WO2019181079A1 - 液体品質管理装置及び方法 - Google Patents

液体品質管理装置及び方法 Download PDF

Info

Publication number
WO2019181079A1
WO2019181079A1 PCT/JP2018/044276 JP2018044276W WO2019181079A1 WO 2019181079 A1 WO2019181079 A1 WO 2019181079A1 JP 2018044276 W JP2018044276 W JP 2018044276W WO 2019181079 A1 WO2019181079 A1 WO 2019181079A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooling
dispensing
control device
quality control
Prior art date
Application number
PCT/JP2018/044276
Other languages
English (en)
French (fr)
Inventor
山下 直之
純一 北野
泰宏 倉部
伸輔 光畑
和田 貴志
健志 楠
英俊 福成
拓也 小村
Original Assignee
アサヒビール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アサヒビール株式会社 filed Critical アサヒビール株式会社
Priority to SG11202009033TA priority Critical patent/SG11202009033TA/en
Priority to CA3094604A priority patent/CA3094604A1/en
Priority to AU2018414294A priority patent/AU2018414294A1/en
Priority to EP18910719.6A priority patent/EP3770110A4/en
Priority to US17/040,197 priority patent/US11498825B2/en
Priority to CN201880090681.1A priority patent/CN111801295A/zh
Publication of WO2019181079A1 publication Critical patent/WO2019181079A1/ja
Priority to IL277351A priority patent/IL277351A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements
    • B67D1/0858Cooling arrangements using compression systems
    • B67D1/0861Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means
    • B67D1/0865Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means by circulating a cooling fluid along beverage supply lines, e.g. pythons
    • B67D1/0867Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means by circulating a cooling fluid along beverage supply lines, e.g. pythons the cooling fluid being a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • F25D31/003Liquid coolers, e.g. beverage cooler with immersed cooling element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements
    • B67D1/0858Cooling arrangements using compression systems
    • B67D1/0861Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means
    • B67D1/0864Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means in the form of a cooling bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0878Safety, warning or controlling devices
    • B67D1/0882Devices for controlling the dispensing conditions
    • B67D1/0884Means for controlling the parameters of the state of the liquid to be dispensed, e.g. temperature, pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0888Means comprising electronic circuitry (e.g. control panels, switching or controlling means)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D2210/00Indexing scheme relating to aspects and details of apparatus or devices for dispensing beverages on draught or for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D2210/00028Constructional details
    • B67D2210/00047Piping
    • B67D2210/00049Pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D2210/00Indexing scheme relating to aspects and details of apparatus or devices for dispensing beverages on draught or for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D2210/00028Constructional details
    • B67D2210/00099Temperature control
    • B67D2210/00104Cooling only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/802Barrels

Definitions

  • the present invention relates to a liquid quality management apparatus and method that can be added to a liquid supply system, and in particular, to perform liquid quality management by paying attention to control of a cooling device included in a liquid dispensing apparatus included in the liquid supply system.
  • the present invention relates to a management apparatus and method.
  • a liquid supply system is generally used as an apparatus for providing a liquid such as beer.
  • the liquid supply system includes a carbon dioxide gas cylinder, a beer barrel filled with beer, a supply pipe, and a beer dispenser, and pressurizes the beer in the beer barrel with carbon dioxide gas in the carbon dioxide gas cylinder.
  • the beer dispenser has a beer cooling pipe, a freezer, and a spout installed in the cooling tank. A part of the cooling water in the cooling tank is frozen in the freezer, and the beer is cooled by operating the lever at the spout. The beer is cooled while flowing in the pipe and poured into a drinking container such as a mug. In this way, the beer in the beer barrel is provided to the customer.
  • the beer dispenser In the beer dispenser of the type generally referred to as an instantaneous cooling type as described above, the beer is cooled by heat exchange between the beer passing through the beer cooling pipe immersed in the cooling water partially frozen and the cooling water. And is poured out. Moreover, in order to perform efficient heat exchange, the beer dispenser is further provided with a stirring device that stirs the cooling water in the cooling tank.
  • the stirring device includes a stirring blade and a stirring motor that rotationally drives the stirring blade.
  • beer barrels filled with beer are often placed in a room temperature environment. Therefore, in summer, etc., in the cooling water in the cooling tank, especially near the inlet side of the beer cooling pipe, heat exchange with beer at about room temperature increases, so that the cooling water temperature rises and the ice in the cooling water melts. Go. Therefore, for example, by detecting the amount of ice in the cooling water, operating the refrigerator based on the change in the ice amount to lower the cooling water temperature, and stirring the cooling water with the stirring device, the cooling water temperature is set within the set range. The beer temperature is maintained within a predetermined range.
  • an instantaneous cooling type beer dispenser detects an icing state, for example, an ice amount or an ice position by using a conductivity sensor (IBC sensor).
  • IBC sensor conductivity sensor
  • the present invention has been made to solve such a problem, and can provide a liquid with a more stable quality as compared with the prior art. Specifically, it is maintained within a predetermined pouring temperature range.
  • Another object of the present invention is to provide a liquid quality control device and a management method that can increase the amount of liquid dispensed as compared with the prior art.
  • the present invention is configured as follows. That is, the liquid quality control device according to one aspect of the present invention supplies the liquid in the storage container to the pouring device through a supply pipe by pressurization, cools the liquid with the cooling device provided in the pouring device, and A liquid quality control device that can be added to a liquid supply system for dispensing from a dispensing device to a drinking container,
  • the cooling device includes a cooling tank that contains cooling water, a liquid cooling pipe that is immersed in the cooling water and through which the liquid flows, a refrigerant pipe that is immersed in the cooling water and through which the refrigerant flows, and circulates the refrigerant A refrigerator that freezes a part of the cooling water, and a stirring device that stirs the cooling water
  • the liquid quality control device is A dispensing sensor for detecting the dispensing of the liquid into the drinking container; A control device that is electrically connected to the dispensing sensor and that performs operation control on at least one of the refrigerator and the agitation device from the liquid
  • the liquid quality control device includes an extraction sensor and a control device, thereby performing operation control on at least one of the refrigerator and the agitation device from the start of the liquid extraction operation.
  • the liquid quality management apparatus in the embodiment described below can be added to an existing liquid supply system 70, that is, can be electrically and mechanically connected. It is.
  • one liquid quality control apparatus 101 is attached to one set of liquid supply system 70.
  • the liquid quality control device and method according to the embodiment are greatly different in that at least one of the refrigerator and the stirring device is controlled before the icing state is changed.
  • control regarding a refrigerator is demonstrated in 1st Embodiment, respectively, and control regarding a stirring apparatus is demonstrated in 2nd Embodiment.
  • beer is taken as an example of the liquid to be handled, but the liquid is not limited to beer, alcoholic beverages such as sparkling liquor, liqueur, chuhai, whiskey, wine, drinking water, soft drinks, carbonated beverages It may be.
  • alcoholic beverages such as sparkling liquor, liqueur, chuhai, whiskey, wine, drinking water, soft drinks, carbonated beverages It may be.
  • the liquid supply system 70 includes a storage container 10, a pressurization source 15, a supply pipe 30, and a dispensing device 50, and the liquid (beer in the embodiment as described above) 20 in the storage container 10 is This is a system that supplies, that is, pressure-feeds, to the pouring device 50 through the supply pipe 30 by pressurization by the pressurizing source 15, and pours from the pouring device 50 to a drinking container (for example, a mug) 40.
  • the storage container 10 is a stainless steel container called a beer barrel filled with beer by a beer maker, for example, having a capacity of 5L, 10L, 19L, or the like.
  • the pressurization source 15 is a carbon dioxide gas cylinder.
  • the supply pipe 30 is a flexible resin tube made of, for example, polyamide, polyurethane, polyester, or the like that allows beer to pass between the storage container 10 and the pouring device 50.
  • devices included in the liquid quality control apparatus 101 are attached to the supply pipe 30.
  • the inner diameter of the fluid passage line is designed to be the same size in order to facilitate cleaning of the sponge in the liquid passage. It is preferable.
  • the beer dispenser 50 includes a liquid cooling pipe (in the embodiment, a beer cooling pipe) 52 and a refrigerant pipe 57, a refrigerator 53, a liquid outlet 54, and a stirring device 58 disposed in the cooling tank 51.
  • the cooling device includes a cooling tank 51, a liquid cooling pipe 52, a refrigerator 53, a refrigerant pipe 57, and a stirring device 58.
  • the liquid cooling pipe 52 is a pipe formed in a spiral shape through which the beer (liquid) 20 fed through the supply pipe 30 passes inside.
  • the liquid cooling pipe 52 is arranged on the center side of the cooling tank 51, and most of the cooling pipe is cooled. It is immersed in water 55 (FIGS. 1 to 3).
  • the liquid cooling pipe 52 is made of, for example, stainless steel.
  • the refrigerator 53 includes a refrigerant compressor, a condenser, a cooling fan for cooling the condenser, and the like, and evaporates and circulates the compressed and condensed refrigerant in the refrigerant pipe 57.
  • the refrigerant pipe 57 is also formed in a spiral shape.
  • the refrigerant pipe 57 is disposed outside the liquid cooling pipe 52, that is, on the side wall side of the cooling tank 51 in the cooling tank 51, most of which is immersed in the cooling water 55 (FIG. 1). -Fig. 3). Therefore, the cooling water 55 around the outside of the refrigerant pipe 57 is cooled by the evaporation of the refrigerant when passing through the refrigerant pipe 57, and a part of the cooling water 55 is frozen.
  • the refrigerant pipe 57 is made of metal and has high thermal conductivity, such as copper.
  • the refrigerant pipe 57 is on the center side, and the liquid cooling pipe 52 is on the side wall outside the refrigerant pipe 57. It may be arranged on the side.
  • the stirring device 58 is a device that stirs the cooling water 55 accommodated in the cooling tank 51, and is disposed in the center of the cooling tank 51, and includes a stirring blade 582 and a stirring motor 581 that rotationally drives the stirring blade 582. Due to the rotation of the stirring blade 582, the cooling water 55 convects, for example, from the lower part to the upper part of the cooling tank 51. Thereby, heat exchange between the beer passing through the liquid cooling pipe 52 and the cooling water 55 is promoted. Further, the agitation motor 581 basically rotates the agitation blades 582 without stopping unless it has failed.
  • the beer (liquid) 20 pumped into the liquid cooling pipe 52 passes through the beer (liquid) cooling pipe 52 by the operation of the lever 56 in the liquid outlet 54 and is cooled by the heat exchange described above.
  • it is poured into a drinking container 40 such as a mug and provided to the customer.
  • a drinking container 40 such as a mug
  • 5 ° C. is set as a target value as an appropriate liquid temperature provided to the customer.
  • the beer dispenser 50 is generally used in an environment where the outside air temperature is 5 ° C. or higher and 40 ° C. or lower. Further, the liquid 20 handled by the dispensing device 50 is not limited to beer, and may be the above-described drinking water or the like. In the embodiment, the beer dispenser 50 also cools the beer that is the target liquid, but the dispensing device 50 included in the embodiment may heat or keep the target liquid.
  • the liquid quality control apparatus 101 is an apparatus that can increase the amount of liquid that is maintained in a predetermined pouring temperature range as compared with the prior art.
  • the liquid quality management apparatus 101 includes a flow rate sensor 111 corresponding to an example of a dispensing sensor and a control device 130 as a basic configuration, and dispenses the liquid 20 from the dispensing apparatus 50.
  • the liquid dispensing amount in the predetermined dispensing temperature range can be increased compared to the conventional case.
  • the above-described dispensing sensor is a sensor that detects the start of dispensing of the liquid 20 from the dispensing device 50.
  • the flow rate sensor 111 is used as described above.
  • a means for detecting the operation of the lever 56 of the dispensing device 50 can be used.
  • the liquid quality management apparatus 101-1 in the first embodiment shown in FIG. 2 further includes a liquid temperature sensor 140 and a receiving unit 160.
  • the control device 130 is numbered as the control device 130-1 in the first embodiment. Under such a configuration, the control device 130-1 can include a consumption cooling capacity acquisition unit 132, an operation time acquisition unit 134, and a time management unit 136.
  • the receiving unit 160 and the time management unit 136 in the control apparatus 130-1 are not essential elements but optional components. These components will be sequentially described below.
  • the flow sensor 111 is a sensor that detects the amount of liquid poured into the drinking container 40.
  • the flow sensor 111 sandwiches the beer that passes through the supply pipe 30 at an appropriate position between the outlet of the storage container 10 and the beer dispenser 50. It is installed as follows. In addition, an installation position is not limited to this, For example, you may attach to the supply pipe
  • FIG. As the flow sensor 111, an ultrasonic sensor is used in the present embodiment, but an electromagnetic flow meter, a flow detection device according to the applicant's already filed application (Japanese Patent Application No. 2017-079702), and the like can be used.
  • the flow rate sensor 111 as the dispensing sensor, it is possible to detect the start and stop of the dispensing of the liquid 20 from the dispensing device 50 via the fluid amount detection.
  • the departure time can be detected.
  • Means such as a sensor for detecting the operation of the lever 56 in the liquid spout 54 can be used.
  • the liquid quality control device 101-1 further obtains the actual flow rate of the liquid 20 poured out from the dispensing device 50 into the drinking container 40, in this embodiment, beer. You may comprise.
  • the liquid temperature sensor 140 is a sensor that measures the temperature of the liquid in the storage container, which is the temperature of the liquid 20 in the storage container 10. As shown in FIG. 2, for convenience, the liquid temperature sensor 140 is connected to the outlet of the storage container 10 and the dispensing device 50. It is installed at an appropriate position of the supply pipe 30 between the inlet of the liquid cooling pipe 52. Thus, in this embodiment, the temperature of the liquid 20 that flows out of the storage container 10 and flows through the supply pipe 30 is regarded as the liquid temperature in the storage container.
  • the liquid temperature sensor 140 for example, a thermistor, a resistance temperature detector, a semiconductor temperature sensor, a thermocouple, or the like can be used.
  • the installation position of a sensor is not limited to the above-mentioned thing, For example, you may attach to the supply pipe
  • FIG. when the liquid 20 is drinkable like beer, the liquid temperature sensor 140 is naturally installed in a structure that complies with predetermined regulations. Moreover, since the liquid temperature sensor 140 can detect the temperature change which arises with the liquid extraction as follows, as an example of the extraction sensor, the liquid start from the extraction device 50 and the extraction It can also be used as a sensor for detecting a stop. Such a liquid temperature sensor 140 is electrically connected to the control device 130-1.
  • the liquid temperature sensor 140 can immediately detect a temperature change caused by the liquid discharge, but due to a physical structure in a portion where the liquid pipe is in contact with the supply pipe 30, a steady state, that is, a true state, There is a slight time delay in detecting the liquid temperature. Due to the detection characteristics of the liquid temperature sensor 140, in a state where the liquid 20 has been continuously dispensed, the liquid temperature sensor 140 sends out substantially the same temperature as the ambient temperature of the environment in which the liquid supply system 70 is installed. To do. On the other hand, with the start of liquid dispensing from this state, the liquid temperature sensor 140 sends out a temperature change that falls or rises with respect to the ambient temperature according to the liquid temperature of the storage container 10.
  • the liquid temperature sensor 140 sends a temperature change that rises or falls again toward the ambient temperature. Therefore, in each embodiment, the “liquid temperature” detected and delivered by the liquid temperature sensor 140 is a time immediately before the time at which the temperature of the liquid 20 changes to the atmospheric temperature again immediately after the liquid dispensing is stopped (“ The temperature of the liquid 20 at the “immediate time”) shall be indicated.
  • the receiving unit 160 is electrically connected to the control device 130-1 and receives information via the communication line 190.
  • the received information corresponds to, for example, date and time information, weather information such as weather and temperature, business information such as past sales on the same day, and the like.
  • the control device 130-1 provided in the first embodiment is electrically connected to the flow rate sensor 111, and controls the operation of the refrigerator 53 from the time when the liquid 20 starts to be dispensed.
  • the control device 130-1 can include the consumption cooling capacity acquisition unit 132, the operation time acquisition unit 134, and the time management unit 136.
  • the consumption cooling capacity acquisition unit 132 is based on the temperature of the liquid 20 obtained from the liquid temperature sensor 140 and the amount of liquid dispensed obtained from the flow rate sensor 111, resulting in the extraction of the liquid 20.
  • the cooling capacity consumed by the cooling water 55 at 50 also referred to as “consumption cooling capacity” is obtained.
  • a case where an arithmetic expression is used as an example of how to obtain is shown below, but the present invention is not limited to this, and a technique that can be conceived by those skilled in the art based on known techniques can be applied.
  • the operation time obtaining unit 134 obtains the operation time of the refrigerator 53 from the “consumption cooling ability” obtained by the consumption cooling ability obtaining unit 132 and the known cooling ability of the refrigerator 53.
  • the “cooling capacity” of the refrigerator 53 is expressed by “operating time of the refrigerator (in other words, compressor: compressor) 53” ⁇ “livestock ice capacity (ice quantity / minute)”.
  • the “stocked ice quantity capacity” is a known value in each pouring device (beer dispenser) 50.
  • control device 130-1 having the consumption cooling capacity acquisition unit 132 and the operation time acquisition unit 134 can determine the operation time of the refrigerator 53 based on each information obtained from the flow rate sensor 111 and the liquid temperature sensor 140. it can. Detailed operation description will be described later.
  • the time management unit 136 has a clock function and can generate current time information and date information. Moreover, it has an input part and a memory
  • FIG. Therefore, the control device 130-1 having such a time management unit 136 is, in other words, to optimize the amount of ice stored in the cooling water 55 at the set time such as the business start time and the busy time of the store. Then, the operation of the refrigerator 53 can be controlled so that the cooling water 55 has the maximum cooling capacity.
  • the liquid (beer) 20 can be provided with a more stable quality than the conventional one.
  • the control device 130-1 described above is actually realized by using a computer, and supports each function including the operations of the above-described consumption cooling capacity acquisition unit 132, operation time acquisition unit 134, and time management unit 136.
  • Software a CPU (Central Processing Unit) for executing them, and hardware such as a memory.
  • the computer preferably corresponds to a microcomputer incorporated in the liquid quality control apparatus 101, but a stand-alone personal computer can also be used.
  • the liquid quality management apparatus 101-1 in the first embodiment having the above-described configuration will be described below with particular attention paid to the operation of the control apparatus 130-1.
  • the liquid (beer) 20 is poured out into the drinking container 40 by the operation of the lever 56 in the dispensing device (beer dispenser) 50 by the store staff.
  • the liquid 20 is cooled and poured out by heat exchange with the cooling water 55 when passing through the liquid cooling pipe 52.
  • the cooling water 55 is maintained at approximately 0 ° C. by the operation of the refrigerator 53 and the stirring device 58 in the pouring device 50.
  • control device 130-1 The operation of the control device 130-1 will be described with reference to FIG. First, the basic control operation concept of the control device 130-1 is based on the cooling capacity (“consumption cooling capacity”) consumed by the cooling water 55 in the pouring device 50 due to the pouring of the liquid 20.
  • consumption cooling capacity the cooling capacity consumed by the cooling water 55 in the pouring device 50 due to the pouring of the liquid 20.
  • the technical idea is that the refrigerator 53 is operated from the start of the dispensing of the liquid 20 from the dispensing device 50.
  • step S1 whether or not the liquid (beer) 20 is dispensed is detected by the flow sensor 111, which is an example of a dispensing sensor. Due to the dispensing, the control device 130-1 starts the operation control of the refrigerator 53 from the start of the dispensing of the liquid 20 (step S2). In the next step S 3, the control device 130-1 obtains the “consumption cooling capacity” based on the information obtained from the flow rate sensor 111 and the liquid temperature sensor 140 and calculates the operation time of the refrigerator 53 as described above. Ask for. In the next step S4, the control device 130-1 operates the operation of the refrigerator 53 over the obtained operation time, and stops the operation of the refrigerator 53 when the operation time has elapsed (step S5).
  • the control device 130-1 starts the operation control of the refrigerator 53 from the time when the liquid 20 starts to be dispensed.
  • the operation control start time of the refrigerator 53 is earlier, and the temperature rise start time of the cooling water 55 can be delayed compared to the conventional case, and as a result, the quality of the provided beer (liquid 20)
  • the amount of beer dispensed at about 5 ° C. which is the target dispensing temperature for management, can be increased. That is, it is possible to provide the liquid (beer) 20 with more stable quality as compared with the conventional case.
  • the amount of liquid 20 to be dispensed needs to be determined, that is, the liquid dispensing has to be completed.
  • the operation time of the refrigerator 53 is much longer than the liquid 20 pouring time, and the operation time has hardly passed when the liquid pouring is completed. That is, the storage container 10 is mostly placed at an ambient temperature of around 25 ° C., and thus the liquid temperature is almost the same. Under such circumstances, the operating time of the refrigerator 53 under the condition of cooling the liquid 20 to a target dispensing temperature, for example, about 5 ° C. Depending on the “live ice capacity,” it will take about a few minutes.
  • the pouring time of the liquid 20 for one cup for example, about 380 cc of the drinking container 40 is about ten or more seconds.
  • the operation time of the refrigerator 53 may become zero as described above. In such a case, the operation of the refrigerator 53 is immediately stopped according to the calculation result or the detected liquid temperature.
  • an arithmetic expression is used in the present embodiment as described above.
  • the conductivity sensor detects that the icing state has returned to the predetermined icing state after the operation control of the refrigerator 53 is started. It can also be configured to stop the operation of the refrigerator 53 at the time.
  • the liquid quality management apparatus 101-2 in the second embodiment that can be added to the above-described liquid supply system 70 will be described with reference to FIGS.
  • the liquid quality management device 101-2 in the second embodiment performs control related to the stirring device before the icing state changes. Specifically, the rotational speed of the stirring blade 582 of the stirring device 58 is controlled.
  • the stirring device 58 stirs the cooling water 55 in the cooling tank 51 by the rotation of the stirring blade 582 by the stirring motor 581, and always brings cold water into contact with the liquid cooling pipe 52. It is an apparatus for cooling the liquid (beer) 20.
  • the cooling speed of the liquid 20 can be adjusted by making the stirring speed, that is, the rotational speed of the stirring blade 582 variable.
  • the heat exchange efficiency can be improved by rotating the stirring blade 582 at a higher speed than usual, that is, at a higher speed than the “uncontrolled rotational speed” described below, and the liquid 20 can be cooled more rapidly than usual. it can.
  • such high speed rotation consumes a lot of ice in the cooling water 55. Consuming a lot of ice means that the “consumption cooling capacity” described in the first embodiment is increased.
  • control content related to the stirring device in the second embodiment is a premise of the control content related to the refrigerator 53 in the first embodiment. That is, by controlling the rotational speed of the stirring blade 582, the liquid 20 is poured out without unnecessarily increasing the rotational speed of the stirring blade 582, and as a result, consumption of the cooling capacity in the pouring device 50 is suppressed. However, the amount of the liquid 20 poured out at the target pouring temperature (about 5 ° C.) as quality control of the liquid 20 (beer) to be provided can be increased.
  • the liquid dispensing amount maintained in the predetermined dispensing temperature range is larger than that in the conventional liquid quality management apparatus 101-1. Allow increase. For this reason, in the second embodiment, by performing control that makes the rotation speed of the stirring blade 582 variable according to the temperature of the liquid 20 detected by the liquid temperature sensor 140, target dispensing as the quality control of the provided beer (liquid 20) The amount of beer dispensed at a temperature, for example, about 5 ° C. can be increased.
  • such a liquid quality management apparatus 101-2 includes a flow rate sensor 111 and a liquid temperature sensor 140, and the control apparatus 130 is numbered as the control apparatus 130-2.
  • the liquid quality control device 101-2 performs operation control on the stirring device 58 from the start of the dispensing of the liquid 20 from the dispensing device 50, so that the amount of liquid dispensed in the predetermined dispensing temperature range Can be increased compared to the conventional case.
  • the control device 130-2 includes a rotation speed acquisition unit 133, a liquid temperature information storage unit 135, and a liquid temperature information update unit 137.
  • the rotation speed acquisition unit 133 obtains the stirring rotation speed in the stirring device 58 from the liquid temperature detected by the liquid temperature sensor 140 and the acquired relationship between the stirring rotation speed and the cooling capacity in the stirring device 58. Then, the control device 130-2 rotates the stirring blade 582 of the stirring device 58 at the determined stirring rotation speed.
  • the above-mentioned “acquired relationship between the stirring rotational speed and the cooling capacity” has a mutual relationship between the stirring rotational speed and the cooling degree of the liquid 20 as described above. Means that it has been obtained in advance by experiments or the like.
  • the liquid temperature information storage unit 135 stores the temperature of the liquid 20 detected by the liquid temperature sensor 140.
  • the temperature of the liquid 20 is the temperature of the liquid 20 at the “immediate time” as described above. Therefore, the liquid temperature information storage unit 135 stores the temperature of the liquid 20 sent by the liquid temperature sensor 140 at such a previous time as liquid temperature information.
  • the liquid temperature information update unit 137 updates the liquid temperature information stored in the liquid temperature information storage unit 135. That is, since the liquid temperature is detected every time the liquid 20 is dispensed as described above, the liquid temperature sensor 140 in the previous liquid dispensing operation corresponding to the (n ⁇ 1) th time is assumed to be the nth time this time. And the liquid temperature detected in the current (n-th) liquid dispensing operation may be different. As described above, when the liquid temperature is different between the previous time and the current time, the liquid temperature information update unit 137 updates the previous liquid temperature information stored in the liquid temperature information storage unit 135 to the current liquid temperature information.
  • control device 130-2 is actually realized by using a computer, and a rotational speed acquisition unit 133, a liquid temperature information storage unit 135, and a liquid temperature information update unit 137. Is composed of software corresponding to the operations and functions in, and hardware for executing them.
  • the stirring blade 582 in the stirring device 58 is continuously driven without being basically stopped.
  • the rotational speed of the stirring blade 582 in the idling state in which the rotational speed control by the control device 130-2 is not performed is defined as “uncontrolled rotational speed”.
  • the non-control rotation speed is basically not zero, but is a concept including zero, that is, a stop state. Further, the non-control rotation speed may be read as the non-control rotation speed per unit time.
  • control device 130-2 The operation of the control device 130-2 will be described with reference to FIG.
  • the stirring blade 582 of the stirring device 58 provided in the pouring device (beer dispenser) 50 rotates at the non-control rotation speed as shown in step S10.
  • the control device 130-2 confirms whether or not the liquid (beer) 20 has been dispensed by detection of the dispensing sensor, in this embodiment, the flow sensor 111.
  • the liquid temperature sensor 140 or the like can be used instead of the flow rate sensor 111.
  • the liquid temperature currently stored in the liquid temperature information storage unit 135 is determined in step S12. Based on the information, that is, the liquid temperature information obtained from the liquid temperature sensor 140 in the “previous” described above, that is, the “current time minus one” dispensing operation, the rotational speed acquisition unit 133 performs the above “ The rotational speed of the stirring blade 582 is determined from the “acquired relationship between the stirring rotational speed and the cooling capacity”. Then, the control device 130-2 changes the rotation speed of the stirring blade 582 in the stirring device 58 from the non-control rotation speed to the calculated rotation speed, and rotates the stirring blade 582.
  • requiring a rotational speed is not limited to the above-mentioned thing.
  • the rotational speed acquisition unit 133 obtains the liquid temperature information obtained from the liquid temperature sensor 140 by the current dispensing operation and the previous liquid temperature information stored in the liquid temperature information storage unit 135. Determine whether they are different. If they are different, in the next step S14, the rotational speed of the stirring blade 582 corresponding to the current liquid temperature information is obtained. Then, the control device 130-2 rotates the stirring blade 582 at the calculated rotation speed. In addition, since the difference in the liquid temperature information between the previous time and the current time includes an increase and a decrease, the rotational speed of the stirring blade 582 increases and decreases.
  • next step S15 the control device 130-2 determines whether or not the current dispensing operation has been completed by detecting the flow sensor 111. If it has been continued, the process returns to step S13, and if it has been completed, the process proceeds to the next step S16.
  • step S16 Since the current liquid temperature information is different from the previous liquid temperature information (step S13), in step S16, the liquid temperature information update unit 137 of the control device 130-2 is stored in the liquid temperature information storage unit 135. The previous liquid temperature information is updated to the current liquid temperature information. Further, the rotational speed of the stirring blade 582 is returned to the non-controlled rotational speed.
  • the control device 130-2 Since the operation control of the stirring device 58 is started (steps S11 and S12), compared with the control in which the operation of the refrigerator is started from the point of change of the icing state in the cooling water 55 as in the past, the provided beer (liquid 20 )
  • the amount of beer dispensed for example, about 5 ° C., which is the target dispensing temperature for quality control, can be increased. That is, it is possible to provide the liquid (beer) 20 with more stable quality as compared with the conventional case.
  • the rotation speed of the stirring blade 582 and the consumption amount of ice in the cooling water 55 that is, the “consumption cooling capacity” described in the first embodiment are related to each other. Therefore, by combining the second embodiment and the first embodiment, the amount of liquid 20 dispensed at the target dispensing temperature can be made more than that of the first embodiment and the second embodiment alone. It becomes possible to increase. Therefore, the liquid (beer) 20 can be provided with more stable quality.
  • electrically connected is a concept that includes wireless connection as well as wired connection.
  • the present invention is applicable to a liquid quality control apparatus and method that can be added to a liquid supply system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

貯蔵容器(10)内の液体を注出装置(50)へ供給して冷却を行い飲用容器(40)へ注出する液体供給システム(70)に付加可能な液体品質管理装置(101)であって、注出センサと、注出センサと電気的に接続され液体の注出開始と同時に注出装置に備わる冷凍機及び撹拌装置の少なくとも一方に対して動作制御を行う制御装置(130)とを備えた。

Description

液体品質管理装置及び方法
 本発明は、液体供給システムに付加可能な液体品質管理装置及び方法に関し、詳しくは、液体供給システムに備わる液体注出装置に含まれる冷却装置の制御に着目することによって液体品質管理を行う液体品質管理装置及び方法に関する。
 飲食店にて、液体、例えばビール等、を提供する装置として、液体供給システムが一般的に使用されている。ビールを例に採った場合、該液体供給システムは、炭酸ガスボンベ、ビールが充填されたビール樽、供給管、及びビールディスペンサーを有し、炭酸ガスボンベの炭酸ガスにてビール樽内のビールを加圧し、供給管からビールディスペンサーへ圧送する。ビールディスペンサーは、冷却槽内に設置したビール冷却管、冷凍機、及び注出口を有し、冷却槽内の冷却水の一部を冷凍機にて氷結させ、注出口におけるレバー操作にてビール冷却管内を流しながらビールを冷却し、例えばジョッキ等の飲用容器へ注出する。
 このようにしてビール樽内のビールは、顧客へ提供される。
 上述のような、一般的に瞬冷式と呼ばれるタイプのビールディスペンサーでは、一部を氷結させた冷却水内に浸漬したビール冷却管内を通過するビールと冷却水との熱交換により、ビールは冷やされ注出される。また効率的な熱交換を行うため、ビールディスペンサーは、冷却槽内の冷却水を撹拌する撹拌装置をさらに備えている。該撹拌装置は、撹拌翼と該撹拌翼を回転駆動する撹拌モータとを有する。
 一方、ビールを充填したビール樽は、室温環境に置かれている場合が多い。よって夏場等では、冷却槽内の冷却水におけるビール冷却管の特に入口側付近では、ほぼ室温のビールとの熱交換が行われることにより、冷却水温度は上昇し、冷却水中の氷は溶けていく。よって例えば冷却水における氷量を検出し、氷量の変化を基に冷凍機を作動させて冷却水温度を低下させ、かつ撹拌装置により冷却水を撹拌することで、冷却水温度を設定範囲に維持し、注出ビール温度が既定範囲に維持されるようにしている。
特開2017-124849号公報
 上記特許文献1でも開示があるように、従来、瞬冷式ビールディスペンサーでは、導電率センサ(IBCセンサ)を用いて氷結状態、例えば氷量あるいは氷位置、を検出している。上述したように一般的には、ビールディスペンサーから飲用容器へビール注出を行うことで、冷却水温度は上昇し、氷結状態に変化が生じる。よって、従来の瞬冷式ビールディスペンサーでは、導電率センサにて氷結状態の変化を検知し、該検知によってビールディスペンサーにおける冷凍機を作動させる、あるいは撹拌装置の回転速度を変化させるという制御を採っている。
 一方、冷凍機の作動開始あるいは撹拌装置の回転速度変化と、ビール冷却管内を通過するビール温度低下との間には、冷却水とビール冷却管との間の伝熱特性、熱交換特性等に起因して、タイムラグが存在する。したがって、冷凍機等が起動しても直ちにビール温度は下がらず、タイムラグ間に注出されるビールの温度は、提供ビール品質管理としての目標注出温度である例えば約5℃より高くなってしまう場合も生じる。このような状況は、ビール樽が置かれている環境温度が比較的高くなる夏場、及び繁忙時等にて発生する可能性が高い。
 本発明は、このような問題点を解決するためになされたもので、従来に比べてより安定した品質にて液体の提供が可能となる、具体的には既定の注出温度範囲に維持された液体の注出量が従来に比べて増加可能となる、液体品質管理装置及び管理方法を提供することを目的とする。
 上記目的を達成するため、本発明は以下のように構成する。
 即ち、本発明の一態様における液体品質管理装置は、貯蔵容器内の液体を、加圧により供給管を通して注出装置へ供給し、該注出装置に備わる冷却装置にて冷却を行い、上記注出装置から飲用容器へ注出する液体供給システムに付加可能な液体品質管理装置であって、
 上記冷却装置は、冷却水を収容した冷却槽と、上記冷却水に浸され内側を上記液体が流れる液体冷却管と、上記冷却水に浸され内側を冷媒が流れる冷媒配管と、上記冷媒を循環させ上記冷却水の一部を氷結させる冷凍機と、上記冷却水の撹拌を行う撹拌装置とを有し、
 上記液体品質管理装置は、
 上記飲用容器への液体の注出を検出する注出センサと、
 上記注出センサと電気的に接続され、上記液体の注出開始時点から上記冷凍機及び上記撹拌装置の少なくとも一方に対して動作制御を行う制御装置と、
を備えたことを特徴とする。
 本発明の一態様による液体品質管理装置は、注出センサ及び制御装置を備えたことにより、液体の注出動作開始時点から冷凍機及び撹拌装置の少なくとも一方に対して動作制御を行う。これにより、従来に比べてより安定した品質にて液体の提供が可能となる。具体的には、既定の注出温度範囲にある液体注出量を従来に比べて増加させることが可能になる。
本発明の各実施形態に共通する液体品質管理装置の基本構成を示すブロック図である。 本発明の第1実施形態における液体品質管理装置の構成を示すブロック図である。 本発明の第2実施形態における液体品質管理装置の構成を示すブロック図である。 図2に示す液体品質管理装置にて実行される液体品質管理方法の動作を示すフローチャートである。 図3に示す液体品質管理装置にて実行される液体品質管理方法の動作を示すフローチャートである。
 本発明の実施形態である液体品質管理装置及び液体品質管理方法について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。また、以下の説明が不必要に冗長になるのを避け当業者の理解を容易にするため、既によく知られた事項の詳細説明及び実質的に同一の構成に対する重複説明を省略する場合がある。また、以下の説明及び添付図面の内容は、特許請求の範囲に記載の主題を限定することを意図するものではない。
 以下に説明する実施形態における液体品質管理装置は、図1に示すように、既存の液体供給システム70に対して付加可能な、つまり電気的に及び機械的に接続可能な、液体品質管理装置101である。本実施形態では、1セットの液体供給システム70に対して1台の液体品質管理装置101を取り付けている。
 既に説明したように、従来にあっては、氷結状態を検出するセンサを用いて、氷結状態の変化後に、冷凍機さらには撹拌装置に対して制御を行うように構成している。
 これに対して、実施形態における液体品質管理装置及び方法では、氷結状態の変化前に、冷凍機及び撹拌装置の少なくとも一方に対して制御を行う点で大きく異なる。尚、第1実施形態では冷凍機に関する制御について、第2実施形態では撹拌装置に関する制御について、それぞれ説明を行う。
 また実施形態では、扱う液体の一例としてビールを例に採るが、液体はビールに限定するものではなく、発泡酒、リキュール、チューハイ、ウイスキー、ワイン等のアルコール飲料、飲料水、清涼飲料、炭酸飲料などであってもよい。
 第1実施形態;
 まず液体供給システム70について説明する。尚、この液体供給システム70に関する説明は、第2実施形態においても共通する内容である。
 液体供給システム70は、貯蔵容器10と、加圧源15と、供給管30と、注出装置50とを有し、貯蔵容器10内の液体(上述のように実施形態ではビール)20を、加圧源15による加圧によって供給管30を通して注出装置50へ供給つまり圧送し、注出装置50から飲用容器(例えばジョッキ)40へ注ぎ出すシステムである。ここで貯蔵容器10は、実施形態では、ビールメーカーにてビールが充填された、いわゆるビール樽と呼ばれるステンレス製容器であり、例えば5L、10L、19L等の内容量のものがある。加圧源15は、炭酸ガスボンベである。供給管30は、貯蔵容器10と注出装置50との間でビールの通液を可能にする、可撓性を有する例えばポリアミド、ポリウレタン、ポリエステル等製の樹脂チューブである。後述するように、供給管30には、液体品質管理装置101に含まれる機器が取り付けられる。また、供給管30から注出装置50における液体注出口54に至るまで、流体の通液管路の内径は、通液管路内のスポンジ洗浄を容易にするため全て同寸法にて設計されているのが好ましい。
 上述の注出装置50の一例として、本実施形態ではビールディスペンサー(「ビールサーバー」と称されることもある。)を例に採り説明を行う(よって以下では、ビールディスペンサー50と記す場合もある。)。上で既に説明したように、ビールディスペンサー50は、冷却槽51内に配置した液体冷却管(実施形態ではビール冷却管)52及び冷媒配管57、冷凍機53、液体注出口54、及び撹拌装置58を有する。ここで冷却装置として、冷却槽51、液体冷却管52、冷凍機53、冷媒配管57、及び撹拌装置58が含まれる。
 液体冷却管52は、供給管30を圧送されたビール(液体)20が内側を通過する螺旋状に形成した配管であり、本実施形態では冷却槽51の中央側に配置され、その殆どが冷却水55に浸される(図1-図3)。また液体冷却管52は、例えばステンレス製である。
 冷凍機53は、冷媒用の圧縮機及び凝縮器、凝縮器を冷却する冷却ファンなどから構成されており、圧縮、凝縮した冷媒を冷媒配管57内で蒸発させ、循環させる。
 冷媒配管57も螺旋状に形成され、本実施形態では冷却槽51内で、液体冷却管52の外側つまり冷却槽51の側壁側に配置され、その殆どが冷却水55に浸される(図1-図3)。よって、冷媒配管57内を通過する際の冷媒の蒸発により、冷媒配管57の外側周辺の冷却水55が冷却され、さらには冷却水55の一部は氷結する。また冷媒配管57は、金属製で熱伝導率が高い、例えば銅等で作製される。
 尚、冷却槽51内における液体冷却管52及び冷媒配管57の配置関係について、本実施形態の構成とは逆に、冷媒配管57を中央側に、液体冷却管52を冷媒配管57の外側で側壁側に配置してもよい。
 撹拌装置58は、冷却槽51内に収容した冷却水55を撹拌する装置であり、冷却槽51の中央に配置され、撹拌翼582と、撹拌翼582を回転駆動する撹拌モータ581とを有する。撹拌翼582の回転により、冷却水55は、冷却槽51の例えば下部から上部へ対流する。これにより、液体冷却管52内を通過するビールと冷却水55との熱交換が促進される。
 また撹拌モータ581は、故障していなければ、基本的に停止することなく連続して撹拌翼582を回転するものである。
 以上の構成から、液体冷却管52内へ圧送されるビール(液体)20は、液体注出口54におけるレバー56の操作によりビール(液体)冷却管52内を通過し、上述の熱交換により冷却され、例えばジョッキ等の飲用容器40へ注出されて、顧客に提供される。尚、ビールの場合、顧客へ提供される適正な液体温度として、例えば5℃を目標値としている。
 尚、ビールディスペンサー50は、一般には、外気温度が5℃以上、40℃以下である環境にて使用される。また、注出装置50が扱う液体20はビールに限定されず、上述の飲料水等であってもよい。また、実施形態では、ビールディスペンサー50は、対象液体であるビールの冷却も行うが、実施形態に含まれる注出装置50は、対象液体を加熱あるは保温するものであってもよい。
 次に、上述のような構成を有する液体供給システム70に付加可能である、各実施形態にて共通する液体品質管理装置101の構成について説明する。
 液体品質管理装置101は、既定の注出温度範囲に維持された液体の注出量を、従来に比べて増加可能にする装置である。
 このような液体品質管理装置101は、図1に示すように基本構成として、注出センサの一例に相当する流量センサ111と、制御装置130とを備え、注出装置50からの液体20の注出開始時点から、冷凍機53及び撹拌装置58の少なくとも一方に対して動作制御を行うことで、既定の注出温度範囲にある液体注出量を従来に比べて増加可能にする。
 上記注出センサは、注出装置50から液体20の注出開始を検知するセンサであり、本実施形態では上述のように流量センサ111を用いるが、その他、下記の液体温度センサ140、例えば注出装置50のレバー56の操作を検知する手段、等が使用可能である。
 液体品質管理装置101におけるこれらの基本構成に加えて、図2に示す第1実施形態における液体品質管理装置101-1では、さらに、液体温度センサ140及び受信部160を備えている。尚、制御装置130について、第1実施形態では制御装置130-1と符番する。このような構成下において制御装置130-1は、消費冷却能力取得部132、動作時間取得部134、時刻管理部136を有することができる。
 このような第1実施形態の液体品質管理装置101-1において、受信部160、及び制御装置130-1における時刻管理部136は、必須要素ではなく任意的構成要素である。
 これらの構成部分について、以下に順次説明を行う。
 流量センサ111は、飲用容器40へ注出される液体量を検出するセンサであり、実施形態では、貯蔵容器10の出口とビールディスペンサー50との間の適所において、供給管30を通過するビールを挟むように設置されている。尚、設置位置はこれに限定されず、例えば注出装置50における供給管30に取り付けられてもよい。流量センサ111として、本実施形態では超音波センサを用いるが、その他、電磁流量計、本出願人の既出願(特願2017-079702号)による流動検知装置、等が使用可能である。
 実施形態において、注出センサとして流量センサ111を用いることで、流体量検出を介して、注出装置50からの液体20の注出開始及び注出停止を検知することができ、液体量及び注出時間が検出可能である。実施形態では、液体20の注出開始及び注出停止が検知できればよく、上述したように、注出センサとして、流量センサ111に代えて、液体20の注出開始及び注出停止を検知可能な手段、例えば、液体注出口54におけるレバー56の操作を検知するセンサ等が使用可能である。
 また、流量センサ111の検出信号を基に、液体品質管理装置101-1は、さらに、注出装置50から飲用容器40へ注出した液体20、本実施形態ではビール、の実測流量を求めるように構成してもよい。
 液体温度センサ140は、貯蔵容器10内の液体20の温度である貯蔵容器内液体温度を測定するセンサであり、図2に示すように、便宜上、貯蔵容器10の出口と、注出装置50における液体冷却管52の入口との間における供給管30の適所に設置される。このように本実施形態では、貯蔵容器10から流出し供給管30を流れる液体20の温度を、貯蔵容器内液体温度とみなしている。液体温度センサ140は、例えばサーミスタ、測温抵抗体、半導体温度センサ、熱電対等が使用可能である。
 尚、センサの設置位置は、上述のものに限定されず、例えば注出装置50における供給管30に取り付けられてもよい。また液体20がビールのように飲用であるときには、当然に液体温度センサ140は、所定法規を遵守する構造にて設置される。また、液体温度センサ140は、下記のように液体注出に伴い生じる温度変化を検知可能であることから、注出センサの一例として、注出装置50からの液体20の注出開始及び注出停止を検知するセンサとしても使用可能である。
 このような液体温度センサ140は、制御装置130-1と電気的に接続される。
 また液体温度センサ140は、液体注出に伴い生じる温度変化については直ちに検出可能であるが、供給管30との取り合い部分における物理的構造等に起因して、定常状態の、換言すると真の、液体温度検出には、若干の時間的遅れが生じる。このような液体温度センサ140の検知特性から、液体20の注出停止が継続した状態では、液体温度センサ140は、当該液体供給システム70が設置されている環境の雰囲気温度と略同じ温度を送出する。一方、この状態から液体注出の開始に伴い、液体温度センサ140は、貯蔵容器10の液体温度に応じて、雰囲気温度に対して下降あるいは上昇する温度変化を送出する。そして液体注出停止に伴い、液体温度センサ140は、再び雰囲気温度に向かって上昇あるいは下降する温度変化を送出する。
 したがって各実施形態において、液体温度センサ140にて検出され送出される「液体温度」とは、液体注出停止直後において液体20の温度が再び雰囲気温度へと変化に転じる時刻の直前の時刻(「直前時刻」)における液体20の温度を指すものとする。
 受信部160は、制御装置130-1と電気的に接続され、通信回線190を介して情報を受信する。受信する情報としては、例えば、日時情報、天気及び気温等の気象情報、同一日における過去の売上げ等の営業情報、等が相当する。
 第1実施形態に備わる制御装置130-1は、流量センサ111と電気的に接続され、液体20の注出開始時点から冷凍機53に対して動作制御を行う。図2に示すような構成では、上述のように制御装置130-1は、消費冷却能力取得部132、動作時間取得部134、時刻管理部136を有することができる。
 ここで消費冷却能力取得部132は、液体温度センサ140から得られる液体20の温度、及び流量センサ111から得られる注出液体量を基に、液体20の注出に起因して、注出装置50における冷却水55が消費した冷却能力(「消費冷却能力」とも記す)を求める。求め方の一例として演算式を用いる場合を下に示すが、これに限定するものではなく、既知技術を基に当業者が想到可能な手法を適用することが可能である。
 上記演算式の前提条件として、液体20(ビール)1ccの温度を1℃下げるために要する熱量を1calとし、氷が溶ける際に1ccあたり80calの熱量を吸収すると仮定し、また飲用容器40に注出される液体20の適正温度を、上述したように5℃とする。演算式を以下に示す。
 液体注出に伴う「消費冷却能力」=「注出した液体量」×「液体温度-注ぎ出し温度(5℃)」。
 次に、動作時間取得部134は、消費冷却能力取得部132にて求めた「消費冷却能力」と、冷凍機53が有する既知の冷却能力とから、冷凍機53の動作時間を求める。ここで、冷凍機53が有する「冷却能力」は、「冷凍機(換言すると圧縮機:コンプレッサ)53の動作時間」×「畜氷量能力(氷量/分)」で表され、ここで「畜氷量能力」は、各注出装置(ビールディスペンサー)50において既知の値である。
 よって、冷凍機53の動作時間は、以下の式で求めることができる。即ち、
「動作時間」 = 「注出した液体量」×「液体温度-注ぎ出し温度(5℃)」/「畜氷量能力」。尚、「注出した液体量」×「液体温度-注ぎ出し温度(5℃)」は、上述の、液体注出に伴う「消費冷却能力」である。
 この式からも分かるように、液体温度センサ140から得られる液体温度が仮に5℃以下(例えば、貯蔵容器10を冷蔵庫に収納しているような場合に生じる)の場合、求まる動作時間は、ゼロもしくはマイナス値になる。このような場合には、冷凍機53は動作する必要がない。
 したがって、消費冷却能力取得部132及び動作時間取得部134を有する制御装置130-1は、流量センサ111及び液体温度センサ140から得られる各情報を基に、冷凍機53の動作時間を求めることができる。詳しい動作説明は、後述する。
 次に、時刻管理部136について説明する。時刻管理部136は、時計機能を有し、現在時刻情報、年月日の日時情報を生成することができる。また、入力部及び記憶部を有し、店舗スタッフによる入力、あるいは受信部160を介する入力によって、当該店舗の営業時間情報を格納することができる。
 よって、このような時刻管理部136を有する制御装置130-1は、当該店舗の例えば営業開始時刻、繁忙時間、等の設定時間において、冷却水55における蓄氷量が最適になるように、換言すると冷却水55が最大冷却能力を有するように、冷凍機53の動作を制御することが可能になる。その結果、上述と同様に、従来に比べてより安定した品質にて、液体(ビール)20の提供が可能となる。
 上述した制御装置130-1は、実際にはコンピュータを用いて実現され、上述の、消費冷却能力取得部132、動作時間取得部134、及び時刻管理部136の動作を含めて、各機能に対応するソフトウェアと、これらを実行するためのCPU(中央演算処理装置)及びメモリ等のハードウェアから構成されている。尚、上記コンピュータは、実際には当該液体品質管理装置101に組み込まれたマイクロコンピュータに相当するのが好ましいが、スタンドアロン型のパーソナルコンピュータを用いることもできる。
 以上説明した構成を有する、第1実施形態における液体品質管理装置101-1の動作について、特に制御装置130-1の動作に着目して以下に説明する。
 尚、液体供給システム70では、既に説明したように、注出装置(ビールディスペンサー)50におけるレバー56の店舗スタッフによる操作によって、液体(ビール)20が飲用容器40に注出される。このとき、液体20は、液体冷却管52の通過時に冷却水55との熱交換によって冷却され注出される。冷却水55は、注出装置50内の冷凍機53及び撹拌装置58の作動により、略0℃に維持される。
 図4を参照して、制御装置130-1の動作について説明する。
 まず、制御装置130-1の基本的な制御動作コンセプトは、液体20の注出に起因して注出装置50における冷却水55が消費した冷却能力(「消費冷却能力」)に応じた分にて、注出装置50からの液体20の注出開始時点から冷凍機53を作動させる、という技術的思想である。
 ステップS1では、注出センサの一例である流量センサ111によって液体(ビール)20の注出の有無が検知される。注出有りによって、制御装置130-1は、液体20の注出開始時点から、冷凍機53の動作制御を開始する(ステップS2)。
 次のステップS3において、制御装置130-1は、流量センサ111及び液体温度センサ140から得られる各情報を基に、既に説明したように、「消費冷却能力」を求めて冷凍機53の動作時間を求める。
 次のステップS4では、制御装置130-1は、求めた動作時間にわたり冷凍機53の動作を動作させ、動作時間経過により、冷凍機53の動作を停止する(ステップS5)。
 このように、制御装置130-1は、液体20の注出開始時点から、冷凍機53の動作制御を開始することから、従来のように冷却水55における氷結状態に変化が生じた時点から冷凍機を動作開始する制御に比べて、冷凍機53の動作制御開始時点が早く、冷却水55の温度上昇開始時点を従来に比べて遅らせることが可能となり、その結果、提供ビール(液体20)品質管理としての目標注出温度である例えば約5℃のビールの注出量を増加させることができる。即ち、従来に比べてより安定した品質にて、液体(ビール)20の提供が可能となる。
 尚、上述の式に示すように、冷凍機53の動作時間を求めるためには、液体20の注出量が確定する、つまり液体注出が終了している必要がある。一方、一般的に、液体20の注出時間に比べて冷凍機53の動作時間は遙かに長く、液体注出が終了した時点で既に動作時間が経過していることはほぼない。即ち、貯蔵容器10は、25℃前後の環境温度に置かれていることが殆どであり、よって液体温度もほぼそれに同じである。このような環境下で、目標注出温度である例えば約5℃まで液体20を冷却する条件下での冷凍機53の動作時間は、上述の式によれば、各注出装置50が有する上述の「畜氷量能力」にもよるが、大体、数分程度になる。一方、1杯、例えば約380ccの飲用容器40に対する液体20の注出時間は、十数秒程度である。
 一方、貯蔵容器10が冷蔵庫内に置かれている場合等には、上述のように、冷凍機53の動作時間がゼロになる場合もある。このような場合には、演算結果あるいは検出した液体温度に応じて、直ちに冷凍機53の動作を停止することになる。
 冷凍機の動作時間の求め方について、本実施形態では上述のように演算式を用いた。一方、氷結状態を検知する例えば導電率センサ(IBCセンサ)を注出装置50が有する場合には、冷凍機53の動作制御開始後、既定の氷結状態に戻ったことを導電率センサが検出した時点で、冷凍機53の作動を停止するように構成することもできる。
 第2実施形態;
 次に、図3及び図5を参照して、上述した液体供給システム70に付加可能である、第2実施形態における液体品質管理装置101-2について説明する。既に記したように、第2実施形態における液体品質管理装置101-2は、氷結状態の変化前に、撹拌装置に関する制御を行う。具体的には、撹拌装置58の撹拌翼582の回転速度の制御を行う。
 撹拌装置58に関する説明でも述べたように、撹拌装置58は、撹拌モータ581による撹拌翼582の回転によって冷却槽51内の冷却水55を撹拌し、液体冷却管52に常に冷水を接触させて、液体(ビール)20の冷却を行うための装置である。この撹拌速度つまり撹拌翼582の回転速度を可変にすることによって、液体20の冷却速度を調整することができる。
 例えば、通常よりも高速で、つまり以下に説明する「非制御回転速度」よりも高速で撹拌翼582を回転することにより熱交換効率を向上させ、通常よりも急速に液体20を冷却することができる。一方、このような高速回転では、冷却水55における氷を多く消費することになる。多くの氷を消費することは、第1実施形態で説明した「消費冷却能力」が大きくなることを意味する。
 このように、第2実施形態における撹拌装置に関する制御内容は、第1実施形態における冷凍機53に関する制御内容の前提となるものと言える。即ち、撹拌翼582の回転速度を制御することで、撹拌翼582の回転速度を不必要に上げることなく液体20の注出を行い、その結果、注出装置50における冷却能力の消費を抑制しながら、提供する液体20(ビール)の品質管理としての目標注出温度(約5℃)にて注ぎ出す液体20の量を増やすことができる。
 即ち、第2実施形態における液体品質管理装置101-2においても、上述した液体品質管理装置101-1と同様に、既定の注出温度範囲に維持された液体の注出量を従来に比べて増加可能にする。このために第2実施形態では、液体温度センサ140で検出する液体20の温度によって撹拌翼582の回転速度を可変とする制御を行うことで、提供ビール(液体20)品質管理としての目標注出温度である例えば約5℃のビールの注出量を増加可能にする。
 このような液体品質管理装置101-2は、図3に示すように、流量センサ111と、液体温度センサ140とを備え、制御装置130について、制御装置130-2と符番する。該液体品質管理装置101-2は、注出装置50からの液体20の注出開始時点から、撹拌装置58に対して動作制御を行うことで、既定の注出温度範囲にある液体注出量を従来に比べて増加可能にする。また、制御装置130-2は、回転速度取得部133、液体温度情報記憶部135、及び液体温度情報更新部137を有する。
 回転速度取得部133は、液体温度センサ140で検出した液体温度、及び撹拌装置58における撹拌回転速度と冷却能力との既得の関係から、撹拌装置58における撹拌回転速度を求める。そして制御装置130-2は、求めた撹拌回転速度にて撹拌装置58の撹拌翼582を回転させる。
 ここで、上記「撹拌回転速度と冷却能力との既得の関係」とは、上述のように撹拌回転速度と液体20の冷却具合との間には相互関係があり、該相互関係は、出願人の実験等によって予め得られている、ことを意味する。
 液体温度情報記憶部135は、液体温度センサ140が検出した液体20の温度を記憶する。ここで液体20の温度とは、上述したように「直前時刻」における液体20の温度である。よって液体温度情報記憶部135は、液体温度センサ140が送出する、このような直前時刻における液体20の温度を液体温度情報として記憶する。
 液体温度情報更新部137は、液体温度情報記憶部135に記憶している液体温度情報の更新を行う。即ち、上述のように液体温度は、液体20の注出動作毎に検出されることから、今回がn回目とすると(n-1)回目に相当する前回の液体注出動作において液体温度センサ140にて検出された液体温度と、今回(n回目)の液体注出動作にて検出された液体温度とが異なる場合がある。このように前回と今回とで液体温度が相違する場合、液体温度情報更新部137は、液体温度情報記憶部135に記憶されている前回の液体温度情報を今回の液体温度情報に更新する。
 ここで、制御装置130-2についても、制御装置130-1と同様に、実際にはコンピュータを用いて実現され、回転速度取得部133、液体温度情報記憶部135、及び液体温度情報更新部137における動作、機能に対応するソフトウェアと、これらを実行するためのハードウェアから構成されている。
 このような構成を有する、第2実施形態における液体品質管理装置101-2の動作について、特に制御装置130-2の動作に着目して以下に説明する。
 既に説明したように、撹拌装置58における撹拌翼582は、基本的に停止することなく連続して駆動されている。制御装置130-2による回転速度制御がなされていないアイドリング状態における撹拌翼582の回転速度を「非制御回転速度」とする。ここで非制御回転速度は、基本的にゼロではないが、ゼロつまり停止状態をも含む概念である。また非制御回転速度は、単位時間当たりの非制御回転数と読み替えてもよい。
 図5を参照して、制御装置130-2の動作について説明する。
 液体20が注出されていない状態では、注出装置(ビールディスペンサー)50に備わる撹拌装置58の撹拌翼582は、ステップS10に示すように、上記非制御回転速度にて回転している。
 ステップS11において、制御装置130-2は、注出センサ、本実施形態では流量センサ111の検出によって液体(ビール)20の注出の有無を確認する。尚、第1実施形態で述べたように、流量センサ111に代えて液体温度センサ140、等を用いることができる。
 注出動作有り(説明の便宜上、該注出動作を「今回」の注出動作とする。)と判断された場合、ステップS12において、現在、液体温度情報記憶部135に記憶している液体温度情報、つまり上で説明した「前回」、つまり『「今回」マイナス1回』の注出動作にて液体温度センサ140から得られた液体温度情報を基に、回転速度取得部133は、上記「撹拌回転速度と冷却能力との既得の関係」から、撹拌翼582の回転速度を求める。そして制御装置130-2は、撹拌装置58における撹拌翼582の回転速度を、非制御回転速度から、求めた回転速度に変更して、撹拌翼582を回転させる。尚、回転速度の求め方は、上述のものに限定するものではない。
 次のステップS13では、回転速度取得部133は、今回の注出動作によって液体温度センサ140から得られる液体温度情報と、液体温度情報記憶部135に記憶している、前回の液体温度情報とが異なるか否かを判断する。
 異なる場合には、次のステップS14において、今回の液体温度情報に対応した撹拌翼582の回転速度を求める。そして制御装置130-2は、求めた回転速度にて撹拌翼582を回転させる。尚、前回と今回との液体温度情報の相違には、上昇及び下降があることから、撹拌翼582の回転速度についても増加及び減少する。
 次のステップS15では、制御装置130-2は、今回の注出動作が終了したか否かを、流量センサ111の検出によって判断する。続行している場合には、ステップS13へ戻り、終了している場合には次のステップS16へ進む。
 今回の液体温度情報が前回の液体温度情報とは相違したことから(ステップS13)、ステップS16では、制御装置130-2の液体温度情報更新部137は、液体温度情報記憶部135に記憶されている前回の液体温度情報を今回の液体温度情報に更新する。また撹拌翼582の回転速度を非制御回転速度に戻す。
 以上説明したように、第2実施形態における液体品質管理装置101-2においても第1実施形態の液体品質管理装置101-1と同様に、制御装置130-2は、液体20の注出開始時点から、撹拌装置58の動作制御を開始することから(ステップS11、S12)、従来のように冷却水55における氷結状態の変化時点から冷凍機を動作開始する制御に比べると、提供ビール(液体20)品質管理としての目標注出温度である例えば約5℃のビールの注出量を増加させることができる。即ち、従来に比べてより安定した品質にて、液体(ビール)20の提供が可能となる。
 また、以上説明した第2実施形態と、上述した第1実施形態とを組み合わせた構成を採ることも可能である。
 上述したように、撹拌翼582の回転速度と、冷却水55における氷の消費量つまり第1実施形態で説明した「消費冷却能力」とは、互いに関連する。よって、第2実施形態と第1実施形態とを組み合わせることで、上記目標注出温度における液体20の注出量を、第1実施形態、第2実施形態の単独での場合に比べて、より増加させることが可能になる。したがって、さらに安定した品質にて、液体(ビール)20の提供が可能となる。
 また上述した各実施形態において、「電気的に接続」とは、有線での接続は勿論、無線による接続も含む概念である。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 又、2018年3月23日に出願された、日本国特許出願No.特願2018-056631号の明細書、図面、特許請求の範囲、及び要約書の開示内容の全ては、参考として本明細書中に編入されるものである。
 本発明は、液体供給システムに付加可能な液体品質管理装置及び方法に適用可能である。
 10…貯蔵容器、30…供給管、40…飲用容器、
 50…注出装置、51…冷却槽、
 52…液体冷却管、53…冷凍機、54…液体注出口、55…冷却水、
 57…冷媒配管、58…撹拌装置、70…液体供給システム、
 101、101-1、101-2…液体品質管理装置、111…流量センサ、
 130、130-1、130-2…制御装置、
 140…液体温度センサ、160…受信部。

Claims (8)

  1.  貯蔵容器内の液体を、加圧により供給管を通して注出装置へ供給し、該注出装置に備わる冷却装置にて冷却を行い、上記注出装置から飲用容器へ注出する液体供給システムに付加可能な液体品質管理装置であって、
     上記冷却装置は、冷却水を収容した冷却槽と、上記冷却水に浸され内側を上記液体が流れる液体冷却管と、上記冷却水に浸され内側を冷媒が流れる冷媒配管と、上記冷媒を循環させ上記冷却水の一部を氷結させる冷凍機と、上記冷却水の撹拌を行う撹拌装置とを有し、
     上記液体品質管理装置は、
     上記飲用容器への液体の注出を検出する注出センサと、
     上記注出センサと電気的に接続され、上記液体の注出開始時点から上記冷凍機及び上記撹拌装置の少なくとも一方に対して動作制御を行う制御装置と、
    を備えたことを特徴とする液体品質管理装置。
  2.  上記液体品質管理装置は、上記貯蔵容器から上記液体冷却管の入口までの間に配置され上記貯蔵容器から流出した液体の温度を検出する液体温度センサをさらに備え、
     上記注出センサは、飲用容器へ注出される液体量を検出する流量センサであり、
     上記制御装置は、上記液体の温度及び注出した液体量から上記冷却水が消費した冷却能力を求める消費冷却能力取得部と、求めた消費冷却能力と、上記冷凍機が有する既知の冷却能力とから、上記冷凍機の動作時間を求める動作時間取得部とを備え、制御装置は、上記動作時間にて上記注出開始時点から上記冷凍機を動作させる、請求項1に記載の液体品質管理装置。 
  3.  上記制御装置は、時刻情報を管理する時刻管理部をさらに備え、上記注出開始時点からの動作制御に加えて、設定時間において上記冷却水が最大冷却能力を有するように上記冷凍機の動作制御を行う、請求項1又は2に記載の液体品質管理装置。
  4.  上記液体品質管理装置は、上記制御装置と電気的に接続され通信回線を介して情報を受信する受信部をさらに備え、
     上記制御装置は、受信した情報を基に上記設定時間を定めて上記冷凍機の動作制御を行う、請求項3に記載の液体品質管理装置。
  5.  上記液体品質管理装置は、上記貯蔵容器から上記液体冷却管の入口までの間に配置され上記貯蔵容器から流出した液体の温度を検出する液体温度センサをさらに備え、
     上記制御装置は、上記液体温度センサで検出した液体温度、及び上記撹拌装置における撹拌回転速度と冷却能力との既得の関係から、上記撹拌装置における撹拌回転速度を求める回転速度取得部をさらに備え、制御装置は、求めた撹拌回転速度にて上記注出開始時点から撹拌装置を動作させる、請求項1に記載の液体品質管理装置。
  6.  貯蔵容器内の液体を、加圧により供給管を通して注出装置へ供給し、該注出装置に備わる冷却装置にて冷却を行い、上記注出装置から飲用容器へ注出する液体供給システムに付加可能な液体品質管理装置にて実行される液体品質管理方法であって、
     上記液体品質管理装置は、上記飲用容器への液体の注出を検出する注出センサを有し、
     当該液体品質管理方法は、
     上記注出センサによる上記飲用容器への液体の注出開始が検出された時点から、上記冷却装置に備わる冷凍機及び撹拌装置の少なくとも一方に対して動作制御を行う、
    ことを特徴とする液体品質管理方法。
  7.  上記冷却装置は、冷却水を収容した冷却槽と、上記冷却水に浸され内側を上記液体が流れる液体冷却管とを備え、
     上記注出センサは、飲用容器へ注出される液体量を検出する流量センサであり、
     上記液体品質管理装置は、上記貯蔵容器から上記液体冷却管の入口までの間に配置され上記貯蔵容器から流出した液体の温度を検出する液体温度センサをさらに備え、
     当該液体品質管理方法は、
     上記液体の温度及び注出した液体量から上記冷却水が消費した冷却能力を求め、
     求めた消費冷却能力と、上記冷凍機が有する既知の冷却能力とから、上記冷凍機の動作時間を求め、該動作時間にて、液体の注出開始時点から上記冷凍機を動作させる、請求項6に記載の液体品質管理方法。
  8.  上記冷却装置は、冷却水を収容した冷却槽と、上記冷却水に浸され内側を上記液体が流れる液体冷却管とを備え、
     上記液体品質管理装置は、上記貯蔵容器から上記液体冷却管までの間に配置され上記貯蔵容器から流出した液体の温度を検出する液体温度センサをさらに備え、
     当該液体品質管理方法は、
     上記液体温度センサで検出した液体温度、及び上記撹拌装置における撹拌回転速度と冷却能力との既得の関係から、上記撹拌装置における撹拌回転速度を求め、求めた撹拌回転速度にて、上記注出センサで検知した液体の注出開始時点から撹拌装置を動作させる、請求項6に記載の液体品質管理方法。
PCT/JP2018/044276 2018-03-23 2018-11-30 液体品質管理装置及び方法 WO2019181079A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202009033TA SG11202009033TA (en) 2018-03-23 2018-11-30 Liquid quality managing device and method
CA3094604A CA3094604A1 (en) 2018-03-23 2018-11-30 Liquid quality managing device and method
AU2018414294A AU2018414294A1 (en) 2018-03-23 2018-11-30 Liquid quality managing device and method
EP18910719.6A EP3770110A4 (en) 2018-03-23 2018-11-30 LIQUID QUALITY MANAGEMENT DEVICE AND PROCESS
US17/040,197 US11498825B2 (en) 2018-03-23 2018-11-30 Liquid quality managing device and method
CN201880090681.1A CN111801295A (zh) 2018-03-23 2018-11-30 液体品质管理装置以及方法
IL277351A IL277351A (en) 2018-03-23 2020-09-15 Fluid quality management device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018056631A JP2019167137A (ja) 2018-03-23 2018-03-23 液体品質管理装置及び方法
JP2018-056631 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181079A1 true WO2019181079A1 (ja) 2019-09-26

Family

ID=67986100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044276 WO2019181079A1 (ja) 2018-03-23 2018-11-30 液体品質管理装置及び方法

Country Status (9)

Country Link
US (1) US11498825B2 (ja)
EP (1) EP3770110A4 (ja)
JP (1) JP2019167137A (ja)
CN (1) CN111801295A (ja)
AU (1) AU2018414294A1 (ja)
CA (1) CA3094604A1 (ja)
IL (1) IL277351A (ja)
SG (1) SG11202009033TA (ja)
WO (1) WO2019181079A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6916488B2 (ja) * 2017-12-11 2021-08-11 アサヒビール株式会社 液体品質管理装置
US11542148B2 (en) * 2021-03-10 2023-01-03 Haier Us Appliance Solutions, Inc. Free-standing beverage dispensing appliance and method for operating a beverage dispensing appliance
WO2023148589A1 (en) * 2022-02-01 2023-08-10 Bevco S.R.L. Environmentally-friendly system for the dispensing of refrigerated beverages

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190880U (ja) * 1987-05-27 1988-12-08
JPH06227595A (ja) * 1993-01-29 1994-08-16 Sanyo Electric Co Ltd 飲料供給装置
JPH09165098A (ja) * 1995-12-14 1997-06-24 Takasago Thermal Eng Co Ltd 飲料用ディスペンサ
JP2000088425A (ja) * 1998-09-16 2000-03-31 Hoshizaki Electric Co Ltd 飲料冷却注出装置
JP2017079702A (ja) 2015-10-30 2017-05-18 昭和産業株式会社 穀物外皮加工品、穀物外皮加工品の製造方法、ベーカリー製品の製造方法、ベーカリー製品及びベーカリー製品用ミックス粉
JP2017124849A (ja) 2016-01-13 2017-07-20 サッポロビール株式会社 飲料サーバ
JP2018056631A (ja) 2016-09-26 2018-04-05 日本電気株式会社 校正回路、校正方法及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190880A (ja) 1986-09-09 1988-08-08 Nippon Tokushu Noyaku Seizo Kk 新規n−ベンゾチアゾリル−アミド類及び殺虫剤
US5230448A (en) * 1991-07-24 1993-07-27 Lancer Corporation Complete system self-contained drink and ice dispensing
JP2000203694A (ja) * 1999-01-13 2000-07-25 Sanyo Electric Co Ltd 飲料供給装置
DE10128620A1 (de) * 2001-06-13 2002-12-19 Aqamore Gmbh Sprudelgetränkegerät
GB0418297D0 (en) 2004-08-17 2004-09-15 Imi Cornelius Uk Ltd Improvements in or relating to beverage dispense systems
US8387826B2 (en) * 2006-07-20 2013-03-05 Hoshizaki Denki Kabushiki Kaisha Beverage dispensing apparatus
JP5376779B2 (ja) * 2007-07-20 2013-12-25 ザ コカ・コーラ カンパニー 飲料ディスペンサ
CN101772461B (zh) * 2007-08-09 2012-09-26 朝日啤酒株式会社 饮料用容器及其冷却系统
JP5457642B2 (ja) * 2008-05-09 2014-04-02 ザ コカ・コーラ カンパニー 飲料ディスペンサ
EP3000778A1 (en) * 2014-09-26 2016-03-30 Anheuser-Busch InBev S.A. Beverage dispenser with jet mixing means
WO2016089167A1 (ko) * 2014-12-05 2016-06-09 코웨이 주식회사 냉수생성 탱크 및 이를 구비하는 냉수기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190880U (ja) * 1987-05-27 1988-12-08
JPH06227595A (ja) * 1993-01-29 1994-08-16 Sanyo Electric Co Ltd 飲料供給装置
JPH09165098A (ja) * 1995-12-14 1997-06-24 Takasago Thermal Eng Co Ltd 飲料用ディスペンサ
JP2000088425A (ja) * 1998-09-16 2000-03-31 Hoshizaki Electric Co Ltd 飲料冷却注出装置
JP2017079702A (ja) 2015-10-30 2017-05-18 昭和産業株式会社 穀物外皮加工品、穀物外皮加工品の製造方法、ベーカリー製品の製造方法、ベーカリー製品及びベーカリー製品用ミックス粉
JP2017124849A (ja) 2016-01-13 2017-07-20 サッポロビール株式会社 飲料サーバ
JP2018056631A (ja) 2016-09-26 2018-04-05 日本電気株式会社 校正回路、校正方法及びプログラム

Also Published As

Publication number Publication date
JP2019167137A (ja) 2019-10-03
IL277351A (en) 2020-11-30
SG11202009033TA (en) 2020-10-29
US20210009401A1 (en) 2021-01-14
AU2018414294A1 (en) 2020-10-08
CA3094604A1 (en) 2019-09-26
US11498825B2 (en) 2022-11-15
CN111801295A (zh) 2020-10-20
EP3770110A4 (en) 2021-12-22
EP3770110A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2019181079A1 (ja) 液体品質管理装置及び方法
US9061881B2 (en) System and method for harvesting energy savings on a remote beverage system
US20240092624A1 (en) Single tank carbonation for carbonated soft drink equipment
US9062902B2 (en) Defrost control for multiple barrel frozen product dispensers
US20080289357A1 (en) Liquid nitrogen cooled beverage dispenser
US8196423B2 (en) Automatic recovery system for frozen product machines
US11542147B2 (en) Beverage dispensers with heat exchangers
AU2018384966B2 (en) Liquid quality control device
JP2010100309A (ja) 飲料用ディスペンサー
JP6977950B2 (ja) 液体品質管理装置
JP4438235B2 (ja) フローズン飲料ディスペンサの運転状態検知方法
CN113382952A (zh) 冷冻饮料分配器的控制
EA019180B1 (ru) Устройство для розлива напитков и способ контроля устройства для розлива напитков
JP3151285U (ja) 飲料用ディスペンサー
JPH11132617A (ja) 冷酒サーバー
JP2012002376A (ja) 飲料冷却装置
JP2005316749A (ja) カップ式飲料自動販売機
JPH11139499A (ja) 飲料供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3094604

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018414294

Country of ref document: AU

Date of ref document: 20181130

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018910719

Country of ref document: EP