WO2019184029A1 - 一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法 - Google Patents

一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法 Download PDF

Info

Publication number
WO2019184029A1
WO2019184029A1 PCT/CN2018/084003 CN2018084003W WO2019184029A1 WO 2019184029 A1 WO2019184029 A1 WO 2019184029A1 CN 2018084003 W CN2018084003 W CN 2018084003W WO 2019184029 A1 WO2019184029 A1 WO 2019184029A1
Authority
WO
WIPO (PCT)
Prior art keywords
mother liquor
ternary
precursor
ion battery
lithium ion
Prior art date
Application number
PCT/CN2018/084003
Other languages
English (en)
French (fr)
Inventor
汤依伟
吴理觉
文定强
陈建兵
黄亚祥
郑世林
Original Assignee
清远佳致新材料研究院有限公司
广东佳纳能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清远佳致新材料研究院有限公司, 广东佳纳能源科技有限公司 filed Critical 清远佳致新材料研究院有限公司
Publication of WO2019184029A1 publication Critical patent/WO2019184029A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for comprehensive utilization in the preparation process of a positive electrode material for a lithium ion battery, in particular to a method for comprehensive utilization of a mother liquid for a precursor synthesis process of a ternary positive electrode material for a lithium ion battery.
  • ternary cathode materials generally use hydroxides of three elements of Ni, Co and Mn as precursors to be calcined with lithium.
  • the mainstream process for the formation of ternary material precursors is co-precipitation.
  • a certain concentration of mixed metal ion solution, NaOH as a precipitant, ammonia as a complexing agent, and co-precipitation to produce a spherical ternary hydrogen.
  • Oxide precursor By arranging a certain concentration of mixed metal ion solution, NaOH as a precipitant, ammonia as a complexing agent, and co-precipitation to produce a spherical ternary hydrogen. Oxide precursor.
  • the process can relatively easily control the particle size, specific surface area, morphology and tap density of the precursor, but there is a problem of wastewater.
  • the ternary precursor and mother liquor are obtained by filtration, and the mother liquor contains a certain amount.
  • Metal ions such as Ni, Co, Mn, NH 3 and sodium sulfate are difficult to treat wastewater.
  • the current process for treating ternary precursor wastewater is first stripped and deaminated, and then the heavy metals Ni, Co and Mn are removed by sedimentation.
  • Chinese Patent Application No. 201610971652.9 discloses a ternary precursor wastewater treatment system and a treatment method thereof.
  • the ternary precursor treatment system includes a mother liquid temporary storage unit, an electrolysis unit, a deamination unit, a rectification unit, a neutralization unit, and a salt solution.
  • Storage unit evaporation-crystallization unit, centrifugal unit, washing water temporary storage unit, concentration unit and water discharge temporary storage unit, mother liquid temporary storage unit, electrolysis unit, deamination unit, neutralization unit, salt solution temporary storage unit, evaporation-crystallization
  • concentration unit is respectively connected with the mother liquid temporary storage unit, the washing water temporary storage unit, and the water discharge temporary storage unit
  • the outlet water temporary storage unit is connected with the evaporation-crystallization unit, the rectification unit and the deamination unit. connection.
  • the treated wastewater reaches the discharge and reuse standard, and at the same time, the recycling of heavy metals, ammonia nitrogen and ammonia salt resources is realized, the production cost is reduced, and resources are saved.
  • the mother liquor is subjected to cyclone electrolysis to strip heavy metal ions, and then sodium hydroxide is added to adjust the pH, and the heavy metal solution is treated by a multi-critical membrane deamination unit, and the product obtained by the final evaporation and crystallization is an ammonium salt, and the process is complicated and difficult to control.
  • the recovery rate of nickel-cobalt is still low, and the added value of the product is low.
  • the present invention provides a method for comprehensive utilization of mother liquor of a ternary cathode material synthesis process for a lithium ion battery, which is simple in process, easy to control, low in pollution, capable of continuous production, and achieves resource recycling. The effect is utilized to solve the problems raised in the above background art.
  • the present invention provides the following technical solution: a method for comprehensively utilizing mother liquor of a ternary cathode material synthesis process for a lithium ion battery, comprising the following steps:
  • Step 1 The ternary precursor mother liquor is dehydrated from the top to the bottom of the stripper deamination system, and the dehydration residence time per unit volume of the mother liquor is controlled to 0.5-1.0 h;
  • Step 2 After step 1: deamination, the ternary precursor mother liquor is added to the reaction tank, a certain amount of ternary precursor waste is added, and ozone is introduced at a certain rate, and the reaction is heated and stirred for 0.5-2 h;
  • Step 3 filtering the mother liquid of the ternary precursor after the completion of the reaction in the second step to obtain a filtrate and a filter residue;
  • Step 4 The residue obtained in the third step is put into another reaction tank, water is added to adjust the slurry, a certain amount of sulfuric acid and a reducing agent are added, and the mixture is leached by heating and stirring for 2-6 hours, and the filtrate obtained in the third step is subjected to evaporation crystallization to obtain a sodium sulfate product.
  • the ammonia gas obtained by the mother liquor evaporation of ammonia is absorbed by the recovery tower and then passed into the ammonia water storage tank to be returned to the coprecipitation process.
  • the ternary precursor waste is a nickel-cobalt-manganese hydroxide having a ratio of main elements or physical properties in the production process.
  • the nickel cobalt manganese hydroxide is added in an amount of 0.5-1.5 kg/m 3 ; wherein the ozone concentration is 100-200 mg/L, the access rate is 40-80 L/h; and the stirring speed is 200-400 r/ Min; reaction temperature is 30-50.
  • the liquid-solid ratio of the filter residue leaching process is 4:1-7:1 mL /g
  • the stirring speed is 250-400 r/min
  • the reaction temperature is 80-95 ° C
  • the initial sulfuric acid concentration is 1.0-1.5 mol. /L.
  • the reducing agent is hydrazine hydrate, and the amount of hydrazine hydrate is 0.15-0.35 times of the total amount of nickel-cobalt-manganese metal in the filter residue; the condensed water produced by the evaporation process of the filtrate can be returned to the co-precipitation process for reuse, and the crystallized sodium sulfate is used as a product. Sold.
  • the present invention uses an ozone + ternary precursor waste system to catalyze the oxidation of trace amounts of nickel, cobalt, manganese ions and ammonium ions in the mother liquid of the ternary precursor, and the precipitate is easily filtered and easily returned to use; Cobalt manganese and ammonium ion removal are more thorough, which lays a foundation for the subsequent production of high-purity sodium sulfate, which reduces the production time cost and raw material cost.
  • the filter residue obtained by filtration can be returned to the ternary precursor by the reduced acid leaching.
  • the filtrate is obtained by evaporation crystallization to obtain by-product sodium sulfate; the vapor condensate of the evaporation crystallization process can be reused for existing production, and a closed cycle of resources in the wastewater is realized.
  • Figure 1 is a process flow diagram of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 a method for comprehensively utilizing mother liquor of a ternary cathode material synthesis process for a lithium ion battery, comprising the following steps:
  • the first step deionization of the ternary precursor mother liquor into the stripper deamination system rectification tower from top to bottom, the dehydration residence time of the mother liquor per unit volume is controlled to be 1.0 h, and the ammonia gas obtained by the mother liquor evaporation is recovered. After the tower is absorbed, it can be returned to the ammonia storage tank for return to the coprecipitation process;
  • the second step after the step one deamination, the ternary precursor mother liquor is added to the reaction tank, and the ternary precursor waste is a nickel-cobalt-manganese hydroxide or a ternary precursor which is unqualified in the main element ratio or physical property during the production process.
  • the amount of waste added is 0.5 kg/m3 of a certain amount of ternary precursor waste, and ozone is introduced, the ozone concentration is 150 mg/L, the access rate is 80 L/h; the stirring speed is 200 r/min; the reaction temperature is 50. °C, heating and stirring reaction for 2h;
  • the third step filtering the mother liquid of the ternary precursor after the completion of the second reaction, obtaining the filtrate and the filter residue, and putting the obtained filter residue into the reaction tank, the liquid-solid ratio of the leaching process is 4:1 mL / g, and the stirring speed is 400 r / Min, the reaction temperature is 80 ° C, the initial sulfuric acid concentration is 1.5 mol / L;
  • the fourth step the filter residue obtained in the third step is put into another reaction tank, adding water to adjust the slurry, adding a certain amount of sulfuric acid and a reducing agent, the reducing agent is hydrazine hydrate, and the amount of hydrazine hydrate is 0.35 times of the total amount of nickel-cobalt-manganese metal in the filter residue.
  • the leaching reaction time is 6 h, and the obtained filtrate is evaporated and crystallized to obtain a sodium sulfate product.
  • the condensed water produced by the evaporation process can be returned to the coprecipitation process for reuse, and the crystallized sodium sulfate is sold as a product.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 a method for comprehensively utilizing mother liquor of a ternary cathode material synthesis process for a lithium ion battery, comprising the following steps:
  • the first step deionization of the ternary precursor mother liquor into the stripper deamination system rectification tower from top to bottom, the dehydration residence time of the mother liquor per unit volume is controlled to be 1.0 h, and the ammonia gas obtained by the mother liquor evaporation is recovered. After the tower is absorbed, it can be returned to the ammonia storage tank for return to the coprecipitation process;
  • the second step after the step one deamination, the ternary precursor mother liquor is added to the reaction tank, and the ternary precursor waste is a nickel-cobalt-manganese hydroxide or a ternary precursor which is unqualified in the main element ratio or physical property during the production process.
  • the amount of waste added is 1.0 kg/m3 of a certain amount of ternary precursor waste, and ozone is introduced, the ozone concentration is 150 mg/L, the inlet rate is 60 L/h; the stirring speed is 300 r/min; the reaction temperature is 40 °C. . , heating and stirring reaction for 2h;
  • the third step filtering the mother liquid of the ternary precursor after the completion of the second reaction, obtaining the filtrate and the filter residue, and putting the obtained filter residue into the leaching reaction tank, the liquid-solid ratio of the leaching process is 5:1 mL / g, and the stirring speed is 300 r / Min, the reaction temperature is 85 ° C, the initial sulfuric acid concentration is 1.5 mol / L;
  • the fourth step the filter residue obtained in the third step is put into another reaction tank, adding water to adjust the slurry, adding a certain amount of sulfuric acid and a reducing agent, the reducing agent is hydrazine hydrate, and the amount of hydrazine hydrate is 0.2 times of the total amount of nickel, cobalt and manganese metal in the filter residue.
  • the leaching reaction time is 4 h, and the obtained filtrate is evaporated and crystallized to obtain a sodium sulfate product.
  • the condensed water produced by the evaporation process can be returned to the coprecipitation process for reuse, and the crystallized sodium sulfate is sold as a product.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 1 a method for comprehensively utilizing mother liquor of a ternary cathode material synthesis process for a lithium ion battery, comprising the following steps:
  • the first step the ternary precursor mother liquor is passed from top to bottom into the stripper deamination system rectification tower for deamination, the dehydration residence time per unit volume of the mother liquor is controlled to be 0.5h, and the ammonia gas obtained by the mother liquor is recovered. After the tower is absorbed, it can be returned to the ammonia storage tank for return to the coprecipitation process;
  • the second step after the step one deamination, the ternary precursor mother liquor is added to the reaction tank, and the ternary precursor waste is a nickel-cobalt-manganese hydroxide or a ternary precursor which is unqualified in the main element ratio or physical property during the production process.
  • the amount of waste added is 1.5 kg/m3 of a certain amount of ternary precursor waste, and ozone is introduced, the ozone concentration is 200 mg/L, the access rate is 40 L/h; the stirring speed is 200 r/min; the reaction temperature is 30 °C. Heating and stirring reaction for 0.5 h;
  • the third step filtering the mother liquid of the ternary precursor after the completion of the second reaction, obtaining the filtrate and the filter residue, and putting the obtained filter residue into the reaction tank, the liquid-solid ratio of the leaching process is 7:1 mL / g, and the stirring speed is 250 r / min. , the reaction temperature is 95 ° C, the initial sulfuric acid concentration is 1 mol / L;
  • the fourth step the filter residue obtained in the third step is put into another reaction tank, adding water to adjust the slurry, adding a certain amount of sulfuric acid and a reducing agent, the reducing agent is hydrazine hydrate, and the amount of hydrazine hydrate is 0.15 times of the total amount of nickel, cobalt and manganese metal in the filter residue.
  • the leaching reaction time is 2 h, and the obtained filtrate is evaporated and crystallized to obtain a sodium sulfate product.
  • the condensed water produced by the evaporation process can be returned to the coprecipitation process for reuse, and the crystallized sodium sulfate is sold as a product.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 1 a method for comprehensively utilizing mother liquor of a ternary cathode material synthesis process for a lithium ion battery, comprising the following steps:
  • the first step the ternary precursor mother liquor is passed from top to bottom into the stripper deamination system rectification tower for deamination, the dehydration residence time per unit volume of the mother liquor is controlled to be 0.5h, and the ammonia gas obtained by the mother liquor is recovered. After the tower is absorbed, it can be returned to the ammonia storage tank for return to the coprecipitation process;
  • the second step after the step one deamination, the ternary precursor mother liquor is added to the reaction tank, and the ternary precursor waste is a nickel-cobalt-manganese hydroxide or a ternary precursor which is unqualified in the main element ratio or physical property during the production process.
  • the amount of waste added is 1.0 kg/m3 of a certain amount of ternary precursor waste, and ozone is introduced, the ozone concentration is 100 mg/L, the access rate is 80 L/h; the stirring speed is 300 r/min; the reaction temperature is 50 °C. . , heating and stirring reaction for 1 h;
  • the third step filtering the mother liquid of the ternary precursor after the completion of the second reaction, obtaining the filtrate and the filter residue, and putting the obtained filter residue into the reaction tank, the liquid-solid ratio of the leaching process is 6:1 mL / g, and the stirring speed is 250 r/min. , the reaction temperature is 85 ° C, the initial sulfuric acid concentration is 1.25 mol / L;
  • the fourth step the filter residue obtained in the third step is put into another reaction tank, adding water to adjust the slurry, adding a certain amount of sulfuric acid and a reducing agent, the reducing agent is hydrazine hydrate, and the amount of hydrazine hydrate is 0.25 times of the total amount of nickel, cobalt and manganese metal in the filter residue.
  • the leaching reaction time is 5 h, and the obtained filtrate is evaporated and crystallized to obtain a sodium sulfate product.
  • the condensed water produced by the evaporation process can be returned to the coprecipitation process for reuse, and the crystallized sodium sulfate is sold as a product.
  • the present invention oxidizes the residual ammonia ions in the mother liquor to the nickel-cobalt manganese high-valent hydroxide by ternary precursor oxidizing the ammonia remaining after stripping the ammonia in the mother liquor to nitrogen.
  • Precipitating, through the solid-liquid separation to achieve the effect of purifying the mother liquor precipitated nickel-cobalt-manganese high-valence hydroxide can be subjected to acid precipitation back to the precursor precipitation process; the final evaporation crystallization is obtained by high-purity sodium sulfate.
  • the ammonia in the subsequent mother liquor can be eliminated by ozone, and the selection range of the steaming ammonia process can be wide, and the deamination effect is not high, and the ammonia can be used in a short time.

Abstract

一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,包括以下步骤:将三元前驱体母液自上而下通入汽提塔脱氨系统精馏塔脱氨,单位体积的母液脱氨停留时间控制为0.5-1.0h;将步骤一脱氨后加入一定量三元前驱体废料,并按照一定速率通入臭氧,加热搅拌反应0.5-2h;将步骤二反应完成后的三元前驱体母液过滤,得到滤液和滤渣;将步骤三所得滤渣投入另一反应槽,加水调浆,加入一定量的硫酸和还原剂,加热搅拌浸出2-6h。本锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,所得沉淀容易过滤且容易返回使用;镍钴锰和铵根离子除去较为彻底,为后续生产高纯硫酸钠打下基础,降低了生产时间成本和原料成本,实现了废水中资源的闭路循环。

Description

一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法 技术领域
本发明涉及一种锂离子电池正极材料制备过程中综合利用的方法,特别是指一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法。
背景技术
近年来,三元材料作为正极材料的动力锂离子电池凭借其容量高、能量密度大、循环稳定性好、成本适中等重要优点,逐渐在动力电池行业中占据愈发重要的地位。目前,工业上三元正极材料普遍采用Ni、Co、Mn三种元素的氢氧化物做前驱体配锂煅烧而成。而三元材料前驱体生成的主流工艺是共沉淀法,通过配置一定浓度的混合金属离子的溶液,NaOH作为沉淀剂,氨水为络合剂,并流加入,共沉淀生产出类球形三元氢氧化物前驱体。该工艺可以比较容易地控制前驱体的粒径、比表面积、形貌和振实密度,但存在着废水问题,共沉淀反应完成后,经过滤得到三元前驱体和母液,母液中含有一定量的Ni、Co、Mn等金属离子、NH 3和硫酸钠,属于较难处理废水,现行工艺处理三元前驱体废水,先进行汽提脱氨处理,而后通过沉降除去重金属Ni、Co、Mn。但因为氨与Ni、Co离子络合能力较强,汽提脱氨后,还需配套其他脱氨工艺相结合才能将母液中的氨氮浓度降低到排放标准;另外母液中Ni、Co、Mn离子浓度较低,通过提高pH形成的沉淀颗粒较细,难以沉降;又因除杂不彻底所得硫酸钠中杂质成分较高,镍钴回收率低,生产成本大,产品附加值低。
中国专利申请号201610971652.9公开了一种三元前驱体废水处理系统及处理方法,三元前驱体处理系统包括母液暂存单元、电解单元、脱氨单元、精馏单元、中和单元、盐溶液暂存单元、蒸发‑结晶单元、离心单元、洗涤水暂存单元、浓缩单元以及出水暂存单元,母液暂存单元、电解单元、脱氨单元、中和单元、盐溶液暂存单元、蒸发‑结晶单元以及离心单元依次连接,浓缩单元分别与母液暂存单元、洗涤水暂存单元、出水暂存单元连接,并且,出水暂存单元连接还与蒸发-结晶单元连接,精馏单元与脱氨单元连接。使用本发明提供的三元前驱体废水处理系统及处理方法,处理后的废水达到排放及回用标准,同时,实现了重金属、氨氮、氨盐资源的循环利用,降低生产成本,节约资源。
但是母液采用旋流电解剥离重金属离子,而后加入氢氧化钠调节pH,并采用多项临界膜脱氨单元处理除重金属溶液,且最终蒸发结晶得到的产品为铵盐,其工艺复杂,不好控制,对于镍钴的回收率还是较低,产品附加值低。
技术问题
在此处键入技术问题描述段落。
技术解决方案
为了解决现有的问题,本发明提供了一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,该方法工艺简单、容易控制、低污染、能连续化生产、达到了资源循环利用的效果,以解决上述背景技术中提出的问题。
    为解决上述问题,本发明提供如下技术方案:一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,包括以下步骤:
步骤一:将三元前驱体母液自上而下通入汽提塔脱氨系统精馏塔脱氨,单位体积的母液脱氨停留时间控制为0.5-1.0h;
步骤二:将步骤一脱氨后三元前驱体母液加入到反应槽中,加入一定量三元前驱体废料,并按照一定速率通入臭氧,加热搅拌反应0.5-2h;
步骤三:将步骤二反应完成后的三元前驱体母液过滤,得到滤液和滤渣;
步骤四:将步骤三所得滤渣投入另一反应槽,加水调浆,加入一定量的硫酸和还原剂,加热搅拌浸出2-6h,并将步骤三所得滤液经蒸发结晶即可得到硫酸钠产品。
其中,步骤一中,母液蒸氨所得氨气经回收塔吸收后通入氨水贮罐可返回共沉淀过程使用。
步骤二中,三元前驱体废料为生产过程中主元素比例或物理性能不合格的镍钴锰氢氧化物。且所述镍钴锰氢氧化物的加入量为0.5-1.5 kg/m 3;其中臭氧浓度为100-200 mg/L,通入速率为40-80 L/h;搅拌速度为200-400r/min;反应温度为30-50。
    步骤三中,过滤所得滤渣浸出过程的液固比4:1-7:1 mL /g,搅拌速度为250-400 r/min,反应温度为80-95℃;初始硫酸浓度为1.0-1.5mol/L。
    步骤四中,还原剂为水合肼,水合肼用量为滤渣中镍钴锰金属总量的0.15-0.35倍;滤液蒸发过程产生的凝结水可返回共沉淀工艺回用,结晶的硫酸钠作为产品外售。
有益效果
与现有技术相比,本发明采用臭氧 + 三元前驱体废料体系催化氧化三元前驱体母液重的微量的镍、钴、锰离子和铵根离子,所得沉淀容易过滤且容易返回使用;镍钴锰和铵根离子除去较为彻底,为后续生产高纯硫酸钠打下基础,降低了生产时间成本和原料成本;氧化反应完成后,过滤所得滤渣经还原酸浸出可返回三元前驱体生产的配料工序,而滤液通过蒸发结晶获得副产品硫酸钠;另蒸发结晶过程的蒸汽冷凝液可回用于现有生产,实现了废水中资源的闭路循环。
附图说明
图1为本发明的工艺流程图。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
    请参阅图1,一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,包括以下步骤:
第一步:将三元前驱体母液自上而下通入汽提塔脱氨系统精馏塔脱氨,单位体积的母液脱氨停留时间控制为为1.0h,母液蒸氨所得氨气经回收塔吸收后通入氨水贮罐可返回共沉淀过程使用;
第二步:将步骤一脱氨后三元前驱体母液加入到反应槽中,三元前驱体废料为生产过程中主元素比例或物理性能不合格的镍钴锰氢氧化物,三元前驱体废料的加入量为0.5 kg/m3一定量的三元前驱体废料,并通入臭氧,臭氧浓度为150mg/L,通入速率为80 L/h;搅拌速度为200r/min;反应温度为50℃,加热搅拌反应2h;
第三步:将步骤二反应完成后的三元前驱体母液过滤,得到滤液和滤渣,将所得滤渣投入浸出反应槽,浸出过程的液固比4:1 mL /g,搅拌速度为400 r/min,反应温度为80℃,初始硫酸浓度为1.5mol/L;
第四步:将步骤三所得滤渣投入另一反应槽,加水调浆,加入一定量的硫酸和还原剂,还原剂为水合肼,水合肼用量为滤渣中镍钴锰金属总量的0.35倍,浸出反应时间为6 h,将所得滤液经蒸发、结晶即可得到硫酸钠产品,蒸发过程产生的凝结水可返回共沉淀工艺回用,结晶的硫酸钠作为产品外售。
实施例二:
    请参阅图1,一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,包括以下步骤:
第一步:将三元前驱体母液自上而下通入汽提塔脱氨系统精馏塔脱氨,单位体积的母液脱氨停留时间控制为为1.0h,母液蒸氨所得氨气经回收塔吸收后通入氨水贮罐可返回共沉淀过程使用;
第二步:将步骤一脱氨后三元前驱体母液加入到反应槽中,三元前驱体废料为生产过程中主元素比例或物理性能不合格的镍钴锰氢氧化物,三元前驱体废料的加入量为1.0 kg/m3一定量三元前驱体废料,并通入臭氧,臭氧浓度为150mg/L,通入速率为60 L/h;搅拌速度为300r/min;反应温度为40℃。,加热搅拌反应2h;
第三步:将步骤二反应完成后的三元前驱体母液过滤,得到滤液和滤渣,将所得滤渣投入浸出反应槽,浸出过程的液固比5:1 mL /g,搅拌速度为300 r/min,反应温度为85℃,初始硫酸浓度为1.5mol/L;
第四步:将步骤三所得滤渣投入另一反应槽,加水调浆,加入一定量的硫酸和还原剂,还原剂为水合肼,水合肼用量为滤渣中镍钴锰金属总量的0.2倍,浸出反应时间为4 h,将所得滤液经蒸发、结晶即可得到硫酸钠产品,蒸发过程产生的凝结水可返回共沉淀工艺回用,结晶的硫酸钠作为产品外售。
实施例三:
    请参阅图1,一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,包括以下步骤:
第一步:将三元前驱体母液自上而下通入汽提塔脱氨系统精馏塔脱氨,单位体积的母液脱氨停留时间控制为为0.5h,母液蒸氨所得氨气经回收塔吸收后通入氨水贮罐可返回共沉淀过程使用;
第二步:将步骤一脱氨后三元前驱体母液加入到反应槽中,三元前驱体废料为生产过程中主元素比例或物理性能不合格的镍钴锰氢氧化物,三元前驱体废料的加入量为1.5 kg/m3一定量三元前驱体废料,并通入臭氧,臭氧浓度为200mg/L,通入速率为40 L/h;搅拌速度为200 r/min;反应温度为30℃。,加热搅拌反应0.5h;
第三步:将步骤二反应完成后的三元前驱体母液过滤,得到滤液和滤渣,将所得滤渣投入浸出反应槽,浸出过程的液固比7:1mL /g,搅拌速度为250 r/min,反应温度为95℃,初始硫酸浓度为1mol/L;
第四步:将步骤三所得滤渣投入另一反应槽,加水调浆,加入一定量的硫酸和还原剂,还原剂为水合肼,水合肼用量为滤渣中镍钴锰金属总量的0.15倍,浸出反应时间为2 h,将所得滤液经蒸发、结晶即可得到硫酸钠产品,蒸发过程产生的凝结水可返回共沉淀工艺回用,结晶的硫酸钠作为产品外售。
实施例四:
    请参阅图1,一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,包括以下步骤:
第一步:将三元前驱体母液自上而下通入汽提塔脱氨系统精馏塔脱氨,单位体积的母液脱氨停留时间控制为为0.5h,母液蒸氨所得氨气经回收塔吸收后通入氨水贮罐可返回共沉淀过程使用;
第二步:将步骤一脱氨后三元前驱体母液加入到反应槽中,三元前驱体废料为生产过程中主元素比例或物理性能不合格的镍钴锰氢氧化物,三元前驱体废料的加入量为1.0 kg/m3一定量三元前驱体废料,并通入臭氧,臭氧浓度为100mg/L,通入速率为80 L/h;搅拌速度为300r/min;反应温度为50℃。,加热搅拌反应1h;
第三步:将步骤二反应完成后的三元前驱体母液过滤,得到滤液和滤渣,将所得滤渣投入浸出反应槽,浸出过程的液固比6:1mL /g,搅拌速度为250 r/min,反应温度为85℃,初始硫酸浓度为1.25mol/L;
第四步:将步骤三所得滤渣投入另一反应槽,加水调浆,加入一定量的硫酸和还原剂,还原剂为水合肼,水合肼用量为滤渣中镍钴锰金属总量的0.25倍,浸出反应时间为5h,将所得滤液经蒸发、结晶即可得到硫酸钠产品,蒸发过程产生的凝结水可返回共沉淀工艺回用,结晶的硫酸钠作为产品外售。
与申请号为201610971652.9的对比文件相比,本发明将三元前驱体将母液中的汽提蒸氨后残留的氨氧化成氮气,将母液中的重金属离子氧化成镍钴锰高价态氢氧化物沉淀下来,通过固液分离从而起到净化母液的效果,沉淀下来镍钴锰高价态氢氧化物可经过酸溶回用前驱体沉淀工序;最终蒸发结晶得到的是高纯度硫酸钠。本发明因后续母液中的氨可以采用臭氧消除,对可采用蒸氨工艺选择范围广、脱氨效果要求不高,采用短时间蒸氨即可。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (6)

  1. 一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,其特征在于,包括以下步骤:
    步骤一:将三元前驱体母液自上而下通入汽提塔脱氨系统精馏塔脱氨,单位体积的母液脱氨停留时间控制为0.5-1.0h;
    步骤二:将步骤一脱氨后三元前驱体母液加入到反应槽中,加入一定量三元前驱体废料,并按照一定速率通入臭氧,加热搅拌反应0.5-2h;
    步骤三:将步骤二反应完成后的三元前驱体母液过滤,得到滤液和滤渣;
    步骤四:将步骤三所得滤渣投入另一反应槽,加水调浆,加入一定量的硫酸和还原剂,加热搅拌浸出2-6h,并将步骤三所得滤液经蒸发结晶即可得到硫酸钠产品。
  2. 如权利要求1所述的一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,其特征在于,步骤一中,母液蒸氨所得氨气经回收塔吸收后通入氨水贮罐可返回共沉淀过程使用。
  3. 如权利要求1所述的一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,其特征在于,步骤二中,三元前驱体废料为生产过程中主元素比例或物理性能不合格的镍钴锰氢氧化物。
  4. 如权利要求3所述的一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,其特征在于,所述镍钴锰氢氧化物的加入量为0.5-1.5 kg/m 3;其中臭氧浓度为100-200 mg/L,通入速率为40-80 L/h;搅拌速度为200-400r/min;反应温度为30-50。
  5. 如权利要求1所述的一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,其特征在于,步骤三中,过滤所得滤渣浸出过程的液固比4:1-7:1 mL /g,搅拌速度为250-400 r/min,反应温度为80-95℃;初始硫酸浓度为1.0-1.5mol/L。
  6. 如权利要求1所述的一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法,其特征在于,步骤四中,还原剂为水合肼,水合肼用量为滤渣中镍钴锰金属总量的0.15-0.35倍;滤液蒸发过程产生的凝结水可返回共沉淀工艺回用,结晶的硫酸钠作为产品外售。
PCT/CN2018/084003 2018-03-27 2018-04-23 一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法 WO2019184029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810260132.6A CN109256532B (zh) 2018-03-27 2018-03-27 一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法
CN201810260132.6 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019184029A1 true WO2019184029A1 (zh) 2019-10-03

Family

ID=65051407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084003 WO2019184029A1 (zh) 2018-03-27 2018-04-23 一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法

Country Status (2)

Country Link
CN (1) CN109256532B (zh)
WO (1) WO2019184029A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620782A (zh) * 2022-05-16 2022-06-14 宜宾锂宝新材料有限公司 三元正极材料及其金属异物的去除方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202237300U (zh) * 2011-09-16 2012-05-30 安徽亚兰德新能源材料有限公司 一种三元材料前驱体合成母液中氨的回收装置
CN103259063A (zh) * 2013-05-13 2013-08-21 宁夏东方钽业股份有限公司 从废旧的含Co和Mn中至少一种的锂离子电池正极材料或其前驱体回收过渡金属的方法
KR20150075247A (ko) * 2013-12-24 2015-07-03 주식회사 포스코 리튬 전지 폐기물로부터 망간을 회수 하는 방법
KR20150094412A (ko) * 2014-02-11 2015-08-19 타운마이닝캄파니(주) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법
CN106430783A (zh) * 2016-11-07 2017-02-22 昆山三环保科技有限公司 一种三元前驱体废水处理系统及处理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177056B1 (en) * 1999-01-13 2001-01-23 Rsr Corporation Process for recycling lead-acid batteries
US7081319B2 (en) * 2002-03-04 2006-07-25 The Gillette Company Preparation of nickel oxyhydroxide
JP4388091B2 (ja) * 2007-03-22 2009-12-24 日鉱金属株式会社 Co,Ni,Mn含有電池滓からの貴金属回収方法
CN103904323B (zh) * 2012-12-28 2018-06-22 北京当升材料科技股份有限公司 一种球形羟基氧化钴的制备方法
CN106379948B (zh) * 2016-10-10 2020-06-26 中南大学 一种制备纳米羟基氧化钴锰的方法
CN106957124A (zh) * 2017-04-10 2017-07-18 池州西恩新材料科技有限公司 一种三元正极材料生产废水的处理方法及处理系统
CN107623124B (zh) * 2017-09-30 2020-04-07 金驰能源材料有限公司 一种球形镍钴锰前驱体材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202237300U (zh) * 2011-09-16 2012-05-30 安徽亚兰德新能源材料有限公司 一种三元材料前驱体合成母液中氨的回收装置
CN103259063A (zh) * 2013-05-13 2013-08-21 宁夏东方钽业股份有限公司 从废旧的含Co和Mn中至少一种的锂离子电池正极材料或其前驱体回收过渡金属的方法
KR20150075247A (ko) * 2013-12-24 2015-07-03 주식회사 포스코 리튬 전지 폐기물로부터 망간을 회수 하는 방법
KR20150094412A (ko) * 2014-02-11 2015-08-19 타운마이닝캄파니(주) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법
CN106430783A (zh) * 2016-11-07 2017-02-22 昆山三环保科技有限公司 一种三元前驱体废水处理系统及处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620782A (zh) * 2022-05-16 2022-06-14 宜宾锂宝新材料有限公司 三元正极材料及其金属异物的去除方法

Also Published As

Publication number Publication date
CN109256532A (zh) 2019-01-22
CN109256532B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN112375913B (zh) 一种废旧锂离子电池回收方法
CN102070198B (zh) 铁屑还原浸出软锰矿制备高纯硫酸锰和高纯碳酸锰的方法
CN108341424A (zh) 硫酸铜的生产方法
CN109052492B (zh) 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN107623124B (zh) 一种球形镍钴锰前驱体材料的制备方法
CN107188149A (zh) 一种电池级高纯纳米磷酸铁的工艺
CN114105172A (zh) 一种粗制碳酸锂石灰苛化碳化生产高纯碳酸锂的方法
KR102558770B1 (ko) 배터리 레벨 Ni-Co-Mn 혼합액 및 배터리 레벨 Mn 용액의 제조방법
CN114272914B (zh) 一种锂吸附剂、膜元件、其制备方法及锂提取方法与装置
CN116377243A (zh) 一种镍钴氢氧化物原料分离镍钴锰的方法
CN102774870A (zh) 一种硫酸铜中铁杂质的去除方法
WO2019184029A1 (zh) 一种锂离子电池三元正极材料前驱体合成过程母液综合利用的方法
CN103773956A (zh) 一种钒铬的分离及回收方法
CN116463508A (zh) 一种处理镍钴氢氧化物的方法
CN112342383A (zh) 三元废料中镍钴锰与锂的分离回收方法
KR102023063B1 (ko) 이차 전지용 양극 활물질 전구체 제조 방법 및 이를 이용한 제조 장치
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN113912130A (zh) 一种氧化铁红及其制备方法
CN104628033A (zh) 一种偏钒酸盐的制备方法
CN115072751B (zh) 一种磷酸铁锂电池再利用制备低氟含量碳酸锂的方法
CN115216643B (zh) 一种高铵盐废水中镍的提纯回收工艺
CN112662892B (zh) 一种酸浸液的掺杂高压镍铁分离方法
CN114606398B (zh) 一种从废旧锂离子电池正极材料浸出废液中回收锂的方法
CN114956189B (zh) 一种电池级硫酸锰制备方法
CN117486268A (zh) 一种镍钴锰三元前驱体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912582

Country of ref document: EP

Kind code of ref document: A1