WO2019182060A1 - 光ファイバの製造方法および製造装置 - Google Patents

光ファイバの製造方法および製造装置 Download PDF

Info

Publication number
WO2019182060A1
WO2019182060A1 PCT/JP2019/011866 JP2019011866W WO2019182060A1 WO 2019182060 A1 WO2019182060 A1 WO 2019182060A1 JP 2019011866 W JP2019011866 W JP 2019011866W WO 2019182060 A1 WO2019182060 A1 WO 2019182060A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
temperature
pipe
viscosity
target
Prior art date
Application number
PCT/JP2019/011866
Other languages
English (en)
French (fr)
Inventor
吉田 直
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020507898A priority Critical patent/JP7259840B2/ja
Priority to CN201980021074.4A priority patent/CN111936443A/zh
Priority to US16/982,499 priority patent/US11577994B2/en
Publication of WO2019182060A1 publication Critical patent/WO2019182060A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/16Dipping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor

Definitions

  • the present disclosure relates to an optical fiber manufacturing method and a manufacturing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2018-055124 filed on Mar. 22, 2018, and incorporates all the content described in the above Japanese application.
  • Patent Document 1 describes that pressure gauges are provided at an upstream end and a downstream end of a resin supply pipe from a resin supply tank to a coating device and the pressure is monitored.
  • the output of the pressure gauge is input to the arithmetic unit, and a command is issued to the temperature controller of the resin heating device so that the differential pressure becomes equal to a preset reference differential pressure, and the viscosity of the resin is a predetermined value.
  • a resin viscosity detecting means is provided in the coating apparatus. It is described that the viscosity measured by the resin viscosity detecting means is compared with a preset reference viscosity, and the temperature of the resin heating device is controlled based on the comparison.
  • An optical fiber manufacturing method includes: A method of manufacturing an optical fiber including a resin application step of supplying a resin to a resin application part through a pipe, passing a glass fiber through the resin application part, and applying the resin to an outer periphery of the glass fiber, In the resin application step, While measuring the resin temperature in the pipe and controlling the heating unit provided on at least a part of the pipe outer periphery so that the resin temperature in the pipe becomes a set target temperature, A viscometer is arranged between the resin application part and the pipe, and the set value of the target temperature is adjusted so that the resin viscosity measured by the viscometer becomes the target viscosity.
  • an optical fiber manufacturing apparatus includes: Resin is supplied through a pipe, and a resin application part that applies the resin to the outer periphery of the glass fiber by passing the glass fiber; A heating unit for heating at least a part of the outer periphery of the pipe; A temperature measuring unit for measuring the resin temperature in the pipe; A control unit that controls the heating unit such that the resin temperature in the pipe reaches a target temperature; A viscometer installed between the resin application part and the pipe; An adjustment unit that adjusts the set value of the target temperature so that the resin viscosity measured by the viscometer becomes the target viscosity; Have
  • the time lag against the fluctuation of the resin temperature during drawing during optical fiber production becomes large, and the resin temperature is controlled so that it always becomes the target temperature during drawing. Difficult to do. For this reason, there has been a possibility that the resin viscosity fluctuates due to the temperature fluctuation of the resin applied during the drawing, and the coating diameter of the optical fiber is varied or the thickness is uneven.
  • the present disclosure provides an optical fiber manufacturing method and a manufacturing apparatus that can suppress fluctuations in the viscosity of a resin applied during drawing and suppress fluctuations in the coating diameter of the optical fiber and occurrence of uneven thickness. For the purpose. [Effects of the present disclosure]
  • optical fiber manufacturing method and manufacturing apparatus it is possible to suppress fluctuations in the viscosity of the resin applied during drawing, thereby suppressing fluctuations in the coating diameter of the optical fiber and occurrence of uneven thickness.
  • An optical fiber manufacturing method includes: (1) An optical fiber manufacturing method including a resin coating step of supplying a resin to a resin coating section through a pipe and passing the glass fiber through the resin coating section and coating the resin on an outer periphery of the glass fiber.
  • the resin application step While measuring the resin temperature in the pipe and controlling the heating unit provided on at least a part of the pipe outer periphery so that the resin temperature in the pipe becomes a set target temperature, A viscometer is arranged between the resin application part and the pipe, and the set value of the target temperature is adjusted so that the resin viscosity measured by the viscometer becomes the target viscosity.
  • the temperature of the resin in the pipe is measured and the heating unit is controlled so as to reach the target temperature. Therefore, the resin temperature can be controlled with good followability to the change in the resin temperature. Also, for example, even if the same type of resin is used, the viscosity-temperature characteristics may vary from production lot to production lot.
  • the actual resin viscosity is the target viscosity. It may shift. For this reason, by measuring the resin viscosity between the resin application part and the piping during drawing and adjusting the set value of the target temperature, the viscosity of the resin applied during drawing is brought closer to the target viscosity. Can do. Thereby, the fluctuation
  • a fluid having a predetermined temperature set value is allowed to flow around the resin application part to maintain the resin application part at a predetermined temperature.
  • the temperature setting value of the fluid may be adjusted based on the resin viscosity measured by the viscometer. According to the above method, it is possible to make an adjustment for keeping the resin temperature just before being applied to the glass fiber at the target temperature based on the measured resin viscosity. Thereby, the fluctuation
  • coats 2nd resin to the outer side of said 1st resin are integrated.
  • the resin application step Measuring the resin temperature in the first pipe supplying the first resin to the first application part, measuring the resin temperature in the second pipe supplying the second resin to the second application part, While controlling the respective heating units so that the resin temperature in the pipe and the second pipe become the set target temperature, A first viscometer is disposed between the first application part and the first pipe so that the viscosity of the first resin measured by the first viscometer becomes the first target viscosity.
  • Adjust the set value of the target temperature in the first pipe Arranging a second viscometer between the second application part and the second pipe, so that the viscosity of the second resin measured by the second viscometer becomes the second target viscosity
  • the set value of the target temperature in the second pipe may be adjusted.
  • the resin coating step The first target viscosity and the second target viscosity are matched to adjust the set value of the target temperature in the first pipe and adjust the set value of the target temperature in the second pipe. Also good. According to the said method, the difference of the viscosity of both resin apply
  • the first viscometer and the second viscometer may use a vibration viscometer.
  • the vibration type viscometer is suitable for measuring the viscosity of the fluid because the rod-shaped vibration sensor inserted in the pipe can measure the viscosity by hitting the fluid.
  • the vibration viscometer has a feature that the response is fast and continuous measurement is possible.
  • an optical fiber manufacturing apparatus includes: (6) Resin is supplied through a pipe, and a resin application part that applies the resin to the outer periphery of the glass fiber by passing the glass fiber; A heating unit for heating at least a part of the outer periphery of the pipe; A temperature measuring unit for measuring the resin temperature in the pipe; A control unit that controls the heating unit such that the resin temperature in the pipe reaches a target temperature; A viscometer installed between the resin application part and the pipe; An adjustment unit that adjusts the set value of the target temperature so that the resin viscosity measured by the viscometer becomes the target viscosity;
  • a control part can control the heating part so that it may become target temperature by measuring the resin temperature in piping, and can control the resin temperature with the sufficient followable
  • the viscosity-temperature characteristics may vary from production lot to production lot. Therefore, even if control is performed so that the target temperature is set in advance, the actual resin viscosity is the target viscosity. It may shift. For this reason, the viscosity of the resin applied during the drawing is adjusted by measuring the resin viscosity between the resin application part and the pipe during the drawing with a viscometer and adjusting the set value of the target temperature with the adjustment unit. It can approach the target viscosity. Thereby, the fluctuation
  • the adjustment unit has a temperature adjustment unit that flows a fluid having a predetermined temperature setting value around the resin application unit to maintain the temperature of the resin application unit at a predetermined temperature.
  • the adjustment unit further includes:
  • the temperature setting value of the fluid may be adjusted based on the resin viscosity measured by the viscometer.
  • the temperature control part can perform adjustment for keeping the resin temperature just before apply
  • FIG. 1 is a schematic configuration diagram illustrating an example of an optical fiber manufacturing apparatus according to an embodiment of the present disclosure.
  • an optical fiber manufacturing apparatus 1 includes a drawing furnace 2, an optical fiber resin coating apparatus 3, a resin curing apparatus 4, a guide roller 5, a take-up portion 6, and a winding drum. 7.
  • the glass fiber G1 formed by drawing passes through the optical fiber resin coating device 3 provided downstream of the drawing furnace 2 in the traveling direction of the glass fiber G1 (direction of arrow A in FIG. 1). .
  • the optical fiber resin coating device 3 circulates fluid around the resin coating unit 10 that coats the glass fiber G1, the resin supply unit 20 that supplies the resin to the resin coating unit 10, and the resin coating unit 10. And a fluid circulation device 30 that maintains the resin temperature at a predetermined temperature.
  • the resin application part 10 is configured by integrally assembling a first application part 10A and a second application part 10B.
  • the first application part 10A is arranged on the upstream side
  • the second application part 10B is arranged on the downstream side.
  • 10 A of 1st application parts apply
  • the second application unit 10 ⁇ / b> B applies the secondary resin (second resin) S supplied from the resin supply device 20.
  • the detailed configuration of the optical fiber resin coating apparatus 3 will be described later with reference to FIG.
  • the glass fiber G1 coated with the resin passes through a resin curing device 4 (for example, an ultraviolet irradiation device) provided downstream of the optical fiber resin coating device 3, whereby the resin is cured and the optical fiber G2. Become.
  • the optical fiber G2 is wound around the winding drum 7 via the guide roller 5 and the take-up portion 6.
  • the resin applied to the glass fiber G1 has a characteristic that its viscosity decreases as the resin temperature increases. For this reason, the higher the resin temperature, the lower the viscosity and the thinner the coating diameter of the optical fiber G2. In some cases, the viscosity varies due to the variation of the resin temperature, resulting in uneven thickness of the coating. Therefore, it is necessary to keep the temperature of the resin in the resin coating part 10 at the time of manufacturing an optical fiber (during drawing) at a constant target temperature so that the coating diameter is within the standard range.
  • the resin temperature in the resin application part 10 is directly measured and controlled based on the measurement result.
  • a temperature measuring device such as a thermocouple
  • the flow of the resin in the resin application part 10 is disturbed, which affects the application state of the resin to the glass fiber G1 and is manufactured.
  • the quality of G2 may be impaired. For this reason, it is difficult to measure the resin temperature in the resin application unit 10.
  • a method of keeping the temperature of the resin in the resin application unit 10 constant by controlling the temperature of the resin supplied from the resin supply device 20 to the resin application unit 10 can be considered.
  • the temperature and viscosity of the resin supplied to the resin coating unit 10 are measured, and the measured resin temperature and the viscosity of the resin are controlled while being associated with each other, thereby controlling the resin coating unit.
  • the change in temperature and viscosity of the resin within 10 can be suppressed.
  • the resin supply device 20 in the optical fiber resin coating device 3 includes a resin coating unit 10 (first coating unit) from a resin tank 21 through a pipe 22 (first pipe 22A, second pipe 22B). 10A, the resin is supplied to the second application part 10B).
  • a first pipe 22A extending from the resin tank 21 is connected to the first application part 10A.
  • the 2nd piping 22B extended from the resin tank 21 is connected to the 2nd application part 10B.
  • the resin tank 21 is provided with a first resin tank (not shown) that stores the primary resin P and a second resin tank (not shown) that stores the secondary resin S.
  • the primary resin P is supplied from the first resin tank to the first application unit 10A via the first pipe 22A.
  • the secondary resin S is supplied from the second resin tank to the second application unit 10B via the second pipe 22B.
  • a first heating section (for example, a heater) 23A for heating the first pipe 22A is provided on at least a part of the outer periphery of the first pipe 22A.
  • a second heating section (for example, a heater) 23B for heating the second pipe 22B is provided on at least a part of the outer periphery of the second pipe 22B.
  • the first pipe 22A is provided with a first temperature measuring unit 24A for measuring the temperature of the primary resin P flowing in the first pipe 22A.
  • the first temperature measurement unit 24A is provided in the first pipe 22A between the first heating unit 23A and the first application unit 10A.
  • the second pipe 22B is provided with a second temperature measuring unit 24B for measuring the temperature of the secondary resin S flowing in the second pipe 22B.
  • the 2nd temperature measurement part 24B is provided in the 2nd piping 22B between the 2nd heating part 23B and the 2nd application
  • the first temperature measurement unit 24A and the second temperature measurement unit 24B are thermometers using, for example, a thermocouple.
  • a first viscometer 25A is further provided in the first piping 22A between the first temperature measurement unit 24A and the first application unit 10A.
  • the first viscometer 25A is configured such that its viscosity can be continuously measured when the detection unit 251A is in contact with the primary resin P in the first pipe 22A.
  • the 2nd viscometer 25B is further provided in the 2nd piping 22B.
  • the second viscometer 25B is configured such that its viscosity can be continuously measured by the detection unit 251B being in contact with the secondary resin S in the second pipe 22B.
  • the detection unit 251A and the detection unit 251B can use a rotational vibration type vibration viscometer having a cylindrical shape.
  • the detection unit 251A and the detection unit 251B may be a vibration viscometer that vibrates a flat plate with a tuning fork.
  • the details of the vibration type viscometer are described in, for example, JISZ8803.
  • the resin supply device 20 is provided with a control unit 26 that controls the heating amount of the first heating unit 23A and the second heating unit 23B.
  • the control unit 26 controls the first heating unit 23A so that the temperature of the primary resin P in the first pipe 22A measured by the first temperature measurement unit 24A becomes the target temperature.
  • the control part 26 controls the 2nd heating part 23B so that the temperature of the secondary resin S in the 2nd piping 22B measured by the 2nd temperature measurement part 24B may turn into target temperature.
  • the resin supply device 20 is provided with an adjustment unit 27 for adjusting the set value of the target temperature of the primary resin P and the set value of the target temperature of the secondary resin S.
  • the adjustment unit 27 compares the viscosity of the primary resin P measured by the first viscometer 25A with the target viscosity, and sets the target temperature of the primary resin P so that the viscosity of the primary resin P becomes the first target viscosity. Adjust the setting value. Further, the adjustment unit 27 compares the viscosity of the secondary resin S measured by the second viscometer 25B with the target viscosity, and the target of the secondary resin S is set so that the viscosity of the secondary resin S becomes the second target viscosity. Adjust the temperature setting.
  • the adjustment unit 27 may be configured to be integrated with the control unit 26.
  • the fluid circulation device 30 includes a temperature control unit 31 that maintains the temperature of the first application unit 10A and the temperature of the second application unit 10B at predetermined temperatures.
  • the temperature adjustment unit 31 flows a first fluid having a predetermined temperature setting value around the first application unit 10A to maintain the temperature of the first application unit 10A at a predetermined temperature.
  • the temperature control part 31 flows the 2nd fluid of a predetermined temperature setting value around the 2nd application part 10B, and maintains the temperature of the 2nd application part 10B to a predetermined temperature.
  • a first supply pipe 32A to which a first fluid is supplied and a first discharge pipe 33A from which the first fluid is discharged are connected to the first application unit 10A.
  • a second supply pipe 32B to which a second fluid is supplied and a second discharge pipe 33B from which the second fluid is discharged are connected to the second application unit 10B.
  • the temperature control unit 31 circulates the first fluid to the first application unit 10A through the first supply pipe 32A and the first discharge pipe 33A, and the second fluid through the second supply pipe 32B and the second discharge pipe 33B. Is circulated to the second application part 10B.
  • the adjusting unit 27 further adjusts the temperature setting value of the first fluid based on the resin viscosity measured by the first viscometer 25A, and adjusts the second resin S based on the viscosity of the secondary resin S measured by the second viscometer 25B. Adjust the temperature setting of the fluid.
  • the adjusted temperature setting value of the first fluid and the temperature setting value of the second fluid are sent to the temperature adjustment unit 31 via the control unit 26.
  • the temperature adjustment unit 31 adjusts the temperatures of the first fluid and the second fluid as described above so that the temperature set values are sent.
  • the manufacturing method of the optical fiber of this embodiment supplies the primary resin P and the secondary resin S to the resin application part 10, and applies the primary resin P and the secondary resin S to the glass fiber G1 collectively. Process. And in this resin application process, the following processes are performed.
  • the temperature of the primary resin P in the first pipe 22A that supplies the primary resin P to the first application unit 10A is measured by the first temperature measurement unit 24A.
  • the control unit 26 controls the first heating unit 23A provided on at least a part of the outer circumference of the first pipe 22A so that the temperature of the primary resin P becomes a preset target temperature.
  • the temperature of the secondary resin S in the 2nd piping 22B which supplies the secondary resin S to the 2nd application part 10B is measured by the 2nd temperature measurement part 24B.
  • the control unit 26 controls the second heating unit 23B provided on at least a part of the outer periphery of the second pipe 22B so that the temperature of the secondary resin S becomes a preset target temperature.
  • the viscosity of the primary resin P in the first pipe 22A is measured by a first viscometer 25A disposed between the first application unit 10A and the first heating unit 23A.
  • the adjustment unit 27 adjusts the set value of the target temperature of the primary resin P so that the measured viscosity becomes the first target viscosity.
  • the viscosity of the secondary resin S in the second pipe 22B is measured by a second viscometer 25B disposed between the second application unit 10B and the second heating unit 23B.
  • the adjustment unit 27 adjusts the set value of the target temperature of the secondary resin S so that the measured viscosity becomes the second target viscosity.
  • the coating of the optical fiber G2 There is a possibility that the occurrence of diameter variation and uneven thickness may increase. For this reason, it is desirable to reduce the viscosity difference between the primary resin and the secondary resin applied to the glass fiber G1. For this reason, it is preferable to match the first target viscosity with the second target viscosity.
  • the change in viscosity until the resin S is supplied may be different.
  • the first target viscosity and the second target viscosity do not coincide with each other and set with a predetermined difference, the viscosity difference between the primary resin and the secondary resin actually applied to the glass fiber G1 is reduced. Sometimes it can be made smaller.
  • the control unit 26 controls the first heating unit 23A so that the temperature of the primary resin P becomes the target temperature of the primary resin P set by the adjustment unit 27. Further, the control unit 26 controls the second heating unit 23 ⁇ / b> B so that the temperature of the secondary resin S becomes the target temperature of the secondary resin S set by the adjustment unit 27.
  • the adjustment unit 27 sets the set value of the first target temperature so far. Change the setting value to a lower setting value. Thereby, the heating amount of the first heating unit 23A is controlled by the control unit 26, and the temperature of the primary resin P becomes the changed target temperature. As a result, the temperature of the primary resin P supplied into the first application part 10A is lowered, and the viscosity of the primary resin P is increased as the temperature of the primary resin P is decreased. Thereby, the viscosity of the primary resin P is adjusted so as to approach the first target viscosity.
  • a temperature-adjusted first fluid is flowed around the first application unit 10A so that the temperature of the first application unit 10A is maintained at a predetermined temperature.
  • a second fluid whose temperature is adjusted to a predetermined temperature setting is flowed around the second application unit 10B, and the temperature is adjusted by the temperature adjustment unit 31 so that the temperature of the second application unit 10B is maintained at a predetermined temperature.
  • the temperature setting value of the first fluid is adjusted by the adjusting unit 27 based on the viscosity of the primary resin P in the first pipe 22A measured by the first viscometer 25A. Further, based on the viscosity of the secondary resin S in the second pipe 22 ⁇ / b> B measured by the second viscometer 25 ⁇ / b> B, the temperature setting value of the second fluid is adjusted by the adjusting unit 27.
  • the temperature setting value of the first fluid is set lower than the setting value set so far. Change to a value.
  • the 1st fluid by which the temperature was adjusted to the low temperature setting value is poured around the 1st application part 10A, and the temperature of 10 A of 1st application parts is maintained at the temperature lower than before.
  • the temperature of the first application part 10A decreases, the temperature of the primary resin P supplied into the first application part 10A decreases, and as the temperature of the primary resin P decreases, the viscosity of the primary resin P increases. Becomes higher. As a result, the viscosity of the primary resin P is adjusted so as to approach the target viscosity.
  • the target The temperature setting value may be changed at intervals. For example, it may be every 5 minutes.
  • the target temperature is set at a shorter cycle. The value may be changed.
  • the amount of change of the set value of the target temperature per time is obtained by grasping in advance the relationship between the viscosity of the resin (primary resin P, secondary resin S) and the temperature, and the target viscosity (first target viscosity, second target viscosity). Viscosity) may be changed appropriately according to the difference between the measured viscosity and viscosity.
  • the amount of change at one time is set to a constant small value, and the set value of the target temperature is changed so as to match the target viscosity (first target viscosity, second target viscosity) by several changes. May be.
  • the resin temperature in the pipe 22 is measured, and the heating unit is set so that the temperature becomes the set target temperature.
  • 23 (23A, 23B) is controlled, so that the resin temperature can be controlled with good followability to changes in the resin temperature.
  • the resin temperature is controlled to be a preset target temperature, the actual resin viscosity may deviate from the target viscosity.
  • the resin viscosity is measured during drawing, and the resin target temperature is set so that the resin viscosity becomes the target viscosity. The set value is adjusted.
  • the resin application part 10 (10A, 10B) is measured by measuring the resin viscosity in the pipe 22 (22A, 22B) between the resin application part 10 (10A, 10B) and the temperature measurement part 24 (24A, 24B). It is possible to control the resin viscosity at a portion closer to the target viscosity. Therefore, the viscosity of the resin applied during the drawing can be made sufficiently close to the target viscosity, and the fluctuation in the viscosity of the resin applied during the drawing is suppressed to reduce the coating diameter variation or uneven thickness of the optical fiber G2. Occurrence can be suppressed.
  • the temperature of the fluid circulated around the resin application part 10 is adjusted, and the temperature of the resin application part 10 is adjusted to adjust the resin temperature immediately before being applied to the glass fiber G1. Adjustments can be made to maintain the target temperature. Thereby, the fluctuation
  • the resin application part 10 is composed of a first application part 10A and a second application part 10B.
  • resin temperature can be controlled to separate target temperature by primary resin P and secondary resin S.
  • the resin viscosity of the primary resin P and the secondary resin S is measured, respectively, and the set value of the target temperature is adjusted so as to be the respective target viscosity (first target viscosity, second target viscosity).
  • first target viscosity, second target viscosity the difference in viscosity between the two resins applied during the drawing can be reduced. Thereby, the fluctuation
  • the difference between the viscosities of both resins applied during drawing can be reduced more reliably.
  • the defect rate due to the variation in the coating diameter of the optical fiber G2 and the occurrence of uneven thickness can be reduced more reliably.
  • the viscosity can be measured by a rod-shaped vibration sensor inserted in the pipe hitting the fluid, which is suitable for measuring the viscosity of the fluid.
  • the vibration viscometer has a feature that the response is fast and continuous measurement is possible.
  • the primary resin P had a first target viscosity of 2.0 Pa ⁇ s and an initial target temperature of 45.0 ° C.
  • the secondary resin S had a second target viscosity of 2.0 Pa ⁇ s and an initial target temperature of 35.0 ° C.
  • the temperature measuring unit 24 (first temperature measuring unit 24A, second temperature measuring unit 24B) and the viscometer 25 (by the optical fiber manufacturing method according to the present embodiment using the optical fiber manufacturing apparatus 1).
  • the first viscometer 25A and the second viscometer 25B an optical fiber G2 in which the primary resin P and the secondary resin S were applied to the glass fiber G1 was produced.
  • the second viscometer It implemented, adjusting the setting value of target temperature so that the viscosity of the secondary resin S measured by 25B might turn into 2nd target viscosity 2.0Pa.s.
  • the thickness defect rate due to the variation of the coating diameter and the thickness deviation was measured.
  • the uneven thickness defect rate was defined as (fiber length discarded due to uneven thickness adjustment or uneven thickness defect) / (drawing input length) ⁇ 100 [%].
  • the thickness defect rate measured in the above example was 0.20%.
  • the optical fiber manufacturing apparatus 1 is used, and the viscometer 25 (first viscometer 25A, second viscometer 25B) is not used, and the pipe 22 (first pipe 22A, second pipe 22B) is used.
  • the primary resin P and the secondary resin S are applied to the glass fiber G1 with the target temperatures of the heating units 23 (the first heating unit 23A and the second heating unit 23B) provided on the outer periphery kept constant at the first target temperatures.
  • the thickness defect rate due to the variation of the coating diameter and the thickness deviation was measured.
  • the thickness defect rate produced in the comparative example was 0.40%.
  • the thickness defect rate of the optical fiber was lower in the example than in the comparative example. That is, by manufacturing the optical fiber G2 using the optical fiber manufacturing apparatus 1 and the manufacturing method according to the embodiment of the present disclosure, fluctuations in the coating diameter of the optical fiber of the manufactured optical fiber G2 and occurrence of uneven thickness are prevented. I was able to suppress it.
  • Optical fiber manufacturing device 3 Optical fiber resin coating device 10: Resin coating unit 10A: First coating unit 10B: Second coating unit 20: Resin feeding device 30: Fluid circulation device 22A: First piping 22B: First Two piping 23A: First heating unit 23B: Second heating unit 24A: First temperature measurement unit 24B: Second temperature measurement unit 25A: First viscometer 251A: Detection unit 25B: Second viscometer 251B: Detection unit 26: Control unit 27: Adjustment unit 31: Temperature control unit G: Optical fiber preform G1: Glass fiber G2: Optical fiber

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

樹脂塗布部に配管を介して樹脂を供給し、ガラスファイバを樹脂塗布部に通してガラスファイバの外周に樹脂を塗布する樹脂塗布工程を含む光ファイバの製造方法であって、樹脂塗布工程において、配管内の樹脂温度を測定して、配管内の樹脂温度が設定された目標温度になるように、少なくとも一部の配管外周に設けられた加熱部を制御するとともに、樹脂塗布部と加熱部が設けられている配管との間に粘度計を配置して、粘度計によって測定された樹脂粘度が目標粘度になるように、目標温度の設定値を調整する。

Description

光ファイバの製造方法および製造装置
 本開示は、光ファイバの製造方法および製造装置に関する。
 本出願は、2018年3月22日出願の日本出願2018-055124号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、樹脂供給タンクから塗布装置への樹脂供給管の上流端と下流端に圧力計を設けてその圧力を監視することが記載されている。前記圧力計の出力を演算装置に入力し、その差圧が予め設定した基準差圧力と等しくなるよう、樹脂の加温装置の温度調節器に命令を出して、樹脂の粘度が予め定めた値に一定になるように、加温装置の温度を上下させる光ファイバの製造方法が記載されている。また、塗布装置に樹脂粘度検知手段を設けることが記載されている。前記樹脂粘度検知手段で測定された粘度と予め設定した基準粘度とを比較し、該比較に基づいて樹脂加温装置の温度をコントロールすることが記載されている。
日本国特開平8-119681号公報
 本開示の一態様に係る光ファイバの製造方法は、
 樹脂塗布部に配管を介して樹脂を供給し、ガラスファイバを前記樹脂塗布部に通して前記ガラスファイバの外周に前記樹脂を塗布する樹脂塗布工程を含む光ファイバの製造方法であって、
 前記樹脂塗布工程において、
 前記配管内の樹脂温度を測定して、前記配管内の樹脂温度が設定された目標温度になるように、少なくとも一部の配管外周に設けられた加熱部を制御するとともに、
 前記樹脂塗布部と前記配管との間に粘度計を配置して、前記粘度計によって測定された樹脂粘度が目標粘度になるように、前記目標温度の設定値を調整する。
 また、本開示の一態様に係る光ファイバの製造装置は、
 配管を介して樹脂が供給され、ガラスファイバが通されることにより前記ガラスファイバの外周に前記樹脂を塗布する樹脂塗布部と、
 前記配管の少なくとも一部の外周を加熱する加熱部と、
 前記配管内の樹脂温度を測定する温度測定部と、
 前記配管内の樹脂温度が目標温度になるように前記加熱部を制御する制御部と、
 前記樹脂塗布部と前記配管との間に設置された粘度計と、
 前記粘度計によって測定された樹脂粘度が目標粘度になるように、前記目標温度の設定値を調整する調整部と、
 を有する。
本開示の実施形態に係る光ファイバの製造装置を示す図である。 図1に示す製造装置の光ファイバ用樹脂塗布装置を示す図である。
[本開示が解決しようとする課題]
 光ファイバの製造において、光ファイバの被覆径の変動や偏肉を抑制するために、ダイス(樹脂塗布部)内の樹脂温度を被覆径が規格の範囲内となる一定の目標温度にする必要がある。
 そのため、例えば特許文献1に記載され方法では、樹脂供給管の上流端と下流端に設けた圧力計で測定された差圧が基準差圧力と等しくなるように、あるいは塗布装置に設けられた樹脂粘度検知手段で測定された粘度と基準粘度との比較に基づいて樹脂の加温装置の温度を制御している。
 樹脂供給管の差圧あるいは樹脂の粘度による加温装置の制御では、光ファイバ製造時における線引き中の樹脂温度の変動に対するタイムラグが大きくなり、線引き中に常に目標温度となるように樹脂温度を制御することが困難である。このため、線引き中に塗布される樹脂の温度変動によって樹脂粘度が変動して光ファイバの被覆径の変動や偏肉が発生するおそれがあった。
 そこで、本開示は、線引き中に塗布される樹脂の粘度変動を抑制して、光ファイバの被覆径の変動や偏肉の発生を抑制することができる光ファイバの製造方法および製造装置を提供することを目的とする。
[本開示の効果]
 本開示に係る光ファイバの製造方法および製造装置によれば、線引き中に塗布される樹脂の粘度変動を抑制して、光ファイバの被覆径の変動や偏肉の発生を抑制することができる。
(本開示の実施形態の説明)
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る光ファイバの製造方法は、
 (1)樹脂塗布部に配管を介して樹脂を供給し、ガラスファイバを前記樹脂塗布部に通して前記ガラスファイバの外周に前記樹脂を塗布する樹脂塗布工程を含む光ファイバの製造方法であって、
 前記樹脂塗布工程において、
 前記配管内の樹脂温度を測定して、前記配管内の樹脂温度が設定された目標温度になるように、少なくとも一部の配管外周に設けられた加熱部を制御するとともに、
 前記樹脂塗布部と前記配管との間に粘度計を配置して、前記粘度計によって測定された樹脂粘度が目標粘度になるように、前記目標温度の設定値を調整する。
 上記方法によれば、配管内の樹脂温度を測定して目標温度となるように加熱部を制御するので、樹脂温度の変動に対する追従性がよい樹脂温度の制御ができる。また、例えば同じ種類の樹脂であっても製造ロット毎に粘度-温度特性にばらつきが生じる場合があるため、予め設定された目標温度となるように制御したとしても実際の樹脂粘度が目標の粘度とずれてしまうことがある。このため、線引き実施中に樹脂塗布部と配管との間の樹脂粘度を測定して目標温度の設定値を調整することで、線引き実施中に塗布される樹脂の粘度を目標の粘度に近づけることができる。これにより、線引き中に塗布される樹脂の粘度変動を抑制して、光ファイバの被覆径の変動や偏肉の発生を抑制することができる。
 (2)前記樹脂塗布部の周囲に所定の温度設定値の流体を流して、前記樹脂塗布部を所定の温度に維持し、
 前記粘度計によって測定された樹脂粘度に基づいて、前記流体の温度設定値を調整してもよい。
 上記方法によれば、測定された樹脂粘度に基づいて、ガラスファイバに塗布される直前の樹脂温度を目標の温度に保つための調整をすることができる。これにより、光ファイバの被覆径の変動や偏肉の発生をさらに確実に抑制することができる。
 (3)前記樹脂塗布部は、前記ガラスファイバの外側に第一樹脂を塗布する第一塗布部と、前記第一樹脂の外側に第二樹脂を塗布する第二塗布部と、が一体的に組みつけられており、
 前記樹脂塗布工程において、
 前記第一塗布部に第一樹脂を供給する第一配管内の樹脂温度を測定し、前記第二塗布部に第二樹脂を供給する第二配管内の樹脂温度を測定して、前記第一配管内および前記第二配管内の樹脂温度が設定された目標温度になるように、それぞれの加熱部を制御するとともに、
 前記第一塗布部と前記第一配管との間に第一の粘度計を配置して、前記第一の粘度計によって測定された第一樹脂の粘度が第一の目標粘度になるように、前記第一配管内の目標温度の設定値を調整し、
 前記第二塗布部と前記第二配管との間に第二の粘度計を配置して、前記第二の粘度計によって測定された第二樹脂の粘度が第二の目標粘度になるように、前記第二配管内の目標温度の設定値を調整してもよい。
 上記方法によれば、第一樹脂の塗布部と第二樹脂の塗布部が一体的に組みつけられた樹脂塗布部でガラスファイバに二層の樹脂を塗布する場合、粘度に対する温度特性が第一樹脂と第二樹脂とで異なる場合であっても、線引き中に塗布される両樹脂の粘度の差を小さくすることができる。塗布される両樹脂の粘度の差が大きいと、光ファイバの被覆径の変動や偏肉の発生が大きくなるおそれがあるが、両樹脂の粘度の差を小さくできるので、光ファイバの被覆径の変動や偏肉の発生を抑制することができる。
 (4)前記樹脂塗布工程は、
 前記第一の目標粘度と前記第二の目標粘度とを一致させて、前記第一配管内の目標温度の設定値を調整すると共に、前記第二配管内の目標温度の設定値を調整してもよい。
 上記方法によれば、線引き中に塗布される両樹脂の粘度の差をより確実に小さくできる。これにより、光ファイバの被覆径の変動や偏肉の発生による不良率をより確実に小さくすることができる。
 (5)前記第一の粘度計および前記第二の粘度計は、振動式粘度計を用いてもよい。
 上記方法によれば、振動式粘度計は、配管内に挿入した棒状の振動センサが流体にあたるなどして粘度を測定できるので、流体の粘度測定に適している。また、振動式粘度計は、応答が速く連続測定が可能といった特徴を有する。
 また、本開示の一態様に係る光ファイバの製造装置は、
 (6)配管を介して樹脂が供給され、ガラスファイバが通されることにより前記ガラスファイバの外周に前記樹脂を塗布する樹脂塗布部と、
 前記配管の少なくとも一部の外周を加熱する加熱部と、
 前記配管内の樹脂温度を測定する温度測定部と、
 前記配管内の樹脂温度が目標温度になるように前記加熱部を制御する制御部と、
 前記樹脂塗布部と前記配管との間に設置された粘度計と、
 前記粘度計によって測定された樹脂粘度が目標粘度になるように、前記目標温度の設定値を調整する調整部と、
 を有する。
 上記構成によれば、制御部は、配管内の樹脂温度を測定して目標温度となるように加熱部を制御して、樹脂温度の変動に対する追従性がよい樹脂温度の制御ができる。また、例えば同じ種類の樹脂であっても製造ロット毎に粘度-温度特性にばらつきが生じる場合があるため、予め設定された目標温度となるように制御したとしても実際の樹脂粘度が目標の粘度とずれてしまうことがある。このため、線引き実施中に樹脂塗布部と配管との間の樹脂粘度を粘度計によって測定して目標温度の設定値を調整部で調整することで、線引き実施中に塗布される樹脂の粘度を目標の粘度に近づけることができる。これにより、線引き中に塗布される樹脂の粘度変動を抑制して、光ファイバの被覆径の変動や偏肉の発生を抑制することができる。
 (7)前記樹脂塗布部の周囲に所定の温度設定値の流体を流して前記樹脂塗布部の温度を所定の温度に維持する温調部を有し、
 前記調整部はさらに、
 前記粘度計によって測定された樹脂粘度に基づいて、前記流体の温度設定値を調整してもよい。
 上記構成によれば、温調部が、測定された樹脂粘度に基づいて、ガラスファイバに塗布される直前の樹脂温度を目標の温度に保つための調整をすることができる。これにより、光ファイバの被覆径の変動や偏肉の発生をさらに確実に抑制することができる。
(本開示の実施形態の詳細)
 本開示の実施形態に係る光ファイバの製造方法および製造装置の具体例を、以下に図面を参照しつつ説明する。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1は、本開示の実施形態に係る光ファイバの製造装置の一例を示す概略構成図である。
 図1に示すように、光ファイバの製造装置1は、線引炉2と、光ファイバ用樹脂塗布装置3と、樹脂硬化装置4と、ガイドローラ5と、引取り部6と、巻取りドラム7と、を備えている。
 光ファイバ用母材Gが線引炉2で加熱されることにより、光ファイバ用母材Gの下端部が溶融されて線引きされる。線引きされることによって形成されたガラスファイバG1は、ガラスファイバG1の走行方向(図1中の矢印Aの方向)において線引炉2の下流に設けられた光ファイバ用樹脂塗布装置3を通過する。
 光ファイバ用樹脂塗布装置3は、ガラスファイバG1に樹脂を塗布する樹脂塗布部10と、樹脂塗布部10に樹脂を供給する樹脂供給装置20と、樹脂塗布部10の周囲に流体を循環させて樹脂温度を所定の温度に維持する流体循環装置30と、を備えている。
 樹脂塗布部10は、第一塗布部10Aと第二塗布部10Bとが一体的に組みつけられて構成されている。ガラスファイバG1の走行方向において、第一塗布部10Aは上流側に配置され、第二塗布部10Bは下流側に配置されている。第一塗布部10Aは、樹脂供給装置20から供給されたプライマリ樹脂(第一樹脂)Pを塗布する。第二塗布部10Bは、樹脂供給装置20から供給されたセカンダリ樹脂(第二樹脂)Sを塗布する。なお、光ファイバ用樹脂塗布装置3の詳細な構成については、図2を参照して後述する。
 ガラスファイバG1が光ファイバ用樹脂塗布装置3の樹脂塗布部10を通過することにより、ガラスファイバG1の外周には二層の樹脂(プライマリ樹脂Pとセカンダリ樹脂S)が一括して塗布される。
 樹脂が塗布されたガラスファイバG1は、光ファイバ用樹脂塗布装置3の下流に設けられている樹脂硬化装置4(例えば、紫外線照射装置等)を通過することにより、樹脂が硬化され光ファイバG2となる。光ファイバG2は、ガイドローラ5および引取り部6を経由して巻取りドラム7に巻き取られる。
 ところで、ガラスファイバG1に塗布される樹脂は、樹脂温度が高くなるとその粘度が下がる特性を有する。このため、樹脂温度が高くなるほどその粘度が下がり、光ファイバG2の被覆径が細くなる。なお、樹脂温度の変動によって粘度が変動し被覆に偏肉が生じる場合もある。したがって、光ファイバ製造時(線引き中)における樹脂塗布部10内の樹脂の温度は、被覆径が規格の範囲内となるような一定の目標温度に保つ必要がある。
 樹脂塗布部10内の樹脂温度を一定に保つためには、樹脂塗布部10内の樹脂温度を直接測定して、その測定結果に基づいて制御することが理想的であると考えられる。ところが、樹脂塗布部10内に熱電対等の温度測定装置を入れると、樹脂塗布部10内の樹脂の流れが乱れて、ガラスファイバG1への樹脂の塗布状態に影響を与え、製造される光ファイバG2の品質を損なうおそれがある。このため、樹脂塗布部10内で樹脂温度の測定を行うことは困難である。
 そこで、例えば、樹脂供給装置20から樹脂塗布部10に供給される樹脂の温度を制御することによって樹脂塗布部10中の樹脂の温度を一定に保つ方法が考えられる。光ファイバの製造装置1では、樹脂塗布部10へ供給される樹脂の温度および粘度を測定し、測定された樹脂の温度と樹脂の粘度とを相互に対応付けしながら制御することで樹脂塗布部10内の樹脂の温度および粘度の変動を抑制できるものとしている。
 次に、光ファイバ用樹脂塗布装置3の構成について、図2を参照して詳細に説明する。
 図2に示すように、光ファイバ用樹脂塗布装置3における樹脂供給装置20は、樹脂タンク21から配管22(第一配管22A,第二配管22B)を介して樹脂塗布部10(第一塗布部10A,第二塗布部10B)へ樹脂を供給する。第一塗布部10Aには、樹脂タンク21から伸びる第一配管22Aが接続されている。第二塗布部10Bには、樹脂タンク21から伸びる第二配管22Bが接続されている。樹脂タンク21には、プライマリ樹脂Pを貯留する第一樹脂タンク(図示省略)と、セカンダリ樹脂Sを貯留する第二樹脂タンク(図示省略)と、が設けられている。プライマリ樹脂Pは、第一樹脂タンクから第一配管22Aを介して第一塗布部10Aへ供給される。また、セカンダリ樹脂Sは、第二樹脂タンクから第二配管22Bを介して第二塗布部10Bへ供給される。
 第一配管22Aにおける少なくともその一部の外周には、第一配管22Aを加熱するための第一加熱部(例えば、ヒータ)23Aが設けられている。第二配管22Bにおける少なくともその一部の外周には、第二配管22Bを加熱するための第二加熱部(例えば、ヒータ)23Bが設けられている。
 また、第一配管22Aには、第一配管22A内を流れるプライマリ樹脂Pの温度を測定するための第一温度測定部24Aが設けられている。第一温度測定部24Aは、第一加熱部23Aと第一塗布部10Aとの間の第一配管22Aに設けられている。第二配管22Bには、第二配管22B内を流れるセカンダリ樹脂Sの温度を測定するための第二温度測定部24Bが設けられている。第二温度測定部24Bは、第二加熱部23Bと第二塗布部10Bとの間の第二配管22Bに設けられている。第一温度測定部24Aおよび第二温度測定部24Bは、例えば、熱電対等を用いた温度計である。
 第一温度測定部24Aと第一塗布部10Aとの間において、第一配管22Aにはさらに、第一粘度計25Aが設けられている。第一粘度計25Aは、その検出部251Aが第一配管22A内のプライマリ樹脂Pと接することで連続的に粘度が測定できるようになっている。第二温度測定部24Bと第二塗布部10Bとの間において、第二配管22Bにはさらに、第二粘度計25Bが設けられている。第二粘度計25Bは、その検出部251Bが第二配管22B内のセカンダリ樹脂Sと接することで連続的に粘度が測定できるようになっている。
 上記の第一粘度計25Aおよび第二粘度計25Bは、検出部251A,検出部251Bが円筒形の回転振動式の振動式粘度計を用いることができる。また、検出部251A,検出部251Bは、音叉によって平板を振動させる振動式粘度計などでもよい。なお、振動式粘度計の詳細等については、例えばJISZ8803に記載されている。
 また、樹脂供給装置20には、第一加熱部23Aおよび第二加熱部23Bの加熱量を制御する制御部26が設けられている。制御部26は、第一温度測定部24Aによって測定される第一配管22A内のプライマリ樹脂Pの温度が目標温度になるように第一加熱部23Aを制御する。また、制御部26は、第二温度測定部24Bによって測定される第二配管22B内のセカンダリ樹脂Sの温度が目標温度になるように第二加熱部23Bを制御する。
 さらに、樹脂供給装置20には、プライマリ樹脂Pの目標温度の設定値およびセカンダリ樹脂Sの目標温度の設定値を調整する調整部27が設けられている。調整部27は、第一粘度計25Aによって測定されるプライマリ樹脂Pの粘度と目標粘度とを比較して、プライマリ樹脂Pの粘度が第一の目標粘度になるようにプライマリ樹脂Pの目標温度の設定値を調整する。また、調整部27は、第二粘度計25Bによって測定されるセカンダリ樹脂Sの粘度と目標粘度とを比較して、セカンダリ樹脂Sの粘度が第二の目標粘度になるようにセカンダリ樹脂Sの目標温度の設定値を調整する。なお、調整部27は、制御部26と一体的に設けられる構成であってもよい。
 流体循環装置30は、第一塗布部10Aの温度および第二塗布部10Bの温度を所定の温度に維持する温調部31を有している。温調部31は、第一塗布部10Aの周囲に所定の温度設定値の第一流体を流して第一塗布部10Aの温度を所定の温度に維持する。また、温調部31は、第二塗布部10Bの周囲に所定の温度設定値の第二流体を流して第二塗布部10Bの温度を所定の温度に維持する。第一塗布部10Aには、第一流体が供給される第一供給管32Aと、第一流体が排出される第一排出管33Aが接続されている。第二塗布部10Bには、第二流体が供給される第二供給管32Bと、第二流体が排出される第二排出管33Bが接続されている。温調部31は、第一供給管32Aと第一排出管33Aを介して第一流体を第一塗布部10Aに循環させ、第二供給管32Bと第二排出管33Bを介して第二流体を第二塗布部10Bに循環させる。
 調整部27はさらに、第一粘度計25Aによって測定された樹脂粘度に基づいて第一流体の温度設定値を調整し、第二粘度計25Bによって測定されたセカンダリ樹脂Sの粘度に基づいて第二流体の温度設定値を調整する。調整された第一流体の温度設定値および第二流体の温度設定値は、制御部26を介して温調部31に送られる。温調部31は、送られてきたそれぞれの温度設定値となるように、第一流体および第二流体の温度を上記のように調整する。
 次に、本開示の実施形態に係る光ファイバの製造方法について説明する。
 本実施形態の光ファイバの製造方法は、樹脂塗布部10に、プライマリ樹脂Pとセカンダリ樹脂Sとを供給して、ガラスファイバG1にプライマリ樹脂Pとセカンダリ樹脂Sとを一括して塗布する樹脂塗布工程を有する。そして、この樹脂塗布工程において、以下のような処理を行う。
(樹脂塗布工程)
 第一塗布部10Aにプライマリ樹脂Pを供給する第一配管22A内のプライマリ樹脂Pの温度を第一温度測定部24Aによって測定する。そのプライマリ樹脂Pの温度が予め設定されている目標温度になるように、第一配管22Aの少なくとも一部の外周に設けられた第一加熱部23Aを制御部26によって制御する。また、第二塗布部10Bにセカンダリ樹脂Sを供給する第二配管22B内のセカンダリ樹脂Sの温度を第二温度測定部24Bによって測定する。そのセカンダリ樹脂Sの温度が予め設定されている目標温度になるように、第二配管22Bの少なくとも一部の外周に設けられた第二加熱部23Bを制御部26によって制御する。
 第一塗布部10Aと第一加熱部23Aとの間に配置された第一粘度計25Aによって第一配管22A内のプライマリ樹脂Pの粘度を測定する。測定された粘度が第一の目標粘度になるように、上記プライマリ樹脂Pの目標温度の設定値を調整部27によって調整する。また、第二塗布部10Bと第二加熱部23Bとの間に配置された第二粘度計25Bによって第二配管22B内のセカンダリ樹脂Sの粘度を測定する。測定された粘度が第二の目標粘度になるように、上記セカンダリ樹脂Sの目標温度の設定値を調整部27によって調整する。
 ガラスファイバG1にプライマリ樹脂とセカンダリ樹脂が塗布される際に、第一塗布部10Aのプライマリ樹脂の粘度と、第二塗布部10Bのセカンダリ樹脂の粘度との差が大きいと、光ファイバG2の被覆径の変動や偏肉の発生が大きくなるおそれがある。このため、ガラスファイバG1に塗布されるプライマリ樹脂とセカンダリ樹脂との粘度差を小さくすることが望ましい。このために、第一の目標粘度と第二の目標粘度とを一致させることが好ましい。
 なお、第一粘度計25Aが設置された位置から第一塗布部10Aにプライマリ樹脂Pが供給されるまでの粘度変化と、第二粘度計25Bが設置された位置から第二塗布部10Bにセカンダリ樹脂Sが供給されるまでの粘度変化とが異なる場合がある。このため、第一の目標粘度と第二の目標粘度とを一致させずに、所定の差を付けて設定した方が、実際にガラスファイバG1に塗布されるプライマリ樹脂とセカンダリ樹脂の粘度差を小さくできる場合もある。
 制御部26は、プライマリ樹脂Pの温度が調整部27によって設定されたプライマリ樹脂Pの目標温度になるように、第一加熱部23Aを制御する。また、制御部26は、セカンダリ樹脂Sの温度が調整部27によって設定されたセカンダリ樹脂Sの目標温度になるように、第二加熱部23Bを制御する。
 例えば、第一粘度計25Aによって測定された第一配管22A内のプライマリ樹脂Pの粘度が第一の目標粘度よりも低い場合、調整部27は、第一の目標温度の設定値をそれまで設定されていた設定値よりも低い設定値に変更する。これにより、第一加熱部23Aの加熱量が制御部26によって制御され、プライマリ樹脂Pの温度が変更後の目標温度になる。この結果、第一塗布部10A内に供給されるプライマリ樹脂Pの温度が低くなり、プライマリ樹脂Pの温度の低下に伴ってプライマリ樹脂Pの粘度は高くなる。これにより、プライマリ樹脂Pの粘度が第一の目標粘度に近づくように調整される。
 一方、第一塗布部10Aの周囲に所定の温度設定値に温調された第一流体を流し、第一塗布部10Aの温度が所定の温度に維持されるように温調部31によって温度調節する。また、第二塗布部10Bの周囲に所定の温度設定値に温調された第二流体を流し、第二塗布部10Bの温度が所定の温度に維持されるように温調部31によって温度調節する。
 第一粘度計25Aによって測定された第一配管22A内のプライマリ樹脂Pの粘度に基づいて、上記第一流体の温度設定値を調整部27によって調整する。また、第二粘度計25Bによって測定された第二配管22B内のセカンダリ樹脂Sの粘度に基づいて、上記第二流体の温度設定値を調整部27によって調整する。
 例えば、第一粘度計25Aによって測定された第一配管22A内のプライマリ樹脂Pの粘度が目標粘度よりも低い場合、第一流体の温度設定値をそれまで設定されていた設定値よりも低い設定値に変更する。これにより、第一塗布部10Aの周囲に低い温度設定値に温調された第一流体が流され、第一塗布部10Aの温度がそれまでよりも低い温度に維持される。この第一塗布部10Aの温度が低下することに伴って、第一塗布部10A内に供給されたプライマリ樹脂Pの温度が低くなり、プライマリ樹脂Pの温度の低下に伴ってプライマリ樹脂Pの粘度は高くなる。この結果、プライマリ樹脂Pの粘度が目標粘度に近づくように調整される。
 なお、第一加熱部23A(或いは、第二加熱部23B)の目標温度の設定値を変更してからプライマリ樹脂P(或いは、セカンダリ樹脂S)の粘度が安定するまでにタイムラグがあるので、目標温度の設定値の変更は間隔をあけて行ってもよい。例えば、5分おきなどでもよい。線引きの速度が速いなどの理由で配管22(第一配管22A,第二配管22B)内を流れる樹脂(プライマリ樹脂P、セカンダリ樹脂S)の量が多い場合は、もっと短い周期で目標温度の設定値の変更を行ってもよい。一回あたりの目標温度の設定値の変更量は、樹脂(プライマリ樹脂P、セカンダリ樹脂S)の粘度と温度の関係を予め把握しておき、目標粘度(第一の目標粘度、第二の目標粘度)と測定された粘度との差に応じて適切な変更量とするとよい。このとき、一回の変更量は一定の小さな値として、数回の変更で目標粘度(第一の目標粘度、第二の目標粘度)に一致させるように、目標温度の設定値の変更をしてもよい。
 本実施形態に係る光ファイバの製造方法および光ファイバの製造装置1によれば、配管22(22A,22B)内の樹脂温度を測定し、その温度が設定された目標温度となるように加熱部23(23A,23B)を制御するので、樹脂温度の変動に対する追従性がよい樹脂温度の制御ができる。
 また、例えば、同じ種類の樹脂であっても製造ロット毎に粘度-温度特性にばらつきが生じる場合がある。このため、樹脂温度を予め設定された目標温度となるように制御したとしても実際の樹脂粘度が目標の粘度とずれてしまうことがある。これに対して、本実施形態に係る光ファイバの製造方法および光ファイバの製造装置1によれば、線引き実施中に樹脂粘度を測定し、その樹脂粘度が目標粘度となるように樹脂の目標温度の設定値を調整している。さらに、樹脂塗布部10(10A,10B)と温度測定部24(24A,24B)との間の配管22(22A,22B)内で樹脂粘度を測定することにより、樹脂塗布部10(10A,10B)により近い部分の樹脂粘度を目標粘度に制御することが可能である。したがって、線引き実施中に塗布される樹脂の粘度を目標の粘度に十分に近づけることができ、線引き中に塗布される樹脂の粘度変動を抑制して光ファイバG2の被覆径の変動や偏肉の発生を抑制することができる。
 また、測定された樹脂粘度に基づいて、樹脂塗布部10の周囲に循環される流体の温度を調整し樹脂塗布部10の温度を調整することでガラスファイバG1に塗布される直前の樹脂温度を目標の温度に保つための調整をすることができる。これにより、光ファイバG2の被覆径の変動や偏肉の発生をさらに確実に抑制することができる。
 また、樹脂塗布部10は第一塗布部10Aと第二塗布部10Bとで構成されている。このため、ガラスファイバG1に二層の樹脂を塗布する場合であっても、プライマリ樹脂Pとセカンダリ樹脂Sとで樹脂温度を別々の目標温度に制御できる。また、プライマリ樹脂Pとセカンダリ樹脂Sの樹脂粘度をそれぞれ測定して、それぞれの目標粘度(第一目標粘度、第二目標粘度)となるように目標温度の設定値を調整している。このため、粘度に対する温度特性がプライマリ樹脂Pとセカンダリ樹脂Sとで異なる場合であっても、線引き中に塗布される両樹脂の粘度の差を小さくすることができる。これにより、光ファイバG2の被覆径の変動や偏肉の発生を抑制することができる。
 さらに、第一目標粘度と第二目標粘度とを一致させて、それぞれ目標温度の設定値を調整することにより、線引き中に塗布される両樹脂の粘度の差をより確実に小さくできる。これにより、光ファイバG2の被覆径の変動や偏肉の発生による不良率をより確実に小さくすることができる。
 また、振動式粘度計を用いているので、配管内に挿入した棒状の振動センサが流体にあたるなどして粘度を測定でき、流体の粘度測定に適している。また、振動式粘度計は、応答が速く連続測定が可能といった特徴を有する。
 以下、実施例及び比較例について説明する。
 実施例及び比較例において、プライマリ樹脂Pは、第一の目標粘度を2.0Pa・sとし、最初の目標温度を45.0℃に設定した。セカンダリ樹脂Sは、第二の目標粘度を2.0Pa・sとし、最初の目標温度を35.0℃に設定した。
 (実施例)
 実施例は、光ファイバの製造装置1を使用して本実施形態に係る光ファイバの製造方法により、温度測定部24(第一温度測定部24A,第二温度測定部24B)と粘度計25(第一粘度計25A、第二粘度計25B)とを用いて、ガラスファイバG1にプライマリ樹脂Pとセカンダリ樹脂Sとが塗布された光ファイバG2を生産した。上記生産は、第一粘度計25Aによって測定されたプライマリ樹脂Pの粘度が第一の目標粘度2.0Pa・sになるように、目標温度の設定値を調整しつつ、また、第二粘度計25Bによって測定されたセカンダリ樹脂Sの粘度が第二の目標粘度2.0Pa・sになるように、目標温度の設定値を調整しつつ実施した。
 そして、1か月間に生産された光ファイバG2に対し、被覆径の変動や偏肉による偏肉不良率を測定した。なお、偏肉不良率は、(偏肉調整または偏肉不良で廃却したファイバ長)/(線引投入長)×100[%]で定義した。
 上記実施例で測定された偏肉不良率は、0.20%であった。
 (比較例)
 比較例は、光ファイバの製造装置1を使用し、粘度計25(第一粘度計25A、第二粘度計25B)を使用せずに、配管22(第一配管22A、第二配管22B)の外周に設けられた加熱部23(第一加熱部23A、第二加熱部23B)の目標温度を上記最初の目標温度のまま一定にして、ガラスファイバG1にプライマリ樹脂Pとセカンダリ樹脂Sとが塗布された光ファイバG2を生産した。
 そして、1か月間に生産された光ファイバG2に対し、被覆径の変動や偏肉による偏肉不良率を測定した。
 上記比較例で生産された偏肉不良率は、0.40%であった。
 以上のように、光ファイバの偏肉不良率は、実施例の方が比較例よりも低くなった。即ち、本開示の実施形態に係る光ファイバの製造装置1および製造方法を用いて光ファイバG2を製造することにより、製造される光ファイバG2の光ファイバの被覆径の変動や偏肉の発生を抑制することができた。
 以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。
 1:光ファイバの製造装置
 3:光ファイバ用樹脂塗布装置
 10:樹脂塗布部
 10A:第一塗布部
 10B:第二塗布部
 20:樹脂供給装置
 30:流体循環装置
 22A:第一配管
 22B:第二配管
 23A:第一加熱部
 23B:第二加熱部
 24A:第一温度測定部
 24B:第二温度測定部
 25A:第一粘度計
 251A:検出部
 25B:第二粘度計
 251B:検出部
 26:制御部
 27:調整部
 31:温調部
 G:光ファイバ用母材
 G1:ガラスファイバ
 G2:光ファイバ

Claims (7)

  1.  樹脂塗布部に配管を介して樹脂を供給し、ガラスファイバを前記樹脂塗布部に通して前記ガラスファイバの外周に前記樹脂を塗布する樹脂塗布工程を含む光ファイバの製造方法であって、
     前記樹脂塗布工程において、
     前記配管内の樹脂温度を測定して、前記配管内の樹脂温度が設定された目標温度になるように、少なくとも一部の配管外周に設けられた加熱部を制御するとともに、
     前記樹脂塗布部と前記配管との間に粘度計を配置して、前記粘度計によって測定された樹脂粘度が目標粘度になるように、前記目標温度の設定値を調整する、
     光ファイバの製造方法。
  2.  前記樹脂塗布部の周囲に所定の温度設定値の流体を流して、前記樹脂塗布部を所定の温度に維持し、
     前記粘度計によって測定された樹脂粘度に基づいて、前記流体の温度設定値を調整する、
     請求項1に記載の光ファイバの製造方法。
  3.  前記樹脂塗布部は、前記ガラスファイバの外側に第一樹脂を塗布する第一塗布部と、前記第一樹脂の外側に第二樹脂を塗布する第二塗布部と、が一体的に組みつけられており、
     前記樹脂塗布工程において、
     前記第一塗布部に第一樹脂を供給する第一配管内の樹脂温度を測定し、前記第二塗布部に第二樹脂を供給する第二配管内の樹脂温度を測定して、前記第一配管内および前記第二配管内の樹脂温度が設定された目標温度になるように、それぞれの加熱部を制御するとともに、
     前記第一塗布部と前記第一配管との間に第一の粘度計を配置して、前記第一の粘度計によって測定された第一樹脂の粘度が第一の目標粘度になるように、前記第一配管内の目標温度の設定値を調整し、
     前記第二塗布部と前記第二配管との間に第二の粘度計を配置して、前記第二の粘度計によって測定された第二樹脂の粘度が第二の目標粘度になるように、前記第二配管内の目標温度の設定値を調整する、
     請求項1に記載の光ファイバの製造方法。
  4.  前記樹脂塗布工程は、
     前記第一の目標粘度と前記第二の目標粘度とを一致させて、前記第一配管内の目標温度の設定値を調整すると共に、前記第二配管内の目標温度の設定値を調整する、
     請求項3に記載の光ファイバの製造方法。
  5.  前記第一の粘度計および前記第二の粘度計は、振動式粘度計を用いる、
     請求項3または請求項4に記載の光ファイバの製造方法。
  6.  配管を介して樹脂が供給され、ガラスファイバが通されることにより前記ガラスファイバの外周に前記樹脂を塗布する樹脂塗布部と、
     前記配管の少なくとも一部の外周を加熱する加熱部と、
     前記配管内の樹脂温度を測定する温度測定部と、
     前記配管内の樹脂温度が目標温度になるように前記加熱部を制御する制御部と、
     前記樹脂塗布部と前記配管との間に設置された粘度計と、
     前記粘度計によって測定された樹脂粘度が目標粘度になるように、前記目標温度の設定値を調整する調整部と、
     を有する光ファイバの製造装置。
  7.  前記樹脂塗布部の周囲に所定の温度設定値の流体を流して前記樹脂塗布部の温度を所定の温度に維持する温調部を有し、
     前記調整部はさらに、
     前記粘度計によって測定された樹脂粘度に基づいて、前記流体の温度設定値を調整する、
     請求項6に記載の光ファイバの製造装置。
PCT/JP2019/011866 2018-03-22 2019-03-20 光ファイバの製造方法および製造装置 WO2019182060A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020507898A JP7259840B2 (ja) 2018-03-22 2019-03-20 光ファイバの製造方法および製造装置
CN201980021074.4A CN111936443A (zh) 2018-03-22 2019-03-20 光纤的制造方法及制造装置
US16/982,499 US11577994B2 (en) 2018-03-22 2019-03-20 Optical fiber manufacturing method and manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-055124 2018-03-22
JP2018055124 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019182060A1 true WO2019182060A1 (ja) 2019-09-26

Family

ID=67987252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011866 WO2019182060A1 (ja) 2018-03-22 2019-03-20 光ファイバの製造方法および製造装置

Country Status (4)

Country Link
US (1) US11577994B2 (ja)
JP (1) JP7259840B2 (ja)
CN (1) CN111936443A (ja)
WO (1) WO2019182060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022171A1 (ja) * 2021-08-20 2023-02-23 住友電気工業株式会社 光ファイバの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321583A (ja) * 1993-04-05 1994-11-22 Corning Inc 光導波路ファイバを被覆する方法および装置
JPH08119681A (ja) * 1994-10-27 1996-05-14 Fujikura Ltd 光ファイバの製造方法
JP2009227522A (ja) * 2008-03-24 2009-10-08 Furukawa Electric Co Ltd:The 光ファイバの製造方法
JP2018048050A (ja) * 2016-09-23 2018-03-29 住友電気工業株式会社 光ファイバの製造方法および製造装置
JP2018058725A (ja) * 2016-10-05 2018-04-12 住友電気工業株式会社 光ファイバの製造方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822095A (en) * 1972-08-14 1974-07-02 Block Engineering System for differentiating particles
GB2071848B (en) * 1980-02-28 1984-05-23 Marconi Co Ltd Mass flow measurement device
US4374161A (en) * 1981-04-24 1983-02-15 Bell Telephone Laboratories, Incorporated Pressure coating of fibers
US4533570A (en) * 1982-04-19 1985-08-06 At&T Technologies, Inc. Method and apparatus for coating optical waveguide fibers
GB2160448B (en) * 1984-06-21 1988-04-07 Stc Plc Coating optical fibres
NL8501146A (nl) * 1985-04-19 1986-11-17 Philips Nv Inrichting voor het bekleden van optische vezels.
ATE48989T1 (de) * 1985-04-19 1990-01-15 Philips Nv Verfahren und vorrichtung zum beschichten einer faser.
US4869199A (en) * 1987-08-10 1989-09-26 Essex Group, Inc. Manifold for distributing wire coating enamel
US4851165A (en) * 1987-09-02 1989-07-25 American Telephone And Telegraph Company At&T Bell Laboratories Methods of and apparatus for coating optical fiber
WO1992005421A1 (en) * 1990-09-24 1992-04-02 Hydramotion Limited Vibratile sensing instrument
US5885652A (en) * 1995-11-13 1999-03-23 Corning Incorporated Method and apparatus for coating optical fibers
US5948684A (en) * 1997-03-31 1999-09-07 University Of Washington Simultaneous analyte determination and reference balancing in reference T-sensor devices
US6252129B1 (en) * 1996-07-23 2001-06-26 Electrosols, Ltd. Dispensing device and method for forming material
US7193124B2 (en) * 1997-07-22 2007-03-20 Battelle Memorial Institute Method for forming material
US5766357A (en) * 1996-09-19 1998-06-16 Alliant Techsystems Inc. Apparatus for fiber impregnation
US6189343B1 (en) * 1996-11-13 2001-02-20 Fibre Ottiche Sud F.O.S. S.P.A. Apparatus and method for forming an optical fiber
JPH10260322A (ja) * 1997-03-17 1998-09-29 Sumitomo Wiring Syst Ltd 屈折率分布型プラスチック光ファイバの製造方法および製造装置
JPH10260497A (ja) * 1997-03-21 1998-09-29 Konica Corp 塗布液の粘度測定方法、粘度調整方法、脱泡方法及び塗布方法
DE19738687A1 (de) * 1997-09-04 1999-03-11 Alsthom Cge Alcatel Verfahren zur Beschichtung einer optischen Faser
WO1999032415A1 (fr) * 1997-12-22 1999-07-01 Sumitomo Electric Industries, Ltd. Procede et appareil pour l'application d'un revetement sur une fibre optique
US6576058B2 (en) * 1997-12-22 2003-06-10 Sumitomo Electric Industries, Ltd. Optical fiber coating method and coating apparatus
DE19801700A1 (de) * 1998-01-17 1999-07-22 Cit Alcatel Vorrichtung zum Beschichten einer Faser
GB2334958B (en) * 1998-02-25 2001-11-07 Porpoise Viscometers Ltd Melt flow index determination in polymer process control
GB9815232D0 (en) * 1998-07-15 1998-09-09 Hydramotion Ltd Diagnostic sensor
US6630209B2 (en) * 1998-09-30 2003-10-07 Minnesota Mining And Manufacturing Company Method of manufacturing temperature range adjusted coated optical fibers
US6072930A (en) * 1998-11-04 2000-06-06 Syracuse University Method of fabricating a cylindrical optical fiber containing a particulate optically active film
US6537377B1 (en) * 1999-09-03 2003-03-25 Alcatel Apparatus for coating optical fibers
WO2001036966A2 (en) * 1999-11-19 2001-05-25 Battelle Memorial Institute An apparatus for machine fluid analysis
US6527986B2 (en) * 2001-02-07 2003-03-04 Fitel Usa Corp. Extrusion process for fabricating plastic optical fiber
US7655470B2 (en) * 2004-10-29 2010-02-02 University Of Chicago Method for manipulating a plurality of plugs and performing reactions therein in microfluidic systems
JP2007099924A (ja) * 2005-10-05 2007-04-19 Kansai Paint Co Ltd サンプリング装置、液状合成樹脂の製造方法及びそれに使用する製造管理制御装置
DK2146233T3 (da) * 2007-05-08 2020-12-07 Furukawa Electric Co Ltd Fremgangsmåde til fremstilling af optisk fiber og anlæg til fremstilling af optisk fiber
US8236213B2 (en) * 2007-05-16 2012-08-07 Asahi Glass Company, Limited Process for producing perfluoropolymer, production apparatus and process for producing electrolyte membrane for polymer electrolyte fuel cells
KR20100107446A (ko) * 2008-01-28 2010-10-05 아사히 가라스 가부시키가이샤 경화성 조성물, 함불소 경화물, 그들을 사용한 광학 재료 및 발광 소자
US20090291199A1 (en) * 2008-05-22 2009-11-26 Paul Andrew Chludzinski Apparatus and methods of control for coolant recycling
US8079250B2 (en) * 2008-07-09 2011-12-20 Lockheed Martin Corporation Viscometer system utilizing an optical flow cell
JP5250630B2 (ja) * 2008-12-19 2013-07-31 株式会社フジクラ 光ファイバ母材の製造方法
WO2010119696A1 (ja) * 2009-04-16 2010-10-21 株式会社フジクラ 光ファイバ素線の製造方法
KR20180085060A (ko) * 2010-05-07 2018-07-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다층 중합체 필름을 제조하기 위한 장치
KR101841786B1 (ko) * 2010-05-07 2018-03-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다층 중합체 필름을 제조하기 위한 피드블록
JP5629157B2 (ja) 2010-08-05 2014-11-19 東洋機械金属株式会社 射出成形機の自動運転方法
JP5065474B2 (ja) * 2010-12-27 2012-10-31 古河電気工業株式会社 光ファイバの製造方法
US10041870B2 (en) * 2011-06-21 2018-08-07 Halliburton Energy Services, Inc. Fluid densitometer with temperature sensor to provide temperature correction
US9128245B2 (en) * 2013-05-17 2015-09-08 Corning Incorporated Low cost, fast curing optical fiber coatings
CN105263879B (zh) * 2013-06-07 2018-04-27 株式会社藤仓 光纤裸线覆盖装置以及光纤裸线覆盖方法
US10036108B2 (en) * 2013-11-26 2018-07-31 Corning Incorporated Apparatus and method for applications of optical fiber coatings
US9244221B1 (en) * 2013-12-10 2016-01-26 Corning Incorporated Low modulus primary coatings for optical fibers
US20160313292A1 (en) * 2015-04-24 2016-10-27 Petroleum Analyzer Company, Lp Method and apparatus for measuring characteristics of a heated fluid in a hostile environment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321583A (ja) * 1993-04-05 1994-11-22 Corning Inc 光導波路ファイバを被覆する方法および装置
JPH08119681A (ja) * 1994-10-27 1996-05-14 Fujikura Ltd 光ファイバの製造方法
JP2009227522A (ja) * 2008-03-24 2009-10-08 Furukawa Electric Co Ltd:The 光ファイバの製造方法
JP2018048050A (ja) * 2016-09-23 2018-03-29 住友電気工業株式会社 光ファイバの製造方法および製造装置
JP2018058725A (ja) * 2016-10-05 2018-04-12 住友電気工業株式会社 光ファイバの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022171A1 (ja) * 2021-08-20 2023-02-23 住友電気工業株式会社 光ファイバの製造方法

Also Published As

Publication number Publication date
US11577994B2 (en) 2023-02-14
JPWO2019182060A1 (ja) 2021-03-11
US20210017073A1 (en) 2021-01-21
JP7259840B2 (ja) 2023-04-18
CN111936443A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
JP5202951B2 (ja) 光ファイバの製造方法および光ファイバの製造装置
WO2019182060A1 (ja) 光ファイバの製造方法および製造装置
JP6786995B2 (ja) 光ファイバの製造方法および製造装置
AU738625B2 (en) Draw constant downfeed process
JP2018058725A (ja) 光ファイバの製造方法
JPH08119681A (ja) 光ファイバの製造方法
CN109836054B (zh) 光纤用树脂涂敷装置及光纤的制造方法
JP7347185B2 (ja) 光ファイバの製造方法
JP2010269971A (ja) 光ファイバの製造方法
CN117836251A (zh) 光纤的制造方法
JP3430987B2 (ja) 光ファイバ素線の製造方法
US11286196B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP2013220972A (ja) 光ファイバの製造方法
JP2000103649A (ja) 光ファイバ線引き方法及び装置
US20240199480A1 (en) Method for manufacturing optical fiber
US20240228359A1 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP2000001341A (ja) 光ファイバ用樹脂被覆装置
JP2022175447A (ja) 光ファイバ製造方法及び光ファイバ製造装置
JP2023083734A (ja) 光ファイバの製造方法
JPH11106239A (ja) 光ファイバ線引用被覆装置
JPH107431A (ja) 光ファイバ素線製造装置
JPS5941936B2 (ja) 光フアイバの被覆方法
JP2005314118A (ja) 線引方法及び線引装置
JP4239595B2 (ja) 光ファイバ母材の製造方法
JP6233368B2 (ja) マルチモード光ファイバの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770924

Country of ref document: EP

Kind code of ref document: A1