体材料。钝化层工艺的作用包括两个方面:(1)去除谐振腔面因与空气接触而产生的表面氧化物及表面缺陷;(2)在谐振腔面上沉积致密的钝化层,钝化层材料饱和谐振腔面悬挂键。本申请的半导体激光器件的谐振腔面钝化技术结合了湿法硫化钝化和光化学沉积宽带隙硫化物薄膜的方法,其中,光化学沉积是一种区域选择性沉积,其所形成的硫化物薄膜只发生于半导体激光器件的谐振腔面,这种谐振腔面钝化技术是一种新的半导体激光器件有效抵抗灾变性光学镜面损伤的方法。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作扼要地介绍。其中:
图1是本申请半导体激光器件的谐振腔面钝化膜一实施方式的结构示意图;
图2是本申请半导体激光器件一实施方式的结构示意图;
图3是本申请半导体激光器件的谐振腔面钝化膜的制作方法一实施方式的流程图;
图4是本申请半导体激光器件一具体激光芯片谐振腔面完成钝化膜的示意图;
图5是本申请半导体激光器件的谐振腔面钝化膜的制作方法一具体实施例中经谐振腔面钝化后,以光化学沉积(Photochemical Deposition,PCD)制备ZnS 保护层的装置的示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。
在详细说明本申请之前,先介绍与本申请相关的现有技术的情况。
半导体激光器的谐振腔面钝化技术是减缓灾变性光学镜面损伤的有效方法之一,可提高半导体激光器的可靠性和延长其使用寿命。现有技术中缓解谐振腔面灾变问题最成功的钝化技术是在超高真空中解离巴条并于谐振腔面镀硅,但是这种方法操作不易、成本昂贵、生产效率低,于是需要在大气环境解离巴条,然后进行谐振腔面钝化的技术。大气环境解离巴条后的谐振腔面钝化技术主要原则包括两个方面:首先,去除谐振腔面因与空气接触而产生的表面氧化物及表面缺陷,通常采用湿法或者干法的方式;其次,在谐振腔面上沉积致密的介质薄膜,饱和谐振腔面悬挂键,通常采用物理气相沉积或化学气相沉积。
硫化方法是一种去除III-V族化合物半导体表面氧化物及表面缺陷的方法,能够有效提高半导体激光器件发生灾变光学镜面损伤的阈值。硫化方法有湿法硫化和干法硫化之分,报道较多的是湿法硫化,主要是利用含硫的溶液和半导体反应,而干法硫化则是应用含硫的等离子体对半导体进行处理。半导体激光器谐振腔面的湿法硫化是指将谐振腔面浸泡在含硫的化合物溶液中,例如,硫化铵((NH 4) 2S)的水溶液或有机醇溶液、硫化钠(Na 2S)的水溶液或有机醇溶液,以去除谐振腔面的自然氧化物(native oxide)及表面缺陷,然后在谐振腔面上形成硫化物钝化层,即硫化反应后的薄膜。湿法硫化虽然操作简单,成本低廉,但存在以下问题:
硫化方法中起钝化作用的是谐振腔面表面的数个原子层至数十原子层的硫化物和硫,谐振腔面在空气中放置一段时间后,硫会氧化或挥发,使得谐振腔面半导体材料被再度氧化,钝化作用因此而失效。即使把谐振腔面硫化后的激光芯片从溶液中取出,干燥后迅速放置到镀膜设备中,进行随后的谐振腔面光学薄膜的沉积,也仍然有很大概率造成谐振腔面硫化失效,因为光学薄膜的沉积通常是在真空和/或加热高温的环境下进行,而这种环境更容易造成硫的挥发,导致湿法硫化的钝化效果无效。
本申请在半导体激光器件的谐振腔面覆盖一层钝化层后,再在钝化层上覆盖一层保护层,保护层的材料为宽带隙半导体材料,可以防止谐振腔面的硫消失。本申请的半导体激光器件的谐振腔面钝化膜的作用主要包括两个方面,即是钝化效果和其稳定性。选择宽能带隙半导体材料作为保护层材料可以防止保护层材料对激光的吸收,防止钝化层材料失效,通过这种方式,能够使谐振腔面钝化膜长时间有效,进而可以保证半导体激光器件的可靠性,延长半导体激光器件的使用寿命。
下面结合附图和实施方式对本申请进行详细的说明。
参阅图1,图1是本申请半导体激光器件的谐振腔面钝化膜一实施方式的结构示意图,该谐振腔面钝化膜100包括:钝化层101和保护层102。
其中,钝化层101覆盖在半导体激光器件的谐振腔面;保护层102覆盖在钝化层101上,保护层102的材料为宽带隙半导体材料。
在本实施方式中,钝化层101的材料可以是现有技术中用于半导体激光器件的谐振腔面钝化作用的材料;该钝化层101覆盖到半导体激光器件的谐振腔面的工艺可以是现有技术中用于形成半导体激光器件的谐振腔面钝化层的工艺。例如:钝化层101的材料可以是硫化物薄膜,该硫化物薄膜可以通过湿法工艺形成,也可以通过干法工艺形成;又如:大气环境解离巴条后形成的谐振腔面钝化层;等等。
一般把室温下带隙大于2.0eV的半导体材料归类于宽带隙半导体材料,宽带隙半导体材料在蓝、紫光和紫外光电子器件,高频、高温、高功率电子器件及场发射器件方面应用广泛。宽带隙半导体材料包括但不限于氧化锌、硫化物、氮化镓、碳化硅等等。具体地,宽带隙半导体材料的带隙能量大于激光的光子能量,因此,可以防止保护层材料对激光的吸收。
在实际应用中,保护层102的宽带隙半导体材料的薄膜可以是后续的半导体激光器件的谐振腔面光学薄膜的一部分组成部分或者全部作为半导体激光器件的谐振腔面光学薄膜的组成部分,完成钝化膜100后可以再镀上其它材料薄膜以调整反射率,达到半导体激光器件设计的特性,例如:于半导体激光器件的一端谐振腔面镀上SiO 2和TiO 2薄膜使得包含保护层102的整体反射率为1%,而另一端镀上SiO 2和TiO 2多层膜结构使得包含保护层102的整体反射率为99%,以上光学镀膜因为保护层102的存在,使得钝化层101不受后续镀膜制程影响而退化。
本申请实施方式中,在半导体激光器件的谐振腔面覆盖一层钝化层101后,再立即在钝化层101上覆盖一层保护层102,保护层102的材料为宽带隙半导体材料,可以防止谐振腔面的钝化层101的失效。本申请的半导体激光器件的谐振腔面钝化膜100的作用主要包括两个方面,即是钝化效果和其稳定性。选择立即沉积宽能带隙半导体材料作为保护层102的材料可以防止钝化层101的材料的氧化或挥发,防止钝化层101的材料失效,同时防止保护层102材料对激光光子的吸收,通过这种方式,能够使谐振腔面钝化膜100长时间有效,进而可以保证半导体激光器件的可靠性,延长半导体激光器件的使用寿命。
在一实施方式中,钝化层101为半导体激光器件的谐振腔面与含硫的化合物进行反应后所形成的硫化物和硫薄膜。
半导体激光器件的谐振腔面与含硫的化合物进行反应后所形成的硫化物薄膜,可以通过干法工艺形成,也可以通过湿法工艺形成。报道较多的是湿法硫化,主要是利用含硫的化合物溶液和半导体反应,而干法硫化则是应用含硫的等离子体对半导体进行处理。半导体激光器件的谐振腔面的湿法硫化是指将谐振腔面浸泡在含硫的化合物溶液中,例如,硫化铵((NH 4) 2S)的水溶液或有机醇溶液、硫化钠(Na 2S)的水溶液或有机醇溶液,以去除谐振腔面的自然氧化物(native oxide)及表面缺陷,然后在谐振腔面上形成硫化物钝化层,即硫化反应后的硫化物薄膜。具体地,上述含硫的化合物溶液至少含有硫化铵、硫化锂、硫化钠、硫化钾、硫化镁、硫化钙、硫化锶、硫化钡、硫脲或硫代乙酰胺之一的硫化物溶液。其溶剂为水或有机溶液,或是水和有机溶液的混合溶液。
其中,钝化层101的厚度为数个原子层至数十个原子层厚度。
在一实施方式中,保护层102的材料为宽带隙硫化物半导体材料;保护层102的厚度为1-800nm,例如:1nm、5nm、10nm、100nm、200nm、400nm、600nm、800nm,等等。
在本实施方式中,保护层102的材料选择为宽带隙硫化物半导体材料,一方面可以防止保护层102材料对激光光子的吸收,防止钝化层101材料的氧化或挥发,而且钝化层101与保护层102二者材料均为硫化物,材料互相匹配;另一方面是以硫化物半导体材料作为保护层102的材料,该材料的形成工艺可以与硫化物钝化层的工艺匹配,也就是两者工艺均是于含硫溶液完成。
在一具体实施方式中,湿法工艺沉积硫化物薄膜的方法包括化学浴沉积(Chemical Bath Deposition,CBD)、光化学沉积(Photochemical Deposition,PCD) 等。
与其他方法比较,光化学沉积法具有沉积区域选择性(即只在紫外线照射的区域沉积硫化物薄膜)、工艺简便、成本低廉、无需真空装置、实验条件容易操控以及容易和钝化层的湿法硫化制程匹配整合的优点。
其中,在宽带隙硫化物薄膜的沉积过程中,采用紫外线(UV light)照射半导体激光器件的谐振腔面。进一步,采用紫外线的照射方式为持续照射或间歇照射。进一步,紫外线的波长小于300nm。紫外线的光源包括但不限于:汞灯、氙灯、汞氙灯、氘弧灯、氢弧灯、氙锑电弧灯、碳弧灯、金属卤化物灯、KrF*准分子灯、XeI*准分子灯、Cl2*准分子灯、XeBr*准分子灯、Br2*准分子灯、紫外发光二极管、紫外激光器等。
在一实施方式中,光化学沉积法中的化学溶液含有硫代硫酸根离子(S 2O 3 2-)作为宽带隙硫化物的硫的来源。
在一实施方式中,光化学沉积方法中,其化学溶液至少含有锌、镉、铜、镁、钙、锶、钡、硼、铝、镓、铟或锡之一的离子或络离子作为宽带隙硫化物的阳离子的来源。
以硫化锌为例,光化学沉积系统中的溶液的酸碱度、沉积温度、紫外线照射方式和时间、Zn对S当量比例、金属离子络合剂、紫外线照射穿透溶液到谐振腔面的距离等会影响到宽带隙硫化物薄膜的沉积速率、含氧量、应力状态、透射率、致密性、表面形貌等。只要采用合适的溶液配方和参数,光化学沉积宽带隙硫化物薄膜可以达到沉积速率高、含氧量低、应力小、透射率大、致密性高、薄膜均匀覆盖的特性。光化学沉积可以通过紫外线(UV light)的选择性照射来准确控制宽带隙硫化物薄膜的沉积位置,采用紫外线选择性的照射半导体激光器件的谐振腔面,使硫化物薄膜只在谐振腔面上沉积,这正好满足谐振腔面钝化膜的要求,避免在非谐振腔面区域的沉积,使该技术便于工艺整合。
列举PCD沉积硫化锌(ZnS)薄膜的化学反应说明区域选择性沉积:
Zn 2++S+2e -→ZnS
光化学反应提供硫原子和电子,其反应为:
S 2O 3 2-+hν→S+SO 3 2-
2S 2O 3 2-+hν→S 4O 6 2-+2e -
S 2O 3 2-+SO 3 2-+hν→S 3O 6 2-+2e -
其中,hν代表紫外线光子。
在酸性溶液中,硫代硫酸根离子和氢离子反应提供硫原子,反应为:
2H ++S 2O 3 2-→S+H 2SO 3
此反应虽然提供硫原子,但在无紫外线照射的情况下,不产生电子,所以无法生成ZnS薄膜,只有紫外线照射的区域才有ZnS薄膜的沉积,这就是PCD的区域选择性的体现。
PCD的溶液中锌离子来源于硫酸锌(ZnSO 4)等,硫原子主要来源于硫代硫酸根(S 2O 3 2-)在紫外线照射下的光化学反应,溶液的pH调整剂通常是硫酸(H 2SO 4)等,络合剂通常为乙二胺四乙酸(EDTA,C 10H 16N 2O 8)、酒石酸钾钠(C 4H 4KNaO 6)等,络合剂的功用是减低溶液中Zn 2+离子浓度,以防止ZnS形成时Zn过量。
在一实施方式中,宽带隙硫化物半导体材料具体包括:Zn(S 1-δO δ)、Cd(S 1-δO δ)、Cu(S 1-δO δ)、Cu 2(S 1-δO δ)、Mg(S 1-δO δ)、Ca(S 1-δO δ)、Sr(S 1-δO δ)、Ba(S 1-δO δ)、B 2(S 1-δO δ) 3、Al 2(S 1-δO δ) 3、Ga 2(S 1-δO δ) 3、In 2(S 1-δO δ) 3、Sn(S 1-δO δ) 2中的至少一种,也就是说,宽带隙硫化物半导体材料可以是单独的上述材料,也可以是两个以上的材料的混合物,其中,δ表示硫化物半导体材料中氧原子的含量,且δ的范围是:0.2≧δ≧0。例如:ZnS(δ=0)、Cd(S 0.9O 0.1)、CuS(δ=0)、Cu 2(S 0.95O 0.05)、Mg(S 0.9O 0.1)、Ca(S 0.95O 0.05)、Sr(S 0.98O 0.02)、Ba(S 0.88O 0.12)、B 2(S 0.85O 0.15) 3、Al 2(S) 3(δ=0)、Ga 2(S) 3(δ=0)、In 2(S 0.97O 0.03) 3、Sn(S 0.92O 0.08) 2,等等。
进一步,保护层102的材料为含有宽带隙硫化物半导体材料的混合物;例如:含有宽带隙硫化物半导体材料的混合物包括:Zn(S 1-δO δ)和Cd(S 1-ξO ξ)的混合物、Cu(S 1-δO δ)和Cu 2(S 1-ξO ξ)的混合物、Mg(S 1-δO δ)和Ca(S 1-ξO ξ)的混合物、Sr(S 1-δO δ)和Ba(S 1-ξO ξ)的混合物、Al 2(S 1-δO δ) 3和Ga 2(S 1-ξO ξ) 3的混合物、Al 2(S 1-δO δ) 3和Mg(S 1-ξO ξ)的混合物、Cu 2(S 1-δO δ)和Sn(S 1-ξO ξ) 2的混合物中的至少一种,也就是说,含有宽带隙硫化物半导体材料的混合物可以是上述其中的一种混合物,也可以是上述两种以上的混合物的材料。其中,δ表示混合物中一种硫化物半导体材料中氧原子的含量,ξ表示混合物中另一种硫化物半导体材料中氧原子的含量,δ和ξ的范围是:0.2≧δ≧0和0.2≧ξ≧0;例如:含有宽带隙硫化物半导体材料的混合物为Zn(S 1-δO δ)和Cd(S 1-ξO ξ)的混合物;也可以是Zn(S 1-δO δ)、Al 2(S 1-δO δ) 3和Mg(S 1-δO δ)的混合物组合的混合物,等等。
进一步,保护层102的材料为宽带隙硫化物的合金半导体材料;例如:宽带隙硫化物的合金半导体材料包括:(Zn 1-xCd x)(S 1-δO δ)、(Zn 1-x-yCd xCu y)(S 1-δO δ)、 (Mg 1-xCa x)(S 1-δO δ)、(Zn 1-xCa x)(S 1-δO δ)、(Ca 1-xSr x)(S 1-δO δ)、(Mg 1-x-yCa xBa y)(S 1-δO δ)、(Al 1-xGa x) 2(S 1-δO δ) 3、(Sn 1-xCu x)(S 1-δO δ) 2、Cu 4Sn(S 1-δO δ) 4中的至少一种,也就是说,宽带隙硫化物的合金半导体材料可以是上述合金半导体材料中的一种,也可以是上述合金半导体材料中的两种以上的混合物。其中,x是一种宽带隙硫化物的合金半导体材料(两种金属的合金半导体材料)中一种金属的含量,y是一种宽带隙硫化物的合金半导体材料(三种金属的合金半导体材料)中另一种金属的含量,δ表示硫化物半导体材料中氧原子的含量,x和y的范围是:1≧x,y≧0,δ的范围是:0.2≧δ≧0。
以ZnS作为宽带隙硫化物的例子,ZnS的带隙宽度为3.54eV。根据制备条件的不同,光化学沉积ZnS薄膜的光学带隙范围为3.6-3.7eV,光学带隙较宽主要是因为光化学沉积的薄膜其结晶颗粒很小,基于quantum confinement原理,光学带隙较块材的宽,此宽带隙的特点不会对半导体激光器的发射波长(例如,大于600nm)进行本征吸收,同时,光化学沉积的ZnS薄膜中含有少量的氧,这些少量的氧不会影响到激光芯片谐振腔面的钝化效果。
参见图2,图2是本申请半导体激光器件一实施方式的结构示意图,半导体激光器件200包括谐振腔面钝化膜100,谐振腔面钝化膜100是如上任意一个的谐振腔面钝化膜。相关内容的详细说明请参见上述谐振腔面钝化膜100的详细说明,在此不再赘叙。
参见图3,图3是本申请半导体激光器件的谐振腔面钝化膜的制作方法一实施方式的流程图,该方法可以制作上述半导体激光器件的谐振腔面钝化膜,相关内容的详细说明请参见上述半导体激光器件的谐振腔面钝化膜,在此不再赘叙。
该方法包括:步骤S101和步骤S102。
步骤S101:在半导体激光器件的谐振腔面覆盖一层钝化层的薄膜。
步骤S102:在钝化层上覆盖一层保护层的薄膜,保护层的材料为宽带隙半导体材料。
本申请实施方式中,在半导体激光器件的谐振腔面覆盖一层钝化层后,再立即在钝化层上覆盖一层保护层,保护层的材料为宽带隙半导体材料,可以防止谐振腔面的钝化层的氧化或挥发而导致的钝化作用的失效。本申请的导体激光器件的谐振腔面钝化膜的作用主要包括两个方面,即是钝化效果和其稳定性。选择宽能带隙半导体材料作为保护层材料可以防止保护层材料对激光光子的吸 收,防止钝化层材料的氧化或挥发,防止钝化层材料失效,通过这种方式,能够使谐振腔面钝化膜长时间有效,进而可以保证半导体激光器件的可靠性,延长半导体激光器件的使用寿命。
其中,步骤S101具体可以包括:将半导体激光器件的谐振腔面与含硫的溶液进行反应后形成覆盖在谐振腔面的一层含有硫和硫化物的薄膜,钝化层的厚度为数原子层至数十原子层。其中,采用湿法硫化法在半导体激光器件的谐振腔面上形成钝化层;湿法硫化法采用含硫的化学溶液,含硫的化学溶液含有:硫化铵、硫化锂、硫化钠、硫化钾、硫化镁、硫化钙、硫化锶、硫化钡、硫脲或硫代乙酰胺中的至少一种的硫化物;含硫的化学溶液的溶剂为水或有机溶剂,或是水和有机溶剂的混合溶液。
其中,步骤S102具体可以包括:光化学沉积方法,使用的化学溶液含有硫代硫酸根离子作为宽带隙硫化物的硫的来源;化学溶液还包含:锌、镉、铜、镁、钙、锶、钡、硼、铝、镓、铟或锡的离子或络离子中的至少一种,作为阳离子的来源。
其中,紫外线的波长小于300nm;紫外线的光源包括:汞灯、氙灯、汞氙灯、氘弧灯、氢弧灯、氙锑电弧灯、碳弧灯、金属卤化物灯、KrF*准分子灯、XeI*准分子灯、Cl2*准分子灯、XeBr*准分子灯、Br2*准分子灯、紫外发光二极管、紫外激光器中的至少一种。
其中,保护层的材料为宽带隙硫化物半导体材料;保护层的厚度为1-800nm。
参见图4,图4所示为激光芯片谐振腔面进行湿法硫化钝化,然后立即采用光化学沉积宽带隙硫化物薄膜,制作而成的单管激光芯片的示意图。图中谐振腔面依次分别覆盖着硫化反应后的硫化物薄膜1和宽带隙硫化物薄膜2,其中,沿外延生长方向的结构包括:有源层3、波导层4、n型包层5、p型包层6、半导体基底7、n面金属电极8、p面金属电极9、p型重掺杂半导体层10。其中,有源层3、波导层4和包层5、6、半导体基底7分别对应不同材料,例如:波长为630-680nm的InGaP/[(Al xGa 1-x) 1-yIn y]P/[(Al uGa 1-u) 1-vIn v]P/GaAs外延体系中,有源层3的材料为InGaP量子阱,波导层4的材料为[(Al xGa 1-x) 1-yIn y]P,包层5、6的材料为[(Al uGa 1-u) 1-vIn v]P或是AlInP,波导层4和包层5、6的材料的组分不同,前者的带隙宽度较小,折射率较大,半导体基底7的材料为GaAs;又如波长为1300-1700nm的[(Al xGa 1-x) 1-yIn y]As/[(Al xGa 1-x) 1-yIn y]As/InP体系中,有源层3的材料为[(Al xGa 1-x) 1-yIn y]As量子阱,波导层4的材料为[(Al uGa 1-u) 1-vIn v]As, 包层5、6的材料为InP,半导体基底7的材料为InP;其他尚有波长为750-900nm的GaAsP/[(Al xGa 1-x) 1-yIn y]P/[(Al uGa 1-u) 1-vIn v]P/GaAs外延体系、波长为800-1100nm的In(Al)GaAs/(Al xGa 1-x)As/(Al yGa 1-y)As/GaAs外延体系以及波长为800-870nm的GaAs/(Al xGa 1-x)As/(Al yGa 1-y)As/GaAs外延体系。钝化层采用湿法硫化均可对上述各种波段的半导体激光器谐振腔面外延材料体系进行有效的钝化,光化学沉积亦可于以上硫化后的半导体激光器谐振腔面外延材料体系上沉积宽带隙硫化物薄膜。
以下列举一个具体的实施例来说明本申请的制程方法以及该方法制备得到的钝化膜和器件,具体说明如下:
首先采用湿法硫化反应钝化于谐振腔面产生硫化反应后的硫化物薄膜,以作为钝化层,其次采用PCD制备ZnS薄膜,以作为保护层。
首先说明湿法硫化钝化溶液和PCD制备ZnS薄膜的溶液配制,其次说明PCD制备ZnS薄膜的装置,再次说明操作巴条谐振腔面钝化与镀膜的步骤。
1、湿法硫化中含硫的化合物溶液和PCD制备ZnS薄膜的溶液配制:
A)湿法硫化中含硫的化合物溶液的配制:将1.17-2.94摩尔/升的硫化铵水溶液和叔丁醇(t-C 4H 9OH)以体积比为1:1配成含硫的化合物溶液,盛放在烧杯里。水浴加热,温度为40-60℃,保持恒温,准备妥善备用于半导体激光器件的谐振腔面钝化制程。
B)PCD制备ZnS薄膜的溶液:以纯水为溶剂,包含2毫摩尔/升的ZnSO 4,100毫摩尔/升的Na 2S 2O 3,并采用H 2SO 4将溶液pH值调节至3.5,并加入酒石酸钾钠作为作为络合剂,酒石酸钾钠浓度为5毫摩尔/升,保持室温,盛放在石英器皿中,并使用磁子搅拌器对溶液进行搅拌,准备妥善备用于ZnS保护层镀制。
2、PCD制备硫化锌薄膜的装置如图5所示,紫外线光源采用20W的XeI*准分子灯(excimer lamp),使用汇聚透镜将紫外线汇聚在半导体激光器件的谐振腔面(前谐振腔面和后谐振腔面),光源和汇聚透镜之间设置挡板,挡板控制紫外线的通过与否,挡板动作及其间隔时间受计算机控制。控制沉积ZnS薄膜的谐振腔面的前腔面和后腔面距离石英器皿侧壁的内表面约3mm。
3、操作巴条镀膜的步骤:首先,将制作完成激光器件的晶片劈裂成巴条;其次,使用聚四氟乙烯材质的夹具夹住巴条,再将巴条浸入湿法硫化中含硫的化合物溶液中,钝化时间为1-30min;硫化钝化完成后,先用氮气吹干巴条谐振 腔面和夹具上的湿法硫化中含硫的化合物溶液,再将巴条浸入图5装置的PCD制备硫化锌薄膜的溶液中,开启紫外线光源,进行ZnS镀制。挡板的开关是一个周期过程,在一个周期内,紫外线通过的时间为10-60s,紫外线被阻挡的时间为10-600s,进行1-30个周期,即紫外照射在半导体激光器件的谐振腔面上的总时间为10s-30min,硫化锌薄膜的厚度可以达到5-700nm。
后续巴条可以根据应用,在前后谐振腔面上沉积所需反射率的光学膜层,或是再进一步切割巴条成单一芯片或阵列。
本申请实施方式中,在半导体激光器件的谐振腔面形成一层钝化层后,再在钝化层上覆盖一层保护层,保护层的材料为宽带隙半导体材料,可以防止谐振腔面的钝化层的氧化或挥发而导致的钝化作用的失效。本申请的半导体激光器件的谐振腔面钝化膜的作用主要包括两个方面,即是钝化效果和其稳定性。选择宽能带隙半导体材料作为保护层材料可以防止保护层材料对激光光子的吸收,防止钝化层材料的氧化或挥发,防止钝化层材料失效,通过这种方式,能够使谐振腔面钝化膜长时间有效,进而可以保证半导体激光器件的可靠性,延长半导体激光器件的使用寿命。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种半导体激光器件的谐振腔面钝化膜,其特征在于,所述谐振腔面钝化膜包括:
    钝化层,覆盖在半导体激光器件的谐振腔面;
    保护层,覆盖在所述钝化层上,所述保护层的材料为宽带隙半导体材料。
  2. 根据权利要求1所述的谐振腔面钝化膜,其特征在于,所述钝化层为所述半导体激光器件的谐振腔面半导体外延材料与含硫的化合物进行反应后所形成的硫化物薄膜;所述钝化层的厚度为数个至数十个原子层厚度。
  3. 根据权利要求1所述的谐振腔面钝化膜,其特征在于,所述保护层的材料为宽带隙硫化物半导体材料;所述保护层的厚度为1-800nm;所述保护层是后续的谐振腔面光学薄膜的组成部分或者全部。
  4. 根据权利要求3所述的谐振腔面钝化膜,其特征在于,所述宽带隙是指硫化物的带隙能量大于激光的光子能量。
  5. 根据权利要求3所述的谐振腔面钝化膜,其特征在于,所述宽带隙硫化物半导体材料包括:Zn(S 1-δO δ)、Cd(S 1-δO δ)、Cu(S 1-δO δ)、Cu 2(S 1-δO δ)、Mg(S 1-δO δ)、Ca(S 1-δO δ)、Sr(S 1-δO δ)、Ba(S 1-δO δ)、B 2(S 1-δO δ) 3、Al 2(S 1-δO δ) 3、Ga 2(S 1-δO δ) 3、In 2(S 1-δO δ) 3、Sn(S 1-δO δ) 2中的至少一种,其中,所述δ的范围是:0.2≧δ≧0。
  6. 根据权利要求3所述的谐振腔面钝化膜,其特征在于,所述保护层的材料为宽带隙硫化物半导体材料的混合物。
  7. 根据权利要求6所述的谐振腔面钝化膜,其特征在于,所述宽带隙硫化物半导体材料的混合物包括:Zn(S 1-δO δ)和Cd(S 1-ξO ξ)的混合物、Cu(S 1-δO δ)和Cu 2(S 1-ξO ξ)的混合物、Zn(S 1-δO δ)和Mg(S 1-δO δ)的混合物、Mg(S 1-δO δ)和Ca(S 1-ξO ξ)的混合物、Sr(S 1-δO δ)和Ba(S 1-ξO ξ)的混合物、Al 2(S 1-δO δ) 3和Ga 2(S 1-ξO ξ) 3的混合物、Al 2(S 1-δO δ) 3和Mg(S 1-ξO ξ)的混合物、Cu 2(S 1-δO δ)和Sn(S 1-ξO ξ) 2的混合物中的至少一种,其中,所述δ和ξ的范围是:0.2≧δ,ξ≧0。
  8. 根据权利要求3所述的谐振腔面钝化膜,其特征在于,所述保护层的材料为宽带隙硫化物的合金半导体材料。
  9. 根据权利要求8所述的谐振腔面钝化膜,其特征在于,所述宽带隙硫化物的合金半导体材料包括:(Zn 1-xCd x)(S 1-δO δ)、(Zn 1-x-yCd xCu y)(S 1-δO δ)、(Mg 1-xCa x)(S 1-δO δ)、(Zn 1-xCa x)(S 1-δO δ)、(Ca 1-xSr x)(S 1-δO δ)、(Mg 1-x-yCa xBa y)(S 1-δO δ)、 (Al 1-xGa x) 2(S 1-δO δ) 3、(Sn 1-xCu x)(S 1-δO δ) 2、Cu 4Sn(S 1-δO δ) 4中的至少一种,其中,所述x和y的范围是:1≧x,y≧0,所述δ的范围是:0.2≧δ≧0。
  10. 一种半导体激光器件,其特征在于,所述半导体激光器件包括谐振腔面钝化膜,所述谐振腔面钝化膜是如权利要求1-9任一项所述的谐振腔面钝化膜。
  11. 一种半导体激光器件的谐振腔面钝化膜的制作方法,其特征在于,所述方法包括:
    在半导体激光器件的谐振腔面覆盖一层钝化层的薄膜;
    在所述钝化层上覆盖一层保护层的薄膜,所述保护层的材料为宽带隙半导体材料。
  12. 根据权利要求11所述的制作方法,其特征在于,所述在半导体激光器件的谐振腔面覆盖一层钝化层的薄膜,包括:
    采用湿法硫化法在所述半导体激光器件的谐振腔面上形成钝化层;所述湿法硫化法采用含硫的化学溶液,所述含硫的化学溶液含有:硫化铵、硫化锂、硫化钠、硫化钾、硫化镁、硫化钙、硫化锶、硫化钡、硫脲或硫代乙酰胺中的至少一种的硫化物;所述含硫的化学溶液的溶剂为水或有机溶剂,或是水和有机溶剂的混合溶液;湿法硫化后,所述钝化层厚度为数个原子层至数十原子层厚度。
  13. 根据权利要求11所述的制作方法,其特征在于,所述保护层的材料为宽带隙硫化物半导体材料;所述宽带隙硫化物半导体材料的带隙能量大于激光光子能量;所述保护层是采用光化学沉积方法制备得到的宽带隙硫化物薄膜,所述光化学沉积方法是采用紫外线照射半导体激光器件的谐振腔面的,所述紫外线照射方式为持续照射或间歇照射。
  14. 根据权利要求13所述的制作方法,其特征在于,所述光化学沉积方法中使用的化学溶液含有硫代硫酸根离子作为宽带隙硫化物的硫的来源;所述化学溶液还包含:锌、镉、铜、镁、钙、锶、钡、硼、铝、镓、铟或锡的离子或络离子中的至少一种。
  15. 根据权利要求13所述的制作方法,其特征在于,所述紫外线的波长小于300nm。
  16. 根据权利要求15所述的制作方法,其特征在于,所述紫外线的光源包括:汞灯、氙灯、汞氙灯、氘弧灯、氢弧灯、氙锑电弧灯、碳弧灯、金属卤化物灯、KrF*准分子灯、XeI*准分子灯、Cl 2*准分子灯、XeBr*准分子灯、Br 2*准 分子灯、紫外发光二极管、紫外激光器中的至少一种。
PCT/CN2018/087375 2018-03-29 2018-05-17 半导体激光器件的谐振腔面钝化膜、制作方法及器件 WO2019184063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810271697.4A CN108521072B (zh) 2018-03-29 2018-03-29 半导体激光器件的谐振腔面钝化膜、制作方法及器件
CN201810271697.4 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019184063A1 true WO2019184063A1 (zh) 2019-10-03

Family

ID=63431330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087375 WO2019184063A1 (zh) 2018-03-29 2018-05-17 半导体激光器件的谐振腔面钝化膜、制作方法及器件

Country Status (2)

Country Link
CN (1) CN108521072B (zh)
WO (1) WO2019184063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111353224A (zh) * 2020-02-25 2020-06-30 太原理工大学 一种激光器腔面的损伤阈值计算方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831777A (zh) * 2020-10-16 2021-05-25 扬州工业职业技术学院 GaAs基高功率半导体激光器腔面钝化处理方法及其钝化液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260231A (en) * 1989-02-03 1993-11-09 Sharp Kabushiki Kaisha Method for the production of a semiconductor laser
EP1058359A1 (en) * 1999-05-31 2000-12-06 Sharp Kabushiki Kaisha Compound semiconductor surface stabilizing method, and semiconductor device
CN101453098A (zh) * 2007-12-06 2009-06-10 夏普株式会社 发光元件及其制造方法
US20090257466A1 (en) * 2008-04-15 2009-10-15 Franz Eberhard Optoelectronic Semiconductor Component and Method for the Production of an Optoelectronic Semiconductor Device
CN101820134A (zh) * 2010-04-21 2010-09-01 中国科学院半导体研究所 一种GaAs基半导体激光器的腔面钝化方法
CN104143760A (zh) * 2013-05-10 2014-11-12 长春理工大学 ALD制备InP基半导体激光器中的表面钝化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006499A1 (de) * 2010-01-28 2011-08-18 Würth Solar GmbH & Co. KG, 74523 Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht und zugehörige Herstellungsverfahren
CN103943463A (zh) * 2014-04-30 2014-07-23 齐鲁工业大学 一种硫化镉半导体薄膜的简单高效制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260231A (en) * 1989-02-03 1993-11-09 Sharp Kabushiki Kaisha Method for the production of a semiconductor laser
EP1058359A1 (en) * 1999-05-31 2000-12-06 Sharp Kabushiki Kaisha Compound semiconductor surface stabilizing method, and semiconductor device
CN101453098A (zh) * 2007-12-06 2009-06-10 夏普株式会社 发光元件及其制造方法
US20090257466A1 (en) * 2008-04-15 2009-10-15 Franz Eberhard Optoelectronic Semiconductor Component and Method for the Production of an Optoelectronic Semiconductor Device
CN101820134A (zh) * 2010-04-21 2010-09-01 中国科学院半导体研究所 一种GaAs基半导体激光器的腔面钝化方法
CN104143760A (zh) * 2013-05-10 2014-11-12 长春理工大学 ALD制备InP基半导体激光器中的表面钝化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111353224A (zh) * 2020-02-25 2020-06-30 太原理工大学 一种激光器腔面的损伤阈值计算方法
CN111353224B (zh) * 2020-02-25 2023-06-16 太原理工大学 一种激光器腔面的损伤阈值计算方法

Also Published As

Publication number Publication date
CN108521072B (zh) 2022-12-02
CN108521072A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
JP4787496B2 (ja) ハイブリッドビーム堆積システム及び方法並びにそれによって作製された半導体デバイス
US7851824B2 (en) Light emitting device having a composition modulation layer of unequal amounts of at least two elements between an n-type contact layer and a transparent electrode
US20180374699A1 (en) Iii-nitride tunnel junction with modified p-n interface
US6943048B2 (en) Method for manufacturing optoelectronic material
WO2019184063A1 (zh) 半导体激光器件的谐振腔面钝化膜、制作方法及器件
US6207469B1 (en) Method for manufacturing a semiconductor device
EP1251608B1 (en) Method for manufacturing semiconductor laser device
RU2292610C1 (ru) Способ изготовления фотопреобразователя
CN115986555A (zh) 半导体激光器件的谐振腔面钝化膜、制作方法及器件
WO2019184064A1 (zh) 一种半导体激光器件及其谐振腔面钝化膜、制作方法
JP3778769B2 (ja) 化合物半導体表面の安定化方法、それを用いた半導体レーザ素子の製造方法、および半導体レーザ素子等の半導体素子
JP2000183465A (ja) 3族窒化物半導体素子製造方法
JPH0436456B2 (zh)
CN112838470A (zh) GaAs基高功率半导体激光器腔面的氮等离子体清洗方法
JP2003158113A (ja) 半導体装置の製造方法およびエッチング装置
JP3736319B2 (ja) 半導体装置の製造方法
JP3425333B2 (ja) 半導体発光素子およびその製造方法
JP4151247B2 (ja) 半導体装置の製造方法およびこれに用いる半導体装置の製造装置
US6228672B1 (en) Stable surface passivation process for compound semiconductors
JP3272531B2 (ja) 化合物半導体装置の製造方法
JP2000232094A (ja) 化合物半導体のドライエッチング方法および化合物半導体素子
US11827997B2 (en) Stripping method and stripping device for silicon carbide single crystal wafers
JP2006080274A (ja) エッチング方法及び半導体装置の製造方法
KR100311740B1 (ko) 에너지대 구부러짐을 이용한 반도체의 광전화학적 식각방법
CN112831777A (zh) GaAs基高功率半导体激光器腔面钝化处理方法及其钝化液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912982

Country of ref document: EP

Kind code of ref document: A1