WO2019182419A1 - 휠 허브 및 이를 포함하는 휠 베어링 - Google Patents

휠 허브 및 이를 포함하는 휠 베어링 Download PDF

Info

Publication number
WO2019182419A1
WO2019182419A1 PCT/KR2019/003408 KR2019003408W WO2019182419A1 WO 2019182419 A1 WO2019182419 A1 WO 2019182419A1 KR 2019003408 W KR2019003408 W KR 2019003408W WO 2019182419 A1 WO2019182419 A1 WO 2019182419A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
embossing
wheel
hub portion
brazing filler
Prior art date
Application number
PCT/KR2019/003408
Other languages
English (en)
French (fr)
Inventor
안정호
이인하
이선호
심희찬
Original Assignee
주식회사 일진글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 일진글로벌 filed Critical 주식회사 일진글로벌
Publication of WO2019182419A1 publication Critical patent/WO2019182419A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/40Making machine elements wheels; discs hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles

Definitions

  • the present disclosure relates to a wheel hub and a wheel bearing including the same.
  • the wheel bearing assembly is a device mounted between the rotating element of the vehicle body and the non-rotating element to facilitate the rotation of the rotating element.
  • the wheel bearing assembly of the vehicle rotatably connects the wheel to the vehicle body, thereby providing the function of the vehicle to move.
  • Such a wheel bearing assembly may be classified into a drive wheel wheel bearing that transmits power generated in an engine and a driven wheel wheel bearing that does not transmit a driving force.
  • the drive wheel wheel bearing assembly includes a rotating element and a non-rotating element.
  • the rotating element can be rotated together with the drive shaft by the torque generated in the engine and passed through the transmission.
  • the non-rotating element is fixed to the vehicle body, and a transmission device is interposed between the rotating element and the non-rotating element.
  • the driven wheel wheel bearing assembly includes a configuration similar to that of the drive wheel wheel bearing assembly, except that the drive wheel wheel bearing assembly has no rotating element connected to the drive shaft.
  • the wheel bearing assembly occupies a considerable weight in the drive system of the vehicle, and various studies are underway to reduce the weight thereof.
  • various attempts have been made to reduce the weight of the wheel bearing assembly the conventional wheel bearing assembly cannot achieve the weight reduction of the wheel bearing assembly while securing the tensile strength required in the design process of the automobile.
  • Embodiments of the present disclosure provide a wheel bearing comprising a wheel hub, which is lightweight due to the coupling between dissimilar materials.
  • a wheel hub for use in a wheel bearing disposed between a suspension device and a wheel of an automobile, the wheel hub comprising: an inner hub part formed of steel material and disposed toward the suspension device; And an outer hub portion formed of a lightweight alloy material and disposed toward the wheel, the inner hub portion having an inner surface facing the outer hub portion, at least a portion of the inner surface having an inner embossed portion, the outer hub portion facing the inner hub portion
  • An outer embossing portion having a surface and having a shape corresponding to the shape of the inner embossing portion may be formed on at least a portion of the outer surface.
  • the inner embossing portion includes at least one protrusion projecting in a direction from the inner surface toward the outer hub portion
  • the outer embossing portion includes at least one groove having a shape corresponding to the protrusion
  • the protrusion is formed in the groove. Can be fitted.
  • the inner hub portion may include a cylindrical portion and a first flange portion extending radially from the cylindrical portion, and the outer hub portion may include a second flange portion coupled to the first flange portion.
  • the inner embossing portion includes a first inner embossing portion and a second inner embossing portion
  • the outer embossing portion includes a first outer embossing portion and a second outer embossing portion
  • the first inner embossing portion includes a first flange portion. Formed on at least a portion of the inner surface, wherein the first outer embossed portion has a shape corresponding to the shape of the first inner embossed portion, is formed on at least a portion of the outer surface of the second flange portion, and the second outer embossed portion is the second inner embossed portion It may have a shape corresponding to the negative shape.
  • the inner hub portion further comprises a first binding portion formed to dent in the direction toward the suspension device, the outer hub portion is formed to dent in the direction toward the suspension device and formed to engage with the first binding portion And a second binding portion, wherein the second inner embossing portion is formed on at least a portion of the inner surface of the first binding portion, and the second outer embossing portion may be formed on at least a portion of the outer surface of the second binding portion.
  • At least a portion of the inner embossing portion and the outer embossing portion may be formed along the radial direction.
  • At least a portion of the inner embossing portion and the outer embossing portion may be formed along the circumferential direction.
  • each of the first inner embossing portion and the second inner embossing portion is formed in a radial direction so as to continuously connect with each other, and each of the first outer embossing portion and the second outer embossing portion, so as to continuously connect with each other. It can be formed in the radial direction.
  • the first inner embossing portion is formed in the circumferential direction so that the inner embossing portion has a discontinuous shape
  • the second inner embossing portion is formed in the radial direction so as to end at the side of the first inner embossing portion
  • the outer embossing portion is discontinuous.
  • the first outer embossing portion may be formed in the circumferential direction and the second outer embossing portion may be formed in the radial direction so as to end at the side of the first outer embossing portion.
  • the thickness of the first flange portion in the direction of the rotation axis may be greater than or equal to the thickness of the second flange portion.
  • the inner embossing portion and the outer embossing portion may be formed to have a shape corresponding to each other by a cold forging method, a warm forging method, a hot forging method or a semi-melt forging method.
  • a film brazing filler metal or a paste brazing filler metal may be interposed between at least a portion between the inner surface of the inner hub portion and the outer surface of the outer hub portion.
  • the brazing filler metal is a film brazing filler metal
  • the film brazing filler metal has a first surface facing the outer hub portion, and the shape of the first surface corresponds to the shape of at least a portion of the outer surface of the outer hub portion.
  • the brazing filler metal has a second surface facing the inner hub portion, and the shape of the second surface may have a shape corresponding to the shape of at least a portion of the inner surface of the inner hub portion.
  • the brazing filler metal is a film brazing filler metal
  • the film brazing filler metal may be formed in a single layer structure, a two-layer structure in which each layer is made of a different material, or a three-layer structure in which each layer is made of a different material.
  • the brazing filler metal may have a thickness of 10 to 100 micrometers.
  • the inner hub portion, outer hub portion and brazing filler metal may be integrally formed in a forging method.
  • a wheel bearing disposed between a suspension device and a wheel of an automobile may include: an outer ring coupled to one side of the suspension device; A wheel hub rotatably coupled to the outer ring; And at least one rolling element interposed between the outer ring and the wheel hub, the wheel hub comprising: an inner hub portion formed of steel material and disposed toward the suspension device; And an outer hub portion formed of a lightweight alloy material and disposed toward the wheel, the inner hub portion having an inner surface facing the outer hub portion, at least a portion of the inner surface having an inner embossed portion, the outer hub portion facing the inner hub portion
  • An outer embossing portion having a surface and having a shape corresponding to the shape of the inner embossing portion may be formed on at least a portion of the outer surface.
  • a brazing filler metal may be interposed at least in part between an inner surface of the inner hub portion and an outer surface of the outer hub portion.
  • the rolling element is a ball-shaped rolling element
  • the thickness of the inner hub portion in a direction defined to extend from the center of the rolling element to the portion where the rolling element contacts the wheel hub may be greater than or equal to the radius of the rolling element.
  • the weight of the wheel hub may be reduced by applying a lightweight alloy material to the wheel hub.
  • separation of a portion composed of a steel material and a portion composed of a light alloy material can be prevented.
  • the portion coupled to the rolling element may be made of steel material to provide the required rigidity, and the supporting load may be provided at an appropriate position.
  • FIG. 1 is a cross-sectional view showing a cross section of a wheel bearing according to a first embodiment of the present disclosure.
  • FIG. 2 is a perspective view of a wheel hub according to a first embodiment of the present disclosure.
  • FIG 3 is an exploded perspective view of the wheel hub according to the first embodiment of the present disclosure, and shows a perspective view of the inner hub portion and the outer hub portion.
  • FIG. 4 is an exploded perspective view of a wheel hub according to a first embodiment of the present disclosure, and is a perspective view showing a configuration of the inner hub portion and the outer hub portion viewed from a direction different from that of FIG. 3.
  • FIG. 5 is an enlarged cross-sectional view of a wheel bearing corresponding to A shown in FIG. 1.
  • FIG. 6 is an exploded perspective view of a wheel hub according to a second exemplary embodiment of the present disclosure, and illustrates an inner hub portion and an outer hub portion.
  • FIG. 7 is an exploded perspective view of a wheel hub according to a second embodiment of the present disclosure, and is a perspective view illustrating a configuration of the inner hub portion and the outer hub portion viewed from a direction different from that of FIG. 6.
  • FIG. 8 is an exploded perspective view of a wheel hub according to a third exemplary embodiment of the present disclosure, and illustrates an inner hub portion and an outer hub portion.
  • FIG. 9 is an exploded perspective view of a wheel hub according to a third exemplary embodiment of the present disclosure, and is a perspective view illustrating a configuration of an inner hub portion and an outer hub portion viewed from an angle different from that of FIG. 8.
  • FIG. 10 is a perspective view of a wheel hub according to a fourth embodiment of the present disclosure.
  • FIG. 11 is an exploded perspective view illustrating a wheel hub according to a fourth exemplary embodiment of the present disclosure, and illustrates an inner hub portion and an outer hub portion.
  • FIG. 12 is an exploded perspective view illustrating a wheel hub according to a fourth exemplary embodiment of the present disclosure, wherein the inner hub portion and the outer hub portion are viewed from different directions from those of FIG. 11.
  • FIG. 13 is an enlarged cross-sectional view of a wheel bearing corresponding to B shown in FIG. 1.
  • FIG. 14 is an enlarged cross-sectional view of a wheel bearing corresponding to A shown in FIG. 1 and is a cross-sectional view for explaining an embodiment using a brazing filler metal.
  • FIG. 15 is an enlarged cross-sectional view of a wheel bearing corresponding to B shown in FIG. 1 and is a cross-sectional view for explaining an embodiment using a brazing filler metal.
  • FIG. 16 is a perspective view illustrating a film brazing filler metal used in a wheel hub according to the first embodiment of the present disclosure.
  • FIG. 17 is a perspective view showing a form when the film type brazing filler metal shown in FIG. 16 is integrally coupled with the inner hub portion and the outer hub portion.
  • FIG. 18 is a cross-sectional view of a film brazing filler metal of the wheel hub illustrated in FIG. 17 taken in the EE direction.
  • FIG. 19 is an enlarged cross-sectional view of a wheel bearing corresponding to C shown in FIG. 1.
  • Reference Signs List 1 wheel bearing, 10, 50, 60, 70: wheel hub, 12: bolt hole 20: rolling element, 30: inner ring, 40: outer ring, 100: inner hub part, 200: outer hub part, 300: brazing filler metal, 110: inner surface, 120: inner embossing portion, 130: first flange portion, 140: first binding portion, 150: cylindrical portion, 210: outer surface, 220: outer embossing portion, 230: second flange portion, 240: Second engagement portion, 250: third flange portion, 310: first surface, 320: second surface, 111: first inner surface, 112: second inner surface, 121: first inner embossing portion, 122: second Inner embossing portion, 123: projection, 211: first outer surface, 212: second outer surface, 221: first outer embossing portion, 222: second outer embossing portion, 223: groove
  • Embodiments of the present disclosure are illustrated for the purpose of describing the technical spirit of the present disclosure.
  • the scope of the present disclosure is not limited to the embodiments set forth below or the detailed description of these embodiments.
  • a component when referred to as being "coupled" to another component, the component may be directly coupled to the other component, or may be coupled through a new other component. It should be understood that it can.
  • the radial direction may be defined to mean a direction away from the rotational axis RA
  • the circumferential direction may be defined to mean a direction surrounding the rotation axis RA about the rotation axis RA.
  • the X-axis direction may indicate a direction parallel to the rotation axis RA direction of the wheel bearing 1
  • the Y-axis direction may indicate a direction perpendicular to the rotation axis RA direction.
  • the wheel bearing 1 may be disposed between the suspension of the vehicle and the wheel to rotate the wheel with respect to the suspension.
  • the wheel bearing 1 may have a shape symmetrical about the rotation axis RA.
  • the wheel bearing 1 may include a wheel hub 10, a rolling element 20, an inner ring 30, and an outer ring 40.
  • the suspension can be arranged in the X axis (+) direction of the wheel bearing 1, and the wheel can be arranged in the X axis (-) direction of the wheel bearing 1.
  • the vehicle body may be positioned in the Y axis (+) direction of the wheel bearing 1, and the ground may be positioned in the Y axis ( ⁇ ) direction of the wheel bearing 1.
  • the wheel hub 10 may be rotatable about the outer ring 40 and may include an inner hub portion 100 and an outer hub portion 200.
  • the wheel hub 10 may be formed with a bolt hole 12 penetrating the inner hub portion 100 and the outer hub portion 200.
  • the wheel hub 10 may be composed of at least two dissimilar materials.
  • the wheel hub 10 may be directly coupled to the wheel of the vehicle by a wheel bolt (not shown) fastened to the bolt hole 12. Under this structure, the wheel hub 10 may rotate simultaneously with the wheel when the wheel rotates.
  • the outer ring 40 may be coupled to one side of the suspension device.
  • the outer ring 40 may be provided as a non-rotating element, and may be configured such that the position does not move after being coupled to one side of the suspension device.
  • the outer ring 40 may, for example, be coupled to the knuckle arm of the suspension device and fixed in position.
  • the rolling element 20 may be interposed between the outer ring 40 and the wheel hub 10.
  • the rolling element 20 may have a form such as, for example, a ball bearing, and may include a plurality of balls.
  • the upper portion of the ball may contact the outer ring 40 and the lower portion of the ball may contact the inner ring 30 or the wheel hub 10 to roll.
  • the rolling elements 20 may be provided in two or more rows, for example. In this case, the wheel hub 10 may be stably rotated with respect to the outer ring 40 because two or more rows of the rolling bodies 20 support the wheel hub 10 at more points.
  • FIG. 2 is a perspective view of the wheel hub 10 according to the first embodiment of the present disclosure.
  • the inner hub portion 100 may be formed of steel material and disposed towards the suspension device, and the outer hub portion 200 may be formed of a lightweight alloy material and disposed toward the wheel.
  • the lightweight alloy material may be composed of an alloy comprising, for example, one or more of aluminum, magnesium, titanium, or a combination thereof. Since the inner hub portion 100 is formed of a steel material, and the outer hub portion 200 is formed of a light alloy material, the wheel hub 10 is formed to be lighter than the wheel hub composed of only steel material, ) And the strength of the point where the rolling element 20 contacts.
  • the inner hub portion 100 and the outer hub portion 200 may be integrally formed by cold forging, warm forging or hot forging.
  • the inner hub part 100 is first manufactured from a steel material, and the inner hub part 100 and the outer hub are formed in a mold having an inner shape corresponding to the outer shape of the outer hub part 200.
  • a lightweight alloy material for example, a preform made of a lightweight alloy material
  • the inner hub portion 100 and the lightweight alloy material are hot formed in an environment of high temperature and high pressure to produce a wheel
  • the hub 10 can be manufactured.
  • the inner hub portion 100 and the outer hub portion 200 may be formed in a semi-melt forging method.
  • the semi-melt forging method may mean a method in which the forged product is heated in the semi-melt state and then compressed in the semi-melt state, rather than a method in which the forged product is compressed in a completely liquid or completely solid state.
  • the semi-molten state of the forging may mean a state in which a part of the forging is melted, that is, an intermediate state between a liquid and a solid as the workpiece is heated to a temperature higher than a predetermined level.
  • the inner hub portion 100 and the outer hub portion 200 may be heated to a temperature of a predetermined level or more, and then may be integrally formed by being compressed in a semi-melt state.
  • the forging method can be advantageous in that the process is simpler and less expensive than other methods.
  • the bolt holes 12 may be formed at once by a hole forming apparatus (not shown) such as a drill. That is, the bolt holes 12 of the inner hub part 100 and the outer hub part 200 are not formed, respectively, but may be formed through one process. According to this configuration, the matching between the bolt hole of the inner hub portion 100 and the bolt hole of the outer hub portion 200 can be improved.
  • FIG. 3 is an exploded perspective view of the wheel hub according to the first embodiment of the present disclosure, a perspective view showing an inner hub portion and an outer hub portion
  • FIG. 4 is an exploded perspective view of the wheel hub according to the first embodiment of the present disclosure, and an inner side It is a perspective view which showed the structure which looked at the hub part and the outer hub part from the direction different from FIG.
  • the inner hub part 100 and the outer hub part 200 are integrally formed by a forging method, and the bolt hole 12 may be formed at a time by a hole forming apparatus (not shown) such as a drill.
  • 3 and 4 separately illustrate the inner hub portion 100 and the outer hub portion 200 in an exploded perspective view for convenience of description.
  • the inner hub portion 100 has an inner surface 110 that faces the outer hub portion 200, and at least a portion of the inner surface 110 may be formed with an inner embossing portion 120.
  • the outer hub portion 200 has an outer surface 210 facing the inner hub portion 100, and at least a portion of the outer surface 210 has an outer embossing shape having a shape corresponding to that of the inner embossing portion 120.
  • the unit 220 may be formed.
  • the inner embossing portion 120 has an inner convex surface that protrudes from the inner surface 110 toward the outer hub portion 200 and an inner concave surface that does not protrude and is relatively concave relative to the periphery, and the outer embossing portion 220 ) Has an outer convex surface that protrudes from the outer surface 210 toward the inner hub portion 100 and an outer concave surface that does not protrude and is relatively concave relative to the periphery.
  • FIG. 5 is an enlarged cross-sectional view of a wheel bearing corresponding to A shown in FIG. 1.
  • the inner embossing portion 120 has at least one protrusion 123 protruding from the inner surface 110 toward the outer hub portion 200, and the outer embossing portion 220 has a protrusion ( At least one groove 223 having a shape corresponding to 123 may be provided.
  • the protrusion 123 is one example of the inner convex surface
  • the groove 223 is one example of the outer concave surface. Under such a configuration, the protrusion 123 of the inner embossing part 120 may be fitted into the groove 223 of the outer embossing part 220.
  • the inner embossing portion 120 has at least one groove formed to dent in a direction away from the inner hub portion 200 from the inner surface 110 and at least one of the inner embossing portions 120. At least one protrusion fitted into the groove may be provided in the outer embossing part 220.
  • the groove provided in the inner embossing portion 120 is one example of the inner concave surface
  • the protrusion provided in the outer embossing portion 220 is one example of the outer convex surface.
  • the inner embossing portion and the outer embossing portion including the protrusions and grooves described above are formed in the inner hub portion 100 and the outer hub portion 200, respectively, so that the contact area between the inner surface 110 and the outer surface 210 is widened. Accordingly, the coupling force between the inner hub portion 100 and the outer hub portion 200 may be improved.
  • the inner embossing part 120 and the outer embossing part 220 are in the process where the inner hub part 100 and the outer hub part 200 are manufactured by a cold forging method, a warm forging method, a hot forging method or a semi-melting forging method. It may be formed to have a shape corresponding to each other.
  • the inner embossing portion 120 is first formed, cold forging method for the lightweight alloy material for the manufacture of the inner hub portion 100 and the outer hub portion 200,
  • the outer embossing part 220 may be formed to have a shape corresponding to the shape of the inner embossing part 120 in the process of manufacturing the wheel hub 10 by the warm forging method, the hot forging method, or the semi-melting forging method.
  • the inner hub portion 100 may include a cylindrical portion 150 and a first flange portion 130.
  • the first flange portion 130 may be formed extending in the radial direction from the cylindrical portion 150.
  • the first flange portion 130 may be formed to extend from the cylindrical portion 150 to be perpendicular to the rotation axis direction of the wheel hub 10.
  • the first flange portion 130 has a first inner surface 111 facing the outer hub portion 200, and at least a portion of the first inner surface 111 has a first inner embossing portion 121. Can be formed.
  • the first inner embossing unit 121 may be included in the inner embossing unit 120.
  • the outer hub portion 200 may include a second flange portion 230 coupled to the first flange portion 130 of the inner hub portion 100, and an agent not coupled to the first flange portion 130.
  • Three flange portion 250 may be included.
  • the thickness of the second flange portion 230 may be greater than the thickness of the third flange portion 250.
  • the second flange portion 230 and the third flange portion 250 may be formed of a single material, it may be formed integrally.
  • the second flange portion 230 has a first outer surface 211 facing the inner hub portion 100, and at least a portion of the first outer surface 211 corresponds to the shape of the first inner embossing portion 121.
  • a first outer embossing portion 221 having a shape may be formed.
  • the first outer embossing portion 221 may be included in the outer embossing portion 220.
  • FIG. 6 is an exploded perspective view of the wheel hub 50 according to the second embodiment of the present disclosure, showing a perspective view of the inner hub portion and the outer hub portion
  • FIG. 7 is a perspective view of the wheel hub 50 according to the second embodiment of the present disclosure. It is an exploded perspective view which shows the structure which looked at the inner side hub part and the outer side hub part from the direction different from FIG.
  • the inner hub portion 100 and the outer hub portion 200 are integrally formed by a forging method, and the bolt hole 12 is formed in a hole forming apparatus (not shown) such as a drill. It can be formed at a time.
  • 6 and 7 separately illustrate the inner hub portion 100 and the outer hub portion 200 in an exploded perspective view for convenience of description.
  • the inner hub portion 100 may include a first engagement portion 140 formed to be recessed in the direction toward the suspension device.
  • the first engagement portion 140 has a second inner surface 112 facing the outer hub portion 200, and at least a portion of the second inner surface 112 has a second inner embossing portion 122.
  • the second inner embossing part 122 may be included in the inner embossing part 120.
  • the outer hub portion 200 may include a second binding portion 240 formed to dent in the direction toward the suspension device and to surround the first binding portion 140.
  • the second engagement portion 240 has a second outer surface 212 facing the inner hub portion 100, and at least a portion of the second outer surface 212 has a second outer embossing portion 222. Can be formed.
  • the second outer embossing portion 222 may be included in the outer embossing portion 220.
  • the first binding part 140 and the second binding part 240 are formed in the inner hub part 100 and the outer hub part 200, thereby forming the first binding part 140 and the second binding part 240. Compared to the case where not, the amount of material required to manufacture the inner hub portion 100 and the outer hub portion 200 can be reduced, and the wheel hub 50 can be formed at a light weight.
  • the inner embossing part 120 and the outer embossing part 220 may be formed along a predetermined direction. In one embodiment, at least a portion of the inner embossing portion 120 and the outer embossing portion 220 may be formed along the radial direction. Under this configuration, when the wheel hub 50 rotates, the magnitude of the maximum torque that can be transmitted between the inner embossing portion 120 and the outer embossing portion 220 can be increased. In another embodiment, at least a portion of the inner embossing portion 120 and the outer embossing portion 220 may be formed along the circumferential direction.
  • each of the first inner embossing portion 121 and the second inner embossing portion 122 is formed in a radial direction so as to be continuously connected to each other, the first outer embossing portion 221 and the second outer embossing portion Each of 222 may be formed in a radial direction so as to continuously connect with each other.
  • the inner embossing portion 120 and the outer embossing portion 220 are each formed to have a continuous shape, the process of forming the inner embossing portion 120 on the inner surface 110 and the outer surface 210 on the outer surface 210. Man-hour required in the process of forming the embossing unit 220 can be reduced.
  • FIG. 8 is an exploded perspective view of the wheel hub 60 according to the third embodiment of the present disclosure, which is a perspective view showing an inner hub portion and an outer hub portion
  • FIG. 9 is a wheel hub 60 according to the third embodiment of the present disclosure.
  • An exploded perspective view of the inner hub portion and the outer hub portion is a perspective view showing a configuration viewed from an angle different from that of FIG. 8.
  • the inner hub portion 100 and the outer hub portion 200 are integrally formed by a forging method, and the bolt hole 12 is formed in a hole forming apparatus (not shown) such as a drill. It can be formed at a time. 8 and 9 separately illustrate the inner hub portion 100 and the outer hub portion 200 in an exploded perspective view for convenience of description.
  • the first inner embossing portion 121 is formed in the circumferential direction and the second inner embossing portion 122 is formed of the first inner embossing portion 121 so that the inner embossing portion 120 has a discontinuous shape.
  • the first outer embossing portion 221 is formed in the circumferential direction and the second outer embossing portion 222 is formed in the radial direction so as to end at the side 125, so that the outer embossing portion 220 has a discontinuous shape. 1 may be formed in the radial direction to end at the side portion 225 of the outer embossing portion 221.
  • the coupling force between the inner embossing portion 120 and the outer embossing portion 220 is increased while simultaneously increasing the magnitude of torque that can be transmitted. You can.
  • FIG. 10 is a perspective view showing a wheel hub 70 according to a fourth embodiment of the present disclosure
  • FIG. 11 is an exploded perspective view showing a wheel hub 70 according to a fourth embodiment of the present disclosure
  • 12 is an exploded perspective view showing the wheel hub 70 according to the fourth embodiment of the present disclosure, and is a perspective view showing the inner hub portion and the outer hub portion viewed from a direction different from that of FIG. 11.
  • the inner hub portion 100 and the outer hub portion 200 are integrally formed by a forging method, and the bolt hole 12 is formed in a hole forming apparatus (not shown) such as a drill. It can be formed at a time.
  • 11 and 12 separately illustrate the inner hub portion 100 and the outer hub portion 200 in an exploded perspective view for convenience of description.
  • the outer hub portion 200 is in a form in which the third flange portion 250 is removed in the embodiment shown in FIGS. 3 and 4, that is, the first flange portion 130 of the inner hub portion 100. It may be formed to include only the second flange portion 230 coupled to). By omitting the configuration of the third flange portion 250 in this way, it is possible to reduce the amount of metal material required to manufacture the outer hub portion 200, thereby achieving a lighter weight of the wheel hub 70. .
  • FIGS. 13 to 17 Specific configurations of the wheel hubs disclosed below may be independently applied to the first to fourth embodiments, and two or more configurations may be applied in combination.
  • FIG. 13 is an enlarged cross-sectional view of the wheel bearing 1 corresponding to B shown in FIG. 1.
  • the outer hub portion 200 may couple to both the inner surface 110 and the outer circumferential surface 132 of the inner hub portion 100.
  • the outer hub portion 200 is integrally formed covering the inner surface 110 and the outer circumferential surface 132 of the inner hub portion 100, the inner hub portion 100 and the outer hub portion 200 are coupled to each other. Strength can be improved.
  • the wheel hub 10 may be directly coupled to the wheel of the vehicle through, for example, the first flange portion 130 and the second flange portion 230.
  • a configuration in which the thickness L1 of the first flange portion 130 of the inner hub portion 100 formed of steel material is thick is preferable.
  • the thickness L1 of the first flange portion 130 in the rotation axis direction may be greater than or equal to the thickness L2 of the second flange portion 230. In this case, strength of the first flange portion 130 and the second flange portion 230 of the wheel hub 10 may be ensured.
  • FIG. 14 is an enlarged cross-sectional view of a wheel bearing corresponding to A shown in FIG. 1
  • FIG. 15 is an enlarged cross-sectional view of a wheel bearing corresponding to B shown in FIG. 1, in which FIG. 14 and FIG. 15 both braze. It is sectional drawing for demonstrating the Example using a filler material.
  • a brazing filler metal 300 may be interposed between at least a portion between the inner surface 110 of the inner hub portion 100 and the outer surface 210 of the outer hub portion 200.
  • the brazing filler metal 300 and 305 may be a metal or an alloy material, and may have a melting point that is lower than the melting point of the material of the inner hub part 100 and the material of the outer hub part 200 and is 450 ° C. or more.
  • the brazing filler metal 305 may also be interposed between the outer circumferential surface 132 of the inner hub portion 100 and the outer hub portion 200.
  • the brazing filler metals 300 and 305 may include a paste type brazing filler metal or a film type brazing filler metal.
  • a paste-type brazing filler metal is applied to at least a portion of the inner surface 110 of the inner hub portion 100 or the outer surface 210 of the outer hub portion 200 or the inner hub portion 100 and the outer hub portion.
  • the part 100 and the outer hub part 200 may be integrally formed in the form of the wheel hub 10 by a forging method.
  • the brazing filler metal 300, 305 is heated to a temperature of 450 °C or more, a part of the melt It can be coupled to the inner hub portion 100 and the outer hub portion 200.
  • the brazing filler metals 300 and 305 may be interposing between the inner hub part 100 and the outer hub part 200, the coupling force between the inner hub part 100 and the outer hub part 200 may be improved.
  • the brazing filler metal 300 may have a thickness of 10 to 100 micrometers.
  • the brazing filler metal 300 may be in contact with the entire inner surface 110, the entire outer circumferential surface 132, and the entire outer surface 210. By this configuration, the coupling force between the inner hub portion 100 and the outer hub portion 200 can be improved.
  • FIG. 16 is a perspective view illustrating a film type brazing filler metal as an example of a brazing filler metal used in a wheel hub according to the first embodiment of the present disclosure.
  • the filmed brazing filler metal 300 may be flat film shaped with a first surface 310 facing the outer hub portion 200 and a second surface 320 facing the inner hub portion 100. . In one embodiment, the film brazing filler metal 300 may be formed in a single layer structure, a two-layer structure or three-layer structure each layer is made of a different material.
  • FIG. 17 is a perspective view illustrating a form of the brazing filler metal when the film-type brazing filler metal shown in FIG. 16 is integrally coupled with the inner hub portion and the outer hub portion
  • FIG. 18 is a film of the wheel hub shown in FIG. 17. It is sectional drawing which showed the cross section which cut
  • the shape of the first surface 310 and the second surface 320 of the film-shaped brazing filler metal 300 is the inner hub portion 100, the outer hub portion 200 and the film-shaped brazing filler metal 300 by the forging method When formed integrally, it may be formed by the shape of the outer surface 210 and the inner surface 110.
  • the shape of the first surface 310 of the film-shaped brazing filler metal 300 is the outer hub portion ( It may have a shape corresponding to the shape of at least a portion of the outer surface 210 of the 200
  • the shape of the second surface 320 of the film-type brazing filler metal 300 is the inner surface 110 of the inner hub portion (100) It may have a shape corresponding to the shape of at least a portion.
  • the coupling force between the inner hub portion 100 and the outer hub portion 200 is coupled between the inner surface 110 and the outer surface 210 without being subjected to excessive mechanical stress on the film brazing filler metal 300. Can improve.
  • a wheel bearing including a wheel hub according to the first to fourth embodiments and a wheel hub including the specific configuration of the wheel hub described above.
  • FIG. 19 is an enlarged cross-sectional view of a wheel bearing corresponding to C shown in FIG. 1.
  • the rolling element 20 may be a ball-shaped rolling element 20.
  • the thickness L3 of the inner hub portion 100 in the direction defined so that the rolling element 20 extends from the center of the rolling element 20 to the portion in contact with the wheel hub 10 is the rolling element 20. May be greater than or equal to the radius (R). In this case, the strength at the portion where the rolling element 20 and the wheel hub 10 of the wheel hub 10 contact each other can be ensured.
  • the direction defined to extend from the center of the rolling element 20 to the portion in which the rolling element 20 is in contact with the wheel hub 10 may be formed at an angle of 30 degrees to 40 degrees with the Y-axis (-) direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

자동차의 현가 장치와 휠 사이에 배치되는 휠 베어링에 사용되는 휠 허브가 제공된다. 휠 허브는 스틸 재료로 형성되고 현가 장치를 향해 배치되는 내측 허브부 및 경량 합금 재료로 형성되고 휠을 향해 배치되는 외측 허브부를 포함한다. 내측 허브부는 외측 허브부를 향하는 내측 표면을 갖고, 내측 표면의 적어도 일부에는 내측 엠보싱부가 형성되고, 외측 허브부는 내측 허브부를 향하는 외측 표면을 갖고, 외측 표면의 적어도 일부에는 내측 엠보싱부의 형상에 대응하는 형상을 갖는 외측 엠보싱부가 형성된다.

Description

휠 허브 및 이를 포함하는 휠 베어링
본 개시는 휠 허브 및 이를 포함하는 휠 베어링에 관한 것이다.
휠 베어링 조립체는 차체의 회전하는 요소와 회전하지 않는 요소 사이에 장착되어 회전하는 요소의 회전을 원활하게 하는 장치이다. 차량의 휠 베어링 조립체는 차체에 휠을 회전 가능하도록 연결시킴으로써, 차량이 움직일 수 있는 기능을 제공한다. 이러한 휠 베어링 조립체는 엔진에서 발생하는 동력을 전달하는 구동륜 휠 베어링과 구동력을 전달하지 않는 종동륜 휠베어링으로 구별될 수 있다.
구동륜 휠 베어링 조립체는 회전 요소와 비회전 요소를 포함한다. 회전 요소는 엔진에서 발생하여 변속기를 통과한 토크에 의하여, 구동축과 함께 회전될 수 있다. 이에 반하여, 비회전 요소는 차체에 고정되어 있으며, 이러한 회전 요소와 비회전 요소 사이에는 전동 장치가 개재되어 있다. 종동륜 휠 베어링 조립체는 구동륜 휠 베어링 조립체와 유사한 구성을 포함하나, 구동륜 휠 베어링 조립체와 달리, 회전 요소가 구동축에 연결되어 있지 않다는 차이점이 있다.
휠 베어링 조립체는 차량의 구동계에서 상당한 무게를 차지하고 있으며, 이를 경량화하기 위한 다양한 연구가 진행 중이다. 또한, 휠 베어링 조립체의 경량화를 위한 다양한 시도가 진행되고 있으나, 종래의 휠 베어링 조립체는 자동차의 설계 과정에서 요구되는 인장 강도를 확보하면서 휠 베어링 조립체의 경량화를 달성할 수 없었다.
본 개시의 실시예들은 이종 재료간의 결합으로 경량화된 횔 허브를 포함하는 휠 베어링을 제공한다.
또한, 이종 재료간의 결합이 강화된 휠 허브를 제공한다.
본 개시의 일 실시예에 따르면, 자동차의 현가 장치와 휠 사이에 배치되는 휠 베어링에 사용되는 휠 허브에 있어서, 스틸 재료로 형성되고 현가 장치를 향해 배치되는 내측 허브부; 및 경량 합금 재료로 형성되고 휠을 향해 배치되는 외측 허브부를 포함하고, 내측 허브부는 외측 허브부를 향하는 내측 표면을 갖고, 내측 표면의 적어도 일부에는 내측 엠보싱부가 형성되고, 외측 허브부는 내측 허브부를 향하는 외측 표면을 갖고, 외측 표면의 적어도 일부에는 내측 엠보싱부의 형상에 대응하는 형상을 갖는 외측 엠보싱부가 형성될 수 있다.
일 실시예에 따르면, 내측 엠보싱부는 내측 표면으로부터 외측 허브부를 향하는 방향으로 돌출된 적어도 하나의 돌출부를 포함하고, 외측 엠보싱부는 돌출부에 대응하는 형상을 갖는 적어도 하나의 홈을 포함하고, 돌출부는 홈에 끼워질 수 있다.
일 실시예에 따르면, 내측 허브부는, 원통부 및 원통부로부터 반경방향으로 연장 형성되는 제1 플랜지부를 포함하고, 외측 허브부는 제1 플랜지부에 결합되는 제2 플랜지부를 포함할 수 있다.
일 실시예에 따르면, 내측 엠보싱부는 제1 내측 엠보싱부 및 제2 내측 엠보싱부를 포함하고, 외측 엠보싱부는 제1 외측 엠보싱부 및 제2 외측 엠보싱부를 포함하고, 제1 내측 엠보싱부는 제1 플랜지부의 내측 표면의 적어도 일부에 형성되고, 제1 외측 엠보싱부는 제1 내측 엠보싱부의 형상에 대응하는 형상을 갖고, 제2 플랜지부의 외측 표면의 적어도 일부에 형성되고, 제2 외측 엠보싱부는 제2 내측 엠보싱부의 형상에 대응하는 형상을 가질 수 있다.
일 실시예에 따르면, 내측 허브부는 현가 장치를 향하는 방향으로 움푹 들어가도록 형성된 제1 결속부를 더 포함하고, 외측 허브부는 현가 장치를 향하는 방향으로 움푹 들어가도록 형성되며 제1 결속부와 결합되도록 형성된 제2 결속부를 더 포함하고, 제2 내측 엠보싱부는 제1 결속부의 내측 표면의 적어도 일부에 형성되고, 제2 외측 엠보싱부는 제2 결속부의 외측 표면의 적어도 일부에 형성될 수 있다.
일 실시예에 따르면, 내측 엠보싱부 및 외측 엠보싱부는 적어도 일부가 반경 방향을 따라 형성될 수 있다.
일 실시예에 따르면, 내측 엠보싱부 및 외측 엠보싱부는 적어도 일부가 원주 방향을 따라 형성될 수 있다.
일 실시예에 따르면, 제1 내측 엠보싱부 및 제2 내측 엠보싱부 각각은, 서로 연속적으로 이어지도록 반경 방향으로 형성되고, 제1 외측 엠보싱부 및 제2 외측 엠보싱부 각각은, 서로 연속적으로 이어지도록 반경 방향으로 형성될 수 있다.
일 실시예에 따르면, 내측 엠보싱부가 불연속적인 형상을 갖도록, 제1 내측 엠보싱부는 원주 방향으로 형성되고 제2 내측 엠보싱부는 제1 내측 엠보싱부의 측부에서 끝나도록 반경 방향으로 형성되고, 외측 엠보싱부가 불연속적인 형상을 갖도록, 제1 외측 엠보싱부는 원주 방향으로 형성되고 제2 외측 엠보싱부는 제1 외측 엠보싱부의 측부에서 끝나도록 반경 방향으로 형성될 수 있다.
일 실시예에 따르면, 회전축 방향에서의 제1 플랜지부의 두께는 제2 플랜지부의 두께보다 크거나 같을 수 있다.
일 실시예에 따르면, 내측 엠보싱부 및 외측 엠보싱부는 냉간 단조 방식, 온간 단조 방식, 열간 단조 방식 또는 반용융 단조 방식에 의해 서로 대응되는 형상을 갖도록 형성될 수 있다.
일 실시예에 따르면, 내측 허브부의 내측 표면과 외측 허브부의 외측 표면 사이의 적어도 일부에는 필름형 브레이징 용가재 또는 페이스트형 브레이징 용가재가 개재될 수 있다.
일 실시예에 따르면, 브레이징 용가재는 필름형 브레이징 용가재이며, 필름형 브레이징 용가재는 외측 허브부를 향하는 제1 표면을 갖고, 제1 표면의 형상은 외측 허브부의 외측 표면의 적어도 일부의 형상에 대응되는 형상을 갖고, 브레이징 용가재는 내측 허브부를 향하는 제2 표면을 갖고, 제2 표면의 형상은 내측 허브부의 내측 표면의 적어도 일부의 형상에 대응되는 형상을 가질 수 있다.
일 실시예에 따르면, 브레이징 용가재는 필름형 브레이징 용가재이며, 필름형 브레이징 용가재는, 단일층 구조, 각 층이 상이한 재료로 이루어지는 이층 구조 또는 각 층이 상이한 재료로 이루어지는 삼층 구조로 형성될 수 있다.
일 실시예에 따르면, 브레이징 용가재는 10 내지 100 마이크로미터의 두께를 가질 수 있다.
일 실시예에 따르면, 내측 허브부, 외측 허브부 및 브레이징 용가재는 단조 방식으로 일체로 형성될 수 있다.
본 개시의 다른 실시예에 따른 자동차의 현가 장치와 휠 사이에 배치되는 휠 베어링은, 현가 장치의 일 측에 결합되는 외륜; 외륜에 대하여 회전 가능하게 결합되는 휠 허브; 및 외륜과 휠 허브 사이에 개재되는 적어도 하나의 전동체를 포함하고, 휠 허브는, 스틸 재료로 형성되고 현가 장치를 향해 배치되는 내측 허브부; 및 경량 합금 재료로 형성되고 휠을 향해 배치되는 외측 허브부를 포함하고, 내측 허브부는 외측 허브부를 향하는 내측 표면을 갖고, 내측 표면의 적어도 일부에는 내측 엠보싱부가 형성되고, 외측 허브부는 내측 허브부를 향하는 외측 표면을 갖고, 외측 표면의 적어도 일부에는 내측 엠보싱부의 형상에 대응하는 형상을 갖는 외측 엠보싱부가 형성될 수 있다.
일 실시예에 따르면, 내측 허브부의 내측 표면과 외측 허브부의 외측 표면 사이의 적어도 일부에는 브레이징 용가재가 개재될 수 있다.
일 실시예에 따르면, 전동체는 볼 형상 전동체이며, 전동체의 중심으로부터 전동체가 휠 허브와 접촉하는 부분으로 연장되도록 정의되는 방향에서의 내측 허브부의 두께가 전동체의 반지름보다 크거나 같을 수 있다.
본 개시의 실시예들에 의하면, 휠 허브에 경량 합금 재료를 적용하여 휠 허브의 중량을 감소시킬 수 있다.
본 개시의 실시예들에 의하면, 스틸 재료로 구성되는 부분과 경량 합금 재료로 구성되는 부분의 분리가 방지될 수 있다.
본 개시의 실시예들에 의하면, 전동체에 결합되는 부분이 스틸 재료로 구성되어 요구되는 강성이 제공될 수 있고, 지지 하중이 적절한 위치에 제공될 수 있다.
도 1은 본 개시의 제1 실시예에 따른 휠 베어링의 단면을 나타낸 단면도이다.
도 2는 본 개시의 제1 실시예에 따른 휠 허브를 나타낸 사시도이다.
도 3은 본 개시의 제1 실시예에 따른 휠 허브의 분해 사시도로서, 내측 허브부와 외측 허브부를 나타낸 사시도이다.
도 4는 본 개시의 제1 실시예에 따른 휠 허브의 분해 사시도로서, 내측 허브부와 외측 허브부를 도 3과 다른 방향에서 바라본 구성을 나타낸 사시도이다.
도 5는 도 1에 표시된 A와 대응하는 휠 베어링의 단면을 확대한 단면도이다.
도 6은 본 개시의 제2 실시예에 따른 휠 허브의 분해 사시도로서, 내측 허브부와 외측 허브부를 나타낸 사시도이다.
도 7은 본 개시의 제2 실시예에 따른 휠 허브의 분해 사시도로서, 내측 허브부와 외측 허브부를 도 6과 다른 방향에서 바라본 구성을 나타낸 사시도이다.
도 8은 본 개시의 제3 실시예에 따른 휠 허브의 분해 사시도로서, 내측 허브부와 외측 허브부를 나타낸 사시도이다.
도 9는 본 개시의 제3 실시예에 따른 휠 허브의 분해 사시도로서, 내측 허브부와 외측 허브부를 도 8과 다른 각도에서 바라본 구성을 나타낸 사시도이다.
도 10은 본 개시의 제4 실시예에 따른 휠 허브를 나타낸 사시도이다.
도 11은 본 개시의 제4 실시예에 따른 휠 허브를 나타낸 분해 사시도로서, 내측 허브부와 외측 허브부를 나타낸 사시도이다.
도 12는 본 개시의 제4 실시예에 따른 휠 허브를 나타낸 분해 사시도로서, 내측 허브부와 외측 허브부를 도 11과 다른 방향에서 바라본 구성을 나타낸 사시도이다.
도 13은 도 1에 도시된 B와 대응하는 휠 베어링의 단면을 확대한 단면도이다.
도 14는 도 1에 표시된 A와 대응하는 휠 베어링의 단면을 확대한 단면도로써, 브레이징 용가재를 사용하는 실시예를 설명하기 위한 단면도이다.
도 15는 도 1에 도시된 B와 대응하는 휠 베어링의 단면을 확대한 단면도로써, 브레이징 용가재를 사용하는 실시예를 설명하기 위한 단면도이다.
도 16은 본 개시의 제1 실시예에 따른 휠 허브에 사용되는 필름형 브레이징 용가재를 도시한 사시도이다.
도 17은 도 16에 도시된 필름형 브레이징 용가재가 내측 허브부 및 외측 허브부와 일체로 결합되어 있을 때의 형태를 도시한 사시도이다.
도 18은 도 17에 도시된 휠 허브의 필름형 브레이징 용가재를 EE 방향으로 절단한 단면을 나타낸 단면도이다.
도 19는 도 1에 도시된 C에 대응하는 휠 베어링의 단면을 확대한 단면도이다.
<부호의 설명>
1: 휠 베어링, 10, 50, 60, 70: 휠 허브, 12: 볼트홀 20: 전동체, 30: 내륜, 40:외륜, 100: 내측 허브부, 200: 외측 허브부, 300: 브레이징 용가재, 110: 내측 표면, 120: 내측 엠보싱부, 130: 제1 플랜지부, 140: 제1 결속부, 150: 원통부, 210: 외측 표면, 220: 외측 엠보싱부, 230: 제2 플랜지부, 240: 제2 결속부, 250: 제3 플랜지부, 310: 제1 표면, 320: 제2 표면, 111: 제1 내측 표면, 112: 제2 내측 표면, 121: 제1 내측 엠보싱부, 122: 제2 내측 엠보싱부, 123: 돌출부, 211: 제1 외측 표면, 212: 제2 외측 표면, 221: 제1 외측 엠보싱부, 222: 제2 외측 엠보싱부, 223: 홈
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.
본 개시에서, 어떤 구성요소가 다른 구성요소에 "결합되어" 있다고 언급된 경우, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 결합될 수 있는 것으로, 또는 새로운 다른 구성요소를 매개로 하여 결합될 수 있는 것으로 이해되어야 한다.
본 개시에서 기재되는 치수와 수치는 기재된 치수와 수치 만으로 한정되는 것은 아니다. 달리 특정되지 않는 한, 이러한 치수와 수치는 기재된 값 및 이것을 포함하는 동등한 범위를 의미하는 것으로 이해될 수 있다. 예를 들어, 본 개시에 기재된 '10 마이크로미터'라는 치수는 '약 10 마이크로미터'를 포함하는 것으로 이해될 수 있다.
이하, 첨부한 도면들을 참조하여, 본 개시의 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
본 개시에서, 반경 방향은 회전축(rotational axis, RA)으로부터 멀어지는 방향을 의미하는 것으로 정의될 수 있고, 원주 방향은 회전축(RA)을 중심으로 회전축(RA)을 감싸는 방향을 의미하는 것으로 정의될 수 있다.
도 1은 본 개시의 제1 실시예에 따른 휠 베어링(1)의 단면을 나타낸 단면도이다. 도 1에 도시된 좌표계에서, X축 방향은 휠 베어링(1)의 회전축(RA) 방향과 평행한 방향을 나타낼 수 있고, Y축 방향은 회전축(RA) 방향에 수직한 방향을 나타낼 수 있다.
휠 베어링(1)은 자동차의 현가 장치와 휠 사이에 배치되어 현가 장치에 대하여 휠을 회전시킬 수 있다. 휠 베어링(1)은 회전축(RA)을 중심으로 대칭하는 형상을 가질 수 있다. 일 실시예에서, 휠 베어링(1)은 휠 허브(10), 전동체(20), 내륜(30) 및 외륜(40)을 포함할 수 있다. 현가 장치는 휠 베어링(1)의 X 축 (+) 방향에 배치될 수 있고, 휠은 휠 베어링(1)의 X축 (-) 방향에 배치될 수 있다. 휠 베어링(1)의 Y축 (+) 방향에는 차체가 위치될 수 있고, 휠 베어링(1)의 Y축 (-) 방향에는 지면이 위치될 수 있다.
일 실시예에서, 휠 허브(10)는 외륜(40)에 대하여 회전 가능할 수 있고, 내측 허브부(100) 및 외측 허브부(200)를 포함할 수 있다. 또한, 휠 허브(10)에는 내측 허브부(100)와 외측 허브부(200)를 관통하는 볼트홀(12)이 형성될 수 있다. 휠 허브(10)는 적어도 두 개의 이종 재료로 구성될 수 있다. 또한, 휠 허브(10)는 볼트홀(12)에 체결되는 휠 볼트(도시되지 않음)에 의해 자동차의 휠과 직접적으로 결합될 수 있다. 이러한 구조 하에서, 휠 허브(10)는 휠 회전 시 휠과 동시에 회전할 수 있다.
일 실시예에서, 외륜(40)은 현가 장치의 일 측에 결합될 수 있다. 외륜(40)은 비회전 요소로 제공될 수 있고, 현가 장치의 일 측에 결합된 후에는 위치가 이동되지 않도록 구성될 수 있다. 외륜(40)은, 예를 들어 현가 장치의 너클 암에 결합되어 위치가 고정될 수 있다.
일 실시예에서, 전동체(20)는 외륜(40)과 휠 허브(10) 사이에 개재될 수 있다. 전동체(20)는 예를 들어, 볼 베어링과 같은 형태를 가질 수 있고, 복수의 볼을 포함할 수 있다. 볼의 상측 부분은 외륜(40)과 접촉하고, 볼의 하측 부분은 내륜(30) 또는 휠 허브(10)와 접촉하여 구를(rolling) 수 있다. 또한, 전동체(20)는 예를 들어 2열 이상으로 제공될 수 있다. 이 경우, 2열 이상의 전동체(20)가 휠 허브(10)를 더 많은 지점에 대하여 지지하므로 휠 허브(10)는 외륜(40)에 대하여 안정적으로 회전될 수 있다.
도 2는 본 개시의 제1 실시예에 따른 휠 허브(10)를 나타낸 사시도이다.
일 실시예에서, 내측 허브부(100)는 스틸 재료로 형성되고 현가 장치를 향해 배치될 수 있고, 외측 허브부(200)는 경량 함금 재료로 형성되고 휠을 향해 배치될 수 있다. 여기서, 경량 합금 재료는, 예를 들어, 알루미늄, 마그네슘, 티타늄 중 하나 이상 또는 이들의 조합을 포함하는 합금으로 구성될 수 있다. 내측 허브부(100)가 스틸 재료로 형성되고, 외측 허브부(200)가 경량 합금 재료로 형성됨으로써, 스틸 재료로만 구성된 휠 허브에 비해, 휠 허브(10)가 경량으로 형성되면서도 휠 허브(10)와 전동체(20)가 접촉하는 지점의 강도가 유지될 수 있다.
일 실시예에 따르면, 내측 허브부(100) 및 외측 허브부(200)는 냉간 단조 방식, 온간 단조 방식 또는 열간 단조 방식에 의해 일체로 형성될 수 있다. 예를 들어 열간 단조 방식에 의할 경우, 스틸 재료로 내측 허브부(100)를 먼저 제조하고, 외측 허브부(200)의 외형에 대응되는 내형을 갖는 금형 내에 내측 허브부(100)와 외측 허브부(200)를 형성하기 위한 경량 합금 재료(예를 들어, 경량 합금 재료로 제조한 프리폼)를 배치한 후, 내측 허브부(100)와 경량 합금 재료를 고온 및 고압의 환경에서 열간 형성하여 휠 허브(10)를 제조할 수 있다.
이와 달리, 내측 허브부(100) 및 외측 허브부(200)는 반용융 단조 방식으로 형성될 수 있다. 반용융 단조 방식은, 피단조물이 완전한 액체 또는 완전한 고체 상태에서 압축되는 방식이 아니라, 피단조물이 반용융 상태로 가열된 후, 반용융 상태에서 압축되는 방식을 의미할 수 있다. 여기서, 피단조물의 반용융 상태는 피조물이 일정한 수준 이상의 온도로 가열됨에 따라 피단조물의 일부가 녹은 상태, 즉 액체와 고체의 중간 상태를 의미할 수 있다. 이러한 반용융 방식 하에서, 내측 허브부(100), 외측 허브부(200)는 각각 일정한 수준 이상의 온도로 가열된 후 반용융 상태에서 압축되어 일체로 형성될 수 있다. 단조 방식은 다른 방식들에 비하여 공정이 단순하고 비용이 적게 소요된다는 점에서 유리할 수 있다.
내측 허브부(100)와 외측 허브부(200)가 단조 방식으로 일체로 형성된 후, 볼트홀(12)이 드릴과 같은 홀 형성 장치(미도시)에 의하여 한번에 형성될 수 있다. 즉, 내측 허브부(100)와 외측 허브부(200)의 볼트홀(12)은 각각 형성되는 것이 아니고, 하나의 공정을 통해 형성될 수 있다. 이러한 구성에 의하면, 내측 허브부(100)의 볼트홀과 외측 허브부(200)의 볼트홀의 매칭성이 향상될 수 있다.
도 3은 본 개시의 제1 실시예에 따른 휠 허브의 분해 사시도로서, 내측 허브부와 외측 허브부를 나타낸 사시도이며, 도 4는 본 개시의 제1 실시예에 따른 휠 허브의 분해 사시도로서, 내측 허브부와 외측 허브부를 도 3과 다른 방향에서 바라본 구성을 나타낸 사시도이다. 내측 허브부(100)와 외측 허브부(200)는 단조 방식에 의해 일체로 형성되며, 볼트홀(12)은 드릴과 같은 홀 형성 장치(미도시)에 의하여 한번에 형성될 수 있다. 다만, 도 3 및 도 4에서는 설명의 편의를 위하여 내측 허브부(100)와 외측 허브부(200)를 분해 사시도의 형태로 분리하여 도시하고 있다.
일 실시예에서, 내측 허브부(100)는 외측 허브부(200)를 향하는 내측 표면(110)을 갖고, 내측 표면(110)의 적어도 일부에는 내측 엠보싱부(120)가 형성될 수 있다. 또한, 외측 허브부(200)는 내측 허브부(100)를 향하는 외측 표면(210)을 갖고, 외측 표면(210)의 적어도 일부에는 내측 엠보싱부(120)의 형상에 대응하는 형상을 갖는 외측 엠보싱부(220)가 형성될 수 있다.
내측 엠보싱부(120)는 내측 표면(110)으로부터 외측 허브부(200)를 향하는 방향으로 돌출된 내측 볼록 표면과, 돌출되지 않아 주변에 비해 상대적으로 오목한 내측 오목 표면을 갖고, 외측 엠보싱부(220)는 외측 표면(210)으로부터 내측 허브부(100)를 향하는 방향으로 돌출된 외측 볼록 표면과, 돌출되지 않아 주변에 비해 상대적으로 오목한 외측 오목 표면을 갖는다.
도 5는 도 1에 표시된 A와 대응하는 휠 베어링의 단면을 확대한 단면도이다.
일 실시예에서, 내측 엠보싱부(120)는 내측 표면(110)으로부터 외측 허브부(200)를 향하는 방향으로 돌출된 적어도 하나의 돌출부(123)를 구비하고, 외측 엠보싱부(220)는 돌출부(123)에 대응하는 형상을 갖는 적어도 하나의 홈(223)을 구비할 수 있다. 돌출부(123)는 내측 볼록 표면의 일 예시이며, 홈(223)은 외측 오목 표면의 일 예시이다. 이러한 구성 하에서, 내측 엠보싱부(120)의 돌출부(123)는 외측 엠보싱부(220)의 홈(223)에 끼워질 수 있다. 다른 실시예에서, 내측 엠보싱부(120)는 내측 표면(110)으로부터 외측 허브부(200)로부터 멀어지는 방향으로 움푹 들어가도록 형성된 적어도 하나의 홈을 구비하고, 내측 엠보싱부(120)의 적어도 하나의 홈에 끼워지는 적어도 하나의 돌출부가 외측 엠보싱부(220)에 구비될 수 있다. 이 경우, 내측 엠보싱부(120)에 구비된 홈은 내측 오목 표면의 일 예시이며, 외측 엠보싱부(220)에 구비된 돌출부는 외측 볼록 표면의 일 예시이다.
상술한 돌출부 및 홈을 포함한 내측 엠보싱부 및 외측 엠보싱부가 내측 허브부(100) 및 외측 허브부(200)에 각각 형성됨으로써 내측 표면(110)과 외측 표면(210)의 접촉 면적이 넓어지게 되고, 이에 따라 내측 허브부(100) 및 외측 허브부(200)의 결합력이 향상될 수 있다.
내측 엠보싱부(120) 및 외측 엠보싱부(220)는 내측 허브부(100) 및 외측 허브부(200)가 냉간 단조 방식, 온간 단조 방식, 열간 단조 방식 또는 반용융 단조 방식에 의해 제조되는 과정에서 서로 대응되는 형상을 갖도록 형성될 수 있다. 예를 들어, 내측 허브부(100)의 제조 과정에서 내측 엠보싱부(120)가 먼저 형성되고, 내측 허브부(100)와 외측 허브부(200)의 제조를 위한 경량 합금 재료를 냉간 단조 방식, 온간 단조 방식, 열간 단조 방식 또는 반용융 단조 방식에 의해 휠 허브(10)로 제조하는 과정에서 외측 엠보싱부(220)가 내측 엠보싱부(120)의 형상에 대응되는 형상을 갖도록 형성될 수 있다.
다시 도 3 및 도 4를 참조하여, 일 실시예에서, 내측 허브부(100)는 원통부(150) 및 제1 플랜지부(130)를 포함할 수 있다. 여기서, 제1 플랜지부(130)는 원통부(150)로부터 반경방향으로 연장 형성될 수 있다. 예를 들어, 제1 플랜지부(130)는 휠 허브(10)의 회전축 방향에 수직하도록 원통부(150)로부터 연장 형성될 수 있다.
일 실시예에서, 제1 플랜지부(130)는 외측 허브부(200)를 향하는 제1 내측 표면(111)을 갖고, 제1 내측 표면(111)의 적어도 일부에는 제1 내측 엠보싱부(121)가 형성될 수 있다. 여기서, 제1 내측 엠보싱부(121)는 내측 엠보싱부(120)에 포함될 수 있다.
일 실시예에서, 외측 허브부(200)는 내측 허브부(100)의 제1 플랜지부(130)에 결합되는 제2 플랜지부(230)와, 제1 플랜지부(130)에 결합되지 않는 제3 플랜지부(250)를 포함할 수 있다. 제2 플랜지부(230)의 두께는 제3 플랜지부(250)의 두께보다 크게 형성될 수 있다. 제2 플랜지부(230)와 제3 플랜지부(250)는 단일 소재로 형성될 수 있으며, 일체로 형성될 수 있다.
제2 플랜지부(230)는 내측 허브부(100)를 향하는 제1 외측 표면(211)을 갖고, 제1 외측 표면(211)의 적어도 일부에는 제1 내측 엠보싱부(121)의 형상에 대응하는 형상을 갖는 제1 외측 엠보싱부(221)가 형성될 수 있다. 여기서, 제1 외측 엠보싱부(221)는 외측 엠보싱부(220)에 포함될 수 있다.
도 6은 본 개시의 제2 실시예에 따른 휠 허브(50)의 분해 사시도로서 내측 허브부와 외측 허브부를 나타낸 사시도이며, 도 7은 본 개시의 제2 실시예에 따른 휠 허브(50)의 분해 사시도로서 내측 허브부와 외측 허브부를 도 6과 다른 방향에서 바라본 구성을 나타낸 사시도이다. 제1 실시예에 대해 설명한 바와 같이, 내측 허브부(100)와 외측 허브부(200)는 단조 방식에 의해 일체로 형성되며, 볼트홀(12)은 드릴과 같은 홀 형성 장치(미도시)에 의하여 한번에 형성될 수 있다. 다만, 도 6 및 도 7에서는 설명의 편의를 위하여 내측 허브부(100)와 외측 허브부(200)를 분해 사시도의 형태로 분리하여 도시하고 있다.
일 실시예에서, 내측 허브부(100)는 현가 장치를 향하는 방향으로 움푹 들어가도록 형성된 제1 결속부(140)를 포함할 수 있다. 일 실시예에서, 제1 결속부(140)는 외측 허브부(200)를 향하는 제2 내측 표면(112)을 갖고, 제2 내측 표면(112)의 적어도 일부에는 제2 내측 엠보싱부(122)가 형성될 수 있다. 여기서, 제2 내측 엠보싱부(122)는 내측 엠보싱부(120)에 포함될 수 있다.
일 실시예에서, 외측 허브부(200)는 현가 장치를 향하는 방향으로 움푹 들어가도록 형성되며 제1 결속부(140)를 감싸도록 형성된 제2 결속부(240)를 포함할 수 있다. 일 실시예에서, 제2 결속부(240)는 내측 허브부(100)를 향하는 제2 외측 표면(212)을 갖고, 제2 외측 표면(212)의 적어도 일부에는 제2 외측 엠보싱부(222)가 형성될 수 있다. 여기서, 제2 외측 엠보싱부(222)는 외측 엠보싱부(220)에 포함될 수 있다.
제1 결속부(140) 및 제2 결속부(240)가 내측 허브부(100) 및 외측 허브부(200)에 형성됨으로써, 제1 결속부(140) 및 제2 결속부(240)를 형성하지 않은 경우에 비해 내측 허브부(100) 및 외측 허브부(200)를 제조하는 데 필요한 재료의 양을 절감할 수 있으며 휠 허브(50)를 경량으로 형성할 수 있다.
내측 엠보싱부(120) 및 외측 엠보싱부(220)는 일정한 방향을 따라 형성될 수 있다. 일 실시예에서, 내측 엠보싱부(120) 및 외측 엠보싱부(220)는, 적어도 일부가 반경 방향을 따라 형성될 수 있다. 이러한 구성 하에서, 휠 허브(50)가 회전하는 경우, 내측 엠보싱부(120) 및 외측 엠보싱부(220) 사이의 전달가능한 최대 토크의 크기가 증가될 수 있다. 다른 실시예에서, 내측 엠보싱부(120) 및 외측 엠보싱부(220)는 적어도 일부가 원주 방향을 따라 형성될 수 있다.
일 실시예에서, 제1 내측 엠보싱부(121) 및 제2 내측 엠보싱부(122) 각각은, 서로 연속적으로 이어지도록 반경 방향으로 형성되고, 제1 외측 엠보싱부(221) 및 제2 외측 엠보싱부(222) 각각은, 서로 연속적으로 이어지도록 반경 방향으로 형성될 수 있다. 이 경우, 내측 엠보싱부(120) 및 외측 엠보싱부(220)가 각각 연속적인 형상을 갖도록 형성되므로, 내측 표면(110)에 내측 엠보싱부(120)를 형성하는 공정 및 외측 표면(210)에 외측 엠보싱부(220)를 형성하는 공정에서 필요로 되는 공수를 절감할 수 있다.
도 8은 본 개시의 제3 실시예에 따른 휠 허브(60)의 분해 사시도로서, 내측 허브부와 외측 허브부를 나타낸 사시도이며, 도 9는 본 개시의 제3 실시예에 따른 휠 허브(60)의 분해 사시도로서, 내측 허브부와 외측 허브부를 도 8과 다른 각도에서 바라본 구성을 나타낸 사시도이다. 제1 실시예에 대해 설명한 바와 같이, 내측 허브부(100)와 외측 허브부(200)는 단조 방식에 의해 일체로 형성되며, 볼트홀(12)은 드릴과 같은 홀 형성 장치(미도시)에 의하여 한번에 형성될 수 있다. 다만, 도 8 및 도 9에서는 설명의 편의를 위하여 내측 허브부(100)와 외측 허브부(200)를 분해 사시도의 형태로 분리하여 도시하고 있다.
일 실시예에서, 내측 엠보싱부(120)가 불연속적인 형상을 갖도록, 제1 내측 엠보싱부(121)는 원주 방향으로 형성되고 제2 내측 엠보싱부(122)는 제1 내측 엠보싱부(121)의 측부(125)에서 끝나도록 반경 방향으로 형성되고, 외측 엠보싱부(220)가 불연속적인 형상을 갖도록, 제1 외측 엠보싱부(221)는 원주 방향으로 형성되고 제2 외측 엠보싱부(222)는 제1 외측 엠보싱부(221)의 측부(225)에서 끝나도록 반경 방향으로 형성될 수 있다.
내측 엠보싱부(120)와 외측 엠보싱부(220)가 각각 불연속적인 형상을 갖도록 형성함으로써, 내측 엠보싱부(120)와 외측 엠보싱부(220) 사이의 결합력을 향상시키면서 동시에 전달가능한 토크의 크기를 증가시킬 수 있다.
도 10은 본 개시의 제4 실시예에 따른 휠 허브(70)를 나타낸 사시도이고, 도 11은 본 개시의 제4 실시예에 따른 휠 허브(70)를 나타낸 분해 사시도로서 내측 허브부와 외측 허브부를 나타낸 사시도이며, 도 12는 본 개시의 제4 실시예에 따른 휠 허브(70)를 나타낸 분해 사시도로서 내측 허브부와 외측 허브부를 도 11와 다른 방향에서 바라본 구성을 나타낸 사시도이다. 제1 실시예에 대해 설명한 바와 같이, 내측 허브부(100)와 외측 허브부(200)는 단조 방식에 의해 일체로 형성되며, 볼트홀(12)은 드릴과 같은 홀 형성 장치(미도시)에 의하여 한번에 형성될 수 있다. 다만, 도 11 및 도 12에서는 설명의 편의를 위하여 내측 허브부(100)와 외측 허브부(200)를 분해 사시도의 형태로 분리하여 도시하고 있다.
일 실시예에서, 외측 허브부(200)는 도 3 및 도 4에 도시된 실시예에서 제3 플랜지부(250)가 제거된 형태로, 즉 내측 허브부(100)의 제1 플랜지부(130)에 결합되는 제2 플랜지부(230)만을 포함하여 형성될 수 있다. 이와 같이 제3 플랜지부(250)의 구성을 생략함으로써, 외측 허브부(200)를 제조하는 데 필요한 금속 재료의 양을 절감할 수 있으며, 이에 따라 휠 허브(70)의 경량화를 달성할 수 있다.
이하, 도 13 내지 도 17을 참조하여 본 개시의 일 실시예에 따른 휠 허브의 구체적 구성에 대해 설명한다. 아래에 개시된 휠 허브의 구체적 구성은 제1 내지 제4 실시예에 각각 독립적으로 적용될 수 있으며 둘 이상의 구성이 복합적으로 적용될 수도 있다.
도 13은 도 1에 도시된 B와 대응하는 휠 베어링(1)의 단면을 확대한 단면도이다.
도 13에 도시된 바와 같이, 외측 허브부(200)는 내측 허브부(100)의 내측 표면(110)과 외주면(132) 모두에 결합할 수 있다. 이 경우, 외측 허브부(200)가 내측 허브부(100)의 내측 표면(110)과 외주면(132)을 덮으며 일체로 형성되므로, 내측 허브부(100)와 외측 허브부(200)의 결합 강도가 향상될 수 있다.
휠 허브(10)는 예를 들어, 제1 플랜지부(130) 및 제2 플랜지부(230)를 통해 자동차의 휠과 직접적으로 결합될 수 있다. 이 경우, 휠 허브(10)의 강도를 보장하기 위해서 스틸 재료로 형성된 내측 허브부(100)의 제1 플랜지부(130)의 두께(L1)가 두꺼운 구성이 바람직하다.
일 실시예에서, 회전축 방향에서의 제1 플랜지부(130)의 두께(L1)는 제2 플랜지부(230)의 두께(L2)보다 크거나 같을 수 있다. 이 경우, 휠 허브(10)의 제1 플랜지부(130) 및 제2 플랜지부(230)의 강도를 보장할 수 있다.
도 14는 도 1에 표시된 A와 대응하는 휠 베어링의 단면을 확대한 단면도이며, 도 15는 도 1에 도시된 B와 대응하는 휠 베어링의 단면을 확대한 단면도로써, 도 14 및 도 15 모두 브레이징 용가재를 사용하는 실시예를 설명하기 위한 단면도이다.
일 실시예에서, 내측 허브부(100)의 내측 표면(110)과 외측 허브부(200)의 외측 표면(210) 사이의 적어도 일부에는 브레이징 용가재(brazing filler metal, 300)가 개재될 수 있다. 브레이징 용가재(300, 305)는 금속 또는 합금 소재이며, 내측 허브부(100)의 소재 및 외측 허브부(200)의 소재의 용융점보다 낮고 450℃ 이상인 용융점을 가질 수 있다. 내측 허브부(100)의 외주면(132)과 외측 허브부(200) 사이에도 브레이징 용가재(305)가 개재될 수 있다.
브레이징 용가재(300, 305)는 페이스트형 브레이징 용가재(past type brazing filler metal) 또는 필름형 브레이징 용가재(film type brazing filler metal)를 포함할 수 있다. 예를 들어, 내측 허브부(100)의 내측 표면(110) 또는 외측 허브부(200)의 외측 표면(210)의 적어도 일부에 페이스트형 브레이징 용가재가 도포되거나 내측 허브부(100)와 외측 허브부(200)의 적어도 일부에 필름형 브레이징 용가재(300)가 개재되고 내측 허브부(100)의 외주면(132) 상에 페이스트형 브레이징 용가재가 도포되거나 필름형 브레이징 용가재(305)가 개재된 후 내측 허브부(100)와 외측 허브부(200)가 단조 방식에 의해 휠 허브(10)의 형태로 일체로 형성될 수 있다.
내측 허브부(100)와 외측 허브부(200)가 단조 방식에 의해 휠 허브(10)의 형태로 형성되는 과정에서, 브레이징 용가재(300, 305)가 450℃ 이상의 온도로 가열되고, 일부가 용융되어 내측 허브부(100) 및 외측 허브부(200)에 결합될 수 있다. 이와 같이 내측 허브부(100)와 외측 허브부(200) 사이에 브레이징 용가재(300, 305)를 개재함으로써, 내측 허브부(100) 및 외측 허브부(200) 간의 결합력이 향상될 수 있다.
일 실시예에서, 브레이징 용가재(300)는 10 내지 100 마이크로미터의 두께를 가질 수 있다.
브레이징 용가재(300)는 내측 표면(110) 전체, 외주면(132) 전체 및 외측 표면(210) 전체와 접촉하는 형상일 수 있다. 이러한 구성에 의하여, 내측 허브부(100) 및 외측 허브부(200)의 결합력이 향상될 수 있다.
도 16은 본 개시의 제1 실시예에 따른 휠 허브에 사용되는 브레이징 용가재의 일 예시로서 필름형 브레이징 용가재를 도시한 사시도이다.
일 실시예에서, 필름형 브레이징 용가재(300)는 외측 허브부(200)를 향하는 제1 표면(310) 및 내측 허브부(100)를 향하는 제2 표면(320)을 가진 편평한 필름 형상일 수 있다. 일 실시예에서, 필름형 브레이징 용가재(300)는, 단일층 구조, 각 층이 상이한 재료로 이루어지는 이층 구조 또는 삼층 구조로 형성될 수 있다.
도 17은 도 16에 도시된 필름형 브레이징 용가재가 내측 허브부 및 외측 허브부와 일체로 결합되어 있을 때의 브레이징 용가재의 형태를 도시한 사시도이며, 도 18은 도 17에 도시된 휠 허브의 필름형 브레이징 용가재를 EE 방향으로 절단한 단면을 나타낸 단면도이다.
필름형 브레이징 용가재(300)의 제1 표면(310) 및 제2 표면(320)의 형상은 내측 허브부(100), 외측 허브부(200) 및 필름형 브레이징 용가재(300)가 단조 방식에 의해 일체로 형성될 때 외측 표면(210) 및 내측 표면(110)의 형상에 의해 형성될 수 있다. 예를 들어, 필름형 브레이징 용가재(300)가 내측 허브부(100) 및 외측 허브부(200)와 결합함에 따라 필름형 브레이징 용가재(300)의 제1 표면(310)의 형상은 외측 허브부(200)의 외측 표면(210)의 적어도 일부의 형상에 대응되는 형상을 가질 수 있으며, 필름형 브레이징 용가재(300)의 제2 표면(320)의 형상은 내측 허브부(100)의 내측 표면(110)의 적어도 일부의 형상에 대응되는 형상을 가질 수 있다.
이러한 구성에 의해, 필름형 브레이징 용가재(300)에 지나친 기계적 응력이 걸리지 않으면서 내측 표면(110) 및 외측 표면(210) 사이에 결합하여 내측 허브부(100)와 외측 허브부(200)간의 결합력을 향상시킬 수 있다.
본 개시의 다른 실시예에 따르면, 제1 내지 제4 실시예에 따른 휠 허브 및 앞서 설명한 휠 허브의 구체적 구성을 포함하는 휠 허브를 포함하는 휠 베어링이 제공된다.
도 19는 도 1에 도시된 C에 대응하는 휠 베어링의 단면을 확대한 단면도이다.
동력 전달 시, 휠 허브(10)에서 전동체(20)가 접촉하는 부분에 기계적 응력이 집중될 수 있다. 따라서, 동력 전달 시 휠 허브(10)의 강도를 보장하기 위해서 전동체(20)가 접촉하는 부분에서 스틸 재료로 형성된 내측 허브부(100)의 두께를 두껍게 하는 것이 바람직하다.
일 실시예에서, 전동체(20)는 볼 형상 전동체(20)일 수 있다. 이 경우, 전동체(20)의 중심으로부터 전동체(20)가 휠 허브(10)와 접촉하는 부분으로 연장되도록 정의되는 방향에서의 내측 허브부(100)의 두께(L3)가 전동체(20)의 반지름(R)보다 크거나 같을 수 있다. 이 경우, 휠 허브(10)의 전동체(20)와 휠 허브(10)가 접촉하는 부분에서의 강도를 보장할 수 있다.
전동체(20)의 중심으로부터 전동체(20)가 휠 허브(10)와 접촉하는 부분으로 연장되도록 정의되는 방향은 Y축 (-)방향과 30도 내지 40도의 각도로 형성될 수 있다.
이상 일부 실시예들과 첨부된 도면에 도시된 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.

Claims (19)

  1. 자동차의 현가 장치와 휠 사이에 배치되는 휠 베어링에 사용되는 휠 허브에 있어서,
    스틸 재료로 형성되고 상기 현가 장치를 향해 배치되는 내측 허브부; 및
    경량 합금 재료로 형성되고 상기 휠을 향해 배치되는 외측 허브부를 포함하고,
    상기 내측 허브부는 상기 외측 허브부를 향하는 내측 표면을 갖고, 상기 내측 표면의 적어도 일부에는 내측 엠보싱부가 형성되고,
    상기 외측 허브부는 상기 내측 허브부를 향하는 외측 표면을 갖고, 상기 외측 표면의 적어도 일부에는 상기 내측 엠보싱부의 형상에 대응하는 형상을 갖는 외측 엠보싱부가 형성되는, 휠 허브.
  2. 제1항에 있어서,
    상기 내측 엠보싱부는 상기 내측 표면으로부터 상기 외측 허브부를 향하는 방향으로 돌출된 적어도 하나의 돌출부를 포함하고,
    상기 외측 엠보싱부는 상기 돌출부에 대응하는 형상을 갖는 적어도 하나의 홈을 포함하고,
    상기 돌출부는 상기 홈에 끼워지는, 휠 허브.
  3. 제1항에 있어서,
    상기 내측 허브부는, 원통부 및 상기 원통부로부터 반경방향으로 연장 형성되는 제1 플랜지부를 포함하고,
    상기 외측 허브부는 상기 제1 플랜지부에 결합되는 제2 플랜지부를 포함하는, 휠 허브.
  4. 제3항에 있어서,
    상기 내측 엠보싱부는 제1 내측 엠보싱부 및 제2 내측 엠보싱부를 포함하고, 상기 외측 엠보싱부는 제1 외측 엠보싱부 및 제2 외측 엠보싱부를 포함하고,
    상기 제1 내측 엠보싱부는 상기 제1 플랜지부의 내측 표면의 적어도 일부에 형성되고,
    상기 제1 외측 엠보싱부는 상기 제1 내측 엠보싱부의 형상에 대응하는 형상을 갖고, 상기 제2 플랜지부의 외측 표면의 적어도 일부에 형성되고,
    상기 제2 외측 엠보싱부는 상기 제2 내측 엠보싱부의 형상에 대응하는 형상을 갖는, 휠 허브.
  5. 제4항에 있어서,
    상기 내측 허브부는 상기 현가 장치를 향하는 방향으로 움푹 들어가도록 형성된 제1 결속부를 더 포함하고,
    상기 외측 허브부는 상기 현가 장치를 향하는 방향으로 움푹 들어가도록 형성되며 상기 제1 결속부를 감싸도록 형성된 제2 결속부를 더 포함하고,
    상기 제2 내측 엠보싱부는 상기 제1 결속부의 내측 표면의 적어도 일부에 형성되고,
    상기 제2 외측 엠보싱부는 상기 제2 결속부의 외측 표면의 적어도 일부에 형성되는, 휠 허브.
  6. 제1항에 있어서,
    상기 내측 엠보싱부 및 상기 외측 엠보싱부는, 적어도 일부가 반경 방향을 따라 형성되는, 휠 허브.
  7. 제1항에 있어서,
    상기 내측 엠보싱부 및 상기 외측 엠보싱부는, 적어도 일부가 원주 방향을 따라 형성되는, 휠 허브.
  8. 제5항에 있어서,
    상기 제1 내측 엠보싱부 및 상기 제2 내측 엠보싱부 각각은, 서로 연속적으로 이어지도록 반경 방향으로 형성되고,
    상기 제1 외측 엠보싱부 및 상기 제2 외측 엠보싱부 각각은, 서로 연속적으로 이어지도록 반경 방향으로 형성되는, 휠 허브.
  9. 제5항에 있어서,
    상기 내측 엠보싱부가 불연속적인 형상을 갖도록, 상기 제1 내측 엠보싱부는 원주 방향으로 형성되고 상기 제2 내측 엠보싱부는 상기 제1 내측 엠보싱부의 측부에서 끝나도록 반경 방향으로 형성되고,
    상기 외측 엠보싱부가 불연속적인 형상을 갖도록, 상기 제1 외측 엠보싱부는 원주 방향으로 형성되고 상기 제2 외측 엠보싱부는 상기 제1 외측 엠보싱부의 측부에서 끝나도록 반경 방향으로 형성되는, 휠 허브.
  10. 제3항에 있어서,
    회전축 방향에서의 상기 제1 플랜지부의 두께는 상기 제2 플랜지부의 두께보다 크거나 같은, 휠 허브.
  11. 제1항에 있어서,
    상기 내측 엠보싱부 및 상기 외측 엠보싱부는 냉간 단조 방식, 온간 단조 방식, 열간 단조 방식 또는 반용융 단조 방식에 의해 서로 대응되는 형상을 갖도록 형성되는, 휠 허브.
  12. 제1항에 있어서,
    상기 내측 허브부의 내측 표면과 상기 외측 허브부의 외측 표면 사이의 적어도 일부에는 필름형 브레이징 용가재 또는 페이스트형 브레이징 용가재가 개재되는, 휠 허브.
  13. 제12항에 있어서,
    상기 브레이징 용가재는 필름형 브레이징 용가재이며,
    상기 필름형 브레이징 용가재는 상기 외측 허브부를 향하는 제1 표면을 갖고, 상기 제1 표면의 형상은 상기 외측 허브부의 상기 외측 표면의 적어도 일부의 형상에 대응되는 형상을 갖고,
    상기 필름형 브레이징 용가재는 상기 내측 허브부를 향하는 제2 표면을 갖고, 상기 제2 표면의 형상은 상기 내측 허브부의 상기 내측 표면의 적어도 일부의 형상에 대응되는 형상을 갖는, 휠 허브.
  14. 제12항에 있어서,
    상기 브레이징 용가재는 필름형 브레이징 용가재이며,
    상기 필름형 브레이징 용가재는, 단일층 구조, 각 층이 상이한 재료로 이루어지는 이층 구조 또는 삼층 구조로 형성되는, 휠 허브.
  15. 제12항에 있어서,
    상기 브레이징 용가재는 10 내지 100 마이크로미터의 두께를 갖는, 휠 허브.
  16. 제12항에 있어서,
    상기 내측 허브부, 상기 외측 허브부 및 상기 브레이징 용가재는 단조 방식으로 일체로 형성되는, 휠 허브.
  17. 자동차의 현가 장치와 휠 사이에 배치되는 휠 베어링에 있어서,
    상기 현가 장치의 일 측에 결합되는 외륜;
    상기 외륜에 대하여 회전 가능하게 결합되는 휠 허브; 및
    상기 외륜과 상기 휠 허브 사이에 개재되는 적어도 하나의 전동체를 포함하고,
    상기 휠 허브는,
    스틸 재료로 형성되고 상기 현가 장치를 향해 배치되는 내측 허브부; 및
    경량 합금 재료로 형성되고 상기 휠을 향해 배치되는 외측 허브부를 포함하고,
    상기 내측 허브부는 상기 외측 허브부를 향하는 내측 표면을 갖고, 상기 내측 표면의 적어도 일부에는 내측 엠보싱부가 형성되고,
    상기 외측 허브부는 상기 내측 허브부를 향하는 외측 표면을 갖고, 상기 외측 표면의 적어도 일부에는 상기 내측 엠보싱부의 형상에 대응하는 형상을 갖는 외측 엠보싱부가 형성되는, 휠 베어링.
  18. 제17항에 있어서,
    상기 내측 허브부의 내측 표면과 상기 외측 허브부의 외측 표면 사이의 적어도 일부에는 브레이징 용가재가 개재되는, 휠 베어링.
  19. 제17항에 있어서,
    상기 전동체는 볼 형상의 전동체이며,
    상기 전동체의 중심으로부터 상기 전동체가 상기 휠 허브와 접촉되는 부분으로 연장되도록 정의되는 방향에서의 내측 허브부의 두께가 상기 전동체의 반지름보다 크거나 같은, 휠 베어링.
PCT/KR2019/003408 2018-03-23 2019-03-22 휠 허브 및 이를 포함하는 휠 베어링 WO2019182419A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0034059 2018-03-23
KR1020180034059A KR102091149B1 (ko) 2018-03-23 2018-03-23 휠 허브 및 이를 포함하는 휠 베어링

Publications (1)

Publication Number Publication Date
WO2019182419A1 true WO2019182419A1 (ko) 2019-09-26

Family

ID=67986569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003408 WO2019182419A1 (ko) 2018-03-23 2019-03-22 휠 허브 및 이를 포함하는 휠 베어링

Country Status (2)

Country Link
KR (1) KR102091149B1 (ko)
WO (1) WO2019182419A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749598A (zh) * 2022-02-21 2022-07-15 重庆大学 一种镁合金车轮锻造生产设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041311A (ja) * 2003-07-28 2005-02-17 Ntn Corp 駆動車輪用軸受装置およびその製造方法
KR20140091469A (ko) * 2013-01-11 2014-07-21 아크티에볼라게트 에스케이에프 경량 허브 베어링 조립체 및 이의 조립 방법
JP2014205478A (ja) * 2013-03-21 2014-10-30 Ntn株式会社 車輪用軸受装置
KR20170004769A (ko) * 2015-07-03 2017-01-11 주식회사 일진글로벌 휠 허브
KR20170043045A (ko) * 2015-10-12 2017-04-20 주식회사 일진글로벌 휠 베어링 및 그 제작 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9636946B2 (en) * 2012-04-06 2017-05-02 Il Jin Global Co., Ltd Structure and method for coupling wheel bearings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041311A (ja) * 2003-07-28 2005-02-17 Ntn Corp 駆動車輪用軸受装置およびその製造方法
KR20140091469A (ko) * 2013-01-11 2014-07-21 아크티에볼라게트 에스케이에프 경량 허브 베어링 조립체 및 이의 조립 방법
JP2014205478A (ja) * 2013-03-21 2014-10-30 Ntn株式会社 車輪用軸受装置
KR20170004769A (ko) * 2015-07-03 2017-01-11 주식회사 일진글로벌 휠 허브
KR20170043045A (ko) * 2015-10-12 2017-04-20 주식회사 일진글로벌 휠 베어링 및 그 제작 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749598A (zh) * 2022-02-21 2022-07-15 重庆大学 一种镁合金车轮锻造生产设备

Also Published As

Publication number Publication date
KR102091149B1 (ko) 2020-03-19
KR20190111653A (ko) 2019-10-02

Similar Documents

Publication Publication Date Title
WO2012121425A1 (ko) 휠 베어링 조립체
EP1274620B1 (en) Wheel mounting with a bearing race embedded in a cast component
US4460058A (en) Bearing assembly for a wheel hub driven by a rotary constant velocity universal joint
WO2019194548A1 (ko) 차량용 휠 베어링
JPH08169206A (ja) 車両車輪用の軸受装置
ITTO961058A1 (it) Gruppo mozzo-giunto omocinetico per una ruota motrice particolarmente per un autoveicolo.
WO2019182419A1 (ko) 휠 허브 및 이를 포함하는 휠 베어링
WO2017069303A1 (ko) 휠 베어링 조립체
WO2020246833A1 (ko) 휠베어링 조립체
JP2709453B2 (ja) 車輪軸受ユニット
CN110821978B (zh) 一种大角度高效率八钢球球笼式等速万向节
CN211398335U (zh) 一种大角度高效率八钢球球笼式等速万向节
WO2019194553A1 (ko) 휠 허브 및 이를 포함하는 휠 베어링 조립체
CN217519086U (zh) 一种转向管柱用无间隙球笼式万向节
WO2018199422A1 (ko) 휠 베어링 어셈블리 및 휠 베어링
CN213870735U (zh) 一种便于注油维护的轴承
JP2001241459A (ja) アクスルモジュール
WO2020111917A1 (ko) 휠 허브 및 이를 포함하는 휠 베어링 조립체
WO2018066794A1 (ko) 너클 및 휠 베어링 조립체
KR102269558B1 (ko) 휠 허브 및 이를 포함하는 휠 베어링
WO2020213907A1 (ko) 휠베어링 조립체
WO2020204671A1 (ko) 개선된 차륜 장착 플랜지 구조를 갖는 휠베어링
JP4948856B2 (ja) 駆動車輪用軸受ユニットのブレーキロータ加工方法
JP3954279B2 (ja) 車輪支持構造
WO2019235661A1 (ko) 휠베어링 및 휠베어링 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770395

Country of ref document: EP

Kind code of ref document: A1