WO2019181597A1 - 超音波診断装置および超音波診断装置の制御方法 - Google Patents

超音波診断装置および超音波診断装置の制御方法 Download PDF

Info

Publication number
WO2019181597A1
WO2019181597A1 PCT/JP2019/009615 JP2019009615W WO2019181597A1 WO 2019181597 A1 WO2019181597 A1 WO 2019181597A1 JP 2019009615 W JP2019009615 W JP 2019009615W WO 2019181597 A1 WO2019181597 A1 WO 2019181597A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ultrasonic
pulse
ultrasonic pulse
unit
Prior art date
Application number
PCT/JP2019/009615
Other languages
English (en)
French (fr)
Inventor
雅史 野口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020508219A priority Critical patent/JP7235722B2/ja
Priority to EP19772589.8A priority patent/EP3769692B1/en
Publication of WO2019181597A1 publication Critical patent/WO2019181597A1/ja
Priority to US17/011,123 priority patent/US11331080B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • A61B8/5276Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • G01S15/8963Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes using pulse inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • G01S7/52039Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target exploiting the non-linear response of a contrast enhancer, e.g. a contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52077Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging with means for elimination of unwanted signals, e.g. noise or interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic diagnostic apparatus control method, and more particularly to an ultrasonic diagnostic apparatus that generates an ultrasonic image by a harmonic imaging method and an ultrasonic diagnostic apparatus control method.
  • harmonic imaging method as a method for extracting a nonlinear component from an ultrasonic echo, for example, a first ultrasonic pulse and a second ultrasonic pulse whose phases are mutually inverted are sequentially transmitted on the same scanning line.
  • a pulse inversion method in which a reception signal based on one ultrasonic pulse and a reception signal based on a second ultrasonic pulse are added.
  • the fundamental component can be removed from the ultrasonic echo to extract the nonlinear component.
  • the fundamental wave component of the ultrasonic echo is also affected by the movement of the tissue.
  • the present invention has been made to solve such a conventional problem, and an object of the present invention is to provide an ultrasonic diagnostic apparatus and an ultrasonic diagnostic apparatus control method capable of reducing the occurrence of motion artifacts.
  • an ultrasonic diagnostic apparatus includes a transducer array, a first ultrasonic pulse and a second ultrasonic pulse whose phases are reversed from each other into the subject from the transducer array.
  • a transmission unit that transmits a set at least N times on the same scanning line, a reception unit that obtains a reception signal by a signal output from a transducer array that has received an ultrasonic echo generated in the subject, and
  • An IQ signal sequence corresponding to the first ultrasonic pulse and an IQ signal sequence corresponding to the second ultrasonic pulse are acquired by performing quadrature detection on the reception signal acquired by the receiving unit in a predetermined band.
  • An orthogonal detector a tissue velocity detector that detects the velocity of the tissue in the subject based on the IQ signal sequence acquired by the orthogonal detector, and a tissue velocity based on the tissue velocity detected by the tissue velocity detector.
  • Speed A phase correction unit that corrects the phase of the IQ signal sequence obtained from each reflection position in the subject so as to cancel the influence of the subject, and a time series using the IQ signal sequence whose phase is corrected by the phase correction unit
  • a pulse inversion adding unit that obtains an addition signal from which a fundamental wave component has been removed by adding an IQ signal corresponding to a first ultrasonic pulse adjacent to and an IQ signal corresponding to a second ultrasonic pulse;
  • an image generation unit that generates an ultrasonic image based on the addition signal acquired by the pulse inversion addition unit.
  • the tissue velocity detection unit includes a velocity vector at each reflection position calculated by autocorrelation from an IQ signal sequence having a positive phase and an IQ signal sequence having a negative phase among the IQ signal sequences acquired by the quadrature detection unit.
  • the velocity of the tissue in the subject can be detected using the velocity vector at each reflection position calculated by autocorrelation.
  • the tissue velocity detection unit performs autocorrelation from an IQ signal sequence obtained by subtracting an IQ signal corresponding to the first ultrasonic pulse adjacent in time series and an IQ signal corresponding to the second ultrasonic pulse.
  • the velocity of the tissue in the subject can also be detected using the velocity vector at each reflection position calculated by the above.
  • the pulse inversion adding unit includes an IQ signal corresponding to each first ultrasonic pulse and an IQ signal corresponding to the second ultrasonic pulse immediately after the IQ signal corresponding to the first ultrasonic pulse in time series. And an IQ signal corresponding to each second ultrasonic pulse, and an IQ signal corresponding to the first ultrasonic pulse immediately after the IQ signal corresponding to the second ultrasonic pulse in time series.
  • the addition signal can be acquired by performing both additions.
  • the pulse inversion adding unit corresponds to an IQ signal corresponding to each first ultrasonic pulse and a second ultrasonic pulse immediately after the IQ signal corresponding to the first ultrasonic pulse in time series. Addition with IQ signal, IQ signal corresponding to each second ultrasonic pulse, and IQ corresponding to the first ultrasonic pulse immediately after the IQ signal corresponding to the second ultrasonic pulse in time series It is also possible to acquire the addition signal by only one of the addition with the signal.
  • it can further include a tissue signal filter unit for removing a signal caused by the tissue in the subject from the addition signal acquired by the pulse inversion adding unit. Further, it may further include a nonlinear signal information calculation unit that calculates at least one of the power and speed of the nonlinear signal from the addition signal acquired by the pulse inversion adding unit. At this time, the image generation unit preferably generates an ultrasonic image based on at least one of the power and speed of the nonlinear signal calculated by the nonlinear signal information calculation unit.
  • the transmission unit transmits a set of the first ultrasonic pulse and the second ultrasonic pulse N times on each scanning line, and then transmits the first ultrasonic pulse and the second ultrasonic wave on the next scanning line.
  • a set of pulses can be transmitted N times.
  • the transmitting unit sequentially transmits the first ultrasonic pulse once on the predetermined number of scanning lines, and then transmits the second ultrasonic pulse sequentially on the predetermined number of scanning lines.
  • the set of the first ultrasonic pulse and the second ultrasonic pulse can be transmitted N times on a predetermined number of scanning lines.
  • the transmission unit repeats the predetermined number of scans by repeatedly transmitting the set of the first ultrasonic pulse and the second ultrasonic pulse once each on the predetermined number of scanning lines N times. It is also possible to transmit the set of the first ultrasonic pulse and the second ultrasonic pulse N times on the line.
  • a display unit that displays an ultrasonic image.
  • a set of the first ultrasonic pulse and the second ultrasonic pulse whose phases are reversed from each other from the transducer array into the subject is at least twice on the same scanning line. Transmitting N times as described above, obtaining a reception signal from a signal output from the transducer array that has received an ultrasonic echo generated in the subject, and performing quadrature detection in a band determined for the acquired reception signal By performing the processing, the IQ signal sequence corresponding to the first ultrasonic pulse and the IQ signal sequence corresponding to the second ultrasonic pulse are acquired, and the velocity of the tissue in the subject is detected based on the acquired IQ signal sequence.
  • the phase of the IQ signal sequence obtained from each reflection position in the subject is corrected so that the influence of the tissue velocity is offset, and the IQ signal whose phase is corrected Adjacent to time series using columns
  • an addition signal from which the fundamental wave component has been removed is acquired, and based on the acquired addition signal An ultrasonic image is generated.
  • the tissue velocity detection unit that detects the velocity of the tissue in the subject based on the IQ signal sequence acquired by the quadrature detection unit, and the tissue velocity detected by the tissue velocity detection unit
  • a phase correction unit that corrects the phase of an IQ signal sequence obtained from each reflection position in the subject so that the influence of the tissue velocity is offset
  • an IQ signal sequence whose phase is corrected by the phase correction unit Pulse inversion addition for obtaining an addition signal from which the fundamental component has been removed by adding an IQ signal corresponding to the first ultrasonic pulse adjacent in time series and an IQ signal corresponding to the second ultrasonic pulse Generation of motion artifacts can be reduced.
  • Embodiment 1 is a block diagram illustrating a configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. It is a block diagram which shows the internal structure of the receiving part in Embodiment 1 of this invention. It is a figure which shows the example of the zone
  • 3 is a flowchart showing the operation of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. It is a figure which shows typically the transmission timing of an ultrasonic pulse.
  • FIG. 1 shows a configuration of an ultrasonic diagnostic apparatus 1 according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic apparatus 1 includes a transducer array 2, and a transmitter 3 and a receiver 4 are connected to the transducer array 2.
  • a quadrature detection unit 5 is connected to the reception unit 4, and a tissue velocity detection unit 6 and a phase correction unit 7 are connected to the quadrature detection unit 5.
  • the tissue velocity detection unit 6 is connected to the phase correction unit 7.
  • a pulse inversion adding unit 8, a nonlinear signal information calculating unit 9, an image generating unit 10, a display control unit 11, and a display unit 12 are sequentially connected to the phase correction unit 7.
  • the transmitter 3, the receiver 4, the quadrature detector 5, the tissue velocity detector 6, the phase corrector 7, the pulse inversion adder 8, the nonlinear signal information calculator 9, the image generator 10, and the display controller 11 The device control unit 13 is connected, and the storage unit 14 and the operation unit 15 are connected to the device control unit 13. The device control unit 13 and the storage unit 14 are connected so as to be able to exchange information in both directions. Further, the transmitter 3, the receiver 4, the quadrature detector 5, the tissue velocity detector 6, the phase corrector 7, the pulse inversion adder 8, the nonlinear signal information calculator 9, the image generator 10, the display controller 11, and The device control unit 13 constitutes a processor 16.
  • the transducer array 2 of the ultrasonic diagnostic apparatus 1 shown in FIG. 1 has a plurality of transducers arranged one-dimensionally or two-dimensionally. Each of these transducers transmits an ultrasonic wave according to the drive signal supplied from the transmission unit 3, receives an ultrasonic echo from the subject, and outputs a signal based on the ultrasonic echo.
  • Each vibrator is, for example, a piezoelectric ceramic represented by PZT (Lead Zirconate Titanate), a polymer piezoelectric element represented by PVDF (Poly Vinylidene Di Fluoride) and PMN-PT (polyvinylidene fluoride).
  • It is configured by forming electrodes on both ends of a piezoelectric body made of a piezoelectric single crystal represented by Lead Magnesium Niobate-Lead Titanate: lead magnesium niobate-lead titanate solid solution).
  • the transmission unit 3 of the processor 16 includes, for example, a plurality of pulse generators, and a plurality of transducers of the transducer array 2 based on a transmission delay pattern selected according to a control signal from the device control unit 13.
  • Each of the drive voltages is supplied to a plurality of transducers with the delay amount adjusted so that the ultrasonic waves transmitted from the laser beam form an ultrasonic beam.
  • a pulsed drive voltage is applied to the electrodes of the plurality of transducers of the transducer array 2
  • the piezoelectric body expands and contracts, and pulsed ultrasonic waves are generated from the respective transducers. From the synthesized wave of ultrasonic waves, a pulsed ultrasonic beam, that is, an ultrasonic pulse is formed.
  • the transmission unit 3 sequentially generates the first ultrasonic pulse and the second ultrasonic pulse whose phases are reversed from each other from the transducer array 2, and the first ultrasonic pulse and the second ultrasonic pulse are transmitted via the transducer array 2 to the first ultrasonic pulse.
  • a set of the ultrasonic pulse and the second ultrasonic pulse is transmitted to the subject a plurality of times along the same scanning line.
  • the first ultrasonic pulse and the second ultrasonic pulse transmitted into the subject are reflected by a target such as a part of the subject, for example, and are sent to the transducer array 2 as so-called ultrasonic echoes.
  • the ultrasonic echoes propagating toward the transducer array 2 in this way are received by each transducer constituting the transducer array 2.
  • each transducer constituting the transducer array 2 expands and contracts by receiving propagating ultrasonic echoes to generate electrical signals, and outputs these electrical signals to the receiving unit 4.
  • the receiving unit 4 of the processor 16 processes a signal output from the transducer array 2 in accordance with a control signal from the device control unit 13. As shown in FIG. 2, the receiving unit 4 has a configuration in which an amplifying unit 17, an AD (Analog / Digital) converting unit 18, and a beam former 19 are connected in series.
  • an amplifying unit 17 an AD (Analog / Digital) converting unit 18, and a beam former 19 are connected in series.
  • the amplifying unit 17 of the receiving unit 4 amplifies signals input from the respective transducers constituting the transducer array 2 and transmits the amplified signals to the AD converting unit 18.
  • the AD conversion unit 18 converts the signal transmitted from the amplification unit 17 into digital data, and transmits these data to the beam former 19.
  • the beamformer 19 performs each of the data converted by the AD converter 18 according to the sound speed or the sound speed distribution set based on the reception delay pattern selected according to the control signal from the device controller 13.
  • a so-called reception focus process is performed by adding a delay. By this reception focus processing, each data converted by the AD converter 18 is phased and added, and a reception signal in which the focus of the ultrasonic echo is narrowed down is acquired.
  • the ultrasonic echo propagating in the subject is caused by the fundamental wave component having the fundamental band forming the first ultrasonic pulse and the second ultrasonic pulse, and the movement of the tissue of the subject.
  • a reception signal based on an ultrasonic pulse having a positive phase is shown, and the fundamental wave signal E1 has a positive value.
  • a received signal based on an ultrasonic pulse having a negative phase is shown, and the fundamental wave signal E4 has a negative value.
  • the quadrature detection unit 5 of the processor 16 mixes the received signal acquired by the receiving unit 4 with a carrier signal having a reference frequency, thereby quadrature-detecting the received signal and converting it into an IQ signal that is complex data.
  • An IQ signal sequence corresponding to the ultrasonic pulse and an IQ signal sequence corresponding to the second ultrasonic pulse are acquired.
  • the quadrature detection unit 5 as shown in FIGS. 3 and 4, the signal intensity of the fundamental wave signal E 1 and the second harmonic signal. It is desirable to set the quadrature detection band so as to include a frequency at which the signal intensity of the nonlinear signal E3 caused by the contrast agent bubble is relatively larger than the signal intensity of E3.
  • the quadrature detection unit 5 causes the phase correction unit 7 to correct the signal using the analysis result of the fundamental wave signal E1 or E4 and the second harmonic signal E2, as shown in FIG. 3 and FIG.
  • the quadrature detection band FB is set so as to include a part of the frequency band of the fundamental wave signal E1 or E4 and a part of the frequency band of the second harmonic signal E2. It is preferable to set.
  • the tissue velocity detection unit 6 of the processor 16 detects the velocity of the tissue in the subject based on the IQ signal sequence acquired by the orthogonal detection unit 5. At this time, the tissue velocity detection unit 6 calculates a velocity vector at each reflection position in the subject by calculating the autocorrelation of the IQ signal sequence, and the velocity of the tissue in the subject based on these velocity vectors. Is detected. The calculation of the tissue of the subject by the tissue velocity detection unit 6 will be described in detail later.
  • the phase correction unit 7 of the processor 16 is based on the tissue velocity detected by the tissue velocity detection unit 6, so that the IQ signal obtained from each reflection position in the subject is offset so that the influence of the tissue velocity is offset. Correct the phase of the column.
  • the pulse inversion adding unit 8 of the processor 16 corresponds to the IQ signal corresponding to the first ultrasonic pulse and the second ultrasonic pulse using the IQ signal sequence whose phase is corrected by the phase correcting unit 7. By adding the IQ signal, an addition signal from which the fundamental wave signals E1 and E4 are removed as shown in FIGS. 3 and 4 is obtained.
  • the nonlinear signal information calculation unit 9 of the processor 16 nonlinearly determines at least one of the power and velocity of the nonlinear signal E3 caused by the contrast agent bubble introduced into the subject from the addition signal acquired by the pulse inversion addition unit 8. Calculate as signal information.
  • the image generation unit 10 of the processor 16 generates an ultrasonic image based on at least one of the power and speed of the nonlinear signal E3 calculated by the nonlinear signal information calculation unit 9.
  • the display control unit 11 of the processor 16 performs a predetermined process on the ultrasonic image generated by the image generation unit 10 under the control of the device control unit 13 and causes the display unit 12 to display the ultrasonic image or the like.
  • the display unit 12 of the ultrasonic diagnostic apparatus 1 displays an image or the like under the control of the display control unit 11, and includes a display device such as an LCD (Liquid Crystal Display).
  • the operation unit 15 of the ultrasonic diagnostic apparatus 1 is for a user to perform an input operation, and can be configured to include a keyboard, a mouse, a trackball, a touch pad, a touch panel, and the like.
  • the storage unit 14 stores an operation program of the ultrasonic diagnostic apparatus 1, and includes a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), and an FD (Flexible Disk: flexible).
  • Disc Magnetic-Optical disc: magneto-optical disc
  • MT Magnetic Tape: magnetic tape
  • RAM Random Access Memory: random access memory
  • CD Compact Disc: compact disc
  • DVD Digital Versatile Disc
  • SD Secure Digital card
  • USB memory Universal Serial Bus memory
  • the processor 16 having the device control unit 13 is composed of a CPU (Central Processing Unit) and a control program for causing the CPU to perform various processes.
  • An FPGA Field Programmable Gate Array: feed programmable). Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), GPU (Graphics Processing Unit), Other IC (Integrated Circuit: Integrated Circuit) ) using It may be made.
  • transmission unit 3 reception unit 4, orthogonal detection unit 5, tissue velocity detection unit 6, phase correction unit 7, pulse inversion addition unit 8, nonlinear signal information calculation unit 9, image generation unit 10, display control unit 11 and the apparatus control unit 13 may be partially or entirely integrated into one CPU or the like.
  • the ultrasonic diagnostic apparatus 1 sequentially transmits a first ultrasonic pulse and a second ultrasonic pulse whose phases are reversed to each other on the same scanning line, and receives the first ultrasonic pulse.
  • An ultrasonic image is generated using a pulse inversion method in which the signal and the received signal from the second ultrasonic pulse are added.
  • step S1 the transmission unit 3 transmits the first ultrasonic pulse and the second ultrasonic pulse whose phases are reversed to each other a plurality of times on the same scanning line via the transducer array 2.
  • the transmission unit 3 transmits a set of the first ultrasonic pulse and the second ultrasonic pulse N times on the same scanning line, and then transmits the first ultrasonic pulse and the second ultrasonic pulse on the next scanning line.
  • a set of ultrasonic pulses is transmitted N times.
  • N is an integer of 2 or more.
  • the transmission unit 3 alternately performs the first ultrasonic pulse FP and the second ultrasonic pulse SP four times on each scanning line L1, L2, L3, L4, and L5. Sending one by one.
  • the time interval PRT1 between the first ultrasonic pulses FP adjacent in time series and the time interval PRT1 between the second ultrasonic pulses SP adjacent in time series are the same. It is.
  • step S2 the receiving unit 4 receives the ultrasonic echo generated in the subject based on the first ultrasonic pulse FP and the second ultrasonic pulse SP transmitted in the subject in step S1.
  • a received signal is obtained from a signal output from the child array 2.
  • the quadrature detection unit 5 performs quadrature detection in the band FB determined on the reception signal acquired in step S2, thereby performing the IQ signal sequence corresponding to the first ultrasonic pulse FP and the first signal sequence.
  • An IQ signal sequence corresponding to two ultrasonic pulses is acquired.
  • the quadrature detection unit 5 has a frequency at which the nonlinear signal E3 based on the bubble of the contrast agent becomes maximum and a part of the frequency band of the fundamental wave signals E1 and E4.
  • quadrature detection is performed in a band FB including a part of the frequency band of the second harmonic signal E2.
  • the IQ signal sequence corresponding to the first ultrasonic pulse FP and the IQ signal sequence corresponding to the second ultrasonic pulse SP have phases having different polarities.
  • the first ultrasonic pulse FP IQ signal sequence C1 including IQ signals P0, P1, P2, P3, P4, and P5 corresponding to has a positive phase and IQ signals N0, N1, N2, and N3 corresponding to the second ultrasonic pulse SP.
  • N4, and N5 the IQ signal sequence C2 has a negative phase.
  • the tissue velocity detection unit 6 detects the velocity of the tissue in the subject based on the IQ signal sequence acquired in step S3.
  • the tissue velocity detection unit 6 includes the intra-subject calculated from the IQ signal sequence C1 having a positive phase among the IQ signals acquired in step S3 by autocorrelation.
  • the velocity vector V2 at each reflection position in the subject calculated from the velocity vector V1 at each reflection position and the IQ signal sequence C2 having a negative phase by autocorrelation is calculated.
  • the autocorrelation of the IQ signal is calculated by the product of the IQ signal that is later in the time series and the complex conjugate of the previous IQ signal in the time series, out of two IQ signals that are different in time series.
  • the tissue velocity detection unit 6 can calculate the velocity vector V1 using the following equation (1), and can calculate the velocity vector V2 using the following equation (2).
  • P * k is the complex conjugate
  • P k is the complex conjugate of the IQ signal N k
  • n is an integer of 2 or more.
  • step S5 the phase correction unit 7 corrects the IQ signal sequences C1 and C2 obtained in step S3 using the phase of the velocity of the tissue in the subject detected in step S4. Are respectively calculated, and IQ signal sequences C1 and C2 are corrected based on these correction phase amounts.
  • the time interval from the IQ signal P k to the IQ signal N k adjacent to each other in the time series in the IQ signal trains C1 and C2 is PRT PN , and the IQ signal N k to the IQ signal P in the time series adjacent to each other in the time series.
  • PRT NP be the time interval up to k + 1 .
  • the phase correcting unit 7 calculates a correction phase amount [Phi NP for IQ signal sequence C1 using the following equation (4), the correction phase amount relative to IQ signal sequence C2 using the following equation (5) ⁇ PN is calculated.
  • ⁇ in the following formulas (4) and (5) is the phase of the tissue velocity vector of the subject detected in step S4.
  • ⁇ NP (PRT NP / PRT1) ⁇
  • ⁇ PN (PRT PN / PRT1) ⁇ (5)
  • phase correction unit 7 uses the corrected phase amounts ⁇ NP and ⁇ PN calculated in this way to multiply the IQ signals P0 to P5 included in the IQ signal sequence C1 by e ⁇ NPi, thereby obtaining the IQ signal sequence.
  • IQ signal sequences C1 and C2 can be corrected by multiplying IQ signals N0 to N5 included in C2 by e ⁇ PNi .
  • e is the base of the natural logarithm, that is, the Napier number
  • i is an imaginary unit.
  • the pulse inversion adding unit 8 uses the IQ signal sequences C1 and C2 whose phases have been corrected in step S5, and the IQ signal corresponding to the first ultrasonic pulse FP adjacent in time series and the first number. By adding the IQ signals corresponding to the two ultrasonic pulses SP, an addition signal from which the fundamental wave signals E1 and E4 have been removed is obtained.
  • the pulse inversion adding unit 8 adds the IQ signal P j before being corrected in step S5 and the IQ signal N j ⁇ e ⁇ PNi corrected in step S5. Then, the addition signal a j is calculated, and the IQ signal N m before correction in step S5 and the IQ signal P m + 1 ⁇ e ⁇ NPi corrected in step S5 are added to calculate the addition signal b m . In this way, the pulse inversion adding unit 8 calculates the addition signal a j as shown in the following equation (6), and calculates the addition signal b m as shown in the following equation (7).
  • the added signals a j and b m thus calculated are signals in which the fundamental wave signals E1 and E4 are removed and the influence of the tissue velocity is canceled.
  • step S7 the nonlinear signal information calculation unit 9 uses the addition signals a j and b m calculated in step S6 to calculate the power and velocity vector of the nonlinear signal E3 based on the contrast agent bubble introduced into the subject. At least one is calculated.
  • the nonlinear signal information calculation unit 9 can calculate the power PB of the nonlinear signal E3 using the following equation (8), and can calculate the velocity VB of the nonlinear signal E3 using the following equation (9).
  • PB [ ⁇
  • VB [ ⁇ (a q + 1 ⁇ a * q ) + ⁇ (b r + 1 ⁇ b * r )] / (2n ⁇ 3)
  • the image generation unit 10 In subsequent step S8, the image generation unit 10 generates an ultrasonic image based on at least one of the power PB and the velocity VB of the nonlinear signal E3 calculated in step S7, and displays the generated ultrasonic image as a display control unit. 11 on the display unit 12. For example, as illustrated in FIG. 9, the image generation unit 10 can display on the display unit 12 an ultrasonic image U1 in which the power PB of the nonlinear signal E3 calculated in step S7 is represented in gray scale. In this way, the operation of the ultrasound diagnostic apparatus 1 according to Embodiment 1 of the present invention is completed.
  • the calculated power is grayed out.
  • An example of the ultrasonic image U2 represented by a scale is shown in FIG. It can be seen that the ultrasonic image U2 illustrated in FIG. 10 includes more signals representing tissue motion than the ultrasonic image U1 illustrated in FIG.
  • the IQ signal sequences C1 and C2 are corrected in step S5
  • the influence of the tissue speed is canceled in the IQ signal sequences C1 and C2, and motion artifacts are generated.
  • a clear ultrasonic image U1 in which is reduced is obtained.
  • the tissue velocity detector 6 detects the velocity vector V1 calculated from the IQ signal sequence C1 having a positive phase and the IQ signal having a negative phase.
  • the tissue velocity vector V representing the velocity of the tissue in the subject is detected by calculating the average value of the velocity vectors V2 calculated from the column C2, but the detection of the tissue velocity is not limited to this.
  • the tissue velocity detection unit 6 calculates the autocorrelation of a fixed number of IQ signal sequences including IQ signals having phases different in polarity from each other among the plurality of IQ signals acquired in step S3.
  • a tissue velocity vector representing the velocity of the tissue within can also be detected.
  • the harmonic signals such as the second harmonic signal E2 caused by the tissue movement and the nonlinear signal E3 caused by the contrast agent bubble are different from the first ultrasonic pulse FP and By having a positive phase regardless of the phase of the second ultrasonic pulse SP, the IQ signal sequence C1 including the fundamental wave signal E1 and the fundamental wave signal E4 having a phase with a polarity different from that of the fundamental wave signal E1.
  • the influence of the harmonic signal is different from that of the IQ signal sequence C2 including. Therefore, the calculation of the tissue velocity vector using the IQ signals having the same polarity phase in the tissue velocity vector is different from the case of calculating the tissue velocity vector using the IQ signals having the phases different from each other. There are few errors. Therefore, it is better to detect the tissue velocity vector V by calculating the autocorrelation of the IQ signal sequence having the same polarity phase than to detect the tissue velocity vector based on the IQ signals having different phases from each other. This is preferable because it is less affected by reverberation noise and the like.
  • the tissue velocity detection unit 6 subtracts an IQ signal corresponding to the first ultrasonic pulse FP adjacent in time series and an IQ signal corresponding to the second ultrasonic pulse SP.
  • the velocity of the tissue in the subject can also be detected using the velocity vector at each reflection position of the subject calculated from the signal sequence by autocorrelation. For example, as shown in FIG. 11, the tissue velocity detection unit 6 subtracts IQ signals P0 to P5 having a positive phase and IQ signals N0 to N5 having a negative phase, respectively, thereby subtracting signals d 0 to d.
  • the tissue velocity vector V3 can be detected by calculating 5 and calculating the autocorrelation of the calculated subtraction signals d 0 to d 5 .
  • the IQ signal sequences C1 and C2 are corrected based on the tissue velocity vector V3, so that the influence of the tissue velocity can be excluded from the IQ signal sequences C1 and C2.
  • the IQ signal P k and the IQ signal N k are subtracted, but the IQ signal N k and the IQ signal P k + 1 may be subtracted.
  • the subtraction process may be performed based on an arbitrary combination of a plurality of IQ signals included in the IQ signal sequence and a plurality of IQ signals included in the IQ signal sequence C2.
  • step S5 the phase correction unit 7 corrects the IQ signal sequences C1 and C2 using the tissue velocity vector V obtained in step S4.
  • the correction method of the IQ signal sequences C1 and C2 is as follows. It is not limited to this.
  • the phase correction unit 7 calculates the phase of each IQ signal included in the IQ signal sequences C1 and C2, calculates the phase difference between adjacent IQ signals in the IQ signal sequences C1 and C2, and averages the differences
  • the correction phase amount can be calculated by calculating the value.
  • the phase correction unit 7 can correct the IQ signal sequences C1 and C2 based on the correction phase amount calculated in this way.
  • step S6 the pulse inversion adding unit 8 adds the IQ signal corresponding to the first ultrasonic pulse FP adjacent in time series and the IQ signal corresponding to the second ultrasonic pulse SP.
  • the IQ signal corresponding to the first ultrasonic pulse FP and the IQ signal corresponding to the second ultrasonic pulse SP can be added by any combination that is not adjacent in time series.
  • the addition of the IQ signal corresponding to the first ultrasonic pulse FP adjacent in time series and the IQ signal corresponding to the second ultrasonic pulse SP is less affected by the movement of the tissue of the subject. Therefore, it is preferable.
  • step S6 the pulse inversion adding unit 8 calculates the addition signal a j using Equation (7) and the addition signal b m using Equation (8). It is also possible to calculate only one of j and the addition signal b m . Also in this case, an ultrasonic image with reduced motion artifacts can be obtained using the addition signal a j or the addition signal b k .
  • an ultrasonic image representing the power PB value calculated in step S7 in gray scale is shown.
  • the embodiment is not limited to this.
  • the image generation unit 10 selects one of the color A and the color B according to the polarity of the speed VB of the nonlinear signal E3 calculated in step S7, and changes the value of the power PB to change the brightness. And an ultrasonic image in which the absolute value of the velocity VB is expressed by a change in saturation can be generated, and the generated image can be displayed on the display unit 12.
  • the lightness increases as the value of the power PB increases.
  • the saturation of the color A increases as the absolute value of the speed VB increases, and the speed VB decreases.
  • the saturation of the color B increases as the absolute value of the speed VB increases.
  • the user can confirm the ultrasound image and apply to the subject.
  • the power PB and velocity VB of the nonlinear signal E3 based on the introduced contrast agent bubble can be grasped.
  • the contrast agent introduced into the subject on the B-mode image representing the tomographic image of the subject by providing the ultrasound diagnostic apparatus 1 with a B-mode processing unit for generating a B-mode image. At least one of the power PB and the speed VB of the nonlinear signal E3 based on the bubble can be imaged and superimposed on the display unit 12. It is also possible to arrange the images in a B-mode image representing a tomographic image of the subject, and display at least one of the power PB and the velocity VB of the nonlinear signal E3 based on the contrast agent bubble and display it on the display unit 12.
  • FIG. 13 schematically shows a scanning method performed in the ultrasonic diagnostic apparatus according to the second embodiment.
  • This scanning method is also called interleave scanning, and repeats transmitting ultrasonic pulses P sequentially on a predetermined number of scanning lines. Therefore, while maintaining the cycle of generating an ultrasonic image, that is, the frame rate, the same scanning line is used.
  • the time interval between the ultrasonic pulses transmitted on the same scanning line can be made longer than when the ultrasonic pulses P are transmitted sequentially only.
  • the transmission unit 3 sequentially transmits the first ultrasonic pulse FP once on a predetermined number of scanning lines, and then transmits the first supersonic pulse FP on the predetermined number of scanning lines.
  • the sound pulse SP By sequentially transmitting the sound pulse SP once N times, a set of the first ultrasonic pulse FP and the second ultrasonic pulse SP is transmitted N times on a predetermined number of scanning lines.
  • the transmission unit 3 sequentially transmits the first ultrasonic pulse FP once on the three scanning lines L1, L2, and L3, and then transmits the second ultrasonic wave on the scanning lines L1, L2, and L3.
  • the first ultrasonic pulse FP and the second ultrasonic pulses FP and the second ultrasonic scanning line L4, L5, and L6 are similarly performed on the next three scanning lines L4, L5, and L6.
  • the ultrasonic pulse SP is transmitted.
  • the first ultrasonic pulse FP and the second ultrasonic pulse SP are alternately transmitted four times on the scanning lines L1 to L6.
  • the first ultrasonic pulse FP and the second ultrasonic pulse SP are transmitted from the transducer array 2 at the time interval PRT4, but the first ultrasonic pulses adjacent to each other in time series on the same scanning line.
  • the time intervals between the pulses FP, between the second ultrasonic pulses SP, and between the first ultrasonic pulse FP and the second ultrasonic pulse SP are time intervals PRT5 larger than the time interval PRT4. Therefore, the transmission unit 3 can prevent destruction of the contrast agent bubbles while maintaining a frame rate for generating an ultrasonic image by performing an interleave scan as shown in FIG. 14, for example.
  • the phase correction unit 7 makes the IQ signal sequence corresponding to the first ultrasonic pulse FP and the same as the mode described in the first embodiment.
  • the IQ signal sequence corresponding to the second ultrasonic pulse SP is corrected, and the added signal in which the influence of the velocity of the tissue in the subject is canceled by the pulse inversion adding unit 8 using the corrected IQ signal sequence. Is acquired. Furthermore, a clear ultrasonic image in which the occurrence of motion artifacts is reduced is obtained based on such an addition signal.
  • the transmission unit 3 sequentially transmits a set of the first ultrasonic pulse FP and the second ultrasonic pulse SP once on a predetermined number of scanning lines.
  • N By repeating N times, it is possible to perform an interleaved scan in which a set of the first ultrasonic pulse FP and the second ultrasonic pulse SP is transmitted N times on a predetermined number of scanning lines.
  • the transmission unit 3 transmits four sets of the first ultrasonic pulse FP and the second ultrasonic pulse SP one by one on the three scanning lines L1, L2, and L3. After being repeated a number of times, a set of the first ultrasonic pulse FP and the second ultrasonic pulse SP is sequentially transmitted once on the next three scanning lines L4, L5, and L6. As a result, the first ultrasonic pulse FP and the second ultrasonic pulse SP are alternately transmitted four times on the scanning lines L1 to L6.
  • the first ultrasonic pulse FP and the second ultrasonic pulse SP are transmitted from the transducer array 2 at the time interval PRT6.
  • the first ultrasonic pulse FP and the second ultrasonic pulse SP are transmitted.
  • the next set of the first ultrasonic pulse FP and the second ultrasonic pulse SP is separated by a time interval PRT7 larger than the time interval PRT6.
  • the transmission unit 3 can prevent destruction of the contrast agent bubbles while maintaining a frame rate for generating an ultrasonic image by performing an interleave scan as shown in FIG. 15, for example.
  • the time interval PRT6 between the first ultrasonic pulse FP and the second ultrasonic pulse SP is greater than the time interval PRT5 between the first ultrasonic pulse FP and the second ultrasonic pulse SP shown in FIG. Is obtained by adding the IQ signals corresponding to the first ultrasonic pulse FP and the second ultrasonic pulse SP that are separated in time series by the time interval PRT6 to obtain the addition signal.
  • the influence of the movement of the tissue in the subject in the added signal can be reduced.
  • the transmission unit 3 sequentially transmits a set of the first ultrasonic pulse FP and the second ultrasonic pulse SP once on a predetermined number of scanning lines.
  • An interleaved scan may be performed so that a combination of an arbitrary number of first ultrasonic pulses FP and an arbitrary number of second ultrasonic pulses SP is sequentially transmitted once on a predetermined number of scanning lines. it can. Also in this case, it is possible to prevent destruction of the contrast agent bubbles while maintaining the frame rate for generating the ultrasonic image.
  • the addition signal calculated by the pulse inversion adding unit 8 is caused by, for example, a part of the fundamental wave signals E1 and E4 and the movement of the tissue of the subject as shown in FIGS. Part of the second harmonic signal E2 may remain. Therefore, for example, by using a filter for removing the fundamental signals E1 and E4 and the second harmonic signal E2 from the addition signal, the influence of the tissue motion is removed from the addition signal, and the generation of motion artifacts is further improved. A reduced ultrasonic image can be obtained.
  • FIG. 16 shows the configuration of an ultrasonic diagnostic apparatus 1A according to the third embodiment.
  • the ultrasonic diagnostic apparatus 1A according to the third embodiment includes a tissue signal filter unit 20 between the pulse inversion adding unit 8 and the nonlinear signal information calculating unit 9 in the ultrasonic diagnostic apparatus 1 according to the first embodiment shown in FIG.
  • the tissue signal filter unit 20 is connected to the pulse inversion adding unit 8 and the nonlinear signal information calculating unit 9.
  • the apparatus control unit 13 and the tissue signal filter unit 20 constitute a processor 16A.
  • the tissue signal filter unit 20 of the processor 16A based on the addition signal acquired by the pulse inversion addition unit 8, is a second harmonic signal E2 caused by part of the remaining fundamental wave signals E1 and E4 and the tissue in the subject. It is a filter for removing.
  • the tissue signal filter unit 20 performs filtering on the added signal so as to remove a signal near the center frequency of the second harmonic signal E2.
  • the filtering of the addition signal performed by the tissue signal filter unit 20 differs depending on the quadrature detection method by the quadrature detection unit 5. For example, as shown in FIGS.
  • the quadrature detection unit 5 when the quadrature detection unit 5 performs quadrature detection in a predetermined band FB, a so-called band limiting filter that narrows the band FB is used as the tissue signal filter unit 20. It is done. Further, for example, the quadrature detection unit 5 shifts the IQ signal in the band FB to the vicinity of the zero frequency by multiplying the IQ signal sequence of the determined band FB by the reference wave having the center frequency of the band FB. When performing such quadrature detection, a so-called low-pass filter that reduces high-frequency component signals can be used as the tissue signal filter unit 20.
  • step S1 the transmission unit 3 transmits the first ultrasonic pulse FP and the second ultrasonic pulse SP into the subject via the transducer array 2.
  • step S2 ultrasonic transducers based on the first ultrasonic pulse FP and the second ultrasonic pulse SP transmitted in the subject in step S1 are received by the transducer array 2, and the transducer array 2 Based on the signal output from, the reception signal is acquired by the reception unit 4.
  • step S3 the quadrature detection unit 5 performs quadrature detection on the reception signal acquired in step S2, thereby performing an IQ signal sequence C1 corresponding to the first ultrasonic pulse FP and the second ultrasonic pulse SP. And C2 respectively.
  • the tissue velocity detection unit 6 detects the velocity of the tissue in the subject based on the IQ signal sequence acquired in step S3. At this time, for example, the tissue velocity detection unit 6 detects the intra-subject from the IQ signal sequence C1 corresponding to the first ultrasonic pulse FP and the IQ signal sequence C2 corresponding to the second ultrasonic pulse SP, respectively.
  • the tissue velocity vector V representing the tissue velocity is detected by calculating the velocity vectors V1 and V2 representing the tissue velocity and calculating the average value of these velocity vectors.
  • the tissue velocity detection unit 6 calculates velocity vectors V1 and V2 representing the velocity of the tissue in the subject using the equations (1) and (2), and uses the equation (3) to calculate the tissue of the tissue.
  • the velocity vector V can be detected.
  • step S5 the phase correction unit 7 uses the phase of the tissue velocity vector V of the subject detected in step S4 to correct the IQ signal sequences C1 and C2 acquired in step S3.
  • NP and ⁇ PN are calculated, and using the calculated correction phase amounts ⁇ NP and ⁇ PN , the IQ signal sequence C1 corresponding to the first ultrasonic pulse FP and the IQ corresponding to the second ultrasonic pulse SP are calculated.
  • the signal sequence C2 is corrected.
  • the phase correction unit 7 calculates the correction phase amounts ⁇ NP and ⁇ PN using, for example, Equations (4) and (5), and the IQ signal sequence using Equations (6) and (7).
  • C1 and C2 can be corrected.
  • step S6 the pulse inversion adding unit 8 uses the IQ signal sequence corrected in step S5 and corresponds to the IQ signal sequence corresponding to the first ultrasonic pulse FP and the second ultrasonic pulse SP.
  • An addition signal is acquired by adding the IQ signal sequence.
  • This added signal is a signal obtained by removing the fundamental wave signals E1 and E4 caused by the first ultrasonic pulse FP and the second ultrasonic pulse SP as shown in FIGS. 3 and 4, for example.
  • the tissue signal filter unit 20 removes the second harmonic signal E2 caused by the tissue in the subject from the addition signal acquired in step S6. At this time, the tissue signal filter unit 20 performs filtering on the addition signal so as to remove, for example, a signal near the center frequency of the second harmonic signal E2 from the addition signal.
  • the non-linear signal information calculation unit 9 uses the addition signal filtered in step S9 as non-linear signal information of the power PB of the non-linear signal E3 based on the contrast agent bubble introduced into the subject. At least one of the value and the value of the speed VB is calculated. At this time, the nonlinear signal information calculation unit 9 can use Equations (8) and (9).
  • step S8 the image generation unit 10 generates an ultrasonic image based on at least one of the power PB value and the velocity VB value of the nonlinear signal E3 calculated in step S7, and displays the generated ultrasonic image. Displayed on the unit 12. Since the ultrasonic image generated in this manner is one in which the influence of the second harmonic signal E2 is removed, the nonlinear signal E3 resulting from the contrast agent bubble is more clearly represented. Thereby, the operation of the ultrasonic diagnostic apparatus 1A according to Embodiment 3 is completed.
  • the phase of the IQ signal sequences C1 and C2 is corrected, and the influence of the tissue velocity in the subject on the IQ signal sequences C1 and C2 is affected.
  • IQ signal trains C1 and C2 that have been offset and phase-corrected, IQ signals having different polarities are added together to obtain an added signal, and 2 resulting from the tissue in the subject with respect to the obtained added signal Since filtering for removing the second harmonic signal E2 is performed, an ultrasonic image that more clearly represents the nonlinear signal E3 due to the bubble of the contrast agent can be obtained.

Abstract

超音波診断装置(1)は、振動子アレイ(2)と、振動子アレイ(2)から互いに位相を反転させた超音波パルス(FP)と超音波パルス(SP)を同一の走査線上に複数回送信させる送信部(3)と、振動子アレイ(2)の出力信号から受信信号を取得する受信部(4)と、受信信号を直交検波してIQ信号列を取得する直交検波部(5)と、IQ信号列に基づいて被検体内の組織の速度を検出する組織速度検出部(6)と、IQ信号列の位相を補正する位相補正部(7)と、補正されたIQ信号列を用いて、超音波パルス(FP)に対応するIQ信号と超音波パルス(SP)に対応するIQ信号を加算して加算信号を取得するパルスインバージョン加算部(8)と、加算信号から超音波画像を生成する画像生成部(10)とを備える。

Description

超音波診断装置および超音波診断装置の制御方法
 本発明は、超音波診断装置および超音波診断装置の制御方法に係り、特に、ハーモニックイメージング法により超音波画像の生成を行う超音波診断装置および超音波診断装置の制御方法に関する。
 医用超音波診断装置において、被検体に造影剤を導入して診断を行なう場合等には、特許文献1および2に開示されるように、造影剤の非線形性を利用し、振動子アレイにより受信した超音波エコーから非線形成分を抽出して画像化を行う、いわゆるハーモニックイメージング法が知られている。ハーモニックイメージング法を用いることにより、被検体の組織と造影剤のコントラストの高い画像を生成することができる。
 ハーモニックイメージング法において、超音波エコーから非線形成分を抽出する方法として、例えば、同一の走査線上に、互いに位相を反転させた第1の超音波パルスと第2の超音波パルスを順次送信し、第1の超音波パルスによる受信信号と第2の超音波パルスによる受信信号を加算するパルスインバージョン法がある。
特開2002-301068号公報 特開2003-2302559号公報
 このパルスインバージョン法により、超音波エコーから基本波成分を除去して非線形成分を抽出することができる。
 しかしながら、拍動および呼吸等に起因して動きを有する被検体の組織に対して画像化を行う場合には、超音波エコーの基本波成分も組織の動きの影響を受けるため、パルスインバージョン法により、互いに位相を反転させた第1の超音波パルスと第2の超音波パルスによる受信信号を加算するだけでは、超音波エコーから基本波成分を十分に除去することができず、画像上にいわゆるモーションアーチファクトが発生するという問題がある。
 本発明は、このような従来の問題点を解消するためになされたものであり、モーションアーチファクトの発生を低減することができる超音波診断装置および超音波診断装置の制御方法を提供することを目的とする。
 上記目的を達成するために、本発明の超音波診断装置は、振動子アレイと、振動子アレイから被検体内に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスの組を同一の走査線上に少なくとも2回以上のN回送信させる送信部と、被検体内において発生した超音波エコーを受けた振動子アレイから出力される信号により受信信号を取得する受信部と、受信部により取得された受信信号に対して定められた帯域で直交検波を行うことにより第1の超音波パルスに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を取得する直交検波部と、直交検波部により取得されたIQ信号列に基づいて被検体内の組織の速度を検出する組織速度検出部と、組織速度検出部により検出された組織の速度に基づいて、組織の速度による影響が相殺されるように被検体内の各反射位置から得られたIQ信号列の位相を補正する位相補正部と、位相補正部により位相が補正されたIQ信号列を用いて、時系列に隣り合う第1の超音波パルスに対応するIQ信号と第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された加算信号を取得するパルスインバージョン加算部と、パルスインバージョン加算部により取得された加算信号に基づいて超音波画像を生成する画像生成部とを備えたことを特徴とする。
 組織速度検出部は、直交検波部により取得されたIQ信号列のうち、正の位相を有するIQ信号列から自己相関により算出された各反射位置における速度ベクトルと、負の位相を有するIQ信号列から自己相関により算出された各反射位置における速度ベクトルを用いて被検体内の組織の速度を検出することができる。
 もしくは、組織速度検出部は、時系列に隣り合う第1の超音波パルスに対応するIQ信号と第2の超音波パルスに対応するIQ信号の減算を行うことにより得られるIQ信号列から自己相関により算出された各反射位置における速度ベクトルを用いて被検体内の組織の速度を検出することもできる。
 パルスインバージョン加算部は、それぞれの第1の超音波パルスに対応するIQ信号と、時系列において第1の超音波パルスに対応するIQ信号の直後の第2の超音波パルスに対応するIQ信号との加算、および、それぞれの第2の超音波パルスに対応するIQ信号と、時系列において第2の超音波パルスに対応するIQ信号の直後の第1の超音波パルスに対応するIQ信号との加算の双方を行うことにより、加算信号を取得することができる。
 もしくは、パルスインバージョン加算部は、それぞれの第1の超音波パルスに対応するIQ信号と、時系列において第1の超音波パルスに対応するIQ信号の直後の第2の超音波パルスに対応するIQ信号との加算、および、それぞれの第2の超音波パルスに対応するIQ信号と、時系列において第2の超音波パルスに対応するIQ信号の直後の第1の超音波パルスに対応するIQ信号との加算のいずれか一方のみにより、加算信号を取得することもできる。
 また、パルスインバージョン加算部により取得された加算信号から被検体内の組織に起因する信号を除去するための組織信号フィルタ部をさらに備えることができる。
 また、パルスインバージョン加算部により取得された加算信号から非線形信号のパワーおよび速度の少なくとも一方を算出する非線形信号情報算出部をさらに備えることができる。
 この際に、画像生成部は、非線形信号情報算出部により算出された非線形信号のパワーおよび速度の少なくとも一方に基づいて超音波画像を生成することが好ましい。
 また、送信部は、それぞれの走査線上に第1の超音波パルスと第2の超音波パルスの組をN回送信した後に、次の走査線上に第1の超音波パルスと第2の超音波パルスの組をN回送信することができる。
 もしくは、送信部は、定められた数の走査線上に第1の超音波パルスを順次1回ずつ送信させた後に定められた数の走査線上に第2の超音波パルスを順次1回ずつ送信させることをN回繰り返すことにより、定められた数の走査線上に第1の超音波パルスと第2の超音波パルスの組をN回送信することもできる。
 もしくは、送信部は、定められた数の走査線上に第1の超音波パルスと第2の超音波パルスの組を順次1回ずつ送信させることをN回繰り返すことにより、定められた数の走査線上に第1の超音波パルスと第2の超音波パルスの組をN回送信することもできる。
 また、超音波画像を表示する表示部をさらに備えることが好ましい。
 本発明の超音波診断装置の制御方法は、振動子アレイから被検体内に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスの組を同一の走査線上に少なくとも2回以上のN回送信させ、被検体内において発生した超音波エコーを受けた振動子アレイから出力される信号により受信信号を取得し、取得された受信信号に対して定められた帯域で直交検波を行うことにより第1の超音波パルスに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を取得し、取得されたIQ信号列に基づいて被検体内の組織の速度を検出し、検出された組織の速度に基づいて、組織の速度による影響が相殺されるように被検体内の各反射位置から得られたIQ信号列の位相を補正し、位相が補正されたIQ信号列を用いて、時系列に隣り合う第1の超音波パルスに対応するIQ信号と第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された加算信号を取得し、取得された加算信号に基づいて超音波画像を生成することを特徴とする。
 本発明によれば、直交検波部により取得されたIQ信号列に基づいて被検体内の組織の速度を検出する組織速度検出部と、組織速度検出部により検出された組織の速度に基づいて、組織の速度による影響が相殺されるように被検体内の各反射位置から得られたIQ信号列の位相を補正する位相補正部と、位相補正部により位相が補正されたIQ信号列を用いて、時系列に隣り合う第1の超音波パルスに対応するIQ信号と第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された加算信号を取得するパルスインバージョン加算部とを備えるため、モーションアーチファクトの発生を低減することができる。
本発明の実施の形態1に係る超音波診断装置の構成を示すブロック図である。 本発明の実施の形態1における受信部の内部構成を示すブロック図である。 第1の超音波パルスに対応する直交検波の帯域の例を示す図である。 第2の超音波パルスに対応する直交検波の帯域の例を示す図である。 本発明の実施の形態1に係る超音波診断装置の動作を表すフローチャートである。 超音波パルスの送信タイミングを模式的に示す図である。 第1の超音波パルスおよび第2の超音波パルスに対応するIQ信号列を模式的に示す図である。 第1の超音波パルスに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を加算して加算信号を算出する様子を模式的に示す図である。 本発明の実施の形態3に係る超音波診断装置により得られたパワーの値をグレースケールにより表した超音波画像の例を示す図である。 従来の超音波診断装置により得られたパワーの値をグレースケールにより表した超音波画像の例を示す図である。 IQ信号の減算を行う様子を模式的に示す図である。 本発明の実施の形態3に係る超音波診断装置により得られたパワーおよび速度の表示例を模式的に示す図である。 従来のインターリーブスキャンにおける超音波パルスの送信タイミングを模式的に示す図である。 本発明の実施の形態2における超音波パルスの送信タイミングを模式的に示す図である。 本発明の実施の形態2の変形例における超音波パルスの送信タイミングを模式的に示す図である。 本発明の実施の形態3に係る超音波診断装置の構成を示す図である。 本発明の実施の形態3に係る超音波診断装置の動作を表すフローチャートである。
 以下、この発明の実施の形態を添付図面に基づいて説明する。また、以下においては、被検体に造影剤が導入されているものとする。
実施の形態1
 図1に、本発明の実施の形態1に係る超音波診断装置1の構成を示す。図1に示すように、超音波診断装置1は、振動子アレイ2を備えており、振動子アレイ2に送信部3および受信部4がそれぞれ接続されている。受信部4には、直交検波部5が接続され、直交検波部5に、組織速度検出部6および位相補正部7が接続されている。また、組織速度検出部6は、位相補正部7に接続している。また、位相補正部7には、パルスインバージョン加算部8、非線形信号情報算出部9、画像生成部10、表示制御部11および表示部12が順次接続されている。
 さらに、送信部3、受信部4、直交検波部5、組織速度検出部6、位相補正部7、パルスインバージョン加算部8、非線形信号情報算出部9、画像生成部10および表示制御部11に、装置制御部13が接続されており、装置制御部13に、格納部14および操作部15が接続されている。装置制御部13と格納部14は、互いに双方向の情報の受け渡しが可能に接続されている。
 また、送信部3、受信部4、直交検波部5、組織速度検出部6、位相補正部7、パルスインバージョン加算部8、非線形信号情報算出部9、画像生成部10、表示制御部11および装置制御部13により、プロセッサ16が構成されている。
 図1に示す超音波診断装置1の振動子アレイ2は、1次元または2次元に配列された複数の振動子を有している。これらの振動子は、それぞれ送信部3から供給される駆動信号に従って超音波を送信すると共に、被検体からの超音波エコーを受信して、超音波エコーに基づく信号を出力する。各振動子は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子およびPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成することにより構成される。
 プロセッサ16の送信部3は、例えば、複数のパルス発生器を含んでおり、装置制御部13からの制御信号に応じて選択された送信遅延パターンに基づいて、振動子アレイ2の複数の振動子から送信される超音波が超音波ビームを形成するように、それぞれの駆動電圧を、遅延量を調節して複数の振動子に供給する。このように、振動子アレイ2の複数の振動子の電極にパルス状の駆動電圧が印加されると、圧電体が伸縮し、それぞれの振動子からパルス状の超音波が発生して、それらの超音波の合成波から、パルス状の超音波ビームすなわち超音波パルスが形成される。送信部3は、このようにして、互いに位相を反転させた第1の超音波パルスおよび第2の超音波パルスを振動子アレイ2から順次発生させ、振動子アレイ2を介して、第1の超音波パルスと第2の超音波パルスの組を同一の走査線に沿って被検体内に複数回送信する。
 被検体内に送信された第1の超音波パルスおよび第2の超音波パルスは、例えば、被検体の部位等の対象において反射され、いわゆる超音波エコーとして振動子アレイ2に向かって被検体内を伝搬する。このように振動子アレイ2に向かって伝搬する超音波エコーは、振動子アレイ2を構成するそれぞれの振動子により受信される。この際に、振動子アレイ2を構成するそれぞれの振動子は、伝搬する超音波エコーを受信することにより伸縮して電気信号を発生させ、これらの電気信号を受信部4に出力する。
 プロセッサ16の受信部4は、装置制御部13からの制御信号に従って、振動子アレイ2から出力される信号の処理を行う。図2に示すように、受信部4は、増幅部17、AD(Analog Digital)変換部18およびビームフォーマ19が直列接続された構成を有している。
 受信部4の増幅部17は、振動子アレイ2を構成するそれぞれの振動子から入力された信号を増幅し、増幅した信号をAD変換部18に送信する。AD変換部18は、増幅部17から送信された信号をデジタルデータに変換し、これらのデータをビームフォーマ19に送信する。ビームフォーマ19は、装置制御部13からの制御信号に応じて選択された受信遅延パターンに基づいて設定される音速または音速の分布に従い、AD変換部18により変換された各データに対してそれぞれの遅延を与えて加算することにより、いわゆる受信フォーカス処理を行う。この受信フォーカス処理により、AD変換部18により変換された各データが整相加算され且つ超音波エコーの焦点が絞り込まれた受信信号が取得される。
 ここで、被検体内を伝搬する超音波エコーには、第1の超音波パルスおよび第2の超音波パルスを形成する基本波の帯域を有する基本波成分と、被検体の組織の動きに起因する2次高調波成分と、被検体に導入された造影剤のバブルの微小な振動に起因する非線形成分が含まれている。そのため、受信部4により取得された受信信号には、例えば図3および図4に示すように、超音波エコーの基本波成分に基づく基本波信号E1またはE4、2次高調波成分に基づく2次高調波信号E2および造影剤のバブルによる非線形成分に基づく非線形信号E3を含んでいる。図3に示す例では、正の位相を有する超音波パルスに基づく受信信号が示されており、基本波信号E1は、正の値を有している。一方、図4に示す例では、負の位相を有する超音波パルスに基づく受信信号が示されており、基本波信号E4は、負の値を有している。
 プロセッサ16の直交検波部5は、受信部4により取得された受信信号に参照周波数のキャリア信号を混合することにより、受信信号を直交検波して複素データであるIQ信号に変換し、第1の超音波パルスに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を取得する。この際に、直交検波部5は、被検体に導入されている造影剤の検出精度を向上させるため、図3および図4に示すように、基本波信号E1の信号強度および2次高調波信号E3の信号強度と比較して、造影剤のバブルに起因する非線形信号E3の信号強度が相対的に大きくなる周波数を含むように、直交検波の帯域を設定することが望ましい。さらに、直交検波部5は、基本波信号E1またはE4と、2次高調波信号E2の解析結果を用いて位相補正部7に信号の補正を行わせるため、図3および図4に示すように、非線形信号E3が最大となる周波数に加えて、基本波信号E1またはE4の周波数帯域の一部と、2次高調波信号E2の周波数帯域の一部を含むように、直交検波の帯域FBを設定することが好ましい。
 プロセッサ16の組織速度検出部6は、直交検波部5により取得されたIQ信号列に基づいて、被検体内の組織の速度を検出する。この際に、組織速度検出部6は、IQ信号列の自己相関を計算することにより被検体内の各反射位置における速度ベクトルを算出し、これらの速度ベクトルに基づいて被検体内の組織の速度を検出する。組織速度検出部6による被検体の組織の算出については、後に詳述する。
 プロセッサ16の位相補正部7は、組織速度検出部6により検出された組織の速度に基づいて、組織の速度による影響が相殺されるように、被検体内の各反射位置から得られたIQ信号列の位相を補正する。
 プロセッサ16のパルスインバージョン加算部8は、位相補正部7により位相が補正されたIQ信号列を用いて、第1の超音波パルスに対応するIQ信号と、第2の超音波パルスに対応するIQ信号とを加算することにより、図3および図4に示すような基本波信号E1およびE4が除去された加算信号を取得する。
 プロセッサ16の非線形信号情報算出部9は、パルスインバージョン加算部8により取得された加算信号から、被検体に導入された造影剤のバブルに起因する非線形信号E3のパワーおよび速度の少なくとも一方を非線形信号情報として算出する。
 プロセッサ16の画像生成部10は、非線形信号情報算出部9により算出された非線形信号E3のパワーおよび速度の少なくとも一方に基づいて超音波画像を生成する。
 プロセッサ16の表示制御部11は、装置制御部13の制御の下、画像生成部10により生成された超音波画像等に所定の処理を施して、表示部12に超音波画像等を表示させる。
 超音波診断装置1の表示部12は、表示制御部11の制御の下、画像等を表示するものであり、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)等のディスプレイ装置を含む。
 超音波診断装置1の操作部15は、ユーザが入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパッドおよびタッチパネル等を備えて構成することができる。
 格納部14は、超音波診断装置1の動作プログラム等を格納するもので、フラッシュメモリ、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、USBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア、またはサーバ等を用いることができる。
 なお、送信部3、受信部4、直交検波部5、組織速度検出部6、位相補正部7、パルスインバージョン加算部8、非線形信号情報算出部9、画像生成部10、表示制御部11および装置制御部13を有するプロセッサ16は、CPU(Central Processing Unit:中央処理装置)、および、CPUに各種の処理を行わせるための制御プログラムから構成されるが、FPGA(Field Programmable Gate Array:フィードプログラマブルゲートアレイ)、DSP(Digital Signal Processor:デジタルシグナルプロセッサ)、ASIC(Application Specific Integrated Circuit:アプリケーションスペシフィックインテグレイテッドサーキット)、GPU(Graphics Processing Unit:グラフィックスプロセッシングユニット)、その他のIC(Integrated Circuit:集積回路)を用いて構成されてもよい。また、これらの送信部3、受信部4、直交検波部5、組織速度検出部6、位相補正部7、パルスインバージョン加算部8、非線形信号情報算出部9、画像生成部10、表示制御部11および装置制御部13を部分的にあるいは全体的に1つのCPU等に統合させて構成することもできる。
 次に、図5に示すフローチャートを用いて、実施の形態1における超音波診断装置1の動作を詳細に説明する。実施の形態1において、超音波診断装置1は、同一の走査線上に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスを順次送信し、第1の超音波パルスによる受信信号と第2の超音波パルスによる受信信号を加算するパルスインバージョン法を用いて、超音波画像を生成する。
 まず、ステップS1において、送信部3は、互いに位相を反転させた第1の超音波パルスと第2の超音波パルスを、振動子アレイ2を介して同一の走査線上に複数回送信する。この際に、送信部3は、第1の超音波パルスと第2の超音波パルスの組を同一の走査線上にN回送信した後に、次の走査線上に第1の超音波パルスと第2の超音波パルスの組をN回送信する。ここで、Nは2以上の整数である。例えば、送信部3は、図6に示すように、各走査線L1、L2、L3、L4、L5上において、第1の超音波パルスFPと第2の超音波パルスSPを、交互に4回ずつ送信している。また、図6に示す例においては、時系列に隣り合う第1の超音波パルスFP同士の時間間隔PRT1と、時系列に隣り合う第2の超音波パルスSP同士の時間間隔PRT1は、互いに同一である。
 ステップS2において、受信部4は、ステップS1で被検体内に送信された第1の超音波パルスFPと第2の超音波パルスSPに基づいて被検体内で発生した超音波エコーを受信した振動子アレイ2から出力される信号により、受信信号を取得する。
 続くステップS3において、直交検波部5は、ステップS2で取得された受信信号に対して定められた帯域FBで直交検波を行うことにより、第1の超音波パルスFPに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を取得する。この際に、直交検波部5は、例えば、図3および図4に示すように、造影剤のバブルに基づく非線形信号E3が最大となる周波数と、基本波信号E1およびE4の周波数帯域の一部と、2次高調波信号E2の周波数帯域の一部を含む帯域FBにおいて直交検波を実行する。
 また、第1の超音波パルスFPに対応するIQ信号列と第2の超音波パルスSPに対応するIQ信号列は、互いに極性の異なる位相を有している。例えば、第1の超音波パルスFPが正の位相を有し、第2の超音波パルスSPが負の位相を有している場合に、図7に示すように、第1の超音波パルスFPに対応するIQ信号P0、P1、P2、P3、P4、P5を含むIQ信号列C1は、正の位相を有し、第2の超音波パルスSPに対応するIQ信号N0、N1、N2、N3、N4、N5を含むIQ信号列C2は、負の位相を有する。
 続くステップS4において、組織速度検出部6は、ステップS3で取得されたIQ信号列に基づいて被検体内の組織の速度を検出する。この際に、組織速度検出部6は、例えば、図7に示すように、ステップS3で取得されたIQ信号のうち、正の位相を有するIQ信号列C1から自己相関により算出された被検体内の各反射位置における速度ベクトルV1と、負の位相を有するIQ信号列C2から自己相関により算出された被検体内の各反射位置における速度ベクトルV2を算出する。
 ここで、IQ信号の自己相関とは、時系列に異なる2つのIQ信号のうち、時系列において後のIQ信号と、時系列において前のIQ信号の複素共役との積により計算されるものである。例えば、組織速度検出部6は、下記式(1)を用いて速度ベクトルV1を算出し、下記式(2)を用いて速度ベクトルV2を算出することができる。ここで、下記式(1)および(2)において、P はIQ信号Pの複素共役、N はIQ信号Nの複素共役、nは2以上の整数である。
  V1=[Σ(Pk+1・P )]/(n-1)  (k=0,1,2,・・・,n-2)・・・(1)
  V2=[Σ(Nk+1・N )]/(n-1)  (k=0,1,2,・・・,n-2)・・・(2)
 また、組織速度検出部6は、下記式(3)に示すように、速度ベクトルV1およびV2の平均値を計算することにより、被検体内の組織の速度を表す組織速度ベクトルVを検出することができる。
  V=(V1+V2)/2・・・(3)
 続くステップS5において、位相補正部7は、ステップS4で検出された被検体内の組織の速度の位相を用いて、ステップS3で得られたIQ信号列C1およびC2を補正するための補正位相量をそれぞれ算出し、これらの補正位相量に基づいて、IQ信号列C1およびC2を補正する。
 例えば、図7に示すように、IQ信号列C1において時系列に互いに隣り合うIQ信号PとPk+1との時間間隔およびIQ信号列C2において時系列に互いに隣り合うIQ信号NとNk+1との時間間隔をPRT1、IQ信号列C1およびC2において互いに時系列に隣り合うIQ信号PからIQ信号Nまでの時間間隔をPRTPN、時系列に隣り合うIQ信号NからIQ信号Pk+1までの時間間隔をPRTNPとする。このような場合に、位相補正部7は、下記式(4)を用いてIQ信号列C1に対する補正位相量ΦNPを算出し、下記式(5)を用いてIQ信号列C2に対する補正位相量ΦPNを算出する。ここで、下記式(4)および(5)におけるΦは、ステップS4で検出された被検体の組織速度ベクトルの位相である。
  ΦNP=(PRTNP/PRT1)Φ・・・(4)
  ΦPN=(PRTPN/PRT1)Φ・・・(5)
 また、位相補正部7は、このようにして算出した補正位相量ΦNPおよびΦPNを用いて、IQ信号列C1に含まれるIQ信号P0~P5に対してe-ΦNPiを乗じ、IQ信号列C2に含まれるIQ信号N0~N5に対してe-ΦPNiを乗じることにより、IQ信号列C1およびC2を補正することができる。ここで、eは自然対数の底すなわちネイピア数であり、iは虚数単位である。このようにIQ信号列C1およびC2を補正することにより、IQ信号列C1およびC2における被検体内の組織の速度の影響を相殺することができる。
 続くステップS6において、パルスインバージョン加算部8は、ステップS5で位相が補正されたIQ信号列C1およびC2を用いて、時系列に隣り合う第1の超音波パルスFPに対応するIQ信号と第2の超音波パルスSPに対応するIQ信号を加算することにより基本波信号E1およびE4が除去された加算信号を取得する。
 より具体的には、パルスインバージョン加算部8は、図8に示すように、ステップS5で補正される前のIQ信号PとステップS5で補正されたIQ信号N・e-ΦPNiを加算して加算信号aを算出し、ステップS5で補正される前のIQ信号NとステップS5で補正されたIQ信号Pm+1・e-ΦNPiを加算して加算信号bを算出する。このようにして、パルスインバージョン加算部8は、下記式(6)に示すように加算信号aを算出し、下記式(7)に示すように加算信号bを算出する。このようにして算出された加算信号aおよびbは、基本波信号E1およびE4が除去され且つ組織の速度の影響が相殺された信号である。
  a=P+N・e-ΦPNi  (j=0,1,2,・・・,n-1)・・・(6)
  b=N+Pm+1・e-ΦNPi  (m=0,1,2,・・・,n-2)・・・(7)
 ステップS7において、非線形信号情報算出部9は、ステップS6で算出された加算信号aおよびbを用いて、被検体に導入された造影剤のバブルに基づく非線形信号E3のパワーおよび速度ベクトルの少なくとも一方を算出する。例えば、非線形信号情報算出部9は、下記式(8)を用いて非線形信号E3のパワーPBを算出し、下記式(9)を用いて非線形信号E3の速度VBを算出することができる。
  PB=[Σ|a+Σ|b]/(2n-1)
   (j=0,1,2,・・・,n-1、 m=0,1,2,・・・,n-2)・・・(8)
  VB=[Σ(aq+1・a )+Σ(br+1・b )]/(2n-3)
   (q=0,1,2,・・・,n-2、 r=0,1,2,・・・,n-3)・・・(9)
 続くステップS8において、画像生成部10は、ステップS7で算出された非線形信号E3のパワーPBおよび速度VBのうち少なくとも一方に基づいて超音波画像を生成し、生成した超音波画像を、表示制御部11を介して表示部12に表示する。例えば、画像生成部10は、図9に示すように、ステップS7で算出された非線形信号E3のパワーPBをグレースケールにより表した超音波画像U1を、表示部12に表示することができる。このようにして、本発明の実施の形態1に係る超音波診断装置1の動作が終了する。
 ここで、従来の超音波診断装置のように、ステップS3において取得されたIQ信号列C1およびC2に対して位相の補正を行わずにパワーの値を算出した場合に、算出されたパワーをグレースケールにより表した超音波画像U2の例を、図10に示す。図10に示す超音波画像U2は、図9に示す超音波画像U1よりも組織の動きを表す信号を多く含んでいることがわかる。このように、本発明の実施の形態1では、ステップS5でIQ信号列C1およびC2の補正を行っているため、IQ信号列C1およびC2において組織の速度の影響が相殺され、モーションアーチファクトの発生が低減された鮮明な超音波画像U1が得られる。
 なお、ステップS4において被検体内の組織の速度を検出する際に、組織速度検出部6は、正の位相を有するIQ信号列C1から算出された速度ベクトルV1と、負の位相を有するIQ信号列C2から算出された速度ベクトルV2の平均値を計算することにより、被検体内の組織の速度を表す組織速度ベクトルVを検出しているが、組織の速度の検出は、これに限定されない。
 例えば、組織速度検出部6は、ステップS3で取得された複数のIQ信号のうち、互いに極性の異なる位相を有するIQ信号を含む一定数のIQ信号列の自己相関を計算することにより、被検体内の組織の速度を表す組織速度ベクトルを検出することもできる。しかしながら、組織の動きに起因する2次高調波信号E2および造影剤のバブルに起因する非線形信号E3等の高調波信号は、基本波信号E1およびE4とは異なり、第1の超音波パルスFPおよび第2の超音波パルスSPの位相に依らずに正の位相を有することにより、基本波信号E1を含むIQ信号列C1と、基本波信号E1に対して極性の異なる位相を有する基本波信号E4を含むIQ信号列C2とでは、高調波信号の影響が異なる。そのため、互いに同一の極性の位相を有するIQ信号を用いて組織速度ベクトルを算出した方が、互いに極性の異なる位相を有するIQ信号を用いて組織速度ベクトルを算出する場合よりも、組織速度ベクトルにおける誤差が少ない。
 そのため、互いに極性の異なる位相を有するIQ信号に基づいて組織速度ベクトルを検出するよりも、同一の極性の位相を有するIQ信号列の自己相関を計算することにより組織速度ベクトルVを検出する方が、残響ノイズ等の影響が少なく、好ましい。
 また、例えば、組織速度検出部6は、時系列に隣り合う第1の超音波パルスFPに対応するIQ信号と第2の超音波パルスSPに対応するIQ信号の減算を行うことにより得られるIQ信号列から自己相関により算出された被検体の各反射位置における速度ベクトルを用いて、被検体内の組織の速度を検出することもできる。例えば、組織速度検出部6は、図11に示すように、正の位相を有するIQ信号P0~P5と負の位相を有するIQ信号N0~N5とをそれぞれ減算することにより減算信号d~dを算出し、算出された減算信号d~dの自己相関を計算することにより、組織速度ベクトルV3を検出することができる。
 このようにして算出された減算信号d~dは、図3および図4に示すような2次高調波信号E2および非線形信号E3が除外されており、基本波信号E1およびE4を含んでいる。この場合にも、ステップS5において、組織速度ベクトルV3に基づき、IQ信号列C1およびC2の補正が行われることにより、IQ信号列C1およびC2から組織の速度の影響を除外することができる。
 なお、図11に示す例では、IQ信号PとIQ信号Nとの減算が行われているが、IQ信号NとIQ信号Pk+1との減算が行われてもよい。また、IQ信号列に含まれる複数のIQ信号とIQ信号列C2に含まれる複数のIQ信号の任意の組み合わせに基づいて、減算処理が行われてもよい。
 また、ステップS5において、位相補正部7は、ステップS4で得られた組織速度ベクトルVを用いてIQ信号列C1およびC2の補正を行っているが、IQ信号列C1およびC2の補正方法は、これに限定されない。例えば、位相補正部7は、IQ信号列C1およびC2に含まれる各IQ信号の位相を算出し、IQ信号列C1およびC2においてそれぞれ隣り合うIQ信号の位相の差を算出し、その差の平均値を計算することにより補正位相量を算出することができる。さらに、位相補正部7は、このようにして算出した補正位相量に基づいて、IQ信号列C1およびC2を補正することができる。
 また、ステップS6において、パルスインバージョン加算部8は、時系列に隣り合う第1の超音波パルスFPに対応するIQ信号と、第2の超音波パルスSPに対応するIQ信号を加算しているが、時系列に隣り合わない任意の組み合わせにより、第1の超音波パルスFPに対応するIQ信号と、第2の超音波パルスSPに対応するIQ信号とを加算することもできる。しかしながら、時系列に隣り合う第1の超音波パルスFPに対応するIQ信号と、第2の超音波パルスSPに対応するIQ信号とを加算する方が、被検体の組織の動きの影響が少ないため、好ましい。
 また、ステップS6では、パルスインバージョン加算部8は、数式(7)を用いて加算信号aを算出し、数式(8)を用いて加算信号bを算出しているが、加算信号aおよび加算信号bのうち、一方のみを算出することもできる。この場合にも、加算信号aまたは加算信号bを用いて、モーションアーチファクトが低減された超音波画像を得ることができる。
 また、実施の形態1では、ステップS8で生成される超音波画像の例として、ステップS7で算出されたパワーPBの値をグレースケールにより表す超音波画像が示されているが、超音波画像の態様は、これに限定されない。
 例えば、画像生成部10は、図12に示すように、ステップS7で算出された非線形信号E3の速度VBの極性に応じて色Aおよび色Bの一方を選択し、パワーPBの値を明度変化により表し、速度VBの絶対値を彩度変化により表した超音波画像を生成し、生成した画像を表示部12に表示することができる。図12に示す例では、パワーPBの値が大きくなるほど明度が大きくなり、速度VBが正の領域においては、速度VBの絶対値が大きくなるほど色Aの彩度が高くなり、速度VBが負の領域においては、速度VBの絶対値が大きくなるほど色Bの彩度が高くなっている。このように、パワーPBの値の大きさを明度で表し、速度VBの絶対値の大きさを一定の色の彩度で表すことにより、ユーザは、超音波画像を確認して、被検体に導入された造影剤のバブルに基づく非線形信号E3のパワーPBと速度VBを把握することができる。
 また、図示しないが、超音波診断装置1にBモード画像を生成するためのBモード処理部を設けることにより、被検体の断層画像を表すBモード画像上に、被検体に導入された造影剤のバブルに基づく非線形信号E3のパワーPBと速度VBの少なくとも一方を画像化して表示部12に重畳表示させることができる。また、被検体の断層画像を表すBモード画像に並べて、造影剤のバブルに基づく非線形信号E3のパワーPBと速度VBの少なくとも一方を画像化して表示部12に表示させることもできる。
実施の形態2
 実施の形態2に係る超音波診断装置において実施されるスキャン方式を図13に模式的に示す。このスキャン方式は、インターリーブスキャンとも呼ばれ、定められた数の走査線上に順次超音波パルスPを送信することを繰り返すため、超音波画像を生成する周期すなわちフレームレートを保ちながら、同一の走査線上にのみ順次超音波パルスPを送信する場合よりも同一の走査線上に送信された超音波パルス間の時間間隔を長くすることができる。
 ここで、図13に示す例では、3つの走査線L1、L2、L3上に順次超音波パルスPを送信することが8回繰り返された後、次の3つの走査線L4、L5、L6上に順次超音波パルスPを送信することが8回繰り返されている。これにより、各走査線L1~L6上に、8つの超音波パルスPが送信される。また、超音波パルスPは、振動子アレイ2から時間間隔PRT2で送信されているが、同一の走査線上において時系列に互いに隣接する超音波パルスP間の時間間隔は、時間間隔PRT2よりも大きい時間間隔PRT3である。
 本発明においては、このようなインターリーブスキャンを行うことにより、被検体に導入された造影剤のバブルの破壊を防ぐことができる。例えば、送信部3は、図14に示すように、定められた数の走査線上に第1の超音波パルスFPを順次1回ずつ送信した後に、定められた数の走査線上に第2の超音波パルスSPを順次1回ずつ送信することをN回繰り返すことにより、定められた数の走査線上に第1の超音波パルスFPと第2の超音波パルスSPの組をN回送信する。
 図14に示す例では、送信部3は、3つの走査線L1、L2、L3上に第1の超音波パルスFPを順次1回ずつ送信した後に、走査線L1、L2、L3上に第2の超音波パルスSPを順次1回ずつ送信することを4回繰り返した後に、次の3つの走査線L4、L5、L6上についても同様の方法により、第1の超音波パルスFPと第2の超音波パルスSPの送信を行っている。これにより、走査線L1~L6上に、第1の超音波パルスFPと第2の超音波パルスSPがそれぞれ交互に4回送信される。
 また、第1の超音波パルスFPおよび第2の超音波パルスSPは、振動子アレイ2から時間間隔PRT4で送信されているが、同一の走査線上において時系列に互いに隣接する第1の超音波パルスFP間、第2の超音波パルスSP間、第1の超音波パルスFPと第2の超音波パルスSPとの間の時間間隔は、時間間隔PRT4よりも大きい時間間隔PRT5である。そのため、送信部3は、例えば図14に示すようなインターリーブスキャンを行うことにより、超音波画像を生成するフレームレートを保ちながら、造影剤のバブルの破壊を防ぐことができる。
 また、このように、送信部3がインターリーブスキャンを行う場合にも、実施の形態1において説明する態様と同様に、位相補正部7により、第1の超音波パルスFPに対応するIQ信号列と、第2の超音波パルスSPに対応するIQ信号列が補正され、補正されたIQ信号列を用いてパルスインバージョン加算部8により、被検体内の組織の速度の影響が相殺された加算信号が取得される。さらに、このような加算信号に基づいて、モーションアーチファクトの発生が低減された鮮明な超音波画像が得られる。
 なお、送信部3は、例えば、図15に示すように、定められた数の走査線上に第1の超音波パルスFPと第2の超音波パルスSPの組を順次1回ずつ送信させることをN回繰り返すことにより、定められた数の走査線上に第1の超音波パルスFPと第2の超音波パルスSPの組をN回送信するようなインターリーブスキャンを行うこともできる。
 図15に示す例では、送信部3は、3つの走査線L1、L2、L3上に第1の超音波パルスFPと第2の超音波パルスSPの組を順次1回ずつ送信することを4回繰り返した後に、次の3つの走査線L4、L5、L6上に第1の超音波パルスFPと第2の超音波パルスSPの組を順次1回ずつ送信している。これにより、走査線L1~L6上に、第1の超音波パルスFPと第2の超音波パルスSPがそれぞれ交互に4回送信される。
 また、第1の超音波パルスFPおよび第2の超音波パルスSPは、振動子アレイ2から時間間隔PRT6で送信されているが、同一の走査線上においては、第1の超音波パルスFPと第2の超音波パルスSPの組が時間間隔PRT6で送信された後に、時間間隔PRT6よりも大きい時間間隔PRT7を隔てて、次の第1の超音波パルスFPと第2の超音波パルスSPの組が送信されている。そのため、送信部3は、例えば図15に示すようなインターリーブスキャンを行うことにより、超音波画像を生成するフレームレートを保ちながら、造影剤のバブルの破壊を防ぐことができる。
 ここで、第1の超音波パルスFPと第2の超音波パルスSP間の時間間隔PRT6は、図14に示す第1の超音波パルスFPと第2の超音波パルスSP間の時間間隔PRT5よりも小さくすることができるため、時間間隔PRT6だけ時系列に離れた第1の超音波パルスFPと第2の超音波パルスSPに対応するIQ信号を加算して加算信号を取得することにより、取得された加算信号における被検体内の組織の動きの影響を小さくすることができる。
 なお、図15に示す例では、送信部3は、定められた数の走査線上に第1の超音波パルスFPと第2の超音波パルスSPの組を順次1回ずつ送信しているが、定められた数の走査線上に任意の数の第1の超音波パルスFPと任意の数の第2の超音波パルスSPの組み合わせを、順次1回ずつ送信するように、インターリーブスキャンを行うこともできる。この場合にも、超音波画像を生成するフレームレートを保ちながら、造影剤のバブルの破壊を防ぐことができる。
実施の形態3
 実施の形態1においてパルスインバージョン加算部8により算出される加算信号には、例えば図3および図4に示すような、基本波信号E1およびE4の一部および被検体の組織の動きに起因する2次高調波信号E2の一部が残存していることがある。そのため、例えば、加算信号から基本波信号E1およびE4および2次高調波信号E2を除去するためのフィルタを用いることにより、加算信号から組織の動きの影響を除去して、モーションアーチファクトの発生をより低減した超音波画像を得ることができる。
 図16に、実施の形態3に係る超音波診断装置1Aの構成を示す。実施の形態3の超音波診断装置1Aは、図1に示す実施の形態1の超音波診断装置1におけるパルスインバージョン加算部8と非線形信号情報算出部9との間に、組織信号フィルタ部20を設けたものであり、組織信号フィルタ部20は、パルスインバージョン加算部8と非線形信号情報算出部9とに接続している。
 また、送信部3、受信部4、直交検波部5、組織速度検出部6、位相補正部7、パルスインバージョン加算部8、非線形信号情報算出部9、画像生成部10、表示制御部11、装置制御部13、組織信号フィルタ部20により、プロセッサ16Aが構成されている。
 プロセッサ16Aの組織信号フィルタ部20は、パルスインバージョン加算部8により取得された加算信号から、残存した基本波信号E1およびE4の一部および被検体内の組織に起因する2次高調波信号E2を除去するためのフィルタである。例えば、組織信号フィルタ部20は、2次高調波信号E2の中心周波数付近の信号を除去するように、加算信号に対してフィルタリングを行う。組織信号フィルタ部20により行われる加算信号のフィルタリングは、直交検波部5による直交検波の方式により異なる。例えば、図3および図4に示すように、直交検波部5が、定められた帯域FBにおいて直交検波を行う場合には、組織信号フィルタ部20として、帯域FBを狭める、いわゆる帯域制限フィルタが用いられる。また、例えば、直交検波部5が、定められた帯域FBのIQ信号列に対して、帯域FBの中心周波数を有する参照波を乗算することにより、帯域FBにおけるIQ信号をゼロ周波数付近にシフトさせるような直交検波を行う場合には、組織信号フィルタ部20として、高周波成分の信号を低減するいわゆるローパスフィルタを用いることができる。
 次に、図17に示すフローチャートを用いて、実施の形態3に係る超音波診断装置1Aの動作を説明する。このフローチャートは、図5に示す実施の形態1におけるフローチャートにおいて、ステップS6とステップS7の間にステップS9が追加されたものである。
 まず、ステップS1において、送信部3は、振動子アレイ2を介して被検体内に第1の超音波パルスFPと第2の超音波パルスSPを送信する。
 次に、ステップS2において、ステップS1で被検体内に送信された第1の超音波パルスFPおよび第2の超音波パルスSPに基づく超音波エコーが振動子アレイ2により受信され、振動子アレイ2から出力された信号に基づいて、受信部4により受信信号が取得される。
 ステップS3において、直交検波部5は、ステップS2で取得された受信信号に対して直交検波を行うことにより、第1の超音波パルスFPおよび第2の超音波パルスSPに対応するIQ信号列C1およびC2をそれぞれ取得する。
 続くステップS4において、組織速度検出部6は、ステップS3で取得されたIQ信号列に基づいて被検体内の組織の速度を検出する。この際に、例えば、組織速度検出部6は、第1の超音波パルスFPに対応するIQ信号列C1と、第2の超音波パルスSPに対応するIQ信号列C2から、それぞれ、被検体内の組織の速度を表す速度ベクトルV1およびV2を算出し、これらの速度ベクトルの平均値を計算することにより、組織の速度を表す組織速度ベクトルVを検出する。この際に、組織速度検出部6は、数式(1)および(2)を用いて被検体内の組織の速度を表す速度ベクトルV1およびV2を算出し、数式(3)を用いて組織の組織速度ベクトルVを検出することができる。
 ステップS5において、位相補正部7は、ステップS4で検出された被検体の組織速度ベクトルVの位相を用いて、ステップS3で取得されたIQ信号列C1およびC2を補正するための補正位相量ΦNPおよびΦPNを算出し、算出された補正位相量ΦNPおよびΦPNを用いて、第1の超音波パルスFPに対応するIQ信号列C1と、第2の超音波パルスSPに対応するIQ信号列C2を補正する。この際に、位相補正部7は、例えば、数式(4)および(5)を用いて、補正位相量ΦNPおよびΦPNを算出し、数式(6)および(7)を用いてIQ信号列C1およびC2を補正することができる。
 ステップS6において、パルスインバージョン加算部8は、ステップS5で補正されたIQ信号列を用いて、第1の超音波パルスFPに対応するIQ信号列と、第2の超音波パルスSPに対応するIQ信号列とを加算することにより、加算信号を取得する。この加算信号は、例えば図3および図4に示すような、第1の超音波パルスFPおよび第2の超音波パルスSPに起因する基本波信号E1およびE4が除去された信号である。
 続くステップS9において、組織信号フィルタ部20は、ステップS6で取得された加算信号から、被検体内の組織に起因する2次高調波信号E2を除去する。この際に、組織信号フィルタ部20は、例えば、加算信号から2次高調波信号E2の中心周波数付近の信号を除去するように、加算信号に対してフィルタリングを行う。
 続くステップS7において、非線形信号情報算出部9は、ステップS9でフィルタリングがなされた加算信号を用いて、非線形信号情報として、被検体に導入された造影剤のバブルに基づく非線形信号E3のパワーPBの値と速度VBの値のうち少なくとも一方を算出する。この際に、非線形信号情報算出部9は、数式(8)および(9)を用いることができる。
 ステップS8において、画像生成部10は、ステップS7で算出された非線形信号E3のパワーPBの値と速度VBの値のうち少なくとも一方に基づいて超音波画像を生成し、生成した超音波画像を表示部12に表示する。このようにして生成された超音波画像は、2次高調波信号E2の影響が除去されたものであるため、造影剤のバブルに起因する非線形信号E3をより鮮明に表している。これにより、実施の形態3に係る超音波診断装置1Aの動作が終了する。
 以上により、実施の形態3に係る超音波診断装置1Aによれば、IQ信号列C1およびC2に対して位相の補正を行ってIQ信号列C1およびC2における被検体内の組織の速度の影響を相殺し、位相の補正がなされたIQ信号列C1およびC2において互いに極性の異なるIQ信号同士を加算して加算信号を取得し、取得された加算信号に対して被検体内の組織に起因する2次高調波信号E2を除去するフィルタリングを行うため、造影剤のバブルに起因する非線形信号E3をより鮮明に表す超音波画像を得ることができる。
1,1A 超音波診断装置、2 振動子アレイ、3 送信部、4 受信部、5 直交検波部、6 組織速度検出部、7 位相補正部、8 パルスインバージョン加算部、9 非線形信号情報算出部、10 画像生成部、11 表示制御部、12 表示部、13 装置制御部、14 格納部、15 操作部、16,16A プロセッサ、17 増幅部、18 AD変換部、19 ビームフォーマ、20 組織信号フィルタ部、A,B 色、a0,a1,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5 加算信号、C1,C2 IQ信号列、d0,d1,d2,d3,d4,d5 減算信号、E1,E4 基本波信号、E2 2次高調波信号、E3 非線形信号、FB 帯域、FP 第1の超音波パルス、L1,L2,L3,L4,L5,L6 走査線、P 超音波パルス、P0,P1,P2,P3,P4,P5,N0,N1,N2,N3,N4,N5 IQ信号、PRT1,PRT2,PRT3,PRT4,PRT5,PRT6,PRT7,PRTNP,PRTPN 時間間隔、SP 第2の超音波パルス、U1,U2 超音波画像、V1,V2 速度ベクトル、V3 組織速度ベクトル。

Claims (13)

  1.  振動子アレイと、
     前記振動子アレイから被検体内に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスの組を同一の走査線上に少なくとも2回以上のN回送信させる送信部と、
     前記被検体内において発生した超音波エコーを受けた前記振動子アレイから出力される信号により受信信号を取得する受信部と、
     前記受信部により取得された前記受信信号に対して定められた帯域で直交検波を行うことにより前記第1の超音波パルスに対応するIQ信号列と前記第2の超音波パルスに対応するIQ信号列を取得する直交検波部と、
     前記直交検波部により取得された前記IQ信号列に基づいて前記被検体内の組織の速度を検出する組織速度検出部と、
     前記組織速度検出部により検出された前記組織の速度に基づいて、前記組織の速度による影響が相殺されるように前記被検体内の各反射位置から得られた前記IQ信号列の位相を補正する位相補正部と、
     前記位相補正部により位相が補正された前記IQ信号列を用いて、時系列に隣り合う前記第1の超音波パルスに対応するIQ信号と前記第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された加算信号を取得するパルスインバージョン加算部と、
     前記パルスインバージョン加算部により取得された前記加算信号に基づいて超音波画像を生成する画像生成部と
     を備えた超音波診断装置。
  2.  前記組織速度検出部は、前記直交検波部により取得された前記IQ信号列のうち、正の位相を有するIQ信号列から自己相関により算出された各反射位置における速度ベクトルと、負の位相を有するIQ信号列から自己相関により算出された各反射位置における速度ベクトルを用いて前記被検体内の組織の速度を検出する請求項1に記載の超音波診断装置。
  3.  前記組織速度検出部は、時系列に隣り合う前記第1の超音波パルスに対応するIQ信号と前記第2の超音波パルスに対応するIQ信号の減算を行うことにより得られるIQ信号列から自己相関により算出された各反射位置における速度ベクトルを用いて前記被検体内の組織の速度を検出する請求項1に記載の超音波診断装置。
  4.  前記パルスインバージョン加算部は、それぞれの前記第1の超音波パルスに対応するIQ信号と、時系列において前記第1の超音波パルスに対応するIQ信号の直後の前記第2の超音波パルスに対応するIQ信号との加算、および、それぞれの前記第2の超音波パルスに対応するIQ信号と、時系列において前記第2の超音波パルスに対応するIQ信号の直後の前記第1の超音波パルスに対応するIQ信号との加算の双方を行うことにより、前記加算信号を取得する請求項1~3のいずれか一項に記載の超音波診断装置。
  5.  前記パルスインバージョン加算部は、それぞれの前記第1の超音波パルスに対応するIQ信号と、時系列において前記第1の超音波パルスに対応するIQ信号の直後の前記第2の超音波パルスに対応するIQ信号との加算、および、それぞれの前記第2の超音波パルスに対応するIQ信号と、時系列において前記第2の超音波パルスに対応するIQ信号の直後の前記第1の超音波パルスに対応するIQ信号との加算のいずれか一方のみにより、前記加算信号を取得する請求項1~3のいずれか一項に記載の超音波診断装置。
  6.  前記パルスインバージョン加算部により取得された前記加算信号から前記被検体内の組織に起因する信号を除去するための組織信号フィルタ部をさらに備える請求項1~5のいずれか一項に記載の超音波診断装置。
  7.  前記パルスインバージョン加算部により取得された前記加算信号から非線形信号のパワーおよび速度の少なくとも一方を算出する非線形信号情報算出部をさらに備える請求項1~6のいずれか一項に記載の超音波診断装置。
  8.  前記画像生成部は、前記非線形信号情報算出部により算出された前記非線形信号のパワーおよび速度の少なくとも一方に基づいて前記超音波画像を生成する請求項7に記載の超音波診断装置。
  9.  前記送信部は、それぞれの前記走査線上に前記第1の超音波パルスと前記第2の超音波パルスの組をN回送信した後に、次の前記走査線上に前記第1の超音波パルスと前記第2の超音波パルスの組をN回送信する請求項1~8のいずれか一項に記載の超音波診断装置。
  10.  前記送信部は、定められた数の前記走査線上に前記第1の超音波パルスを順次1回ずつ送信させた後に前記定められた数の走査線上に前記第2の超音波パルスを順次1回ずつ送信させることをN回繰り返すことにより、前記定められた数の走査線上に前記第1の超音波パルスと前記第2の超音波パルスの組をN回送信する請求項1~8のいずれか一項に記載の超音波診断装置。
  11.  前記送信部は、定められた数の前記走査線上に前記第1の超音波パルスと前記第2の超音波パルスの組を順次1回ずつ送信させることをN回繰り返すことにより、前記定められた数の走査線上に前記第1の超音波パルスと前記第2の超音波パルスの組をN回送信する請求項1~8のいずれか一項に記載の超音波診断装置。
  12.  前記超音波画像を表示する表示部をさらに備える請求項1~11のいずれか一項に記載の超音波診断装置。
  13.  振動子アレイから被検体内に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスの組を同一の走査線上に少なくとも2回以上のN回送信させ、
     前記被検体内において発生した超音波エコーを受けた前記振動子アレイから出力される信号により受信信号を取得し、
     取得された前記受信信号に対して定められた帯域で直交検波を行うことにより前記第1の超音波パルスに対応するIQ信号列と前記第2の超音波パルスに対応するIQ信号列を取得し、
     取得された前記IQ信号列に基づいて前記被検体内の組織の速度を検出し、
     検出された前記組織の速度に基づいて、前記組織の速度による影響が相殺されるように前記被検体内の各反射位置から得られた前記IQ信号列の位相を補正し、
     位相が補正された前記IQ信号列を用いて、時系列に隣り合う前記第1の超音波パルスに対応するIQ信号と前記第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された加算信号を取得し、
     取得された前記加算信号に基づいて超音波画像を生成する
     超音波診断装置の制御方法。
PCT/JP2019/009615 2018-03-20 2019-03-11 超音波診断装置および超音波診断装置の制御方法 WO2019181597A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020508219A JP7235722B2 (ja) 2018-03-20 2019-03-11 超音波診断装置および超音波診断装置の制御方法
EP19772589.8A EP3769692B1 (en) 2018-03-20 2019-03-11 Ultrasonic diagnostic device and method of controlling ultrasonic diagnostic device
US17/011,123 US11331080B2 (en) 2018-03-20 2020-09-03 Ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging method and method of controlling ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018052200 2018-03-20
JP2018-052200 2018-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/011,123 Continuation US11331080B2 (en) 2018-03-20 2020-09-03 Ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging method and method of controlling ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging

Publications (1)

Publication Number Publication Date
WO2019181597A1 true WO2019181597A1 (ja) 2019-09-26

Family

ID=67987109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009615 WO2019181597A1 (ja) 2018-03-20 2019-03-11 超音波診断装置および超音波診断装置の制御方法

Country Status (4)

Country Link
US (1) US11331080B2 (ja)
EP (1) EP3769692B1 (ja)
JP (1) JP7235722B2 (ja)
WO (1) WO2019181597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969295B2 (en) 2020-07-16 2024-04-30 Konica Minolta, Inc. Techniques to prevent an occurrence of an artifact due to residual echoes in an ultrasound diagnostic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117453288A (zh) * 2023-10-31 2024-01-26 扬州宇安电子科技有限公司 一种基于秒脉冲的多设备同步反演系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286472A (ja) * 2000-04-10 2001-10-16 Toshiba Corp 超音波診断装置
JP2001299765A (ja) * 2000-02-17 2001-10-30 Ge Yokogawa Medical Systems Ltd 超音波画像表示方法および超音波診断装置
JP2002143158A (ja) * 2000-10-30 2002-05-21 Ge Medical Systems Global Technology Co Llc 超音波画像表示方法および超音波診断装置
JP2002301068A (ja) 2001-04-09 2002-10-15 Toshiba Corp 超音波診断装置
JP2003230559A (ja) 2002-02-08 2003-08-19 Toshiba Corp 超音波診断装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193662B1 (en) * 1999-02-17 2001-02-27 Atl Ultrasound High frame rate pulse inversion harmonic ultrasonic diagnostic imaging system
US6319203B1 (en) * 2000-07-28 2001-11-20 Atl Ultrasound Ultrasonic nonlinear imaging at fundamental frequencies
JP2003010178A (ja) * 2001-07-03 2003-01-14 Toshiba Corp 超音波診断装置
US6676606B2 (en) * 2002-06-11 2004-01-13 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic micro-vascular imaging
US7591788B2 (en) * 2003-08-19 2009-09-22 Siemens Medical Solutions Usa, Inc. Adaptive contrast agent medical imaging
EP1782094A2 (en) * 2004-07-23 2007-05-09 ANGELSEN, Bjorn A. J. Ultrasound imaging using non-linear manipulation of forward propagation properties of a pulse
JP2009232330A (ja) * 2008-03-25 2009-10-08 Yokogawa Electric Corp 光受信機
KR101120794B1 (ko) * 2010-06-01 2012-03-22 삼성메디슨 주식회사 움직임 영상을 제공하는 초음파 시스템
JP6218400B2 (ja) * 2012-03-15 2017-10-25 東芝メディカルシステムズ株式会社 超音波診断装置及び超音波診断装置の制御プログラム
US9173640B2 (en) * 2013-08-09 2015-11-03 Sonowise, Inc. Systems and methods for processing ultrasound color flow mapping
US11464495B2 (en) * 2018-03-13 2022-10-11 Siemens Medical Solutions Usa, Inc. Adaptive clutter filtering in acoustic radiation force-based ultrasound imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299765A (ja) * 2000-02-17 2001-10-30 Ge Yokogawa Medical Systems Ltd 超音波画像表示方法および超音波診断装置
JP2001286472A (ja) * 2000-04-10 2001-10-16 Toshiba Corp 超音波診断装置
JP2002143158A (ja) * 2000-10-30 2002-05-21 Ge Medical Systems Global Technology Co Llc 超音波画像表示方法および超音波診断装置
JP2002301068A (ja) 2001-04-09 2002-10-15 Toshiba Corp 超音波診断装置
JP2003230559A (ja) 2002-02-08 2003-08-19 Toshiba Corp 超音波診断装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAMEKAWA, KOROKU: "Real-time blood flow imaging equipment by ultrasonic Doppler", JOURNAL OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS D, vol. J70D, no. 7, 31 July 1987 (1987-07-31), JP, pages 1432 - 1440, XP009523149, ISSN: 1881-0225 *
See also references of EP3769692A4
YOSIHIHIRO YOSHIKAWA : "Information processing in ultrasonic wave medical diagnosis", JOURNAL OF INFORMATION PROCESSING SOCIETY OF JAPAN, vol. 30, no. 3, 15 March 1989 (1989-03-15), pages 225 - 231, XP055733526 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969295B2 (en) 2020-07-16 2024-04-30 Konica Minolta, Inc. Techniques to prevent an occurrence of an artifact due to residual echoes in an ultrasound diagnostic device

Also Published As

Publication number Publication date
EP3769692A1 (en) 2021-01-27
EP3769692B1 (en) 2024-03-27
EP3769692A4 (en) 2021-05-19
US11331080B2 (en) 2022-05-17
US20200397411A1 (en) 2020-12-24
JP7235722B2 (ja) 2023-03-08
JPWO2019181597A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
US9895139B2 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
US10617395B2 (en) Ultrasound diagnostic apparatus and doppler waveform image generating method
US11331080B2 (en) Ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging method and method of controlling ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging
WO2019189386A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP5148194B2 (ja) 超音波診断装置
JP5281107B2 (ja) 超音波診断装置および超音波画像生成方法
JP2009022462A (ja) 超音波診断装置および超音波診断装置の制御プログラム
JP5159480B2 (ja) 超音波診断装置および超音波診断装置の制御プログラム
JP5513976B2 (ja) 超音波診断装置
JP6494784B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP5869411B2 (ja) 超音波診断装置および超音波画像生成方法
JP5836197B2 (ja) 超音波診断装置およびデータ処理方法
JP2012161448A (ja) 超音波診断装置
TW201232476A (en) Detection system and signal processing method thereof
WO2013176109A1 (ja) 超音波画像診断装置
JP2005278892A (ja) 超音波診断装置
WO2017122411A1 (ja) 超音波診断装置および音速定量化方法
JP7118280B2 (ja) 超音波診断装置および超音波診断装置の制御方法
WO2020213562A1 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
JP6536357B2 (ja) 超音波画像診断装置
JP5450488B2 (ja) 超音波診断装置および超音波画像生成方法
JPH0424023A (ja) 超音波診断装置
JP2006223384A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019772589

Country of ref document: EP

Effective date: 20201020