WO2019181705A1 - 真空ポンプ及び真空ポンプ用ダンパ - Google Patents

真空ポンプ及び真空ポンプ用ダンパ Download PDF

Info

Publication number
WO2019181705A1
WO2019181705A1 PCT/JP2019/010417 JP2019010417W WO2019181705A1 WO 2019181705 A1 WO2019181705 A1 WO 2019181705A1 JP 2019010417 W JP2019010417 W JP 2019010417W WO 2019181705 A1 WO2019181705 A1 WO 2019181705A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
ring
intermediate ring
vacuum pump
disposed
Prior art date
Application number
PCT/JP2019/010417
Other languages
English (en)
French (fr)
Inventor
敏明 川島
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to US16/980,999 priority Critical patent/US11499571B2/en
Priority to KR1020207023284A priority patent/KR102676151B1/ko
Priority to EP19771455.3A priority patent/EP3770443A4/en
Priority to CN201980017410.8A priority patent/CN111788397B/zh
Publication of WO2019181705A1 publication Critical patent/WO2019181705A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/086Sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/3732Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having an annular or the like shape, e.g. grommet-type resilient mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/31Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/431Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/437Silicon polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/025Elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/30Sealing arrangements

Definitions

  • the present invention relates to a vacuum pump and a vacuum pump damper, and more particularly to a vacuum pump and a vacuum pump damper that are connected to an instrument such as an electron microscope, a container, and the like, and suck a gas in the instrument. .
  • vacuum pumps used for exhausting gas in devices such as electron microscopes, containers, etc. are provided with an intake port portion having an intake port at one end of a casing containing an exhaust function unit, and an exhaust port at the other end side.
  • the intake port is connected to an external device or the like via a pipe or the like, and external gas is introduced into the casing from the intake port.
  • a rotor part and a stator part are arranged, and one outer peripheral surface of the rotor part and the stator part is opposed to the other inner peripheral surface, thereby the rotor part.
  • a gas transfer part to which gas is transferred between a stator part is mentioned.
  • a rotor part is rotated by drive means, such as a motor, and external gas is attracted
  • turbo molecular pump that is a kind of vacuum pump
  • stator blades that protrude toward the rotor portion are arranged on the stator portion.
  • the rotor blade is provided with a rotor blade extending between the stator blades. Then, gas molecules are struck and transferred by rotating the rotor blades.
  • the thread groove type pump a thread groove is formed on one of the circumferential surfaces of the rotor portion and the stator portion facing each other. By rotating the rotor, gas is transferred using the viscosity of the gas. To do.
  • turbo molecular pump that combines these.
  • Patent Document 1 a space between a casing in which a stator portion, a stator blade, a rotor portion, a rotor blade, and the like are housed as an exhaust function portion and an intake port portion in which an intake port for sucking gas from the outside is provided. , And connected to a state sealed by an elastic member formed of stainless steel (SUS) bellows, and regulates the amount of separation between the casing and the air inlet portion that changes due to the relative movement of the casing and the air inlet portion.
  • SUS stainless steel
  • the elastic member can always maintain a good elastic force by the movement restricting member to obtain a good vibration reduction property, and the vibration propagates to an external device or the like to impair the function and durability. Can be prevented.
  • plastic deformation and damage of the elastic member and the seal member can be prevented, and further, the vacuum pump can be prevented from being violated due to an unexpected accident.
  • an elastic member made of stainless steel (SUS) bellows is used as means for obtaining vibration reduction between the casing and the air inlet. Since this stainless steel bellows has high rigidity in the twist direction, there is a problem that the vibration isolation effect in the twist direction is not sufficient. In addition, the stainless steel (SUS) bellows has a problem of high manufacturing cost and high price.
  • a vacuum pump that has a simple structure and can improve the vibration isolation performance in the twisting direction, and can prevent the breakage and damage of the O-ring and the elastic body by regulating the deviation between the facing flanges.
  • each of the first has an annular shape and are arranged to face each other and have an annular shape.
  • the first flange and the second flange corresponds to the flange and the second flange, and the opening of the first flange and the opening of the second flange, the first flange and the second flange have a shape that opens at the center.
  • An intermediate ring disposed between the first flange and the intermediate ring, an O-ring disposed between the intermediate ring and the second flange, the first flange and the intermediate ring, respectively.
  • a plurality of elastic bodies arranged in the circumferential direction between the intermediate ring and between the intermediate ring and the second flange, the first flange, the intermediate ring, and the second flange; Positioning provided for each An airtight holding means having a positioning member that is disposed through the forward inner, a, to provide a vacuum pump.
  • the space between the first flange and the second flange is pressed at atmospheric pressure, compressing the O-ring and the elastic body, thereby reducing the interval.
  • the first flange and the positioning member are not in contact with each other, and the first flange and the second flange are connected only by the O-ring, the elastic body, and the intermediate ring.
  • the vibration isolation effect is enhanced because the spring constant in the twisting direction is smaller than that of the damper using the bellows.
  • the first flange and the second flange are electrically and mechanically insulated, and even if undesirable electrical noise occurs in the vacuum pump, the vacuum chamber side through both flanges. No noise will be transmitted to.
  • the elastic bodies are arranged in a scattered manner in the circumferential direction of the central opening of the first flange and the circumferential direction of the central opening of the second flange, respectively, the elastic bodies are made to make one round of the central opening of each flange.
  • the lateral spring constant can be lowered and the lateral vibration isolation performance can be improved as compared with the case where a simple ring-shaped elastic body is used.
  • the O-ring and the plurality of elastic bodies are arranged in a total of two stages, at least one stage between the first flange and the intermediate ring and one stage between the second flange and the intermediate ring. .
  • a two-stage O-ring and a two-stage elastic body form a two-degree-of-freedom system, which can greatly improve high-frequency vibration attenuation.
  • high-frequency vibration can be further damped.
  • the vacuum pump according to the first aspect wherein the elastic body is a substantially cylindrical body or a prismatic body.
  • the O-ring is a vacuum formed by a composite material in which an outer peripheral surface of a core material formed of silicon rubber is coated with fluoro rubber. Provide a pump.
  • the vacuum sealing performance is improved by using an O-ring in which the outer peripheral surface of the core material formed of silicon rubber having a high vibration isolation performance and relatively inexpensive is coated with a fluorine comb having a high vacuum sealing performance.
  • An O-ring having high vibration isolation performance can be obtained.
  • the O-ring and the elastic body are respectively disposed at the first flange and the second flange.
  • a vacuum pump provided with a recess for positioning the corresponding O-ring and the elastic body, respectively.
  • the recesses for positioning the corresponding O-rings and the elastic bodies are provided in the respective locations of the first flange and the second flange, the O-ring and the corresponding recesses are provided.
  • the elastic bodies By disposing and positioning the elastic bodies, it is possible to prevent the flanges from shifting in the lateral direction. Thereby, it is not necessary to separately provide a member for preventing the flanges from shifting in the lateral direction, and the manufacturing cost can be reduced.
  • the other positioning recess provides a vacuum pump in which the O-ring is positioned such that the radial spring constant is lower than the axial spring constant.
  • the O-ring in the positioning recess positioned so that the axial spring constant is low is positioned so that the vibration isolation performance in the axial direction is improved and the radial spring constant is low.
  • the O-ring in the positioning recess increases the vibration isolation performance in the radial direction. As a result, vibration in the axial direction and vibration in the width direction are effectively performed.
  • the first flange or the second flange is provided with a fixing screw for fixing to the vacuum chamber.
  • the intermediate ring facing the mounting hole has a notch that allows the head of the fixing screw to escape during mounting of the fixing screw at a location corresponding to the mounting hole.
  • the intermediate ring when the first flange or the second flange is attached to the vacuum chamber or the vacuum pump with the fixing screw, the intermediate ring is provided with the notch portion that allows the head of the fixing screw to escape.
  • the intermediate ring can be smoothly mounted without colliding with the head of the fixing screw, and the assembling workability is improved.
  • the first flange is further disposed so as to cover an outer peripheral surface of the intermediate ring.
  • a vacuum pump comprising: an annular portion having a peripheral surface; and a flange portion extending outward from one end surface of the annular portion and provided with the elastic body and the positioning member.
  • a large space is formed between the first flange and the second flange by the annular portion formed to extend downward from the lower surface of the first flange.
  • the first flange is partially laminated in the axial direction of the first flange.
  • An annular portion having an inner peripheral surface disposed to cover the outer peripheral surface of the intermediate ring disposed in a plurality of positions is provided, and between the outer peripheral surface of the intermediate ring and the inner peripheral surface of the annular portion.
  • a vacuum pump provided with a second O-ring.
  • the space between the first flange and the second flange is pressed at atmospheric pressure, compressing the O-ring and the elastic body, thereby reducing the interval.
  • the flange or the first flange and the fixing member are in a non-contact state, and the first flange and the second flange are connected by an O-ring and an elastic body.
  • a second O-ring is positioned between the outer peripheral surface of the intermediate ring and the inner peripheral surface of the annular portion, and the second O-ring is subjected to lateral vibration isolation between the intermediate ring and the first flange. Increase performance.
  • a ninth aspect of the present invention is the configuration according to the first, second, third, fourth, fifth, sixth, seventh, or eighth aspect, wherein a plurality of the layers are arranged in the axial direction of the first flange.
  • An annular portion having an inner peripheral surface disposed to cover an outer peripheral surface of the intermediate ring disposed on the lower side of the intermediate ring is provided in a part of the intermediate ring on the upper side of the intermediate ring,
  • a vacuum pump in which a second O-ring is disposed between the outer peripheral surface of an intermediate ring arranged on the lower side and the inner peripheral surface of the annular portion.
  • the space between the first flange and the second flange is pressed at atmospheric pressure, compressing the O-ring and the elastic body, thereby reducing the interval.
  • the flange or the first flange and the positioning member are in a non-contact state, and the first flange and the second flange are connected by an O-ring and an elastic body.
  • a second O-ring is positioned between the outer peripheral surface of the intermediate ring and the inner peripheral surface of the annular portion, and the second O-ring is subjected to lateral vibration isolation between the intermediate ring and the first flange. Increase performance.
  • a protrusion projecting toward the second O-ring is provided on the inner peripheral surface of the annular portion.
  • a vacuum pump which is provided in a plurality scattered in the circumferential direction.
  • the protrusion comes into contact with the outer peripheral surface of the second O-ring to prevent the second O-ring from deviating from the inner peripheral surface of the annular portion or the intermediate ring. Keeping the position of the side, improve the vibration isolation performance in the lateral direction.
  • the invention according to an eleventh aspect is the structure according to the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth or tenth aspect, wherein a part of the outer peripheral surface is formed on the outer peripheral surface of the intermediate ring.
  • a vacuum pump comprising a hook-like portion protruding in the outer peripheral direction, and the elastic body being disposed in contact with the outer peripheral surface of the hook-like portion.
  • the elastic body and the outer peripheral surface of the bowl-shaped portion are in contact with each other, and the intermediate ring can be prevented from shifting in the lateral direction.
  • the invention as set forth in claim 12 is a vacuum pump damper for maintaining airtightness between a vacuum chamber and a vacuum pump for evacuating the inside of the vacuum chamber, each having a shape with an open center, and
  • the first flange and the second flange which are arranged opposite to each other and have an annular shape, correspond to the opening of the first flange and the opening of the second flange, and have an opening at the center.
  • An intermediate ring disposed between the first flange and the second flange; and between the first flange and the intermediate ring and between the intermediate ring and the second flange.
  • a plurality of elastic bodies arranged in the circumferential direction between the first flange and the intermediate ring and between the intermediate ring and the second flange;
  • the flange and the above An airtight holding means having each provided positioning member to the positioning hole disposed through the order is between the ring and the second flange, and a, to provide a damper for a vacuum pump.
  • vibration isolation in the twisting direction of the vacuum pump can be improved, and the deviation of the facing flange surface is regulated to prevent breakage or damage to the O-ring or elastic body. make it possible.
  • the first flange, the intermediate ring, and the second flange are connected only by the O-ring and the elastic column.
  • a spring constant in the twisting direction is reduced, and a vacuum pump with an improved vibration isolation effect is obtained.
  • the elastic body does not use a ring-shaped elastic body that goes around the central opening, which is the intake port, but is provided in the form of a column that is scattered around the intake port.
  • the lateral spring constant can be lowered and the vibration isolation performance in the lateral direction is improved.
  • a vacuum pump and a vacuum pump damper capable of preventing the O-ring and the elastic body from being broken and damaged by restricting the deviation of the facing flange surfaces can be obtained.
  • the first flange and the second flange are electrically and mechanically insulated, which generates undesirable electrical noise in the vacuum pump. However, noise is not propagated to the vacuum chamber side.
  • FIG. 3 is an exploded perspective view of the vacuum pump damper shown in FIG. 2.
  • FIGS. 2A and 2B are cross-sectional views taken along line AA in FIG. 2, in which FIG. 2A is a view when the inside of the vacuum chamber is not evacuated, and FIG. FIG. 3 is a cross-sectional view taken along line BB in FIG. 2.
  • FIG. 2 is a cross-sectional view taken along the line CC in FIG. 2, (a) is a structural diagram applied in the embodiment of the vacuum pump damper, and (b) shows the effect of the structure of this embodiment shown in (a). It is a figure for demonstrating.
  • FIG. 5 is a cross-sectional view showing a first modification of the damper for a vacuum pump of the present invention, and showing a portion corresponding to the cross section taken along the line AA in FIG.
  • FIG. 10 is a cross-sectional view showing a second modification of the damper for a vacuum pump of the present invention, and showing a portion corresponding to the cross section taken along the line AA in FIG.
  • FIG. 5 is a cross-sectional view showing a first modification of the damper for a vacuum pump of the present invention, and showing a portion corresponding to the cross section taken along the line AA in FIG.
  • FIG. 10 is a cross-sectional view showing a second modification of the damper for a vacuum pump of the present invention, and showing a portion corresponding to the cross section taken along the line AA in FIG.
  • FIG. 8 is a cross-sectional view showing a third modification of the damper for a vacuum pump according to the present invention, where (a) shows a portion corresponding to the cross-section taken along the line AA in FIG. 2, and (b) shows B in FIG. It is a figure which shows the part corresponded to -B line arrow cross section.
  • FIG. 9 is a cross-sectional view showing a fourth modification of the vacuum pump damper according to the present invention, where (a) shows a portion corresponding to the cross-section taken along the line AA in FIG. 2, and (b) shows the B in FIG. It is a figure which shows the part corresponded to -B line arrow cross section.
  • FIG. 14 is a cross-sectional view taken along line DD in FIG. 13.
  • Sectional drawing which shows the 5th modification of the damper for vacuum pumps of this invention, (a) is a figure which shows the part corresponded to the AA arrow cross section of FIG. 2, (b) is B of FIG. It is a figure which shows the part corresponded to -B line arrow cross section.
  • the present invention is a vacuum that has a simple structure and can improve vibration isolation in the twisting direction, and can prevent the breakage and damage of the O-ring and the elastic body by regulating the deviation between the flanges facing each other.
  • a vacuum pump damper for maintaining a hermetic space between a vacuum chamber and a vacuum pump for evacuating the vacuum chamber, the vacuum chamber and the vacuum pump A vacuum pump for evacuating the inside of the vacuum chamber is hermetically maintained.
  • Each of the first and second flanges having an annular shape and having a central opening and disposed opposite to each other;
  • An intermediate disposed between the first flange and the second flange having a central opening corresponding to the central opening of the flange and the central opening of the second flange
  • a ring, an O-ring disposed around the outer periphery of the central opening, between the first flange and the intermediate ring, between the intermediate ring and the second flange, and the first flange,
  • a plurality of elastic bodies arranged between the intermediate ring and between the intermediate ring and the second flange, respectively, scattered in the circumferential direction of the central opening, the first flange, and the second flange
  • An airtight holding means having a positioning member arranged in order through an intermediate ring and positioning holes respectively provided in the second flange is realized.
  • FIG. 1 is an axial sectional view showing the overall configuration of a vacuum pump 10 according to the present invention.
  • a turbo molecular pump is taken as an example of the vacuum pump 10.
  • the vacuum pump 10 includes a vacuum pump damper 12 that is arranged in an airtight state between an external container (hereinafter referred to as “vacuum chamber”) (not shown) and the casing body 11.
  • vacuum chamber an external container
  • the casing body 11 is also made of stainless steel (SUS) and is formed in a cylindrical shape, and incorporates an exhaust function part as will be described later.
  • a vacuum pump damper 12 is connected to one end side (upper end side) of the casing main body 11, and a bolt 18 is fixed between the vacuum pump damper 12 and the casing main body 11.
  • the vacuum pump damper 12 is for preventing vibration due to rotation on the casing body 11 side from propagating to the vacuum chamber side.
  • the base 19 is connected to the other end side (lower end side) of the casing body 11, and the base 19 and the casing body 11 are fixed with bolts 20.
  • the casing body 11 includes a stator portion 24 that forms a part of the exhaust function portion, is supported by the base 19 and is accommodated in the hollow portion 21, and a rotor portion 25 that is accommodated in the hollow portion. ing. Further, the magnetic bearing portions 26 and 27 that rotatably support the rotor portion 25 with respect to the stator portion 24, and the rotor portion 25 that is supported by the magnetic bearing portions 26 and 27 are attached to the stator portion 24 via the rotor shaft 25a. And a motor 28 for rotating the motor.
  • the rotor portion 25 has a cylindrical wall portion 29, and a large number of rotor blades 30 are provided radially and in multiple stages in the axial direction on the outer periphery of the cylindrical wall portion 29.
  • the rotor blade 30 is inclined at a predetermined angle with respect to the axial direction so that the inlet side (upper side in the drawing) is the rotational direction side.
  • the stator portion 24 includes a stator blade 31 disposed between the stages of the rotor blade 30.
  • the stator blades 31 are inclined at a predetermined angle with respect to the axial direction.
  • the magnetic bearing that supports the rotor portion 25 by magnetic force is a three-axis control magnetic bearing, and the rotor portion 25 is magnetically levitated in the radial direction (the radial direction of the rotor shaft 25a) by the magnetic bearing portion 26 and supported in a non-contact manner. Then, the magnetic bearing portion 27 magnetically floats in the thrust direction (axial direction of the rotor shaft 25a) and is supported in a non-contact manner.
  • radial electromagnets 32 are arranged around the rotor shaft 25a so as to face each other at 90 degrees (two are shown in the figure).
  • the rotor shaft 25 a facing the radial electromagnets 32 is formed of a high permeability material and receives the magnetic force of these radial electromagnets 32.
  • a disk-shaped metal disk 33 formed of a magnetic material is fixed to the lower part of the rotor shaft 25a, and an axial electromagnet 34 is fixedly disposed on the base 19 above the metal disk 33. Then, by supplying excitation currents to the radial electromagnet 32 and the axial electromagnet 34, the rotor unit 25 is magnetically levitated.
  • protective bearings 35A and 35B are disposed on the upper and lower sides of the rotor portion 25.
  • the rotor portion 25 is pivotally supported by the magnetic bearing portions 26 and 27 in a non-contact state while rotating.
  • the protective bearings 35A and 35B protect the entire apparatus by pivotally supporting the rotor portion 25 in place of the magnetic bearing portions 26 and 27 when a touchdown occurs.
  • the rotor portion 25 is pivotally supported by the magnetic bearing portions 26 and 27.
  • the rotor portion 25 is not limited to this, and may be a dynamic pressure bearing, a static pressure bearing, or other bearings. .
  • FIG. 2 to 5 and 8 show the structure of the vacuum pump damper 12 shown in FIG. 1 in detail
  • FIG. 2 is an assembled perspective view of the vacuum pump damper 12
  • FIG. 3 is shown in FIG. 4 is an exploded perspective view of the vacuum pump damper 12
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 2
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG. It is arrow sectional drawing.
  • the detailed structure of the vacuum pump damper 12 will be described in detail below with reference to FIGS. 2 to 5 and FIG. 8 in addition to FIG.
  • a vacuum pump damper 12 includes a first flange 13 which is connected to the upper surface side in an airtight state with the vacuum chamber, and a lower surface which is airtight with the casing body 11 as shown in FIG.
  • the second flange 14 to which the sides are connected, and the intermediate ring 15 disposed between the lower surface of the first flange 13 and the upper surface of the second flange 14 are provided.
  • the second flange 14, the intermediate ring 15, and the first flange 13 are each formed of stainless steel (SUS).
  • the second flange 14, the intermediate ring 15, and the first flange 13 are each formed in an annular shape by providing an intake port 12 a that sucks gas in the vacuum chamber at the center. As shown in FIGS.
  • the vacuum pump damper 12 is made to face each other by laminating the second flange 14, the intermediate ring 15 and the first flange 13 in order in the axial direction. In an integrated state, it is disposed between the vacuum chamber and the casing body 11.
  • the vacuum pump damper 12 surrounds the outside of the central opening serving as the air inlet 12 a, and is between the lower surface of the first flange 13, the upper surface of the intermediate ring 15, and the lower surface of the second flange 14.
  • O-rings 16 are respectively disposed. Further, surrounding the outside of the O-ring 16, there are a plurality of gaps between the lower surface of the first flange 13 and the upper surface of the intermediate ring 15, and between the lower surface of the intermediate ring 15 and the upper surface of the second flange 14.
  • the elastic bodies 17 are arranged in a scattered manner.
  • these first A positioning recess 36 for holding the O-ring 16 with the flange 13 and the intermediate ring 15 and the intermediate ring 15 and the second flange 14 facing each other, and positioning and holding the sandwiched O-ring 16 outside the central opening, respectively. Is formed in a ring shape.
  • the O-ring 16 is made of fluororubber having electrical insulation and elastic deformation, and the cross-sectional shape is formed in a substantially circular shape as shown in FIG.
  • the O-ring 16 is not only a structure formed entirely of fluoro rubber as shown in FIG. 6A, but also a core material made of silicon rubber, for example, as shown in FIG. 6B. (Core) It is good also as an electrically insulating composite material structure which coat
  • the dissimilar material 16b does not cover the entire outer peripheral surface of the core material 16a, and is a portion sandwiched between the lower surface of the first flange 13 and the upper surface of the intermediate ring 15, for example, as shown in FIG.
  • a composite material structure may be formed in which only the portion sandwiched between the lower surface of the intermediate ring 15 and the upper surface of the second flange 14 is covered with the different material 16b.
  • the first flange 13 has a cylindrical flange main body 13b provided with a central opening 13a as an opening, which serves as an intake port 12a in the center, and the outer side horizontally from the upper edge of the flange main body 13b. It integrally has an upper flange portion 13c extending in a bowl shape toward the bottom and a lower flange portion 13d extending in a bowl shape horizontally outward from the peripheral edge of the lower end of the flange main body portion 13b.
  • the upper flange portion 13c of the first flange 13 is provided with a mounting hole 38 through which a fixing screw 37 (see FIG. 8) for fixing the gap between the first flange 13 and the vacuum chamber passes vertically. It has been.
  • a plurality of mounting holes 38 are provided at substantially equal intervals.
  • a concave groove 39 formed in a ring shape is formed on the lower surface side of the lower flange portion 13d so as to surround the outside of the central opening 13a.
  • the concave groove 39 forms a positioning recess 36 for positioning the O-ring 16 disposed on the first flange 13 side together with the intermediate ring 15.
  • the O-ring 16 disposed on the first flange 13 side is disposed in a state where a part thereof is accommodated in the groove 39 and the remaining part is protruded from the groove 39.
  • the lower flange portion 13d has a head of the fixing screw 37 at each position corresponding to the mounting hole 38 formed in the upper flange portion 13c, that is, at eight positions corresponding to the eight mounting holes 38.
  • Cutout portions 40 for allowing the portion 37a to escape are provided from the outer periphery of the lower flange portion 13d toward the inside (center opening 13a side).
  • the notch 40 serves as a notch 40 when the fixing screw 37 is passed through the attachment hole 38 and the vacuum pump damper 12 is attached to the vacuum chamber.
  • the head 37a of the fixing screw 37 collides with the outer peripheral edge 13da of the lower flange portion 13d, and the mounting operation of the fixing screw 37 is difficult.
  • the head 37a of the fixing screw 37 is released by the notch 40 and smoothly does not hit the outer peripheral edge 13da of the lower flange 13d. It is attached to. That is, by providing the notch 40, the fixing screw 37 can be easily attached.
  • the lower flange portion 13d of the first flange 13 is provided with a positioning hole 13e into which the distal end portion 41a of the positioning pin 41 serving as a positioning member is inserted between the lower flange portion 13d and the notch portion 40, and a recess for positioning the elastic body 17.
  • a place (dent) 13f is provided.
  • the positioning hole 13e is provided in total, eight one each in the substantially middle place with two adjacent notch parts 40 and 40, and the recess 13f is adjacent. A total of 16 pieces are provided, one at each of approximately two locations between the two notches 40 and the positioning hole 13e.
  • the number of the notch part 40, the positioning hole 13e, and the recess 13f is not limited to this, It can change as needed.
  • a female screw is provided on the inner peripheral surface of the positioning hole 13e
  • a male screw that engages with the female screw on the inner peripheral surface of the positioning hole 13e is provided on the outer peripheral surface of the distal end portion 41a of the positioning pin 41. ing.
  • the second flange 14 is formed in a ring plate shape with a central opening 14a serving as an opening portion serving as an inlet 12a at the center.
  • the upper surface of the second flange 14 (the surface facing the first flange 13 and the intermediate ring 15) is formed in an annular shape so as to surround the outside of the central opening 14 a.
  • the 1st hill part 14b and the 2nd hill part 14c form the positioning recess 36 which positions the O-ring 16 arrange
  • the third hill portion 14d of the second flange 14 has eight positioning holes 14e corresponding to the positioning holes 13e of the first flange 13, respectively.
  • 16 recesses (recesses) 14 f for positioning the elastic body 17 are also provided correspondingly to the recesses 13 f of the first flange 13.
  • the intermediate ring 15 is formed in a ring plate shape with a central opening 15a serving as an opening serving as an intake port 12a on the inner side.
  • the upper surface of the intermediate ring 15 (the surface facing the first flange 13) is also provided with recesses 13f of the first flange 13 and the second flange 14, as shown in FIGS.
  • 16 recesses (recesses) 15 f for positioning the elastic body 17 are provided.
  • the elastic body 17 is formed as a cylindrical body with an elastic member such as silicon rubber, as shown in FIGS. 2, 3, and 7 (a). Therefore, the recess 13f of the first flange 13, the recess 14f of the second flange 14, and the recess 15f of the intermediate ring 15 described above are substantially circular in plan view according to the circular shape of the upper and lower end surfaces of the elastic body 17.
  • the elastic bodies formed in the recesses 13f, 14f, and 15f serve to prevent lateral displacement in the horizontal direction.
  • the elastic body 7 is not limited to a cylindrical body, and may be a prismatic body as shown in FIG. 7B, for example. In addition to this, the hollow cylindrical body shown in FIG.
  • the cylindrical body in the form of a beer barrel in which the intermediate part shown in FIG. 10D swells, and the intermediate part shown in FIG. It may be a cylindrical body or the like.
  • the shape of the column of the elastic body 17 it is preferable to change the shapes of the recesses 13f, 14f, and 15f in accordance with the shapes of the upper and lower end faces of the elastic body 17.
  • the positioning pin 41 as a positioning member has a head 41b at the lower end opposite to the tip 41a provided with a male screw.
  • a conductive sleeve 42 having a flange 42a at one end (lower end) is attached to the outer periphery of the positioning pin 41.
  • the sleeve 42 is attached to the positioning pin 41 until the flange 42a collides with the head 41b with the flange 42a facing down from the tip 41a side of the positioning pin 41.
  • the positioning pin 41 fitted with the sleeve 42 maintains airtightness between the first flange 13 and the second flange 14 by the O-ring 16 when the vacuum chamber is not evacuated by the vacuum pump 10.
  • the O-ring 16 and the elastic body 17 are respectively compressed, and one of the first flange 13 and the second flange 14 (the second flange 14 in this embodiment) is in the axial direction of the flanges 13 and 14.
  • the airtight holding means 51 is configured to separate the positioning pin 41 from one of the flanges 13 and 14 electrically and mechanically (hereinafter referred to as “electrical / mechanical”).
  • the sleeve 42 With the sleeve 42 mounted, it is inserted from the lower surface side of the second flange 14 through the positioning hole 14e of the second flange 14 and the positioning hole 15e of the intermediate ring 15 in this order, and then the tip of the positioning pin 41 The male screw of the portion 41a is screwed into the female screw of the positioning hole 13e of the first flange 13, and is fastened and fixed until it is regulated by the length of the sleeve 42.
  • the intermediate ring 15 and the second flange 14 are sequentially stacked and fixed with the positioning pin 41, the lower surface of the first flange 13, the upper surface of the intermediate ring 15, and the lower surface of the intermediate ring 15 And the upper surface of the second flange 14 are respectively disposed in the positioning recess 36 in a slightly elastically compressed state, and the O-ring 16 is disposed, and the lower surface of the first flange 13 and the intermediate ring 15 are respectively disposed.
  • 16 elastic bodies 17 between the upper surface of the second flange 14 and 16 elastic bodies 17 between the upper surface of the second flange 14 and the lower surface of the intermediate ring 15 are slightly formed in the recesses 13f, 14f, and 15f, respectively.
  • the plurality of O-rings 16 and the plurality of elastic bodies 17 are fixed between the first flange 13 and the intermediate ring 15 and between the intermediate ring 15 and the second flange 14 by fixing the positioning pins 41.
  • the first flange 13, the intermediate ring 15, and the second flange 14 are integrated with each other.
  • the distance between the first flange 13 and the second flange 14 is set by the sleeve 42 and is elastic with the O-ring 16. Due to the repulsive force with the body 17, the first flange 13 and the intermediate ring 15 are separated from each other and the intermediate ring 15 and the second flange 14 are separated by being sealed with an O-ring 16. Yes. Further, in this state, as shown in FIG. 4A, the flange portion 42a of the sleeve 42 and the lower surface of the second flange 14 are in close electrical / mechanical contact, and the first flange 13 and The second flange 14 is electrically connected via a sleeve 42 having conductivity.
  • the vacuum pump damper 12 formed in this manner is attached to one end side (upper end side) of the casing body 11 in a state of being airtight and fixed with bolts 18 in FIG. And integrated.
  • the vacuum pump damper 12 integrated with the casing body 11 is then passed through the fixing screw 37 through the mounting hole 38 of the first flange 13 as shown in FIG. By screwing to the vacuum chamber side, the vacuum chamber is fixed and attached in an airtight state, and assembled as a vacuum pump 10.
  • the vacuum pump 10 is fixed to an external vacuum chamber via the vacuum pump damper 12 as described above, and the motor 28 of the vacuum pump 10 is driven in this state.
  • the motor 28 of the vacuum pump 10 is driven in this state.
  • the rotor blade 30 is rotated at a high speed together with the rotor portion 25.
  • the gas from the intake port 12 a is transferred by the rotor blade 30 and the stator blade 31 and is discharged from the exhaust port 22. That is, the vacuum chamber is evacuated.
  • the vacuum pump damper 12 before the vacuum chamber is evacuated is formed between the first flange 13 and the intermediate ring 15 by the repulsive force between the O-ring 16 and the elastic body 17.
  • the intermediate ring 15 and the second flange 14 are separated from each other in a state of being sealed with an O-ring 16.
  • the flange portion 42a of the sleeve 42 and the lower surface of the second flange 14 are in close contact with each other, and the space between the first flange 13 and the second flange 14 is between. It is electrically connected through a sleeve 42 having conductivity.
  • the vacuum pump 10 here is configured so that both the flanges 13 and 14 can be connected even if an undesirable electrical noise occurs in the vacuum pump 10 due to the insulation between the first flange 13 and the second flange 14. Noise is not transmitted to the vacuum chamber.
  • vibration is generated due to unbalance of the rotor portion 25, cogging of the motor 28, and the like. These vibrations are propagated to the casing body 11 and the vacuum pump damper 12. Further, when a back pump is connected to the exhaust port 22 of the vacuum pump 10, vibrations of the back pump and the like are transmitted to the casing body 11 and the vacuum pump damper 12 through the connection pipes and the like.
  • the intervals between the first flange 13, the intermediate ring 15 and the second flange 14 are pressed at atmospheric pressure to elastically compress the O-ring 16 and the elastic body 17, respectively.
  • the first flange 13, the intermediate ring 15, and the second flange 14 are connected by only the O-ring 16 and the column of the elastic body 17, so that the vibration propagated to the vacuum chamber side. Is vibrated by the O-ring 16 and the elastic body 17 and becomes extremely small.
  • the elastic body 17 is not provided with a ring-shaped elastic body that goes around the intake port 12a, but is provided in the form of a column scattered around the intake port 12a.
  • the lateral spring constant can be lowered, so that the lateral vibration isolation performance is enhanced.
  • the number of positioning holes 13e, 14e, 15e and the recesses 13f, 14f, 15f is not limited to the number of the present embodiment.
  • the O-ring 16 disposed between the first flange 13 and the intermediate ring 15 and the O-ring disposed between the intermediate ring 15 and the second flange 14 have different rigidity.
  • a ring may be used.
  • an intermediate ring 15 is disposed between the first flange 13 and the second flange 14, and between the first flange 13 and the intermediate ring 15, the intermediate ring 15 and the second flange. 14, a structure in which an O-ring 16 and an elastic body 17 are provided between each other is disclosed.
  • the intermediate ring 15 may be omitted, and the O-ring 16 and the elastic body 17 may be disposed between the first flange 13 and the second flange 14 without the intermediate ring 15 interposed therebetween.
  • FIG. 9 shows a conventional vacuum pump damper 12 according to the present invention in which the first flange 13 and the second flange 14 are connected by an O-ring 16 and a column of an elastic body 17.
  • the solid line is the case where the first flange 13 and the second flange 14 of the present invention are connected by the O-ring 16 and the column of the elastic body 17, and the dotted line is the case of the conventional bellows type. is there.
  • the vertical axis represents vibration acceleration (mm / SA2), and the horizontal axis represents frequency (Hz). From the experimental data shown in FIG. 9, in the case of the vacuum pump damper 12 of the present invention, the vibration acceleration gradually decreases from 11 Hz compared to the case of using the conventional bellows system, and the vibration acceleration greatly decreases after 15 Hz. , You can see that it has been isolated.
  • FIG. 10 is a view showing a first modification of the vacuum pump damper 12 shown in FIGS. 1 to 8, and (a) shows a portion corresponding to the cross section taken along the line AA in FIG.
  • FIG. 4B is a diagram showing a portion corresponding to the cross section taken along line BB in FIG.
  • the first modification shown in FIG. 10 is a structure in the case where the vibration isolation performance in the axial direction (vertical direction) is improved compared to the vibration isolation performance in the radial direction (horizontal direction). That is, in the vacuum pump damper 12 shown in FIG. 10, the radial width (left-right direction) of the positioning recess 36 formed between the first flange 13 and the intermediate ring 15 is smaller than the diameter of the O-ring 16.
  • the width of the positioning recess 36 formed between the second flange 14 and the intermediate ring 15 in the axial direction (height direction) is smaller than the diameter of the O-ring 16.
  • the vacuum pump damper 12 of the first modified example when the vacuum chamber is not evacuated by the vacuum pump 10, it is positioned in the positioning recess 36 between the first flange 13 and the intermediate ring 15.
  • the O-ring 16 is disposed in a sealed state that is crushed by the inner wall surfaces on both the left and right sides in the radial direction (left-right direction) of the positioning recess 36, and is positioned between the second flange 14 and the intermediate ring 15.
  • the O-ring 16 positioned in 36 is disposed in a sealed state in which it is crushed by the upper surface of the second flange 14 and the lower surface of the intermediate ring 15.
  • the spring constant of the O-ring 16 is several times larger and harder in the crushing direction than in the shearing direction. Therefore, when it is desired to reduce the spring constant in the axial direction, both the left and right sides of the positioning recess 36 are positioned like the O-ring 16 positioned in the positioning recess 36 between the first flange 13 and the intermediate ring 15. The inner wall surface may be crushed and sealed. On the other hand, when it is desired to increase the spring constant in the axial direction and decrease the spring constant in the radial direction, as in the O-ring 16 positioned in the positioning recess 36 between the second flange 14 and the intermediate ring 15. The upper surface of the second flange 14 and the lower surface of the intermediate ring 15 may be crushed and sealed.
  • the O-ring 16 positioned in the positioning recess 36 between the first flange 13 and the intermediate ring 15 improves the vibration isolation performance in the axial direction
  • the second The O-ring 16 positioned in the positioning recess 36 between the flange 14 and the intermediate ring 15 has a structure with improved radial vibration isolation performance.
  • the two positioning recesses 36 for positioning the O-ring 16 are opposite to the structure shown in FIG. 10, and the O-ring 16 provided between the first flange 13 and the intermediate ring 15 is removed in the radial direction.
  • the positioning may be performed so as to improve the vibration performance, and the O-ring provided between the second flange 14 and the intermediate ring 15 may be positioned so as to improve the vibration isolation performance in the axial direction.
  • FIG. 11 is a view showing a second modification of the vacuum pump damper 12 shown in FIGS. 1 to 8, and shows a portion corresponding to the cross section taken along the line AA of FIG.
  • the inner diameter of the positioning hole 15e in the intermediate ring 15 is formed substantially equal to the outer diameter of the positioning pin 43 as a positioning member, and the inner diameter of the positioning hole 13e in the first flange 13
  • the inner diameter of the positioning hole 14 e in the second flange 14 is formed larger than the outer diameter of the positioning pin 43.
  • the positioning pin 43 is fixed to the intermediate ring 15 in the state which press-fixed the intermediate part of the positioning pin 43 which is a positioning member to the positioning hole 15e of the intermediate ring 15.
  • FIG. a first flange 13 and a second flange 14 are arranged above and below the intermediate ring 15, respectively.
  • the O-ring 16 and the elastic body 17 are disposed between the first flange 13 and the intermediate ring 15 and between the intermediate ring 15 and the second flange 14, and the positioning hole 13e and the positioning hole 14e are also provided.
  • the positioning pins 43 are inserted and arranged in a non-contact state, and thereafter, the first flange 13, the intermediate ring 15, and the second flange 14 are held and integrated by a member (not shown).
  • the vacuum pump damper 12 structure of the second modified example when the vacuum chamber is evacuated, the space between the first flange 13 and the intermediate ring 15 and the space between the intermediate ring 15 and the second flange 14 are reduced.
  • the O-ring 16 and the elastic body 17 are respectively compressed by being pressed at atmospheric pressure, and the interval is reduced. Therefore, in the case of the second modification, the sleeve attached to the positioning pin 41 can be omitted. Therefore, the positioning pin 43 can be arranged in a small space.
  • the positioning pin 43 has an effect of absorbing the torque and preventing the vacuum pump damper 12 from being twisted and broken. is there.
  • FIG. 12 is a cross-sectional view showing a third modification of the damper for a vacuum pump of the present invention, in which (a) shows a portion corresponding to the cross section taken along the line AA in FIG.
  • FIG. 3 is a diagram showing a portion corresponding to a cross section taken along line BB in FIG. 2.
  • three intermediate rings including an intermediate ring 15 ⁇ / b> A, an intermediate ring 15 ⁇ / b> B, and an intermediate ring 15 ⁇ / b> C are stacked between the first flange 13 and the second flange 14. Arranged in order.
  • the intermediate ring 15A and the intermediate ring 15C are provided with hook-shaped portions 15Aa and 15Ca extending outward from the outer peripheral intermediate portion.
  • the outer diameters of the flanges 15Aa and 15Ca extend to a region surrounded by the elastic body 17 as shown in FIG. 12 and extend to a position substantially in contact with the outer peripheral surface of the elastic body 17. I have to.
  • the intermediate ring 15B includes a plurality of positioning holes 15e respectively corresponding to the positioning holes 13e of the first flange 13 and the positioning holes 14e of the second flange 14, and the recesses 13f and second of the first flange 13.
  • a plurality of recesses 15f corresponding to the recesses 14f of the flange 14 are provided.
  • the intermediate ring 15A, the intermediate ring 15B, the intermediate ring 15C, and the second flange 14 are overlapped in order and fixed with the positioning pins 41, the lower surface of the first flange 13 and the intermediate ring 15A, between the lower surface of the intermediate ring 15A and the upper surface of the intermediate ring 15B, the lower surface of the intermediate ring 15B, the upper surface of the intermediate ring 15C, the lower surface of the intermediate ring 15C, and the upper surface of the second flange 14
  • the O-rings 16 are respectively arranged between the two in a state where they are slightly elastically compressed in the positioning recess 36.
  • 16 elastic bodies 17 are provided between the lower surface of the first flange 13 and the upper surface of the intermediate ring 15A, and between the upper surface of the second flange 14 and the lower surface of the intermediate ring 15B, respectively.
  • the intermediate ring 15B and the flanges 15Aa of the intermediate ring 15 and the flanges of the intermediate ring 15C are positioned in the recesses 13f, 14f, 15f of the second flange 14 and slightly elastically compressed. It arrange
  • the plurality of O-rings 16 and the plurality of elastic bodies 17 are integrated with the first flange 13, the intermediate ring 15 ⁇ / b> A, the intermediate ring 15 ⁇ / b> B, and the second flange 14 by fixing the positioning pins 41.
  • the intermediate ring 15A, the intermediate ring 15B, and the intermediate ring 15C are sequentially arranged between the first flange 13 and the second flange 14 with the O-ring 16 interposed therebetween, respectively.
  • the O-ring 16 has a four-stage structure
  • the elastic body 17 has a two-stage structure with the elastic body 17 interposed between the first flange 13, the intermediate ring 15B, and the second flange 14, respectively. Even in this structure, the vacuum pump damper 12 having a low height can be obtained even if the intermediate ring 15 and the elastic body 17 are each formed in a multistage structure.
  • the number of intermediate rings arranged between the first flange 13 and the second flange 14 is increased in multiple stages, attenuation of high frequency vibration can be further improved. Furthermore, since the flange-shaped portion 15Aa of the intermediate ring 15A and the flange-shaped portion 15Ca of the intermediate ring 15C are arranged in a state of being substantially in contact with the outer peripheral surface of the elastic body 17, the flange-shaped portions 15Aa, 15Ca and the elastic body 17 The vibration isolation in the horizontal direction is obtained by contact, and the vibration isolation performance in the horizontal direction is improved.
  • FIG. 13 is a cross-sectional view showing a fourth modification of the vacuum pump damper according to the present invention.
  • FIG. 13 (a) is a view showing a portion corresponding to the cross section taken along the line AA in FIG.
  • FIG. 3 is a diagram showing a portion corresponding to a cross section taken along line BB in FIG. 2.
  • three intermediate rings composed of an intermediate ring 15 ⁇ / b> A, an intermediate ring 15 ⁇ / b> B, and an intermediate ring 15 ⁇ / b> C are stacked between the first flange 13 and the second flange 14. Arranged in order.
  • the outer diameter of the upper flange portion 13c in the first flange 13 is formed to be smaller than the outer diameter of the lower flange portion 13d, and the engagement concave groove 44 is provided on the outer peripheral lower surface of the upper flange portion 13c.
  • the engaging groove 44 is configured to hook the claw 45a of the engaging hook 45 to fix the vacuum pump damper 12 to the vacuum chamber when the vacuum pump damper 12 and the vacuum chamber are fixed.
  • the entire intermediate ring 15A is disposed in the space 46 of the flange main body 13b of the first flange 13, and a part of the intermediate ring 15B is also disposed in the space 46 of the flange main body 13b.
  • the outer peripheral portion of the intermediate ring 15B is bent downward in a substantially L-shaped cross section, and a space 47 capable of accommodating the intermediate ring 15C is provided on the lower surface side of the outer peripheral portion of the intermediate ring 15B.
  • a ring 15C is arranged.
  • recesses 15f for holding the elastic body 17 in a columnar shape are provided on both upper and lower surfaces of the outer peripheral portion of the intermediate ring 15B.
  • an attachment groove 49 to which the second O-ring 48 is attached is formed on the outer peripheral surface of the intermediate ring 15A and the outer peripheral surface of the intermediate ring 15C, respectively, around the intermediate rings 15A and 15B.
  • a plurality of small protrusions 50 having a substantially semicircular cross section and extending in the vertical direction are formed on the inner peripheral surface of the flange main body 13b and the inner peripheral surface of the space 47 of the intermediate ring 15B corresponding to the mounting groove 49. They are provided at approximately equal intervals.
  • the small protrusion 50 keeps the second O-ring 48 in contact with it, prevents lateral displacement, and maintains the rigidity of the second O-ring 48.
  • the second O-ring 48 covers the outer peripheral surface of elastically deformable silicon rubber or a core material (core) 16a made of silicon rubber with a fluorine-based dissimilar material 16b. And may be an integrated composite material.
  • the first flange 13, the intermediate ring 15 ⁇ / b> A, the intermediate ring 15 ⁇ / b> B, the intermediate ring 15 ⁇ / b> C, and the second flange 14 are sequentially overlapped and fixed by the positioning pin 41.
  • the O-ring 16 is disposed between the lower surface of the intermediate ring 15C and the upper surface of the second flange 14 in a slightly elastically compressed state in the positioning recess 36, respectively.
  • the second O-rings 48 are arranged in contact with the small protrusions 50 in mounting grooves 49 formed on the outer peripheral surface of the intermediate ring 15A and the outer peripheral surface of the intermediate ring 15B, respectively.
  • each of the eight elastic bodies 17 is slightly elastic between the lower surface of the first flange 13 and the upper surface of the intermediate ring 15B, and between the upper surface of the intermediate ring 15B and the lower surface of the second flange 14. Positioned and arranged in a compressed state.
  • the entire intermediate ring 15A and a part of the intermediate ring 15B are disposed in the space 46 of the flange main body 13b, and substantially the entire intermediate ring 15C is disposed in the middle. Since the assembly is performed in the state of being arranged in the space 47 of the ring 15B, the vacuum pump damper 12 having a low height can be obtained even if the O-ring 16 is arranged in a multistage manner. Further, the second O-ring 48 is in contact with the small protrusion 50 as shown in FIGS. 13 and 14 in the mounting grooves 49 formed in the outer peripheral surface of the intermediate ring 15A and the outer peripheral surface of the intermediate ring 15B. Therefore, the second O-ring 48 can obtain the vibration isolation in the horizontal direction and improve the vibration isolation performance in the horizontal direction.
  • FIG. 15 is a cross-sectional view showing a fifth modification of the damper for a vacuum pump according to the present invention.
  • FIG. 15A is a view showing a portion corresponding to the cross section taken along the line AA in FIG. 2
  • FIG. FIG. 3 is a view showing a portion corresponding to a cross section taken along line BB in FIG.
  • the fourth modified example is formed by stacking three intermediate rings including the intermediate ring 15A, the intermediate ring 15B, and the intermediate ring 15C between the first flange 13 and the second flange 14.
  • the fourth modification only one intermediate ring 15D is used, and the intermediate ring 15D is arranged in the space 46 of the flange main body 13b in the first flange 13. It is.
  • An attachment groove 49 to which the second O-ring 48 is attached is provided on the outer peripheral surface of the intermediate ring 15D, and a plurality of vertical extending directions are provided on the inner peripheral surface of the flange main body 13b forming the space 46. Gear processing provided with small protrusions 50 is performed.
  • first flange 13 and the second flange 14 are fixed by inserting a positioning pin 41 fitted with a sleeve 42 from the positioning hole 13g side of the first flange 13 and inserting the distal end of the positioning pin 41.
  • a male screw provided on the outer peripheral surface of the portion 41a is fixedly attached to a female screw provided on the inner peripheral surface of the positioning hole 14g of the second flange 14.
  • the O-rings 16 are respectively disposed in the positioning recesses 36 between the upper surface of the ring 15D and between the lower surface of the intermediate ring 15D and the upper surface of the second flange 14, and second in the mounting groove 49.
  • the O-ring 48 is provided.
  • the vacuum pump damper 12 of the fifth modification when the inside of the vacuum chamber is evacuated by the vacuum pump 10, the space between the first flange 13, the intermediate ring 15D, and the second flange 14 is pushed at atmospheric pressure.
  • the O-ring 16 and the elastic body 17 are each elastically compressed to reduce the interval, and a gap (not shown) is formed between the upper surface of the first flange 13 and the flange portion 42a of the sleeve 42.
  • An electrical / mechanical insulation is created between the second flange 14.
  • the vacuum pump damper 12 of the fifth modified example since the intermediate ring 15D is assembled in a state where it is disposed in the space 46 of the flange main body 13b, the vacuum pump damper 12 having a low height can be obtained. it can. Further, since the second O-ring 48 is disposed in contact with the small protrusion 50 in the mounting groove 49 formed on the outer peripheral surface of the intermediate ring 15D, the second O-ring 48 is laterally moved by the second O-ring 48. The vibration isolation performance in the horizontal direction is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Vibration Prevention Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

簡単な構造で、かつ、捻れ方向の除振性を高めることができるとともに、向かい合うフランジ同士のずれを規制してOリングや弾性体の破断、損傷を防止することが可能な真空ポンプ及び真空ポンプ用ダンパを提供する。互いに対向して配置され、環状をした第1のフランジ(13)及び第2のフランジ(14)と、第1のフランジ(13)と第2のフランジ(14)の間に配置されている中間リング(15)と、第1のフランジ(13)と中間リング(15)の間と中間リング(15)と第2のフランジ(14)の間に各々配置されているOリング(16)と、第1のフランジ(13)と第2のフランジ(14)の間において、中央開口(13a、14a)の周方向に点在して配置されている複数個の弾性体(17)と、第1のフランジ(13)と中間リング(15)と第2のフランジ(14)に各々設けられた位置決め孔(13e、15e、14e)内を順に通って配置された位置決めピン(41)を有する気密保持手段(51)と、を備える。

Description

真空ポンプ及び真空ポンプ用ダンパ
 本発明は、真空ポンプ及び真空ポンプ用ダンパに関するものであり、特に、電子顕微鏡等の機器、容器等に接続され、該機器等内の気体を吸引する真空ポンプ及び真空ポンプ用ダンパに関するものである。
 従来、電子顕微鏡等の機器、容器等内の気体を排気するために使用される真空ポンプは、排気機能部を収容したケーシングの一端に吸気口を有する吸気口部を設け他端側に排気口部を設けており、前記吸気口部を外部機器等に配管等を介して接続して、外部の気体が吸気口部からケーシングの内部に導入されるようになっている。
 ケーシングの内部に収容されている上記排気機能部としては、例えばロータ部及びステータ部を配置し、ロータ部とステータ部のうちの一方の外周面を他方の内周面に対向させて、ロータ部とステータ部との間に気体が移送される気体移送部を形成したものが挙げられる。そして、ロータ部をモータ等の駆動手段によって回転させて、気体移送部の気体を排気側に移送することによって外部の気体を吸引するようになっている。
 真空ポンプの一種であるターボ分子ポンプでは、例えば、ステータ部にロータ部へ向けて張り出すステータ翼を配設している。一方、ロータ部には、ステータ翼間に張り出すロータ翼を配設する。そして、ロータ翼を回転することにより気体分子を叩いて移送する。また、ねじ溝式ポンプにおいては、ロータ部とステータ部の互いに対向する周面のうちの一方にねじ溝が形成されており、ロータを回転することにより、気体の粘性を利用して気体を移送する。また、これらを組み合わせたターボ分子ポンプもある。
 ところで、上記真空ポンプでは、ロータ部を回転駆動することによって気体吸引力を得ており、その回転に伴って少なからず振動が発生する。この振動は、ケーシングから吸気口部や配管等を通して外部機器に伝播される。外部機器では、振動によって機能や耐久性に悪影響を受けることがあり、例えば電子顕微鏡では微少な振動によっても顕微鏡画像に大きな影響を受ける。このような振動が真空ポンプから外部機器等に伝播するのを防止するために各種の改善策が講じられており、例えば特許文献1、特許文献2が知られている。
 特許文献1で知られる技術では、排気機能部としてステータ部、ステータ翼、ロータ部、ロータ翼等が収納されたケーシングと外部から気体を吸入する吸気口が設けられた吸気口部との間を、ステンレス(SUS)製ベローズで形成した弾性部材により封止した状態に接続するとともに、ケーシングと吸気口部との間に、ケーシングと吸気口部の相対的な移動により変化する離間量を規制する移動規制部材を設けている。この技術では、弾性部材は、移動規制部材により適正な弾性力を保持して良好な振動低減性を常に得ることができるとともに、外部機器等に振動が伝播して機能や耐久性を損なうのを防止できる。また、弾性部材やシール部材の塑性変形や損傷を防止し、さらに、不意の事故で真空ポンプが暴れるのを阻止できるようにしている。
 特許文献2で知られる技術では、真空ポンプと接続される第1のフランジと、レシーバーと接続される第2のフランジとの間にOリングと固定要素を配置し、真空引きされている運転状態において両方のフランジが機械的及び/又は電気的に互いに分離され、真空引きされていない組立状態においては、Oリングが真空気密であるよう予負荷を与えておくようにしている。
特開2003-3988号公報 特許第6133919号公報
 しかしながら、特許文献1で知られる技術では、ケーシングと吸気口部との間における振動低減性を得る手段として、ステンレス(SUS)製ベローズでなる弾性部材を使用している。このステンレス製ベローズは、捻れ方向の剛性が高いため、捻れ方向における除振効果十分でないという問題点があった。また、ステンレス(SUS)製ベローズは、製造コストが高く、高価であるという問題点もあった。
 一方、特許文献2で知られる技術では、真空チャンバを真空引きした時の外部からの大気圧を全てOリングで保持するため、標準のOリングでは潰れ過ぎてしまう場合があり、高価な特殊のOリングが必要で製造コストが高くなるという問題点があった。また、Oリングを挟んで向かい合うフランジ面のずれを規制するため、そのフランジの間を固定するねじとフランジ間を間接接触させるための分離要素が必要であり、構造が煩雑で、製造コストがさらに高くなるという問題点もあった。
 そこで、簡単な構造で、かつ、捻れ方向の除振性を高めることができるとともに、向かい合うフランジ同士のずれを規制してOリングや弾性体の破断、損傷を防止することが可能な真空ポンプ及び真空ポンプ用ダンパを提供するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
 本発明は上記目的を達成するために提案されたものであり、請求項1に記載の発明は、各々中央が開口する形状を有して、互いに対向して配置され、環状をした第1のフランジ及び第2のフランジと、前記第1のフランジの開口部及び前記第2のフランジの開口部と対応し、中央が開口する形状を有して、前記第1のフランジと前記第2のフランジとの間に配置された中間リングと、前記第1のフランジと前記中間リングの間及び前記中間リングと前記第2のフランジの間に各々配置されたOリングと、前記第1のフランジと前記中間リングの間及び前記中間リングと前記第2のフランジの間にそれぞれ周方向に点在して配置された複数個の弾性体と、前記第1のフランジと前記中間リングと前記第2のフランジに各々設けられた位置決め孔内を順に通って配置された位置決め部材を有する気密保持手段と、を備えている、真空ポンプを提供する。
 この構成によれば、真空チャンバ内を真空引きすると、第1のフランジと第2のフランジとの間は、大気圧で押されて、Oリングと弾性体を圧縮させて間隔が縮まり、第2のフランジ又は第1のフランジと位置決め部材とが非接触状態となり、第1のフランジと第2のフランジとの間はOリングと弾性体と中間リングだけで接続された状態になる。この状態になると、ベローズを使用したダンパに比べ、捻れ方向のバネ定数が小さいので除振効果が高くなる。また、第1のフランジと第2のフランジとの間は電気的/機械的に絶縁された状態となり、真空ポンプに好ましくない電気的なノイズが発生しても、両フランジを介した真空チャンバ側にはノイズが伝達しなくなる。さらに、弾性体は、第1のフランジの中央開口の周方向と第2のフランジの中央開口の周方向に、それぞれ点在して配置されているので、各フランジの中央開口を各々一周するようなリング状の弾性体を使用した場合に比べて横方向のバネ定数を低くでき、横方向の除振性能を高めることができる。また、Oリングと複数個の弾性体は、少なくとも第1のフランジと中間リングの間に1段と、第2のフランジと中間リングの間に1段の、各々合計2段ずつ配置されている。すなわち、第1のフランジと第2のフランジとの間は、中間リングを設けることにより2段のOリングと2段の弾性体により2自由度系となり、高周波の振動の減衰を大幅に改善できる。なお、第1のフランジと第2のフランジとの間に配置される中間リングの段数を増すとともに、それぞれの間にOリングを付加すると、高周波の振動を更に減衰できる。
 請求項2に記載の発明は、請求項1に記載の構成において、前記弾性体は、概略円柱体又は角柱体である、真空ポンプを提供する。
 この構成によれば、概略円柱体又は角柱体をした弾性体を柱状にしてOリングの周囲に配置すると、真空チャンバを真空引きしたときにOリングに適切な加重がかかるように、荷重の配分をし易くすることができる。また、捻れ方向の除振性能が高まる。
 請求項3に記載の発明は、請求項1又2に記載の構成において、前記Oリングは、シリコンゴムで形成した芯材の外周面をフッ素ゴムで被覆してなる複合材で形成した、真空ポンプを提供する。
 この構成によれば、除振性能が高く、比較的安価なシリコンゴムで形成した芯材の外周面を、真空シール性能の高いフッ素コムで被覆したOリングを使用することにより、真空シール性能が高く、かつ除振性能の高いOリングが得られる。
 請求項4に記載の発明は、請求項1、2又は3に記載の構成において、前記Oリング及び前記弾性体がそれぞれ配置された、前記第1のフランジ及び前記第2のフランジの各箇所には、対応する前記Oリング及び前記弾性体を各々位置決めする凹所を設けている、真空ポンプを提供する。
 この構成によれば、第1のフランジ及び第2のフランジの各箇所には、対応するOリング及び弾性体を各々位置決めする凹所が設けられているので、その対応する凹所にOリング及び弾性体を各々配置して位置決めすることにより、フランジ同士が横方向にずれるのを防止できる。これにより、フランジ同士が横方向にずれるのを防止する部材を別途設ける必要がなくなり、製造コストを抑えることができる。
 請求項5に記載の発明は、請求項1、2、3又は4に記載の構成において、前記第1のフランジと前記中間リングの間に設けられる前記Oリングを位置決めする位置決め凹所と前記第2のフランジと前記中間リングの間に設けられる前記Oリングを位置決めする位置決め凹所のうち、一方の前記位置決め凹所は前記Oリングを径方向のバネ定数に比べて軸方向のバネ定数が低くなるようにして位置決めし、他方の前記位置決め凹所は前記Oリングを前記軸方向のバネ定数に比べて前記径方向のバネ定数が低くなるようにして位置決めした、真空ポンプを提供する。
 この構成によれば、軸方向のバネ定数が低くなるようにして位置決めされた位置決め凹所内のOリングでは軸線方向の除振性能を高め、径方向のバネ定数が低くなるようにして位置決めされた位置決め凹所内のOリングでは径方向の除振性能を高める。これにより、軸方向の除振と幅方向の除振が効果的に行われる。
 請求項6に記載の発明は、請求項1、2、3、4又は5に記載の構成において、前記第1のフランジ又は前記第2のフランジは、真空チャンバに固定する固定用ねじが装着される取付孔を有し、前記取付孔と対向する前記中間リングは、前記取付孔と対応する箇所に、前記固定用ねじの取付時に前記固定用ねじの頭部を逃がす切り欠き部を有する、真空ポンプを提供する。
 この構成によれば、第1のフランジ又は第2のフランジを真空チャンバ又は真空ポンプに固定用ねじで取り付ける際、中間リングには固定用ねじの頭部を逃がす切り欠き部が設けられているので、中間リングが固定用ねじの頭部とぶつかることなく、スムーズに取り付けることができ、組立作業性が向上する。
 請求項7に記載の発明は、請求項1、2、3、4、5又は6に記載の構成において、前記第1のフランジは、更に、前記中間リングの外周面を覆って配置される内周面を有した環状部と、前記環状部の一端面から外側に向かって延ばされ前記弾性体と前記位置決め部材が配設されるフランジ部と、を備えている、真空ポンプを提供する。
 この構成によれば、第1のフランジの下面から下方向に延ばして形成された環状部により、第1のフランジと第2のフランジとの間に大きなスペースが作られる。そして、第1のフランジを真空チャンバに固定用ねじで取り付ける際、そのスペースを固定用ねじの取り付け空間として使用し、簡単に作業を行うことができる。
 請求項8に記載の発明は、請求項1、2、3、4、5、6又は7に記載の構成において、前記第1のフランジの一部に、前記第1のフランジの軸方向に積層して複数枚配置された前記中間リングの外周面を覆って配置される内周面を有した環状部を設け、前記中間リングの前記外周面と前記環状部の前記内周面との間に第2のOリングを配設した、真空ポンプを提供する。
 この構成によれば、真空チャンバ内を真空引きすると、第1のフランジと第2のフランジとの間は、大気圧で押されて、Oリングと弾性体を圧縮させて間隔が縮まり、第2のフランジ又は第1のフランジと固定部材とが非接触状態となり、第1のフランジと第2のフランジとの間はOリングと弾性体とで接続された状態になる。同時に、中間リングの外周面と環状部の内周面との間を第2のOリングで位置出しし、第2のOリングが中間リングと第1のフランジとの間における横方向の除振性能を高める。
 請求項9に記載の発明は、請求項1、2、3、4、5、6、7又は8に記載の構成において、前記第1のフランジの軸方向に積層して複数枚配置される前記中間リングのうちの、上側の前記中間リングの一部に、該中間リングの下側に配置される前記中間リングの外周面を覆って配置される内周面を有した環状部を設け、前記下側に配置される中間リングの前記外周面と前記環状部の前記内周面との間に第2のOリングを配設した、真空ポンプを提供する。
 この構成によれば、真空チャンバ内を真空引きすると、第1のフランジと第2のフランジとの間は、大気圧で押されて、Oリングと弾性体を圧縮させて間隔が縮まり、第2のフランジ又は第1のフランジと位置決め部材とが非接触状態となり、第1のフランジと第2のフランジとの間はOリングと弾性体とで接続された状態になる。同時に、中間リングの外周面と環状部の内周面との間を第2のOリングで位置出しし、第2のOリングが中間リングと第1のフランジとの間における横方向の除振性能を高める。
 請求項10に記載の発明は、請求項8又は7に記載の構成において、前記環状部の前記内周面に、前記第2のOリングに向かって突出された突起を、前記内周面の周方向に点在して複数個設けている、真空ポンプを提供する。
 この構成によれば、第2のOリングの外周面に突起が当接して、環状部又は中間リングの内周面に対して第2のOリングがずれるのを阻止し、第2のOリングの位置を保持して横方向の除振性能を高める。
 請求項11に記載の発明は、請求項1、2、3、4、5、6、7、8、9又は10に記載の構成において、前記中間リングの外周面に、前記外周面の一部を前記外周方向に沿って突出させた鍔状部を備え、前記弾性体を、前記鍔状部の外周面に当接させて配置した、真空ポンプを提供する。
 この構成によれば、弾性体と鍔状部の外周面とが当接し、中間リングが横方向にずれるのを防止できる。
 請求項12に記載の発明は、真空チャンバと前記真空チャンバ内を真空引きする真空ポンプとの間を気密に保持する真空ポンプ用ダンパであって、各々中央が開口する形状を有して、互いに対向して配置され、環状をした第1のフランジ及び第2のフランジと、前記第1のフランジの開口部及び前記第2のフランジの開口部と対応し、中央が開口する形状を有して、前記第1のフランジと前記第2のフランジとの間に配置された中間リングと、前記第1のフランジと前記中間リングの間及び前記中間リングと前記第2のフランジの間に各々配置されたOリングと、前記第1のフランジと前記中間リングの間及び前記中間リングと前記第2のフランジの間にそれぞれ周方向に点在して配置された複数個の弾性体と、前記第1のフランジと前記中間リングと前記第2のフランジに各々設けられた位置決め孔内を順に通って配置された位置決め部材を有する気密保持手段と、を備えている、真空ポンプ用ダンパを提供する。
 この構成によれば、真空ポンプに用いることにより、真空ポンプにおける捻れ方向の除振性を高めることができるとともに、向かい合うフランジ面のずれを規制してOリングや弾性体の破断、損傷を防止することを可能にする。
 発明によれば、真空チャンバ内を真空引きすると、第1のフランジと中間リングと第2のフランジとの間が、Oリングと弾性体の柱だけで接続されるので、従来のベローズ方式のダンパ等を使用した真空ポンプに比べ、捻れ方向のバネ定数が小さくなり除振効果を高めた真空ポンプが得られる。また、弾性体は、吸気口である中央開口を一周するようなリング状をした弾性体を使用するのではなく、吸気口の周囲に点在して柱状にして設けているので、Oリング状をした弾性体を使用した場合に比べ、横方向のバネ定数を低くでき、横方向の除振性能も高まる。さらに、向かい合うフランジ面のずれを規制してOリングや弾性体の破断、損傷を防止することができる真空ポンプ及び真空ポンプ用ダンパが得られる。また、真空チャンバ内を真空引きすると、第1のフランジと第2のフランジとの間が電気的/機械的に絶縁された状態となるので、真空ポンプに好ましくない電気的なノイズが発生しても、ノイズが真空チャンバ側に伝播されない。
本発明の実施形態の真空ポンプを示す軸線方向断面図である。 同上真空ポンプに使用されている真空ポンプ用ダンパの組立斜視図である。 図2に示す真空ポンプ用ダンパの分解斜視図である。 図2のA-A線矢視断面図で、(a)は真空チャンバ内を真空引きしていないときの図、(b)は真空チャンバ内を真空引きしたときの図である。 図2のB-B線矢視断面図である。 同上真空ポンプ用ダンパで使用して好適な各種Oリングの断面図で、(a)は本実施例で実際に使用しているOリングの断面図、(b)及び(c)は本実施例で使用可能な他のOリングの断面図である。 同上真空ポンプ用ダンパで使用する弾性体の斜視図で、(a)は本実施例で使用している弾性体の外観斜視図、(b)~(e)は本実施例で使用して好適な他の弾性体の外観斜視図である。 図2のC-C線矢視断面図で、(a)は同上真空ポンプ用ダンパの実施例で適用している構造図で、(b)は(a)に示す本実施例構造の効果を説明するための図である。 本発明の真空ポンプ用ダンパを使用した場合と、従来のベローズ方式のダンパを使用した場合の振動加速度の実験データの一例を示す図である。 本発明の真空ポンプ用ダンパの第1変形例を示す断面図で、図2のA-A線矢視断面に相当する部分を示している図である。 本発明の真空ポンプ用ダンパの第2変形例を示す断面図で、図2のA-A線矢視断面に相当する部分を示している図である。 本発明の真空ポンプ用ダンパの第3変形例を示す断面図で、(a)は図2のA-A線矢視断面に相当する部分を示している図、(b)は図2のB-B線矢視断面に相当する部分を示している図である。 本発明の真空ポンプ用ダンパの第4変形例を示す断面図で、(a)は図2のA-A線矢視断面に相当する部分を示している図、(b)は図2のB-B線矢視断面に相当する部分を示している図である。 図13のD-D線矢視断面図である。 本発明の真空ポンプ用ダンパの第5変形例を示す断面図、(a)は図2のA-A線矢視断面に相当する部分を示している図で、(b)は図2のB-B線矢視断面に相当する部分を示している図である。
 本発明は、簡単な構造で、かつ、捻れ方向の除振性を高めることができるとともに、向かい合うフランジ同士のずれを規制してOリングや弾性体の破断、損傷を防止することが可能な真空ポンプ及び真空ポンプ用ダンパを提供するという目的を達成するために、真空チャンバと前記真空チャンバ内を真空引きする真空ポンプとの間を気密に保持する真空ポンプ用ダンパであって、真空チャンバと前記真空チャンバ内を真空引きする真空ポンプとの間を気密に保持各々中央開口を有して、互いに対向して配置されている環状をした第1のフランジ及び第2のフランジと、前記第1のフランジの前記中央開口及び前記第2のフランジの前記中央開口と対応する中央開口を有して前記第1のフランジと前記第2のフランジとの間に配置された中間リングと、前記中央開口の外周を囲って前記第1のフランジと前記中間リングの間と前記中間リングと前記第2のフランジの間に各々配置されているOリングと、前記第1のフランジと前記中間リングの間と前記中間リングと前記第2のフランジの間にそれぞれ、前記中央開口の周方向に点在して各々配置されている複数個の弾性体と、前記第1のフランジと前記中間リングと前記第2のフランジに各々設けられた位置決め孔内を順に通って配置された位置決め部材を有する気密保持手段と、を備える構成として実現した。
 以下、本発明を実施するための形態を添付図面に基づいて詳細に説明する。なお、以下の説明では、実施形態の説明の全体を通じて同じ要素には同じ符号を付している。また、以下の説明では、上下や左右等の方向を示す表現は、絶対的なものではなく、本発明の真空ポンプの各部が描かれている姿勢である場合に適切であるが、その姿勢が変化した場合には姿勢の変化に応じて変更して解釈されるべきものである。
 図1は本発明に係る真空ポンプ10の全体構成を示す軸線方向断面図である。なお、この実施例では、真空ポンプ10としてターボ分子ポンプを一例としている。
 真空ポンプ10は、図示しない外部の容器(以下、「真空チャンバ」という)とケーシング本体11との間に気密状態を保って配置される真空ポンプ用ダンパ12とを備えている。
 ケーシング本体11は、同じくステンレス鋼(SUS)製で円筒状に形成されており、後述するように排気機能部を内蔵する。ケーシング本体11の一端側(上端側)には、真空ポンプ用ダンパ12が連接され、真空ポンプ用ダンパ12とケーシング本体11との間がボルト18で固定されている。真空ポンプ用ダンパ12は、ケーシング本体11側の回転による振動が真空チャンバ側に伝播するのを防止するためのものである。
 ケーシング本体11の他端側(下端側)には、ベース19が連接され、ベース19とケーシング本体11との間がボルト20で固定されている。ベース19は、ケーシング本体11及び真空ポンプ用ダンパ12と共に、吸気口12aを介して真空チャンバ内と連通する中空部21を形成する。また、ベース19には、中空部21内の気体を排出する排気口22を有した排気口部23が取り付けられている。
 さらに、ケーシング本体11内には、排気機能部の一部をなし、ベース19に支持され、かつ中空部21内に収納されるステータ部24と、中空部内に収納されるロータ部25とを備えている。また、ロータ部25をステータ部24に対して回転可能に支承する磁気軸受部26,27と、磁気軸受部26,27に支承されるロータ部25を、ロータ軸25aを介してステータ部24に対して回転させるモータ28とを備えている。
 ロータ部25は筒状壁部29を有しており、筒状壁部29の外周に多数のロータ翼30が放射状に、かつ軸線方向に多段に設けられている。このロータ翼30は、吸気口側(図面上側)が回転方向側になるように軸線方向に対し所定角度で傾斜している。一方、ステータ部24には、ロータ翼30の各段の間に配置されるステータ翼31を備えている。ステータ翼31は、軸線方向に対し所定角度で傾斜している。そして、ロータ部25がモータ28により回転駆動されると、ロータ翼30とステータ翼31との作用により気体分子を排気口22側に叩き落とすようになっている。
 ロータ部25を磁力により支持する磁気軸受は、3軸制御の磁気軸受であり、ロータ部25は、磁気軸受部26によってラジアル方向(ロータ軸25aの径方向)に磁気浮上して非接触で支持され、磁気軸受部27によってスラスト方向(ロータ軸25aの軸方向)に磁気浮上して非接触で支持される。
 磁気軸受部26では、4つの半径方向電磁石32がロータ軸25aの周囲に、90度ごとに対向するように配置されている(図では2つを図示)。これら半径方向電磁石32に対向するロータ軸25aは高透磁率材により形成され、これらの半径方向電磁石32の磁力を受ける。
 ロータ軸25aの下部には、磁性体で形成された円盤状の金属ディスク33が固定されており、この金属ディスク33の上方には、軸方向電磁石34がベース19に固定配置されている。そして、半径方向電磁石32と軸方向電磁石34にそれぞれ励磁電流が供給されることによって、ロータ部25が磁気浮上される。
 また、本実施形態の真空ポンプ10では、ロータ部25の上部及び下部側に、保護用ベアリング35A,35Bが配置されている。そして、通常時、ロータ部25は、回転している間、磁気軸受部26,27により非接触状態で軸支される。一方、保護用ベアリング35A,35Bは、タッチダウンが発生した場合に磁気軸受部26,27に代わってロータ部25を軸支することで装置全体を保護する。なお、この実施形態においては、ロータ部25は磁気軸受部26,27により軸支されているが、これに限られるものではなく、動圧軸受、静圧軸受、その他の軸受であってもよい。
 図2~図5、及び図8は、図1に示す真空ポンプ用ダンパ12の構造を詳細に示すものであり、図2は真空ポンプ用ダンパ12の組立斜視図、図3は図2に示す真空ポンプ用ダンパ12の分解斜視図、図4は図2のA-A線矢視断面図、図5は図2のB-B線矢視断面図、図8は図2のC-C線矢視断面図である。以下、図1に図2~図5、及び図8を加えて、真空ポンプ用ダンパ12の細部構造を詳細に説明する。
 図1~図8において、真空ポンプ用ダンパ12は、真空チャンバと気密状態を保って上面側が接続される第1のフランジ13と、図1に示すようにケーシング本体11と気密状態を保って下面側が接続される第2のフランジ14と、第1のフランジ13の下面と第2のフランジ14の上面に挟まれて配置された中間リング15とを備える。なお、これら第2のフランジ14と中間リング15と第1のフランジ13は、各々ステンレス鋼(SUS)で形成されている。また、第2のフランジ14と中間リング15と第1のフランジ13は、それぞれ中央に真空チャンバ内の気体を吸入する吸気口12aを設けて環状に形成されている。そして、真空ポンプ用ダンパ12は、図1、図2、図3に示すように、第2のフランジ14と中間リング15と第1のフランジ13を軸線方向に順に積層することにより互いに対向させて、一体化した状態にして真空チャンバとケーシング本体11との間に配置される。
 また、真空ポンプ用ダンパ12には、吸気口12aとなる中央開口の外側を各々囲って、第1のフランジ13の下面と中間リング15の上面、及び第2のフランジ14の下面との間にOリング16が各々配置されている。さらに、Oリング16の外側を囲って、第1のフランジ13の下面と中間リング15の上面、及び、中間リング15の下面と第2のフランジ14の上面との間には、それぞれ複数個の弾性体17を点在させて配置している。
 さらに、Oリング16が配置される第1のフランジ13の下面と中間リング15の上面との間、及び中間リング15の下面と第2のフランジ14の上面との間には、これら第1のフランジ13と中間リング15及び中間リング15と第2のフランジ14がそれぞれ、互いに対向した状態でOリング16を挟み、この挟んだOリング16を中央開口の外側に各々位置決め保持する位置決め凹所36がリング状にして形成されている。
 また、Oリング16は、電気絶縁性を有し、かつ弾性変形可能なフッ素ゴムで形成されており、断面形状は図6の(a)に示すように概略円形に形成されている。なお、Oリング16は、図6の(a)に示すように全体がフッ素ゴムで形成された構造だけでなく、例えば図6の(b)に示すように、シリコンゴムで形成された芯材(コア)16aの外周面をフッ素系の異種材料16bで被覆して一体化した電気絶縁性の複合材構造としてもよい。さらに、異種材料16bは芯材16aの外周面全体を被覆せずに、例えば図6の(c)に示すように、第1のフランジ13の下面と中間リング15の上面とで挟まれる部分、及び中間リング15の下面と第2のフランジ14の上面とで挟まれる部分にだけ、異種材料16bで覆った複合材構造としてもよい。
 更に詳述すると、第1のフランジ13は、中央に吸気口12aとなる、開口部としての中央開口13aを設けた筒状のフランジ本体部13bと、フランジ本体部13bの上端周縁から水平に外側へ向かって鍔状に延びる上フランジ部13cと、フランジ本体部13bの下端周縁から水平に外側へ向かって鍔状に延びる下フランジ部13dとを一体に有している。
 また、第1のフランジ13の上フランジ部13cには、第1のフランジ13と真空チャンバとの間を固定する固定用ねじ37(図8参照)を取り付ける取付孔38が上下に貫通して設けられている。取付孔38は、通常、略等間隔で複数個(本実施例では8個)設けられる。
 一方、第1のフランジ13の下フランジ部13dには、下フランジ部13dの下面側に中央開口13aの外側を囲むようにして、リング状に形成された凹溝39が形成されている。この凹溝39は、中間リング15と共に第1のフランジ13側に配設されるOリング16を位置決めする位置決め凹所36を形成する。そして、第1のフランジ13側に配置されるOリング16は、凹溝39内に一部を収納し、残りの一部を凹溝39内から突出させた状態で配設される。また、下フランジ部13dには、上フランジ部13cに形成されている取付孔38と対応するそれぞれの箇所、すなわち8個の取付孔38と対応する8個の箇所に、固定用ねじ37の頭部37aを逃がすための切り欠き部40が、下フランジ部13dの外周から内側(中央開口13a側)に向かって各々設けられている。この切り欠き部40の役目は、図8に示すように、固定用ねじ37を取付孔38に通して、真空ポンプ用ダンパ12を真空チャンバに取り付ける際、切り欠き部40を設けていない同図(b)の場合では、固定用ねじ37の頭部37aが下フランジ部13dの外周縁13daにぶつかり固定用ねじ37の装着作業がしにくい。しかし、切り欠き部40を設けている同図(a)の場合では、固定用ねじ37の頭部37aが切り欠き部40で逃がされ、下フランジ部13dの外周縁13daにぶつかることなくスムーズに装着される。すなわち、切り欠き部40を設けることによって、固定用ねじ37の装着作業をし易くする。
 また、第1のフランジ13の下フランジ部13dには、切り欠き部40との間に位置決め部材としての位置決めピン41の先端部41aが挿入される位置決め孔13eと、弾性体17を位置決めする凹所(凹み)13fが設けられている。なお、図3に示すように、位置決め孔13eは、隣り合う2個の切り欠き部40、40との略中間の箇所に1個ずつ、合計8個設けられており、凹所13fは隣り合う2個の切り欠き部40と位置決め孔13eとの略中間の箇所にそれぞれ1個ずつ、合計16個設けられている。なお、切り欠き部40と位置決め孔13eと凹所13fの個数は、これに限定されるものではなく、必要に応じて変更可能なものである。また、図示しないが、位置決め孔13eの内周面には雌ねじが設けられ、位置決めピン41の先端部41aの外周面には、位置決め孔13eの内周面の雌ねじと螺合する雄ねじが設けられている。
 第2のフランジ14は、中央に吸気口12aとなる、開口部としての中央開口14aを設けて、リング板状に形成されている。第2のフランジ14の上面(第1のフランジ13及び中間リング15と対向する面)には、図4及び図5に示すように、中央開口14aの外側を囲むようにして環状に形成された第1丘陵部14bと、第1丘陵部14bの外側に該第1丘陵部14bよりも一段下がった状態で環状に形成された第2丘陵部14cと、第2丘陵部14cの外側に該第2丘陵部14cよりも更に一段下がった状態で環状に形成された第3丘陵部14dとが設けられている。第1丘陵部14bと第2丘陵部14cは、対向し合う中間リング15と共に第2のフランジ14側に配置されているOリング16を位置決めする位置決め凹所36を形成する。そして、第2のフランジ14側に配置されるOリング16は、第1丘陵部14bの外周に接して第2丘陵部14c上に配設されている。
 また、第2のフランジ14の第3丘陵部14dには、図2、図3、図4に示すように、第1のフランジ13の位置決め孔13eに各々対応して8個の位置決め孔14eが略等間隔で設けられているとともに、同じく第1のフランジ13の凹所13fに各々対応して、弾性体17を位置決めする16個の凹所(凹み)14fが設けられている。
 中間リング15は、内側に吸気口12aとなる開口部としての中央開口15aを設けてリング板形状に形成されている。中間リング15の下面(第2のフランジ14と対向する面)には、図1、図3、図4及び図5に示すように、第1のフランジ13及び第2のフランジの位置決め孔13e、14eに各々対応して8個の位置決め孔15eが略等間隔で設けられているとともに、同じく第1のフランジ13及び第2のフランジ14の凹所13f、14fに各々対応して、弾性体17を位置決めする16個の凹所(凹み)15fが設けられている。また、中間リング15の上面(第1のフランジ13と対向する面)にも、図1、図4及び図5に示すように、第1のフランジ13及び第2のフランジ14の凹所13f、14fと中間リング15の下面に設けた凹所15fに各々対応して、弾性体17を位置決めする16個の凹所(凹み)15fが設けられている。
 弾性体17は、図2、図3及び図7(a)に示すように、シリコンゴム等の弾性部材で円柱体として形成されている。したがって、上述した第1のフランジ13の凹所13f、第2のフランジ14の凹所14f、中間リング15の凹所15fは、弾性体17の上下の端面の円形状に合わせて平面視略円形に形成され、凹所13f、14f、15fに配置された弾性体が水平方向に横ずれしない役目をなす。なお、弾性体7は、円柱体に限らず、例えば図7(b)に示すように角柱体であってもよい。また、これ以外に同図(c)に示す中空円柱体、同図(d)に示す中間部分が膨出しているビヤ樽状をした円柱体、同図(e)に示す中間部分がくびれた形状をなす円柱体等であってもよいものである。そして、弾性体17の柱体の形状を変えた場合には、弾性体17の上下の端面の形状に合わせて凹所13f、14f、15fの形状も変えることが好ましい。
 位置決め部材としての位置決めピン41は、雄ねじが設けられた先端部41aと反対側の下端部に頭部41bを有する。また、位置決めピン41の外周には、一端(下端)に鍔部42aを有する電導性を有するスリーブ42が装着されている。このスリーブ42は、位置決めピン41の先端部41a側から鍔部42aを下側にして、鍔部42aが頭部41bとぶつかるまで位置決めピン41に装着される。
 そして、スリーブ42を装着した位置決めピン41は、真空チャンバが真空ポンプ10により真空引きされてないとき、Oリング16による第1のフランジ13と第2のフランジ14との間の気密を保持し、真空引きされると、Oリング16と弾性体17が各々圧縮され第1のフランジ13と第2のフランジ14の一方(本実施例では第2のフランジ14)が各フランジ13、14の軸方向に移動して、位置決めピン41を各フランジ13、14の一方から電気的及び機械的(以下「電気的/機械的」という)に分離する気密保持手段51を構成する。スリーブ42が装着された状態で、第2のフランジ14の下面側より、第2のフランジ14の位置決め孔14eと中間リング15の位置決め孔15eを順に通って挿入され、その後、位置決めピン41の先端部41aの雄ねじを、第1のフランジ13の位置決め孔13eの雌ねじに螺合させて、スリーブ42の長さで規制されるまで締め付け固定されて取り付けられる。
 また、第1のフランジ13と中間リング15と第2のフランジ14を順に重ね合わせて位置決めピン41で固定するとき、第1のフランジ13の下面と中間リング15の上面、及び中間リング15の下面と第2のフランジ14の上面との間にはそれぞれ、位置決め凹所36内に僅かに弾性圧縮された状態でOリング16が各々配置されるとともに、第1のフランジ13の下面と中間リング15の上面との間に16個の弾性体17、及び第2のフランジ14の上面と中間リング15の下面との間に16個の弾性体17が、凹所13f、14f、15fでそれぞれ僅かに弾性圧縮された状態で位置決め配置される。そして、これら複数個のOリング16と複数個の弾性体17は、位置決めピン41の固定により、第1のフランジ13と中間リング15との間、及び中間リング15と第2のフランジ14との間に各々挟まれて、第1のフランジ13と中間リング15と第2のフランジ14と一体化される。
 このようにして一体化された真空ポンプ用ダンパ12は、真空チャンバが真空引きされてないとき、第1のフランジ13と第2のフランジ14の距離はスリーブ42で設定され、Oリング16と弾性体17との反発力で、第1のフランジ13と中間リング15との間、及び、中間リング15と第2のフランジ14との間は、それぞれOリング16で封止された状態で離れている。また、この状態では図4(a)に示すように、スリーブ42の鍔部42aと第2のフランジ14の下面との間が密に電気的/機械的に接触し、第1のフランジ13と第2のフランジ14との間は、導電性を有するスリーブ42を介して電気的に導通されている。
 一方、真空チャンバ内を真空ポンプ10により真空引きすると、第1のフランジ13と中間リング15と第2のフランジ14との間は、大気圧で押されてOリング16及び弾性体17をそれぞれ弾性圧縮させて間隔が縮まり、図4(b)に示すように、第2のフランジ14の下面とスリーブ42の鍔部42aとの間は機械的に離れて隙間Sが作られ、第1のフランジ13と第2のフランジ14との間が電気的に絶縁され、真空ポンプ10に好ましくない電気的なノイズが発生しても、両フランジ13、14を介した真空チャンバ側にはノイズが伝達しなくなるようになっている。
 そして、このように形成されている真空ポンプ用ダンパ12は、図1においては、ケーシング本体11の一端側(上端側)に、気密状態を保ってボルト18で固定して取り付けられ、ケーシング本体11と一体化される。こうしてケーシング本体11と一体化された真空ポンプ用ダンパ12は、その後、図8(a)に示すように、第1のフランジ13の取付孔38に固定用ねじ37を通し、固定用ねじ37を真空チャンバ側にねじ止めすることによりに、真空チャンバと気密状態を保って固定して取り付けられ、真空ポンプ10として組み付けられる。
 次に、このようにして真空ポンプ用ダンパ12を真空チャンバとの間に配置してなる真空ポンプ10の作用について説明する。真空ポンプ10は、上述したように真空ポンプ用ダンパ12を介して外部の真空チャンバに固定され、この状態で真空ポンプ10のモータ28が駆動される。モータ28の駆動により、ロータ部25と共にロータ翼30が高速回転する。これにより、吸気口12aからの気体が、ロータ翼30及びステータ翼31によって移送され、排気口22から排出される。すなわち、真空チャンバ内の真空引きがされる。
 真空チャンバ内が真空引きされる前、すなわち真空引きされてないときの真空ポンプ用ダンパ12は、Oリング16と弾性体17との反発力で、第1のフランジ13と中間リング15との間、及び、中間リング15と第2のフランジ14との間が、それぞれOリング16で封止された状態で離れている。そして、図4(a)に示すように、スリーブ42の鍔部42aと第2のフランジ14の下面との間は密に接触し、第1のフランジ13と第2のフランジ14との間が導電性を有するスリーブ42を介して電気的に導通されている。
 一方、真空チャンバ内の真空引きがされると、真空ポンプ用ダンパ12における、第1のフランジ13と中間リング15と第2のフランジ14との間は、大気圧で押されて、Oリング16及び弾性体17をそれぞれ弾性圧縮させて間隔が縮まる。そして、図4(b)に示すように、第2のフランジ14の下面とスリーブ42の鍔部42aとの間に隙間Sが作られ、第1のフランジ13と第2のフランジ14との間は電気的/機械的に絶縁され、第1のフランジ13と中間リング15と第2のフランジ14との間がOリング16と弾性体17の柱だけで接続された状態になる。したがって、ここでの真空ポンプ10は、第1のフランジ13と第2のフランジ14との間の絶縁により、真空ポンプ10に好ましくない電気的なノイズが発生しても、両フランジ13、14を介した真空チャンバ側にはノイズが伝達しなくなる。
 また、真空ポンプ10におけるモータ28の駆動中、ロータ部25の不釣り合い、モータ28のコギング等に起因して振動が発生する。これらの振動はケーシング本体11及び真空ポンプ用ダンパ12に伝播される。さらに、この真空ポンプ10の排気口22にバックポンプが接続されている場合等には、バックポンプの振動等が接続配管等を介して同じくケーシング本体11及び真空ポンプ用ダンパ12に伝播される。
 しかし、ここでの真空ポンプ用ダンパ12は、第1のフランジ13と中間リング15と第2のフランジ14との間隔が、大気圧で押されてOリング16及び弾性体17をそれぞれ弾性圧縮させて縮まり、第1のフランジ13と中間リング15と第2のフランジ14との間が、Oリング16と弾性体17の柱だけで接続された状態にあるので、真空チャンバ側に伝播される振動がOリング16と弾性体17で除振されて極めて小さくなる。
 特に、この実施例の構造のように、第1のフランジ13と中間リング15と第2のフランジ14との間が、Oリング16と弾性体17の柱だけで接続された状態では、従来の特許文献1で知られるベローズ方式を使用したダンパ等に比べ、捻れ方向のバネ定数が小さいので除振効果が高くなる。
 また、本実施例では、弾性体17は、吸気口12aを一周するようなリング状をした弾性体を使用するのではなく、吸気口12aの周囲に点在して柱状にして設けている。これにより、Oリング状をした弾性体を使用した場合に比べ、横方向のバネ定数を低くできるので横方向の除振性能が高まる。
 なお、位置決め孔13e、14e、15e及び凹所13f、14f、15fの数等は、本実施例の数に限定されるものではない。また、第1のフランジ13と中間リング15との間に配置されるOリング16と、中間リング15と第2のフランジ14との間に配置されるOリングは、それぞれ異なる剛性を有したOリングを使用してもよい。
 さらに、本実施例では、第1のフランジ13と第2のフランジ14との間に中間リング15を配置し、第1のフランジ13と中間リング15の間と、中間リング15と第2のフランジ14との間に、Oリング16及び弾性体17を各々設けた構造を開示した。しかし、中間リング15を省略し、Oリング16及び弾性体17を、中間リング15を介さずに第1のフランジ13と第2のフランジ14との間に配置することも可能である。
 図9は、第1のフランジ13と第2のフランジ14との間を、Oリング16と弾性体17の柱で接続した本発明の真空ポンプ用ダンパ12と、特許文献1で知られる従来のベローズ方式を使用したダンパとで行った、真空ポンプから除振台(真空ケーシング)に伝達する径方向振動加速度の実験データである。図中、実線は本発明の第1のフランジ13と第2のフランジ14との間をOリング16と弾性体17の柱で接続した構造の場合であり、点線は従来のベローズ方式の場合である。なお、縦軸は振動加速度(mm/SA2)、横軸は周波数(Hz)である。図9に示す実験データから、本発明の真空ポンプ用ダンパ12の場合では従来のベローズ方式を使用した場合に比べて、11Hzから徐々に振動加速度が低下し、15Hz以降は振動加速度が大きく低下し、除振されていることがわかる。
 図10は、図1~図8に示した真空ポンプ用ダンパ12の第1変形例を示す図であり、(a)は図2のA-A線矢視断面に相当する部分を示している図、(b)は図2のB-B線矢視断面に相当する部分を示している図である。図10に示す第1変形例は、軸線方向(上下方向)の除振性能を径方向(左右方向)の除振性能に比べて高める場合の構造である。すなわち、図10に示す真空ポンプ用ダンパ12は、第1のフランジ13と中間リング15の間に形成される位置決め凹所36の径方向(左右方向)の幅をOリング16の直径よりも小さく形成し、第2のフランジ14と中間リング15の間に形成される位置決め凹所36の軸線方向(高さ方向)の幅をOリング16の直径よりも小さく形成している。そして、第1変形例の真空ポンプ用ダンパ12では、真空チャンバが真空ポンプ10により真空引きされてないとき、第1のフランジ13と中間リング15との間の位置決め凹所36内に位置決めされているOリング16は、位置決め凹所36の径方向(左右方向)における左右両側の内壁面で押し潰されたシール状態で配置され、第2のフランジ14と中間リング15との間の位置決め凹所36内に位置決めされているOリング16は、第2のフランジ14の上面と中間リング15の下面で押し潰されたシール状態で配置されている。
 ここで、Oリング16のバネ定数は、押し潰す方向の方が、せん断する方向より数倍大きく硬い。よって、軸方向のバネ定数を小さくしたいときには、第1のフランジ13と中間リング15との間の位置決め凹所36内に位置決めされているOリング16のように、位置決め凹所36の左右両側の内壁面で押し潰してシールするようにすればよい。反対に、軸方向のバネ定数を大きく、径方向のバネ定数を小さくしたいときには、第2のフランジ14と中間リング15との間の位置決め凹所36内に位置決めされているOリング16のように、第2のフランジ14の上面と中間リング15の下面で押し潰してシールするようにすればよい。
 したがって、第1変形例の構造では、第1のフランジ13と中間リング15との間の位置決め凹所36内に位置決めされているOリング16は、軸線方向の除振性能を高め、第2のフランジ14と中間リング15との間の位置決め凹所36内に位置決めされているOリング16は、径方向の除振性能を高めた構造になる。なお、Oリング16を各々位置決めする2つの位置決め凹所36は、図10に示した構造とは反対に、第1のフランジ13と中間リング15との間に設けるOリング16を径方向の除振性能を高めるようにして位置決めする構造とし、第2のフランジ14と中間リング15との間に設けるOリングを軸方向の除振性能を高めるようにして位置決めする構造としてもよい。
 図11は、図1~図8に示した真空ポンプ用ダンパ12の第2変形例を示す図で、図2のA-A線矢視断面に相当する部分を示している。図10に示す第1変形例は、中間リング15における位置決め孔15eの内径を位置決め部材としての位置決めピン43の外径と略等しく形成するとともに、第1のフランジ13における位置決め孔13eの内径と第2のフランジ14における位置決め孔14eの内径を位置決めピン43の外径よりも大きく形成している。
 そして、この第2変形例では、位置決め部材である位置決めピン43の中間部分を中間リング15の位置決め孔15eに圧入固定させた状態で、位置決めピン43を中間リング15に固定する。さらに、中間リング15の上下に、それぞれ第1のフランジ13と第2のフランジ14を配置する。その際、第1のフランジ13と中間リング15との間と、中間リング15と第2のフランジ14との間にOリング16及び弾性体17を配置するとともに、位置決め孔13e、位置決め孔14eにそれぞれ位置決めピン43を非接触の状態で挿入配置し、その後、図示しない部材により第1のフランジ13と中間リング15と第2のフランジ14との間を保持して一体化したものである。
 第2変形例の真空ポンプ用ダンパ12構造では、真空チャンバ内の真空引きがされると、第1のフランジ13と中間リング15の間、及び、中間リング15と第2のフランジ14の間が、それぞれ大気圧で押されて、Oリング16及び弾性体17をそれぞれ弾性圧縮させて間隔が縮まる。したがって、この第2変形例の場合では、位置決めピン41に装着しているスリーブを省略することができる。そのため、少ないスペースで位置決めピン43を配置できる。この位置決めピン43にはロータ部25が何らかの原因で破壊して真空ポンプ10に大きな捻れトルクが発生した場合、そのトルクを吸収して真空ポンプ用ダンパ12が捻れて破壊することを防止する効果がある。
 図12は、本発明の真空ポンプ用ダンパの第3変形例を示す断面図で、(a)は図2のA-A線矢視断面に相当する部分を示している図、(b)は図2のB-B線矢視断面に相当する部分を示している図である。図12に示す第3変形例では、第1のフランジ13と第2のフランジ14との間に、中間リング15Aと中間リング15Bと中間リング15Cとでなる、3枚の中間リングを積層して順に配置している。
 また、中間リング15A及び中間リング15Cは、その外周中間部分から外側に向かって延びる鍔状部15Aa、15Caが設けられている。なお、鍔状部15Aa、15Caの外径の大きさは、図12に示すように弾性体17で囲まれる領域まで延び、弾性体17の外周面と略接する位置まで各々延ばされた大きさにしている。中間リング15Bは、第1のフランジ13の位置決め孔13eと第2のフランジ14の位置決め孔14eに各々対応している複数個の位置決め孔15eと、第1のフランジ13の凹所13fと第2のフランジ14の凹所14fに各々対応している複数個の凹所15fが設けられている。
 そして、第1のフランジ13と中間リング15A、中間リング15B、中間リング15C、及び第2のフランジ14を、順に重ね合わせて位置決めピン41で固定するとき、第1のフランジ13の下面と中間リング15Aの上面との間、及び中間リング15Aの下面と中間リング15Bの上面との間と、中間リング15Bの下面と中間リング15Cの上面と、中間リング15Cの下面と第2のフランジ14の上面との間にはそれぞれ、位置決め凹所36内に僅かに弾性圧縮された状態で、Oリング16が各々配置される。また、第1のフランジ13の下面と中間リング15Aの上面の間と、第2のフランジ14の上面と中間リング15Bの下面の間に、それぞれ16個の弾性体17が、第1のフランジ13と中間リング15B、及び第2のフランジ14の凹所13f、14f、15fに位置決めされて、僅かに弾性圧縮された状態で、かつ中間リング15の鍔状部15Aa及び中間リング15Cの鍔状部15Caと略接した状態で配置される。これら複数個のOリング16と複数個の弾性体17は、位置決めピン41の固定により、第1のフランジ13、中間リング15A、中間リング15B、第2のフランジ14と一体化される。
 この第3変形例の場合では、第1のフランジ13と第2のフランジ14との間に、それぞれ間にOリング16を挟んで中間リング15Aと中間リング15Bと中間リング15Cを順に配置させ、そのOリング16を4段配置した構造にするとともに、弾性体17を第1のフランジ13と中間リング15Bと第2のフランジ14の間に各々挟んで弾性体17を二段構造にしている。この構造でも中間リング15及び弾性体17をそれぞれ多段構造にしても高さの低い真空ポンプ用ダンパ12を得ることができる。そして、第1のフランジ13と第2のフランジ14との間に配設される中間リングの数を多段に増やしているので、高周波振の減衰が更に改善できる。さらに、中間リング15Aの鍔状部15Aa及び中間リング15Cの鍔状部15Caが弾性体17の外周面と略接した状態で配置されているので、鍔状部15Aa、15Caと弾性体17との接触で横方向の除振が得られ、横方向の除振性能が向上する。
 図13は、本発明の真空ポンプ用ダンパの第4変形例を示す断面図で、(a)は図2のA-A線矢視断面に相当する部分を示している図、(b)は図2のB-B線矢視断面に相当する部分を示している図である。図13に示す第4変形例では、第1のフランジ13と第2のフランジ14との間に、中間リング15Aと中間リング15Bと中間リング15Cとでなる、3枚の中間リングを積層して順に配置している。
 また、第1のフランジ13における上フランジ部13cの外径を下フランジ部13dの外径よりも小さく形成するとともに、上フランジ部13cの外周下面に係合凹溝44を設けている。係合凹溝44は、真空ポンプ用ダンパ12と真空チャンバを固定するとき、係合フック45の爪45aを引っ掛けて真空ポンプ用ダンパ12を真空チャンバに固定することができるようになっている。
 さらに、中間リング15Aの全体を第1のフランジ13におけるフランジ本体部13bの空間46内に配置するとともに、中間リング15Bの一部もフランジ本体部13bの空間46内に配置している。また、中間リング15Bの外周部を下方へ断面略L字状に折り曲げ、その折り曲げで中間リング15Bにおける外周部の下面側に中間リング15Cを収容可能な空間47を設け、その空間47内に中間リング15Cを配置している。さらに、中間リング15Bの外周部の上下両面側に、弾性体17を柱状にして保持する凹所15fを各々設けている。
 また、中間リング15Aの外周面と中間リング15Cの外周面にはそれぞれ、第2のOリング48が取り付けられる取付溝49が中間リング15A、15Bを各々一周して形成されている。一方、取付溝49と対応して、フランジ本体部13bの内周面と中間リング15Bの空間47の内周面には、断面略半円形状をした上下方向に延びる複数個の小突起50を略等間隔で設けている。この小突起50は、第2のOリング48を当接させた状態にして、横方向のずれを防止し、第2のOリング48の剛性を保持する。なお、第2のOリング48は、Oリング16と同様に、弾性変形可能なシリコンゴム、あるいはシリコンゴムで形成された芯材(コア)16aの外周面をフッ素系の異種材料16bで被覆して一体化した複合材であってもよい。
 そして、この第4変形例による真空ポンプ用ダンパ12では、第1のフランジ13と中間リング15Aと中間リング15Bと中間リング15Cと第2のフランジ14が、順に重ね合わされて位置決めピン41で固定される。また、その際、第1のフランジ13の下面と中間リング15Aの上面との間、及び、中間リング15Aの下面と中間リング15Bの上面との間、中間リング15Bの下面と中間リング15Cの上面と、中間リング15Cの下面と第2のフランジ14の上面との間には、それぞれ位置決め凹所36内に僅かに弾性圧縮された状態でOリング16が各々配置される。また、中間リング15Aの外周面と中間リング15Bの外周面に各々形成された取付溝49内に、第2のOリング48が小突起50に当接した状態で各々配置される。さらに、第1のフランジ13の下面と中間リング15Bの上面との間と、中間リング15Bの上面と第2のフランジ14の下面との間に、それぞれ8個ずつの弾性体17が僅かに弾性圧縮された状態で位置決め配置される。
 この第4変形例の真空ポンプ用ダンパ12の構造では、中間リング15Aの全体と中間リング15Bの一部を、フランジ本体部13bの空間46内に配置するとともに、中間リング15Cの略全体を中間リング15Bの空間47内に配置した状態で組み立てるので、Oリング16を多段方式で配置しても高さの低い真空ポンプ用ダンパ12を得ることができる。また、中間リング15Aの外周面と中間リング15Bの外周面に各々形成された取付溝49内に、図13及び図14に示すように第2のOリング48が小突起50に当接した状態で配置させているので、第2のOリング48によって横方向の除振が得られ、横方向の除振性能が向上する。
 図15は本発明の真空ポンプ用ダンパの第5変形例を示す断面図で、(a)は図2のA-A線矢視断面に相当する部分を示している図、(b)は図2のB-B線矢視断面に相当する部分を示している図である。
 第5変形例は、第4変形例が第1のフランジ13と第2のフランジ14との間に、中間リング15Aと中間リング15Bと中間リング15Cとでなる、3枚の中間リングを積層して順に配置した構造を開示したが、この第4変形例では、中間リング15Dを一枚だけ使用し、その中間リング15Dを第1のフランジ13におけるフランジ本体部13bの空間46内に配置したものである。その中間リング15Dの外周面には、第2のOリング48が取り付けられる取付溝49を設け、空間46を形成しているフランジ本体部13bの内周面には、上下方向に延びる複数個の小突起50を設けてなるギア加工が施されている。
 一方、第1のフランジ13と第2のフランジ14との間の固定は、第1のフランジ13の位置決め孔13g側から、スリーブ42を装着した位置決めピン41を挿入して、位置決めピン41の先端部41aの外周面に設けている雄ねじを第2のフランジ14の位置決め孔14gの内周面に設けている雌ねじにねじ止め固定して取り付けている。
 そして、第1のフランジ13と第2のフランジ14との間に中間リング15Dを配置して、第1のフランジ13と第2のフランジ14を固定する際、第1のフランジ13の下面と中間リング15Dの上面との間、及び、中間リング15Dの下面と第2のフランジ14の上面との間の位置決め凹所36内にそれぞれOリング16を配設するとともに、取付溝49内に第2のOリング48を配設している。
 この第5変形例の真空ポンプ用ダンパ12では、真空チャンバ内を真空ポンプ10により真空引きすると、第1のフランジ13と中間リング15Dと第2のフランジ14との間は、大気圧で押されて、Oリング16及び弾性体17をそれぞれ弾性圧縮させて間隔が縮まり、第1のフランジ13の上面とスリーブ42の鍔部42aとの間に図示しない隙間が作られ、第1のフランジ13と第2のフランジ14との間に電気的/機械的な絶縁状態が作られる。
 また、この第5変形例の真空ポンプ用ダンパ12の構造でも、中間リング15Dをフランジ本体部13bの空間46内に配置した状態で組み立てるので、高さの低い真空ポンプ用ダンパ12を得ることができる。さらに、中間リング15Dの外周面に形成された取付溝49内に、第2のOリング48が小突起50に当接された状態で配置されているので、第2のOリング48によって横方向の除振が得られ、横方向の除振性能が向上する。
 なお、本発明は、本発明の精神を逸脱しない限り種々の改変を成すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
10   真空ポンプ
11   ケーシング本体
12   真空ポンプ用ダンパ
12a  吸気口
13   第1のフランジ
13a  中央開口(開口部)
13b  フランジ本体部
13c  上フランジ部
13d  下フランジ部
13da 外周縁
13e  位置決め孔
13f  凹所
14   第2のフランジ
14a  中央開口(開口部)
14b  第1丘陵部
14c  第2丘陵部
14d  第3丘陵部
14e  位置決め孔
14f  凹所
15   中間リング
15a  中央開口(開口部)
15e  位置決め孔
15f  凹所
15A  中間リング
15Aa 鍔状部
15B  中間リング
15C  中間リング
15Ca 鍔状部
15D  中間リング
16   Oリング
16a  芯材
16b  異種材料
17   弾性体
18   ボルト
19   ベース
20   ボルト
21   中空部
22   排気口
23   排気口部
24   ステータ部
25   ロータ部
25a  ロータ軸
26,27  磁気軸受部
28   モータ
29   筒状壁部
30   ロータ翼
31   ステータ翼
32   半径方向電磁石
33   金属ディスク
34   軸方向電磁石
34,35  保護用ベアリング
36   位置決め凹所
37   固定用ねじ
37a  頭部
38   取付孔
39   凹溝
40   切り欠き部
41   位置決めピン(位置決め部材)
41a  先端部
41b  頭部
42   スリーブ
42a  鍔部
43   位置決めピン(位置決め部材)
44   係合凹溝
45   係合フック
45a  爪
46   空間
47   空間
48   第2のOリング
49   取付溝
50   小突起
51   機密保持手段
S    隙間

Claims (12)

  1.  各々中央が開口する形状を有して、互いに対向して配置され、環状をした第1のフランジ及び第2のフランジと、
     前記第1のフランジの開口部及び前記第2のフランジの開口部と対応し、中央が開口する形状を有して、前記第1のフランジと前記第2のフランジとの間に配置された中間リングと、
     前記第1のフランジと前記中間リングの間及び前記中間リングと前記第2のフランジの間に各々配置されたOリングと、
     前記第1のフランジと前記中間リングの間及び前記中間リングと前記第2のフランジの間にそれぞれ周方向に点在して配置された複数個の弾性体と、
     前記第1のフランジと前記中間リングと前記第2のフランジに各々設けられた位置決め孔内を順に通って配置された位置決め部材を有する気密保持手段と、
     を備えている、ことを特徴とする真空ポンプ。
  2.  前記弾性体は、概略円柱体又は角柱体である、ことを特徴とする請求項1に記載の真空ポンプ。
  3.  前記Oリングは、シリコンゴムで形成した芯材の外周面をフッ素ゴムで被覆してなる複合材で形成した、ことを特徴とする請求項1又は2に記載の真空ポンプ。
  4.  前記Oリング及び前記弾性体がそれぞれ配置された、前記第1のフランジ及び前記第2のフランジの各箇所には、対応する前記Oリング及び前記弾性体を各々位置決めする凹所を設けている、ことを特徴とする請求項1、2又は3に記載の真空ポンプ。
  5.  前記第1のフランジと前記中間リングの間に設けられる前記Oリングを位置決めする位置決め凹所と前記第2のフランジと前記中間リングの間に設けられる前記Oリングを位置決めする位置決め凹所のうち、一方の前記位置決め凹所は前記Oリングを径方向のバネ定数に比べて軸方向のバネ定数が低くなるようにして位置決めし、他方の前記位置決め凹所は前記Oリングを前記軸方向のバネ定数に比べて前記径方向のバネ定数が低くなるようにして位置決めした、ことを特徴とする請求項1、2、3又は4に記載の真空ポンプ。
  6.  前記第1のフランジ又は前記第2のフランジは、真空チャンバに固定する固定用ねじが装着される取付孔を有し、
     前記取付孔と対向する前記中間リングは、前記取付孔と対応する箇所に、前記固定用ねじの取付時に前記固定用ねじの頭部を逃がす切り欠き部を有する、
     ことを特徴とする請求項1、2、3、4又は5に記載の真空ポンプ。
  7.  前記第1のフランジは、
     更に、前記中間リングの外周面を覆って配置される内周面を有した環状部と、
     前記環状部の一端面から外側に向かって延ばされ前記弾性体と前記位置決め部材が配設されるフランジ部と、
     を備えている、
     ことを特徴とする請求項1、2、3、4、5又は6に記載の真空ポンプ。
  8.  前記第1のフランジの一部に、前記第1のフランジの軸方向に積層して複数枚配置された前記中間リングの外周面を覆って配置される、内周面を有した環状部を設け、
     前記中間リングの前記外周面と前記環状部の前記内周面との間に第2のOリングを配設した、
     ことを特徴とする請求項1、2、3、4、5、6又は7に記載の真空ポンプ。
  9.  前記第1のフランジの軸方向に積層して複数枚配置される前記中間リングのうちの、上側の前記中間リングの一部に、該中間リングの下側に配置される前記中間リングの外周面を覆って配置される内周面を有した環状部を設け、
     前記下側に配置される中間リングの前記外周面と前記環状部の前記内周面との間に第2のOリングを配設した、
     ことを特徴とする請求項1、2、3、4、5、6、7又は8に記載の真空ポンプ。
  10.  前記環状部の前記内周面に、前記第2のOリングに向かって突出された突起を、前記内周面の周方向に点在して複数個設けている、ことを特徴とする請求項8又は9に記載の真空ポンプ。
  11.  前記中間リングの外周面に、前記外周面の一部を外周方向に沿って突出させた鍔状部を備え、
     前記弾性体を前記鍔状部の外周面に当接させて配置した、
     ことを特徴とする請求項1、2、3、4、5、6、7、8、9又は10に記載の真空ポンプ。
  12.  真空チャンバと前記真空チャンバ内を真空引きする真空ポンプとの間を気密に保持する真空ポンプ用ダンパであって、
     各々中央が開口する形状を有して、互いに対向して配置され、環状をした第1のフランジ及び第2のフランジと、
     前記第1のフランジの開口部及び前記第2のフランジの開口部と対応し、中央が開口する形状を有して、前記第1のフランジと前記第2のフランジとの間に配置された中間リングと、
     前記第1のフランジと前記中間リングの間及び前記中間リングと前記第2のフランジの間に各々配置されたOリングと、
     前記第1のフランジと前記中間リングの間及び前記中間リングと前記第2のフランジの間にそれぞれ周方向に点在して配置された複数個の弾性体と、
     前記第1のフランジと前記中間リングと前記第2のフランジに各々設けられた位置決め孔内を順に通って配置された位置決め部材を有する気密保持手段と、
     を備えている、ことを特徴とする真空ポンプ用ダンパ。
PCT/JP2019/010417 2018-03-20 2019-03-13 真空ポンプ及び真空ポンプ用ダンパ WO2019181705A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/980,999 US11499571B2 (en) 2018-03-20 2019-03-13 Vacuum pump and vacuum-pump damper
KR1020207023284A KR102676151B1 (ko) 2018-03-20 2019-03-13 진공 펌프 및 진공 펌프용 댐퍼
EP19771455.3A EP3770443A4 (en) 2018-03-20 2019-03-13 VACUUM PUMP AND DAMPER FOR VACUUM PUMP
CN201980017410.8A CN111788397B (zh) 2018-03-20 2019-03-13 真空泵及真空泵用风门

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-053269 2018-03-20
JP2018053269A JP7009274B2 (ja) 2018-03-20 2018-03-20 真空ポンプ及び真空ポンプ用ダンパ

Publications (1)

Publication Number Publication Date
WO2019181705A1 true WO2019181705A1 (ja) 2019-09-26

Family

ID=67987679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010417 WO2019181705A1 (ja) 2018-03-20 2019-03-13 真空ポンプ及び真空ポンプ用ダンパ

Country Status (5)

Country Link
US (1) US11499571B2 (ja)
EP (1) EP3770443A4 (ja)
JP (1) JP7009274B2 (ja)
CN (1) CN111788397B (ja)
WO (1) WO2019181705A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022122236A1 (de) * 2020-12-11 2022-06-16 Alfred Kärcher SE & Co. KG Hochdruckreinigungsgerät

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023368Y1 (ja) * 1973-02-21 1975-07-15
JPS6133919B2 (ja) 1979-05-31 1986-08-05 Sankyo Alu Ind
US5671956A (en) * 1996-03-07 1997-09-30 Kimball Physics, Inc. Vacuum system coupler
JP2003003988A (ja) 2001-06-22 2003-01-08 Boc Edwards Technologies Ltd 真空ポンプ
JP2010169102A (ja) * 2009-01-20 2010-08-05 Uchiyama Manufacturing Corp 環状ガスケット及びその製造方法
JP2011226466A (ja) * 2010-04-16 2011-11-10 Agilent Technologies Inc 真空ポンプ用の振動減衰器
GB2552324A (en) * 2016-07-18 2018-01-24 Edwards Ltd Vibration damping connector systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044775A1 (de) * 2004-09-16 2006-04-06 Leybold Vacuum Gmbh Vakuumpumpen-Schwingungsdämpfer
FR2893094B1 (fr) 2005-11-10 2011-11-11 Cit Alcatel Dispositif de fixation pour une pompe a vide
JP4925781B2 (ja) 2006-10-05 2012-05-09 エドワーズ株式会社 真空ポンプとその振動吸収ダンパ
JP2009079628A (ja) * 2007-09-25 2009-04-16 Jtekt Corp 転がり軸受装置及びこれを用いた過給機
JP5632992B2 (ja) * 2010-11-22 2014-12-03 日本電子株式会社 ターボ分子ポンプの接続装置
DE102014103510B4 (de) * 2014-03-14 2016-02-25 Pfeiffer Vacuum Gmbh Vakuumpumpen-Dämpfer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023368Y1 (ja) * 1973-02-21 1975-07-15
JPS6133919B2 (ja) 1979-05-31 1986-08-05 Sankyo Alu Ind
US5671956A (en) * 1996-03-07 1997-09-30 Kimball Physics, Inc. Vacuum system coupler
JP2003003988A (ja) 2001-06-22 2003-01-08 Boc Edwards Technologies Ltd 真空ポンプ
JP2010169102A (ja) * 2009-01-20 2010-08-05 Uchiyama Manufacturing Corp 環状ガスケット及びその製造方法
JP2011226466A (ja) * 2010-04-16 2011-11-10 Agilent Technologies Inc 真空ポンプ用の振動減衰器
GB2552324A (en) * 2016-07-18 2018-01-24 Edwards Ltd Vibration damping connector systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770443A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022122236A1 (de) * 2020-12-11 2022-06-16 Alfred Kärcher SE & Co. KG Hochdruckreinigungsgerät

Also Published As

Publication number Publication date
US11499571B2 (en) 2022-11-15
EP3770443A1 (en) 2021-01-27
CN111788397B (zh) 2022-09-20
CN111788397A (zh) 2020-10-16
EP3770443A4 (en) 2021-12-01
US20210108654A1 (en) 2021-04-15
KR20200133329A (ko) 2020-11-27
JP2019163751A (ja) 2019-09-26
JP7009274B2 (ja) 2022-01-25

Similar Documents

Publication Publication Date Title
US6840736B2 (en) Vacuum pump
JP2001241393A (ja) 真空ポンプ
KR20070063003A (ko) 댐퍼 및 진공 펌프
JP2005307971A (ja) 真空ポンプ減衰アダプタ
EP1837521A1 (en) Structure for connecting end parts and vacuum system using the structure
JP5632992B2 (ja) ターボ分子ポンプの接続装置
US8403652B2 (en) Molecular pump and flange having shock absorbing member
JP2703878B2 (ja) ターボ分子ポンプ
WO2019181705A1 (ja) 真空ポンプ及び真空ポンプ用ダンパ
JP5303174B2 (ja) 軸受装置
US8292603B2 (en) Rotary vacuum pump, vacuum device, and pump connection structure
KR102676151B1 (ko) 진공 펌프 및 진공 펌프용 댐퍼
JPWO2009011042A1 (ja) 防振ダンパ
JP2010144739A (ja) 真空ポンプ防振構造
JPS59168295A (ja) タ−ボ分子ポンプ
US11333154B2 (en) Vacuum pump with a rotary body in a case with the rotary body having at least three balance correction portions accessible from an outside of the case for balance correction by an n-plane method
JP4136402B2 (ja) ターボ分子ポンプ
JP2010144740A (ja) 真空ポンプ防振構造
JP7382150B2 (ja) 真空ポンプ、及び、真空ポンプに用いられるシール部材
JP2005344610A (ja) 真空排気装置
JPS62282191A (ja) タ−ボ分子ポンプ
JP2006077714A (ja) ダンパ及び真空ポンプ
JP2006250310A (ja) 回転軸支持装置
JP2006258124A (ja) 回転軸支持装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019771455

Country of ref document: EP

Effective date: 20201020