WO2019179308A1 - 一种管道局部减压包裹快速交通运输装置 - Google Patents

一种管道局部减压包裹快速交通运输装置 Download PDF

Info

Publication number
WO2019179308A1
WO2019179308A1 PCT/CN2019/076994 CN2019076994W WO2019179308A1 WO 2019179308 A1 WO2019179308 A1 WO 2019179308A1 CN 2019076994 W CN2019076994 W CN 2019076994W WO 2019179308 A1 WO2019179308 A1 WO 2019179308A1
Authority
WO
WIPO (PCT)
Prior art keywords
running
pipe
pipeline
inner cavity
blocking
Prior art date
Application number
PCT/CN2019/076994
Other languages
English (en)
French (fr)
Inventor
刘凤鸣
Original Assignee
刘凤鸣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘凤鸣 filed Critical 刘凤鸣
Publication of WO2019179308A1 publication Critical patent/WO2019179308A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/10Tunnel systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/12Systems with propulsion devices between or alongside the rails, e.g. pneumatic systems
    • B61B13/122Pneumatic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C11/00Locomotives or motor railcars characterised by the type of means applying the tractive effort; Arrangement or disposition of running gear other than normal driving wheel
    • B61C11/06Locomotives or motor railcars characterised by the type of means applying the tractive effort; Arrangement or disposition of running gear other than normal driving wheel tractive effort applied or supplied by aerodynamic force or fluid reaction, e.g. air-screws and jet or rocket propulsion

Definitions

  • the invention relates to a pipeline partial decompression package fast transportation device, belonging to the technical field of vehicles.
  • the commonly used transportation tools are cars, trains, airplanes, ships, electric vehicles, motorcycles, etc.
  • automobiles which can be divided into passenger cars mainly for passengers, trucks mainly used for carrying goods, special-purpose vehicles for construction engineering, agricultural production, sports competition, etc. according to the use;
  • the adaptability can be divided into ordinary cars and off-road vehicles; according to the type of power plant, it can be divided into piston type internal combustion engine cars, electric vehicles, gas turbine cars.
  • aircraft which can be divided into civilian passenger aircraft, military transport aircraft, military combat aircraft, etc. according to the purpose; according to the type of engine can be divided into propeller aircraft and jet aircraft.
  • the train has regular trains, maglev trains and high-speed trains.
  • the pipeline super high-speed rail developed in the United States represents a development direction of high-speed rail transit in the future, but maintaining the vacuum and suspension state of its pipeline is a technical problem that needs to be solved urgently.
  • the underground tunnel rapid operation system being developed in the United States is also at the expense of its high construction cost and operating cost.
  • saving time is synonymous with improving efficiency, so develop a convenience that has both ground transportation by train and car, and Fast-moving vehicles with aircraft running speed and time saving have very important practical value.
  • an object of the present invention is to provide a transportation device that is more stable, convenient, and fast.
  • the present invention provides a pipeline partial decompression package rapid transportation device, comprising: a running pipe, a running rail, a carrying structure, a control system, a braking system and a driving system, including the following features:
  • the running pipe is an extended pipe structure surrounded by a pipe wall, and the pipe wall is installed with a flow of air flow to a controllable one-way air flow window;
  • the drive system includes a pipe inner cavity plugging type operation driving structure located in the running pipe; the pipe inner cavity plugging type operation driving structure is installed before and after driving the driving structure to drive itself Plug-type pipe-blocking operation drive structure of the running drive device;
  • the driving system comprises a pipeline inner cavity operating blocking structure located in the running pipeline; the pipeline inner cavity running blocking structure is a plugging pipeline running seal behind the running structure of the carrying structure Blocking structure
  • the pipeline inner cavity plugging operation driving structure, one or more of the carrying structures, and the pipeline inner cavity running blocking are arranged in the running direction of the carrying structure from the front to the rear. structure;
  • the drive system includes a duct internal cavity decompression structure, the duct internal cavity decompression structure is an exhaust device provided with an exhaust power device in the operating duct, and an intake of the exhaust power device The port is in direct communication with the operating cavity, and an exhaust port of the exhaust power unit communicates with air in the operating pipe outside the operating cavity.
  • the plug-type pipeline plugging operation driving structure plays a dual role, as a driving device for discharging air inside the pipeline through the one-way airflow window, so that a semi-vacuum state is partially formed in the pipeline, and the driving structure is also driven forward.
  • the device this semi-vacuum condition creates a pressure differential behind the carrier structure, creating a forward urging force applied to the rear of the carrier structure.
  • the interconnection between the pipeline inner cavity blocking operation driving structure, the carrying structure and the pipeline inner cavity operating blocking structure may select a coupler type rigid connection, and the coupler type rigid connection, such as between train cars The hooks are connected.
  • the plugging area of the pipeline inner cavity plugging operation driving structure and the pipeline inner cavity running blocking structure to the cross section of the running pipeline and the blocking area of the carrying structure to the cross section of the running pipeline is selected from 1:1 to 1:0.7, preferably from 1:1 to 1:0.8, more preferably from 1:1 to 1:0.9.
  • the pipe inner cavity plugging operation driving structure is a plug-shaped device installed in the cross section of the inner cavity of the operating pipe which is in front of the operation of the carrying structure and which is capable of closing most of the running pipe.
  • the pipeline inner cavity plugging operation driving structure is an airtight drive structure, a driving type operation structure and a driving type blocking structure which are located in front of the operation of the carrier structure, and can block most of the running pipeline inner cavity.
  • the cross-section is installed with a pipe-blocking running drive structure driving a drive device that runs forward and backward;
  • the drive type plugging structure is a plugging device that can laterally expand and contract to adjust the distance between the outer side surface of the plugging structure and the inner peripheral wall of the running pipe and the tightness of the contact.
  • the pipeline inner cavity operation sealing structure is an airtight sealable structure in the plug-shaped pipeline which can be operated before and after the operation of the transport structure can block the cross section of most of the running pipeline inner cavity;
  • the pipeline inner cavity operation blocking structure is an airtight closed structure running structure and a plugging type blocking structure which are located behind the running structure, and can close the cross section of the inner cavity of most of the running pipelines.
  • the blocking structure can be run in the pipeline that can run forward and backward;
  • the plugging type plugging structure is a plugging device that can laterally expand and contract to adjust the distance between the outer side surface of the plugging structure and the inner peripheral wall of the running pipe and the tightness of the contact.
  • the one-way airflow window includes a passive open one-way airflow window and a mechanical kinetic energy active open one-way airflow window:
  • the passive open type one-way air flow window is a passive open type one-way air flow window structure activated by a pressure difference between the inner and outer sides of the running pipe, and includes an outward passive force when the air pressure in the running pipe is greater than the air pressure outside the running pipe
  • An open type one-way air flow window; the passive open type one-way air flow window is distributed at a plurality of locations of the running pipe wall;
  • the mechanical kinetic energy active open type one-way air flow window is an active open structure driven by mechanical kinetic energy, including an outward active open type one-way air flow window and an inward active open type one-way air flow window, the active open type one-way The air flow window is distributed at a plurality of locations on the wall of the running pipe.
  • the air inlet of the exhaust power device is provided with a gas pressure control open air flow to the controllable one-way air flow valve, the air pressure control is opened for controllable negative pressure control, and the air flow of the one-way air flow valve The direction is from the space within the running cavity to the space outside the running cavity.
  • turbo fan a ducted fan, an axial fan, a ramjet, a pulse jet, a bladeless fan, an electric fan, a fan engine, a ducted fan engine, a turbofan engine, a turbojet, and a stamping Jet engines, pulse jet engines, turbofan jet engines, etc.
  • the pipe inner cavity decompression structure comprises a pipe inner cavity plugging type operation decompression structure, and the pipe inner cavity plugging type operation decompression structure is provided with exhaust power in the pipe inner cavity operation blocking structure
  • the air inlet of the exhaust power device is located at a front portion of the running direction of the pipeline inner cavity sealing structure and communicates with the running cavity of the front portion; the exhaust port of the exhaust power device is located
  • the pipeline inner chamber runs the rear part of the operation of the plugging structure and communicates with the air in the running pipeline behind the pipeline inner chamber sealing structure;
  • the pipeline inner cavity plugging type operation decompression structure includes The pipeline inner-cavity-operated pressure-reducing independent structure of the carrying structure and running behind the carrying structure and the pipeline inner-cavity-type operating decompression combined structure integrated with the carrying structure.
  • the driving end of the carrying structure of the running pipe is provided with an elastic sealing structure, and the elastic sealing structure is an elastic sealing type which is open at an intermediate portion of the inner side wall of the running pipe and can be pressed to the periphery structure.
  • the elastic sealing structure is disposed at a periphery of the inner side wall of the running pipe, and the pipe inner cavity blocking operation driving structure for integration, one or more of the carrying structure and the pipe inner cavity are left in the middle.
  • the pipeline inner cavity operation sealing structure is a pipeline sealing structure provided with a driving device driving the front and rear operation thereof, and the pipeline inner cavity running and blocking independent of the carrier structure and running behind the carrier structure
  • the separate structure and the inner lumen of the pipe are integrated with the carrying structure to operate the plugging combined structure.
  • the drive type plugging structure and/or the plug type plugging structure comprise at least one of the following structural features:
  • a rolling contact plugging structure located outside the pipe inner cavity plugging operation driving structure and/or the pipe inner cavity running blocking structure, and the outer side surface of the rolling contact plugging structure a sealing structure in which the inner side wall of the running pipe is in rolling contact;
  • the plugging structure is a partial protruding structure which is integral with the running structure and can automatically adjust and control the telescopic state, so that not only the inner cavity plugging operation driving structure and/or the inner working cavity of the pipeline can be ensured to be blocked.
  • the sealing effect of the structure does not affect its turning in the pipe due to the length of the two in the pipe.
  • the running rail includes at least one of the following features:
  • the running rail is disposed on at least one of a lower side, an upper side, a side surface, a lower plane, and an upper plane of the inner side surface of the running pipeline;
  • the running rail is provided with a position rail defining structure that controls the running position of the carrying structure within the duct.
  • the carrier structure includes a cabin structure and a carrier table structure, and includes at least one of the following features:
  • a lower portion of the carrying structure is provided with a magnetic levitation structure corresponding to a lower sidewall of the running pipe;
  • the carrying structure has a plurality of said carrying structures running in series before and after.
  • the driving method of the driving device includes at least one of a wheel rail drive, a linear motor drive, a vented drive, and a reaction force drive.
  • the rapid transit device is provided with a position defining structure that operates within the operating pipe, the position defining structure being located at an inner side of the running pipe wall and the carrying structure and/or the pipe inner cavity blocking type Operating a drive structure and/or a matching mating structure of the outer side of the duct lumen operating plugging structure; the position defining structure being distributed over the running duct wall and the carrying structure and/or the duct lumen
  • the plugged running drive structure and/or the plurality of portions of the outer side of the pipe inner cavity operating plugging structure have one or more of the following characteristics:
  • the left and right sides of the inner wall of the running pipe and the corresponding outer side mounting of the carrying structure and/or the pipe inner cavity blocking operation driving structure and/or the pipe inner cavity running blocking structure a magnetic repulsive structure, selecting one or a combination of permanent magnetic and electromagnetism, the inner side wall of the running pipe corresponding to the pipe inner cavity blocking operation driving structure and/or the pipe inner cavity running blocking structure
  • the width of the gap between the outer side faces of the side walls is selected to be 0-50 mm, preferably 0-30 mm, more preferably 0-10 mm;
  • a slide rail is mounted on the left and right sides of the inner wall of the running pipeline, and the side corresponding to the carrying structure and/or the inner cavity plugging operation driving structure of the pipeline and/or the pipeline inner working sealing structure is a pulley is mounted on the outer side of the wall, and the pulley slides along the sliding rail during operation;
  • a pulley is mounted on the left and right sides of the inner wall of the running pipe, and the side wall corresponding to the carrying structure and/or the inner cavity plugging operation driving structure of the pipe and/or the inner cavity running blocking structure of the pipe
  • the outer side is a rigid slide structure that slides along the slide rail during operation.
  • a width of a gap between the inner cavity of the pipe inner cavity blocking operation driving structure and/or the inner circumferential surface of the pipe inner cavity operating blocking structure and the inner circumferential surface corresponding to the running pipe is smaller than an outer circumferential surface of the carrying structure a width of a gap between inner circumferential surfaces corresponding to the running pipe; a peripheral cavity of the pipe inner cavity blocking driving operation structure and/or an outer circumferential surface of the pipe inner cavity operating blocking structure corresponding to the running pipe
  • the width of the gap between the inner peripheral faces is selected to be 0-50 mm, preferably 0-30 mm, more preferably 0-10 mm;
  • the brake system includes actively closing the one-way airflow window on the wall of the running conduit in front of an operating portion of the ducted inner operating drive drive structure.
  • the drive system includes actively opening the one-way airflow window on the wall of the running pipe behind the operating portion of the pipe inner cavity operating blockage structure.
  • An outwardly opening type pipe safety outlet is disposed on a side wall of the running pipe, and a side of the carrying structure is provided with a lateral or inward opening type carrying safety outlet, and the pipe safety exit and the carrying safety exit are not Arranged in equidistant misalignment.
  • four doors are arranged at different distances on both sides of the carriage structure, and two doors are arranged at different distances corresponding to the length of the running pipeline, so that no matter where the carriage is parked, there is always a door and a compartment door. Corresponding, thus ensuring the controllability of fault evacuation.
  • the pipeline partial decompression wrapping rapid transit device further comprising a sensor disposed on the carrying structure, the running rail, the running pipeline, the braking system and the driving system, each of the The sensors are all electrically coupled to the control system.
  • the utility model relates to the application of the pipeline wrapping decompression type rapid transportation device in the development of a rapid transportation device.
  • the present invention adopts a blocking driving structure located at the front and a running blocking structure at the rear, and the carrying vehicle is wrapped between the front and rear structures, and the outer wall is a pipe structure, and is partially closed in a small environment designed in this way.
  • the high-efficiency turbofan engine is loaded on the rear sealing structure, so that the residual and the small amount of air leaking at any time is quickly removed, thereby keeping the small environment containing the carrying vehicle in a semi-vacuum state, and the actual vacuum degree will be Depending on the power of the turbofan engine and the tightness of the small environment, these can be adjusted according to the situation in actual operation.
  • the invention has a passive open type outward-oriented one-way airflow window which is activated by a pressure difference between the inner and outer pipes of the pipeline, and a pipeline inner cavity plugging operation driving structure located in the running pipeline, when the pipeline inner cavity
  • the front air pressure is increased, and the atmospheric pressure difference between the air pressure in the operation pipeline and the air pressure outside the pipeline is formed, and the outward-oriented one-way air flow window is opened, so that the air in the pipeline passes through the outward-oriented one-way air flow window. Rapid outward flow, which in turn forms a low air pressure behind the pipeline internal combustion drive structure.
  • the air pressure in the pipeline behind the pipeline internal combustion driving structure is lower than the air pressure outside the pipeline, and a negative pressure difference is formed outside the pipeline, and the outward-oriented one-way airflow window can be quickly closed, so that the rear side is located at the rear.
  • the carrier structure operates at low air pressure, reducing the forward and lateral air resistance of the carrier structure operating within the pipeline, improving operational efficiency.
  • the present invention is provided with a pipeline internal cavity sealing structure at the same time in the running pipeline and located behind the carrier structure, and the high pressure air located behind it is blocked into the low pressure zone of the carrier structure to maintain the low carrying structure area.
  • the air pressure state reduces the lateral air resistance of the carrier structure running in the pipeline and improves the operating efficiency.
  • the inward-oriented one-way air flow window is actively opened in the rear of the pipeline inner cavity running the sealing structure behind the running carrier device, so that the inward-oriented one-way air flow window is actively opened.
  • the air outside the pipeline enters the pipeline quickly, and eliminates the reverse thrust caused by the negative pressure state formed at the tail of the carrier structure during the operation of the pipeline inner-blocking operation drive structure, thereby improving the operation efficiency.
  • the present invention assists in maintaining the low air pressure state of the carrying structure region by simultaneously providing a pipe inner cavity plugging operation decompression structure in the operating pipe.
  • a pipe inner cavity plugging operation decompression structure located behind the carrier structure is continuously discharged through its exhaust power device.
  • the inflowing air in the pipeline maintains the low air pressure state of the carrying structure area, reduces the lateral air resistance of the carrying structure in the pipeline, and improves the operating efficiency.
  • the invention provides a flexible and retractable connection structure between the pipeline inner cavity blocking operation driving structure and the carrier structure, which can ensure the formation of the negative pressure behind the pipeline inner cavity blocking operation driving structure and avoid the pipeline.
  • the impact force and impact force formed by the forward operation of the carrier structure on the plugged operation drive structure of the pipeline inner cavity ensure the safety of operation.
  • the present invention adopts the one-way airflow window on the wall of the pipeline in front of the operating part of the pipeline internal driving type of the pipeline, so that the air in front of the driving structure of the pipeline inner cavity can not be eliminated, and the pipeline is formed.
  • the inner air resistance layer forms a brake system integrated with the pipe body, which improves the braking efficiency.
  • the pipe inner cavity plugging operation driving structure and the pipe inner cavity running blocking structure of the present invention have a blocking area larger than a cross section of the running pipe to the running pipe.
  • the blocking area that is, the cross-sectional area of the carrying structure is smaller than the cross-sectional area of the pipeline internal cavity blocking operation driving structure, and the cross-sectional area of the carrying structure is smaller than that of the pipeline inner cavity running blocking structure Cross-cutting area, such that the amount of gas leaking through the gap between the pipe inner cavity blocking operation driving structure and the pipe inner cavity operating blocking structure and the running pipe is significantly smaller than the carrying structure and the The volume of the gap between the pipes is run to create a negative pressure.
  • the carrying structure of the present invention can be effectively prevented from being affected by the external environment such as wind, rain, snow, lightning, etc. during operation, because it is operated in the running pipeline, which not only improves the safety of operation, but also significantly reduces the use.
  • the pipeline is simple in structure and convenient in construction, so it can be placed on the ground, under the ground, on the bridge and in the tunnel, which can significantly reduce the investment in road construction.
  • Figure 1 is a top plan view showing the overall structure of the apparatus of the present invention.
  • Figure 2 is a side elevational view showing the overall structure of the apparatus of the present invention.
  • FIG. 3 is a schematic view showing a unidirectional airflow window opening structure disposed on two side walls of the running pipeline;
  • Figure 4 is a schematic view showing the closed structure of the unidirectional air flow window disposed on both side walls of the running pipeline;
  • Figure 5 is a schematic view showing the driving structure of the inner cavity of the pipeline
  • Figure 6 is a schematic view showing the structure of the inner cavity of the pipe
  • Figure 7 is a schematic view showing the overall structure of the carrier structure of the present invention.
  • Figure 8 is a schematic view showing the operation defining structure between the carrying structure and the running pipe
  • Figure 9 is a schematic view showing the inner cavity sealing structure of the running pipe of the present invention.
  • Figure 10 is a schematic view of the elastic sealing structure of the present invention.
  • the present invention includes an operation pipe 1 in which a unidirectional air flow window 3 is disposed on an upper wall 25 and a side wall 5 of the operation pipe 1, including a carrier structure.
  • the front passive opening type 9, the middle closing type 8 and the rear active opening type 10 the one-way air flow window 3 is distributed on the top and left and right sides of the carrying structure.
  • a running inner rail 23 is fastened to the inner bottom surface 23 of the running pipe 1, and a pipe inner cavity blocking operation driving structure 4, a car-type structure carrying structure 2 and a pipe inner working sealing ring are slidably operated on the running rail 24.
  • Blocking structure 19 Blocking structure 19.
  • the pipe inner cavity plugging operation driving structure 4 and the pipe inner cavity running blocking structure 19 are a pipe inner cavity sealing operation structure which makes the running pipe 1 nearly completely closed.
  • the pipeline internal cavity blocking operation driving structure 4 is composed of a driving structure 7, a driving type operating structure 20 and a driving type blocking structure 6, and the pipe inner cavity blocking type operation driving structure 4 is installed in front of the carrying structure 2, and has a Or the above drive device 7, the drive type plugging structure 6 is a telescopic structure, and the degree of contact tightness and the gap distance between the inner side wall of the running pipe 1 can be adjusted by telescopic adjustment.
  • the pipeline inner cavity operating blocking structure 19 is composed of a plugging type operating structure 21 and a plugging type blocking structure 16, and the plugging type blocking structure 16 is a telescopic structure, which can be adjusted between the inner wall of the running pipe by telescopic adjustment.
  • the contact tightness and the gap distance are located in the inner cavity of the pipeline behind the carrying structure 2, and the main sealing is to prevent the atmospheric air in the pipeline behind the carrying structure 2 from flooding into the low-pressure space, thereby affecting the low-pressure operation of the carrying structure 2.
  • the pipe inner cavity plugged operation drive structure 4 is located in front of the carrier structure 2 and is directly connected to the carrier structure 2 via the drive connection structure 22.
  • the duct inner chamber operation blocking structure 19 is located behind the carrier structure 2 and is directly connected to the carrier structure 2.
  • the pipe inner cavity plugged operation drive structure 4 and the carrier structure 2, the pipe inner cavity operation blocking structure 19 and the carrier structure 2, and the carrier structure 2 and the carrier structure 2 are rigidly connected by a hook type.
  • the front portion of the front pipe inner cavity blocking operation drive structure 4 of the carrying structure 2 is provided with a vertical direction and forwardly extending airflow dividing device 11, and the dividing device 11 is used for blocking the pipe inner cavity driving operation structure.
  • the airflow in front of the 4 is divided into gas flows to the left and right sides, reducing the forward running air resistance.
  • a passive open type one-way airflow window 9 is disposed on the two side walls 5 of the running pipe 1, when the air pressure in the running pipe 1 is greater than the air outside the running pipe 1.
  • the passive open type one-way air flow window 9 is passively opened, and is open type 9; when the air pressure in the running pipe 1 is equal to or smaller than the air pressure outside the running pipe 1, the passive open type one-way air flow window 9 is automatically closed. Closed 8.
  • the air pressure behind the running direction of the pipeline inner cavity blocking operation driving structure 4 is lower than the external air pressure of the running pipeline 1, forming a semi-vacuum state in the running part of the running pipeline 1, which significantly reduces the carrying structure 2 Forward running resistance.
  • an active open type one-way air flow window 10 is disposed on the two side walls 5 and the upper wall 25 of the running pipe 1 when the pipe in the running pipe 1 is operated.
  • the active opening type one-way air flow window 10 is actively opened, and is opened 10, and the air outside the running pipe 1 quickly flows into the running pipe 1 to make the inside of the pipe.
  • the low air pressure state behind the running direction of the cavity operation blocking structure 19 is quickly corrected, and the front and rear pressure difference between the pipe inner cavity blocking operation driving structure 4 and the pipe inner cavity operation sealing structure 19 is reduced, and the pipe cavity is significantly improved.
  • the pipe inner cavity blocking operation driving structure 4 is completely or incompletely closed in the running pipe 1 and has a small outer circumference adjacent to the running pipe 1.
  • the space or the closed type without contact space, the gap width between the outer circumferential surface of the pipeline inner cavity blocking operation driving structure 4 and the inner circumferential surface of the running pipeline 1 is selected to be 0-50 mm, preferably 0-30 mm. More preferably, it is 0-10 mm.
  • a position defining structure of the pipe inner cavity blocking operation driving structure 4 and/or the carrying structure of the carrying structure 2 in the running pipe 1 is provided on both inner side walls of the running pipe 1.
  • the position defining structure is a magnetic device 27, and another magnetic device 27 corresponding to the magnetic device 27 is disposed on both outer side walls of the pipe inner cavity blocking operation driving structure 4 and/or the carrier structure 2 for holding
  • the pipeline inner cavity blocking operation drive structure 4 and/or the carrier structure 2 maintain a certain running space between the operation pipeline and the operation pipeline 1 to avoid frictional collision.
  • an exhaust power device is arranged in the pipe inner cavity sealing structure 19 to form a pipe inner cavity blocking type operation decompression structure 19 , which is arranged behind the carrying structure 2 .
  • the pipeline internal cavity plugging operation decompression structure 19 controls the open exhaust power unit 15 through the negative pressure, so that air leaking into the operation cavity 18 during operation is entered from the air inlet 14 and discharged from the air outlet 17 Because the airflow opening valve 13 of the air inlet is under negative pressure control, that is, when the air inlet of the exhaust power device 15 reaches the set negative pressure value, the airflow opening valve 13 on the side of the running cavity 18 can be opened.
  • the air located in the operating cavity 18 is discharged into the operating pipe 1 behind the pipe inner-blocking operation decompression structure 19 via the exhaust power unit 15, so that the low-pressure state of the carrier structure 2 region can be continuously maintained.
  • the carrying structure 2 is a cargo-top structure capable of driving in and carrying small vehicles and other articles.
  • the cross-sectional area of the pipe inner cavity operation blocking structure 19 is larger than the cross-sectional area of the carrier structure 2, and the pipe inner cavity operation sealing structure 19 and the inner side of the running pipe 1 are provided.
  • the gap between them is smaller than the gap between the carrier structure 2 and the inner side of the running pipe 1.
  • the ratio of the ratio of the cross-sectional area of the conduit inner working closure structure 19 to the cross-sectional area of the carrier structure 2 is selected from 1:1 to 1:0.7, preferably from 1:1 to 1:0.8, more preferably from 1:1 to 1: 0.9.
  • the outer diameter of the carrying structure 2 is 2 meters wide and 3 meters wide
  • the ratio of 1:0.7 the outer diameter of the pipe inner cavity sealing structure 19 can be 3.9 X 2.2 meters;
  • the outer diameter is calculated by 2 meters wide and 3 meters wide; when the ratio is 1:0.8, the outer diameter and width of the pipe inner cavity sealing structure 19 can be 3.4 X 2.2 meters; when the ratio is 1:0.9, the pipe inner cavity running seal
  • the outer diameter and width of the blocking structure 19 can be selected to be 3.2 X 2.1 meters.
  • the cross-sectional area of the pipeline inner cavity blocking operation driving structure 4 is larger than the cross-sectional area of the carrier structure 2, and the pipeline inner cavity sealing operation driving structure 4 and operation
  • the gap between the inner sides of the duct 1 is smaller than the gap between the carrying structure 2 and the inner side of the running duct 1.
  • the ratio of the ratio of the cross-sectional area of the pipeline internal cavity-blocking operation drive structure 4 to the cross-sectional area of the carrier structure 2 is selected from 1:1 to 1:0.7, preferably from 1:1 to 1:0.8, more preferably from 1:1. 1:0.9.
  • the ratio of 1:0.7, the outer diameter and the width of the pipeline inner cavity blocking driving structure 4 can be 3.9 X 2.2 meters;
  • the outer diameter of 2 is calculated by the height of 2 meters and the width of 3 meters; when the ratio is 1:0.8, the outer diameter and width of the pipeline inner cavity blocking operation drive structure 4 can be 3.4 X 2.2 meters; the ratio is 1:0.9, the pipeline
  • the outer diameter and the width of the inner cavity plugged operation drive structure 4 can be selected to be 3.2 X 2.1 meters.
  • the pipe inner cavity sealing structure includes a rolling contact plugging structure 31, a contact state blocking plugging structure 28, and a sliding contact plugging structure 29.
  • a rolling contact plugging structure 31 is located outside the pipe inner cavity blocking operation driving structure 4 and is fixed to the pipe inner cavity blocking operation driving structure 4 by the fixing arm 32, and the rolling contact type
  • the outer side surface of the blocking structure 31 is in rolling contact with the inner side wall of the running pipe 1;
  • the contact state blocking structure 28 is located outside the pipe inner cavity blocking operation driving structure 4 and is fixed by the fixing arm 30
  • the outer side surface of the contact state-type plugging structure 28 is in contact with the inner side wall of the running pipe 1 in a contact state;
  • the sliding contact seal is fixed to the inner cavity plugging operation driving structure 4;
  • the blocking structure 29 is located outside the pipe inner cavity blocking operation driving structure 4 and is fixed to the pipe inner cavity blocking operation driving structure 4 by the fixing arm 30, and the sliding contact blocking structure 29
  • the outer side surface is in sliding contact with the inner side wall of the running pipe 1.
  • the elastic plugging structure is an elastic plugging structure which is open at an intermediate portion of the vehicle inlet end of the inner side wall of the running pipe 1 and can be pressed toward the periphery, and the carrying structure 2 can pass through the elastic
  • the plugging structure enters, passing through the elastic deformation of the elastic plugging structure, including the non-extrusion state 33, the compressed state 34, and the bottom non-extrusion state 35. This ensures that the air in the running duct 1 is not carried into the operating space of the carrying structure 2.
  • the bottom of the carrying structure 2 and the running rail 7 may be driven by a wheel rail and/or a linear motor.
  • the magnetic device 27 employs a permanent magnetic device and/or an electrically magnetic device.
  • the gap between the inner side surface of the top tube wall of the running pipe 1 and the top of the carrying structure 2 is between 0 and 50 mm, preferably between 0 and 30 mm, more preferably between 0 and 10 mm.
  • the exhaust power unit 15 may employ one or more of an electric fan, a fan engine, a ducted fan engine, a turbofan engine, a turbojet engine, a ramjet engine, a pulsating jet engine, and a turbofan jet engine.
  • the above embodiment further includes installation on the carrying structure 2, the running rail 7, the running pipeline 1, the exhaust power device 15, the one-way airflow window 3, the carrying structure 2, the inner cavity plugging operation driving structure 4, and the pipeline.
  • the cavity operates a sensor on the plugging structure 19, each sensor being electrically coupled to the control system.
  • the inner side walls of the running pipe 1 may be provided with sliding rails, and the outer outer side walls of the carrying structure 2 and/or the inner cavity blocking driving drive structure 4 are provided with pulleys matched with the sliding rails. .
  • the driving device 7 of the pipeline inner cavity blocking operation driving structure 4 is started by the control system, so that the pipeline inner cavity blocking operation driving structure 4 is operated forward, and at this time, the pipeline inner cavity sealing operation is performed.
  • the air pressure in front of the driving structure 4 increases as the running speed increases.
  • the passive open type one-way airflow window 9 located in front of the carrying structure 2 is opened, forming The air flows from inside to outside.
  • the pipeline inner cavity blocking operation driving structure 4 runs through the opened one-way air flow window, the air volume in the running pipeline 1 is significantly reduced due to the blocking and exhausting action of the pipeline inner cavity blocking operation driving structure 4
  • the inner cavity of the pipeline is driven to drive the structure 4 to form a low air pressure, so that the one-way airflow window 3 is passively closed 9 to form a local low pressure of the inner cavity of the pipeline.
  • the pipeline inner cavity operation blocking structure 19 is located behind the carrier structure 2, and the plugging prevents the air behind the carrier structure 2 from entering a large amount, and maintains the partial low air pressure of the carrier structure 2.
  • the exhaust gas power unit 15 of the plugging structure 19 is activated in the pipeline inner chamber, and the carrier structure 2 is operated in a low air pressure state in the operating duct 1 at the same time, while the exhaust power unit 15 is sucked by high speed and will be located in the carrying structure 2.
  • a small amount of air leaking around is exhausted through the exhaust port 17 to the rear of the pipe inner cavity of the carrying structure 2 to operate behind the blocking structure 19, so that the surrounding structure of the carrying structure 2 is maintained at a low air pressure, the air resistance is lowered, and the wheel-rail driving is started.
  • / or linear motor drive the overall push carrier structure 2 forward running, to maintain local low air pressure, low resistance state operation.
  • the gap between the outer side surface of the pipeline inner working block and the inner side surface of the running pipe 1 is significantly smaller than the gap between the outer side surface of the running structure 2 and the inner side surface of the running pipe 1, so that the amount of air leaked during operation Significantly less than the amount of air it should have in its normal pressure state, creating a negative pressure and reducing air resistance.
  • Experimental materials 1.5mm thick stainless steel plate, 30 X 30mm angle iron, 3mm diameter steel wire rope, rubber pad, hinge, permanent magnet block, 15KW three-phase motor, vertical winch, bearing, 0-100KPa vacuum pressure gauge.
  • the 590 X 590 X 590mm (length, width and height) square bracket is made of angle iron.
  • the outer circumference of the bracket is packed with 1.5mm thick stainless steel plate, and the upper and lower sides and the left and right sides are symmetrically installed.
  • the front side of the running direction is mounted with a pull hook and a protruding structure as shown in Fig. 5.
  • the rear part of the running direction is a window structure that can be opened and closed.
  • the preparation of the carrier structure first made of 1200 X 580 X 580mm (length, width and height) rectangular bracket with angle iron, the outer circumference of the bracket is packed with 1.5mm thick stainless steel plate, and four bearings are mounted symmetrically on the lower left and right sides and above.
  • the sliding wheel has a window structure that can be opened and closed at the rear of the running direction.
  • the square bracket of 590 X 590 X 590mm (length, width and height) is made of angle iron.
  • the outer circumference of the bracket is packed with 1.5mm thick stainless steel plate, and the upper and lower sides and the left and right sides are symmetrically installed. Bearing.
  • Experiment 1 Fix the pulling operation device to the outside of the pipe at one end (outlet end) of the pipe, connect the wire rope with the plugging operation drive structure of the pipe inner cavity, and then push the pipe inner cavity plugging operation drive structure into the pipe and Pull to the other end of the pipe (inlet end).
  • a load of 100 kg is loaded into the carrying structure, pushed into the running pipe through the inlet end, and then pushed into the inner cavity of the pipe to operate the plugging structure.
  • the order in the pipeline is the pipeline inner cavity plugging operation driving structure, the carrying structure, and the pipeline inner cavity running blocking structure which are connected to the pulling operation device, and are not directly connected to each other.
  • the pulling operation device is started, the steel wire rope is pulled at a speed of 15 m/s, and the driving operation structure of the inner cavity of the pipeline is driven to slide forward in the pipeline, and the driving structure of the inner cavity of the pipeline that is pulled by the rope is seen to pass through.
  • the part is presented with a one-way airflow window that is opened immediately before the passage of the pipeline inner cavity blocking operation drive structure, and is quickly closed after passing through, and the visible carrier structure and the subsequent pipeline inner cavity operation sealing structure are also fast in the pipeline. Running forward, the one-way airflow window is closed.
  • the pipe inner cavity plugging operation driving structure discharges the air in the pipe in front of the pipe through the one-way air flow window, and the blocking function of the carrying structure and the pipe inner working blockage structure in the rear of the pipe, so that the rear formation is low.
  • the air pressure, and thus the carrier structure behind it, and the inner cavity of the pipeline run the blocking structure forward. The experiment is over.
  • Experiment 2 Experiment again, under the above conditions, a vacuum pressure gauge and a reading camera are installed at the rear of the pipeline inner cavity blocking driving structure to close the inlet end of the running pipeline.
  • the pulling operation device is started, the steel wire rope is pulled at a speed of 30 m/s, and the driving operation structure of the inner cavity of the pipeline is driven to slide forward in the pipeline, and the driving structure of the inner cavity of the pipeline is seen to be driven by the rope.
  • the part is presented with a one-way airflow window that is opened immediately before the passage of the pipeline inner cavity blocking operation drive structure, and is quickly closed after passing through, and the visible carrier structure and the subsequent pipeline inner cavity operation sealing structure are also fast in the pipeline.
  • the one-way airflow window is closed and the pressure change displayed on the vacuum gauge is read.
  • the number displayed on the vacuum gauge decreased from the initial 100KPa to 84KPa, ending the experiment. It is indicated that the technique of the present invention generates a negative pressure locally in the running pipe.
  • Experimental materials 8.5KW plant protection machine, 11V 8000mA DUPU lithium battery, diameter 180mm rubber wheel, ESC, 0-100KPA vacuum pressure gauge, remote control, bearing, other the same as the second embodiment.
  • Experiment 1 Load 100 kg of load in the carrying structure, and push the driven inner cavity plugging operation drive structure, the carrying structure and the pipe inner cavity running blocking structure into the running pipe through the inlet end.
  • the order in the pipeline is the driven inner cavity plugging operation driving structure, the carrying structure and the pipeline inner working sealing structure, which are not directly connected to each other.
  • the plant protection machine is started remotely and runs in the pipeline at a speed of 30 m/s. At this time, it can be seen that the part of the driven inner cavity plugging operation drive structure passes through the unidirectional air flow window and is blocked in the driven inner cavity.
  • the driving structure of the running mode is opened momentarily after the moment, and is quickly closed after passing through.
  • the visible carrying structure and the subsequent pipe inner working sealing structure are also rapidly running forward in the pipe, and the one-way air flow window is closed.
  • the driven internal cavity plugging operation driving structure discharges the air in the pipe in front of the pipe through the one-way air flow window, and the blocking function of the carrier structure and the pipe inner working blockage structure behind it, so that A low air pressure is formed at the rear, and the carrier structure and the pipeline inner working sealing structure which are driven behind are driven forward. The experiment is over.
  • Experiment 2 Experiment again, under the above conditions, a vacuum pressure gauge and a reading camera are installed at the rear of the driven inner cavity plugging operation drive structure to close the inlet end of the running pipeline.
  • the remote control starts the driven inner cavity plugging operation drive structure, and slides forward in the pipeline at a speed of 30 m/s.
  • the part of the driven inner cavity plugging operation drive structure is unidirectional.
  • the air flow window is opened at the moment before the driven inner cavity plugging operation drive structure passes, and then quickly closes after passing, and the visible carrier structure and its subsequent pipe inner cavity operation blocking structure are also quickly advanced in the pipeline. Operation, the one-way air flow window is closed, and the pressure change displayed on the vacuum pressure gauge is read.
  • the technique of the present invention generates a negative pressure locally in the running pipe.
  • Experimental materials 150mm X 50mm X 10mm neodymium iron boron rare earth permanent magnet plate, 120mm 12 leaf ducted fan engine, remote control, stainless steel plate.
  • Preparation of the experimental device welding 400 X 400mm stainless steel square tube, arc-shaped extension, length 6 meters.
  • a stainless steel box with a height of 380 mm, a width of 380 mm and a length of 400 mm is welded, and a circular hole with a diameter of 155 mm is cut in front and rear, and a 120 mm 12-leaf ducted fan engine is installed in a stainless steel box with the air inlet at the front and the exhaust port at the rear.
  • the NdFeB rare earth permanent magnet plate is continuously arranged at a height of 250mm to 300mm on the inner side wall of the stainless steel square tube, and the NdFeB rare earth is continuously arranged in the opposite magnetic pole direction at the corresponding position on the outer side of the stainless steel case (250mm to 300mm) Magnetic magnet plate.
  • Embodiment 5 Effect of the internal cavity plugging operation decompression structure on the maintenance of low air pressure in the running pipeline:
  • the unidirectional airflow window is opened at the moment before the pipeline inner cavity blocking operation drive structure passes, and is quickly closed after passing through, and the visible carrier structure is also quickly moved forward in the pipeline, and the one-way airflow window is closed. status.
  • the inner cavity plugging operation drive structure is pulled to the outlet end, the inner cavity plugging operation driving structure is fixed, and the pressure value displayed on the vacuum pressure gauge is continuously observed for 5 minutes.
  • the experimental group started the ducted fan engine, and the control group kept the ducted fan engine off. Results The number displayed in the vacuum gauge of the control group decreased from 100KPa to 85KPa at the beginning, and the pressure in the pipeline recovered to 100KPa after 30 seconds.
  • the number displayed in the vacuum gauge of the experimental group decreased from the initial 100KPa to 86KPa. After 30 seconds of follow-up observation, the pressure in the pipeline was 95KPa, and it remained at 99KPa at 5 minutes, indicating that the pressure-reducing structure of the pipeline internal cavity blocking operation helps to maintain the negative pressure state in the pipeline and ends the experiment.
  • Embodiment 6 The experiment for establishing a negative pressure package of the carrier system of the present invention:
  • the pipeline inner cavity blocking operation driving structure, the carrying structure and the pipeline inner cavity blocking operation running decompression structure are sequentially connected, the vacuum pressure gauge is placed in the middle of the carrying structure and the camera is installed, and then pushed into the running pipeline, and used
  • the rubber strip blocks the gap between the decompression structure and the running pipeline in the inner cavity of the pipeline, and the rubber strip is used to block the gap between the driving operation structure of the pipeline inner cavity and the running pipeline.
  • the ducted fan engine was turned on for 10 minutes, the ducted fan engine was turned off, the carrier system was taken out, and the pressure value displayed on the vacuum gauge on the carrier was observed.
  • the number displayed by the vacuum pressure gauge decreased from the initial 100KPa to 82KPa, indicating that the pipeline internal cavity plugging operation driving structure, the carrying structure and the pipeline internal cavity blocking operation decompression structure in the running pipeline realized the semi-vacuum wrapping.
  • the power of the 120mm 12-leaf ducted fan engine is lower, and the negative pressure formed by increasing the power of the ducted fan engine will be lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Refuse Collection And Transfer (AREA)
  • Pipeline Systems (AREA)
  • Ventilation (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Exhaust Silencers (AREA)

Abstract

一种管道局部减压包裹快速交通运输装置,其包括运行管道(1)、运行导轨、运载结构(2)、控制系统、制动系统和驱动系统,运行管道(1)为由管道壁包围的延伸性管道结构,管道壁上安装有气流流向可控的单向气流窗(9),驱动系统包括位于管道内的可沿着管道运行的管道内腔封堵式运行驱动结构(4)、管道内腔运行封堵结构(19)和管道内腔封堵式运行减压结构。该装置由于在运行管道(1)上安装了单向气流窗(9)及管道内腔封堵式运行驱动结构(4),可显著降低运载结构的运行阻力,与现行快速交通运输装置相比,具有效率高,成本低,速度快,安全性高等特点。

Description

一种管道局部减压包裹快速交通运输装置 技术领域
本发明涉及一种管道局部减压包裹快速交通运输装置,属于车辆技术领域。
背景技术
在我们的生活中,常用的运输工具有汽车、火车、飞机、船舶、电动车、摩托车等。其中,汽车的种类很多,按照用途可分为主要供人员乘坐的载客汽车、主要用于运载货物的载货汽车、用于建筑工程、农业生产、运动竞技等的特殊用途汽车;按照对道路的适应性可分为普通汽车和越野车;按照动力装置类型可分为活塞式内燃机汽车、电动汽车、燃气轮汽车。飞机的种类也很多,按照用途可分为民用客运飞机、军用运输飞机、军用战斗飞机等;按照发动机的类型可分为螺旋桨飞机和喷气式飞机。火车有普通列车、磁悬浮列车和高速列车等。目前美国正在开发的管道超级高铁代表未来高速轨道交通的一个发展方向,但维持其管道的真空及悬浮状态运行是目前亟待解决的技术难题。另外在美国正在开发的地下隧道快速运行系统,也以其高昂的建设成本和运营成本为代价。随着社会的进步和时代的发展,人们对如何提高对时间的利用效率越来越高,节约时间也就成为提高效率的代名词,因此开发一种既具有火车和汽车地面运输的便捷性,又具有飞机运行速度而节约时间的快速交通工具,具有非常重要的实用价值。
发明内容
针对上述问题,本发明的目的是提供一种更加运行稳定便捷快速的交通运输装置。
为实现上述目的,本发明提供一种管道局部减压包裹快速交通运输装置,包括:运行管道、运行导轨、运载结构、控制系统、制动系统和驱动系统,包括如下特征:
1)所述运行管道为由管道壁包围的延伸性管道结构,所述管道壁上安装有气流流向可控的单向气流窗;
2)所述驱动系统包括位于所述运行管道内的管道内腔封堵式运行驱动结构;所述管道内腔封堵式运行驱动结构为位于所述运载结构运行前方的安装有驱动其自身前后运行的驱动装置的塞状管道封堵式运行驱动结构;
3)所述驱动系统包括位于所述运行管道内的管道内腔运行封堵结构;所述管道内腔运行封堵结构为位于所述运载结构运行后方的可以前后运行的塞状管道内运行封堵结构;
4)所述运行管道内以所述运载结构运行方向从前往后顺序排列有所述管道内腔封堵式运行驱动结构、一个或一个以上的所述运载结构、所述管道内腔运行封堵结构;
5)所述管道内腔封堵式运行驱动结构、所述运载结构和所述管道内腔运行封堵结构的外周壁与所述运行管道内周壁之间形成运行腔隙;
6)所述驱动系统包括管道内腔减压结构,所述管道内腔减压结构为位于所述运行管道内的设置有排气动力装置的排气装置,所述排气动力装置的进气口与所述运行腔隙直接相通,所述排气动力装置的排气口与所述运行腔隙之外的所述运行管道内的空气相通。
所述塞状管道封堵运行驱动结构发挥双重作用,既作为将管道内空气通过单向气流窗排出管道外的驱动装置,使管道内局部形成半真空状态,同时也是运载结构向前运行的驱动装置,这种半真空状态与运载结构后方形成压差,产生施加到运载结构后部的向前推动力。
所述管道内腔封堵式运行驱动结构、所述运载结构和所述管道内腔运行封堵结构之间的相互连接可选择车钩式刚性连接,所述车钩式刚性连接,如列车车厢之间的车钩连接。
所述管道内腔封堵式运行驱动结构和所述管道内腔运行封堵结构对所述运行管道的横切面的封堵面积与所述运载结构对所述运行管道的横切面的封堵面积之比的范围选择1:1-1:0.7,优选1:1-1:0.8,更优选1:1-1:0.9。
所述管道内腔封堵式运行驱动结构具有如下至少一种特征:
1)所述管道内腔封堵式运行驱动结构为位于所述运载结构运行前方的不透空气的可封闭大部分运行管道内腔横断面的安装有驱动其自身前后运行的驱动装置的塞状管道封堵式运行驱动结构;
2)所述管道内腔封堵式运行驱动结构为位于所述运载结构运行前方的不透空气的由驱动结构、驱动型运行结构和驱动型封堵结构组成的可封闭大部分运行管道内腔横断面的安装有驱动其自身前后运行的驱动装置的管道封堵式运行驱动结构;
3)所述驱动型封堵结构为可以侧向伸缩进而调节所述封堵结构外侧面与所述运行管道内周壁之间的距离及接触的紧密程度的封堵装置。
所述管道内腔运行封堵结构具有如下至少一种特征:
1)所述管道内腔运行封堵结构为位于所述运载结构运行后方的不透空气的可封闭大部分运行管道内腔横断面的可以前后运行的塞状管道内运行封堵结构;
2)所述管道内腔运行封堵结构为位于所述运载结构运行后方的不透空气的由封堵型运行结构和封堵型封堵结构组成的可封闭大部分运行管道内腔横断面的可以前后运行的管道内运行封堵结构;
3)所述封堵型封堵结构为可以侧向伸缩进而调节所述封堵结构外侧面与所述运 行管道内周壁之间的距离及接触的紧密程度的封堵装置。
所述单向气流窗包括被动开启式单向气流窗和机械动能主动开启式单向气流窗:
1)所述被动开启式单向气流窗为由所述运行管道内外气压差启动的被动开启式单向气流窗式结构,包括所述运行管道内气压大于所述运行管道外气压时的外向被动开启式单向气流窗;所述被动开启式单向气流窗分布于所述运行管道壁的多个部位;
2)所述机械动能主动开启式单向气流窗为由机械动能驱动的主动开启式结构,包括外向主动开启式单向气流窗和内向主动开启式单向气流窗,所述主动开启式单向气流窗分布于所述运行管道壁的多个部位。
所述排气动力装置的进气口前部设置有气压控制开启的气流流向可控的单向气流阀,所述气压控制开启为可控的负压控制开启,所述单向气流阀的气流方向为从所述运行腔隙内的空间流向所述运行腔隙以外的空间。
所述排气动力装置常见的有涡轮风扇、涵道风扇、轴流风扇、冲压喷气、脉冲喷气、无叶风扇、电动风扇、风扇发动机、涵道风扇发动机、涡轮风扇发动机、涡轮喷气发动机、冲压喷气式发动机、脉动喷气式发动机、涡轮风扇喷气发动机等。
所述管道内腔减压结构包含有管道内腔封堵式运行减压结构,所述管道内腔封堵式运行减压结构为在所述管道内腔运行封堵结构内设置有排气动力装置;所述排气动力装置的进风口位于所述管道内腔运行封堵结构的运行方向的前部并与前部的所述运行腔隙相通;所述排气动力装置的排气口位于所述管道内腔运行封堵结构的运行后部并与所述管道内腔运行封堵结构后方的所述运行管道内的空气相通;所述管道内腔封堵式运行减压结构包括独立于所述运载结构且在所述运载结构后方运行的管道内腔封堵式运行减压独立结构和与所述运载结构为一体的管道内腔封堵式运行减压组合结构。
所述运行管道的所述运载结构的驶入端设置有弹性封堵结构,所述弹性封堵结构为位于所述运行管道的内侧壁的中间部位开口的可以向周边挤压的弹性封堵式结构。
所述弹性封堵结构设置于所述运行管道内侧壁的周边,中间留有供一体化的所述管道内腔封堵式运行驱动结构、一个或一个以上的所述运载结构和管道内腔运行封堵结构运行通过的开口。当所述一体化结构通过时,弹性封堵结构始终保持与所述一体化结构外壁的紧密接触,从而避免管道内的空气经外露的所述运载结构与所述运行管道之间的间隙(运载腔)大量进入所述运载结构运行时的运载腔。
所述管道内腔运行封堵结构为设置有驱动其自身前后运行的驱动装置的管道封堵结构,包括独立于所述运载结构且在所述运载结构后方运行的所述管道内腔运行封堵独立结构和与所述运载结构为一体的所述管道内腔运行封堵组合结构。
所述驱动型封堵结构和/或封堵型封堵结构包含有如下至少一种结构特征:
1)滚动接触式封堵结构,位于所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧,且所述滚动接触式封堵结构的外侧面与所述运行管道内侧壁呈滚动式接触的封堵结构;
2)临接触状态式封堵结构,位于所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧,且所述临接触状态式封堵结构的外侧面与所述运行管道内侧壁呈临接触状态式接触的封堵结构;
3)滑动接触式封堵结构,位于所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧,且所述滑动接触式封堵结构的外侧面与所述运行管道内侧壁呈滑动式接触的封堵结构。
所述封堵结构为与运行结构为一体的可以自动调节控制伸缩状态的局部凸出结构,这样不仅可以保证所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的封堵效果,同时又不会由于两者在管道内的长度影响其在管道内的转弯。
所述运行导轨包含有如下至少一种特征:
1)所述运行导轨设置于所述运行管道的内侧面的下侧面、上侧面、侧面、下平面、上平面的至少一个部位;
2)所述运行导轨与所述驱动装置之间为轮轨驱动结构、直线电机驱动结构、磁悬浮装置结构、反作用力驱动结构的至少一种;
3)所述运行导轨设置有控制所述运载结构在管道内运行位置的位置导轨限定结构。
所述运载结构包括车厢式结构和载物台式结构,包含有如下至少一种特征:
1)设置有独立的驱动装置;
2)位于所述管道内腔封堵式运行驱动结构的后方;
3)所述运载结构的后方跟随有所述管道内腔运行封堵结构;
4)安装有纵向延伸的飞行机翼样结构;
5)所述运载结构的下部设置有与所述运行管道下侧壁所对应的磁悬浮结构;
6)所述运载结构有多个所述运载结构前后串联组合运行。
所述驱动装置的驱动方式包括轮轨驱动、直线电机驱动、排气式发动驱动、反作用力发动驱动的至少一种。
所述快速交通运输装置设置有在所述运行管道内运行的位置限定结构,所述位置限定结构为位于所述运行管道壁内侧面和所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧面的相互匹配的配对结构;所述位 置限定结构分布于所述运行管道壁和所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧面的多个部位,具有下列一种或多种特征:
1)所述运行管道的内壁的左右两侧与所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的所对应的外侧面安装有磁性相斥结构,选择永久磁性和电动磁性的一种或组合,所述运行管道的内侧壁与所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构对应的侧壁外侧面之间间隙的宽度选择0-50毫米,优选0-30毫米,更优选0-10毫米;
2)所述运行管道的内壁左右两侧安装有滑轨,所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构所对应的侧壁外侧安装有滑轮,运行时所述滑轮沿着所述滑轨滑行;
3)所述运行管道的内壁左右两侧安装有滑轮,所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构所对应的侧壁外侧为硬性滑轨结构,运行时所述滑轮沿着所述滑轨滑行。
所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外周面与所述运行管道对应的内周面之间的间隙的宽度小于所述运载结构的外周面与所述运行管道对应的内周面之间的间隙的宽度;所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外周面与所述运行管道对应的内周面之间的间隙的宽度选择0-50毫米,优选0-30毫米,更优选0-10毫米;。
所述制动系统包括主动关闭位于所述管道内腔封堵式运行驱动结构的运行部位前方的位于所述运行管道壁上的所述单向气流窗。
所述驱动系统包括主动开启位于所述管道内腔运行封堵结构运行部位后方的位于所述运行管道壁上的所述单向气流窗。
所述运行管道侧壁上设置有向外开启式的管道安全出口,所述运载结构侧面设置有侧向或向内开启式的运载安全出口,所述管道安全出口与所述运载安全出口为不等距错位方式排列。例如在运载结构一节车厢两侧不等距离的设置4个门,在运行管道的对应长度不等距离的设置两个门,这样无论车厢停在什么位置,总有一个门与车厢门是相对应的,进而保证了故障疏散的可控性。
所述的一种管道局部减压包裹快速交通运输装置,还包括设置在所述运载结构、所述运行导轨、所述运行管道、所述制动系统和所述驱动系统上的传感器,各所述传感器均与所述控制系统电连接。
所述的管道包裹减压式快速交通运输装置在快速交通运输装置开发中的应用。
本发明由于采取以上技术方案,其具有以下优点:
1、本发明由于采用了位于前方的封堵驱动结构和后方的运行封堵结构,将运载车辆包裹在前后结构之间,而外壁为管道结构,在这样设计的小环境下是处于局部相对密闭状态,此时在后方的封堵结构上加载高效涡轮风扇发动机,使残留以及随时少量漏入的空气被迅速清除出去,进而保持了含有运载车辆的小环境处于半真空状态,其实际真空度将取决于涡轮风扇发动机的功率以及小环境的密闭程度,这些在实际运作中可以根据情况进行调整。
2、本发明由于在管道壁上设置有由管道内外气压差启动的被动开启式的外向型单向气流窗,同时有位于运行管道内的管道内腔封堵式运行驱动结构,当管道内腔封堵式运行驱动结构在管道内运行时,前方气压增大,形成运行管道内气压大于管道外气压的大气压差,打开外向型单向气流窗,使管道内的空气通过外向型单向气流窗快速向外流动,进而形成管道内腔封堵式运行驱动结构后方低气压。这时管道内腔封堵式运行驱动结构后方的管道内的气压低于管道外的气压,与管道外形成负的压差,又可使外向型单向气流窗迅速关闭,使位于其后方的运载结构在低气压状态下运行,降低运载结构在管道内运行的前向和侧向空气阻力,提高运行效率。
3、本发明由于在运行管道内同时设置了管道内腔运行封堵结构且位于运载结构的后方,封堵位于其后方的高压空气进入所述运载结构的低气压区,维持运载结构区域的低气压状态,降低运载结构在管道内运行的侧向空气阻力,提高运行效率。
4、本发明由于在管道壁上设置有机械动能主动开启式单向气流窗,在运行中的运载装置的后方的管道内腔运行封堵结构运行的后方主动开启内向型单向气流窗,使管道外空气快速进入管道内,消除管道内腔封堵式运行驱动结构运行中在运载结构的尾部形成的负压状态所导致的反向推力,提高运行效率。
5、本发明由于在运行管道内同时设置了管道内腔封堵式运行减压结构,辅助维持运载结构区域的低气压状态。管道内运载结构在运行过程中,外部的少量气流会不断流入管道内,影响管道内的低气压状态,位于运载结构后方的管道内腔封堵式运行减压结构通过其排气动力装置不断排出管道内的流入空气,维持运载结构区域的低气压状态,降低运载结构在管道内运行的侧向空气阻力,提高运行效率。
6、本发明在管道内腔封堵式运行驱动结构与运载结构之间设置了柔性可伸缩连接结构,既可以保证管道内腔封堵式运行驱动结构后方的负压的形成,又可以避免管道内腔封堵式运行驱动结构减速时运载结构前向运行对管道内腔封堵式运行驱动结构所形成的冲击力和撞击力,保证运行的安全。
7、本发明采用关闭所述管道内腔封堵式运行驱动结构运行部位前方的管道壁上的所述单向气流窗,使管道内腔封堵式运行驱动结构前方的空气不能排除,形成管道内的空气阻力层,形成管道车体一体化的制动系统,提高了制动效能。
8、本发明所述管道内腔封堵式运行驱动结构和所述管道内腔运行封堵结构对所述运行管道的横切面的封堵面积大于所述运载结构对所述运行管道的横切面的封堵面积,即所述运载结构的横切面积小于所述管道内腔封堵式运行驱动结构的横切面积,所述运载结构的横切面积小于所述管道内腔运行封堵结构的横切面积,使经所述管道内腔封堵式运行驱动结构和所述管道内腔运行封堵结构与所述运行管道之间的间隙漏入的气体量显著小于所述运载结构与所述运行管道之间间隙的体积,形成负压。
9、本发明的运载结构由于在运行管道内运行,因此可以有效避免运载结构在运行过程中受风、雨、雪、雷电等外界环境的影响,不仅提高了运行的安全性,同时显著降低用于克服上述环境影响所施加的额外的设计和建造成本。同时运行管道结构简单、施工方便,因此可以安置在地面上、地面下、桥梁上和隧道内等多个位置,可显著降低道路建设投入。
附图说明
图1是本发明装置整体结构的俯视示意图;
图2是本发明装置整体结构的侧视示意图;
图3是设置在运行管道两侧壁的单向气流窗开启结构示意图;
图4是设置在运行管道两侧壁的单向气流窗关闭结构示意图;
图5是管道内腔封堵式运行驱动结构示意图;
图6是管道内腔封堵结构示意图;
图7是本发明运载结构为载物台式结构的整体结构示意图;
图8是运载结构与运行管道之间的运行限定结构示意图;
图9是本发明运行管道内腔封堵结构示意图;
图10是本发明弹性封堵结构示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述,但不是对本发明的限定。
如图1、图2、图3、图4、图7所示,本发明包括运行管道1,在运行管道1的上壁25和侧壁5上设置有单向气流窗3,包括位于运载结构2前部的被动开启式9、中部的关闭式8和后部的主动开启式10,单向气流窗3分布于运载结构的顶部及左右两侧。在运行管道1的内部底面23紧固连接有运行导轨24,在运行导轨24上滑动运行的有管道内腔封堵式运行驱动结构4、呈车厢式结构的运载结构2和管道内腔运行 封堵结构19。管道内腔封堵式运行驱动结构4和管道内腔运行封堵结构19是一种使运行管道1接近全封闭的管道内腔封堵运行结构。管道内腔封堵式运行驱动结构4是由驱动结构7、驱动型运行结构20和驱动型封堵结构6组成,管道内腔封堵式运行驱动结构4安装位于运载结构2的前方,有一个或以上的驱动装置7,驱动型封堵结构6为可伸缩结构,可通过伸缩调整与运行管道1内侧壁之间的接触紧密程度及间隙距离。管道内腔运行封堵结构19是由封堵型运行结构21和封堵型封堵结构16组成,封堵型封堵结构16为可伸缩结构,可通过伸缩调整与运行管道内侧壁之间的接触紧密程度及间隙距离,位于运载结构2后方的管道内腔,以封堵为主,避免运载结构2后方的管道内的常压空气大量涌入低压空间,影响运载结构2的低压运行。管道内腔封堵式运行驱动结构4位于运载结构2的前方,通过驱动连接结构22直接与运载结构2连接。管道内腔运行封堵结构19位于运载结构2的后方且与运载结构2进行直接连接。管道内腔封堵式运行驱动结构4与运载结构2之间、管道内腔运行封堵结构19与运载结构2之间以及运载结构2与运载结构2之间通过车钩式刚性连接。在运载结构2的前方管道内腔封堵式运行驱动结构4的前部设置有竖直方向设置且向前延伸的气流分割装置11,分割装置11用于将管道内腔封堵式运行驱动结构4前方的气流分割为向左右两侧的气体流动,减少前向运行空气阻力。
上述实施例中,如图3、图4所示,在运行管道1的两侧壁5上设置有被动开启式单向气流窗9,当运行管道1内的空气压力大于运行管道1外的空气压力时,被动开启式单向气流窗9被动打开,呈开启式9;当运行管道1内的空气压力等于或小于运行管道1外的空气压力时,被动开启式单向气流窗9自动关闭,呈关闭式8。通过这样的气流开关调节,使管道内腔封堵式运行驱动结构4运行方向后方的气压低于运行管道1的外部气压,形成运行管道1内运行局部的半真空状态,显著降低了运载结构2的前向运行阻力。
上述实施例中,如图1、图2、图7所示,在运行管道1的两侧壁5和上壁25上设置有主动开启式单向气流窗10,当运行管道1内的管道内腔运行封堵结构19通过主动开启式单向气流窗10时,主动开启式单向气流窗10被主动打开,呈开启式10,运行管道1外的空气迅速流入运行管道1内,使管道内腔运行封堵结构19运行方向后方的低气压状态被迅速纠正,降低了管道内腔封堵式运行驱动结构4与管道内腔运行封堵结构19之间的前后压差,显著提高管道内腔封堵式运行驱动结构4的驱动效率。
上述实施例中,如图5所示,管道内腔封堵式运行驱动结构4为在运行管道1内呈完全或不完全封闭式的且在与运行管道1相邻接的外周留有较小空间或呈接触式不留空间的封堵式结构,管道内腔封堵式运行驱动结构4的外周面与运行管道1的内周 面之间的间隙宽度选择0-50mm,优选0-30mm,更优选0-10mm。
上述实施例中,如图8所示,在运行管道1的两内侧壁上设置有管道内腔封堵式运行驱动结构4和/或运载结构2在运行管道1内运行部位的位置限定结构,所述位置限定结构为磁性装置27,在管道内腔封堵式运行驱动结构4和/或运载结构2的两外侧壁上设置有与磁性装置27相对应的另一磁性装置27,用于保持管道内腔封堵式运行驱动结构4和/或运载结构2在运行过程中与运行管道1之间保持一定的运行空间,避免发生摩擦碰撞。
上述实施例中,如图1、图2、图6所示,管道内腔封堵结构19内设置排气动力装置组成管道内腔封堵式运行减压结构19,在运载结构2后方设置了管道内腔封堵式运行减压结构19,通过负压控制开启式的排气动力装置15,使运行过程中漏入运行腔隙18内的空气从进气口14进入,从出气口17排出,由于进气口的气流开启阀门13为负压控制,即当排气动力装置15的进气口达到设定的负压值时,位于运行腔隙18一侧的气流开启阀门13才能开启,位于运行腔隙18的空气经排气动力装置15排入管道内腔封堵式运行减压结构19后方的运行管道1内,进而可以持续维持运载结构2区域的低气压状态。
上述实施例中,如图7所示,运载结构2为载物台式结构,可以驶入并运载小型车辆及其它物品。
上述实施例中,如图2、图6所示,管道内腔运行封堵结构19的横截面积大于运载结构2的横截面积,则管道内腔运行封堵结构19与运行管道1内侧面之间的间隙小于运载结构2与运行管道1内侧面之间的间隙。管道内腔运行封堵结构19的横截面积与运载结构2的横截面积之比的范围选择1:1-1:0.7,优选1:1-1:0.8,更优选1:1-1:0.9。如以运载结构2的外径为高2米宽3米计算,比例为1:0.7时,管道内腔运行封堵结构19的外径长宽可选择3.9 X 2.2米;如以运载结构2的外径为高2米宽3米计算;比例为1:0.8时,管道内腔运行封堵结构19的外径长宽可选择3.4 X 2.2米;比例为1:0.9时,管道内腔运行封堵结构19的外径长宽可选择3.2 X 2.1米。
上述实施例中,如图2、图5所示,管道内腔封堵式运行驱动结构4的横截面积大于运载结构2的横截面积,则管道内腔封堵式运行驱动结构4与运行管道1内侧面之间的间隙小于运载结构2与运行管道1内侧面之间的间隙。管道内腔封堵式运行驱动结构4的横截面积与运载结构2的横截面积之比的范围选择1:1-1:0.7,优选1:1-1:0.8,更优选1:1-1:0.9。如以运载结构2的外径为高2米宽3米计算,比例为1:0.7时,管道内腔封堵式运行驱动结构4的外径长宽可选择3.9 X 2.2米;如以运载结构2的外径为高2米宽3米计算;比例为1:0.8时,管道内腔封堵式运行驱动结 构4的外径长宽可选择3.4 X 2.2米;比例为1:0.9时,管道内腔封堵式运行驱动结构4的外径长宽可选择3.2 X 2.1米。
上述实施例中,如图9所示,管道内腔封堵结构包括滚动接触式封堵结构31、临接触状态式封堵结构28、滑动接触式封堵结构29。滚动接触式封堵结构31,位于所述管道内腔封堵式运行驱动结构4的外侧并由固定臂32固定到所述管道内腔封堵式运行驱动结构4上,且所述滚动接触式封堵结构31的外侧面与所述运行管道1内侧壁呈滚动式接触运行;临接触状态式封堵结构28,位于所述管道内腔封堵式运行驱动结构4的外侧并由固定臂30固定到所述管道内腔封堵式运行驱动结构4上,且所述临接触状态式封堵结构28的外侧面与所述运行管道1内侧壁呈临接触状态式接触运行;滑动接触式封堵结构29,位于所述管道内腔封堵式运行驱动结构4的外侧并由固定臂30固定到所述管道内腔封堵式运行驱动结构4上,且所述滑动接触式封堵结构29的外侧面与所述运行管道1内侧壁呈滑动式接触运行。
上述实施例中,如图10所示,弹性封堵结构为位于运行管道1的内侧壁的车辆入口端的中间部位开口的可以向周边挤压的弹性封堵式结构,运载结构2可以穿过弹性封堵结构进入,穿过时伴有弹性封堵结构的弹性变形,包括非挤压状态33、压缩状态34、底部非挤压状态35。从而保证运行管道1内的空气不被带入运载结构2的运行空间。
上述实施例中,运载结构2的底部与运行导轨7可为轮轨驱动和/或直线电机驱动。
上述实施例中,磁性装置27采用永久磁性装置和/或电动磁性装置。
上述实施例中,运行管道1的顶部管壁内侧面与运载结构2的顶部之间空隙在0-50mm之间,优选0-30mm之间,更优选0-10mm之间。
上述实施例中,排气动力装置15可采用电动风扇、风扇发动机、涵道风扇发动机、涡轮风扇发动机、涡轮喷气发动机、冲压喷气式发动机、脉动喷气式发动机、涡轮风扇喷气发动机的一种或多种组合,其供能选择电、氢、氧、燃油中的一种或多种组合,优选电、氢、氧中的一种或多种组合。
上述实施例中,还包括安装在运载结构2、运行导轨7、运行管道1、排气动力装置15、单向气流窗3、运载结构2、管道内腔封堵式运行驱动结构4、管道内腔运行封堵结构19上的传感器,各传感器均与控制系统电连接。
上述实施例中,运行管道1的两内侧壁上还可设置有滑轨,运载结构2和/或管道内腔封堵式运行驱动结构4的两外侧壁上设置有与滑轨相配合的滑轮。
本发明在工作时,首先通过控制系统启动管道内腔封堵式运行驱动结构4的驱动 装置7,使管道内腔封堵式运行驱动结构4向前运行,此时管道内腔封堵式运行驱动结构4前方的空气压力随着运行速度的增加而增加,当运行管道1内的空气压力大于运行管道1外的压力时,位于运载结构2前方的被动开启式单向气流窗9开启,形成由内向外的空气流动。当管道内腔封堵式运行驱动结构4运行通过开启的单向气流窗时,由于管道内腔封堵式运行驱动结构4的封堵排气作用,显著减少运行管道1内的空气容量,使管道内腔封堵式运行驱动结构4运行后方形成低气压,使单向气流窗3被动关闭9,形成管道内腔的局部低气压。同时管道内腔运行封堵结构19位于运载结构2的后方,封堵防止运载结构2后方的空气大量进入,维持运载结构2局部低气压。启动管道内腔运行封堵结构19的排气动力装置15,此时运载结构2处在运行管道1内的低气压状态运行,同时排气动力装置15通过高速抽吸并将位于运载结构2的周围漏入的少量空气,经排气口17排到运载结构2后方的管道内腔运行封堵结构19后方,使运载结构2的周围维持低气压状态,降低空气阻力,同时启动轮轨驱动和/或直线电机驱动,整体推动运载结构2向前运行,保持局部低气压,低阻力状态运行。同时由于管道内腔封堵式运行驱动结构4外侧面与运行管道1内侧面之间的间隙显著小于运载结构2外侧面与运行管道1内侧面之间的间隙,使运行时漏入的空气量显著少于其常压状态时应有的空气量,形成负压,降低空气阻力。
下面通过具体实施例进一步说明本发明的技术效果。
实验例1、被动开启式单向气流窗模拟实验:
实验材料:500 X 375 X 375mm电动遥控玩具车、遥控器、3mm厚有机玻璃板、橡胶垫圈、400 X 400mm有机玻璃管。
实验装置的制备:在有机玻璃管的侧壁上,以间隔100mm横向开90 X 90mm的方孔。取有机玻璃板,切成100 X 100mm方板,在一侧粘贴95 X 95mm见方橡胶垫圈。以橡胶垫圈向内以悬吊式固定在有机玻璃管的开孔外侧。直线连接有机玻璃管长20米。将电动遥控玩具车放入管道的一端。
实验方法与结果:遥控启动电动遥控玩具车,加速,可见电动遥控玩具车在管道内快速运行,同时看到在电动遥控玩具车所经过的部位,悬吊式有机玻璃板在电动遥控玩具车进入开孔前开启,运行经过开孔时关闭。电动遥控玩具车在管道内的运行速度未见明显减慢。结束试验。说明本发明被动开启式单向气流窗在管道内气流加压时开启,压力解除后关闭。
实验例2、管道封堵运行减压实验(一):
实验材料:1.5mm厚的不锈钢板、30 X 30mm的角铁、直径3mm的钢丝绳、橡胶垫、合页、永磁块、15KW三相电动机、立式卷扬机、轴承、0-100KPa真空压力表。
实验装置的制备:
1、运行管道的制备:用1.5mm厚的不锈钢板制作如图2的长1.5米直径600 X 600mm的不锈钢管道150个,每个侧面开100 X 150mm单向气流窗9个,以不锈钢板作窗盖,橡胶垫作密封条,永磁块作闭合器。在预先进行平面处理的试验场地上,将各节不锈钢管道对接,用螺丝钉固定连接,制成长200米的试验运行管道。
2、牵拉运行装置的制备:取卷扬机滚筒,立式安装,在滚筒的上端立式安装15KW三相电动机,将钢丝绳的一端与滚筒固定连接。
3、管道内腔封堵式运行驱动结构的制备:先用角铁制作590 X 590 X 590mm(长宽高)方形支架,支架外周用1.5mm厚的不锈钢板包装,上下及左右面各对称安装4个轴承,运行方向前部安装牵拉挂钩及如图5的凸出结构,运行方向后部为可以开关的窗式结构。
4、运载结构的制备:先用角铁制作1200 X 580 X 580mm(长宽高)长方形支架,支架外周用1.5mm厚的不锈钢板包装,下面及左右面和上面各对称安装4个轴承,作为滑动轮,运行方向后部为可以开关的窗式结构。
5、管道内腔运行封堵结构的制备:先用角铁制作590 X 590 X 590mm(长宽高)方形支架,支架外周用1.5mm厚的不锈钢板包装,上下及左右面各对称安装4个轴承。
实验方法与结果:
实验一:将牵拉运行装置固定于管道一端(出口端)的管道外侧,用钢丝绳与管道内腔封堵式运行驱动结构连接,然后将管道内腔封堵式运行驱动结构推入管道内并牵拉至管道的另一端(入口端)。在运载结构中加载100公斤的负载,经入口端推入运行管道内,随后再推入管道内腔运行封堵结构。在管道内的顺序为连接牵拉运行装置的管道内腔封堵式运行驱动结构、运载结构、管道内腔运行封堵结构,相互之间不直接连接。启动牵拉运行装置,以15米/秒的速度牵拉钢丝绳索,带动管道内腔封堵式运行驱动结构在管道内向前滑动,看到绳索拉动的管道内腔封堵式运行驱动结构所经过的部位呈现单向气流窗在管道内腔封堵式运行驱动结构经过之前的瞬间开启,经过后迅速关闭,同时可见之后的运载结构及其随后的管道内腔运行封堵结构也在管道内快速向前运行,单向气流窗均处于关闭状态。说明管道内腔封堵式运行驱动结构通过单向气流窗将位于其前方的管道内空气排出,以及位于其后的运载结构和管道内腔运行封堵结构的封堵作用,使其后方形成低气压,进而带动的位于其后的运载结构和管道内腔运行封堵结构向前运行。实验结束。
实验二:再次实验,在同上述条件下,在管道内腔封堵式运行驱动结构后部安装真空压力表及读表摄像头,将运行管道入口端封闭。启动牵拉运行装置,以30米/秒 的速度牵拉钢丝绳索,带动管道内腔封堵式运行驱动结构在管道内向前滑动,看到绳索拉动的管道内腔封堵式运行驱动结构所经过的部位呈现单向气流窗在管道内腔封堵式运行驱动结构经过之前的瞬间开启,经过后迅速关闭,同时可见之后的运载结构及其随后的管道内腔运行封堵结构也在管道内快速向前运行,单向气流窗均处于关闭状态,读取真空压力表上显示的压力变化。结果真空压力表显示的数字,从开始的100KPa最低降到了84KPa,结束实验。说明本发明技术在运行管道局部产生了负压。
实验例3、管道封堵运行减压实验(二):
实验材料:8.5KW植保机、11V 8000mA DUPU锂电池、直径180mm橡胶轮、电调、0-100KPA真空压力表、遥控器、轴承,其它同实施例2。
实验装置的制备:
1、运行管道的制备:同实施例2。
2、有驱动的管道内腔封堵式运行驱动结构的制备:先用角铁制作590 X 590 X 590mm方形支架,用1.5mm厚的不锈钢板加装底板及左右两侧面。取4个植保机与橡胶轮固定连接,再分别与侧面板连接固定,固定安装锂电池和电调,固定安装遥控器,在左右和上侧面板上对称安装4个轴承,然后用1.5mm厚的不锈钢板安装顶板和前面板,运行方向的后侧不封闭,运行方向前部安装牵拉挂钩及如图4的凸出结构。连接植保机、电调、锂电池和遥控器。
3、管道内腔运行封堵结构的制备:同实施例2。
4、运载结构的制备:同实施例2。
实验方法与结果:
实验一:在运载结构中加载100公斤的负载,经入口端依次将有驱动的管道内腔封堵式运行驱动结构、运载结构和管道内腔运行封堵结构推入运行管道内。在管道内的顺序为有驱动的管道内腔封堵式运行驱动结构、运载结构和管道内腔运行封堵结构,相互之间不直接连接。遥控启动植保机,以30米/秒的速度在管道内运行,此时可见有驱动的管道内腔封堵式运行驱动结构所经过的部位呈现单向气流窗在有驱动的管道内腔封堵式运行驱动结构经过之前的瞬间开启,经过后迅速关闭,同时可见之后的运载结构及其随后的管道内腔运行封堵结构也在管道内快速向前运行,单向气流窗均处于关闭状态。说明有驱动的管道内腔封堵式运行驱动结构通过单向气流窗将位于其前方的管道内空气排出,以及位于其后的运载结构和管道内腔运行封堵结构的封堵作用,使其后方形成低气压,进而带动的位于其后的运载结构和管道内腔运行封堵结构向前运行。实验结束。
实验二:再次实验,在同上述条件下,在有驱动的管道内腔封堵式运行驱动结构 后部安装真空压力表及读表摄像头,将运行管道入口端封闭。遥控启动有驱动的管道内腔封堵式运行驱动结构,以30米/秒的速度在管道内向前滑动,此时可见有驱动的管道内腔封堵式运行驱动结构所经过的部位呈现单向气流窗在有驱动的管道内腔封堵式运行驱动结构经过之前的瞬间开启,经过后迅速关闭,同时可见之后的运载结构及其随后的管道内腔运行封堵结构也在管道内快速向前运行,单向气流窗均处于关闭状态,读取真空压力表上显示的压力变化。结果真空压力表显示的数字,从开始的100KPa最低降到了85KPa,结束实验。说明本发明技术在运行管道局部产生了负压。
实施例4、磁性相斥控制运行模拟实验:
实验材料:150mm X 50mm X 10mm钕铁硼稀土永磁磁铁板、120mm 12叶涵道风扇发动机、遥控器、不锈钢板。
实验装置的制备:焊接400 X 400mm不锈钢方形管,圆弧状延伸,长6米。焊接高380mm、宽380mm、长400mm的不锈钢盒,前后分别切割直径155mm的圆孔,将120mm12叶涵道风扇发动机安装到不锈钢盒内,进气口在前方,排气口在后方。在不锈钢方形管内侧壁高250mm至300mm的位置连续固定排列钕铁硼稀土永磁磁铁板,在不锈钢盒外侧对应位置(高250mm至300mm的位置)以相反磁极方向连续固定排列钕铁硼稀土永磁磁铁板。将安装有120mm 12叶涵道风扇发动机的不锈钢盒放置入不锈钢方管起始端内。在不锈钢盒后端连接一长5.5米的钢丝并与一地面的不锈钢方形管外面的固定支架连接固定。
实验方法与结果:遥控启动120mm 12叶涵道风扇发动机,加速至最大,可见不锈钢方管内的不锈钢盒呈弧线型快速向前滑行,在接近运行管道出口处被钢丝牵拉停止前行,在运行过程中也没有出现由于弧线运行影响运行速度。遥控关闭发动机,将装有不锈钢盒的不锈钢方管向左做45度角的侧翻,可见不锈钢盒在不锈钢方管内的磁铁板位置呈悬浮状态。说明磁性相斥结构可以控制平稳运行。实验结束。
实施例5、管道内腔封堵式运行减压结构对运行管道内低气压维持的影响:
实验材料:120mm 12叶涵道风扇发动机,其它同实施例2。
实验装置的制备:
1、运行管道的制备:同实施例2。
2、牵拉运行装置的制备:同实施例2。
3、管道内腔封堵式运行驱动结构的制备:同实施例2。
4、运载结构的制备:同实施例2。
5、管道内腔封堵式运行减压结构的制备:先用角铁制作590 X 590 X 590mm(长宽高)方形支架,支架外周用1.5mm厚的不锈钢板包装,上下及左右面各对称安装4 个轴承。给方盒前后开孔并安装前后通风管,然后以入风口向着运行前方,出风口向着运行后方的方向在通风管内安装120mm 12叶涵道风扇发动机,并固定。
实验方法与结果:
实验同实施例2,在同上述条件下,向管道内依次推入管道内腔封堵式运行驱动结构、运载结构和管道内腔封堵式运行减压结构,将管道内腔封堵式运行减压结构的后端与入口端固定,使其不在管道内运行,将真空压力表置于管道内腔封堵式运行减压结构的前部并安装摄像头。启动牵拉运行装置,以30米/秒的速度牵拉钢丝绳索,带动管道内腔封堵式运行驱动结构在管道内向前滑动,看到绳索拉动的管道内腔封堵式运行驱动结构所经过的部位呈现单向气流窗在管道内腔封堵式运行驱动结构经过之前的瞬间开启,经过后迅速关闭,同时可见之后的运载结构也在管道内快速向前运行,单向气流窗均处于关闭状态。管道内腔封堵式运行驱动结构牵拉至出口端时,将管道内腔封堵式运行驱动结构固定,连续观察5分钟真空压力表上显示的压力值变化。实验组开启涵道风扇发动机,对照组保持涵道风扇发动机关闭状态。结果对照组真空压力表显示的数字,从开始的100KPa最低降到了85KPa,后续观察30秒时管道内压力即恢复到了100KPa;实验组真空压力表显示的数字,从开始的100KPa最低降到了86KPa,后续观察30秒时管道内压力为95KPa,5分钟时仍维持在99KPa,说明管道内腔封堵式运行减压结构有助于维持管道内的负压状态,结束实验。
实施例6、本发明运载系统负压包裹建立实验:
实验材料:120mm 12叶涵道风扇发动机、橡胶条,其它同实施例2。
实验装置的制备:
1、运行管道的制备:同实施例2。取其中的3节相互连接作为实验管道。
2、管道内腔封堵式运行驱动结构的制备:同实施例2。
4、运载结构的制备:同实施例2。
5、管道内腔封堵式运行减压结构的制备:同实施例5。
实验方法与结果:
首先将管道内腔封堵式运行驱动结构、运载结构和管道内腔封堵式运行减压结构依次连接,将真空压力表置于运载结构的中部并安装摄像头,然后推入运行管道内,用橡胶条封堵管道内腔封堵式运行减压结构与运行管道之间的间隙,用橡胶条封堵管道内腔封堵式运行驱动结构与运行管道之间的间隙。实验时,开启涵道风扇发动机,连续运转10分钟,关闭涵道风扇发动机,取出运载系统,观察位于运载装置上的真空压力表上显示的压力值变化。结果真空压力表显示的数字,从开始的100KPa最低降到了82KPa,说明运行管道内的管道内腔封堵式运行驱动结构、运载结构和管道内腔封 堵式运行减压结构实现了半真空包裹状态,结束实验。本次实验120mm 12叶涵道风扇发动机的功率较低,如增加涵道风扇发动机功率形成的负压会降的更低。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (19)

  1. 一种管道局部减压包裹快速交通运输装置,包括:运行管道、运行导轨、运载结构、控制系统、制动系统和驱动系统,包括如下特征:
    1)所述运行管道为由管道壁包围的延伸性管道结构,所述管道壁上安装有气流流向可控的单向气流窗;
    2)所述驱动系统包括位于所述运行管道内的管道内腔封堵式运行驱动结构;所述管道内腔封堵式运行驱动结构为位于所述运载结构运行前方的安装有驱动其自身前后运行的驱动装置的塞状管道封堵式运行驱动结构;
    3)所述驱动系统包括位于所述运行管道内的管道内腔运行封堵结构;所述管道内腔运行封堵结构为位于所述运载结构运行后方的可以前后运行的塞状管道内运行封堵结构;
    4)所述运行管道内以所述运载结构运行方向从前往后顺序排列有所述管道内腔封堵式运行驱动结构、一个或一个以上的所述运载结构、所述管道内腔运行封堵结构;
    5)所述管道内腔封堵式运行驱动结构、所述运载结构和所述管道内腔运行封堵结构的外周壁与所述运行管道内周壁之间形成运行腔隙;
    6)所述驱动系统包括管道内腔减压结构,所述管道内腔减压结构为位于所述运行管道内的设置有排气动力装置的排气装置,所述排气动力装置的进气口与所述运行腔隙直接相通,所述排气动力装置的排气口与所述运行腔隙之外的所述运行管道内的空气相通。
  2. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述管道内腔封堵式运行驱动结构具有如下至少一种特征:
    1)所述管道内腔封堵式运行驱动结构为位于所述运载结构运行前方的不透空气的可封闭大部分运行管道内腔横断面的安装有驱动其自身前后运行的驱动装置的塞状管道封堵式运行驱动结构;
    2)所述管道内腔封堵式运行驱动结构为位于所述运载结构运行前方的不透空气的由驱动结构、驱动型运行结构和驱动型封堵结构组成的可封闭大部分运行管道内腔横断面的安装有驱动其自身前后运行的驱动装置的管道封堵式运行驱动结构;
    3)所述驱动型封堵结构为可以侧向伸缩进而调节所述封堵结构外侧面与所述运行管道内周壁之间的距离及接触的紧密程度的封堵装置。
  3. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述管道内腔运行封堵结构具有如下至少一种特征:
    1)所述管道内腔运行封堵结构为位于所述运载结构运行后方的不透空气的可封闭大部分运行管道内腔横断面的可以前后运行的塞状管道内运行封堵结构;
    2)所述管道内腔运行封堵结构为位于所述运载结构运行后方的不透空气的由封堵型运行结构和封堵型封堵结构组成的可封闭大部分运行管道内腔横断面的可以前后运行的管道内运行封堵结构;
    3)所述封堵型封堵结构为可以侧向伸缩进而调节所述封堵结构外侧面与所述运行管道内周壁之间的距离及接触的紧密程度的封堵装置。
  4. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述单向气流窗包括被动开启式单向气流窗和机械动能主动开启式单向气流窗:
    1)所述被动开启式单向气流窗为由所述运行管道内外气压差启动的被动开启式单向气流窗式结构,包括所述运行管道内气压大于所述运行管道外气压时的外向被动开启式单向气流窗;所述被动开启式单向气流窗分布于所述运行管道壁的多个部位;
    2)所述机械动能主动开启式单向气流窗为由机械动能驱动的主动开启式结构,包括外向主动开启式单向气流窗和内向主动开启式单向气流窗,所述主动开启式单向气流窗分布于所述运行管道壁的多个部位。
  5. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述排气动力装置的进气口前部设置有气压控制开启的气流流向可控的单向气流阀,所述气压控制开启为可控的负压控制开启,所述单向气流阀的气流方向为从所述运行腔隙内的空间流向所述运行腔隙以外的空间。
  6. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述管道内腔减压结构包含有管道内腔封堵式运行减压结构,所述管道内腔封堵式运行减压结构为在所述管道内腔运行封堵结构内设置有排气动力装置;所述排气动力装置的进风口位于所述管道内腔运行封堵结构的运行方向的前部并与前部的所述运行腔隙相通;所述排气动力装置的排气口位于所述管道内腔运行封堵结构的运行后部并与所述管道内腔运行封堵结构后方的所述运行管道内的空气相通;所述管道内腔封堵式运行减压结构包括独立于所述运载结构且在所述运载结构后方运行的管道内腔封堵式运行减压独立结构和与所述运载结构为一体的管道内腔封堵式运行减压组合结构。
  7. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述运行管道的所述运载结构的驶入端设置有弹性封堵结构,所述弹性封堵结构为位于所述运行管道的内侧壁的中间部位开口的可以向周边挤压的弹性封堵式结构。
  8. 如权利要求1或3或6所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述管道内腔运行封堵结构为设置有驱动其自身前后运行的驱动装置的管道封堵结构,包括独立于所述运载结构且在所述运载结构后方运行的所述管道内腔运行封堵独立结构和与所述运载结构为一体的所述管道内腔运行封堵组合结构。
  9. 如权利要求2或3所述的一种管道局部减压包裹快速交通运输装置,其特征 在于:所述驱动型封堵结构和/或封堵型封堵结构包含有如下至少一种结构特征:
    1)滚动接触式封堵结构,位于所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧,且所述滚动接触式封堵结构的外侧面与所述运行管道内侧壁呈滚动式接触的封堵结构;
    2)临接触状态式封堵结构,位于所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧,且所述临接触状态式封堵结构的外侧面与所述运行管道内侧壁呈临接触状态式接触的封堵结构;
    3)滑动接触式封堵结构,位于所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧,且所述滑动接触式封堵结构的外侧面与所述运行管道内侧壁呈滑动式接触的封堵结构。
  10. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述运行导轨包含有如下至少一种特征:
    1)所述运行导轨设置于所述运行管道的内侧面的下侧面、上侧面、侧面、下平面、上平面的至少一个部位;
    2)所述运行导轨与所述驱动装置之间为轮轨驱动结构、直线电机驱动结构、磁悬浮装置结构、反作用力驱动结构的至少一种;
    3)所述运行导轨设置有控制所述运载结构在管道内运行位置的位置导轨限定结构。
  11. 如权利要求1或2或3或6或7或8或10所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述运载结构包括车厢式结构和载物台式结构,包含有如下至少一种特征:
    1)设置有独立的驱动装置;
    2)位于所述管道内腔封堵式运行驱动结构的后方;
    3)所述运载结构的后方跟随有所述管道内腔运行封堵结构;
    4)安装有纵向延伸的飞行机翼样结构;
    5)所述运载结构的下部设置有与所述运行管道下侧壁所对应的磁悬浮结构;
    6)所述运载结构有多个所述运载结构前后串联组合运行。
  12. 如权利要求1或2或8或10或11所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述驱动装置的驱动方式包括轮轨驱动、直线电机驱动、排气式发动驱动、反作用力发动驱动的至少一种。
  13. 如权利要求1-12任一所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述快速交通运输装置设置有在所述运行管道内运行的位置限定结构,所述位置限定结构为位于所述运行管道壁内侧面和所述运载结构和/或所述管道内腔封 堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧面的相互匹配的配对结构;所述位置限定结构分布于所述运行管道壁和所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外侧面的多个部位,具有下列一种或多种特征:
    1)所述运行管道的内壁的左右两侧与所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的所对应的外侧面安装有磁性相斥结构,选择永久磁性和电动磁性的一种或组合,所述运行管道的内侧壁与所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构对应的侧壁外侧面之间间隙的宽度选择0-50毫米,优选0-30毫米,更优选0-10毫米;
    2)所述运行管道的内壁左右两侧安装有滑轨,所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构所对应的侧壁外侧安装有滑轮,运行时所述滑轮沿着所述滑轨滑行;
    3)所述运行管道的内壁左右两侧安装有滑轮,所述运载结构和/或所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构所对应的侧壁外侧为硬性滑轨结构,运行时所述滑轮沿着所述滑轨滑行。
  14. 如权利要求1或2或3或6或8或9或11或13所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外周面与所述运行管道对应的内周面之间的间隙的宽度小于所述运载结构的外周面与所述运行管道对应的内周面之间的间隙的宽度;所述管道内腔封堵式运行驱动结构和/或所述管道内腔运行封堵结构的外周面与所述运行管道对应的内周面之间的间隙的宽度选择0-50毫米,优选0-30毫米,更优选0-10毫米;。
  15. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述制动系统包括主动关闭位于所述管道内腔封堵式运行驱动结构的运行部位前方的位于所述运行管道壁上的所述单向气流窗。
  16. 如权利要求1所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述驱动系统包括主动开启位于所述管道内腔运行封堵结构运行部位后方的位于所述运行管道壁上的所述单向气流窗。
  17. 如权利要求1或2或3或4或6或7或9或11或13或14或15或16所述的一种管道局部减压包裹快速交通运输装置,其特征在于:所述运行管道侧壁上设置有向外开启式的管道安全出口,所述运载结构侧面设置有侧向或向内开启式的运载安全出口,所述管道安全出口与所述运载安全出口为不等距错位方式排列。
  18. 如权利要求1-17任一所述的一种管道局部减压包裹快速交通运输装置,其特征在于:还包括设置在所述运载结构、所述运行导轨、所述运行管道、所述制动系 统和所述驱动系统上的传感器,各所述传感器均与所述控制系统电连接。
  19. 如权利要求1-18任一所述的管道包裹减压式快速交通运输装置在快速交通运输装置开发中的应用。
PCT/CN2019/076994 2018-03-17 2019-03-05 一种管道局部减压包裹快速交通运输装置 WO2019179308A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201810221645 2018-03-17
CN201810221645.6 2018-03-17
CN201810756669.1 2018-07-11
CN201810756669 2018-07-11
CN201810881258.5 2018-08-05
CN201810881265.5A CN110271565A (zh) 2018-03-17 2018-08-05 一种管道封堵式快速交通运输装置
CN201810881258.5A CN110271564A (zh) 2018-03-17 2018-08-05 一种管道快速交通运输装置
CN201810881265.5 2018-08-05
CN201811371649.9 2018-11-19
CN201811371649.9A CN109204337A (zh) 2018-03-17 2018-11-19 一种管道局部减压包裹快速交通运输装置

Publications (1)

Publication Number Publication Date
WO2019179308A1 true WO2019179308A1 (zh) 2019-09-26

Family

ID=64546344

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2018/102649 WO2019179039A1 (zh) 2018-03-17 2018-08-28 一种管道减压式快速交通运输装置
PCT/CN2018/109176 WO2019179077A1 (zh) 2018-03-17 2018-09-30 一种管道局部减压式快速交通运输装置
PCT/CN2018/112146 WO2019179099A1 (zh) 2018-03-17 2018-10-26 一种管道包裹减压式快速交通运输装置
PCT/CN2018/123594 WO2019179193A1 (zh) 2018-03-17 2018-12-25 一种以管道为轨道的快速交通运输装置
PCT/CN2019/076994 WO2019179308A1 (zh) 2018-03-17 2019-03-05 一种管道局部减压包裹快速交通运输装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2018/102649 WO2019179039A1 (zh) 2018-03-17 2018-08-28 一种管道减压式快速交通运输装置
PCT/CN2018/109176 WO2019179077A1 (zh) 2018-03-17 2018-09-30 一种管道局部减压式快速交通运输装置
PCT/CN2018/112146 WO2019179099A1 (zh) 2018-03-17 2018-10-26 一种管道包裹减压式快速交通运输装置
PCT/CN2018/123594 WO2019179193A1 (zh) 2018-03-17 2018-12-25 一种以管道为轨道的快速交通运输装置

Country Status (5)

Country Link
US (1) US11220278B2 (zh)
EP (1) EP3770037A4 (zh)
JP (1) JP2021515736A (zh)
CN (7) CN110271564A (zh)
WO (5) WO2019179039A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198451B2 (en) * 2018-03-17 2021-12-14 Marvin Liu High speed transportation with transporter enveloped by low pressure in running tube
CN110271564A (zh) * 2018-03-17 2019-09-24 北京康华源科技发展有限公司 一种管道快速交通运输装置
CN111038272B (zh) * 2020-01-02 2021-04-20 中车青岛四方机车车辆股份有限公司 具有气动升力控制装置的轨道车辆
GB2601729A (en) * 2020-11-13 2022-06-15 Trevor Willden Ian Tube or tunnel traversing ducted fan driven vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146508B2 (en) * 2008-10-08 2012-04-03 Patrick Joseph Flynn Pneumatic mass transportation system
CN107097801A (zh) * 2016-02-20 2017-08-29 北京康华源科技发展有限公司 一种管道气悬浮式运输装置
RU2630268C1 (ru) * 2016-08-03 2017-09-06 Валерий Вильгельмович Петрашкевич Сверхзвуковая наземная транспортная система с вакуумной подушкой
CN107139947A (zh) * 2017-04-28 2017-09-08 北京机电工程研究所 超高速真空管道飞行器系统
CN107161160A (zh) * 2017-05-31 2017-09-15 西京学院 一种活塞式车辆推压排气为管道交通形成真空的方法及装置
CN108146451A (zh) * 2018-01-03 2018-06-12 冯政尧 密封管道高速铁路系统
CN108583590A (zh) * 2017-12-01 2018-09-28 徐州中誉鑫鸿工业技术咨询有限公司 一种类真空轨道运输系统及其控制方法
CN109204337A (zh) * 2018-03-17 2019-01-15 北京康华源科技发展有限公司 一种管道局部减压包裹快速交通运输装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB913736A (en) * 1960-01-14 1962-12-28 Frederick Walter Madeley Lee Vehicular transport system
US3100454A (en) * 1961-09-27 1963-08-13 David H Dennis High speed ground transportation system
US3565011A (en) * 1968-05-08 1971-02-23 Lawrence K Edwards High-speed ground transportation system
DE2213210A1 (de) * 1972-03-16 1973-10-04 Boes Christian Vakuum-helium-rohrschnellbahn
JP2719358B2 (ja) * 1988-08-25 1998-02-25 株式会社竹中工務店 高速輸送システムの管路内減圧方法
JPH06212890A (ja) * 1993-01-19 1994-08-02 Hitachi Ltd 車両走行用地下トンネルシステム
US5653175A (en) * 1995-09-15 1997-08-05 Milligan; George Truett Vacuum highway vehicle
US5950543A (en) * 1997-10-10 1999-09-14 Et3.Com Inc. Evacuated tube transport
JP2000043716A (ja) * 1998-08-03 2000-02-15 Tokyo Denki Komusho Co Ltd 加圧流体を利用した乗物の搬送装置
JP3094104B1 (ja) * 1999-08-31 2000-10-03 工業技術院長 超電導磁気浮上輸送システム
GB2372731B (en) * 2001-03-03 2004-03-10 Thomas John Scott Tidmarsh Vehicular linear propulsion system
CN1569537A (zh) * 2003-07-11 2005-01-26 贾瑞福 磁悬浮真空隧道列车
JP2005119630A (ja) * 2003-10-17 2005-05-12 Tetsuya Saishiyu チューブ軌道内車輌輸送システムおよびその運転方法
GB2419860A (en) * 2004-11-04 2006-05-10 Alexander Walter Swales Tube railway
CN101612941A (zh) * 2008-06-27 2009-12-30 丁公权 节能减排管道或槽道超高速地效气浮车运输系统
KR101130807B1 (ko) * 2009-12-17 2012-03-28 한국철도기술연구원 튜브 철도 시스템의 진공 분할 관리 시스템 및 진공 차단막 장치
KR101234555B1 (ko) * 2010-12-10 2013-02-19 재단법인 포항산업과학연구원 공력감소형 튜브
EP2651738B1 (en) * 2010-12-16 2019-09-04 David Dalrymple An evacuated tube transport system
CN202345677U (zh) * 2011-09-06 2012-07-25 北京康华源科技发展有限公司 一种用于交通运输的快速运载结构
CN202593663U (zh) * 2012-04-05 2012-12-12 北京康华源科技发展有限公司 一种可组合运行的运载装置
US9228298B2 (en) * 2013-03-14 2016-01-05 Daryl Oster Evacuated tube transport system with interchange capability
CN203974809U (zh) * 2014-05-30 2014-12-03 徐州工程学院 管道交通系统
CN104002823A (zh) * 2014-05-30 2014-08-27 徐州工程学院 管道交通系统
US9599235B2 (en) * 2015-02-08 2017-03-21 Hyperloop Technologies, Inc. Gate valves and airlocks for a transportation system
WO2016126492A1 (en) * 2015-02-08 2016-08-11 Hyperloop Technologies, Inc. Deployable decelerator
CN105292135B (zh) * 2015-10-29 2017-08-01 西京学院 真空管道交通车辆运行活塞效应排气抽真空系统
CN106864469A (zh) * 2015-12-14 2017-06-20 北京康华源科技发展有限公司 一种悬浮式运输装置及其用途
CN106080619B (zh) * 2016-06-27 2018-02-06 西京学院 分阶段应用真空泵与车辆运行排气为管道交通抽真空方法
CN106428032A (zh) * 2016-11-19 2017-02-22 中铁隧道勘测设计院有限公司 一种依靠气压差推进的交通装置
US10538254B2 (en) * 2017-03-31 2020-01-21 The Boeing Company Vacuum transport tube vehicle, system, and method for evacuating a vacuum transport tube
US11198451B2 (en) * 2018-03-17 2021-12-14 Marvin Liu High speed transportation with transporter enveloped by low pressure in running tube

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146508B2 (en) * 2008-10-08 2012-04-03 Patrick Joseph Flynn Pneumatic mass transportation system
CN107097801A (zh) * 2016-02-20 2017-08-29 北京康华源科技发展有限公司 一种管道气悬浮式运输装置
RU2630268C1 (ru) * 2016-08-03 2017-09-06 Валерий Вильгельмович Петрашкевич Сверхзвуковая наземная транспортная система с вакуумной подушкой
CN107139947A (zh) * 2017-04-28 2017-09-08 北京机电工程研究所 超高速真空管道飞行器系统
CN107161160A (zh) * 2017-05-31 2017-09-15 西京学院 一种活塞式车辆推压排气为管道交通形成真空的方法及装置
CN108583590A (zh) * 2017-12-01 2018-09-28 徐州中誉鑫鸿工业技术咨询有限公司 一种类真空轨道运输系统及其控制方法
CN108146451A (zh) * 2018-01-03 2018-06-12 冯政尧 密封管道高速铁路系统
CN109204337A (zh) * 2018-03-17 2019-01-15 北京康华源科技发展有限公司 一种管道局部减压包裹快速交通运输装置

Also Published As

Publication number Publication date
US11220278B2 (en) 2022-01-11
CN110271565A (zh) 2019-09-24
CN108974021A (zh) 2018-12-11
CN109484412A (zh) 2019-03-19
WO2019179193A1 (zh) 2019-09-26
WO2019179039A1 (zh) 2019-09-26
JP2021515736A (ja) 2021-06-24
CN109204337A (zh) 2019-01-15
WO2019179099A1 (zh) 2019-09-26
WO2019179077A1 (zh) 2019-09-26
CN110271564A (zh) 2019-09-24
CN109177986A (zh) 2019-01-11
EP3770037A1 (en) 2021-01-27
CN110271566A (zh) 2019-09-24
US20190283781A1 (en) 2019-09-19
EP3770037A4 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2019179308A1 (zh) 一种管道局部减压包裹快速交通运输装置
US20110283914A1 (en) Vacuum division management system of tube railway system and vacuum barrier film device
CN108674421A (zh) 一种电磁真空超速铁路系统
US20160121908A1 (en) Zero energy transportation system
WO2008043308A1 (fr) Système de train ferroviaire à super haute vitesse circulant dans un tunnel/tube sous vide
CN110422051B (zh) 一种永磁磁悬浮管轨运输系统
CN101054087A (zh) 一种用于真空管道交通的接驳走廊
US11198451B2 (en) High speed transportation with transporter enveloped by low pressure in running tube
CN102164812A (zh) 配有内部空气流推进系统的陆地车辆
CN210083205U (zh) 一种亚真空管道交通运输系统
CN104002823A (zh) 管道交通系统
CN102602400A (zh) 一种电路控制磁力吸引的环形管道风力列车运行系统
CN108944961A (zh) 一种电磁悬浮发电列车系统
CN100484815C (zh) 一种真空管道运输系统中磁悬浮车与车站间的对接装置
CN202463811U (zh) 一种电路控制磁力吸引的环形管道风力列车运行系统
CN108583590B (zh) 一种类真空轨道运输系统及其控制方法
CN109532850B (zh) 一种用于真空管道磁悬浮车辆的旅客上下车通道
CN209617127U (zh) 一种用于真空管道磁悬浮车辆的旅客上下车通道
WO2010030209A1 (ru) Транспортная система и способ её эксплуатации
CN205524239U (zh) 一种管道交通运输装置和用于交通运输的管道
CN211902054U (zh) 一种化工管线置换封堵设施
CN115056803B (zh) 一种磁浮管道交通防灾救援疏散过渡段结构
CN212447503U (zh) 交通运输系统
WO2010051687A1 (zh) 悬浮列车
CN111923933A (zh) 交通运输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772419

Country of ref document: EP

Kind code of ref document: A1