WO2019180865A1 - ビルの省エネ制御装置及びビルの省エネ制御方法 - Google Patents

ビルの省エネ制御装置及びビルの省エネ制御方法 Download PDF

Info

Publication number
WO2019180865A1
WO2019180865A1 PCT/JP2018/011337 JP2018011337W WO2019180865A1 WO 2019180865 A1 WO2019180865 A1 WO 2019180865A1 JP 2018011337 W JP2018011337 W JP 2018011337W WO 2019180865 A1 WO2019180865 A1 WO 2019180865A1
Authority
WO
WIPO (PCT)
Prior art keywords
saving control
energy
building
power consumption
energy saving
Prior art date
Application number
PCT/JP2018/011337
Other languages
English (en)
French (fr)
Inventor
利宏 妻鹿
Original Assignee
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to JP2018535181A priority Critical patent/JP6514829B1/ja
Priority to PCT/JP2018/011337 priority patent/WO2019180865A1/ja
Priority to CN201880088184.8A priority patent/CN111656638B/zh
Publication of WO2019180865A1 publication Critical patent/WO2019180865A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to an energy saving control method for a building, and more particularly to an energy saving control device and an energy saving control method for executing energy saving control of a building facility when there is a request to reduce power consumption.
  • the prediction error of the outside air temperature is calculated from the difference between the predicted value and the actual measurement value of the outside temperature in the target area where power is reduced, and the reduction amount is calculated for each area based on the variance of the target reduction amount and the prediction error of the outside temperature.
  • the comfort level may be impaired by energy-saving control that reduces power consumption. For this reason, there is a demand for an energy saving control device that balances the ability to reduce the amount of power used by the required amount when there is a request to reduce the amount of power used and that the comfort level is not significantly impaired.
  • an object of the present invention is to provide an energy-saving control device that can reduce power consumption by a reduction request amount when a reduction in power consumption is requested while suppressing a decrease in comfort level.
  • the building energy-saving control apparatus includes a storage unit that stores an energy-saving control list in which execution conditions and execution effects are associated with each other for each energy-saving control that can be executed on the building equipment, and the energy-saving control list.
  • a candidate extraction unit that extracts candidate energy-saving controls that can be executed on the equipment of the building when there is a request for reduction of power consumption based on the equipment information of the building;
  • a predicted power consumption calculation unit that generates a building power consumption prediction model using linear regression and calculates the predicted power consumption of the building using the generated building power consumption prediction model, power consumption, environmental state, and the candidate A building power consumption prediction model for energy saving control when the candidate energy saving control is executed using linear regression based on the candidate energy saving control and the energy saving control target area extracted by the extraction unit.
  • a reduced power calculating unit that calculates the reduced power of the building, a nuisance value calculating unit that calculates a nuisance value indicating the degree of influence on the environment in the building due to execution of energy saving control, and the reduced power is a reduction required power
  • the energy-saving control execution unit that extracts the combination of the candidate energy-saving control and the energy-saving control target area and executes the energy-saving control with the minimum of the nuisance value. To it, and it said.
  • the nuisance value is a maximum value among environmental degradation indices for each of one or a plurality of areas included in the energy-saving control target area.
  • the cumulative value of the number of times of energy-saving control with respect to or the cumulative value of the temperature change of each area when energy-saving control is executed, or the product of the number of people in each area and the temperature change of each area when energy-saving control is executed It may be a cumulative value.
  • the predicted power consumption calculation unit generates an area-specific power consumption prediction model for each area in the building using linear regression based on power usage and environmental conditions
  • the building power consumption prediction model is generated by integrating the area-specific power consumption prediction model, and the energy saving control predicted power consumption calculation unit includes the power consumption, the environmental state, and the candidate energy saving control extracted by the candidate extraction unit.
  • the power consumption prediction model may be integrated to generate the energy consumption control building power consumption prediction model.
  • the energy-saving control method for a building includes a list preparation step of preparing an energy-saving control list in which execution conditions and execution effects are associated with each other for each energy-saving control executable for the building equipment, and the energy-saving control list
  • the nuisance value is a maximum value among environmental degradation indexes for each of one or more areas included in the energy-saving control target area, and the environmental degradation index includes each area
  • the cumulative value of the number of times of energy-saving control with respect to or the cumulative value of the temperature change of each area when energy-saving control is executed, or the product of the number of people in each area and the temperature change of each area when energy-saving control is executed It may be a cumulative value.
  • the predicted power consumption calculation step generates an area-specific power consumption prediction model for each area in the building using linear regression based on the power consumption and the environmental state
  • the building power consumption prediction model is generated by integrating the area-specific power consumption prediction model, and the energy saving control predicted power consumption calculation step includes power consumption, environmental conditions, and the candidate energy saving control extracted in the candidate extraction step.
  • the power consumption prediction model may be integrated to generate the energy consumption control building power consumption prediction model.
  • the present invention can provide an energy saving control method capable of reducing the power consumption by the amount required for reduction when there is a demand for reduction in power consumption while suppressing a decrease in comfort.
  • the energy-saving control device 10 of the present embodiment is connected to the building management devices 31 and 41 of the two buildings 30 and 40, the reduced power designation device 60, and the temperature data providing device 50 through a network, and the building energy-saving control system 100 is connected. Constitute.
  • the buildings 30 and 40 include a plurality of air conditioners 32 and 42 and lighting devices 33 and 43 as facilities.
  • the air conditioners 32 and 42 and the lighting devices 33 and 43 are connected to the building management devices 31 and 41 and controlled by the building management devices 31 and 41.
  • the air conditioners 32 and 42 and the lighting devices 33 and 43 are divided into areas 36 and 46 such as a floor or a room, for example. In each area 36, 46, the number of people in each area 36, 46 is counted and output to the building management device 31. Power data providing devices 35 and 45 that output to the management device 31 are provided.
  • the building management devices 31 and 41 control the air conditioners 32 and 42 and the lighting devices 33 and 43 for each of the areas 36 and 46, and information on the number of people in each area and the power used is input.
  • the building management devices 31 and 41 store facility information such as the types and numbers of the air conditioners 32 and 42 and the lighting devices 33 and 43 installed in the areas 36 and 46, respectively.
  • the reduced power designation device 60 is installed in an electric power company or an operator called an aggregator that adjusts electric power supply and demand between the electric power company and the consumer.
  • the reduced power designation device 60 designates reduction required power to the energy saving control device 10 when power supply and demand is expected to be tight.
  • the temperature data providing device 50 is a device installed in an organization or company that predicts the weather and temperature, such as the Japan Meteorological Agency or the Meteorological Association.
  • the temperature data providing device 50 provides the energy saving control device 10 with information on the predicted value of the outside temperature in the area where the buildings 30 and 40 are installed, the measured value of the outside temperature, and the time (date and time) when the outside temperature is measured. Can be sent.
  • the energy saving control device 10 is a computer in which a CPU 25, a RAM 26, a ROM 27, and a storage unit 28 are connected via a data bus 24.
  • a network interface 29 for connecting to an external network is connected to the data bus 24.
  • the functions of the functional blocks shown in FIG. 3 are realized by the CPU 25 executing the program stored in the storage unit 28.
  • the energy saving control device 10 includes an equipment information acquisition unit 12, a power information acquisition unit 13, an environment information acquisition unit 14, a storage unit 15, a candidate extraction unit 16, a predicted power consumption calculation unit 17, and during energy saving control. It includes functional blocks of a predicted power consumption calculation unit 18, a reduction power calculation unit 19, a nuisance value calculation unit 20, and an energy saving control execution unit 21.
  • the facility information acquisition unit 12 includes facility information such as the type and number of air conditioners 32 and 42 and lighting devices 33 and 43 installed in the areas 36 and 46 of the buildings 30 and 40 from the building management devices 31 and 41. Is something to get.
  • the power information acquisition unit 13 acquires information on the power used in the areas 36 and 46 input from the power data providing devices 35 and 45 to the building management devices 31 and 41.
  • the environment information acquisition unit 14 acquires data on the number of people in each area 36 and 46 that are input to the building management devices 31 and 41, and from the temperature data providing device 50 in the area where the buildings 30 and 40 are installed. The actual value of the outside air temperature and information on the time (date and time) when the outside air temperature was actually measured are acquired.
  • the storage unit 15 stores an operation program and energy saving control lists 22 and 23 which will be described later with reference to FIGS.
  • the candidate extraction unit 16 can execute the energy saving control that can be performed on the facilities of the buildings 30 and 40 when there is a request to reduce power consumption based on the energy saving control lists 22 and 23 and the facility information of the buildings 30 and 40. Candidates are extracted.
  • the predicted usage power calculation unit 17 generates linear usage power prediction models for the areas 36 and 46 in the buildings 30 and 40 using linear regression, and integrates the area usage power prediction models to predict building usage power. A model is generated, and the predicted power usage of the building is calculated using the generated power usage prediction model of the building.
  • the power consumption prediction model will be described in detail later.
  • the predicted power consumption calculation unit 18 at the time of energy saving control calculates a power consumption prediction model at the time of energy saving control by area when executing energy saving control extracted as a candidate for each area 36, 46 in the building 30, 40 using linear regression. Generated, integrated power consumption prediction model for energy-saving control by area to generate a building power consumption prediction model for energy-saving control, and energy saving control extracted as a candidate using the building power consumption prediction model for energy-saving control The predicted power usage of the buildings 30 and 40 is calculated.
  • the reduced power calculation unit 19 executes the predicted power usage of the buildings 30 and 40 calculated by the predicted power usage calculation unit 17 and the energy saving control extracted as a candidate calculated by the predicted power usage calculation unit during energy saving control. , 40, the reduced power of the buildings 30 and 40 is calculated when the energy saving control extracted as a candidate from the difference from the predicted power consumption of 40 is executed.
  • the energy-saving control execution unit 21 is a combination of energy-saving control and energy-saving control target area in which the reduced power is equal to or greater than the required reduction power and the nuisance value that indicates the degree of influence on the environment in the buildings 30 and 40 is minimized. Is extracted and energy-saving control of the buildings 30 and 40 is executed. The troublesome value will be described later.
  • the energy saving control list is a database in which execution conditions and execution effects are associated with each energy saving control that can be executed for general building air conditioning, lighting, and the like.
  • the energy saving control lists 22 and 23 shown in FIG. 4 and FIG. 5 are energy saving control lists of the air conditioners. From the (A) column to the (F) column, the energy saving control name, execution condition 1, execution condition 2, and control, respectively. Policies, control details, and execution effects are entered.
  • the (B1) period, (B2) time zone, and (B3) external conditions in which each energy saving control described in the (A) column can be executed are input.
  • “cooling period” and “working time zone” are entered in the (B1) period and (B2) time zone, and therefore the energy saving control list 22 includes the air conditioners 32 of the buildings 30 and 40.
  • 42 is a period during which the air-cooling operation is performed, and can be applied when energy saving control is performed during working hours, for example, from 13:00 to 15:00.
  • control policy in the (D) column what kind of control is desired to be selected when the control in the (A) column is selected.
  • control content of the column (E) specific control content is input.
  • execution effect column of the (F) column it is input that the power consumption is reduced as an effect when the energy saving control of the (A) column is performed.
  • ⁇ Set temperature change control> From the (B1), (B2), and (C1) columns of the energy saving control list 22 of FIG. 4, the set temperature setting change control is applied to the working hours during the cooling period, and the set temperature can be controlled from the system. It is applied to the energy saving control of the air conditioner, and it can be seen from the column (D) that the control is executed in the case of a control policy in which it is desired to lower the cooling load but keep the upper limit of the temperature. In addition, it can be seen from the (E) column that the set temperature change control is a control for increasing the set temperature of the air conditioner, and from the (F) column, it is possible to reduce power consumption by execution.
  • the energy saving control list 23 shown in FIG. 5 is a period in which the air conditioners 32 and 42 of the buildings 30 and 40 are air-cooled from the (B1) and (B2) columns, immediately before the start of work, for example, between 8 and 9 o'clock. This is a list of energy saving controls that can be applied when executing energy saving control. The other points are the same as the energy saving control list 22 shown in FIG.
  • the storage unit 15 also includes an energy saving list applied to other facilities of the buildings 30 and 40, for example, the lighting devices 33 and 43. Stored.
  • the power consumption prediction model is generated by linear regression.
  • the linear regression equation is generally represented by the following equation (1).
  • Y ⁇ 0 + ⁇ 1 * X1 + ⁇ 2 * X2 + ... + ⁇ n * Xn ----- (1)
  • Y objective variable
  • Xn explanatory variable
  • ⁇ n partial regression coefficient (weight) It is.
  • the objective variable is the predicted power consumption
  • the power consumption of the facilities such as the air conditioners 32 and 42 and the lighting devices 33 and 43
  • the environmental state such as the outside temperature and the number of people in the room are used as the explanatory variables.
  • the partial regression coefficient (weight) is determined by
  • Predicted power consumption time factor + outside air temperature x outside air temperature factor + Number of people in the room x coefficient of the number of people in the room + intercept ----- (2)
  • the coefficient of time is a coefficient based on the electric power used for each hour of the equipment such as the air conditioners 32 and 42 and the lighting devices 33 and 43 arranged in the areas 36 and 46.
  • FIG. 6C shows an example of the coefficient of outside air temperature, the coefficient of the number of people in the room, and the intercept.
  • the predicted power consumption at time t is calculated as the following formula (3).
  • Predicted power usage at t Time factor at t + Outside air temperature at t x Coefficient of outside air temperature + Number of people in room at time x Coefficient of number of people in room + intercept ----- (3)
  • the nuisance value is an index indicating the degree of influence on the environment in the buildings 30 and 40, and is the maximum value among the environmental deterioration indexes for each of the one or more areas 36 and 46 included in the energy saving control target area.
  • the energy-saving control target area is an area such as a room or floor where energy-saving control such as set temperature change control and rotation control is executed for the equipment such as the air conditioners 32 and 42 and the lighting devices 33 and 43. 36,46. In most cases, the energy saving control is executed across a plurality of rooms or floors. At this time, environmental degradation such as an increase in room temperature for each room and floor occurs.
  • the nuisance value is the maximum value among environmental deterioration indicators such as the temperature rise value of each room and floor.
  • the cumulative value of the temperature change of the area 36, 46 accompanying the energy saving control can be used.
  • the increase in room temperature due to energy saving control in area A is 2 ° C. for the first energy saving control, 0 ° C. for the second energy saving control, the accumulated value is 2 ° C., and the first time is 0 for area B.
  • the second time is 1 ° C. and the cumulative value is 1 ° C.
  • the nuisance value is the maximum value of 2 ° C.
  • the cumulative value of the temperature change of the areas 36 and 46 accompanying energy saving control and the occupancy product of the areas 36 and 46 can be used as the troublesome value.
  • the cumulative value in Area A is 100. (C person)
  • the cumulative value of area B is 30 (C person).
  • the nuisance value is a maximum value of 100 (° C. person).
  • the facility information acquisition unit 12 of the energy saving control device 10 accesses the building management devices 31 and 41 of the buildings 30 and 40 shown in FIG. , 46, the equipment information such as the type and number of the air conditioners 32 and 42 and the lighting devices 33 and 43 are acquired.
  • the equipment information such as the type and number of the air conditioners 32 and 42 and the lighting devices 33 and 43 are acquired.
  • the candidate extraction unit 16 of the energy saving control device 10 includes the facility information acquired in step S101 of FIG. 7 and the energy saving control lists 22 and 23 stored in the storage unit 15. Based on the above, candidates for energy saving control that can be executed for each facility of the buildings 30 and 40 are extracted when there is a request for reduction of power consumption.
  • the candidate extraction unit 16 is based on the energy saving control list 22 applied from the storage unit 15 to the working hours during the cooling period, 42 candidate energy-saving controls are extracted.
  • the air conditioners 32 and 42 can be set temperature control, operation mode switching, and ON / OFF control by the energy saving control device 10, but are not compatible with evaporation temperature control, and the ventilation equipment is energy saving control device. 10 makes ON / OFF control impossible.
  • the candidate extraction unit 16 excludes the outside air intake suppression control and the evaporation temperature control from the candidate energy saving control because they do not satisfy the condition (C1) of the execution condition 2 in the (C) column.
  • the candidate extraction unit 16 refers to the control policy in the column (D), and performs two of the set temperature change control and the rotation control. Two energy saving controls are extracted as candidate energy saving controls (candidate extraction step).
  • the predicted usage power calculation unit 17 acquires the information on the usage power for the times of the areas 36 and 46 acquired by the power information acquisition unit 13 and the environment information acquisition unit 14 acquires. Based on the data on the number of people in each area 36, 46, the measured value of the outside air temperature, and the information on the time (date and time) when the outside air temperature was actually measured, linear regression is used to determine the number of people in each area 36, 46. Generate a power model for each area. Then, the power usage prediction model for each area 36 of each area 30 of the building 30 is added and integrated to generate a building power usage prediction model for the building 30.
  • the power usage prediction model for each area 46 of the building 40 is added and integrated to generate a power usage prediction model for the building 40.
  • the two building use power prediction models are added and integrated to generate a building use power prediction model for calculating the predicted use power of the entire buildings 30 and 40.
  • the generated building power consumption prediction model is as shown in Equation (2) described above.
  • the predicted usage power calculation unit 17 uses the generated building usage power prediction model to predict the usage of the buildings 30 and 40 with respect to time as shown in Expression (3).
  • the power is calculated and output to the reduced power calculation unit 19 (predicted power consumption calculation step).
  • the predicted power usage calculation unit 18 at the time of energy saving control selects an energy saving control target area for executing the candidate energy saving control extracted in step S102 of FIG.
  • the energy saving control target area is one or a plurality of areas 36, 46 in each building 30, 40, and specifically, one or a plurality of rooms or floors of each building 30, 40 are selected.
  • step S ⁇ b> 106 of FIG. 7 the estimated power usage calculation unit 18 at the time of energy saving control uses information on the power usage for the times of the areas 36 and 46 acquired by the power information acquisition unit 13 and each area acquired by the environment information acquisition unit 14.
  • the model equation for executing the set temperature change control of the air conditioners 32 and 42 is obtained by adding an explanatory variable of the set temperature to the model of the equation (2) as in the following equation (4).
  • Predicted power consumption time factor + outside air temperature x outside air temperature factor + Number of people in the room ⁇ coefficient of the number of people in the room + Set temperature x Set temperature coefficient + intercept ----- (4)
  • the model formula in the case of executing the rotation control is that the air conditioners 32 and 42 in the areas 36 and 46 are rotated by the rotation coefficient with the time coefficient of the formula (2). This is a time coefficient.
  • Predicted power consumption [coefficient of time in air blow mode operation state, or Coefficient of time during normal operation] + outside air temperature ⁇ Coefficient of outside temperature + number of people in the room x coefficient of number of people in the room + Section ---- (5)
  • the energy saving control predicted power usage calculation unit 18 generates an area-specific energy saving control power consumption prediction model according to Formula (4) or Formula (5).
  • the power consumption prediction model for each area energy saving control is generated by the formula (2) described above, and these are added together and integrated into the building 30.
  • 40 building energy consumption prediction models during energy saving control are generated.
  • a building power consumption prediction model for energy saving control is calculated that calculates the predicted power consumption of the entire buildings 30 and 40 when candidate energy saving control is executed by adding these together.
  • the energy consumption control building power consumption prediction model when the set temperature change control of the candidate energy conservation control is executed becomes a model as shown in Equation (4), and the energy consumption control power consumption prediction model when the rotation control is executed. Is a model as shown in Equation (5).
  • the energy consumption control predicted power usage calculation unit 18 uses the generated energy conservation control time building power consumption prediction model as shown in equations (6) and (7).
  • the predicted power usage of the buildings 30 and 40 with respect to the time when the candidate energy saving control is executed is calculated and output to the reduced power calculation unit 19 (predicted power usage calculation step during energy saving control).
  • Predicted power usage at t Time factor at t + Outside air temperature at t x Coefficient of outside air temperature + Number of people in room at time x Factor of number of people in room + Set temperature at t x Coefficient of set temperature + intercept ----- (6)
  • Predicted power consumption at t [Coefficient of time at t in the air blow mode operation state, or Coefficient of time t in normal operation state] + Outside air temperature at t x Coefficient of outside air temperature + Number of people in room at time x Coefficient of number of people in room + intercept ------ (7)
  • the reduced power calculation unit 19 executes candidate energy saving control for the predicted input power of the entire buildings 30 and 40 with respect to the time input from the predicted use power calculation unit 17 and the time input from the predicted use power calculation unit 18 during energy saving control.
  • the power reduction with respect to time is calculated from the difference from the predicted power consumption of the entire buildings 30 and 40 and output to the energy saving control execution unit 21 (reduced power calculation step).
  • the nuisance value calculation unit 20 calculates the nuisance value and outputs it to the energy saving control execution unit 21 (nuisance value calculation step).
  • the energy saving control execution unit 21 has the power reduction for each time input from the power reduction calculation unit 19 equal to or greater than the required power reduction input from the power reduction designation device 60. Make sure. If the reduced power is greater than or equal to the required reduced power, the energy saving control execution unit 21 reduces the number of areas 36 and 46 to be selected as the energy saving target area and returns to step S105 in FIG.
  • the predicted power usage calculation unit 18 at the time of energy saving control reduces the energy saving target area, generates a building power usage prediction model at the time of energy saving control in step S106, and calculates the predicted power usage of the buildings 30 and 40 in step S108.
  • the reduced power calculation unit 19 calculates the reduced power in step S108 and outputs it to the energy saving control execution unit 21. Further, the nuisance value calculation unit 20 recalculates the nuisance value and outputs it to the energy saving control execution unit 21.
  • the energy saving control execution unit 21 increases the number of areas 36 and 46 to be selected as the energy saving target area, returns to step S105, and at the time of energy saving control in step S105
  • the predicted power consumption calculation unit 18 increases the energy saving target area, generates a building power consumption prediction model for energy saving control in step S106, calculates the predicted power usage of the buildings 30 and 40 in step S108, and reduces the power calculation unit 19 Output to.
  • the reduced power calculation unit 19 calculates the reduced power in step S108 and outputs it to the energy saving control execution unit 21.
  • the nuisance value calculation unit 20 recalculates the nuisance value and outputs it to the energy saving control execution unit 21.
  • the energy saving control execution unit 21 increases or decreases the number of energy saving target areas, and the energy consumption control predicted use power calculation unit 18, the reduction power calculation unit 19, Then, the nuisance value calculation unit 20 repeatedly calculates the reduced power and the nuisance value, and finds an energy saving target area where the reduced power is equal to or greater than the reduction required power and the nuisance value is minimum.
  • the same calculation is performed for rotation control, which is another candidate energy saving control, to find an energy saving control target area where the reduced power is equal to or greater than the reduction required power and the nuisance value is minimized.
  • the energy saving control execution unit 21 selects a combination of the energy saving control and the energy saving control target area that minimizes the troublesome value from among several candidate energy saving controls in step S110 of FIG. 7, and proceeds to step S111 of FIG. Then, the selected energy saving control is executed for the selected energy saving control target area to reduce power.
  • the energy saving control device 10 increases the set temperature of the air conditioners 32 and 42 in the energy saving control target area via the building management devices 31 and 41 to reduce power consumption. To do.
  • the energy-saving control device 10 of the present embodiment combines the energy-saving control list and the prediction formula for power consumption using linear regression, and the power reduction is equal to or greater than the reduction required power and has an impact on the environment.
  • Energy saving control is performed by selecting the combination of energy saving control and energy saving control target area that minimizes the nuisance value, which is an index indicating the degree, so it is reduced when there is a request to reduce power consumption while suppressing a decrease in comfort level. Power consumption can be reduced by the required amount.
  • the building power consumption prediction models for the buildings 30 and 40 are generated by adding and integrating the area use power models for the areas 36 and 46 to save energy by area.
  • the control power consumption prediction model is generated and added and integrated to generate the energy saving control building power consumption prediction model of the buildings 30 and 40.
  • the present invention is not limited to this.
  • a building power consumption prediction model and a building power consumption prediction model during energy saving control may be generated without generating the area-specific power consumption model and area-specific energy saving control power consumption prediction model.
  • 10 energy-saving control device 12 equipment information acquisition unit, 13 power information acquisition unit, 14 environment information acquisition unit, 15 storage unit, 16 candidate extraction unit, 17 predicted power consumption calculation unit, 18 energy consumption control predicted power consumption calculation unit, 19 Reduced power calculation unit, 20 nuisance value calculation unit, 21 energy saving control execution unit, 22, 23 energy saving control list, 24 data bus, 25 CPU, 26 RAM, 27 ROM, 28 storage unit, 29 network interface, 30, 40 building, 31, 41 building management device, 32, 42 air conditioning device, 33, 43 lighting device, 34, 44 occupancy number providing device, 35, 45 power data providing device, 36, 46 area, 50 temperature data providing device, 60 power reduction Designated device, 100 building energy saving control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

省エネ制御ごとに、実行条件と、実行効果とを関連づけた省エネ制御リストを格納する記憶部(15)と、省エネ制御リストと、ビルの設備情報とに基づいて実行可能な候補省エネ制御を抽出する候補抽出部(16)と、ビル(30)の予測使用電力を算出する予測使用電力算出部(17)と、省エネ制御を実行した場合のビル(30)の予測使用電力を算出する省エネ制御時予測使用電力算出部(18)と、省エネ制御を実行した場合のビル(30)の削減電力を算出する削減電力算出部(19)と、迷惑値算出部(20)と、削減電力が削減要求電力以上で、且つ、迷惑値が最小となる、候補省エネ制御と省エネ制御対象エリアの組み合わせを抽出して省エネ制御を実行する省エネ制御実行部(21)と、を有する省エネ制御装置(10)。これにより、快適度の低下を抑制しつつ削減要求量だけ使用電力を削減できる。

Description

ビルの省エネ制御装置及びビルの省エネ制御方法
 本発明は、ビルの省エネ制御方法、特に、使用電力の削減要求があった際のビル設備の省エネ制御を実行する省エネ制御装置及び省エネ制御方法に関する。
 近年、電力供給が逼迫した場合に、需要家による電力需要を一時的に抑制することにより、電力の安定供給および電力料金の安定化を実現するデマンドレスポンスが注目されている。
 デマンドレスポンスでは、使用電力の削減要求のあった際に要求量だけ使用電力を削減できることが必要となる。このため、電力を削減する対象領域の外気温の予報値と実測値の差分から外気温の予測誤差を算出し、目標削減量と外気温の予測誤差の分散に基づいて各領域に削減量を割り当てることにより、外気温の予想誤差によって電力の削減目標を達成できなくなることを抑制する方法が提案されている。
特許第6175871号明細書
 ところで、使用電力の削減要求があった際、電力を削減する省エネ制御によっては快適度が損なわれる場合がある。このため、使用電力の削減要求のあった際に要求量だけ使用電力を削減できることと快適度を大きく損ねないことのバランスをとった省エネ制御装置が要求されている。
 そこで、本発明は、快適度の低下を抑制しつつ使用電力の削減要求のあった際に削減要求量だけ使用電力を削減できる省エネ制御装置を提供することを目的とする。
 本発明のビルの省エネ制御装置は、前記ビルの設備に対して実行可能な省エネ制御ごとに、実行条件と、実行効果とを関連づけた省エネ制御リストを格納する記憶部と、前記省エネ制御リストと、前記ビルの設備情報とに基づいて使用電力の削減要求のあった際に、前記ビルの前記設備に対して実行可能な候補省エネ制御を抽出する候補抽出部と、使用電力と環境状態とに基づいて線形回帰を用いてビル使用電力予測モデルを生成し、生成したビル使用電力予測モデルを用いて前記ビルの予測使用電力を算出する予測使用電力算出部と、使用電力と環境状態と前記候補抽出部で抽出した前記候補省エネ制御と省エネ制御対象エリアとに基づいて線形回帰を用いて前記候補省エネ制御を実行した場合の省エネ制御時ビル使用電力予測モデルを生成し、前記省エネ制御時ビル使用電力予測モデルを用いて前記候補省エネ制御を実行した場合の前記ビルの予測使用電力を算出する省エネ制御時予測使用電力算出部と、前記予測使用電力算出部で算出した前記ビルの予測使用電力と、前記省エネ制御時予測使用電力算出部で算出した前記候補省エネ制御を実行した場合の前記ビルの予測使用電力との差から前記候補省エネ制御を実行した場合の前記ビルの削減電力を算出する削減電力算出部と、省エネ制御を実行したことによる前記ビル内の環境への影響度合を示す迷惑値を算出する迷惑値算出部と、前記削減電力が削減要求電力以上で、且つ、前記迷惑値が最小となる、前記候補省エネ制御と省エネ制御対象エリアの組み合わせを抽出して省エネ制御を実行する省エネ制御実行部と、を有すること、を特徴とする。
 本発明のビルの省エネ制御装置において、前記迷惑値は、前記省エネ制御対象エリアに含まれる1つまたは複数のエリアそれぞれに対する環境悪化指標の内の最大値であり、前記環境悪化指標は、各エリアに対する省エネ制御回数の累積値、または、省エネ制御を実行した際の各エリアの温度変化の累積値、または、省エネ制御を実行した際の各エリアの在籍人数と各エリアの温度変化との積の累積値であること、としてもよい。
 本発明のビルの省エネ制御装置において、前記予測使用電力算出部は、使用電力と環境状態とに基づいて線形回帰を用いて前記ビルの中のエリア毎のエリア別使用電力予測モデルを生成し、前記エリア別使用電力予測モデルを統合して前記ビル使用電力予測モデルを生成し、前記省エネ制御時予測使用電力算出部は、使用電力と環境状態と前記候補抽出部で抽出した前記候補省エネ制御と前記省エネ制御対象エリアとに基づいて線形回帰を用いて前記ビルの中のエリア毎に前記候補省エネ制御を実行した場合のエリア別省エネ制御時使用電力予測モデルを生成し、前記エリア別省エネ制御時使用電力予測モデルを統合して前記省エネ制御時ビル使用電力予測モデルを生成すること、としてもよい。
 本発明のビルの省エネ制御方法は、前記ビルの設備に対して実行可能な省エネ制御ごとに、実行条件と、実行効果とを関連づけた省エネ制御リストを準備するリスト準備ステップと、前記省エネ制御リストと、前記ビルの設備情報とに基づいて使用電力の削減要求のあった際に、前記ビルの前記設備に対して実行可能な候補省エネ制御を抽出する候補抽出ステップと、使用電力と環境状態とに基づいて線形回帰を用いてビル使用電力予測モデルを生成し、生成したビル使用電力予測モデルを用いて前記ビルの予測使用電力を算出する予測使用電力算出ステップと、使用電力と環境状態と前記候補抽出ステップで抽出した前記候補省エネ制御と省エネ制御対象エリアとに基づいて線形回帰を用いて前記候補省エネ制御を実行した場合の省エネ制御時ビル使用電力予測モデルを生成し、前記省エネ制御時ビル使用電力予測モデルを用いて前記候補省エネ制御を実行した場合の前記ビルの予測使用電力を算出する省エネ制御時予測使用電力算出ステップと、前記予測使用電力算出ステップで算出した前記ビルの予測使用電力と、前記省エネ制御時予測使用電力算出ステップで算出した前記候補省エネ制御を実行した場合の前記ビルの予測使用電力との差から前記候補省エネ制御を実行した場合の前記ビルの削減電力を算出する削減電力算出ステップと、省エネ制御を実行したことによる前記ビル内の環境への影響度合を示す迷惑値を算出する迷惑値算出ステップと、を含み、前記削減電力が削減要求電力以上で、且つ、前記迷惑値が最小となる、前記候補省エネ制御と省エネ制御対象エリアの組み合わせを抽出して省エネ制御を実行すること、を特徴とする。
 本発明のビルの省エネ制御方法において、前記迷惑値は、前記省エネ制御対象エリアに含まれる1つまたは複数のエリアそれぞれに対する環境悪化指標の内の最大値であり、前記環境悪化指標は、各エリアに対する省エネ制御回数の累積値、または、省エネ制御を実行した際の各エリアの温度変化の累積値、または、省エネ制御を実行した際の各エリアの在籍人数と各エリアの温度変化との積の累積値であること、としてもよい。
 本発明のビルの省エネ制御方法において、前記予測使用電力算出ステップは、使用電力と環境状態とに基づいて線形回帰を用いて前記ビルの中のエリア毎のエリア別使用電力予測モデルを生成し、前記エリア別使用電力予測モデルを統合して前記ビル使用電力予測モデルを生成し、前記省エネ制御時予測使用電力算出ステップは、使用電力と環境状態と前記候補抽出ステップで抽出した前記候補省エネ制御と前記省エネ制御対象エリアとに基づいて線形回帰を用いて前記ビルの中のエリア毎に前記候補省エネ制御を実行した場合のエリア別省エネ制御時使用電力予測モデルを生成し、前記エリア別省エネ制御時使用電力予測モデルを統合して前記省エネ制御時ビル使用電力予測モデルを生成すること、としてもよい。
 本発明は、快適度の低下を抑制しつつ使用電力の削減要求のあった際に削減要求量だけ使用電力を削減できる省エネ制御方法を提供することができる。
実施形態のビルの省エネ制御装置を用いたビルの省エネ制御システムの構成を示す系統図である。 図1に示すビルの省エネ制御装置のハードウェアの構成を示す系統図である。 図1に示す省エネ制御装置の機能ブロック図である。 省エネ制御リストの一例を示す図である。 他の省エネ制御リストを示す図である。 ビル使用電力予測モデル式の係数の例を示す図である。 実施形態の省エネ制御装置の動作を示すフローチャートである。
発明を実行するための形態
 <ビル省エネ制御システムの構成>
 以下、図面を参照しながら、実施形態の省エネ制御装置10について説明する。本実施形態の省エネ制御装置10は、2つのビル30、40の各ビル管理装置31、41、及び、削減電力指定装置60、気温データ提供装置50とネットワークで接続されてビル省エネ制御システム100を構成する。
 ビル30,40は、設備である複数の空調装置32,42、照明装置33,43を備えている。各空調装置32,42、照明装置33,43はビル管理装置31,41に接続され、ビル管理装置31,41によって制御される。各空調装置32,42、照明装置33,43は、例えば、フロア、或いは、部屋のようなエリア36,46毎に区分されている。各エリア36、46には各エリア36,46の在室人数をカウントしてビル管理装置31に出力する在室人数提供装置34,44、各エリア36,46の使用電力データを検出してビル管理装置31に出力する電力データ提供装置35,45が設けられている。このように、ビル管理装置31,41は、エリア36、46毎に各空調装置32,42、照明装置33,43の制御を行うと共に、各エリアの在室人数と使用電力の情報が入力される。また、ビル管理装置31,41は、各エリア36,46に設置されている各空調装置32,42、照明装置33,43の形式、数等の設備情報等が格納されている。
 削減電力指定装置60は、電力事業者、または、電力事業者と需要者との間に入って電力需給を調整するアグリゲータと呼ばれる事業者に設置されている。削減電力指定装置60は、電力需給が逼迫すると予想される際に省エネ制御装置10に対して削減要求電力を指定するものである。
 気温データ提供装置50は、例えば気象庁や気象協会など、天気や気温の予測をする団体、会社などに設置される装置である。気温データ提供装置50は、ビル30,40の設置されている地域の外気温の予報値、外気温の実測値、および外気温を実測した時刻(日時)の情報を省エネ制御装置10に対して送信することができる。
 <省エネ制御装置のハード構成>
 図2に示すように、省エネ制御装置10は、内部にCPU25、RAM26、ROM27、記憶部28がデータバス24で接続されたコンピュータである。データバス24には、外部のネットワークに接続するためのネットワークインターフェース29が接続されている。省エネ制御装置10は、記憶部28に格納したプログラムをCPU25が実行することにより、図3に示す各機能ブロックの機能が実現される。
 <省エネ制御装置の機能ブロックの構成>
 省エネ制御装置10は、図3に示すように、設備情報取得部12、電力情報取得部13、環境情報取得部14、記憶部15、候補抽出部16、予測使用電力算出部17、省エネ制御時予測使用電力算出部18、削減電力算出部19、迷惑値算出部20、省エネ制御実行部21の機能ブロックを含んでいる。
 設備情報取得部12は、ビル管理装置31,41から各ビル30,40の各エリア36,46に設置されている各空調装置32,42、照明装置33,43の形式、数等の設備情報を取得するものである。
 電力情報取得部13は、電力データ提供装置35,45からビル管理装置31,41に入力される各エリア36,46の使用電力の情報を取得するものである。
 環境情報取得部14は、ビル管理装置31,41に入力される各エリア36,46の在室人数のデータを取得すると共に、気温データ提供装置50からビル30,40の設置されている地域の外気温の実測値、および外気温を実測した時刻(日時)の情報を取得するものである。
 記憶部15には、動作プログラムと、後で図4、図5を参照して説明する省エネ制御リスト22,23が格納されている。
 候補抽出部16は、省エネ制御リスト22,23と、ビル30,40の設備情報とに基づいて使用電力の削減要求のあった際に、ビル30,40の設備に対して実行可能な省エネ制御の候補を抽出するものである。
 予測使用電力算出部17は、線形回帰を用いてビル30,40の中の各エリア36,46のエリア別使用電力予測モデルを生成し、エリア別使用電力予測モデルを統合してビル使用電力予測モデルを生成し、生成したビル使用電力予測モデルを用いてビルの予測使用電力を算出するものである。なお、使用電力予測モデルについては、後で詳細に説明する。
 省エネ制御時予測使用電力算出部18は、線形回帰を用いてビル30,40の中の各エリア36,46に候補として抽出した省エネ制御を実行した場合のエリア別省エネ制御時使用電力予測モデルを生成し、エリア別省エネ制御時使用電力予測モデルを統合して省エネ制御時ビル使用電力予測モデルを生成し、省エネ制御時ビル使用電力予測モデルを用いて候補として抽出した省エネ制御を実行した場合のビル30,40の予測使用電力を算出するものである。
 削減電力算出部19は、予測使用電力算出部17で算出したビル30,40の予測使用電力と、省エネ制御時予測使用電力算出部で算出した候補として抽出した省エネ制御を実行した場合のビル30,40の予測使用電力との差から候補として抽出した省エネ制御を実行した場合のビル30,40の削減電力を算出するものである。
 省エネ制御実行部21は、削減電力が削減要求電力以上で、且つ、ビル30,40内の環境への影響度合を示す指標である迷惑値が最小となる、省エネ制御と省エネ制御対象エリアの組み合わせを抽出してビル30,40の省エネ制御を実行するものである。なお、迷惑値については後で説明する。
 <省エネ制御リスト>
 次に図4、図5を参照しながら省エネ制御リスト22,23について説明する。省エネ制御リストは、一般的なビルの空調、照明等の設備に対して実行可能な省エネ制御ごとに、実行条件と、実行効果とを関連づけたデータベースである。図4、図5に示す省エネ制御リスト22,23は、空調機の省エネ制御リストであり、(A)欄から(F)欄には、それぞれ省エネ制御名、実行条件1、実行条件2、制御ポリシー、制御内容、実行効果が入力されている。
 (B)欄の実行条件1には、(A)欄に記載されている各省エネ制御が実行可能な(B1)期間と(B2)時間帯と(B3)外部条件が入力されている。省エネ制御リスト22では、(B1)期間、(B2)時間帯には、「冷房期」、「就業時間帯」と入力されていことから、省エネ制御リスト22は、ビル30,40の空調装置32,42が冷房運転される期間で、就業時間帯、例えば、13時から15時の間に省エネ制御を実行する際に適用可能である。
 (C)欄の実行条件2には、(A)欄に入力されている省エネ制御を実行するのに必要な機器の仕様(C1)、機器の運用による制約(C2)が入力されている。
 (D)欄の制御ポリシーには、どのような制御をしたいときに(A)欄の制御を選択すればよいかが入力されている。(E)欄の制御内容には、具体的な制御内容が入力されている。(F)欄の実行効果の欄には、(A)欄の省エネ制御を行った場合の効果として消費電力が削減されることが入力されている。
 以下、設定温度変更制御とローテーション制御を例に省エネ制御リストについて詳しく説明する。
 <設定温度変更制御>
 図4の省エネ制御リスト22の(B1),(B2)、(C1)欄から、設定温度設定変更制御は、冷房期の就業時間帯に適用され、設定温度をシステムから制御可能になっている空調機の省エネ制御に適用されるもので、(D)欄から冷房負荷を下げたいが温度の上限は守りたいという制御ポリシーの場合に実行する制御であることがわかる。また、(E)欄より、設定温度変更制御は、空調機の設定温度を上げる制御であり、(F)欄より、実行により消費電力を削減することができることがわかる。
 <ローテーション制御>
 図4の省エネ制御リスト22の(B1),(B2)、(C1)欄から、ローテーション制御は、冷房期の就業時間帯に適用され、空調機のON/OFFをシステムから制御可能になっている空調機の省エネ制御に適用されるもので、(D)欄から一箇所に対する省エネ制御時間を短くして公平に制御したいという制御ポリシーの場合に実行する制御であることがわかる。また、(E)欄より、ローテーション制御は、空調機を順送りに送風モードに切替える制御であり、(F)欄より、実行により消費電力を削減することができることがわかる。
 図5に示す省エネ制御リスト23は、(B1),(B2)欄から、ビル30,40の空調装置32,42が冷房運転される期間で、始業開始直前、例えば、8時から9時の間に省エネ制御を実行する際に適用可能な省エネ制御をリストアップしたものである。その他の点は、図4に示す省エネ制御リスト22と同様なので、説明は省略する。
 以上の説明では、空調装置32,42に適用される省エネリストについて説明したが、記憶部15には、ビル30,40の他の設備、例えば、照明装置33,43に適用される省エネリストも格納されている。
 <使用電力予測モデル>
 使用電力予測モデルは、線形回帰によって生成する。線形回帰式は、一般的に下記のような式(1)で表される。
 Y = β0 +β1*X1 + β2*X2 + ・・・ + βn*Xn -----(1)
 式(1)において、
 Y :目的変数
 Xn:説明変数
 βn:偏回帰係数(重み)
である。
 使用電力予測モデルでは、目的変数が予測使用電力、説明変数として空調装置32,42や照明装置33,43等の設備の使用電力と、外気温や在室人数などの環境状態を用い、線形回帰によって偏回帰係数(重み)を決定する。
 予測使用電力を目的変数、時間と、外気温と、在室人数とを説明変数として線形回帰によって使用電力予測モデルを生成すると下記の式(2)のようなモデルとなる。
 予測使用電力 = 時間の係数 + 外気温×外気温の係数 +
                  在室人数×在室人数の係数 + 切片  ----(2)
 ここで、時間の係数は、各エリア36,46に配置されている空調装置32,42や照明装置33,43等の設備の時間毎の使用電力に基づく係数で、図6(a),(b)に示すように、時間毎に設定される。また、図6(c)に外気温の係数、在室人数の係数、切片の例を示す。
 式(2)と図6(a)~図6(c)に示す係数を用いて、時間がt時における予測使用電力は下記の式(3)のように計算される。
 t時の予測使用電力 = t時の時間の係数+
                        t時の外気温×外気温の係数 + 
                        t時の在室人数×在室人数の係数 + 切片
                                                    ----(3)
 <迷惑値>
 迷惑値とは、ビル30,40内の環境への影響度合を示す指標であり、省エネ制御対象エリアに含まれる1つまたは複数のエリア36,46それぞれに対する環境悪化指標の内の最大値とすることができる。ここで、省エネ制御対象エリアとは、空調装置32,42、照明装置33,43等の設備に対して設定温度変更制御、ローテーション制御などの省エネ制御が実行される部屋、或いは、フロア等のエリア36,46である。たいていの場合、省エネ制御は、複数の部屋、或いは、フロアにまたがって実行される。この際、部屋、フロア毎に室温が上昇する等の環境の悪化が発生する。迷惑値は、各部屋、フロアの温度上昇値等の環境悪化指標の内の最大値である。
 各エリア36,46の環境悪化指数として、そのエリア36,46に対する省エネ制御の実行回数の累積値を用いることができる。例えば、省エネ制御対象エリアとして省エネ制御の実行回数の累積値が3回のエリアAと、5回のエリアBの2つのエリアが選択された場合、迷惑値は、エリアAとエリアBの累積値の大きい方の5回となる。
 省エネ制御回数の累積値
  エリアA :3回
  エリアB :5回
  迷惑値=3回と5回の最大値=5回
 また、各エリア36,46の環境悪化指数として、省エネ制御に伴うそのエリア36,46の温度変化の累積値を用いることができる。例えば、エリアAでの省エネ制御による室温の上昇は、1回目の省エネ制御の場合が2℃、2回目の省エネ制御の場合が0℃、累積値が2℃、エリアBでは、1回目が0℃、2回目が1℃、累積値が1℃の場合、迷惑値は、最大値の2℃となる。
 省エネ制御に伴う温度変化の累積値
  エリアA :+2℃(1回目) + 0℃(2回目) = 2℃ 
  エリアB :+0℃(1回目) + 1℃(2回目) = 1℃
  迷惑値=2℃と1℃との最大値=2℃
 また、迷惑値として省エネ制御に伴うそのエリア36,46の温度変化とそのエリア36,46の在室人数積の累積値を用いることができる。先に説明した例で、1回目、2回目の省エネ制御の際の在室人数がエリアAでは、50人、30人、エリアBでは20人、30人の場合、エリアAの累積値は100(℃人)、エリアBの累積値は30(℃人)となる。この場合、迷惑値は、最大値の100(℃人)となる。
  エリアA:[2℃]×50人(1回目)+[0℃]×30人(2回目)
      =100(℃人)
  エリアB:[0℃]×20人(1回目)+[1℃]×30人(2回目)
      =30(℃人)
  迷惑値=100(℃人)と30(℃人)の最大値=100(℃人)
 <省エネ制御装置の動作>
 次に図7、図3を参照しながら省エネ制御装置10の動作について説明する。
 図7のステップS101に示すように、省エネ制御装置10の設備情報取得部12は、図3に示すビル30,40のビル管理装置31,41にアクセスして各ビル30,40の各エリア36,46に設置されている空調装置32,42、照明装置33,43の形式、数等の設備情報を取得する。設備情報には、空調装置32,42が省エネ制御装置10によって設定温度の制御が可能か、運転モードの切替えが可能か、ON/OFF制御が可能か、或いは、換気機器が省エネ制御装置10からON/OFF可能か、CO2センサーが設置されているか等、図4、図5を参照して説明した省エネ制御リスト22、23の(C)欄の実行条件2を満たすかどうかの判断を可能にする情報を含む。
 図7のステップS102、図3に示すように、省エネ制御装置10の候補抽出部16は、図7のステップS101で取得した設備情報と記憶部15に格納されている省エネ制御リスト22,23とに基づいて使用電力の削減要求があった際にビル30,40の各設備に対して実行可能な省エネ制御の候補を抽出する。
 例えば、夏の平日の日中に省エネ制御を実行しようとする場合、候補抽出部16は、記憶部15から冷房期の就業時間帯に適用される省エネ制御リスト22に基づいて、空調装置32,42の候補省エネ制御を抽出する。ここで、空調装置32,42は、省エネ制御装置10によって設定温度制御、運転モードの切替え、ON/OFF制御が可能であるが、蒸発温度制御に対応しておらず、換気機器は省エネ制御装置10からON/OFF制御が不可能とする。この場合、候補抽出部16は、外気取り入れ抑制制御と蒸発温度制御とは(C)欄の実行条件2の(C1)の条件を満たさないとして候補省エネ制御から除外する。ここで、温度の上限を守り、公平に制御したいという制御ポリシーによって省エネ制御を行う場合、候補抽出部16は、(D)欄の制御ポリシーを参照して、設定温度変更制御、ローテーション制御の2つの省エネ制御を候補省エネ制御として抽出する(候補抽出ステップ)。
 図7のステップS103、図3に示すように、予測使用電力算出部17は、電力情報取得部13が取得した各エリア36,46の時間に対する使用電力の情報と、環境情報取得部14が取得した各エリア36,46の在室人数のデータと、外気温の実測値、および外気温を実測した時刻(日時)の情報とに基づいて、線形回帰を用いて、各エリア36,46別のエリア別使用電力モデルを生成する。そして、ビル30の各エリア36のエリア別使用電力予測モデルを足し合わせて統合してビル30のビル使用電力予測モデルを生成する。同様に、ビル40の各エリア46のエリア別使用電力予測モデルを足し合わせて統合してビル40のビル使用電力予測モデルを生成する。更に、これら2つのビル使用電力予測モデルを足し合わせて統合してビル30,40全体の予測使用電力を算出するビル使用電力予測モデルを生成する。生成したビル使用電力予測モデルは、先に説明した式(2)のようになる。
 そして、図7のステップS104、図3に示すように、予測使用電力算出部17は、生成したビル使用電力予測モデルを用いて式(3)に示すように時間に対するビル30,40の予測使用電力を算出して削減電力算出部19に出力する(予測使用電力算出ステップ)。
 図7のステップS105、図3に示すように、省エネ制御時予測使用電力算出部18は、図7のステップS102で抽出した候補省エネ制御を実行する省エネ制御対象エリアを選択する。省エネ制御対象エリアは、各ビル30,40の中の1つまたは複数のエリア36,46であり、具体的には、各ビル30,40の1つまたは複数の部屋、またはフロアを選択する。
 図7のステップS106において、省エネ制御時予測使用電力算出部18は、電力情報取得部13が取得した各エリア36,46の時間に対する使用電力の情報と、環境情報取得部14が取得した各エリア36,46の在室人数のデータと、外気温の実測値、および外気温を実測した時刻(日時)の情報と、候補抽出部16が抽出した候補省エネ制御(例えば、設定温度変更制御、ローテーション制御)と、選択した省エネ対象エリアとに基づいて、各エリア36,46別のエリア別省エネ制御時使用電力モデルを生成する。
 例えば、空調装置32,42の設定温度変更制御を実行する場合のモデル式は、下記の式(4)のように、式(2)のモデルに設定温度の説明変数を追加したものとなる。
 予測使用電力 = 時間の係数 + 外気温×外気温の係数 +
                  在室人数×在室人数の係数 +
                  設定温度×設定温度の係数 + 切片 ----(4)
 また、ローテーション制御を実行する場合のモデル式は、下記の式(5)に示すように、式(2)の時間の係数をローテーション制御によってそのエリア36,46の空調装置32,42を送風モードとした際の時間の係数としたものである。
 予測使用電力=[送風モード運転状態の時間の係数、または、
                通常運転状態の時間の係数] + 外気温×
                外気温の係数 + 在室人数×在室人数の係数 +
                切片               ----(5)
 そして、省エネ制御時予測使用電力算出部18は、省エネ制御対象エリアに選択されているエリア36,46については、式(4)または式(5)によってエリア別省エネ制御時使用電力予測モデルを生成し、省エネ制御対象エリアに選択されていないエリア36,46については、先に説明した式(2)によってエリア別省エネ制御時使用電力予測モデルを生成し、これらを足し合わせて統合してビル30,40の各省エネ制御時ビル使用電力予測モデルを生成する。更に、これらを足し合わせて統合して候補省エネ制御を実行した場合のビル30,40全体の予測使用電力を算出する省エネ制御時ビル使用電力予測モデルを生成する。候補省エネ制御の内の設定温度変更制御を実行した際の省エネ制御時ビル使用電力予測モデルは式(4)に示すようなモデルとなり、ローテーション制御を実行した際の省エネ制御時ビル使用電力予測モデルは式(5)に示すようなモデルとなる。
 図7のステップS107、図3に示すように、省エネ制御時予測使用電力算出部18は、生成した省エネ制御時ビル使用電力予測モデルを用いて式(6)、式(7)に示すように候補省エネ制御を実行した場合の時間に対するビル30,40の予測使用電力を算出して削減電力算出部19に出力する(省エネ制御時予測使用電力算出ステップ)。
<設定温度変更制御の場合>
 t時の予測使用電力 = t時の時間の係数 +
 t時の外気温×外気温の係数 +
 t時の在室人数×在室人数の係数 +
 t時の設定温度×設定温度の係数 + 切片  ----(6)
<ローテーション制御の場合>
 t時の予測使用電力=
 [送風モード運転状態のt時時間の係数、または、
   通常運転状態のt時時間の係数] +
  t時の外気温×外気温の係数 +
  t時の在室人数×在室人数の係数 + 切片  ----- (7)
 削減電力算出部19は、予測使用電力算出部17から入力された時間に対するビル30,40全体の予測使用電力と省エネ制御時予測使用電力算出部18から入力された時間に対する候補省エネ制御を実行した場合のビル30,40全体の予測使用電力との差から時間に対する削減電力を算出して省エネ制御実行部21に出力する(削減電力算出ステップ)。
 また、迷惑値算出部20は、先に説明したように、迷惑値を算出して省エネ制御実行部21に出力する(迷惑値算出ステップ)。
 省エネ制御実行部21は、一つの候補省エネ制御である設定温度変更制御について、削減電力算出部19から入力された各時間に対する削減電力が削減電力指定装置60から入力された要求削減電力以上であるか確認する。削減電力が要求削減電力以上である場合には、省エネ制御実行部21は、省エネ対象エリアとして選択するエリア36,46の数を減らして図7のステップS105に戻る。ステップS105で省エネ制御時予測使用電力算出部18は、省エネ対象エリアを減らして、ステップS106で省エネ制御時ビル使用電力予測モデルを生成し、ステップS108でビル30,40の予測使用電力を算出して削減電力算出部19に出力する。削減電力算出部19は、ステップS108で削減電力を算出して省エネ制御実行部21に出力する。また、迷惑値算出部20は、迷惑値を再算出して省エネ制御実行部21に出力する。
 また逆に、削減電力が要求削減電力未満である場合には、省エネ制御実行部21は、省エネ対象エリアとして選択するエリア36,46の数を増やしてステップS105に戻り、ステップS105で省エネ制御時予測使用電力算出部18は、省エネ対象エリアを増やして、ステップS106で省エネ制御時ビル使用電力予測モデルを生成し、ステップS108でビル30,40の予測使用電力を算出して削減電力算出部19に出力する。削減電力算出部19は、ステップS108で削減電力を算出して省エネ制御実行部21に出力する。また、迷惑値算出部20は、迷惑値を再算出して省エネ制御実行部21に出力する。
 このように、一つの候補省エネ制御である設定温度変更制御について、省エネ制御実行部21で省エネ対象エリアの数を増減させて、省エネ制御時予測使用電力算出部18と、削減電力算出部19と、迷惑値算出部20とにより削減電力と迷惑値とを繰り返し算出し、削減電力が削減要求電力以上で、且つ、迷惑値が最小となる省エネ対象エリアを見つける。
 また、他の候補省エネ制御であるローテーション制御についても同様の計算を行い、削減電力が削減要求電力以上で、且つ、迷惑値が最小となる省エネ制御対象エリアを見つける。そして、省エネ制御実行部21は、図7のステップS110でいくつかの候補省エネ制御の内、迷惑値が最小となる省エネ制御と省エネ制御対象エリアの組み合わせを選択して図7のステップS111に進み、選択した省エネ制御対象エリアに対して選択した省エネ制御を実行して電力の削減を行う。
 例えば、設定温度変更制御が選択された場合には、省エネ制御装置10は、ビル管理装置31,41を介して省エネ制御対象エリアの空調装置32,42の設定温度を上昇させて使用電力を削減する。
 
 以上説明したように、本実施形態の省エネ制御装置10は、省エネ制御リストと線形回帰を用いた使用電力の予測式とを組み合わせて、削減電力が削減要求電力以上で、且つ、環境への影響度合を示す指標である迷惑値が最小となる省エネ制御と省エネ制御対象エリアの組み合わせを選択して省エネ制御を行うので、快適度の低下を抑制しつつ使用電力の削減要求のあった際に削減要求量だけ使用電力を削減できる。
 以上説明した実施形態の省エネ制御装置10の動作では、各エリア36,46別のエリア別使用電力モデルを足し合わせて統合してビル30、40のビル使用電力予測モデルを生成し、エリア別省エネ制御時使用電力予測モデルを生成し、これらを足し合わせて統合してビル30,40の省エネ制御時ビル使用電力予測モデルを生成することとして説明したが、これに限らず、ビル30,40を一つのエリア36,46とし、エリア別使用電力モデル、エリア別省エネ制御時使用電力予測モデルを生成せずに、ビル使用電力予測モデル、省エネ制御時ビル使用電力予測モデルを生成してもよい。
 10 省エネ制御装置、12 設備情報取得部、13 電力情報取得部、14環境情報取得部、15 記憶部、16 候補抽出部、17 予測使用電力算出部、18 省エネ制御時予測使用電力算出部、19 削減電力算出部、20 迷惑値算出部、21 省エネ制御実行部、22,23 省エネ制御リスト、24 データバス、25 CPU、26 RAM、27 ROM、28 記憶部、29 ネットワークインターフェース、30,40 ビル、31,41 ビル管理装置、32,42 空調装置、33,43 照明装置、34,44 在室人数提供装置、35,45 電力データ提供装置、36,46 エリア、50 気温データ提供装置、60 減電力指定装置、100 ビル省エネ制御システム。

Claims (7)

  1.  ビルの省エネ制御装置であって、
     前記ビルの設備に対して実行可能な省エネ制御ごとに、実行条件と、実行効果とを関連づけた省エネ制御リストを格納する記憶部と、
     前記省エネ制御リストと、前記ビルの設備情報とに基づいて使用電力の削減要求のあった際に、前記ビルの前記設備に対して実行可能な候補省エネ制御を抽出する候補抽出部と、
     使用電力と環境状態とに基づいて線形回帰を用いてビル使用電力予測モデルを生成し、生成したビル使用電力予測モデルを用いて前記ビルの予測使用電力を算出する予測使用電力算出部と、
     使用電力と環境状態と前記候補抽出部で抽出した前記候補省エネ制御と省エネ制御対象エリアとに基づいて線形回帰を用いて前記候補省エネ制御を実行した場合の省エネ制御時ビル使用電力予測モデルを生成し、前記省エネ制御時ビル使用電力予測モデルを用いて前記候補省エネ制御を実行した場合の前記ビルの予測使用電力を算出する省エネ制御時予測使用電力算出部と、
     前記予測使用電力算出部で算出した前記ビルの予測使用電力と、前記省エネ制御時予測使用電力算出部で算出した前記候補省エネ制御を実行した場合の前記ビルの予測使用電力との差から前記候補省エネ制御を実行した場合の前記ビルの削減電力を算出する削減電力算出部と、
     省エネ制御を実行したことによる前記ビル内の環境への影響度合を示す迷惑値を算出する迷惑値算出部と、
     前記削減電力が削減要求電力以上で、且つ、前記迷惑値が最小となる、前記候補省エネ制御と省エネ制御対象エリアの組み合わせを抽出して省エネ制御を実行する省エネ制御実行部と、を有すること、
     を特徴とするビルの省エネ制御装置。
  2.  請求項1に記載のビルの省エネ制御装置であって、
     前記迷惑値は、
     前記省エネ制御対象エリアに含まれる1つまたは複数のエリアそれぞれに対する環境悪化指標の内の最大値であること、
     を特徴とするビルの省エネ制御装置。
  3.  請求項2に記載のビルの省エネ制御装置であって、
     前記環境悪化指標は、
     各エリアに対する省エネ制御回数の累積値、または、省エネ制御を実行した際の各エリアの温度変化の累積値、または、省エネ制御を実行した際の各エリアの在籍人数と各エリアの温度変化との積の累積値であること、
     を特徴とするビルの省エネ制御装置。
  4.  請求項1から3のいずれか1項に記載のビルの省エネ制御装置であって、
     前記予測使用電力算出部は、使用電力と環境状態とに基づいて線形回帰を用いて前記ビルの中のエリア毎のエリア別使用電力予測モデルを生成し、前記エリア別使用電力予測モデルを統合して前記ビル使用電力予測モデルを生成し、
     前記省エネ制御時予測使用電力算出部は、使用電力と環境状態と前記候補抽出部で抽出した前記候補省エネ制御と前記省エネ制御対象エリアとに基づいて線形回帰を用いて前記ビルの中のエリア毎に前記候補省エネ制御を実行した場合のエリア別省エネ制御時使用電力予測モデルを生成し、前記エリア別省エネ制御時使用電力予測モデルを統合して前記省エネ制御時ビル使用電力予測モデルを生成すること、
     を特徴とするビルの省エネ制御装置。
  5.  ビルの省エネ制御方法であって、
     前記ビルの設備に対して実行可能な省エネ制御ごとに、実行条件と、実行効果とを関連づけた省エネ制御リストを準備するリスト準備ステップと、
     前記省エネ制御リストと、前記ビルの設備情報とに基づいて使用電力の削減要求のあった際に、前記ビルの前記設備に対して実行可能な候補省エネ制御を抽出する候補抽出ステップと、
     使用電力と環境状態とに基づいて線形回帰を用いてビル使用電力予測モデルを生成し、生成したビル使用電力予測モデルを用いて前記ビルの予測使用電力を算出する予測使用電力算出ステップと、
     使用電力と環境状態と前記候補抽出ステップで抽出した前記候補省エネ制御と省エネ制御対象エリアとに基づいて線形回帰を用いて前記候補省エネ制御を実行した場合の省エネ制御時ビル使用電力予測モデルを生成し、前記省エネ制御時ビル使用電力予測モデルを用いて前記候補省エネ制御を実行した場合の前記ビルの予測使用電力を算出する省エネ制御時予測使用電力算出ステップと、
     前記予測使用電力算出ステップで算出した前記ビルの予測使用電力と、前記省エネ制御時予測使用電力算出ステップで算出した前記候補省エネ制御を実行した場合の前記ビルの予測使用電力との差から前記候補省エネ制御を実行した場合の前記ビルの削減電力を算出する削減電力算出ステップと、
     省エネ制御を実行したことによる前記ビル内の環境への影響度合を示す迷惑値を算出する迷惑値算出ステップと、を含み、
     前記削減電力が削減要求電力以上で、且つ、前記迷惑値が最小となる、前記候補省エネ制御と省エネ制御対象エリアの組み合わせを抽出して省エネ制御を実行すること、
     を特徴とするビルの省エネ制御方法。
  6.  請求項5に記載のビルの省エネ制御方法であって、
     前記迷惑値は、
     前記省エネ制御対象エリアに含まれる1つまたは複数のエリアそれぞれに対する環境悪化指標の内の最大値であり、
     前記環境悪化指標は、
     各エリアに対する省エネ制御回数の累積値、または、省エネ制御を実行した際の各エリアの温度変化の累積値、または、省エネ制御を実行した際の各エリアの在籍人数と各エリアの温度変化との積の累積値であること、
     を特徴とするビルの省エネ制御方法。
  7.  請求項5または6に記載のビルの省エネ制御方法であって、
     前記予測使用電力算出ステップは、使用電力と環境状態とに基づいて線形回帰を用いて前記ビルの中のエリア毎のエリア別使用電力予測モデルを生成し、前記エリア別使用電力予測モデルを統合して前記ビル使用電力予測モデルを生成し、
     前記省エネ制御時予測使用電力算出ステップは、使用電力と環境状態と前記候補抽出ステップで抽出した前記候補省エネ制御と前記省エネ制御対象エリアとに基づいて線形回帰を用いて前記ビルの中のエリア毎に前記候補省エネ制御を実行した場合のエリア別省エネ制御時使用電力予測モデルを生成し、前記エリア別省エネ制御時使用電力予測モデルを統合して前記省エネ制御時ビル使用電力予測モデルを生成すること、
     を特徴とするビルの省エネ制御方法。
PCT/JP2018/011337 2018-03-22 2018-03-22 ビルの省エネ制御装置及びビルの省エネ制御方法 WO2019180865A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018535181A JP6514829B1 (ja) 2018-03-22 2018-03-22 ビルの省エネ制御装置及びビルの省エネ制御方法
PCT/JP2018/011337 WO2019180865A1 (ja) 2018-03-22 2018-03-22 ビルの省エネ制御装置及びビルの省エネ制御方法
CN201880088184.8A CN111656638B (zh) 2018-03-22 2018-03-22 楼宇节能控制装置以及楼宇节能控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011337 WO2019180865A1 (ja) 2018-03-22 2018-03-22 ビルの省エネ制御装置及びビルの省エネ制御方法

Publications (1)

Publication Number Publication Date
WO2019180865A1 true WO2019180865A1 (ja) 2019-09-26

Family

ID=66530758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011337 WO2019180865A1 (ja) 2018-03-22 2018-03-22 ビルの省エネ制御装置及びビルの省エネ制御方法

Country Status (3)

Country Link
JP (1) JP6514829B1 (ja)
CN (1) CN111656638B (ja)
WO (1) WO2019180865A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114237057A (zh) * 2021-12-20 2022-03-25 东南大学 智慧楼宇用电分析的动态建模方法、系统、设备和介质
CN115291555A (zh) * 2022-09-06 2022-11-04 深圳市彩生活网络服务有限公司 基于互联网的智能楼宇数字化信息管理系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685759B (zh) * 2022-10-28 2024-04-16 武汉理工大学 一种基于能量优先级的节能楼宇系统的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013316A (ja) * 2011-05-30 2013-01-17 Ubiteq Inc 省エネルギー装置、省エネルギーシステム及び省エネルギープログラム
JP2014050261A (ja) * 2012-09-02 2014-03-17 Enecyber Inc 受電電力量制御装置
WO2014185149A1 (ja) * 2013-05-16 2014-11-20 三菱電機株式会社 需要家電力制御システム及び需要家電力制御方法
JP2017143650A (ja) * 2016-02-10 2017-08-17 三菱電機ビルテクノサービス株式会社 設備管理装置、設備管理システム及びプログラム
JP2018019592A (ja) * 2017-07-26 2018-02-01 パナソニックIpマネジメント株式会社 エネルギー管理装置およびエネルギー管理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255462B2 (ja) * 2009-01-13 2013-08-07 株式会社日立製作所 電力需給運用管理サーバ、および電力需給運用管理システム
JP2012130176A (ja) * 2010-12-16 2012-07-05 Shimizu Corp 設備制御システム、設備制御方法、及び設備制御プログラム
JP5850240B2 (ja) * 2012-02-21 2016-02-03 清水建設株式会社 電力管理装置
JP6049550B2 (ja) * 2013-06-21 2016-12-21 三菱電機ビルテクノサービス株式会社 電力制限逼迫警報システム
WO2017131026A1 (ja) * 2016-01-26 2017-08-03 日本電気株式会社 電力管理装置及びシステムと方法並びにプログラム
CN107341562A (zh) * 2017-05-25 2017-11-10 杭州赫智电子科技有限公司 一种融合需求响应的楼宇能源管理系统及能源管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013316A (ja) * 2011-05-30 2013-01-17 Ubiteq Inc 省エネルギー装置、省エネルギーシステム及び省エネルギープログラム
JP2014050261A (ja) * 2012-09-02 2014-03-17 Enecyber Inc 受電電力量制御装置
WO2014185149A1 (ja) * 2013-05-16 2014-11-20 三菱電機株式会社 需要家電力制御システム及び需要家電力制御方法
JP2017143650A (ja) * 2016-02-10 2017-08-17 三菱電機ビルテクノサービス株式会社 設備管理装置、設備管理システム及びプログラム
JP2018019592A (ja) * 2017-07-26 2018-02-01 パナソニックIpマネジメント株式会社 エネルギー管理装置およびエネルギー管理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114237057A (zh) * 2021-12-20 2022-03-25 东南大学 智慧楼宇用电分析的动态建模方法、系统、设备和介质
CN114237057B (zh) * 2021-12-20 2023-09-19 东南大学 智慧楼宇用电分析的动态建模方法、系统、设备和介质
CN115291555A (zh) * 2022-09-06 2022-11-04 深圳市彩生活网络服务有限公司 基于互联网的智能楼宇数字化信息管理系统
CN115291555B (zh) * 2022-09-06 2023-06-09 深圳市彩生活网络服务有限公司 基于互联网的智能楼宇数字化信息管理系统

Also Published As

Publication number Publication date
CN111656638A (zh) 2020-09-11
JP6514829B1 (ja) 2019-05-15
JPWO2019180865A1 (ja) 2020-04-30
CN111656638B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US8682492B2 (en) Setting value controlling method and device
US9784464B2 (en) Air-conditioning control system and air-conditioning control method
US20170211830A1 (en) Air-conditioning control system, air-conditioning planning device, and planning method
JP6125104B2 (ja) 空調制御装置、空調制御方法、および、プログラム
JP5914210B2 (ja) エネルギー管理システム
JP2013142494A (ja) 空調機器制御システムおよび空調機器の制御方法
WO2019180865A1 (ja) ビルの省エネ制御装置及びビルの省エネ制御方法
AU2017422574B2 (en) Operation control device, air conditioning system, operation control method, and operation control program
JP6659603B2 (ja) 空調制御装置、空調制御方法、およびプログラム
JP6817588B2 (ja) 空気調和機の最適オン/オフ時刻算出処理を実行するサーバ、および最適オン/オフ時刻算出処理システム
WO2018207324A1 (ja) 空調システム制御方法、空調システム制御装置および空調システム制御プログラム
JP6815928B2 (ja) 電力管理装置及びプログラム
CN111373206B (zh) 空调控制装置、空调系统、空调控制方法以及程序
JP5113568B2 (ja) 環境制御システム
JP2009142113A (ja) 電力制御システム、機器制御装置、及び機器制御プログラム
JP6637323B2 (ja) 設備管理装置及びプログラム
US10823446B2 (en) System of adjusting load of air conditioning and method of adjusting the same
JP7281265B2 (ja) 消費電力量演算装置、空調システム、消費電力量演算方法およびプログラム
JP2012002452A (ja) 設定値管理方法および装置
JP2004163088A (ja) エリア別環境提供制御システム
JP2013228121A (ja) 空調設備の制御装置
JP3806862B2 (ja) 空気調和機の制御方法及び空気調和システム並びにプログラム
US20240011656A1 (en) Determination system
Ikawa et al. Regression model for estimating thermal resource usage in air conditioning systems: daily demand forecast by potential integral method, considering thermal inertia of room and weather conditions
JP2024044386A (ja) エネルギー管理システムおよび方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535181

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910926

Country of ref document: EP

Kind code of ref document: A1